license: cc-by-sa-3.0
language:
- ceb
- fil
- ind
- jav
- zlm
- mya
- tha
- vie
- war
pretty_name: Wit
task_categories:
- image-captioning
tags:
- image-captioning
Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset.
WIT is composed of a curated set of 37.6 million entity rich image-text examples with
11.5 million unique images across 108 Wikipedia languages. There are more than 12k
examples in each of 108 languages, with 53 languages having 100k image-text pairs.
Nine languages are spoken in the Southeast Asian region.
Since the dataset contains multiple references, following Section 3.2 of the dataset's
paper, the seacrowd_imtext
subsets specify which reference is used for each data
instance's texts via context in metadata.
Languages
ceb, fil, ind, jav, zlm, mya, tha, vie, war
Supported Tasks
Image Captioning
Dataset Usage
Using datasets
library
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/wit", trust_remote_code=True)
Using seacrowd
library
# Load the dataset using the default config
dset = sc.load_dataset("wit", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("wit"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
More details on how to load the seacrowd
library can be found here.
Dataset Homepage
https://github.com/google-research-datasets/wit
Dataset Version
Source: 1.0.0. SEACrowd: 2024.06.20.
Dataset License
Creative Commons Attribution Share Alike 3.0 (cc-by-sa-3.0)
Citation
If you are using the Wit dataloader in your work, please cite the following:
@inproceedings{10.1145/3404835.3463257,
author = {Srinivasan, Krishna and Raman, Karthik and Chen, Jiecao and Bendersky, Michael and Najork, Marc},
title = {WIT: Wikipedia-Based Image Text Dataset for Multimodal Multilingual Machine Learning},
year = {2021},
isbn = {9781450380379},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3404835.3463257},
doi = {10.1145/3404835.3463257},
booktitle = {Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval},
pages = {2443–2449},
numpages = {7},
keywords = {dataset, multimodal, machine learning, wikipedia, multilingual, image-text retrieval, neural networks},
location = {Virtual Event, Canada},
series = {SIGIR '21}
}
@article{lovenia2024seacrowd,
title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
year={2024},
eprint={2406.10118},
journal={arXiv preprint arXiv: 2406.10118}
}