|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{van2018uit, |
|
title={UIT-VSFC: Vietnamese students’ feedback corpus for sentiment analysis}, |
|
author={Van Nguyen, Kiet and Nguyen, Vu Duc and Nguyen, Phu XV and Truong, Tham TH and Nguyen, Ngan Luu-Thuy}, |
|
booktitle={2018 10th international conference on knowledge and systems engineering (KSE)}, |
|
pages={19--24}, |
|
year={2018}, |
|
organization={IEEE} |
|
} |
|
""" |
|
|
|
|
|
_DATASETNAME = "uit_vsfc" |
|
|
|
_DESCRIPTION = """\ |
|
This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university. |
|
Feedback is classified into four possible topics: lecturer, curriculum, facility or others. |
|
Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral. |
|
""" |
|
|
|
_HOMEPAGE = "https://drive.google.com/drive/folders/1HooABJyrddVGzll7fgkJ6VzkG_XuWfRu" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
|
|
_URLS = { |
|
"train": { |
|
"sentences": "https://drive.google.com/uc?id=1nzak5OkrheRV1ltOGCXkT671bmjODLhP&export=download", |
|
"sentiments": "https://drive.google.com/uc?id=1ye-gOZIBqXdKOoi_YxvpT6FeRNmViPPv&export=download", |
|
"topics": "https://drive.google.com/uc?id=14MuDtwMnNOcr4z_8KdpxprjbwaQ7lJ_C&export=download", |
|
}, |
|
"validation": { |
|
"sentences": "https://drive.google.com/uc?id=1sMJSR3oRfPc3fe1gK-V3W5F24tov_517&export=download", |
|
"sentiments": "https://drive.google.com/uc?id=1GiY1AOp41dLXIIkgES4422AuDwmbUseL&export=download", |
|
"topics": "https://drive.google.com/uc?id=1DwLgDEaFWQe8mOd7EpF-xqMEbDLfdT-W&export=download", |
|
}, |
|
"test": { |
|
"sentences": "https://drive.google.com/uc?id=1aNMOeZZbNwSRkjyCWAGtNCMa3YrshR-n&export=download", |
|
"sentiments": "https://drive.google.com/uc?id=1vkQS5gI0is4ACU58-AbWusnemw7KZNfO&export=download", |
|
"topics": "https://drive.google.com/uc?id=1_ArMpDguVsbUGl-xSMkTF_p5KpZrmpSB&export=download", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS, Tasks.TOPIC_MODELING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UITVSFCDataset(datasets.GeneratorBasedBuilder): |
|
"""This corpus consists of student feedback obtained from end-of-semester surveys at a Vietnamese university. |
|
Feedback is classified into four possible topics: lecturer, curriculum, facility or others. |
|
Feedback is also labeled as one of three sentiment polarities: positive, negative or neutral.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SENTIMENT_LABEL_CLASSES = ["positive", "negative", "neutral"] |
|
TOPIC_LABEL_CLASSES = ["lecturer", "training_program", "others", "facility"] |
|
|
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_sentiment_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_topic_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_sentiment_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_topic_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"sentence": datasets.Value("string"), |
|
"sentiment": datasets.ClassLabel(names=self.SENTIMENT_LABEL_CLASSES), |
|
"topic": datasets.ClassLabel(names=self.TOPIC_LABEL_CLASSES), |
|
} |
|
) |
|
elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self.SENTIMENT_LABEL_CLASSES) |
|
elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(self.TOPIC_LABEL_CLASSES) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
data_dir = dl_manager.download(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"sentences_path": data_dir["train"]["sentences"], |
|
"sentiments_path": data_dir["train"]["sentiments"], |
|
"topics_path": data_dir["train"]["topics"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"sentences_path": data_dir["test"]["sentences"], |
|
"sentiments_path": data_dir["test"]["sentiments"], |
|
"topics_path": data_dir["test"]["topics"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"sentences_path": data_dir["validation"]["sentences"], |
|
"sentiments_path": data_dir["validation"]["sentiments"], |
|
"topics_path": data_dir["validation"]["topics"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, sentences_path: Path, sentiments_path: Path, topics_path: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
if self.config.schema == "source": |
|
with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments, open(topics_path, encoding="utf-8") as topics: |
|
for key, (sentence, sentiment, topic) in enumerate(zip(sentences, sentiments, topics)): |
|
yield key, { |
|
"sentence": sentence.strip(), |
|
"sentiment": int(sentiment.strip()), |
|
"topic": int(topic.strip()), |
|
} |
|
|
|
elif self.config.name == f"{_DATASETNAME}_sentiment_seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
with open(sentences_path, encoding="utf-8") as sentences, open(sentiments_path, encoding="utf-8") as sentiments: |
|
for key, (sentence, sentiment) in enumerate(zip(sentences, sentiments)): |
|
yield key, {"id": str(key), "text": sentence.strip(), "label": int(sentiment.strip())} |
|
elif self.config.name == f"{_DATASETNAME}_topic_seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
with open(sentences_path, encoding="utf-8") as sentences, open(topics_path, encoding="utf-8") as topics: |
|
for key, (sentence, topic) in enumerate(zip(sentences, topics)): |
|
yield key, { |
|
"id": str(key), |
|
"text": sentence.strip(), |
|
"label": int(topic.strip()), |
|
} |
|
|