AliShahroor
commited on
Commit
•
927fe0c
1
Parent(s):
f9af6f0
add readme
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ pretty_name: "LlamaLens: Specialized Multilingual LLM for Analyzing News and Soc
|
|
14 |
size_categories:
|
15 |
- 10K<n<100K
|
16 |
dataset_info:
|
17 |
-
- config_name:
|
18 |
splits:
|
19 |
- name: train
|
20 |
num_examples: 10039
|
@@ -30,7 +30,7 @@ dataset_info:
|
|
30 |
num_examples: 2219
|
31 |
- name: test
|
32 |
num_examples: 1000
|
33 |
-
- config_name:
|
34 |
splits:
|
35 |
- name: train
|
36 |
num_examples: 2172
|
@@ -79,14 +79,14 @@ dataset_info:
|
|
79 |
- name: test
|
80 |
num_examples: 447
|
81 |
configs:
|
82 |
-
- config_name:
|
83 |
data_files:
|
84 |
- split: test
|
85 |
-
path:
|
86 |
- split: dev
|
87 |
-
path:
|
88 |
- split: train
|
89 |
-
path:
|
90 |
- config_name: MC_Hinglish1
|
91 |
data_files:
|
92 |
- split: test
|
@@ -95,14 +95,14 @@ configs:
|
|
95 |
path: MC_Hinglish1/dev.json
|
96 |
- split: train
|
97 |
path: MC_Hinglish1/train.json
|
98 |
-
- config_name:
|
99 |
data_files:
|
100 |
- split: test
|
101 |
-
path:
|
102 |
- split: dev
|
103 |
-
path:
|
104 |
- split: train
|
105 |
-
path:
|
106 |
- config_name: xlsum
|
107 |
data_files:
|
108 |
- split: test
|
@@ -175,8 +175,8 @@ This repo includes scripts needed to run our full pipeline, including data prepr
|
|
175 |
| Hate Speech | Hindi-Hostility-Detection-CONSTRAINT-2021 | 15 | 5,718 | 1,651 | 811 |
|
176 |
| Natural Language Inference | Natural Language Inference | 2 | 1,251 | 447 | 537 |
|
177 |
| Summarization | xlsum | -- | 70,754 | 8,847 | 8,847 |
|
178 |
-
| Offensive Speech |
|
179 |
-
| Sentiment |
|
180 |
|
181 |
---
|
182 |
|
@@ -202,7 +202,7 @@ Each JSONL file in the dataset follows a structured format with the following fi
|
|
202 |
"original_id": null,
|
203 |
"input": "sub गंदा है पर धंधा है ये . .",
|
204 |
"output": "neutral",
|
205 |
-
"dataset": "
|
206 |
"task": "Sentiment",
|
207 |
"lang": "hi",
|
208 |
"instruction": "Identify the sentiment in the text and label it as positive, negative, or neutral. Return only the label without any explanation, justification or additional text."
|
|
|
14 |
size_categories:
|
15 |
- 10K<n<100K
|
16 |
dataset_info:
|
17 |
+
- config_name: Sentiment_Analysis
|
18 |
splits:
|
19 |
- name: train
|
20 |
num_examples: 10039
|
|
|
30 |
num_examples: 2219
|
31 |
- name: test
|
32 |
num_examples: 1000
|
33 |
+
- config_name: Offensive_Speech_Detection
|
34 |
splits:
|
35 |
- name: train
|
36 |
num_examples: 2172
|
|
|
79 |
- name: test
|
80 |
num_examples: 447
|
81 |
configs:
|
82 |
+
- config_name: Sentiment_Analysis
|
83 |
data_files:
|
84 |
- split: test
|
85 |
+
path: Sentiment_Analysis/test.json
|
86 |
- split: dev
|
87 |
+
path: Sentiment_Analysis/dev.json
|
88 |
- split: train
|
89 |
+
path: Sentiment_Analysis/train.json
|
90 |
- config_name: MC_Hinglish1
|
91 |
data_files:
|
92 |
- split: test
|
|
|
95 |
path: MC_Hinglish1/dev.json
|
96 |
- split: train
|
97 |
path: MC_Hinglish1/train.json
|
98 |
+
- config_name: Offensive_Speech_Detection
|
99 |
data_files:
|
100 |
- split: test
|
101 |
+
path: Offensive_Speech_Detection/test.json
|
102 |
- split: dev
|
103 |
+
path: Offensive_Speech_Detection/dev.json
|
104 |
- split: train
|
105 |
+
path: Offensive_Speech_Detection/train.json
|
106 |
- config_name: xlsum
|
107 |
data_files:
|
108 |
- split: test
|
|
|
175 |
| Hate Speech | Hindi-Hostility-Detection-CONSTRAINT-2021 | 15 | 5,718 | 1,651 | 811 |
|
176 |
| Natural Language Inference | Natural Language Inference | 2 | 1,251 | 447 | 537 |
|
177 |
| Summarization | xlsum | -- | 70,754 | 8,847 | 8,847 |
|
178 |
+
| Offensive Speech | Offensive_Speech_Detection | 3 | 2,172 | 636 | 318 |
|
179 |
+
| Sentiment | Sentiment_Analysis | 3 | 10,039 | 1,259 | 1,258 |
|
180 |
|
181 |
---
|
182 |
|
|
|
202 |
"original_id": null,
|
203 |
"input": "sub गंदा है पर धंधा है ये . .",
|
204 |
"output": "neutral",
|
205 |
+
"dataset": "Sentiment_Analysis",
|
206 |
"task": "Sentiment",
|
207 |
"lang": "hi",
|
208 |
"instruction": "Identify the sentiment in the text and label it as positive, negative, or neutral. Return only the label without any explanation, justification or additional text."
|