|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.sea_datasets.alt_burmese_treebank.utils.alt_burmese_treebank_utils import extract_data |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{ |
|
10.1145/3373268, |
|
author = {Ding, Chenchen and Yee, Sann Su Su and Pa, Win Pa and Soe, Khin Mar and Utiyama, Masao and Sumita, Eiichiro}, |
|
title = {A Burmese (Myanmar) Treebank: Guideline and Analysis}, |
|
year = {2020}, |
|
issue_date = {May 2020}, |
|
publisher = {Association for Computing Machinery}, |
|
address = {New York, NY, USA}, |
|
volume = {19}, |
|
number = {3}, |
|
issn = {2375-4699}, |
|
url = {https://doi.org/10.1145/3373268}, |
|
doi = {10.1145/3373268}, |
|
abstract = {A 20,000-sentence Burmese (Myanmar) treebank on news articles has been released under a CC BY-NC-SA license.\ |
|
Complete phrase structure annotation was developed for each sentence from the morphologically annotated data\ |
|
prepared in previous work of Ding et al. [1]. As the final result of the Burmese component in the Asian\ |
|
Language Treebank Project, this is the first large-scale, open-access treebank for the Burmese language.\ |
|
The annotation details and features of this treebank are presented.\ |
|
}, |
|
journal = {ACM Trans. Asian Low-Resour. Lang. Inf. Process.}, |
|
month = {jan}, |
|
articleno = {40}, |
|
numpages = {13}, |
|
keywords = {Burmese (Myanmar), phrase structure, treebank} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "alt_burmese_treebank" |
|
|
|
_DESCRIPTION = """\ |
|
A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\ |
|
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\ |
|
open-access treebank for the Burmese language. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/3463010" |
|
|
|
_LANGUAGES = ["mya"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://zenodo.org/records/3463010/files/my-alt-190530.zip?download=1", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.CONSTITUENCY_PARSING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class AltBurmeseTreebank(datasets.GeneratorBasedBuilder): |
|
"""A 20,000-sentence Burmese (Myanmar) treebank on news articles containing complete phrase structure annotation.\ |
|
As the final result of the Burmese component in the Asian Language Treebank Project, this is the first large-scale,\ |
|
open-access treebank for the Burmese language.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_tree", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema="seacrowd_tree", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_tree": |
|
features = schemas.tree_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "my-alt-190530/data"), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(filepath, "r") as f: |
|
for idx, line in enumerate(f): |
|
example = {"id": line.split("\t")[0], "text": line.split("\t")[1]} |
|
yield idx, example |
|
|
|
elif self.config.schema == "seacrowd_tree": |
|
with open(filepath, "r") as f: |
|
for idx, line in enumerate(f): |
|
example = extract_data(line) |
|
yield idx, example |
|
|