|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. |
|
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. |
|
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.common_parser import load_ud_data |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses |
|
|
|
_CITATION = """\ |
|
@inproceedings{jindal-etal-2022-universal, |
|
title = "Universal {P}roposition {B}ank 2.0", |
|
author = "Jindal, Ishan and |
|
Rademaker, Alexandre and |
|
Ulewicz, Micha{l} and |
|
Linh, Ha and |
|
Nguyen, Huyen and |
|
Tran, Khoi-Nguyen and |
|
Zhu, Huaiyu and |
|
Li, Yunyao", |
|
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", |
|
month = jun, |
|
year = "2022", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2022.lrec-1.181", |
|
pages = "1700--1711", |
|
}} |
|
""" |
|
|
|
_DATASETNAME = "up2" |
|
|
|
_DESCRIPTION = """\ |
|
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. |
|
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. |
|
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. |
|
""" |
|
|
|
_HOMEPAGE = "https://universalpropositions.github.io/" |
|
|
|
_LANGUAGES = ["ind", "vie"] |
|
|
|
_LICENSE = Licenses.CDLA_SHARING_1_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
split: { |
|
"ind": [ |
|
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Indonesian-GSD/main/id_gsd-up-{split}.conllup", |
|
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Indonesian-GSD/master/id_gsd-ud-{split}.conllu", |
|
|
|
], |
|
"vie": [ |
|
f"https://raw.githubusercontent.com/UniversalPropositions/UP_Vietnamese-VTB/main/vi_vtb-up-{split}.conllup", |
|
|
|
f"https://raw.githubusercontent.com/UniversalDependencies/UD_Vietnamese-VTB/0edef6d63df949aea0494c6d4ff4f91bb1959019/vi_vtb-ud-{split}.conllu", |
|
], |
|
} |
|
for split in ["train", "test", "dev"] |
|
} |
|
|
|
_SUPPORTED_TASKS = [] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class UP2Dataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Southeast Asian language subsets from Universal Propositions (UP) 2.0 dataset. |
|
Semantic role labeling (SRL) is a shallow semantic parsing task that identifies “who did what to whom when, where etc” for each predicate in a sentence. |
|
It provides an intermediate (shallow) level of a semantic representation that helps the map from syntactic parse structures to more fully-specified representations of meaning. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
*[ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}{'_' if _LANG else ''}{_LANG}", |
|
) |
|
for _LANG in ["", *_LANGUAGES] |
|
], |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{_LANGUAGES[0]}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"lang": datasets.Value("string"), |
|
"source_sent_id": datasets.Value("string"), |
|
"sent_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"id": [datasets.Value("string")], |
|
"up:pred": [datasets.Value("string")], |
|
"up:argheads": [datasets.Value("string")], |
|
"up:argspans": [datasets.Value("string")], |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
_subset_id = self.config.subset_id.split("_") |
|
if len(_subset_id) > 1: |
|
_lang = _subset_id[1] |
|
urls = {split: {_lang: urls_up_ud[_lang]} for split, urls_up_ud in _URLS.items()} |
|
else: |
|
urls = _URLS |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": data_dir["train"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": data_dir["test"], |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepaths": data_dir["dev"], |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: Dict[str, List[Path]]) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
_subset_id = self.config.subset_id.split("_") |
|
_langs = [_subset_id[1]] if (len(_subset_id) > 1) else _LANGUAGES |
|
|
|
for _lang in _langs: |
|
data = list(load_ud_data(filepaths[_lang][0])) |
|
sentid2text = {_b["sent_id"]: _b["text"] for _b in load_ud_data(filepaths[_lang][1])} |
|
|
|
for cur_data in data: |
|
txt_src = sentid2text[cur_data["sent_id"]] |
|
txt_up = cur_data["text"].rsplit("..........", 1)[0].rstrip(" -") |
|
assert txt_up == txt_src[: len(txt_up)], f"Text mismatch. Found '{txt_up}' in conllup but source is '{txt_src[:len(txt_up)]}'" |
|
cur_data["text"] = txt_src |
|
cur_data["lang"] = _lang |
|
|
|
if self.config.schema == "source": |
|
for key, example in enumerate(data): |
|
yield f"{_lang}_{key}", example |
|
|