|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{inproceedings, |
|
author = {Koto, Fajri and Rahmaningtyas, Gemala}, |
|
year = {2017}, |
|
month = {12}, |
|
pages = {}, |
|
title = {InSet Lexicon: Evaluation of a Word List for Indonesian Sentiment Analysis in Microblogs}, |
|
doi = {10.1109/IALP.2017.8300625} |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "inset_lexicon" |
|
|
|
_DESCRIPTION = """\ |
|
InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion, |
|
which could be utilized to analyze public sentiment towards particular topic, event, or product. Composed using collection |
|
of words from Indonesian tweet, InSet was constructed by manually weighting each words and enhanced by adding stemming and synonym set |
|
""" |
|
|
|
_HOMEPAGE = "https://www.researchgate.net/publication/321757985_InSet_Lexicon_Evaluation_of_a_Word_List_for_Indonesian_Sentiment_Analysis_in_Microblogs" |
|
_LICENSE = "Unknown" |
|
_URLS = {_DATASETNAME: "https://github.com/fajri91/InSet/archive/refs/heads/master.zip"} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class InsetLexicon(datasets.GeneratorBasedBuilder): |
|
"""InSet, an Indonesian sentiment lexicon built to identify written opinion and categorize it into positive or negative opinion""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="inset_lexicon_source", |
|
version=SOURCE_VERSION, |
|
description="Inset Lexicon source schema", |
|
schema="source", |
|
subset_id="inset_lexicon", |
|
), |
|
SEACrowdConfig( |
|
name="inset_lexicon_seacrowd_text", |
|
version=SEACROWD_VERSION, |
|
description="Inset Lexicon Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="inset_lexicon", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "inset_lexicon_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features({"word": datasets.Value("string"), "weight": datasets.Value("string")}) |
|
elif self.config.schema == "seacrowd_text": |
|
labels = list(range(-5, 6, 1)) |
|
labels = [str(label) for label in labels] |
|
features = schemas.text_features(labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME] |
|
base_dir = Path(dl_manager.download_and_extract(urls)) / "InSet-master" |
|
positive_df = pd.read_csv(base_dir / "positive.tsv", sep="\t") |
|
negative_df = pd.read_csv(base_dir / "negative.tsv", sep="\t") |
|
merged_df = pd.concat([positive_df, negative_df]).reset_index(drop=True) |
|
merged_data_dir = base_dir / "dataset.tsv" |
|
merged_df.to_csv(merged_data_dir, sep="\t") |
|
|
|
data_files = {"train": merged_data_dir} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_files["train"], |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
df = pd.read_csv(filepath, sep="\t", encoding="ISO-8859-1") |
|
df.columns = ["id", "word", "weight"] |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = { |
|
"word": row.word, |
|
"weight": str(int(row.weight)), |
|
} |
|
yield row.id, ex |
|
|
|
elif self.config.schema == "seacrowd_text": |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row.id), |
|
"text": row.word, |
|
"label": str(int(row.weight)), |
|
} |
|
yield row.id, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|