Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Arabic
ArXiv:
Libraries:
Datasets
pandas
License:
LlamaLens-Arabic / README.md
Firoj's picture
updated readme and added image
148055d
metadata
license: cc-by-nc-sa-4.0
task_categories:
  - text-classification
language:
  - ar
tags:
  - Social Media
  - News Media
  - Sentiment
  - Stance
  - Emotion
pretty_name: >-
  LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media
  Content -- Arabic
size_categories:
  - 10K<n<100K
dataset_info:
  - config_name: SANADAkhbarona-news-categorization
    splits:
      - name: train
        num_examples: 62210
      - name: dev
        num_examples: 7824
      - name: test
        num_examples: 7824
  - config_name: CT22Harmful
    splits:
      - name: train
        num_examples: 2484
      - name: dev
        num_examples: 1076
      - name: test
        num_examples: 1201
  - config_name: Mawqif-Arabic-Stance-main
    splits:
      - name: train
        num_examples: 3162
      - name: dev
        num_examples: 950
      - name: test
        num_examples: 560
  - config_name: CT22Claim
    splits:
      - name: train
        num_examples: 3513
      - name: dev
        num_examples: 339
      - name: test
        num_examples: 1248
  - config_name: annotated-hatetweets-4-classes
    splits:
      - name: train
        num_examples: 210525
      - name: dev
        num_examples: 90543
      - name: test
        num_examples: 100564
  - config_name: ar_reviews_100k
    splits:
      - name: train
        num_examples: 69998
      - name: dev
        num_examples: 10000
      - name: test
        num_examples: 20000
  - config_name: Arafacts
    splits:
      - name: train
        num_examples: 4354
      - name: dev
        num_examples: 623
      - name: test
        num_examples: 1245
  - config_name: OSACT4SubtaskA
    splits:
      - name: train
        num_examples: 4780
      - name: dev
        num_examples: 2047
      - name: test
        num_examples: 1827
  - config_name: SANADAlArabiya-news-categorization
    splits:
      - name: train
        num_examples: 56967
      - name: dev
        num_examples: 7120
      - name: test
        num_examples: 7123
  - config_name: ArPro
    splits:
      - name: train
        num_examples: 6002
      - name: dev
        num_examples: 672
      - name: test
        num_examples: 1326
  - config_name: xlsum
    splits:
      - name: train
        num_examples: 37425
      - name: dev
        num_examples: 4689
      - name: test
        num_examples: 4689
  - config_name: ArSarcasm-v2
    splits:
      - name: train
        num_examples: 8749
      - name: dev
        num_examples: 3761
      - name: test
        num_examples: 2996
  - config_name: COVID19Factuality
    splits:
      - name: train
        num_examples: 3513
      - name: dev
        num_examples: 339
      - name: test
        num_examples: 988
  - config_name: Emotional-Tone
    splits:
      - name: train
        num_examples: 7024
      - name: dev
        num_examples: 1005
      - name: test
        num_examples: 2009
  - config_name: ans-claim
    splits:
      - name: train
        num_examples: 3185
      - name: dev
        num_examples: 906
      - name: test
        num_examples: 456
  - config_name: ArCyc_OFF
    splits:
      - name: train
        num_examples: 3138
      - name: dev
        num_examples: 450
      - name: test
        num_examples: 900
  - config_name: CT24_checkworthy
    splits:
      - name: train
        num_examples: 7333
      - name: dev
        num_examples: 1093
      - name: test
        num_examples: 610
  - config_name: stance
    splits:
      - name: train
        num_examples: 2652
      - name: dev
        num_examples: 755
      - name: test
        num_examples: 379
  - config_name: NewsHeadline
    splits:
      - name: train
        num_examples: 939
      - name: dev
        num_examples: 160
      - name: test
        num_examples: 323
  - config_name: NewsCredibilityDataset
    splits:
      - name: train
        num_examples: 8671
      - name: dev
        num_examples: 1426
      - name: test
        num_examples: 2730
  - config_name: UltimateDataset
    splits:
      - name: train
        num_examples: 133036
      - name: dev
        num_examples: 19269
      - name: test
        num_examples: 38456
  - config_name: ThatiAR
    splits:
      - name: train
        num_examples: 2446
      - name: dev
        num_examples: 467
      - name: test
        num_examples: 748
  - config_name: ArSAS
    splits:
      - name: train
        num_examples: 13883
      - name: dev
        num_examples: 1987
      - name: test
        num_examples: 3976
  - config_name: CT22Attentionworthy
    splits:
      - name: train
        num_examples: 2479
      - name: dev
        num_examples: 1071
      - name: test
        num_examples: 1186
  - config_name: ASND
    splits:
      - name: train
        num_examples: 74496
      - name: dev
        num_examples: 11136
      - name: test
        num_examples: 21942
  - config_name: OSACT4SubtaskB
    splits:
      - name: train
        num_examples: 4778
      - name: dev
        num_examples: 2048
      - name: test
        num_examples: 1827
  - config_name: ArCyc_CB
    splits:
      - name: train
        num_examples: 3145
      - name: dev
        num_examples: 451
      - name: test
        num_examples: 900
  - config_name: SANADAlkhaleej-news-categorization
    splits:
      - name: train
        num_examples: 36391
      - name: dev
        num_examples: 4550
      - name: test
        num_examples: 4550
configs:
  - config_name: SANADAkhbarona-news-categorization
    data_files:
      - split: test
        path: SANADAkhbarona-news-categorization/test.json
      - split: dev
        path: SANADAkhbarona-news-categorization/dev.json
      - split: train
        path: SANADAkhbarona-news-categorization/train.json
  - config_name: CT22Harmful
    data_files:
      - split: test
        path: CT22Harmful/test.json
      - split: dev
        path: CT22Harmful/dev.json
      - split: train
        path: CT22Harmful/train.json
  - config_name: Mawqif-Arabic-Stance-main
    data_files:
      - split: test
        path: Mawqif-Arabic-Stance-main/test.json
      - split: dev
        path: Mawqif-Arabic-Stance-main/dev.json
      - split: train
        path: Mawqif-Arabic-Stance-main/train.json
  - config_name: CT22Claim
    data_files:
      - split: test
        path: CT22Claim/test.json
      - split: dev
        path: CT22Claim/dev.json
      - split: train
        path: CT22Claim/train.json
  - config_name: annotated-hatetweets-4-classes
    data_files:
      - split: test
        path: annotated-hatetweets-4-classes/test.json
      - split: dev
        path: annotated-hatetweets-4-classes/dev.json
      - split: train
        path: annotated-hatetweets-4-classes/train.json
  - config_name: ar_reviews_100k
    data_files:
      - split: test
        path: ar_reviews_100k/test.json
      - split: dev
        path: ar_reviews_100k/dev.json
      - split: train
        path: ar_reviews_100k/train.json
  - config_name: Arafacts
    data_files:
      - split: test
        path: Arafacts/test.json
      - split: dev
        path: Arafacts/dev.json
      - split: train
        path: Arafacts/train.json
  - config_name: OSACT4SubtaskA
    data_files:
      - split: test
        path: OSACT4SubtaskA/test.json
      - split: dev
        path: OSACT4SubtaskA/dev.json
      - split: train
        path: OSACT4SubtaskA/train.json
  - config_name: SANADAlArabiya-news-categorization
    data_files:
      - split: test
        path: SANADAlArabiya-news-categorization/test.json
      - split: dev
        path: SANADAlArabiya-news-categorization/dev.json
      - split: train
        path: SANADAlArabiya-news-categorization/train.json
  - config_name: ArPro
    data_files:
      - split: test
        path: ArPro/test.json
      - split: dev
        path: ArPro/dev.json
      - split: train
        path: ArPro/train.json
  - config_name: xlsum
    data_files:
      - split: test
        path: xlsum/test.json
      - split: dev
        path: xlsum/dev.json
      - split: train
        path: xlsum/train.json
  - config_name: ArSarcasm-v2
    data_files:
      - split: test
        path: ArSarcasm-v2/test.json
      - split: dev
        path: ArSarcasm-v2/dev.json
      - split: train
        path: ArSarcasm-v2/train.json
  - config_name: COVID19Factuality
    data_files:
      - split: test
        path: COVID19Factuality/test.json
      - split: dev
        path: COVID19Factuality/dev.json
      - split: train
        path: COVID19Factuality/train.json
  - config_name: Emotional-Tone
    data_files:
      - split: test
        path: Emotional-Tone/test.json
      - split: dev
        path: Emotional-Tone/dev.json
      - split: train
        path: Emotional-Tone/train.json
  - config_name: ans-claim
    data_files:
      - split: test
        path: ans-claim/test.json
      - split: dev
        path: ans-claim/dev.json
      - split: train
        path: ans-claim/train.json
  - config_name: ArCyc_OFF
    data_files:
      - split: test
        path: ArCyc_OFF/test.json
      - split: dev
        path: ArCyc_OFF/dev.json
      - split: train
        path: ArCyc_OFF/train.json
  - config_name: CT24_checkworthy
    data_files:
      - split: test
        path: CT24_checkworthy/test.json
      - split: dev
        path: CT24_checkworthy/dev.json
      - split: train
        path: CT24_checkworthy/train.json
  - config_name: stance
    data_files:
      - split: test
        path: stance/test.json
      - split: dev
        path: stance/dev.json
      - split: train
        path: stance/train.json
  - config_name: NewsHeadline
    data_files:
      - split: test
        path: NewsHeadline/test.json
      - split: dev
        path: NewsHeadline/dev.json
      - split: train
        path: NewsHeadline/train.json
  - config_name: NewsCredibilityDataset
    data_files:
      - split: test
        path: NewsCredibilityDataset/test.json
      - split: dev
        path: NewsCredibilityDataset/dev.json
      - split: train
        path: NewsCredibilityDataset/train.json
  - config_name: UltimateDataset
    data_files:
      - split: test
        path: UltimateDataset/test.json
      - split: dev
        path: UltimateDataset/dev.json
      - split: train
        path: UltimateDataset/train.json
  - config_name: ThatiAR
    data_files:
      - split: test
        path: ThatiAR/test.json
      - split: dev
        path: ThatiAR/dev.json
      - split: train
        path: ThatiAR/train.json
  - config_name: ArSAS
    data_files:
      - split: test
        path: ArSAS/test.json
      - split: dev
        path: ArSAS/dev.json
      - split: train
        path: ArSAS/train.json
  - config_name: CT22Attentionworthy
    data_files:
      - split: test
        path: CT22Attentionworthy/test.json
      - split: dev
        path: CT22Attentionworthy/dev.json
      - split: train
        path: CT22Attentionworthy/train.json
  - config_name: ASND
    data_files:
      - split: test
        path: ASND/test.json
      - split: dev
        path: ASND/dev.json
      - split: train
        path: ASND/train.json
  - config_name: OSACT4SubtaskB
    data_files:
      - split: test
        path: OSACT4SubtaskB/test.json
      - split: dev
        path: OSACT4SubtaskB/dev.json
      - split: train
        path: OSACT4SubtaskB/train.json
  - config_name: ArCyc_CB
    data_files:
      - split: test
        path: ArCyc_CB/test.json
      - split: dev
        path: ArCyc_CB/dev.json
      - split: train
        path: ArCyc_CB/train.json
  - config_name: SANADAlkhaleej-news-categorization
    data_files:
      - split: test
        path: SANADAlkhaleej-news-categorization/test.json
      - split: dev
        path: SANADAlkhaleej-news-categorization/dev.json
      - split: train
        path: SANADAlkhaleej-news-categorization/train.json

LlamaLens: Specialized Multilingual LLM Dataset

Overview

LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.

LlamaLens

This repo includes scripts needed to run our full pipeline, including data preprocessing and sampling, instruction dataset creation, model fine-tuning, inference and evaluation.

Features

  • Multilingual support (Arabic, English, Hindi)
  • 19 NLP tasks with 52 datasets
  • Optimized for news and social media content analysis

📂 Dataset Overview

Arabic Datasets

Task Dataset # Labels # Train # Test # Dev
Attentionworthiness CT22Attentionworthy 9 2,470 1,186 1,071
Checkworthiness CT24_T1 2 22,403 500 1,093
Claim CT22Claim 2 3,513 1,248 339
Cyberbullying ArCyc_CB 2 3,145 900 451
Emotion Emotional-Tone 8 7,024 2,009 1,005
Emotion NewsHeadline 7 939 323 160
Factuality Arafacts 5 4,354 1,245 623
Factuality COVID19Factuality 2 3,513 988 339
Harmful CT22Harmful 2 2,484 1,201 1,076
Hate Speech annotated-hatetweets-4-classes 4 210,526 100,565 90,544
Hate Speech OSACT4SubtaskB 2 4,778 1,827 2,048
News Genre Categorization ASND 10 74,496 21,942 11,136
News Genre Categorization SANADAkhbarona 7 62,210 7,824 7,824
News Genre Categorization SANADAlArabiya 6 56,967 7,123 7,120
News Genre Categorization SANADAlkhaleej 7 36,391 4,550 4,550
News Genre Categorization UltimateDataset 10 133,036 38,456 19,269
News Credibility NewsCredibilityDataset 2 8,671 2,730 1,426
Summarization xlsum -- 37,425 4,689 4,689
Offensive Language ArCyc_OFF 2 3,138 900 450
Offensive Language OSACT4SubtaskA 2 4,780 1,827 2,047
Propaganda ArPro 2 6,002 1,326 672
Sarcasm ArSarcasm-v2 2 8,749 2,996 3,761
Sentiment ar_reviews_100k 3 69,998 20,000 10,000
Sentiment ArSAS 4 13,883 3,976 1,987
Stance Mawqif-Arabic-Stance-main 2 3,162 560 950
Stance stance 3 2,652 379 755
Subjectivity ThatiAR 2 2,446 748 467

File Format

Each JSONL file in the dataset follows a structured format with the following fields:

  • id: Unique identifier for each data entry.
  • original_id: Identifier from the original dataset, if available.
  • input: The original text that needs to be analyzed.
  • output: The label assigned to the text after analysis.
  • dataset: Name of the dataset the entry belongs.
  • task: The specific task type.
  • lang: The language of the input text.
  • instructions: A brief set of instructions describing how the text should be labeled.
  • text: A formatted structure including instructions and response for the task in a conversation format between the system, user, and assistant, showing the decision process.

Example entry in JSONL file:

{
    "id": "d1662e29-11cf-45cb-bf89-fa5cd993bc78",
    "original_id": "nan",
    "input": "الدفاع الجوي السوري يتصدى لهجوم صاروخي على قاعدة جوية في حمص",
    "output": "not_claim",
    "dataset": "ans-claim",
    "task": "Claim detection",
    "lang": "ar",
    "instructions": "Analyze the given text and label it as 'claim' if it includes a factual statement that can be verified, or 'not_claim' if it's not a checkable assertion. Return only the label without any explanation, justification or additional text.",
    "text": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a social media expert providing accurate analysis and insights.<|eot_id|><|start_header_id|>user<|end_header_id|>Analyze the given text and label it as 'claim' if it includes a factual statement that can be verified, or 'not_claim' if it's not a checkable assertion. Return only the label without any explanation, justification or additional text.\ninput: الدفاع الجوي السوري يتصدى لهجوم صاروخي على قاعدة جوية في حمص\nlabel: <|eot_id|><|start_header_id|>assistant<|end_header_id|>not_claim<|eot_id|><|end_of_text|>"
}

📢 Citation

If you use this dataset, please cite our paper:

@article{kmainasi2024llamalensspecializedmultilingualllm,
  title={LlamaLens: Specialized Multilingual LLM for Analyzing News and Social Media Content},
  author={Mohamed Bayan Kmainasi and Ali Ezzat Shahroor and Maram Hasanain and Sahinur Rahman Laskar and Naeemul Hassan and Firoj Alam},
  year={2024},
  journal={arXiv preprint arXiv:2410.15308},
  volume={},
  number={},
  pages={},
  url={https://arxiv.org/abs/2410.15308},
  eprint={2410.15308},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}