task_id
stringlengths
11
13
prompt
stringlengths
97
1.72k
entry_point
stringlengths
1
30
canonical_solution
stringlengths
16
483
test
stringlengths
117
1.8k
seed
int32
0
9
perturbation_name
stringclasses
6 values
partial
stringlengths
265
2.05k
βŒ€
HumanEval/72
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' if sum(q) > w: return False i, j = 0, len(q)-1 while i<j:
will_it_fly
if q[i] != q[j]: return False i+=1 j-=1 return True
def check(candidate): # Check some simple cases assert candidate([3, 2, 3], 9) is True assert candidate([1, 2], 5) is False assert candidate([3], 5) is True assert candidate([3, 2, 3], 1) is False # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3], 6) is False assert candidate([5], 5) is True
0
new_line_afterdoc
def will_it_fly(q,w): ''' Write a function that returns True if the object q will fly, and False otherwise. The object q will fly if it's balanced (it is a palindromic list) and the sum of its elements is less than or equal the maximum possible weight w. Example: will_it_fly([1, 2], 5) ➞ False # 1+2 is less than the maximum possible weight, but it's unbalanced. will_it_fly([3, 2, 3], 1) ➞ False # it's balanced, but 3+2+3 is more than the maximum possible weight. will_it_fly([3, 2, 3], 9) ➞ True # 3+2+3 is less than the maximum possible weight, and it's balanced. will_it_fly([3], 5) ➞ True # 3 is less than the maximum possible weight, and it's balanced. ''' if sum(q) > w: return False i, j = 0, len(q)-1 while i<j: # print('@@this is the line to split##') if q[i] != q[j]: return False i+=1 j-=1 return True
HumanEval/73
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """ ans = 0 for i in range(len(arr) // 2):
smallest_change
if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
def check(candidate): # Check some simple cases assert candidate([1,2,3,5,4,7,9,6]) == 4 assert candidate([1, 2, 3, 4, 3, 2, 2]) == 1 assert candidate([1, 4, 2]) == 1 assert candidate([1, 4, 4, 2]) == 1 # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3, 2, 1]) == 0 assert candidate([3, 1, 1, 3]) == 0 assert candidate([1]) == 0 assert candidate([0, 1]) == 1
0
new_line_afterdoc
def smallest_change(arr): """ Given an array arr of integers, find the minimum number of elements that need to be changed to make the array palindromic. A palindromic array is an array that is read the same backwards and forwards. In one change, you can change one element to any other element. For example: smallest_change([1,2,3,5,4,7,9,6]) == 4 smallest_change([1, 2, 3, 4, 3, 2, 2]) == 1 smallest_change([1, 2, 3, 2, 1]) == 0 """ ans = 0 for i in range(len(arr) // 2): # print('@@this is the line to split##') if arr[i] != arr[len(arr) - i - 1]: ans += 1 return ans
HumanEval/74
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] ''' l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2:
total_match
l2 += len(st) if l1 <= l2: return lst1 else: return lst2
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([], []) == [] assert candidate(['hi', 'admin'], ['hi', 'hi']) == ['hi', 'hi'] assert candidate(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) == ['hi', 'admin'] assert candidate(['4'], ['1', '2', '3', '4', '5']) == ['4'] assert candidate(['hi', 'admin'], ['hI', 'Hi']) == ['hI', 'Hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hi']) == ['hI', 'hi', 'hi'] assert candidate(['hi', 'admin'], ['hI', 'hi', 'hii']) == ['hi', 'admin'] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([], ['this']) == [] assert candidate(['this'], []) == []
0
new_line_afterdoc
def total_match(lst1, lst2): ''' Write a function that accepts two lists of strings and returns the list that has total number of chars in the all strings of the list less than the other list. if the two lists have the same number of chars, return the first list. Examples total_match([], []) ➞ [] total_match(['hi', 'admin'], ['hI', 'Hi']) ➞ ['hI', 'Hi'] total_match(['hi', 'admin'], ['hi', 'hi', 'admin', 'project']) ➞ ['hi', 'admin'] total_match(['hi', 'admin'], ['hI', 'hi', 'hi']) ➞ ['hI', 'hi', 'hi'] total_match(['4'], ['1', '2', '3', '4', '5']) ➞ ['4'] ''' l1 = 0 for st in lst1: l1 += len(st) l2 = 0 for st in lst2: # print('@@this is the line to split##') l2 += len(st) if l1 <= l2: return lst1 else: return lst2
HumanEval/75
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """ def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101):
is_multiply_prime
if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
def check(candidate): assert candidate(5) == False assert candidate(30) == True assert candidate(8) == True assert candidate(10) == False assert candidate(125) == True assert candidate(3 * 5 * 7) == True assert candidate(3 * 6 * 7) == False assert candidate(9 * 9 * 9) == False assert candidate(11 * 9 * 9) == False assert candidate(11 * 13 * 7) == True
0
new_line_afterdoc
def is_multiply_prime(a): """Write a function that returns true if the given number is the multiplication of 3 prime numbers and false otherwise. Knowing that (a) is less then 100. Example: is_multiply_prime(30) == True 30 = 2 * 3 * 5 """ def is_prime(n): for j in range(2,n): if n%j == 0: return False return True for i in range(2,101): # print('@@this is the line to split##') if not is_prime(i): continue for j in range(2,101): if not is_prime(j): continue for k in range(2,101): if not is_prime(k): continue if i*j*k == a: return True return False
HumanEval/76
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """ if (n == 1): return (x == 1) power = 1
is_simple_power
while (power < x): power = power * n return (power == x)
def check(candidate): # Check some simple cases assert candidate(16, 2)== True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(143214, 16)== False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(4, 2)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(9, 3)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(16, 4)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(24, 2)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(128, 4)==False, "This prints if this assert fails 1 (good for debugging!)" assert candidate(12, 6)==False, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1, 1)==True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(1, 12)==True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def is_simple_power(x, n): """Your task is to write a function that returns true if a number x is a simple power of n and false in other cases. x is a simple power of n if n**int=x For example: is_simple_power(1, 4) => true is_simple_power(2, 2) => true is_simple_power(8, 2) => true is_simple_power(3, 2) => false is_simple_power(3, 1) => false is_simple_power(5, 3) => false """ if (n == 1): return (x == 1) power = 1 # print('@@this is the line to split##') while (power < x): power = power * n return (power == x)
HumanEval/77
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' a = abs(a)
iscube
return int(round(a ** (1. / 3))) ** 3 == a
def check(candidate): # Check some simple cases assert candidate(1) == True, "First test error: " + str(candidate(1)) assert candidate(2) == False, "Second test error: " + str(candidate(2)) assert candidate(-1) == True, "Third test error: " + str(candidate(-1)) assert candidate(64) == True, "Fourth test error: " + str(candidate(64)) assert candidate(180) == False, "Fifth test error: " + str(candidate(180)) assert candidate(1000) == True, "Sixth test error: " + str(candidate(1000)) # Check some edge cases that are easy to work out by hand. assert candidate(0) == True, "1st edge test error: " + str(candidate(0)) assert candidate(1729) == False, "2nd edge test error: " + str(candidate(1728))
0
new_line_afterdoc
def iscube(a): ''' Write a function that takes an integer a and returns True if this ingeger is a cube of some integer number. Note: you may assume the input is always valid. Examples: iscube(1) ==> True iscube(2) ==> False iscube(-1) ==> True iscube(64) ==> True iscube(0) ==> True iscube(180) ==> False ''' a = abs(a) # print('@@this is the line to split##') return int(round(a ** (1. / 3))) ** 3 == a
HumanEval/78
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """ primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)):
hex_key
if num[i] in primes: total += 1 return total
def check(candidate): # Check some simple cases assert candidate("AB") == 1, "First test error: " + str(candidate("AB")) assert candidate("1077E") == 2, "Second test error: " + str(candidate("1077E")) assert candidate("ABED1A33") == 4, "Third test error: " + str(candidate("ABED1A33")) assert candidate("2020") == 2, "Fourth test error: " + str(candidate("2020")) assert candidate("123456789ABCDEF0") == 6, "Fifth test error: " + str(candidate("123456789ABCDEF0")) assert candidate("112233445566778899AABBCCDDEEFF00") == 12, "Sixth test error: " + str(candidate("112233445566778899AABBCCDDEEFF00")) # Check some edge cases that are easy to work out by hand. assert candidate([]) == 0
0
new_line_afterdoc
def hex_key(num): """You have been tasked to write a function that receives a hexadecimal number as a string and counts the number of hexadecimal digits that are primes (prime number, or a prime, is a natural number greater than 1 that is not a product of two smaller natural numbers). Hexadecimal digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Prime numbers are 2, 3, 5, 7, 11, 13, 17,... So you have to determine a number of the following digits: 2, 3, 5, 7, B (=decimal 11), D (=decimal 13). Note: you may assume the input is always correct or empty string, and symbols A,B,C,D,E,F are always uppercase. Examples: For num = "AB" the output should be 1. For num = "1077E" the output should be 2. For num = "ABED1A33" the output should be 4. For num = "123456789ABCDEF0" the output should be 6. For num = "2020" the output should be 2. """ primes = ('2', '3', '5', '7', 'B', 'D') total = 0 for i in range(0, len(num)): # print('@@this is the line to split##') if num[i] in primes: total += 1 return total
HumanEval/79
def decimal_to_binary(decimal): """You will be given a number in decimal form and your task is to convert it to binary format. The function should return a string, with each character representing a binary number. Each character in the string will be '0' or '1'. There will be an extra couple of characters 'db' at the beginning and at the end of the string. The extra characters are there to help with the format. Examples: decimal_to_binary(15) # returns "db1111db" decimal_to_binary(32) # returns "db100000db" """
decimal_to_binary
return "db" + bin(decimal)[2:] + "db"
def check(candidate): # Check some simple cases assert candidate(0) == "db0db" assert candidate(32) == "db100000db" assert candidate(103) == "db1100111db" assert candidate(15) == "db1111db", "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
null
HumanEval/80
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """ if len(s) < 3: return False for i in range(len(s) - 2):
is_happy
if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
def check(candidate): # Check some simple cases assert candidate("a") == False , "a" assert candidate("aa") == False , "aa" assert candidate("abcd") == True , "abcd" assert candidate("aabb") == False , "aabb" assert candidate("adb") == True , "adb" assert candidate("xyy") == False , "xyy" assert candidate("iopaxpoi") == True , "iopaxpoi" assert candidate("iopaxioi") == False , "iopaxioi"
0
new_line_afterdoc
def is_happy(s): """You are given a string s. Your task is to check if the string is happy or not. A string is happy if its length is at least 3 and every 3 consecutive letters are distinct For example: is_happy(a) => False is_happy(aa) => False is_happy(abcd) => True is_happy(aabb) => False is_happy(adb) => True is_happy(xyy) => False """ if len(s) < 3: return False for i in range(len(s) - 2): # print('@@this is the line to split##') if s[i] == s[i+1] or s[i+1] == s[i+2] or s[i] == s[i+2]: return False return True
HumanEval/81
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """ letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3:
numerical_letter_grade
letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
def check(candidate): # Check some simple cases assert candidate([4.0, 3, 1.7, 2, 3.5]) == ['A+', 'B', 'C-', 'C', 'A-'] assert candidate([1.2]) == ['D+'] assert candidate([0.5]) == ['D-'] assert candidate([0.0]) == ['E'] assert candidate([1, 0.3, 1.5, 2.8, 3.3]) == ['D', 'D-', 'C-', 'B', 'B+'] assert candidate([0, 0.7]) == ['E', 'D-'] # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def numerical_letter_grade(grades): """It is the last week of the semester and the teacher has to give the grades to students. The teacher has been making her own algorithm for grading. The only problem is, she has lost the code she used for grading. She has given you a list of GPAs for some students and you have to write a function that can output a list of letter grades using the following table: GPA | Letter grade 4.0 A+ > 3.7 A > 3.3 A- > 3.0 B+ > 2.7 B > 2.3 B- > 2.0 C+ > 1.7 C > 1.3 C- > 1.0 D+ > 0.7 D > 0.0 D- 0.0 E Example: grade_equation([4.0, 3, 1.7, 2, 3.5]) ==> ['A+', 'B', 'C-', 'C', 'A-'] """ letter_grade = [] for gpa in grades: if gpa == 4.0: letter_grade.append("A+") elif gpa > 3.7: letter_grade.append("A") elif gpa > 3.3: letter_grade.append("A-") elif gpa > 3.0: letter_grade.append("B+") elif gpa > 2.7: letter_grade.append("B") elif gpa > 2.3: # print('@@this is the line to split##') letter_grade.append("B-") elif gpa > 2.0: letter_grade.append("C+") elif gpa > 1.7: letter_grade.append("C") elif gpa > 1.3: letter_grade.append("C-") elif gpa > 1.0: letter_grade.append("D+") elif gpa > 0.7: letter_grade.append("D") elif gpa > 0.0: letter_grade.append("D-") else: letter_grade.append("E") return letter_grade
HumanEval/82
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """ l = len(string) if l == 0 or l == 1: return False
prime_length
for i in range(2, l): if l % i == 0: return False return True
def check(candidate): # Check some simple cases assert candidate('Hello') == True assert candidate('abcdcba') == True assert candidate('kittens') == True assert candidate('orange') == False assert candidate('wow') == True assert candidate('world') == True assert candidate('MadaM') == True assert candidate('Wow') == True assert candidate('') == False assert candidate('HI') == True assert candidate('go') == True assert candidate('gogo') == False assert candidate('aaaaaaaaaaaaaaa') == False # Check some edge cases that are easy to work out by hand. assert candidate('Madam') == True assert candidate('M') == False assert candidate('0') == False
0
new_line_afterdoc
def prime_length(string): """Write a function that takes a string and returns True if the string length is a prime number or False otherwise Examples prime_length('Hello') == True prime_length('abcdcba') == True prime_length('kittens') == True prime_length('orange') == False """ l = len(string) if l == 0 or l == 1: return False # print('@@this is the line to split##') for i in range(2, l): if l % i == 0: return False return True
HumanEval/83
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ if n == 1: return 1
starts_one_ends
return 18 * (10 ** (n - 2))
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1) == 1 assert candidate(2) == 18 assert candidate(3) == 180 assert candidate(4) == 1800 assert candidate(5) == 18000 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def starts_one_ends(n): """ Given a positive integer n, return the count of the numbers of n-digit positive integers that start or end with 1. """ if n == 1: return 1 # print('@@this is the line to split##') return 18 * (10 ** (n - 2))
HumanEval/84
def solve(N): """Given a positive integer N, return the total sum of its digits in binary. Example For N = 1000, the sum of digits will be 1 the output should be "1". For N = 150, the sum of digits will be 6 the output should be "110". For N = 147, the sum of digits will be 12 the output should be "1100". Variables: @N integer Constraints: 0 ≀ N ≀ 10000. Output: a string of binary number """
solve
return bin(sum(int(i) for i in str(N)))[2:]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1000) == "1", "Error" assert candidate(150) == "110", "Error" assert candidate(147) == "1100", "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(333) == "1001", "Error" assert candidate(963) == "10010", "Error"
0
new_line_afterdoc
null
HumanEval/85
def add(lst): """Given a non-empty list of integers lst. add the even elements that are at odd indices.. Examples: add([4, 2, 6, 7]) ==> 2 """
add
return sum([lst[i] for i in range(1, len(lst), 2) if lst[i]%2 == 0])
def check(candidate): # Check some simple cases assert candidate([4, 88]) == 88 assert candidate([4, 5, 6, 7, 2, 122]) == 122 assert candidate([4, 0, 6, 7]) == 0 assert candidate([4, 4, 6, 8]) == 12 # Check some edge cases that are easy to work out by hand.
0
new_line_afterdoc
null
HumanEval/86
def anti_shuffle(s): """ Write a function that takes a string and returns an ordered version of it. Ordered version of string, is a string where all words (separated by space) are replaced by a new word where all the characters arranged in ascending order based on ascii value. Note: You should keep the order of words and blank spaces in the sentence. For example: anti_shuffle('Hi') returns 'Hi' anti_shuffle('hello') returns 'ehllo' anti_shuffle('Hello World!!!') returns 'Hello !!!Wdlor' """
anti_shuffle
return ' '.join([''.join(sorted(list(i))) for i in s.split(' ')])
def check(candidate): # Check some simple cases assert candidate('Hi') == 'Hi' assert candidate('hello') == 'ehllo' assert candidate('number') == 'bemnru' assert candidate('abcd') == 'abcd' assert candidate('Hello World!!!') == 'Hello !!!Wdlor' assert candidate('') == '' assert candidate('Hi. My name is Mister Robot. How are you?') == '.Hi My aemn is Meirst .Rboot How aer ?ouy' # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
null
HumanEval/87
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """ coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x]
get_row
return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
def check(candidate): # Check some simple cases assert candidate([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6], [1,2,3,4,5,6] ], 2) == [(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)] assert candidate([ [1,2,3,4,5,6], [1,2,3,4,5,6], [1,1,3,4,5,6], [1,2,1,4,5,6], [1,2,3,1,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 0), (2, 1), (2, 0), (3, 2), (3, 0), (4, 3), (4, 0), (5, 4), (5, 0), (6, 5), (6, 0)] assert candidate([], 1) == [] assert candidate([[1]], 2) == [] assert candidate([[], [1], [1, 2, 3]], 3) == [(2, 2)] # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def get_row(lst, x): """ You are given a 2 dimensional data, as a nested lists, which is similar to matrix, however, unlike matrices, each row may contain a different number of columns. Given lst, and integer x, find integers x in the list, and return list of tuples, [(x1, y1), (x2, y2) ...] such that each tuple is a coordinate - (row, columns), starting with 0. Sort coordinates initially by rows in ascending order. Also, sort coordinates of the row by columns in descending order. Examples: get_row([ [1,2,3,4,5,6], [1,2,3,4,1,6], [1,2,3,4,5,1] ], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)] get_row([], 1) == [] get_row([[], [1], [1, 2, 3]], 3) == [(2, 2)] """ coords = [(i, j) for i in range(len(lst)) for j in range(len(lst[i])) if lst[i][j] == x] # print('@@this is the line to split##') return sorted(sorted(coords, key=lambda x: x[1], reverse=True), key=lambda x: x[0])
HumanEval/88
def sort_array(array): """ Given an array of non-negative integers, return a copy of the given array after sorting, you will sort the given array in ascending order if the sum( first index value, last index value) is odd, or sort it in descending order if the sum( first index value, last index value) is even. Note: * don't change the given array. Examples: * sort_array([]) => [] * sort_array([5]) => [5] * sort_array([2, 4, 3, 0, 1, 5]) => [0, 1, 2, 3, 4, 5] * sort_array([2, 4, 3, 0, 1, 5, 6]) => [6, 5, 4, 3, 2, 1, 0] """
sort_array
return [] if len(array) == 0 else sorted(array, reverse= (array[0]+array[-1]) % 2 == 0)
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([]) == [], "Error" assert candidate([5]) == [5], "Error" assert candidate([2, 4, 3, 0, 1, 5]) == [0, 1, 2, 3, 4, 5], "Error" assert candidate([2, 4, 3, 0, 1, 5, 6]) == [6, 5, 4, 3, 2, 1, 0], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([2, 1]) == [1, 2], "Error" assert candidate([15, 42, 87, 32 ,11, 0]) == [0, 11, 15, 32, 42, 87], "Error" assert candidate([21, 14, 23, 11]) == [23, 21, 14, 11], "Error"
0
new_line_afterdoc
null
HumanEval/89
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """ d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d:
encrypt
out += d[(d.index(c)+2*2) % 26] else: out += c return out
def check(candidate): # Check some simple cases assert candidate('hi') == 'lm', "This prints if this assert fails 1 (good for debugging!)" assert candidate('asdfghjkl') == 'ewhjklnop', "This prints if this assert fails 1 (good for debugging!)" assert candidate('gf') == 'kj', "This prints if this assert fails 1 (good for debugging!)" assert candidate('et') == 'ix', "This prints if this assert fails 1 (good for debugging!)" assert candidate('faewfawefaewg')=='jeiajeaijeiak', "This prints if this assert fails 1 (good for debugging!)" assert candidate('hellomyfriend')=='lippsqcjvmirh', "This prints if this assert fails 2 (good for debugging!)" assert candidate('dxzdlmnilfuhmilufhlihufnmlimnufhlimnufhfucufh')=='hbdhpqrmpjylqmpyjlpmlyjrqpmqryjlpmqryjljygyjl', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('a')=='e', "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def encrypt(s): """Create a function encrypt that takes a string as an argument and returns a string encrypted with the alphabet being rotated. The alphabet should be rotated in a manner such that the letters shift down by two multiplied to two places. For example: encrypt('hi') returns 'lm' encrypt('asdfghjkl') returns 'ewhjklnop' encrypt('gf') returns 'kj' encrypt('et') returns 'ix' """ d = 'abcdefghijklmnopqrstuvwxyz' out = '' for c in s: if c in d: # print('@@this is the line to split##') out += d[(d.index(c)+2*2) % 26] else: out += c return out
HumanEval/90
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """ lst = sorted(set(lst))
next_smallest
return None if len(lst) < 2 else lst[1]
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4, 5]) == 2 assert candidate([5, 1, 4, 3, 2]) == 2 assert candidate([]) == None assert candidate([1, 1]) == None assert candidate([1,1,1,1,0]) == 1 assert candidate([1, 0**0]) == None assert candidate([-35, 34, 12, -45]) == -35 # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def next_smallest(lst): """ You are given a list of integers. Write a function next_smallest() that returns the 2nd smallest element of the list. Return None if there is no such element. next_smallest([1, 2, 3, 4, 5]) == 2 next_smallest([5, 1, 4, 3, 2]) == 2 next_smallest([]) == None next_smallest([1, 1]) == None """ lst = sorted(set(lst)) # print('@@this is the line to split##') return None if len(lst) < 2 else lst[1]
HumanEval/91
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """ import re
is_bored
sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
def check(candidate): # Check some simple cases assert candidate("Hello world") == 0, "Test 1" assert candidate("Is the sky blue?") == 0, "Test 2" assert candidate("I love It !") == 1, "Test 3" assert candidate("bIt") == 0, "Test 4" assert candidate("I feel good today. I will be productive. will kill It") == 2, "Test 5" assert candidate("You and I are going for a walk") == 0, "Test 6" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def is_bored(S): """ You'll be given a string of words, and your task is to count the number of boredoms. A boredom is a sentence that starts with the word "I". Sentences are delimited by '.', '?' or '!'. For example: >>> is_bored("Hello world") 0 >>> is_bored("The sky is blue. The sun is shining. I love this weather") 1 """ import re # print('@@this is the line to split##') sentences = re.split(r'[.?!]\s*', S) return sum(sentence[0:2] == 'I ' for sentence in sentences)
HumanEval/92
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x):
any_int
return True return False return False
def check(candidate): # Check some simple cases assert candidate(2, 3, 1)==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(2.5, 2, 3)==False, "This prints if this assert fails 2 (good for debugging!)" assert candidate(1.5, 5, 3.5)==False, "This prints if this assert fails 3 (good for debugging!)" assert candidate(2, 6, 2)==False, "This prints if this assert fails 4 (good for debugging!)" assert candidate(4, 2, 2)==True, "This prints if this assert fails 5 (good for debugging!)" assert candidate(2.2, 2.2, 2.2)==False, "This prints if this assert fails 6 (good for debugging!)" assert candidate(-4, 6, 2)==True, "This prints if this assert fails 7 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(2,1,1)==True, "This prints if this assert fails 8 (also good for debugging!)" assert candidate(3,4,7)==True, "This prints if this assert fails 9 (also good for debugging!)" assert candidate(3.0,4,7)==False, "This prints if this assert fails 10 (also good for debugging!)"
0
new_line_afterdoc
def any_int(x, y, z): ''' Create a function that takes 3 numbers. Returns true if one of the numbers is equal to the sum of the other two, and all numbers are integers. Returns false in any other cases. Examples any_int(5, 2, 7) ➞ True any_int(3, 2, 2) ➞ False any_int(3, -2, 1) ➞ True any_int(3.6, -2.2, 2) ➞ False ''' if isinstance(x,int) and isinstance(y,int) and isinstance(z,int): if (x+y==z) or (x+z==y) or (y+z==x): # print('@@this is the line to split##') return True return False return False
HumanEval/93
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """ vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels])
encode
message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
def check(candidate): # Check some simple cases assert candidate('TEST') == 'tgst', "This prints if this assert fails 1 (good for debugging!)" assert candidate('Mudasir') == 'mWDCSKR', "This prints if this assert fails 2 (good for debugging!)" assert candidate('YES') == 'ygs', "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('This is a message') == 'tHKS KS C MGSSCGG', "This prints if this assert fails 2 (also good for debugging!)" assert candidate("I DoNt KnOw WhAt tO WrItE") == 'k dQnT kNqW wHcT Tq wRkTg', "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def encode(message): """ Write a function that takes a message, and encodes in such a way that it swaps case of all letters, replaces all vowels in the message with the letter that appears 2 places ahead of that vowel in the english alphabet. Assume only letters. Examples: >>> encode('test') 'TGST' >>> encode('This is a message') 'tHKS KS C MGSSCGG' """ vowels = "aeiouAEIOU" vowels_replace = dict([(i, chr(ord(i) + 2)) for i in vowels]) # print('@@this is the line to split##') message = message.swapcase() return ''.join([vowels_replace[i] if i in vowels else i for i in message])
HumanEval/94
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0
skjkasdkd
i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
def check(candidate): # Check some simple cases assert candidate([0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3]) == 10, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1]) == 25, "This prints if this assert fails 2 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3]) == 13, "This prints if this assert fails 3 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,724,32,71,99,32,6,0,5,91,83,0,5,6]) == 11, "This prints if this assert fails 4 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,81,12,3,1,21]) == 3, "This prints if this assert fails 5 (also good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0,8,1,2,1,7]) == 7, "This prints if this assert fails 6 (also good for debugging!)" assert candidate([8191]) == 19, "This prints if this assert fails 7 (also good for debugging!)" assert candidate([8191, 123456, 127, 7]) == 19, "This prints if this assert fails 8 (also good for debugging!)" assert candidate([127, 97, 8192]) == 10, "This prints if this assert fails 9 (also good for debugging!)"
0
new_line_afterdoc
def skjkasdkd(lst): """You are given a list of integers. You need to find the largest prime value and return the sum of its digits. Examples: For lst = [0,3,2,1,3,5,7,4,5,5,5,2,181,32,4,32,3,2,32,324,4,3] the output should be 10 For lst = [1,0,1,8,2,4597,2,1,3,40,1,2,1,2,4,2,5,1] the output should be 25 For lst = [1,3,1,32,5107,34,83278,109,163,23,2323,32,30,1,9,3] the output should be 13 For lst = [0,724,32,71,99,32,6,0,5,91,83,0,5,6] the output should be 11 For lst = [0,81,12,3,1,21] the output should be 3 For lst = [0,8,1,2,1,7] the output should be 7 """ def isPrime(n): for i in range(2,int(n**0.5)+1): if n%i==0: return False return True maxx = 0 # print('@@this is the line to split##') i = 0 while i < len(lst): if(lst[i] > maxx and isPrime(lst[i])): maxx = lst[i] i+=1 result = sum(int(digit) for digit in str(maxx)) return result
HumanEval/95
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """ if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper():
check_dict_case
state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
def check(candidate): # Check some simple cases assert candidate({"p":"pineapple", "b":"banana"}) == True, "First test error: " + str(candidate({"p":"pineapple", "b":"banana"})) assert candidate({"p":"pineapple", "A":"banana", "B":"banana"}) == False, "Second test error: " + str(candidate({"p":"pineapple", "A":"banana", "B":"banana"})) assert candidate({"p":"pineapple", 5:"banana", "a":"apple"}) == False, "Third test error: " + str(candidate({"p":"pineapple", 5:"banana", "a":"apple"})) assert candidate({"Name":"John", "Age":"36", "City":"Houston"}) == False, "Fourth test error: " + str(candidate({"Name":"John", "Age":"36", "City":"Houston"})) assert candidate({"STATE":"NC", "ZIP":"12345" }) == True, "Fifth test error: " + str(candidate({"STATE":"NC", "ZIP":"12345" })) assert candidate({"fruit":"Orange", "taste":"Sweet" }) == True, "Fourth test error: " + str(candidate({"fruit":"Orange", "taste":"Sweet" })) # Check some edge cases that are easy to work out by hand. assert candidate({}) == False, "1st edge test error: " + str(candidate({}))
0
new_line_afterdoc
def check_dict_case(dict): """ Given a dictionary, return True if all keys are strings in lower case or all keys are strings in upper case, else return False. The function should return False is the given dictionary is empty. Examples: check_dict_case({"a":"apple", "b":"banana"}) should return True. check_dict_case({"a":"apple", "A":"banana", "B":"banana"}) should return False. check_dict_case({"a":"apple", 8:"banana", "a":"apple"}) should return False. check_dict_case({"Name":"John", "Age":"36", "City":"Houston"}) should return False. check_dict_case({"STATE":"NC", "ZIP":"12345" }) should return True. """ if len(dict.keys()) == 0: return False else: state = "start" for key in dict.keys(): if isinstance(key, str) == False: state = "mixed" break if state == "start": if key.isupper(): # print('@@this is the line to split##') state = "upper" elif key.islower(): state = "lower" else: break elif (state == "upper" and not key.isupper()) or (state == "lower" and not key.islower()): state = "mixed" break else: break return state == "upper" or state == "lower"
HumanEval/96
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """ primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0:
count_up_to
is_prime = False break if is_prime: primes.append(i) return primes
def check(candidate): assert candidate(5) == [2,3] assert candidate(6) == [2,3,5] assert candidate(7) == [2,3,5] assert candidate(10) == [2,3,5,7] assert candidate(0) == [] assert candidate(22) == [2,3,5,7,11,13,17,19] assert candidate(1) == [] assert candidate(18) == [2,3,5,7,11,13,17] assert candidate(47) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43] assert candidate(101) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]
0
new_line_afterdoc
def count_up_to(n): """Implement a function that takes an non-negative integer and returns an array of the first n integers that are prime numbers and less than n. for example: count_up_to(5) => [2,3] count_up_to(11) => [2,3,5,7] count_up_to(0) => [] count_up_to(20) => [2,3,5,7,11,13,17,19] count_up_to(1) => [] count_up_to(18) => [2,3,5,7,11,13,17] """ primes = [] for i in range(2, n): is_prime = True for j in range(2, i): if i % j == 0: # print('@@this is the line to split##') is_prime = False break if is_prime: primes.append(i) return primes
HumanEval/97
def multiply(a, b): """Complete the function that takes two integers and returns the product of their unit digits. Assume the input is always valid. Examples: multiply(148, 412) should return 16. multiply(19, 28) should return 72. multiply(2020, 1851) should return 0. multiply(14,-15) should return 20. """
multiply
return abs(a % 10) * abs(b % 10)
def check(candidate): # Check some simple cases assert candidate(148, 412) == 16, "First test error: " + str(candidate(148, 412)) assert candidate(19, 28) == 72, "Second test error: " + str(candidate(19, 28)) assert candidate(2020, 1851) == 0, "Third test error: " + str(candidate(2020, 1851)) assert candidate(14,-15) == 20, "Fourth test error: " + str(candidate(14,-15)) assert candidate(76, 67) == 42, "Fifth test error: " + str(candidate(76, 67)) assert candidate(17, 27) == 49, "Sixth test error: " + str(candidate(17, 27)) # Check some edge cases that are easy to work out by hand. assert candidate(0, 1) == 0, "1st edge test error: " + str(candidate(0, 1)) assert candidate(0, 0) == 0, "2nd edge test error: " + str(candidate(0, 0))
0
new_line_afterdoc
null
HumanEval/98
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """ count = 0 for i in range(0,len(s),2):
count_upper
if s[i] in "AEIOU": count += 1 return count
def check(candidate): # Check some simple cases assert candidate('aBCdEf') == 1 assert candidate('abcdefg') == 0 assert candidate('dBBE') == 0 assert candidate('B') == 0 assert candidate('U') == 1 assert candidate('') == 0 assert candidate('EEEE') == 2 # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def count_upper(s): """ Given a string s, count the number of uppercase vowels in even indices. For example: count_upper('aBCdEf') returns 1 count_upper('abcdefg') returns 0 count_upper('dBBE') returns 0 """ count = 0 for i in range(0,len(s),2): # print('@@this is the line to split##') if s[i] in "AEIOU": count += 1 return count
HumanEval/99
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. ''' from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0:
closest_integer
res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
def check(candidate): # Check some simple cases assert candidate("10") == 10, "Test 1" assert candidate("14.5") == 15, "Test 2" assert candidate("-15.5") == -16, "Test 3" assert candidate("15.3") == 15, "Test 3" # Check some edge cases that are easy to work out by hand. assert candidate("0") == 0, "Test 0"
0
new_line_afterdoc
def closest_integer(value): ''' Create a function that takes a value (string) representing a number and returns the closest integer to it. If the number is equidistant from two integers, round it away from zero. Examples >>> closest_integer("10") 10 >>> closest_integer("15.3") 15 Note: Rounding away from zero means that if the given number is equidistant from two integers, the one you should return is the one that is the farthest from zero. For example closest_integer("14.5") should return 15 and closest_integer("-14.5") should return -15. ''' from math import floor, ceil if value.count('.') == 1: # remove trailing zeros while (value[-1] == '0'): value = value[:-1] num = float(value) if value[-2:] == '.5': if num > 0: # print('@@this is the line to split##') res = ceil(num) else: res = floor(num) elif len(value) > 0: res = int(round(num)) else: res = 0 return res
HumanEval/100
def make_a_pile(n): """ Given a positive integer n, you have to make a pile of n levels of stones. The first level has n stones. The number of stones in the next level is: - the next odd number if n is odd. - the next even number if n is even. Return the number of stones in each level in a list, where element at index i represents the number of stones in the level (i+1). Examples: >>> make_a_pile(3) [3, 5, 7] """
make_a_pile
return [n + 2*i for i in range(n)]
def check(candidate): # Check some simple cases assert candidate(3) == [3, 5, 7], "Test 3" assert candidate(4) == [4,6,8,10], "Test 4" assert candidate(5) == [5, 7, 9, 11, 13] assert candidate(6) == [6, 8, 10, 12, 14, 16] assert candidate(8) == [8, 10, 12, 14, 16, 18, 20, 22] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
null
HumanEval/101
def words_string(s): """ You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"] words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] """ if not s: return [] s_list = [] for letter in s:
words_string
if letter == ',': s_list.append(' ') else: s_list.append(letter) s_list = "".join(s_list) return s_list.split()
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate("Hi, my name is John") == ["Hi", "my", "name", "is", "John"] assert candidate("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] assert candidate("Hi, my name") == ["Hi", "my", "name"] assert candidate("One,, two, three, four, five, six,") == ["One", "two", "three", "four", "five", "six"] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate("") == [] assert candidate("ahmed , gamal") == ["ahmed", "gamal"]
0
new_line_afterdoc
def words_string(s): """ You will be given a string of words separated by commas or spaces. Your task is to split the string into words and return an array of the words. For example: words_string("Hi, my name is John") == ["Hi", "my", "name", "is", "John"] words_string("One, two, three, four, five, six") == ["One", "two", "three", "four", "five", "six"] """ if not s: return [] s_list = [] for letter in s: # print('@@this is the line to split##') if letter == ',': s_list.append(' ') else: s_list.append(letter) s_list = "".join(s_list) return s_list.split()
HumanEval/102
def choose_num(x, y): """This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 """ if x > y: return -1 if y % 2 == 0:
choose_num
return y if x == y: return -1 return y - 1
def check(candidate): # Check some simple cases assert candidate(12, 15) == 14 assert candidate(13, 12) == -1 assert candidate(33, 12354) == 12354 assert candidate(5234, 5233) == -1 assert candidate(6, 29) == 28 assert candidate(27, 10) == -1 # Check some edge cases that are easy to work out by hand. assert candidate(7, 7) == -1 assert candidate(546, 546) == 546
0
new_line_afterdoc
def choose_num(x, y): """This function takes two positive numbers x and y and returns the biggest even integer number that is in the range [x, y] inclusive. If there's no such number, then the function should return -1. For example: choose_num(12, 15) = 14 choose_num(13, 12) = -1 """ if x > y: return -1 if y % 2 == 0: # print('@@this is the line to split##') return y if x == y: return -1 return y - 1
HumanEval/103
def rounded_avg(n, m): """You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => "0b11" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => "0b1111" rounded_avg(20, 33) => "0b11010" """ if m < n: return -1 summation = 0
rounded_avg
for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
def check(candidate): # Check some simple cases assert candidate(1, 5) == "0b11" assert candidate(7, 13) == "0b1010" assert candidate(964,977) == "0b1111001010" assert candidate(996,997) == "0b1111100100" assert candidate(560,851) == "0b1011000010" assert candidate(185,546) == "0b101101110" assert candidate(362,496) == "0b110101101" assert candidate(350,902) == "0b1001110010" assert candidate(197,233) == "0b11010111" # Check some edge cases that are easy to work out by hand. assert candidate(7, 5) == -1 assert candidate(5, 1) == -1 assert candidate(5, 5) == "0b101"
0
new_line_afterdoc
def rounded_avg(n, m): """You are given two positive integers n and m, and your task is to compute the average of the integers from n through m (including n and m). Round the answer to the nearest integer and convert that to binary. If n is greater than m, return -1. Example: rounded_avg(1, 5) => "0b11" rounded_avg(7, 5) => -1 rounded_avg(10, 20) => "0b1111" rounded_avg(20, 33) => "0b11010" """ if m < n: return -1 summation = 0 # print('@@this is the line to split##') for i in range(n, m+1): summation += i return bin(round(summation/(m - n + 1)))
HumanEval/104
def unique_digits(x): """Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """ odd_digit_elements = [] for i in x:
unique_digits
if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
def check(candidate): # Check some simple cases assert candidate([15, 33, 1422, 1]) == [1, 15, 33] assert candidate([152, 323, 1422, 10]) == [] assert candidate([12345, 2033, 111, 151]) == [111, 151] assert candidate([135, 103, 31]) == [31, 135] # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def unique_digits(x): """Given a list of positive integers x. return a sorted list of all elements that hasn't any even digit. Note: Returned list should be sorted in increasing order. For example: >>> unique_digits([15, 33, 1422, 1]) [1, 15, 33] >>> unique_digits([152, 323, 1422, 10]) [] """ odd_digit_elements = [] for i in x: # print('@@this is the line to split##') if all (int(c) % 2 == 1 for c in str(i)): odd_digit_elements.append(i) return sorted(odd_digit_elements)
HumanEval/105
def by_length(arr): """ Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """ dic = { 1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 6: "Six", 7: "Seven", 8: "Eight",
by_length
9: "Nine", } sorted_arr = sorted(arr, reverse=True) new_arr = [] for var in sorted_arr: try: new_arr.append(dic[var]) except: pass return new_arr
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([2, 1, 1, 4, 5, 8, 2, 3]) == ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"], "Error" assert candidate([]) == [], "Error" assert candidate([1, -1 , 55]) == ['One'], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([1, -1, 3, 2]) == ["Three", "Two", "One"] assert candidate([9, 4, 8]) == ["Nine", "Eight", "Four"]
0
new_line_afterdoc
def by_length(arr): """ Given an array of integers, sort the integers that are between 1 and 9 inclusive, reverse the resulting array, and then replace each digit by its corresponding name from "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine". For example: arr = [2, 1, 1, 4, 5, 8, 2, 3] -> sort arr -> [1, 1, 2, 2, 3, 4, 5, 8] -> reverse arr -> [8, 5, 4, 3, 2, 2, 1, 1] return ["Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"] If the array is empty, return an empty array: arr = [] return [] If the array has any strange number ignore it: arr = [1, -1 , 55] -> sort arr -> [-1, 1, 55] -> reverse arr -> [55, 1, -1] return = ['One'] """ dic = { 1: "One", 2: "Two", 3: "Three", 4: "Four", 5: "Five", 6: "Six", 7: "Seven", 8: "Eight", # print('@@this is the line to split##') 9: "Nine", } sorted_arr = sorted(arr, reverse=True) new_arr = [] for var in sorted_arr: try: new_arr.append(dic[var]) except: pass return new_arr
HumanEval/106
def f(n): """ Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """ ret = [] for i in range(1,n+1): if i%2 == 0: x = 1 for j in range(1,i+1): x *= j
f
ret += [x] else: x = 0 for j in range(1,i+1): x += j ret += [x] return ret
def check(candidate): assert candidate(5) == [1, 2, 6, 24, 15] assert candidate(7) == [1, 2, 6, 24, 15, 720, 28] assert candidate(1) == [1] assert candidate(3) == [1, 2, 6]
0
new_line_afterdoc
def f(n): """ Implement the function f that takes n as a parameter, and returns a list of size n, such that the value of the element at index i is the factorial of i if i is even or the sum of numbers from 1 to i otherwise. i starts from 1. the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i). Example: f(5) == [1, 2, 6, 24, 15] """ ret = [] for i in range(1,n+1): if i%2 == 0: x = 1 for j in range(1,i+1): x *= j # print('@@this is the line to split##') ret += [x] else: x = 0 for j in range(1,i+1): x += j ret += [x] return ret
HumanEval/107
def even_odd_palindrome(n): """ Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """ def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0
even_odd_palindrome
for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
def check(candidate): # Check some simple cases assert candidate(123) == (8, 13) assert candidate(12) == (4, 6) assert candidate(3) == (1, 2) assert candidate(63) == (6, 8) assert candidate(25) == (5, 6) assert candidate(19) == (4, 6) assert candidate(9) == (4, 5), "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1) == (0, 1), "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def even_odd_palindrome(n): """ Given a positive integer n, return a tuple that has the number of even and odd integer palindromes that fall within the range(1, n), inclusive. Example 1: Input: 3 Output: (1, 2) Explanation: Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd. Example 2: Input: 12 Output: (4, 6) Explanation: Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd. Note: 1. 1 <= n <= 10^3 2. returned tuple has the number of even and odd integer palindromes respectively. """ def is_palindrome(n): return str(n) == str(n)[::-1] even_palindrome_count = 0 odd_palindrome_count = 0 # print('@@this is the line to split##') for i in range(1, n+1): if i%2 == 1 and is_palindrome(i): odd_palindrome_count += 1 elif i%2 == 0 and is_palindrome(i): even_palindrome_count += 1 return (even_palindrome_count, odd_palindrome_count)
HumanEval/108
def count_nums(arr): """ Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1
count_nums
n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
def check(candidate): # Check some simple cases assert candidate([]) == 0 assert candidate([-1, -2, 0]) == 0 assert candidate([1, 1, 2, -2, 3, 4, 5]) == 6 assert candidate([1, 6, 9, -6, 0, 1, 5]) == 5 assert candidate([1, 100, 98, -7, 1, -1]) == 4 assert candidate([12, 23, 34, -45, -56, 0]) == 5 assert candidate([-0, 1**0]) == 1 assert candidate([1]) == 1 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def count_nums(arr): """ Write a function count_nums which takes an array of integers and returns the number of elements which has a sum of digits > 0. If a number is negative, then its first signed digit will be negative: e.g. -123 has signed digits -1, 2, and 3. >>> count_nums([]) == 0 >>> count_nums([-1, 11, -11]) == 1 >>> count_nums([1, 1, 2]) == 3 """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 # print('@@this is the line to split##') n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return len(list(filter(lambda x: x > 0, [digits_sum(i) for i in arr])))
HumanEval/109
def move_one_ball(arr): """We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """ if len(arr)==0: return True sorted_array=sorted(arr) my_arr=[] min_value=min(arr)
move_one_ball
min_index=arr.index(min_value) my_arr=arr[min_index:]+arr[0:min_index] for i in range(len(arr)): if my_arr[i]!=sorted_array[i]: return False return True
def check(candidate): # Check some simple cases assert candidate([3, 4, 5, 1, 2])==True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([3, 5, 10, 1, 2])==True assert candidate([4, 3, 1, 2])==False # Check some edge cases that are easy to work out by hand. assert candidate([3, 5, 4, 1, 2])==False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([])==True
0
new_line_afterdoc
def move_one_ball(arr): """We have an array 'arr' of N integers arr[1], arr[2], ..., arr[N].The numbers in the array will be randomly ordered. Your task is to determine if it is possible to get an array sorted in non-decreasing order by performing the following operation on the given array: You are allowed to perform right shift operation any number of times. One right shift operation means shifting all elements of the array by one position in the right direction. The last element of the array will be moved to the starting position in the array i.e. 0th index. If it is possible to obtain the sorted array by performing the above operation then return True else return False. If the given array is empty then return True. Note: The given list is guaranteed to have unique elements. For Example: move_one_ball([3, 4, 5, 1, 2])==>True Explanation: By performin 2 right shift operations, non-decreasing order can be achieved for the given array. move_one_ball([3, 5, 4, 1, 2])==>False Explanation:It is not possible to get non-decreasing order for the given array by performing any number of right shift operations. """ if len(arr)==0: return True sorted_array=sorted(arr) my_arr=[] min_value=min(arr) # print('@@this is the line to split##') min_index=arr.index(min_value) my_arr=arr[min_index:]+arr[0:min_index] for i in range(len(arr)): if my_arr[i]!=sorted_array[i]: return False return True
HumanEval/110
def exchange(lst1, lst2): """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO" It is assumed that the input lists will be non-empty. """ odd = 0 even = 0 for i in lst1: if i%2 == 1: odd += 1 for i in lst2:
exchange
if i%2 == 0: even += 1 if even >= odd: return "YES" return "NO"
def check(candidate): # Check some simple cases assert candidate([1, 2, 3, 4], [1, 2, 3, 4]) == "YES" assert candidate([1, 2, 3, 4], [1, 5, 3, 4]) == "NO" assert candidate([1, 2, 3, 4], [2, 1, 4, 3]) == "YES" assert candidate([5, 7, 3], [2, 6, 4]) == "YES" assert candidate([5, 7, 3], [2, 6, 3]) == "NO" assert candidate([3, 2, 6, 1, 8, 9], [3, 5, 5, 1, 1, 1]) == "NO" # Check some edge cases that are easy to work out by hand. assert candidate([100, 200], [200, 200]) == "YES"
0
new_line_afterdoc
def exchange(lst1, lst2): """In this problem, you will implement a function that takes two lists of numbers, and determines whether it is possible to perform an exchange of elements between them to make lst1 a list of only even numbers. There is no limit on the number of exchanged elements between lst1 and lst2. If it is possible to exchange elements between the lst1 and lst2 to make all the elements of lst1 to be even, return "YES". Otherwise, return "NO". For example: exchange([1, 2, 3, 4], [1, 2, 3, 4]) => "YES" exchange([1, 2, 3, 4], [1, 5, 3, 4]) => "NO" It is assumed that the input lists will be non-empty. """ odd = 0 even = 0 for i in lst1: if i%2 == 1: odd += 1 for i in lst2: # print('@@this is the line to split##') if i%2 == 0: even += 1 if even >= odd: return "YES" return "NO"
HumanEval/111
def histogram(test): """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """ dict1={} list1=test.split(" ") t=0 for i in list1: if(list1.count(i)>t) and i!='':
histogram
t=list1.count(i) if t>0: for i in list1: if(list1.count(i)==t): dict1[i]=t return dict1
def check(candidate): # Check some simple cases assert candidate('a b b a') == {'a':2,'b': 2}, "This prints if this assert fails 1 (good for debugging!)" assert candidate('a b c a b') == {'a': 2, 'b': 2}, "This prints if this assert fails 2 (good for debugging!)" assert candidate('a b c d g') == {'a': 1, 'b': 1, 'c': 1, 'd': 1, 'g': 1}, "This prints if this assert fails 3 (good for debugging!)" assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 4 (good for debugging!)" assert candidate('b b b b a') == {'b': 4}, "This prints if this assert fails 5 (good for debugging!)" assert candidate('r t g') == {'r': 1,'t': 1,'g': 1}, "This prints if this assert fails 6 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate('') == {}, "This prints if this assert fails 7 (also good for debugging!)" assert candidate('a') == {'a': 1}, "This prints if this assert fails 8 (also good for debugging!)"
0
new_line_afterdoc
def histogram(test): """Given a string representing a space separated lowercase letters, return a dictionary of the letter with the most repetition and containing the corresponding count. If several letters have the same occurrence, return all of them. Example: histogram('a b c') == {'a': 1, 'b': 1, 'c': 1} histogram('a b b a') == {'a': 2, 'b': 2} histogram('a b c a b') == {'a': 2, 'b': 2} histogram('b b b b a') == {'b': 4} histogram('') == {} """ dict1={} list1=test.split(" ") t=0 for i in list1: if(list1.count(i)>t) and i!='': # print('@@this is the line to split##') t=list1.count(i) if t>0: for i in list1: if(list1.count(i)==t): dict1[i]=t return dict1
HumanEval/112
def reverse_delete(s,c): """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = "abcde", c = "ae", the result should be ('bcd',False) For s = "abcdef", c = "b" the result should be ('acdef',False) For s = "abcdedcba", c = "ab", the result should be ('cdedc',True) """ s = ''.join([char for char in s if char not in c])
reverse_delete
return (s,s[::-1] == s)
def check(candidate): assert candidate("abcde","ae") == ('bcd',False) assert candidate("abcdef", "b") == ('acdef',False) assert candidate("abcdedcba","ab") == ('cdedc',True) assert candidate("dwik","w") == ('dik',False) assert candidate("a","a") == ('',True) assert candidate("abcdedcba","") == ('abcdedcba',True) assert candidate("abcdedcba","v") == ('abcdedcba',True) assert candidate("vabba","v") == ('abba',True) assert candidate("mamma", "mia") == ("", True)
0
new_line_afterdoc
def reverse_delete(s,c): """Task We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c then check if the result string is palindrome. A string is called palindrome if it reads the same backward as forward. You should return a tuple containing the result string and True/False for the check. Example For s = "abcde", c = "ae", the result should be ('bcd',False) For s = "abcdef", c = "b" the result should be ('acdef',False) For s = "abcdedcba", c = "ab", the result should be ('cdedc',True) """ s = ''.join([char for char in s if char not in c]) # print('@@this is the line to split##') return (s,s[::-1] == s)
HumanEval/113
def odd_count(lst): """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ["the number of odd elements 4n the str4ng 4 of the 4nput."] >>> odd_count(['3',"11111111"]) ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] """ res = [] for arr in lst:
odd_count
n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
def check(candidate): # Check some simple cases assert candidate(['1234567']) == ["the number of odd elements 4n the str4ng 4 of the 4nput."], "Test 1" assert candidate(['3',"11111111"]) == ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."], "Test 2" assert candidate(['271', '137', '314']) == [ 'the number of odd elements 2n the str2ng 2 of the 2nput.', 'the number of odd elements 3n the str3ng 3 of the 3nput.', 'the number of odd elements 2n the str2ng 2 of the 2nput.' ] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def odd_count(lst): """Given a list of strings, where each string consists of only digits, return a list. Each element i of the output should be "the number of odd elements in the string i of the input." where all the i's should be replaced by the number of odd digits in the i'th string of the input. >>> odd_count(['1234567']) ["the number of odd elements 4n the str4ng 4 of the 4nput."] >>> odd_count(['3',"11111111"]) ["the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."] """ res = [] for arr in lst: # print('@@this is the line to split##') n = sum(int(d)%2==1 for d in arr) res.append("the number of odd elements " + str(n) + "n the str"+ str(n) +"ng "+ str(n) +" of the "+ str(n) +"nput.") return res
HumanEval/114
def minSubArraySum(nums): """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """ max_sum = 0 s = 0 for num in nums: s += -num if (s < 0):
minSubArraySum
s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
def check(candidate): # Check some simple cases assert candidate([2, 3, 4, 1, 2, 4]) == 1, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1, -2, -3]) == -6 assert candidate([-1, -2, -3, 2, -10]) == -14 assert candidate([-9999999999999999]) == -9999999999999999 assert candidate([0, 10, 20, 1000000]) == 0 assert candidate([-1, -2, -3, 10, -5]) == -6 assert candidate([100, -1, -2, -3, 10, -5]) == -6 assert candidate([10, 11, 13, 8, 3, 4]) == 3 assert candidate([100, -33, 32, -1, 0, -2]) == -33 # Check some edge cases that are easy to work out by hand. assert candidate([-10]) == -10, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([7]) == 7 assert candidate([1, -1]) == -1
0
new_line_afterdoc
def minSubArraySum(nums): """ Given an array of integers nums, find the minimum sum of any non-empty sub-array of nums. Example minSubArraySum([2, 3, 4, 1, 2, 4]) == 1 minSubArraySum([-1, -2, -3]) == -6 """ max_sum = 0 s = 0 for num in nums: s += -num if (s < 0): # print('@@this is the line to split##') s = 0 max_sum = max(s, max_sum) if max_sum == 0: max_sum = max(-i for i in nums) min_sum = -max_sum return min_sum
HumanEval/115
def max_fill(grid, capacity): import math """ You are given a rectangular grid of wells. Each row represents a single well, and each 1 in a row represents a single unit of water. Each well has a corresponding bucket that can be used to extract water from it, and all buckets have the same capacity. Your task is to use the buckets to empty the wells. Output the number of times you need to lower the buckets. Example 1: Input: grid : [[0,0,1,0], [0,1,0,0], [1,1,1,1]] bucket_capacity : 1 Output: 6 Example 2: Input: grid : [[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]] bucket_capacity : 2 Output: 5 Example 3: Input: grid : [[0,0,0], [0,0,0]] bucket_capacity : 5 Output: 0 Constraints: * all wells have the same length * 1 <= grid.length <= 10^2 * 1 <= grid[:,1].length <= 10^2 * grid[i][j] -> 0 | 1 * 1 <= capacity <= 10 """
max_fill
return sum([math.ceil(sum(arr)/capacity) for arr in grid])
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([[0,0,1,0], [0,1,0,0], [1,1,1,1]], 1) == 6, "Error" assert candidate([[0,0,1,1], [0,0,0,0], [1,1,1,1], [0,1,1,1]], 2) == 5, "Error" assert candidate([[0,0,0], [0,0,0]], 5) == 0, "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([[1,1,1,1], [1,1,1,1]], 2) == 4, "Error" assert candidate([[1,1,1,1], [1,1,1,1]], 9) == 2, "Error"
0
new_line_afterdoc
null
HumanEval/116
def sort_array(arr): """ In this Kata, you have to sort an array of non-negative integers according to number of ones in their binary representation in ascending order. For similar number of ones, sort based on decimal value. It must be implemented like this: >>> sort_array([1, 5, 2, 3, 4]) == [1, 2, 3, 4, 5] >>> sort_array([-2, -3, -4, -5, -6]) == [-6, -5, -4, -3, -2] >>> sort_array([1, 0, 2, 3, 4]) [0, 1, 2, 3, 4] """
sort_array
return sorted(sorted(arr), key=lambda x: bin(x)[2:].count('1'))
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,5,2,3,4]) == [1, 2, 4, 3, 5] assert candidate([-2,-3,-4,-5,-6]) == [-4, -2, -6, -5, -3] assert candidate([1,0,2,3,4]) == [0, 1, 2, 4, 3] assert candidate([]) == [] assert candidate([2,5,77,4,5,3,5,7,2,3,4]) == [2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77] assert candidate([3,6,44,12,32,5]) == [32, 3, 5, 6, 12, 44] assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32] assert candidate([2,4,8,16,32]) == [2, 4, 8, 16, 32] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
null
HumanEval/117
def select_words(s, n): """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words("Mary had a little lamb", 4) ==> ["little"] select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"] select_words("simple white space", 2) ==> [] select_words("Hello world", 4) ==> ["world"] select_words("Uncle sam", 3) ==> ["Uncle"] """ result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]:
select_words
n_consonants += 1 if n_consonants == n: result.append(word) return result
def check(candidate): # Check some simple cases assert candidate("Mary had a little lamb", 4) == ["little"], "First test error: " + str(candidate("Mary had a little lamb", 4)) assert candidate("Mary had a little lamb", 3) == ["Mary", "lamb"], "Second test error: " + str(candidate("Mary had a little lamb", 3)) assert candidate("simple white space", 2) == [], "Third test error: " + str(candidate("simple white space", 2)) assert candidate("Hello world", 4) == ["world"], "Fourth test error: " + str(candidate("Hello world", 4)) assert candidate("Uncle sam", 3) == ["Uncle"], "Fifth test error: " + str(candidate("Uncle sam", 3)) # Check some edge cases that are easy to work out by hand. assert candidate("", 4) == [], "1st edge test error: " + str(candidate("", 4)) assert candidate("a b c d e f", 1) == ["b", "c", "d", "f"], "2nd edge test error: " + str(candidate("a b c d e f", 1))
0
new_line_afterdoc
def select_words(s, n): """Given a string s and a natural number n, you have been tasked to implement a function that returns a list of all words from string s that contain exactly n consonants, in order these words appear in the string s. If the string s is empty then the function should return an empty list. Note: you may assume the input string contains only letters and spaces. Examples: select_words("Mary had a little lamb", 4) ==> ["little"] select_words("Mary had a little lamb", 3) ==> ["Mary", "lamb"] select_words("simple white space", 2) ==> [] select_words("Hello world", 4) ==> ["world"] select_words("Uncle sam", 3) ==> ["Uncle"] """ result = [] for word in s.split(): n_consonants = 0 for i in range(0, len(word)): if word[i].lower() not in ["a","e","i","o","u"]: # print('@@this is the line to split##') n_consonants += 1 if n_consonants == n: result.append(word) return result
HumanEval/118
def get_closest_vowel(word): """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel("yogurt") ==> "u" get_closest_vowel("FULL") ==> "U" get_closest_vowel("quick") ==> "" get_closest_vowel("ab") ==> "" """ if len(word) < 3: return "" vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'}
get_closest_vowel
for i in range(len(word)-2, 0, -1): if word[i] in vowels: if (word[i+1] not in vowels) and (word[i-1] not in vowels): return word[i] return ""
def check(candidate): # Check some simple cases assert candidate("yogurt") == "u" assert candidate("full") == "u" assert candidate("easy") == "" assert candidate("eAsy") == "" assert candidate("ali") == "" assert candidate("bad") == "a" assert candidate("most") == "o" assert candidate("ab") == "" assert candidate("ba") == "" assert candidate("quick") == "" assert candidate("anime") == "i" assert candidate("Asia") == "" assert candidate("Above") == "o" # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def get_closest_vowel(word): """You are given a word. Your task is to find the closest vowel that stands between two consonants from the right side of the word (case sensitive). Vowels in the beginning and ending doesn't count. Return empty string if you didn't find any vowel met the above condition. You may assume that the given string contains English letter only. Example: get_closest_vowel("yogurt") ==> "u" get_closest_vowel("FULL") ==> "U" get_closest_vowel("quick") ==> "" get_closest_vowel("ab") ==> "" """ if len(word) < 3: return "" vowels = {"a", "e", "i", "o", "u", "A", "E", 'O', 'U', 'I'} # print('@@this is the line to split##') for i in range(len(word)-2, 0, -1): if word[i] in vowels: if (word[i+1] not in vowels) and (word[i-1] not in vowels): return word[i] return ""
HumanEval/119
def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1
match_parens
if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
def check(candidate): # Check some simple cases assert candidate(['()(', ')']) == 'Yes' assert candidate([')', ')']) == 'No' assert candidate(['(()(())', '())())']) == 'No' assert candidate([')())', '(()()(']) == 'Yes' assert candidate(['(())))', '(()())((']) == 'Yes' assert candidate(['()', '())']) == 'No' assert candidate(['(()(', '()))()']) == 'Yes' assert candidate(['((((', '((())']) == 'No' assert candidate([')(()', '(()(']) == 'No' assert candidate([')(', ')(']) == 'No' # Check some edge cases that are easy to work out by hand. assert candidate(['(', ')']) == 'Yes' assert candidate([')', '(']) == 'Yes'
0
new_line_afterdoc
def match_parens(lst): ''' You are given a list of two strings, both strings consist of open parentheses '(' or close parentheses ')' only. Your job is to check if it is possible to concatenate the two strings in some order, that the resulting string will be good. A string S is considered to be good if and only if all parentheses in S are balanced. For example: the string '(())()' is good, while the string '())' is not. Return 'Yes' if there's a way to make a good string, and return 'No' otherwise. Examples: match_parens(['()(', ')']) == 'Yes' match_parens([')', ')']) == 'No' ''' def check(s): val = 0 for i in s: if i == '(': val = val + 1 else: val = val - 1 # print('@@this is the line to split##') if val < 0: return False return True if val == 0 else False S1 = lst[0] + lst[1] S2 = lst[1] + lst[0] return 'Yes' if check(S1) or check(S2) else 'No'
HumanEval/120
def maximum(arr, k): """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """ if k == 0: return []
maximum
arr.sort() ans = arr[-k:] return ans
def check(candidate): # Check some simple cases assert candidate([-3, -4, 5], 3) == [-4, -3, 5] assert candidate([4, -4, 4], 2) == [4, 4] assert candidate([-3, 2, 1, 2, -1, -2, 1], 1) == [2] assert candidate([123, -123, 20, 0 , 1, 2, -3], 3) == [2, 20, 123] assert candidate([-123, 20, 0 , 1, 2, -3], 4) == [0, 1, 2, 20] assert candidate([5, 15, 0, 3, -13, -8, 0], 7) == [-13, -8, 0, 0, 3, 5, 15] assert candidate([-1, 0, 2, 5, 3, -10], 2) == [3, 5] assert candidate([1, 0, 5, -7], 1) == [5] assert candidate([4, -4], 2) == [-4, 4] assert candidate([-10, 10], 2) == [-10, 10] # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 3, -23, 243, -400, 0], 0) == []
0
new_line_afterdoc
def maximum(arr, k): """ Given an array arr of integers and a positive integer k, return a sorted list of length k with the maximum k numbers in arr. Example 1: Input: arr = [-3, -4, 5], k = 3 Output: [-4, -3, 5] Example 2: Input: arr = [4, -4, 4], k = 2 Output: [4, 4] Example 3: Input: arr = [-3, 2, 1, 2, -1, -2, 1], k = 1 Output: [2] Note: 1. The length of the array will be in the range of [1, 1000]. 2. The elements in the array will be in the range of [-1000, 1000]. 3. 0 <= k <= len(arr) """ if k == 0: return [] # print('@@this is the line to split##') arr.sort() ans = arr[-k:] return ans
HumanEval/121
def solution(lst): """Given a non-empty list of integers, return the sum of all of the odd elements that are in even positions. Examples solution([5, 8, 7, 1]) ==> 12 solution([3, 3, 3, 3, 3]) ==> 9 solution([30, 13, 24, 321]) ==>0 """
solution
return sum([x for idx, x in enumerate(lst) if idx%2==0 and x%2==1])
def check(candidate): # Check some simple cases assert candidate([5, 8, 7, 1]) == 12 assert candidate([3, 3, 3, 3, 3]) == 9 assert candidate([30, 13, 24, 321]) == 0 assert candidate([5, 9]) == 5 assert candidate([2, 4, 8]) == 0 assert candidate([30, 13, 23, 32]) == 23 assert candidate([3, 13, 2, 9]) == 3 # Check some edge cases that are easy to work out by hand.
0
new_line_afterdoc
null
HumanEval/122
def add_elements(arr, k): """ Given a non-empty array of integers arr and an integer k, return the sum of the elements with at most two digits from the first k elements of arr. Example: Input: arr = [111,21,3,4000,5,6,7,8,9], k = 4 Output: 24 # sum of 21 + 3 Constraints: 1. 1 <= len(arr) <= 100 2. 1 <= k <= len(arr) """
add_elements
return sum(elem for elem in arr[:k] if len(str(elem)) <= 2)
def check(candidate): # Check some simple cases assert candidate([1,-2,-3,41,57,76,87,88,99], 3) == -4 assert candidate([111,121,3,4000,5,6], 2) == 0 assert candidate([11,21,3,90,5,6,7,8,9], 4) == 125 assert candidate([111,21,3,4000,5,6,7,8,9], 4) == 24, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1], 1) == 1, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
null
HumanEval/123
def get_odd_collatz(n): """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """ if n%2==0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n/2
get_odd_collatz
else: n = n*3 + 1 if n%2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
def check(candidate): # Check some simple cases assert candidate(14) == [1, 5, 7, 11, 13, 17] assert candidate(5) == [1, 5] assert candidate(12) == [1, 3, 5], "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate(1) == [1], "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def get_odd_collatz(n): """ Given a positive integer n, return a sorted list that has the odd numbers in collatz sequence. The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined as follows: start with any positive integer n. Then each term is obtained from the previous term as follows: if the previous term is even, the next term is one half of the previous term. If the previous term is odd, the next term is 3 times the previous term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1. Note: 1. Collatz(1) is [1]. 2. returned list sorted in increasing order. For example: get_odd_collatz(5) returns [1, 5] # The collatz sequence for 5 is [5, 16, 8, 4, 2, 1], so the odd numbers are only 1, and 5. """ if n%2==0: odd_collatz = [] else: odd_collatz = [n] while n > 1: if n % 2 == 0: n = n/2 # print('@@this is the line to split##') else: n = n*3 + 1 if n%2 == 1: odd_collatz.append(int(n)) return sorted(odd_collatz)
HumanEval/124
def valid_date(date): """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """ try: date = date.strip() month, day, year = date.split('-') month, day, year = int(month), int(day), int(year) if month < 1 or month > 12: return False if month in [1,3,5,7,8,10,12] and day < 1 or day > 31: return False
valid_date
if month in [4,6,9,11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
def check(candidate): # Check some simple cases assert candidate('03-11-2000') == True assert candidate('15-01-2012') == False assert candidate('04-0-2040') == False assert candidate('06-04-2020') == True assert candidate('01-01-2007') == True assert candidate('03-32-2011') == False assert candidate('') == False assert candidate('04-31-3000') == False assert candidate('06-06-2005') == True assert candidate('21-31-2000') == False assert candidate('04-12-2003') == True assert candidate('04122003') == False assert candidate('20030412') == False assert candidate('2003-04') == False assert candidate('2003-04-12') == False assert candidate('04-2003') == False
0
new_line_afterdoc
def valid_date(date): """You have to write a function which validates a given date string and returns True if the date is valid otherwise False. The date is valid if all of the following rules are satisfied: 1. The date string is not empty. 2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2. 3. The months should not be less than 1 or higher than 12. 4. The date should be in the format: mm-dd-yyyy for example: valid_date('03-11-2000') => True valid_date('15-01-2012') => False valid_date('04-0-2040') => False valid_date('06-04-2020') => True valid_date('06/04/2020') => False """ try: date = date.strip() month, day, year = date.split('-') month, day, year = int(month), int(day), int(year) if month < 1 or month > 12: return False if month in [1,3,5,7,8,10,12] and day < 1 or day > 31: return False # print('@@this is the line to split##') if month in [4,6,9,11] and day < 1 or day > 30: return False if month == 2 and day < 1 or day > 29: return False except: return False return True
HumanEval/125
def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words("Hello world!") ➞ ["Hello", "world!"] split_words("Hello,world!") ➞ ["Hello", "world!"] split_words("abcdef") == 3 ''' if " " in txt: return txt.split() elif "," in txt:
split_words
return txt.replace(',',' ').split() else: return len([i for i in txt if i.islower() and ord(i)%2 == 0])
def check(candidate): assert candidate("Hello world!") == ["Hello","world!"] assert candidate("Hello,world!") == ["Hello","world!"] assert candidate("Hello world,!") == ["Hello","world,!"] assert candidate("Hello,Hello,world !") == ["Hello,Hello,world","!"] assert candidate("abcdef") == 3 assert candidate("aaabb") == 2 assert candidate("aaaBb") == 1 assert candidate("") == 0
0
new_line_afterdoc
def split_words(txt): ''' Given a string of words, return a list of words split on whitespace, if no whitespaces exists in the text you should split on commas ',' if no commas exists you should return the number of lower-case letters with odd order in the alphabet, ord('a') = 0, ord('b') = 1, ... ord('z') = 25 Examples split_words("Hello world!") ➞ ["Hello", "world!"] split_words("Hello,world!") ➞ ["Hello", "world!"] split_words("abcdef") == 3 ''' if " " in txt: return txt.split() elif "," in txt: # print('@@this is the line to split##') return txt.replace(',',' ').split() else: return len([i for i in txt if i.islower() and ord(i)%2 == 0])
HumanEval/126
def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False
is_sorted
if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
def check(candidate): # Check some simple cases assert candidate([5]) == True assert candidate([1, 2, 3, 4, 5]) == True assert candidate([1, 3, 2, 4, 5]) == False assert candidate([1, 2, 3, 4, 5, 6]) == True assert candidate([1, 2, 3, 4, 5, 6, 7]) == True assert candidate([1, 3, 2, 4, 5, 6, 7]) == False, "This prints if this assert fails 1 (good for debugging!)" assert candidate([]) == True, "This prints if this assert fails 2 (good for debugging!)" assert candidate([1]) == True, "This prints if this assert fails 3 (good for debugging!)" assert candidate([3, 2, 1]) == False, "This prints if this assert fails 4 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([1, 2, 2, 2, 3, 4]) == False, "This prints if this assert fails 5 (good for debugging!)" assert candidate([1, 2, 3, 3, 3, 4]) == False, "This prints if this assert fails 6 (good for debugging!)" assert candidate([1, 2, 2, 3, 3, 4]) == True, "This prints if this assert fails 7 (good for debugging!)" assert candidate([1, 2, 3, 4]) == True, "This prints if this assert fails 8 (good for debugging!)"
0
new_line_afterdoc
def is_sorted(lst): ''' Given a list of numbers, return whether or not they are sorted in ascending order. If list has more than 1 duplicate of the same number, return False. Assume no negative numbers and only integers. Examples is_sorted([5]) ➞ True is_sorted([1, 2, 3, 4, 5]) ➞ True is_sorted([1, 3, 2, 4, 5]) ➞ False is_sorted([1, 2, 3, 4, 5, 6]) ➞ True is_sorted([1, 2, 3, 4, 5, 6, 7]) ➞ True is_sorted([1, 3, 2, 4, 5, 6, 7]) ➞ False is_sorted([1, 2, 2, 3, 3, 4]) ➞ True is_sorted([1, 2, 2, 2, 3, 4]) ➞ False ''' count_digit = dict([(i, 0) for i in lst]) for i in lst: count_digit[i]+=1 if any(count_digit[i] > 2 for i in lst): return False # print('@@this is the line to split##') if all(lst[i-1] <= lst[i] for i in range(1, len(lst))): return True else: return False
HumanEval/127
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: intersection((1, 2), (2, 3)) ==> "NO" intersection((-1, 1), (0, 4)) ==> "NO" intersection((-3, -1), (-5, 5)) ==> "YES" """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False
intersection
return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
def check(candidate): # Check some simple cases assert candidate((1, 2), (2, 3)) == "NO" assert candidate((-1, 1), (0, 4)) == "NO" assert candidate((-3, -1), (-5, 5)) == "YES" assert candidate((-2, 2), (-4, 0)) == "YES" # Check some edge cases that are easy to work out by hand. assert candidate((-11, 2), (-1, -1)) == "NO" assert candidate((1, 2), (3, 5)) == "NO" assert candidate((1, 2), (1, 2)) == "NO" assert candidate((-2, -2), (-3, -2)) == "NO"
0
new_line_afterdoc
def intersection(interval1, interval2): """You are given two intervals, where each interval is a pair of integers. For example, interval = (start, end) = (1, 2). The given intervals are closed which means that the interval (start, end) includes both start and end. For each given interval, it is assumed that its start is less or equal its end. Your task is to determine whether the length of intersection of these two intervals is a prime number. Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3) which its length is 1, which not a prime number. If the length of the intersection is a prime number, return "YES", otherwise, return "NO". If the two intervals don't intersect, return "NO". [input/output] samples: intersection((1, 2), (2, 3)) ==> "NO" intersection((-1, 1), (0, 4)) ==> "NO" intersection((-3, -1), (-5, 5)) ==> "YES" """ def is_prime(num): if num == 1 or num == 0: return False if num == 2: return True for i in range(2, num): if num%i == 0: return False # print('@@this is the line to split##') return True l = max(interval1[0], interval2[0]) r = min(interval1[1], interval2[1]) length = r - l if length > 0 and is_prime(length): return "YES" return "NO"
HumanEval/128
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """ if not arr: return None
prod_signs
prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1, 2, 2, -4]) == -9 assert candidate([0, 1]) == 0 assert candidate([1, 1, 1, 2, 3, -1, 1]) == -10 assert candidate([]) == None assert candidate([2, 4,1, 2, -1, -1, 9]) == 20 assert candidate([-1, 1, -1, 1]) == 4 assert candidate([-1, 1, 1, 1]) == -4 assert candidate([-1, 1, 1, 0]) == 0 # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def prod_signs(arr): """ You are given an array arr of integers and you need to return sum of magnitudes of integers multiplied by product of all signs of each number in the array, represented by 1, -1 or 0. Note: return None for empty arr. Example: >>> prod_signs([1, 2, 2, -4]) == -9 >>> prod_signs([0, 1]) == 0 >>> prod_signs([]) == None """ if not arr: return None # print('@@this is the line to split##') prod = 0 if 0 in arr else (-1) ** len(list(filter(lambda x: x < 0, arr))) return prod * sum([abs(i) for i in arr])
HumanEval/129
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """ n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1:
minPath
temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
def check(candidate): # Check some simple cases print assert candidate([[1, 2, 3], [4, 5, 6], [7, 8, 9]], 3) == [1, 2, 1] assert candidate([[5, 9, 3], [4, 1, 6], [7, 8, 2]], 1) == [1] assert candidate([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], 4) == [1, 2, 1, 2] assert candidate([[6, 4, 13, 10], [5, 7, 12, 1], [3, 16, 11, 15], [8, 14, 9, 2]], 7) == [1, 10, 1, 10, 1, 10, 1] assert candidate([[8, 14, 9, 2], [6, 4, 13, 15], [5, 7, 1, 12], [3, 10, 11, 16]], 5) == [1, 7, 1, 7, 1] assert candidate([[11, 8, 7, 2], [5, 16, 14, 4], [9, 3, 15, 6], [12, 13, 10, 1]], 9) == [1, 6, 1, 6, 1, 6, 1, 6, 1] assert candidate([[12, 13, 10, 1], [9, 3, 15, 6], [5, 16, 14, 4], [11, 8, 7, 2]], 12) == [1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6] assert candidate([[2, 7, 4], [3, 1, 5], [6, 8, 9]], 8) == [1, 3, 1, 3, 1, 3, 1, 3] assert candidate([[6, 1, 5], [3, 8, 9], [2, 7, 4]], 8) == [1, 5, 1, 5, 1, 5, 1, 5] # Check some edge cases that are easy to work out by hand. assert candidate([[1, 2], [3, 4]], 10) == [1, 2, 1, 2, 1, 2, 1, 2, 1, 2] assert candidate([[1, 3], [3, 2]], 10) == [1, 3, 1, 3, 1, 3, 1, 3, 1, 3]
0
new_line_afterdoc
def minPath(grid, k): """ Given a grid with N rows and N columns (N >= 2) and a positive integer k, each cell of the grid contains a value. Every integer in the range [1, N * N] inclusive appears exactly once on the cells of the grid. You have to find the minimum path of length k in the grid. You can start from any cell, and in each step you can move to any of the neighbor cells, in other words, you can go to cells which share an edge with you current cell. Please note that a path of length k means visiting exactly k cells (not necessarily distinct). You CANNOT go off the grid. A path A (of length k) is considered less than a path B (of length k) if after making the ordered lists of the values on the cells that A and B go through (let's call them lst_A and lst_B), lst_A is lexicographically less than lst_B, in other words, there exist an integer index i (1 <= i <= k) such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have lst_A[j] = lst_B[j]. It is guaranteed that the answer is unique. Return an ordered list of the values on the cells that the minimum path go through. Examples: Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3 Output: [1, 2, 1] Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1 Output: [1] """ n = len(grid) val = n * n + 1 for i in range(n): for j in range(n): if grid[i][j] == 1: temp = [] if i != 0: temp.append(grid[i - 1][j]) if j != 0: temp.append(grid[i][j - 1]) if i != n - 1: # print('@@this is the line to split##') temp.append(grid[i + 1][j]) if j != n - 1: temp.append(grid[i][j + 1]) val = min(temp) ans = [] for i in range(k): if i % 2 == 0: ans.append(1) else: ans.append(val) return ans
HumanEval/130
def tri(n): """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """ if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1):
tri
if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
def check(candidate): # Check some simple cases assert candidate(3) == [1, 3, 2.0, 8.0] assert candidate(4) == [1, 3, 2.0, 8.0, 3.0] assert candidate(5) == [1, 3, 2.0, 8.0, 3.0, 15.0] assert candidate(6) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0] assert candidate(7) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0] assert candidate(8) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0] assert candidate(9) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0] assert candidate(20) == [1, 3, 2.0, 8.0, 3.0, 15.0, 4.0, 24.0, 5.0, 35.0, 6.0, 48.0, 7.0, 63.0, 8.0, 80.0, 9.0, 99.0, 10.0, 120.0, 11.0] # Check some edge cases that are easy to work out by hand. assert candidate(0) == [1] assert candidate(1) == [1, 3]
0
new_line_afterdoc
def tri(n): """Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in the last couple centuries. However, what people don't know is Tribonacci sequence. Tribonacci sequence is defined by the recurrence: tri(1) = 3 tri(n) = 1 + n / 2, if n is even. tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd. For example: tri(2) = 1 + (2 / 2) = 2 tri(4) = 3 tri(3) = tri(2) + tri(1) + tri(4) = 2 + 3 + 3 = 8 You are given a non-negative integer number n, you have to a return a list of the first n + 1 numbers of the Tribonacci sequence. Examples: tri(3) = [1, 3, 2, 8] """ if n == 0: return [1] my_tri = [1, 3] for i in range(2, n + 1): # print('@@this is the line to split##') if i % 2 == 0: my_tri.append(i / 2 + 1) else: my_tri.append(my_tri[i - 1] + my_tri[i - 2] + (i + 3) / 2) return my_tri
HumanEval/131
def digits(n): """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """ product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1:
digits
product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
def check(candidate): # Check some simple cases assert candidate(5) == 5 assert candidate(54) == 5 assert candidate(120) ==1 assert candidate(5014) == 5 assert candidate(98765) == 315 assert candidate(5576543) == 2625 # Check some edge cases that are easy to work out by hand. assert candidate(2468) == 0
0
new_line_afterdoc
def digits(n): """Given a positive integer n, return the product of the odd digits. Return 0 if all digits are even. For example: digits(1) == 1 digits(4) == 0 digits(235) == 15 """ product = 1 odd_count = 0 for digit in str(n): int_digit = int(digit) if int_digit%2 == 1: # print('@@this is the line to split##') product= product*int_digit odd_count+=1 if odd_count ==0: return 0 else: return product
HumanEval/132
def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0
is_nested
i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
def check(candidate): # Check some simple cases assert candidate('[[]]') == True, "This prints if this assert fails 1 (good for debugging!)" assert candidate('[]]]]]]][[[[[]') == False assert candidate('[][]') == False assert candidate(('[]')) == False assert candidate('[[[[]]]]') == True assert candidate('[]]]]]]]]]]') == False assert candidate('[][][[]]') == True assert candidate('[[]') == False assert candidate('[]]') == False assert candidate('[[]][[') == True assert candidate('[[][]]') == True # Check some edge cases that are easy to work out by hand. assert candidate('') == False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate('[[[[[[[[') == False assert candidate(']]]]]]]]') == False
0
new_line_afterdoc
def is_nested(string): ''' Create a function that takes a string as input which contains only square brackets. The function should return True if and only if there is a valid subsequence of brackets where at least one bracket in the subsequence is nested. is_nested('[[]]') ➞ True is_nested('[]]]]]]][[[[[]') ➞ False is_nested('[][]') ➞ False is_nested('[]') ➞ False is_nested('[[][]]') ➞ True is_nested('[[]][[') ➞ True ''' opening_bracket_index = [] closing_bracket_index = [] for i in range(len(string)): if string[i] == '[': opening_bracket_index.append(i) else: closing_bracket_index.append(i) closing_bracket_index.reverse() cnt = 0 # print('@@this is the line to split##') i = 0 l = len(closing_bracket_index) for idx in opening_bracket_index: if i < l and idx < closing_bracket_index[i]: cnt += 1 i += 1 return cnt >= 2
HumanEval/133
def sum_squares(lst): """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """ import math squared = 0
sum_squares
for i in lst: squared += math.ceil(i)**2 return squared
def check(candidate): # Check some simple cases assert candidate([1,2,3])==14, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1.0,2,3])==14, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,3,5,7])==84, "This prints if this assert fails 1 (good for debugging!)" assert candidate([1.4,4.2,0])==29, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-2.4,1,1])==6, "This prints if this assert fails 1 (good for debugging!)" assert candidate([100,1,15,2])==10230, "This prints if this assert fails 1 (good for debugging!)" assert candidate([10000,10000])==200000000, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1.4,4.6,6.3])==75, "This prints if this assert fails 1 (good for debugging!)" assert candidate([-1.4,17.9,18.9,19.9])==1086, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([0])==0, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([-1])==1, "This prints if this assert fails 2 (also good for debugging!)" assert candidate([-1,1,0])==2, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def sum_squares(lst): """You are given a list of numbers. You need to return the sum of squared numbers in the given list, round each element in the list to the upper int(Ceiling) first. Examples: For lst = [1,2,3] the output should be 14 For lst = [1,4,9] the output should be 98 For lst = [1,3,5,7] the output should be 84 For lst = [1.4,4.2,0] the output should be 29 For lst = [-2.4,1,1] the output should be 6 """ import math squared = 0 # print('@@this is the line to split##') for i in lst: squared += math.ceil(i)**2 return squared
HumanEval/134
def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter("apple pie") ➞ False check_if_last_char_is_a_letter("apple pi e") ➞ True check_if_last_char_is_a_letter("apple pi e ") ➞ False check_if_last_char_is_a_letter("") ➞ False '''
check_if_last_char_is_a_letter
check = txt.split(' ')[-1] return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False
def check(candidate): # Check some simple cases assert candidate("apple") == False assert candidate("apple pi e") == True assert candidate("eeeee") == False assert candidate("A") == True assert candidate("Pumpkin pie ") == False assert candidate("Pumpkin pie 1") == False assert candidate("") == False assert candidate("eeeee e ") == False assert candidate("apple pie") == False assert candidate("apple pi e ") == False # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def check_if_last_char_is_a_letter(txt): ''' Create a function that returns True if the last character of a given string is an alphabetical character and is not a part of a word, and False otherwise. Note: "word" is a group of characters separated by space. Examples: check_if_last_char_is_a_letter("apple pie") ➞ False check_if_last_char_is_a_letter("apple pi e") ➞ True check_if_last_char_is_a_letter("apple pi e ") ➞ False check_if_last_char_is_a_letter("") ➞ False ''' # print('@@this is the line to split##') check = txt.split(' ')[-1] return True if len(check) == 1 and (97 <= ord(check.lower()) <= 122) else False
HumanEval/135
def can_arrange(arr): """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """ ind=-1 i=1 while i<len(arr):
can_arrange
if arr[i]<arr[i-1]: ind=i i+=1 return ind
def check(candidate): # Check some simple cases assert candidate([1,2,4,3,5])==3 assert candidate([1,2,4,5])==-1 assert candidate([1,4,2,5,6,7,8,9,10])==2 assert candidate([4,8,5,7,3])==4 # Check some edge cases that are easy to work out by hand. assert candidate([])==-1
0
new_line_afterdoc
def can_arrange(arr): """Create a function which returns the largest index of an element which is not greater than or equal to the element immediately preceding it. If no such element exists then return -1. The given array will not contain duplicate values. Examples: can_arrange([1,2,4,3,5]) = 3 can_arrange([1,2,3]) = -1 """ ind=-1 i=1 while i<len(arr): # print('@@this is the line to split##') if arr[i]<arr[i-1]: ind=i i+=1 return ind
HumanEval/136
def largest_smallest_integers(lst): ''' Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1) largest_smallest_integers([]) == (None, None) largest_smallest_integers([0]) == (None, None) ''' smallest = list(filter(lambda x: x < 0, lst))
largest_smallest_integers
largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
def check(candidate): # Check some simple cases assert candidate([2, 4, 1, 3, 5, 7]) == (None, 1) assert candidate([2, 4, 1, 3, 5, 7, 0]) == (None, 1) assert candidate([1, 3, 2, 4, 5, 6, -2]) == (-2, 1) assert candidate([4, 5, 3, 6, 2, 7, -7]) == (-7, 2) assert candidate([7, 3, 8, 4, 9, 2, 5, -9]) == (-9, 2) assert candidate([]) == (None, None) assert candidate([0]) == (None, None) assert candidate([-1, -3, -5, -6]) == (-1, None) assert candidate([-1, -3, -5, -6, 0]) == (-1, None) assert candidate([-6, -4, -4, -3, 1]) == (-3, 1) assert candidate([-6, -4, -4, -3, -100, 1]) == (-3, 1) # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def largest_smallest_integers(lst): ''' Create a function that returns a tuple (a, b), where 'a' is the largest of negative integers, and 'b' is the smallest of positive integers in a list. If there is no negative or positive integers, return them as None. Examples: largest_smallest_integers([2, 4, 1, 3, 5, 7]) == (None, 1) largest_smallest_integers([]) == (None, None) largest_smallest_integers([0]) == (None, None) ''' smallest = list(filter(lambda x: x < 0, lst)) # print('@@this is the line to split##') largest = list(filter(lambda x: x > 0, lst)) return (max(smallest) if smallest else None, min(largest) if largest else None)
HumanEval/137
def compare_one(a, b): """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, "2,3") ➞ "2,3" compare_one("5,1", "6") ➞ "6" compare_one("1", 1) ➞ None """ temp_a, temp_b = a, b if isinstance(temp_a, str): temp_a = temp_a.replace(',','.')
compare_one
if isinstance(temp_b, str): temp_b = temp_b.replace(',','.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
def check(candidate): # Check some simple cases assert candidate(1, 2) == 2 assert candidate(1, 2.5) == 2.5 assert candidate(2, 3) == 3 assert candidate(5, 6) == 6 assert candidate(1, "2,3") == "2,3" assert candidate("5,1", "6") == "6" assert candidate("1", "2") == "2" assert candidate("1", 1) == None # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def compare_one(a, b): """ Create a function that takes integers, floats, or strings representing real numbers, and returns the larger variable in its given variable type. Return None if the values are equal. Note: If a real number is represented as a string, the floating point might be . or , compare_one(1, 2.5) ➞ 2.5 compare_one(1, "2,3") ➞ "2,3" compare_one("5,1", "6") ➞ "6" compare_one("1", 1) ➞ None """ temp_a, temp_b = a, b if isinstance(temp_a, str): temp_a = temp_a.replace(',','.') # print('@@this is the line to split##') if isinstance(temp_b, str): temp_b = temp_b.replace(',','.') if float(temp_a) == float(temp_b): return None return a if float(temp_a) > float(temp_b) else b
HumanEval/138
def is_equal_to_sum_even(n): """Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers Example is_equal_to_sum_even(4) == False is_equal_to_sum_even(6) == False is_equal_to_sum_even(8) == True """
is_equal_to_sum_even
return n%2 == 0 and n >= 8
def check(candidate): assert candidate(4) == False assert candidate(6) == False assert candidate(8) == True assert candidate(10) == True assert candidate(11) == False assert candidate(12) == True assert candidate(13) == False assert candidate(16) == True
0
new_line_afterdoc
null
HumanEval/139
def special_factorial(n): """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """ fact_i = 1 special_fact = 1 for i in range(1, n+1):
special_factorial
fact_i *= i special_fact *= fact_i return special_fact
def check(candidate): # Check some simple cases assert candidate(4) == 288, "Test 4" assert candidate(5) == 34560, "Test 5" assert candidate(7) == 125411328000, "Test 7" # Check some edge cases that are easy to work out by hand. assert candidate(1) == 1, "Test 1"
0
new_line_afterdoc
def special_factorial(n): """The Brazilian factorial is defined as: brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1! where n > 0 For example: >>> special_factorial(4) 288 The function will receive an integer as input and should return the special factorial of this integer. """ fact_i = 1 special_fact = 1 for i in range(1, n+1): # print('@@this is the line to split##') fact_i *= i special_fact *= fact_i return special_fact
HumanEval/140
def fix_spaces(text): """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces("Example") == "Example" fix_spaces("Example 1") == "Example_1" fix_spaces(" Example 2") == "_Example_2" fix_spaces(" Example 3") == "_Example-3" """ new_text = "" i = 0 start, end = 0, 0 while i < len(text): if text[i] == " ": end += 1 else: if end - start > 2: new_text += "-"+text[i] elif end - start > 0:
fix_spaces
new_text += "_"*(end - start)+text[i] else: new_text += text[i] start, end = i+1, i+1 i+=1 if end - start > 2: new_text += "-" elif end - start > 0: new_text += "_" return new_text
def check(candidate): # Check some simple cases assert candidate("Example") == "Example", "This prints if this assert fails 1 (good for debugging!)" assert candidate("Mudasir Hanif ") == "Mudasir_Hanif_", "This prints if this assert fails 2 (good for debugging!)" assert candidate("Yellow Yellow Dirty Fellow") == "Yellow_Yellow__Dirty__Fellow", "This prints if this assert fails 3 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate("Exa mple") == "Exa-mple", "This prints if this assert fails 4 (good for debugging!)" assert candidate(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple", "This prints if this assert fails 4 (good for debugging!)"
0
new_line_afterdoc
def fix_spaces(text): """ Given a string text, replace all spaces in it with underscores, and if a string has more than 2 consecutive spaces, then replace all consecutive spaces with - fix_spaces("Example") == "Example" fix_spaces("Example 1") == "Example_1" fix_spaces(" Example 2") == "_Example_2" fix_spaces(" Example 3") == "_Example-3" """ new_text = "" i = 0 start, end = 0, 0 while i < len(text): if text[i] == " ": end += 1 else: if end - start > 2: new_text += "-"+text[i] elif end - start > 0: # print('@@this is the line to split##') new_text += "_"*(end - start)+text[i] else: new_text += text[i] start, end = i+1, i+1 i+=1 if end - start > 2: new_text += "-" elif end - start > 0: new_text += "_" return new_text
HumanEval/141
def file_name_check(file_name): """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check("example.txt") # => 'Yes' file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter) """ suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0:
file_name_check
return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
def check(candidate): # Check some simple cases assert candidate("example.txt") == 'Yes' assert candidate("1example.dll") == 'No' assert candidate('s1sdf3.asd') == 'No' assert candidate('K.dll') == 'Yes' assert candidate('MY16FILE3.exe') == 'Yes' assert candidate('His12FILE94.exe') == 'No' assert candidate('_Y.txt') == 'No' assert candidate('?aREYA.exe') == 'No' assert candidate('/this_is_valid.dll') == 'No' assert candidate('this_is_valid.wow') == 'No' assert candidate('this_is_valid.txt') == 'Yes' assert candidate('this_is_valid.txtexe') == 'No' assert candidate('#this2_i4s_5valid.ten') == 'No' assert candidate('@this1_is6_valid.exe') == 'No' assert candidate('this_is_12valid.6exe4.txt') == 'No' assert candidate('all.exe.txt') == 'No' assert candidate('I563_No.exe') == 'Yes' assert candidate('Is3youfault.txt') == 'Yes' assert candidate('no_one#knows.dll') == 'Yes' assert candidate('1I563_Yes3.exe') == 'No' assert candidate('I563_Yes3.txtt') == 'No' assert candidate('final..txt') == 'No' assert candidate('final132') == 'No' assert candidate('_f4indsartal132.') == 'No' # Check some edge cases that are easy to work out by hand. assert candidate('.txt') == 'No' assert candidate('s.') == 'No'
0
new_line_afterdoc
def file_name_check(file_name): """Create a function which takes a string representing a file's name, and returns 'Yes' if the the file's name is valid, and returns 'No' otherwise. A file's name is considered to be valid if and only if all the following conditions are met: - There should not be more than three digits ('0'-'9') in the file's name. - The file's name contains exactly one dot '.' - The substring before the dot should not be empty, and it starts with a letter from the latin alphapet ('a'-'z' and 'A'-'Z'). - The substring after the dot should be one of these: ['txt', 'exe', 'dll'] Examples: file_name_check("example.txt") # => 'Yes' file_name_check("1example.dll") # => 'No' (the name should start with a latin alphapet letter) """ suf = ['txt', 'exe', 'dll'] lst = file_name.split(sep='.') if len(lst) != 2: return 'No' if not lst[1] in suf: return 'No' if len(lst[0]) == 0: # print('@@this is the line to split##') return 'No' if not lst[0][0].isalpha(): return 'No' t = len([x for x in lst[0] if x.isdigit()]) if t > 3: return 'No' return 'Yes'
HumanEval/142
def sum_squares(lst): """" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """ result =[] for i in range(len(lst)): if i %3 == 0: result.append(lst[i]**2)
sum_squares
elif i % 4 == 0 and i%3 != 0: result.append(lst[i]**3) else: result.append(lst[i]) return sum(result)
def check(candidate): # Check some simple cases assert candidate([1,2,3]) == 6 assert candidate([1,4,9]) == 14 assert candidate([]) == 0 assert candidate([1,1,1,1,1,1,1,1,1]) == 9 assert candidate([-1,-1,-1,-1,-1,-1,-1,-1,-1]) == -3 assert candidate([0]) == 0 assert candidate([-1,-5,2,-1,-5]) == -126 assert candidate([-56,-99,1,0,-2]) == 3030 assert candidate([-1,0,0,0,0,0,0,0,-1]) == 0 assert candidate([-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37]) == -14196 assert candidate([-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10]) == -1448 # Don't remove this line:
0
new_line_afterdoc
def sum_squares(lst): """" This function will take a list of integers. For all entries in the list, the function shall square the integer entry if its index is a multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not change the entries in the list whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries. Examples: For lst = [1,2,3] the output should be 6 For lst = [] the output should be 0 For lst = [-1,-5,2,-1,-5] the output should be -126 """ result =[] for i in range(len(lst)): if i %3 == 0: result.append(lst[i]**2) # print('@@this is the line to split##') elif i % 4 == 0 and i%3 != 0: result.append(lst[i]**3) else: result.append(lst[i]) return sum(result)
HumanEval/143
def words_in_sentence(sentence): """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = "This is a test" Output: "is" Example 2: Input: sentence = "lets go for swimming" Output: "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1
words_in_sentence
for i in range(2, len(word)): if len(word)%i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return " ".join(new_lst)
def check(candidate): # Check some simple cases assert candidate("This is a test") == "is" assert candidate("lets go for swimming") == "go for" assert candidate("there is no place available here") == "there is no place" assert candidate("Hi I am Hussein") == "Hi am Hussein" assert candidate("go for it") == "go for it" # Check some edge cases that are easy to work out by hand. assert candidate("here") == "" assert candidate("here is") == "is"
0
new_line_afterdoc
def words_in_sentence(sentence): """ You are given a string representing a sentence, the sentence contains some words separated by a space, and you have to return a string that contains the words from the original sentence, whose lengths are prime numbers, the order of the words in the new string should be the same as the original one. Example 1: Input: sentence = "This is a test" Output: "is" Example 2: Input: sentence = "lets go for swimming" Output: "go for" Constraints: * 1 <= len(sentence) <= 100 * sentence contains only letters """ new_lst = [] for word in sentence.split(): flg = 0 if len(word) == 1: flg = 1 # print('@@this is the line to split##') for i in range(2, len(word)): if len(word)%i == 0: flg = 1 if flg == 0 or len(word) == 2: new_lst.append(word) return " ".join(new_lst)
HumanEval/144
def simplify(x, n): """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify("1/5", "5/1") = True simplify("1/6", "2/1") = False simplify("7/10", "10/2") = False """ a, b = x.split("/") c, d = n.split("/") numerator = int(a) * int(c)
simplify
denom = int(b) * int(d) if (numerator/denom == int(numerator/denom)): return True return False
def check(candidate): # Check some simple cases assert candidate("1/5", "5/1") == True, 'test1' assert candidate("1/6", "2/1") == False, 'test2' assert candidate("5/1", "3/1") == True, 'test3' assert candidate("7/10", "10/2") == False, 'test4' assert candidate("2/10", "50/10") == True, 'test5' assert candidate("7/2", "4/2") == True, 'test6' assert candidate("11/6", "6/1") == True, 'test7' assert candidate("2/3", "5/2") == False, 'test8' assert candidate("5/2", "3/5") == False, 'test9' assert candidate("2/4", "8/4") == True, 'test10' # Check some edge cases that are easy to work out by hand. assert candidate("2/4", "4/2") == True, 'test11' assert candidate("1/5", "5/1") == True, 'test12' assert candidate("1/5", "1/5") == False, 'test13'
0
new_line_afterdoc
def simplify(x, n): """Your task is to implement a function that will simplify the expression x * n. The function returns True if x * n evaluates to a whole number and False otherwise. Both x and n, are string representation of a fraction, and have the following format, <numerator>/<denominator> where both numerator and denominator are positive whole numbers. You can assume that x, and n are valid fractions, and do not have zero as denominator. simplify("1/5", "5/1") = True simplify("1/6", "2/1") = False simplify("7/10", "10/2") = False """ a, b = x.split("/") c, d = n.split("/") numerator = int(a) * int(c) # print('@@this is the line to split##') denom = int(b) * int(d) if (numerator/denom == int(numerator/denom)): return True return False
HumanEval/145
def order_by_points(nums): """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1
order_by_points
n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
def check(candidate): # Check some simple cases assert candidate([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] assert candidate([1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46]) == [0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457] assert candidate([]) == [] assert candidate([1, -11, -32, 43, 54, -98, 2, -3]) == [-3, -32, -98, -11, 1, 2, 43, 54] assert candidate([1,2,3,4,5,6,7,8,9,10,11]) == [1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9] assert candidate([0,6,6,-76,-21,23,4]) == [-76, -21, 0, 4, 23, 6, 6] # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def order_by_points(nums): """ Write a function which sorts the given list of integers in ascending order according to the sum of their digits. Note: if there are several items with similar sum of their digits, order them based on their index in original list. For example: >>> order_by_points([1, 11, -1, -11, -12]) == [-1, -11, 1, -12, 11] >>> order_by_points([]) == [] """ def digits_sum(n): neg = 1 if n < 0: n, neg = -1 * n, -1 # print('@@this is the line to split##') n = [int(i) for i in str(n)] n[0] = n[0] * neg return sum(n) return sorted(nums, key=digits_sum)
HumanEval/146
def specialFilter(nums): """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9)
specialFilter
number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
def check(candidate): # Check some simple cases assert candidate([5, -2, 1, -5]) == 0 assert candidate([15, -73, 14, -15]) == 1 assert candidate([33, -2, -3, 45, 21, 109]) == 2 assert candidate([43, -12, 93, 125, 121, 109]) == 4 assert candidate([71, -2, -33, 75, 21, 19]) == 3 # Check some edge cases that are easy to work out by hand. assert candidate([1]) == 0 assert candidate([]) == 0
0
new_line_afterdoc
def specialFilter(nums): """Write a function that takes an array of numbers as input and returns the number of elements in the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9). For example: specialFilter([15, -73, 14, -15]) => 1 specialFilter([33, -2, -3, 45, 21, 109]) => 2 """ count = 0 for num in nums: if num > 10: odd_digits = (1, 3, 5, 7, 9) # print('@@this is the line to split##') number_as_string = str(num) if int(number_as_string[0]) in odd_digits and int(number_as_string[-1]) in odd_digits: count += 1 return count
HumanEval/147
def get_max_triples(n): """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≀ i ≀ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ A = [i*i - i + 1 for i in range(1,n+1)] ans = [] for i in range(n): for j in range(i+1,n):
get_max_triples
for k in range(j+1,n): if (A[i]+A[j]+A[k])%3 == 0: ans += [(A[i],A[j],A[k])] return len(ans)
def check(candidate): assert candidate(5) == 1 assert candidate(6) == 4 assert candidate(10) == 36 assert candidate(100) == 53361
0
new_line_afterdoc
def get_max_triples(n): """ You are given a positive integer n. You have to create an integer array a of length n. For each i (1 ≀ i ≀ n), the value of a[i] = i * i - i + 1. Return the number of triples (a[i], a[j], a[k]) of a where i < j < k, and a[i] + a[j] + a[k] is a multiple of 3. Example : Input: n = 5 Output: 1 Explanation: a = [1, 3, 7, 13, 21] The only valid triple is (1, 7, 13). """ A = [i*i - i + 1 for i in range(1,n+1)] ans = [] for i in range(n): for j in range(i+1,n): # print('@@this is the line to split##') for k in range(j+1,n): if (A[i]+A[j]+A[k])%3 == 0: ans += [(A[i],A[j],A[k])] return len(ans)
HumanEval/148
def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus") bf("Earth", "Mercury") ==> ("Venus") bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn") ''' planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune") if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1)
bf
planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return (planet_names[planet1_index + 1: planet2_index]) else: return (planet_names[planet2_index + 1 : planet1_index])
def check(candidate): # Check some simple cases assert candidate("Jupiter", "Neptune") == ("Saturn", "Uranus"), "First test error: " + str(len(candidate("Jupiter", "Neptune"))) assert candidate("Earth", "Mercury") == ("Venus",), "Second test error: " + str(candidate("Earth", "Mercury")) assert candidate("Mercury", "Uranus") == ("Venus", "Earth", "Mars", "Jupiter", "Saturn"), "Third test error: " + str(candidate("Mercury", "Uranus")) assert candidate("Neptune", "Venus") == ("Earth", "Mars", "Jupiter", "Saturn", "Uranus"), "Fourth test error: " + str(candidate("Neptune", "Venus")) # Check some edge cases that are easy to work out by hand. assert candidate("Earth", "Earth") == () assert candidate("Mars", "Earth") == () assert candidate("Jupiter", "Makemake") == ()
0
new_line_afterdoc
def bf(planet1, planet2): ''' There are eight planets in our solar system: the closerst to the Sun is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn, Uranus, Neptune. Write a function that takes two planet names as strings planet1 and planet2. The function should return a tuple containing all planets whose orbits are located between the orbit of planet1 and the orbit of planet2, sorted by the proximity to the sun. The function should return an empty tuple if planet1 or planet2 are not correct planet names. Examples bf("Jupiter", "Neptune") ==> ("Saturn", "Uranus") bf("Earth", "Mercury") ==> ("Venus") bf("Mercury", "Uranus") ==> ("Venus", "Earth", "Mars", "Jupiter", "Saturn") ''' planet_names = ("Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune") if planet1 not in planet_names or planet2 not in planet_names or planet1 == planet2: return () planet1_index = planet_names.index(planet1) # print('@@this is the line to split##') planet2_index = planet_names.index(planet2) if planet1_index < planet2_index: return (planet_names[planet1_index + 1: planet2_index]) else: return (planet_names[planet2_index + 1 : planet1_index])
HumanEval/149
def sorted_list_sum(lst): """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort(["aa", "a", "aaa"]) => ["aa"] assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"] """ lst.sort() new_lst = [] for i in lst:
sorted_list_sum
if len(i)%2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
def check(candidate): # Check some simple cases assert candidate(["aa", "a", "aaa"]) == ["aa"] assert candidate(["school", "AI", "asdf", "b"]) == ["AI", "asdf", "school"] assert candidate(["d", "b", "c", "a"]) == [] assert candidate(["d", "dcba", "abcd", "a"]) == ["abcd", "dcba"] # Check some edge cases that are easy to work out by hand. assert candidate(["AI", "ai", "au"]) == ["AI", "ai", "au"] assert candidate(["a", "b", "b", "c", "c", "a"]) == [] assert candidate(['aaaa', 'bbbb', 'dd', 'cc']) == ["cc", "dd", "aaaa", "bbbb"]
0
new_line_afterdoc
def sorted_list_sum(lst): """Write a function that accepts a list of strings as a parameter, deletes the strings that have odd lengths from it, and returns the resulted list with a sorted order, The list is always a list of strings and never an array of numbers, and it may contain duplicates. The order of the list should be ascending by length of each word, and you should return the list sorted by that rule. If two words have the same length, sort the list alphabetically. The function should return a list of strings in sorted order. You may assume that all words will have the same length. For example: assert list_sort(["aa", "a", "aaa"]) => ["aa"] assert list_sort(["ab", "a", "aaa", "cd"]) => ["ab", "cd"] """ lst.sort() new_lst = [] for i in lst: # print('@@this is the line to split##') if len(i)%2 == 0: new_lst.append(i) return sorted(new_lst, key=len)
HumanEval/150
def x_or_y(n, x, y): """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """ if n == 1: return y for i in range(2, n): if n % i == 0:
x_or_y
return y break else: return x
def check(candidate): # Check some simple cases assert candidate(7, 34, 12) == 34 assert candidate(15, 8, 5) == 5 assert candidate(3, 33, 5212) == 33 assert candidate(1259, 3, 52) == 3 assert candidate(7919, -1, 12) == -1 assert candidate(3609, 1245, 583) == 583 assert candidate(91, 56, 129) == 129 assert candidate(6, 34, 1234) == 1234 # Check some edge cases that are easy to work out by hand. assert candidate(1, 2, 0) == 0 assert candidate(2, 2, 0) == 2
0
new_line_afterdoc
def x_or_y(n, x, y): """A simple program which should return the value of x if n is a prime number and should return the value of y otherwise. Examples: for x_or_y(7, 34, 12) == 34 for x_or_y(15, 8, 5) == 5 """ if n == 1: return y for i in range(2, n): if n % i == 0: # print('@@this is the line to split##') return y break else: return x
HumanEval/151
def double_the_difference(lst): ''' Given a list of numbers, return the sum of squares of the numbers in the list that are odd. Ignore numbers that are negative or not integers. double_the_difference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10 double_the_difference([-1, -2, 0]) == 0 double_the_difference([9, -2]) == 81 double_the_difference([0]) == 0 If the input list is empty, return 0. '''
double_the_difference
return sum([i**2 for i in lst if i > 0 and i%2!=0 and "." not in str(i)])
def check(candidate): # Check some simple cases assert candidate([]) == 0 , "This prints if this assert fails 1 (good for debugging!)" assert candidate([5, 4]) == 25 , "This prints if this assert fails 2 (good for debugging!)" assert candidate([0.1, 0.2, 0.3]) == 0 , "This prints if this assert fails 3 (good for debugging!)" assert candidate([-10, -20, -30]) == 0 , "This prints if this assert fails 4 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert candidate([-1, -2, 8]) == 0, "This prints if this assert fails 5 (also good for debugging!)" assert candidate([0.2, 3, 5]) == 34, "This prints if this assert fails 6 (also good for debugging!)" lst = list(range(-99, 100, 2)) odd_sum = sum([i**2 for i in lst if i%2!=0 and i > 0]) assert candidate(lst) == odd_sum , "This prints if this assert fails 7 (good for debugging!)"
0
new_line_afterdoc
null
HumanEval/152
def compare(game,guess): """I think we all remember that feeling when the result of some long-awaited event is finally known. The feelings and thoughts you have at that moment are definitely worth noting down and comparing. Your task is to determine if a person correctly guessed the results of a number of matches. You are given two arrays of scores and guesses of equal length, where each index shows a match. Return an array of the same length denoting how far off each guess was. If they have guessed correctly, the value is 0, and if not, the value is the absolute difference between the guess and the score. example: compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3] compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] """
compare
return [abs(x-y) for x,y in zip(game,guess)]
def check(candidate): # Check some simple cases assert candidate([1,2,3,4,5,1],[1,2,3,4,2,-2])==[0,0,0,0,3,3], "This prints if this assert fails 1 (good for debugging!)" assert candidate([0,0,0,0,0,0],[0,0,0,0,0,0])==[0,0,0,0,0,0], "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,2,3],[-1,-2,-3])==[2,4,6], "This prints if this assert fails 1 (good for debugging!)" assert candidate([1,2,3,5],[-1,2,3,4])==[2,0,0,1], "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
null
HumanEval/153
def Strongest_Extension(class_name, extensions): """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """ strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val:
Strongest_Extension
strong = s my_val = val ans = class_name + "." + strong return ans
def check(candidate): # Check some simple cases assert candidate('Watashi', ['tEN', 'niNE', 'eIGHt8OKe']) == 'Watashi.eIGHt8OKe' assert candidate('Boku123', ['nani', 'NazeDa', 'YEs.WeCaNe', '32145tggg']) == 'Boku123.YEs.WeCaNe' assert candidate('__YESIMHERE', ['t', 'eMptY', 'nothing', 'zeR00', 'NuLl__', '123NoooneB321']) == '__YESIMHERE.NuLl__' assert candidate('K', ['Ta', 'TAR', 't234An', 'cosSo']) == 'K.TAR' assert candidate('__HAHA', ['Tab', '123', '781345', '-_-']) == '__HAHA.123' assert candidate('YameRore', ['HhAas', 'okIWILL123', 'WorkOut', 'Fails', '-_-']) == 'YameRore.okIWILL123' assert candidate('finNNalLLly', ['Die', 'NowW', 'Wow', 'WoW']) == 'finNNalLLly.WoW' # Check some edge cases that are easy to work out by hand. assert candidate('_', ['Bb', '91245']) == '_.Bb' assert candidate('Sp', ['671235', 'Bb']) == 'Sp.671235'
0
new_line_afterdoc
def Strongest_Extension(class_name, extensions): """You will be given the name of a class (a string) and a list of extensions. The extensions are to be used to load additional classes to the class. The strength of the extension is as follows: Let CAP be the number of the uppercase letters in the extension's name, and let SM be the number of lowercase letters in the extension's name, the strength is given by the fraction CAP - SM. You should find the strongest extension and return a string in this format: ClassName.StrongestExtensionName. If there are two or more extensions with the same strength, you should choose the one that comes first in the list. For example, if you are given "Slices" as the class and a list of the extensions: ['SErviNGSliCes', 'Cheese', 'StuFfed'] then you should return 'Slices.SErviNGSliCes' since 'SErviNGSliCes' is the strongest extension (its strength is -1). Example: for Strongest_Extension('my_class', ['AA', 'Be', 'CC']) == 'my_class.AA' """ strong = extensions[0] my_val = len([x for x in extensions[0] if x.isalpha() and x.isupper()]) - len([x for x in extensions[0] if x.isalpha() and x.islower()]) for s in extensions: val = len([x for x in s if x.isalpha() and x.isupper()]) - len([x for x in s if x.isalpha() and x.islower()]) if val > my_val: # print('@@this is the line to split##') strong = s my_val = val ans = class_name + "." + strong return ans
HumanEval/154
def cycpattern_check(a , b): """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check("abcd","abd") => False cycpattern_check("hello","ell") => True cycpattern_check("whassup","psus") => False cycpattern_check("abab","baa") => True cycpattern_check("efef","eeff") => False cycpattern_check("himenss","simen") => True """ l = len(b) pat = b + b for i in range(len(a) - l + 1):
cycpattern_check
for j in range(l + 1): if a[i:i+l] == pat[j:j+l]: return True return False
def check(candidate): # Check some simple cases #assert True, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. #assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate("xyzw","xyw") == False , "test #0" assert candidate("yello","ell") == True , "test #1" assert candidate("whattup","ptut") == False , "test #2" assert candidate("efef","fee") == True , "test #3" assert candidate("abab","aabb") == False , "test #4" assert candidate("winemtt","tinem") == True , "test #5"
0
new_line_afterdoc
def cycpattern_check(a , b): """You are given 2 words. You need to return True if the second word or any of its rotations is a substring in the first word cycpattern_check("abcd","abd") => False cycpattern_check("hello","ell") => True cycpattern_check("whassup","psus") => False cycpattern_check("abab","baa") => True cycpattern_check("efef","eeff") => False cycpattern_check("himenss","simen") => True """ l = len(b) pat = b + b for i in range(len(a) - l + 1): # print('@@this is the line to split##') for j in range(l + 1): if a[i:i+l] == pat[j:j+l]: return True return False
HumanEval/155
def even_odd_count(num): """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """ even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i)%2==0:
even_odd_count
even_count +=1 else: odd_count +=1 return (even_count, odd_count)
def check(candidate): # Check some simple cases assert candidate(7) == (0, 1) assert candidate(-78) == (1, 1) assert candidate(3452) == (2, 2) assert candidate(346211) == (3, 3) assert candidate(-345821) == (3, 3) assert candidate(-2) == (1, 0) assert candidate(-45347) == (2, 3) assert candidate(0) == (1, 0) # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def even_odd_count(num): """Given an integer. return a tuple that has the number of even and odd digits respectively. Example: even_odd_count(-12) ==> (1, 1) even_odd_count(123) ==> (1, 2) """ even_count = 0 odd_count = 0 for i in str(abs(num)): if int(i)%2==0: # print('@@this is the line to split##') even_count +=1 else: odd_count +=1 return (even_count, odd_count)
HumanEval/156
def int_to_mini_roman(number): """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """ num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ["I", "IV", "V", "IX", "X", "XL", "L", "XC", "C", "CD", "D", "CM", "M"] i = 12 res = '' while number:
int_to_mini_roman
div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
def check(candidate): # Check some simple cases assert candidate(19) == 'xix' assert candidate(152) == 'clii' assert candidate(251) == 'ccli' assert candidate(426) == 'cdxxvi' assert candidate(500) == 'd' assert candidate(1) == 'i' assert candidate(4) == 'iv' assert candidate(43) == 'xliii' assert candidate(90) == 'xc' assert candidate(94) == 'xciv' assert candidate(532) == 'dxxxii' assert candidate(900) == 'cm' assert candidate(994) == 'cmxciv' assert candidate(1000) == 'm' # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def int_to_mini_roman(number): """ Given a positive integer, obtain its roman numeral equivalent as a string, and return it in lowercase. Restrictions: 1 <= num <= 1000 Examples: >>> int_to_mini_roman(19) == 'xix' >>> int_to_mini_roman(152) == 'clii' >>> int_to_mini_roman(426) == 'cdxxvi' """ num = [1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000] sym = ["I", "IV", "V", "IX", "X", "XL", "L", "XC", "C", "CD", "D", "CM", "M"] i = 12 res = '' while number: # print('@@this is the line to split##') div = number // num[i] number %= num[i] while div: res += sym[i] div -= 1 i -= 1 return res.lower()
HumanEval/157
def right_angle_triangle(a, b, c): ''' Given the lengths of the three sides of a triangle. Return True if the three sides form a right-angled triangle, False otherwise. A right-angled triangle is a triangle in which one angle is right angle or 90 degree. Example: right_angle_triangle(3, 4, 5) == True right_angle_triangle(1, 2, 3) == False '''
right_angle_triangle
return a*a == b*b + c*c or b*b == a*a + c*c or c*c == a*a + b*b
def check(candidate): # Check some simple cases assert candidate(3, 4, 5) == True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(1, 2, 3) == False assert candidate(10, 6, 8) == True assert candidate(2, 2, 2) == False assert candidate(7, 24, 25) == True assert candidate(10, 5, 7) == False assert candidate(5, 12, 13) == True assert candidate(15, 8, 17) == True assert candidate(48, 55, 73) == True # Check some edge cases that are easy to work out by hand. assert candidate(1, 1, 1) == False, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(2, 2, 10) == False
0
new_line_afterdoc
null
HumanEval/158
def find_max(words): """Write a function that accepts a list of strings. The list contains different words. Return the word with maximum number of unique characters. If multiple strings have maximum number of unique characters, return the one which comes first in lexicographical order. find_max(["name", "of", "string"]) == "string" find_max(["name", "enam", "game"]) == "enam" find_max(["aaaaaaa", "bb" ,"cc"]) == ""aaaaaaa" """
find_max
return sorted(words, key = lambda x: (-len(set(x)), x))[0]
def check(candidate): # Check some simple cases assert (candidate(["name", "of", "string"]) == "string"), "t1" assert (candidate(["name", "enam", "game"]) == "enam"), 't2' assert (candidate(["aaaaaaa", "bb", "cc"]) == "aaaaaaa"), 't3' assert (candidate(["abc", "cba"]) == "abc"), 't4' assert (candidate(["play", "this", "game", "of","footbott"]) == "footbott"), 't5' assert (candidate(["we", "are", "gonna", "rock"]) == "gonna"), 't6' assert (candidate(["we", "are", "a", "mad", "nation"]) == "nation"), 't7' assert (candidate(["this", "is", "a", "prrk"]) == "this"), 't8' # Check some edge cases that are easy to work out by hand. assert (candidate(["b"]) == "b"), 't9' assert (candidate(["play", "play", "play"]) == "play"), 't10'
0
new_line_afterdoc
null
HumanEval/159
def eat(number, need, remaining): """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ if(need <= remaining): return [ number + need , remaining-need ]
eat
else: return [ number + remaining , 0]
def check(candidate): # Check some simple cases assert True, "This prints if this assert fails 1 (good for debugging!)" assert candidate(5, 6, 10) == [11, 4], "Error" assert candidate(4, 8, 9) == [12, 1], "Error" assert candidate(1, 10, 10) == [11, 0], "Error" assert candidate(2, 11, 5) == [7, 0], "Error" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)" assert candidate(4, 5, 7) == [9, 2], "Error" assert candidate(4, 5, 1) == [5, 0], "Error"
0
new_line_afterdoc
def eat(number, need, remaining): """ You're a hungry rabbit, and you already have eaten a certain number of carrots, but now you need to eat more carrots to complete the day's meals. you should return an array of [ total number of eaten carrots after your meals, the number of carrots left after your meals ] if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry. Example: * eat(5, 6, 10) -> [11, 4] * eat(4, 8, 9) -> [12, 1] * eat(1, 10, 10) -> [11, 0] * eat(2, 11, 5) -> [7, 0] Variables: @number : integer the number of carrots that you have eaten. @need : integer the number of carrots that you need to eat. @remaining : integer the number of remaining carrots thet exist in stock Constrain: * 0 <= number <= 1000 * 0 <= need <= 1000 * 0 <= remaining <= 1000 Have fun :) """ if(need <= remaining): return [ number + need , remaining-need ] # print('@@this is the line to split##') else: return [ number + remaining , 0]
HumanEval/160
def do_algebra(operator, operand): """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ expression = str(operand[0]) for oprt, oprn in zip(operator, operand[1:]):
do_algebra
expression+= oprt + str(oprn) return eval(expression)
def check(candidate): # Check some simple cases assert candidate(['**', '*', '+'], [2, 3, 4, 5]) == 37 assert candidate(['+', '*', '-'], [2, 3, 4, 5]) == 9 assert candidate(['//', '*'], [7, 3, 4]) == 8, "This prints if this assert fails 1 (good for debugging!)" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def do_algebra(operator, operand): """ Given two lists operator, and operand. The first list has basic algebra operations, and the second list is a list of integers. Use the two given lists to build the algebric expression and return the evaluation of this expression. The basic algebra operations: Addition ( + ) Subtraction ( - ) Multiplication ( * ) Floor division ( // ) Exponentiation ( ** ) Example: operator['+', '*', '-'] array = [2, 3, 4, 5] result = 2 + 3 * 4 - 5 => result = 9 Note: The length of operator list is equal to the length of operand list minus one. Operand is a list of of non-negative integers. Operator list has at least one operator, and operand list has at least two operands. """ expression = str(operand[0]) for oprt, oprn in zip(operator, operand[1:]): # print('@@this is the line to split##') expression+= oprt + str(oprn) return eval(expression)
HumanEval/161
def solve(s): """You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve("1234") = "4321" solve("ab") = "AB" solve("#a@C") = "#A@c" """ flg = 0 idx = 0 new_str = list(s) for i in s: if i.isalpha(): new_str[idx] = i.swapcase() flg = 1
solve
idx += 1 s = "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] return s
def check(candidate): # Check some simple cases assert candidate("AsDf") == "aSdF" assert candidate("1234") == "4321" assert candidate("ab") == "AB" assert candidate("#a@C") == "#A@c" assert candidate("#AsdfW^45") == "#aSDFw^45" assert candidate("#6@2") == "2@6#" # Check some edge cases that are easy to work out by hand. assert candidate("#$a^D") == "#$A^d" assert candidate("#ccc") == "#CCC" # Don't remove this line:
0
new_line_afterdoc
def solve(s): """You are given a string s. if s[i] is a letter, reverse its case from lower to upper or vise versa, otherwise keep it as it is. If the string contains no letters, reverse the string. The function should return the resulted string. Examples solve("1234") = "4321" solve("ab") = "AB" solve("#a@C") = "#A@c" """ flg = 0 idx = 0 new_str = list(s) for i in s: if i.isalpha(): new_str[idx] = i.swapcase() flg = 1 # print('@@this is the line to split##') idx += 1 s = "" for i in new_str: s += i if flg == 0: return s[len(s)::-1] return s
HumanEval/162
def string_to_md5(text): """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """ import hashlib
string_to_md5
return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
def check(candidate): # Check some simple cases assert candidate('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' assert candidate('') == None assert candidate('A B C') == '0ef78513b0cb8cef12743f5aeb35f888' assert candidate('password') == '5f4dcc3b5aa765d61d8327deb882cf99' # Check some edge cases that are easy to work out by hand. assert True
0
new_line_afterdoc
def string_to_md5(text): """ Given a string 'text', return its md5 hash equivalent string. If 'text' is an empty string, return None. >>> string_to_md5('Hello world') == '3e25960a79dbc69b674cd4ec67a72c62' """ import hashlib # print('@@this is the line to split##') return hashlib.md5(text.encode('ascii')).hexdigest() if text else None
HumanEval/163
def generate_integers(a, b): """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """ lower = max(2, min(a, b)) upper = min(8, max(a, b))
generate_integers
return [i for i in range(lower, upper+1) if i % 2 == 0]
def check(candidate): # Check some simple cases assert candidate(2, 10) == [2, 4, 6, 8], "Test 1" assert candidate(10, 2) == [2, 4, 6, 8], "Test 2" assert candidate(132, 2) == [2, 4, 6, 8], "Test 3" assert candidate(17,89) == [], "Test 4" # Check some edge cases that are easy to work out by hand. assert True, "This prints if this assert fails 2 (also good for debugging!)"
0
new_line_afterdoc
def generate_integers(a, b): """ Given two positive integers a and b, return the even digits between a and b, in ascending order. For example: generate_integers(2, 8) => [2, 4, 6, 8] generate_integers(8, 2) => [2, 4, 6, 8] generate_integers(10, 14) => [] """ lower = max(2, min(a, b)) upper = min(8, max(a, b)) # print('@@this is the line to split##') return [i for i in range(lower, upper+1) if i % 2 == 0]
HumanEval/0
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2)
has_close_elements
if distance < threshold: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
0
new_lines
from typing import List def has_close_elements(numbers: List[float], threshold: float) -> bool: """ Check if in given list of numbers, are any two numbers closer to each other than given threshold. >>> has_close_elements([1.0, 2.0, 3.0], 0.5) False >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True """ for idx, elem in enumerate(numbers): for idx2, elem2 in enumerate(numbers): if idx != idx2: distance = abs(elem - elem2) # print('@@this is the line to split##') if distance < threshold: return True return False
HumanEval/1
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """ result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c)
separate_paren_groups
elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [ '(()())', '((()))', '()', '((())()())' ] assert candidate('() (()) ((())) (((())))') == [ '()', '(())', '((()))', '(((())))' ] assert candidate('(()(())((())))') == [ '(()(())((())))' ] assert candidate('( ) (( )) (( )( ))') == ['()', '(())', '(()())']
0
new_lines
from typing import List def separate_paren_groups(paren_string: str) -> List[str]: """ Input to this function is a string containing multiple groups of nested parentheses. Your goal is to separate those group into separate strings and return the list of those. Separate groups are balanced (each open brace is properly closed) and not nested within each other Ignore any spaces in the input string. >>> separate_paren_groups('( ) (( )) (( )( ))') ['()', '(())', '(()())'] """ result = [] current_string = [] current_depth = 0 for c in paren_string: if c == '(': current_depth += 1 current_string.append(c) # print('@@this is the line to split##') elif c == ')': current_depth -= 1 current_string.append(c) if current_depth == 0: result.append(''.join(current_string)) current_string.clear() return result
HumanEval/2
def truncate_number(number: float) -> float: """ Given a positive floating point number, it can be decomposed into and integer part (largest integer smaller than given number) and decimals (leftover part always smaller than 1). Return the decimal part of the number. >>> truncate_number(3.5) 0.5 """
truncate_number
return number % 1.0
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate(3.5) == 0.5 assert abs(candidate(1.33) - 0.33) < 1e-6 assert abs(candidate(123.456) - 0.456) < 1e-6
0
new_lines
null
HumanEval/3
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ balance = 0 for op in operations: balance += op
below_zero
if balance < 0: return True return False
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([]) == False assert candidate([1, 2, -3, 1, 2, -3]) == False assert candidate([1, 2, -4, 5, 6]) == True assert candidate([1, -1, 2, -2, 5, -5, 4, -4]) == False assert candidate([1, -1, 2, -2, 5, -5, 4, -5]) == True assert candidate([1, -2, 2, -2, 5, -5, 4, -4]) == True
0
new_lines
from typing import List def below_zero(operations: List[int]) -> bool: """ You're given a list of deposit and withdrawal operations on a bank account that starts with zero balance. Your task is to detect if at any point the balance of account fallls below zero, and at that point function should return True. Otherwise it should return False. >>> below_zero([1, 2, 3]) False >>> below_zero([1, 2, -4, 5]) True """ balance = 0 for op in operations: balance += op # print('@@this is the line to split##') if balance < 0: return True return False
HumanEval/4
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """ mean = sum(numbers) / len(numbers)
mean_absolute_deviation
return sum(abs(x - mean) for x in numbers) / len(numbers)
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert abs(candidate([1.0, 2.0, 3.0]) - 2.0/3.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0]) - 1.0) < 1e-6 assert abs(candidate([1.0, 2.0, 3.0, 4.0, 5.0]) - 6.0/5.0) < 1e-6
0
new_lines
from typing import List def mean_absolute_deviation(numbers: List[float]) -> float: """ For a given list of input numbers, calculate Mean Absolute Deviation around the mean of this dataset. Mean Absolute Deviation is the average absolute difference between each element and a centerpoint (mean in this case): MAD = average | x - x_mean | >>> mean_absolute_deviation([1.0, 2.0, 3.0, 4.0]) 1.0 """ mean = sum(numbers) / len(numbers) # print('@@this is the line to split##') return sum(abs(x - mean) for x in numbers) / len(numbers)
HumanEval/5
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """ if not numbers: return [] result = [] for n in numbers[:-1]:
intersperse
result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 7) == [] assert candidate([5, 6, 3, 2], 8) == [5, 8, 6, 8, 3, 8, 2] assert candidate([2, 2, 2], 2) == [2, 2, 2, 2, 2]
0
new_lines
from typing import List def intersperse(numbers: List[int], delimeter: int) -> List[int]: """ Insert a number 'delimeter' between every two consecutive elements of input list `numbers' >>> intersperse([], 4) [] >>> intersperse([1, 2, 3], 4) [1, 4, 2, 4, 3] """ if not numbers: return [] result = [] for n in numbers[:-1]: # print('@@this is the line to split##') result.append(n) result.append(delimeter) result.append(numbers[-1]) return result
HumanEval/6
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """ def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1
parse_nested_parens
max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate('(()()) ((())) () ((())()())') == [2, 3, 1, 3] assert candidate('() (()) ((())) (((())))') == [1, 2, 3, 4] assert candidate('(()(())((())))') == [4]
0
new_lines
from typing import List def parse_nested_parens(paren_string: str) -> List[int]: """ Input to this function is a string represented multiple groups for nested parentheses separated by spaces. For each of the group, output the deepest level of nesting of parentheses. E.g. (()()) has maximum two levels of nesting while ((())) has three. >>> parse_nested_parens('(()()) ((())) () ((())()())') [2, 3, 1, 3] """ def parse_paren_group(s): depth = 0 max_depth = 0 for c in s: if c == '(': depth += 1 # print('@@this is the line to split##') max_depth = max(depth, max_depth) else: depth -= 1 return max_depth return [parse_paren_group(x) for x in paren_string.split(' ') if x]
HumanEval/7
from typing import List def filter_by_substring(strings: List[str], substring: str) -> List[str]: """ Filter an input list of strings only for ones that contain given substring >>> filter_by_substring([], 'a') [] >>> filter_by_substring(['abc', 'bacd', 'cde', 'array'], 'a') ['abc', 'bacd', 'array'] """
filter_by_substring
return [x for x in strings if substring in x]
METADATA = { 'author': 'jt', 'dataset': 'test' } def check(candidate): assert candidate([], 'john') == [] assert candidate(['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'], 'xxx') == ['xxx', 'xxxAAA', 'xxx'] assert candidate(['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'], 'xx') == ['xxx', 'aaaxxy', 'xxxAAA', 'xxx'] assert candidate(['grunt', 'trumpet', 'prune', 'gruesome'], 'run') == ['grunt', 'prune']
0
new_lines
null