title
stringlengths
1
185
diff
stringlengths
0
32.2M
body
stringlengths
0
123k
url
stringlengths
57
58
created_at
stringlengths
20
20
closed_at
stringlengths
20
20
merged_at
stringlengths
20
20
updated_at
stringlengths
20
20
clarified the documentation for DF.drop_duplicates
diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 78c9f2aa96472..ade05ab27093e 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -4625,7 +4625,8 @@ def dropna(self, axis=0, how='any', thresh=None, subset=None, def drop_duplicates(self, subset=None, keep='first', inplace=False): """ Return DataFrame with duplicate rows removed, optionally only - considering certain columns. + considering certain columns. Indexes, including time indexes + are ignored. Parameters ----------
I hit an issue with a time series index where I wanted to keep duplicate data with different time values and only delete rows with the same time and columns. This documentation change would have saved me a lot of time. - [ ] closes #xxxx - [ ] tests added / passed - [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25056
2019-01-31T17:14:09Z
2019-02-01T18:24:37Z
2019-02-01T18:24:37Z
2019-02-02T14:50:36Z
Clarification of docstring for value_counts
diff --git a/doc/source/user_guide/io.rst b/doc/source/user_guide/io.rst index 58e1b2370c7c8..b23a0f10e9e2b 100644 --- a/doc/source/user_guide/io.rst +++ b/doc/source/user_guide/io.rst @@ -989,6 +989,36 @@ a single date rather than the entire array. os.remove('tmp.csv') + +.. _io.csv.mixed_timezones: + +Parsing a CSV with mixed Timezones +++++++++++++++++++++++++++++++++++ + +Pandas cannot natively represent a column or index with mixed timezones. If your CSV +file contains columns with a mixture of timezones, the default result will be +an object-dtype column with strings, even with ``parse_dates``. + + +.. ipython:: python + + content = """\ + a + 2000-01-01T00:00:00+05:00 + 2000-01-01T00:00:00+06:00""" + df = pd.read_csv(StringIO(content), parse_dates=['a']) + df['a'] + +To parse the mixed-timezone values as a datetime column, pass a partially-applied +:func:`to_datetime` with ``utc=True`` as the ``date_parser``. + +.. ipython:: python + + df = pd.read_csv(StringIO(content), parse_dates=['a'], + date_parser=lambda col: pd.to_datetime(col, utc=True)) + df['a'] + + .. _io.dayfirst: diff --git a/doc/source/whatsnew/v0.24.0.rst b/doc/source/whatsnew/v0.24.0.rst index fc963fce37a5b..a49ea2cf493a6 100644 --- a/doc/source/whatsnew/v0.24.0.rst +++ b/doc/source/whatsnew/v0.24.0.rst @@ -6,7 +6,8 @@ What's New in 0.24.0 (January 25, 2019) .. warning:: The 0.24.x series of releases will be the last to support Python 2. Future feature - releases will support Python 3 only. See :ref:`install.dropping-27` for more. + releases will support Python 3 only. See :ref:`install.dropping-27` for more + details. {{ header }} @@ -244,7 +245,7 @@ the new extension arrays that back interval and period data. Joining with two multi-indexes ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ -:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlaping index levels (:issue:`6360`) +:func:`DataFrame.merge` and :func:`DataFrame.join` can now be used to join multi-indexed ``Dataframe`` instances on the overlapping index levels (:issue:`6360`) See the :ref:`Merge, join, and concatenate <merging.Join_with_two_multi_indexes>` documentation section. @@ -647,6 +648,52 @@ that the dates have been converted to UTC pd.to_datetime(["2015-11-18 15:30:00+05:30", "2015-11-18 16:30:00+06:30"], utc=True) + +.. _whatsnew_0240.api_breaking.read_csv_mixed_tz: + +Parsing mixed-timezones with :func:`read_csv` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:func:`read_csv` no longer silently converts mixed-timezone columns to UTC (:issue:`24987`). + +*Previous Behavior* + +.. code-block:: python + + >>> import io + >>> content = """\ + ... a + ... 2000-01-01T00:00:00+05:00 + ... 2000-01-01T00:00:00+06:00""" + >>> df = pd.read_csv(io.StringIO(content), parse_dates=['a']) + >>> df.a + 0 1999-12-31 19:00:00 + 1 1999-12-31 18:00:00 + Name: a, dtype: datetime64[ns] + +*New Behavior* + +.. ipython:: python + + import io + content = """\ + a + 2000-01-01T00:00:00+05:00 + 2000-01-01T00:00:00+06:00""" + df = pd.read_csv(io.StringIO(content), parse_dates=['a']) + df.a + +As can be seen, the ``dtype`` is object; each value in the column is a string. +To convert the strings to an array of datetimes, the ``date_parser`` argument + +.. ipython:: python + + df = pd.read_csv(io.StringIO(content), parse_dates=['a'], + date_parser=lambda col: pd.to_datetime(col, utc=True)) + df.a + +See :ref:`whatsnew_0240.api.timezone_offset_parsing` for more. + .. _whatsnew_0240.api_breaking.period_end_time: Time values in ``dt.end_time`` and ``to_timestamp(how='end')`` diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index ee4b7ab62b31a..047404e93914b 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -15,6 +15,15 @@ Whats New in 0.24.1 (February XX, 2019) These are the changes in pandas 0.24.1. See :ref:`release` for a full changelog including other versions of pandas. +.. _whatsnew_0241.regressions: + +Fixed Regressions +^^^^^^^^^^^^^^^^^ + +- Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) +- Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) +- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). +- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`). .. _whatsnew_0241.enhancements: @@ -58,11 +67,19 @@ Bug Fixes - **Timedelta** - +- Bug in :func:`to_timedelta` with `box=False` incorrectly returning a ``datetime64`` object instead of a ``timedelta64`` object (:issue:`24961`) - - - +**Reshaping** + +- Bug in :meth:`DataFrame.groupby` with :class:`Grouper` when there is a time change (DST) and grouping frequency is ``'1d'`` (:issue:`24972`) + +**Visualization** + +- Fixed the warning for implicitly registered matplotlib converters not showing. See :ref:`whatsnew_0211.converters` for more (:issue:`24963`). + **Other** diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index 47517782e2bbf..791ff44303e96 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -222,7 +222,7 @@ def __getitem__(self, item): item = item._ndarray result = self._ndarray[item] - if not lib.is_scalar(result): + if not lib.is_scalar(item): result = type(self)(result) return result diff --git a/pandas/core/base.py b/pandas/core/base.py index c02ba88ea7fda..7b3152595e4b2 100644 --- a/pandas/core/base.py +++ b/pandas/core/base.py @@ -1234,7 +1234,7 @@ def value_counts(self, normalize=False, sort=True, ascending=False, If True then the object returned will contain the relative frequencies of the unique values. sort : boolean, default True - Sort by values. + Sort by frequencies. ascending : boolean, default False Sort in ascending order. bins : integer, optional diff --git a/pandas/core/frame.py b/pandas/core/frame.py index b4f79bda25517..28c6f3c23a3ce 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -847,7 +847,7 @@ def itertuples(self, index=True, name="Pandas"): ---------- index : bool, default True If True, return the index as the first element of the tuple. - name : str, default "Pandas" + name : str or None, default "Pandas" The name of the returned namedtuples or None to return regular tuples. @@ -1290,23 +1290,26 @@ def to_dict(self, orient='dict', into=dict): ('columns', self.columns.tolist()), ('data', [ list(map(com.maybe_box_datetimelike, t)) - for t in self.itertuples(index=False)] - ))) + for t in self.itertuples(index=False, name=None) + ]))) elif orient.lower().startswith('s'): return into_c((k, com.maybe_box_datetimelike(v)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('r'): + columns = self.columns.tolist() + rows = (dict(zip(columns, row)) + for row in self.itertuples(index=False, name=None)) return [ into_c((k, com.maybe_box_datetimelike(v)) - for k, v in compat.iteritems(row._asdict())) - for row in self.itertuples(index=False)] + for k, v in compat.iteritems(row)) + for row in rows] elif orient.lower().startswith('i'): if not self.index.is_unique: raise ValueError( "DataFrame index must be unique for orient='index'." ) return into_c((t[0], dict(zip(self.columns, t[1:]))) - for t in self.itertuples()) + for t in self.itertuples(name=None)) else: raise ValueError("orient '{o}' not understood".format(o=orient)) diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 767da81c5c43a..3d176012df22b 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -2333,7 +2333,7 @@ def union(self, other, sort=True): def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two Index objects. @@ -2342,11 +2342,15 @@ def intersection(self, other, sort=True): Parameters ---------- other : Index or array-like - sort : bool, default True + sort : bool, default False Sort the resulting index if possible .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- intersection : Index diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py index cc373c06efcc9..ef941ab87ba12 100644 --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -594,7 +594,7 @@ def _wrap_setop_result(self, other, result): name = get_op_result_name(self, other) return self._shallow_copy(result, name=name, freq=None, tz=self.tz) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection @@ -602,6 +602,14 @@ def intersection(self, other, sort=True): Parameters ---------- other : DatetimeIndex or array-like + sort : bool, default True + Sort the resulting index if possible. + + .. versionadded:: 0.24.0 + + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. Returns ------- diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py index 0210560aaa21f..736de94991181 100644 --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -1093,8 +1093,8 @@ def equals(self, other): def overlaps(self, other): return self._data.overlaps(other) - def _setop(op_name): - def func(self, other, sort=True): + def _setop(op_name, sort=True): + def func(self, other, sort=sort): other = self._as_like_interval_index(other) # GH 19016: ensure set op will not return a prohibited dtype @@ -1128,7 +1128,7 @@ def is_all_dates(self): return False union = _setop('union') - intersection = _setop('intersection') + intersection = _setop('intersection', sort=False) difference = _setop('difference') symmetric_difference = _setop('symmetric_difference') diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py index e4d01a40bd181..16af3fe8eef26 100644 --- a/pandas/core/indexes/multi.py +++ b/pandas/core/indexes/multi.py @@ -2910,7 +2910,7 @@ def union(self, other, sort=True): return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0, names=result_names) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two MultiIndex objects. @@ -2922,6 +2922,10 @@ def intersection(self, other, sort=True): .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- Index diff --git a/pandas/core/indexes/range.py b/pandas/core/indexes/range.py index ebf5b279563cf..e17a6a682af40 100644 --- a/pandas/core/indexes/range.py +++ b/pandas/core/indexes/range.py @@ -343,7 +343,7 @@ def equals(self, other): return super(RangeIndex, self).equals(other) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two Index objects. @@ -355,6 +355,10 @@ def intersection(self, other, sort=True): .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- intersection : Index diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py index 4a16707a376e9..640587b7f9f31 100644 --- a/pandas/core/internals/concat.py +++ b/pandas/core/internals/concat.py @@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na): is_datetime64tz_dtype(empty_dtype)): if self.block is None: array = empty_dtype.construct_array_type() - return array(np.full(self.shape[1], fill_value), + return array(np.full(self.shape[1], fill_value.value), dtype=empty_dtype) pass elif getattr(self.block, 'is_categorical', False): @@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units): elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'datetimetz' in upcast_classes: + # GH-25014. We use NaT instead of iNaT, since this eventually + # ends up in DatetimeArray.take, which does not allow iNaT. dtype = upcast_classes['datetimetz'] - return dtype[0], tslibs.iNaT + return dtype[0], tslibs.NaT elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslibs.iNaT elif 'timedelta' in upcast_classes: diff --git a/pandas/core/resample.py b/pandas/core/resample.py index 6822225273906..7723827ff478a 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -30,8 +30,7 @@ from pandas.core.indexes.timedeltas import TimedeltaIndex, timedelta_range from pandas.tseries.frequencies import to_offset -from pandas.tseries.offsets import ( - DateOffset, Day, Nano, Tick, delta_to_nanoseconds) +from pandas.tseries.offsets import DateOffset, Day, Nano, Tick _shared_docs_kwargs = dict() @@ -1613,20 +1612,20 @@ def _get_timestamp_range_edges(first, last, offset, closed='left', base=0): A tuple of length 2, containing the adjusted pd.Timestamp objects. """ if isinstance(offset, Tick): - is_day = isinstance(offset, Day) - day_nanos = delta_to_nanoseconds(timedelta(1)) - - # #1165 and #24127 - if (is_day and not offset.nanos % day_nanos) or not is_day: - first, last = _adjust_dates_anchored(first, last, offset, - closed=closed, base=base) - if is_day and first.tz is not None: - # _adjust_dates_anchored assumes 'D' means 24H, but first/last - # might contain a DST transition (23H, 24H, or 25H). - # Ensure first/last snap to midnight. - first = first.normalize() - last = last.normalize() - return first, last + if isinstance(offset, Day): + # _adjust_dates_anchored assumes 'D' means 24H, but first/last + # might contain a DST transition (23H, 24H, or 25H). + # So "pretend" the dates are naive when adjusting the endpoints + tz = first.tz + first = first.tz_localize(None) + last = last.tz_localize(None) + + first, last = _adjust_dates_anchored(first, last, offset, + closed=closed, base=base) + if isinstance(offset, Day): + first = first.tz_localize(tz) + last = last.tz_localize(tz) + return first, last else: first = first.normalize() diff --git a/pandas/core/tools/timedeltas.py b/pandas/core/tools/timedeltas.py index e3428146b91d8..ddd21d0f62d08 100644 --- a/pandas/core/tools/timedeltas.py +++ b/pandas/core/tools/timedeltas.py @@ -120,7 +120,8 @@ def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'): try: result = Timedelta(r, unit) if not box: - result = result.asm8 + # explicitly view as timedelta64 for case when result is pd.NaT + result = result.asm8.view('timedelta64[ns]') except ValueError: if errors == 'raise': raise diff --git a/pandas/io/parsers.py b/pandas/io/parsers.py index b31d3f665f47f..4163a571df800 100755 --- a/pandas/io/parsers.py +++ b/pandas/io/parsers.py @@ -203,9 +203,14 @@ * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' - If a column or index contains an unparseable date, the entire column or - index will be returned unaltered as an object data type. For non-standard - datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv`` + If a column or index cannot be represented as an array of datetimes, + say because of an unparseable value or a mixture of timezones, the column + or index will be returned unaltered as an object data type. For + non-standard datetime parsing, use ``pd.to_datetime`` after + ``pd.read_csv``. To parse an index or column with a mixture of timezones, + specify ``date_parser`` to be a partially-applied + :func:`pandas.to_datetime` with ``utc=True``. See + :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False diff --git a/pandas/plotting/_core.py b/pandas/plotting/_core.py index e543ab88f53b2..85549bafa8dc0 100644 --- a/pandas/plotting/_core.py +++ b/pandas/plotting/_core.py @@ -39,7 +39,7 @@ else: _HAS_MPL = True if get_option('plotting.matplotlib.register_converters'): - _converter.register(explicit=True) + _converter.register(explicit=False) def _raise_if_no_mpl(): diff --git a/pandas/tests/extension/numpy_/__init__.py b/pandas/tests/extension/numpy_/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/pandas/tests/extension/numpy_/conftest.py b/pandas/tests/extension/numpy_/conftest.py new file mode 100644 index 0000000000000..daa93571c2957 --- /dev/null +++ b/pandas/tests/extension/numpy_/conftest.py @@ -0,0 +1,38 @@ +import numpy as np +import pytest + +from pandas.core.arrays.numpy_ import PandasArray + + [email protected] +def allow_in_pandas(monkeypatch): + """ + A monkeypatch to tell pandas to let us in. + + By default, passing a PandasArray to an index / series / frame + constructor will unbox that PandasArray to an ndarray, and treat + it as a non-EA column. We don't want people using EAs without + reason. + + The mechanism for this is a check against ABCPandasArray + in each constructor. + + But, for testing, we need to allow them in pandas. So we patch + the _typ of PandasArray, so that we evade the ABCPandasArray + check. + """ + with monkeypatch.context() as m: + m.setattr(PandasArray, '_typ', 'extension') + yield + + [email protected] +def na_value(): + return np.nan + + [email protected] +def na_cmp(): + def cmp(a, b): + return np.isnan(a) and np.isnan(b) + return cmp diff --git a/pandas/tests/extension/test_numpy.py b/pandas/tests/extension/numpy_/test_numpy.py similarity index 84% rename from pandas/tests/extension/test_numpy.py rename to pandas/tests/extension/numpy_/test_numpy.py index 7ca6882c7441b..4c93d5ee0b9d7 100644 --- a/pandas/tests/extension/test_numpy.py +++ b/pandas/tests/extension/numpy_/test_numpy.py @@ -6,7 +6,7 @@ from pandas.core.arrays.numpy_ import PandasArray, PandasDtype import pandas.util.testing as tm -from . import base +from .. import base @pytest.fixture @@ -14,28 +14,6 @@ def dtype(): return PandasDtype(np.dtype('float')) [email protected] -def allow_in_pandas(monkeypatch): - """ - A monkeypatch to tells pandas to let us in. - - By default, passing a PandasArray to an index / series / frame - constructor will unbox that PandasArray to an ndarray, and treat - it as a non-EA column. We don't want people using EAs without - reason. - - The mechanism for this is a check against ABCPandasArray - in each constructor. - - But, for testing, we need to allow them in pandas. So we patch - the _typ of PandasArray, so that we evade the ABCPandasArray - check. - """ - with monkeypatch.context() as m: - m.setattr(PandasArray, '_typ', 'extension') - yield - - @pytest.fixture def data(allow_in_pandas, dtype): return PandasArray(np.arange(1, 101, dtype=dtype._dtype)) @@ -46,18 +24,6 @@ def data_missing(allow_in_pandas): return PandasArray(np.array([np.nan, 1.0])) [email protected] -def na_value(): - return np.nan - - [email protected] -def na_cmp(): - def cmp(a, b): - return np.isnan(a) and np.isnan(b) - return cmp - - @pytest.fixture def data_for_sorting(allow_in_pandas): """Length-3 array with a known sort order. diff --git a/pandas/tests/extension/numpy_/test_numpy_nested.py b/pandas/tests/extension/numpy_/test_numpy_nested.py new file mode 100644 index 0000000000000..cf9b34dd08798 --- /dev/null +++ b/pandas/tests/extension/numpy_/test_numpy_nested.py @@ -0,0 +1,286 @@ +""" +Tests for PandasArray with nested data. Users typically won't create +these objects via `pd.array`, but they can show up through `.array` +on a Series with nested data. + +We partition these tests into their own file, as many of the base +tests fail, as they aren't appropriate for nested data. It is easier +to have a seperate file with its own data generating fixtures, than +trying to skip based upon the value of a fixture. +""" +import pytest + +import pandas as pd +from pandas.core.arrays.numpy_ import PandasArray, PandasDtype + +from .. import base + +# For NumPy <1.16, np.array([np.nan, (1,)]) raises +# ValueError: setting an array element with a sequence. +np = pytest.importorskip('numpy', minversion='1.16.0') + + [email protected] +def dtype(): + return PandasDtype(np.dtype('object')) + + [email protected] +def data(allow_in_pandas, dtype): + return pd.Series([(i,) for i in range(100)]).array + + [email protected] +def data_missing(allow_in_pandas): + return PandasArray(np.array([np.nan, (1,)])) + + [email protected] +def data_for_sorting(allow_in_pandas): + """Length-3 array with a known sort order. + + This should be three items [B, C, A] with + A < B < C + """ + # Use an empty tuple for first element, then remove, + # to disable np.array's shape inference. + return PandasArray( + np.array([(), (2,), (3,), (1,)])[1:] + ) + + [email protected] +def data_missing_for_sorting(allow_in_pandas): + """Length-3 array with a known sort order. + + This should be three items [B, NA, A] with + A < B and NA missing. + """ + return PandasArray( + np.array([(1,), np.nan, (0,)]) + ) + + [email protected] +def data_for_grouping(allow_in_pandas): + """Data for factorization, grouping, and unique tests. + + Expected to be like [B, B, NA, NA, A, A, B, C] + + Where A < B < C and NA is missing + """ + a, b, c = (1,), (2,), (3,) + return PandasArray(np.array( + [b, b, np.nan, np.nan, a, a, b, c] + )) + + +skip_nested = pytest.mark.skip(reason="Skipping for nested PandasArray") + + +class BaseNumPyTests(object): + pass + + +class TestCasting(BaseNumPyTests, base.BaseCastingTests): + + @skip_nested + def test_astype_str(self, data): + pass + + +class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests): + @pytest.mark.skip(reason="We don't register our dtype") + # We don't want to register. This test should probably be split in two. + def test_from_dtype(self, data): + pass + + @skip_nested + def test_array_from_scalars(self, data): + pass + + +class TestDtype(BaseNumPyTests, base.BaseDtypeTests): + + @pytest.mark.skip(reason="Incorrect expected.") + # we unsurprisingly clash with a NumPy name. + def test_check_dtype(self, data): + pass + + +class TestGetitem(BaseNumPyTests, base.BaseGetitemTests): + + @skip_nested + def test_getitem_scalar(self, data): + pass + + @skip_nested + def test_take_series(self, data): + pass + + +class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests): + @skip_nested + def test_groupby_extension_apply(self, data_for_grouping, op): + pass + + +class TestInterface(BaseNumPyTests, base.BaseInterfaceTests): + @skip_nested + def test_array_interface(self, data): + # NumPy array shape inference + pass + + +class TestMethods(BaseNumPyTests, base.BaseMethodsTests): + + @pytest.mark.skip(reason="TODO: remove?") + def test_value_counts(self, all_data, dropna): + pass + + @pytest.mark.skip(reason="Incorrect expected") + # We have a bool dtype, so the result is an ExtensionArray + # but expected is not + def test_combine_le(self, data_repeated): + super(TestMethods, self).test_combine_le(data_repeated) + + @skip_nested + def test_combine_add(self, data_repeated): + # Not numeric + pass + + @skip_nested + def test_shift_fill_value(self, data): + # np.array shape inference. Shift implementation fails. + super().test_shift_fill_value(data) + + @skip_nested + def test_unique(self, data, box, method): + # Fails creating expected + pass + + @skip_nested + def test_fillna_copy_frame(self, data_missing): + # The "scalar" for this array isn't a scalar. + pass + + @skip_nested + def test_fillna_copy_series(self, data_missing): + # The "scalar" for this array isn't a scalar. + pass + + @skip_nested + def test_hash_pandas_object_works(self, data, as_frame): + # ndarray of tuples not hashable + pass + + @skip_nested + def test_searchsorted(self, data_for_sorting, as_series): + # Test setup fails. + pass + + @skip_nested + def test_where_series(self, data, na_value, as_frame): + # Test setup fails. + pass + + @skip_nested + def test_repeat(self, data, repeats, as_series, use_numpy): + # Fails creating expected + pass + + +class TestPrinting(BaseNumPyTests, base.BasePrintingTests): + pass + + +class TestMissing(BaseNumPyTests, base.BaseMissingTests): + + @skip_nested + def test_fillna_scalar(self, data_missing): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_series_method(self, data_missing, method): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_series(self, data_missing): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_frame(self, data_missing): + # Non-scalar "scalar" values. + pass + + +class TestReshaping(BaseNumPyTests, base.BaseReshapingTests): + + @pytest.mark.skip("Incorrect parent test") + # not actually a mixed concat, since we concat int and int. + def test_concat_mixed_dtypes(self, data): + super(TestReshaping, self).test_concat_mixed_dtypes(data) + + @skip_nested + def test_merge(self, data, na_value): + # Fails creating expected + pass + + @skip_nested + def test_merge_on_extension_array(self, data): + # Fails creating expected + pass + + @skip_nested + def test_merge_on_extension_array_duplicates(self, data): + # Fails creating expected + pass + + +class TestSetitem(BaseNumPyTests, base.BaseSetitemTests): + + @skip_nested + def test_setitem_scalar_series(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_sequence(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_sequence_mismatched_length_raises(self, data, as_array): + pass + + @skip_nested + def test_setitem_sequence_broadcasts(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_loc_scalar_mixed(self, data): + pass + + @skip_nested + def test_setitem_loc_scalar_multiple_homogoneous(self, data): + pass + + @skip_nested + def test_setitem_iloc_scalar_mixed(self, data): + pass + + @skip_nested + def test_setitem_iloc_scalar_multiple_homogoneous(self, data): + pass + + @skip_nested + def test_setitem_mask_broadcast(self, data, setter): + pass + + @skip_nested + def test_setitem_scalar_key_sequence_raise(self, data): + pass + + +# Skip Arithmetics, NumericReduce, BooleanReduce, Parsing diff --git a/pandas/tests/frame/test_convert_to.py b/pandas/tests/frame/test_convert_to.py index ddf85136126a1..7b98395dd6dec 100644 --- a/pandas/tests/frame/test_convert_to.py +++ b/pandas/tests/frame/test_convert_to.py @@ -488,3 +488,17 @@ def test_to_dict_index_dtypes(self, into, expected): result = DataFrame.from_dict(result, orient='index')[cols] expected = DataFrame.from_dict(expected, orient='index')[cols] tm.assert_frame_equal(result, expected) + + def test_to_dict_numeric_names(self): + # https://github.com/pandas-dev/pandas/issues/24940 + df = DataFrame({str(i): [i] for i in range(5)}) + result = set(df.to_dict('records')[0].keys()) + expected = set(df.columns) + assert result == expected + + def test_to_dict_wide(self): + # https://github.com/pandas-dev/pandas/issues/24939 + df = DataFrame({('A_{:d}'.format(i)): [i] for i in range(256)}) + result = df.to_dict('records')[0] + expected = {'A_{:d}'.format(i): i for i in range(256)} + assert result == expected diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py index f3e9d835c7391..20e439de46bde 100644 --- a/pandas/tests/indexes/test_base.py +++ b/pandas/tests/indexes/test_base.py @@ -765,6 +765,11 @@ def test_intersect_str_dates(self, sort): assert len(result) == 0 + def test_intersect_nosort(self): + result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a']) + expected = pd.Index(['b', 'a']) + tm.assert_index_equal(result, expected) + @pytest.mark.parametrize("sort", [True, False]) def test_chained_union(self, sort): # Chained unions handles names correctly @@ -1595,20 +1600,27 @@ def test_drop_tuple(self, values, to_drop): for drop_me in to_drop[1], [to_drop[1]]: pytest.raises(KeyError, removed.drop, drop_me) - @pytest.mark.parametrize("method,expected", [ + @pytest.mark.parametrize("method,expected,sort", [ + ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], + dtype=[('num', int), ('let', 'a1')]), + False), + ('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')], - dtype=[('num', int), ('let', 'a1')])), + dtype=[('num', int), ('let', 'a1')]), + True), + ('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), - (2, 'C')], dtype=[('num', int), ('let', 'a1')])) + (2, 'C')], dtype=[('num', int), ('let', 'a1')]), + True) ]) - def test_tuple_union_bug(self, method, expected): + def test_tuple_union_bug(self, method, expected, sort): index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')])) index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')])) - result = getattr(index1, method)(index2) + result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected) diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py index 73995cbe79ecd..b743aeecdc756 100644 --- a/pandas/tests/resample/test_datetime_index.py +++ b/pandas/tests/resample/test_datetime_index.py @@ -1276,6 +1276,21 @@ def test_resample_across_dst(): assert_frame_equal(result, expected) +def test_groupby_with_dst_time_change(): + # GH 24972 + index = pd.DatetimeIndex([1478064900001000000, 1480037118776792000], + tz='UTC').tz_convert('America/Chicago') + + df = pd.DataFrame([1, 2], index=index) + result = df.groupby(pd.Grouper(freq='1d')).last() + expected_index_values = pd.date_range('2016-11-02', '2016-11-24', + freq='d', tz='America/Chicago') + + index = pd.DatetimeIndex(expected_index_values) + expected = pd.DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index) + assert_frame_equal(result, expected) + + def test_resample_dst_anchor(): # 5172 dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz='US/Eastern') diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py index f0a3ddc8ce8a4..1e60fdbebfeb3 100644 --- a/pandas/tests/reshape/merge/test_merge.py +++ b/pandas/tests/reshape/merge/test_merge.py @@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self): assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]' assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]' + def test_merge_on_datetime64tz_empty(self): + # https://github.com/pandas-dev/pandas/issues/25014 + dtz = pd.DatetimeTZDtype(tz='UTC') + right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)], + 'value': [4.0], + 'date2': [pd.Timestamp('2019', tz=dtz.tz)]}, + columns=['date', 'value', 'date2']) + left = right[:0] + result = left.merge(right, on='date') + expected = pd.DataFrame({ + 'value_x': pd.Series(dtype=float), + 'date2_x': pd.Series(dtype=dtz), + 'date': pd.Series(dtype=dtz), + 'value_y': pd.Series(dtype=float), + 'date2_y': pd.Series(dtype=dtz), + }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y']) + tm.assert_frame_equal(result, expected) + def test_merge_datetime64tz_with_dst_transition(self): # GH 18885 df1 = pd.DataFrame(pd.date_range( diff --git a/pandas/tests/scalar/timedelta/test_timedelta.py b/pandas/tests/scalar/timedelta/test_timedelta.py index 9b5fdfb06a9fa..e1838e0160fec 100644 --- a/pandas/tests/scalar/timedelta/test_timedelta.py +++ b/pandas/tests/scalar/timedelta/test_timedelta.py @@ -309,8 +309,13 @@ def test_iso_conversion(self): assert to_timedelta('P0DT0H0M1S') == expected def test_nat_converters(self): - assert to_timedelta('nat', box=False).astype('int64') == iNaT - assert to_timedelta('nan', box=False).astype('int64') == iNaT + result = to_timedelta('nat', box=False) + assert result.dtype.kind == 'm' + assert result.astype('int64') == iNaT + + result = to_timedelta('nan', box=False) + assert result.dtype.kind == 'm' + assert result.astype('int64') == iNaT @pytest.mark.parametrize('units, np_unit', [(['Y', 'y'], 'Y'),
- [ ] closes #xxxx - [ ] tests added / passed - [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25055
2019-01-31T17:05:55Z
2019-01-31T20:30:20Z
null
2019-01-31T20:30:20Z
Backport PR #25039 on branch 0.24.x (BUG: avoid usage in_qtconsole for recent IPython versions)
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 047404e93914b..521319c55a503 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -83,7 +83,7 @@ Bug Fixes **Other** -- +- Fixed AttributeError when printing a DataFrame's HTML repr after accessing the IPython config object (:issue:`25036`) - .. _whatsnew_0.241.contributors: diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 28c6f3c23a3ce..5b462b949abf9 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -17,6 +17,7 @@ import itertools import sys import warnings +from distutils.version import LooseVersion from textwrap import dedent import numpy as np @@ -646,9 +647,15 @@ def _repr_html_(self): # XXX: In IPython 3.x and above, the Qt console will not attempt to # display HTML, so this check can be removed when support for # IPython 2.x is no longer needed. - if console.in_qtconsole(): - # 'HTML output is disabled in QtConsole' - return None + try: + import IPython + except ImportError: + pass + else: + if LooseVersion(IPython.__version__) < LooseVersion('3.0'): + if console.in_qtconsole(): + # 'HTML output is disabled in QtConsole' + return None if self._info_repr(): buf = StringIO(u("")) diff --git a/pandas/tests/io/formats/test_format.py b/pandas/tests/io/formats/test_format.py index 5d922ccaf1fd5..b0cf5a2f17609 100644 --- a/pandas/tests/io/formats/test_format.py +++ b/pandas/tests/io/formats/test_format.py @@ -12,6 +12,7 @@ import os import re import sys +import textwrap import warnings import dateutil @@ -2777,3 +2778,17 @@ def test_format_percentiles(): fmt.format_percentiles([2, 0.1, 0.5]) with pytest.raises(ValueError, match=msg): fmt.format_percentiles([0.1, 0.5, 'a']) + + +def test_repr_html_ipython_config(ip): + code = textwrap.dedent("""\ + import pandas as pd + df = pd.DataFrame({"A": [1, 2]}) + df._repr_html_() + + cfg = get_ipython().config + cfg['IPKernelApp']['parent_appname'] + df._repr_html_() + """) + result = ip.run_cell(code) + assert not result.error_in_exec
Backport PR #25039: BUG: avoid usage in_qtconsole for recent IPython versions
https://api.github.com/repos/pandas-dev/pandas/pulls/25054
2019-01-31T16:03:27Z
2019-01-31T20:17:47Z
2019-01-31T20:17:47Z
2019-01-31T20:17:47Z
DEPR: remove PanelGroupBy, disable DataFrame.to_panel
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index 09626be713c4f..a3fb1c575e7f1 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -51,7 +51,7 @@ Deprecations Removal of prior version deprecations/changes ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - +- Removed (parts of) :class:`Panel` (:issue:`25047`) - - - diff --git a/pandas/core/frame.py b/pandas/core/frame.py index afc4194e71eb1..ad4709fb3b870 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -1974,45 +1974,7 @@ def to_panel(self): ------- panel : Panel """ - # only support this kind for now - if (not isinstance(self.index, MultiIndex) or # pragma: no cover - len(self.index.levels) != 2): - raise NotImplementedError('Only 2-level MultiIndex are supported.') - - if not self.index.is_unique: - raise ValueError("Can't convert non-uniquely indexed " - "DataFrame to Panel") - - self._consolidate_inplace() - - # minor axis must be sorted - if self.index.lexsort_depth < 2: - selfsorted = self.sort_index(level=0) - else: - selfsorted = self - - major_axis, minor_axis = selfsorted.index.levels - major_codes, minor_codes = selfsorted.index.codes - shape = len(major_axis), len(minor_axis) - - # preserve names, if any - major_axis = major_axis.copy() - major_axis.name = self.index.names[0] - - minor_axis = minor_axis.copy() - minor_axis.name = self.index.names[1] - - # create new axes - new_axes = [selfsorted.columns, major_axis, minor_axis] - - # create new manager - new_mgr = selfsorted._data.reshape_nd(axes=new_axes, - labels=[major_codes, - minor_codes], - shape=shape, - ref_items=selfsorted.columns) - - return self._constructor_expanddim(new_mgr) + raise NotImplementedError("Panel is being removed in pandas 0.25.0.") @deprecate_kwarg(old_arg_name='encoding', new_arg_name=None) def to_stata(self, fname, convert_dates=None, write_index=True, diff --git a/pandas/core/groupby/__init__.py b/pandas/core/groupby/__init__.py index 9c15a5ebfe0f2..ac35f3825e5e8 100644 --- a/pandas/core/groupby/__init__.py +++ b/pandas/core/groupby/__init__.py @@ -1,4 +1,4 @@ from pandas.core.groupby.groupby import GroupBy # noqa: F401 from pandas.core.groupby.generic import ( # noqa: F401 - SeriesGroupBy, DataFrameGroupBy, PanelGroupBy) + SeriesGroupBy, DataFrameGroupBy) from pandas.core.groupby.grouper import Grouper # noqa: F401 diff --git a/pandas/core/groupby/generic.py b/pandas/core/groupby/generic.py index 78aa6d13a9e02..c8ea9ce689871 100644 --- a/pandas/core/groupby/generic.py +++ b/pandas/core/groupby/generic.py @@ -1,5 +1,5 @@ """ -Define the SeriesGroupBy, DataFrameGroupBy, and PanelGroupBy +Define the SeriesGroupBy and DataFrameGroupBy classes that hold the groupby interfaces (and some implementations). These are user facing as the result of the ``df.groupby(...)`` operations, @@ -39,7 +39,6 @@ from pandas.core.index import CategoricalIndex, Index, MultiIndex import pandas.core.indexes.base as ibase from pandas.core.internals import BlockManager, make_block -from pandas.core.panel import Panel from pandas.core.series import Series from pandas.plotting._core import boxplot_frame_groupby @@ -1586,90 +1585,3 @@ def groupby_series(obj, col=None): return results boxplot = boxplot_frame_groupby - - -class PanelGroupBy(NDFrameGroupBy): - - def aggregate(self, arg, *args, **kwargs): - return super(PanelGroupBy, self).aggregate(arg, *args, **kwargs) - - agg = aggregate - - def _iterate_slices(self): - if self.axis == 0: - # kludge - if self._selection is None: - slice_axis = self._selected_obj.items - else: - slice_axis = self._selection_list - slicer = lambda x: self._selected_obj[x] - else: - raise NotImplementedError("axis other than 0 is not supported") - - for val in slice_axis: - if val in self.exclusions: - continue - - yield val, slicer(val) - - def aggregate(self, arg, *args, **kwargs): - """ - Aggregate using input function or dict of {column -> function} - - Parameters - ---------- - arg : function or dict - Function to use for aggregating groups. If a function, must either - work when passed a Panel or when passed to Panel.apply. If - pass a dict, the keys must be DataFrame column names - - Returns - ------- - aggregated : Panel - """ - if isinstance(arg, compat.string_types): - return getattr(self, arg)(*args, **kwargs) - - return self._aggregate_generic(arg, *args, **kwargs) - - def _wrap_generic_output(self, result, obj): - if self.axis == 0: - new_axes = list(obj.axes) - new_axes[0] = self.grouper.result_index - elif self.axis == 1: - x, y, z = obj.axes - new_axes = [self.grouper.result_index, z, x] - else: - x, y, z = obj.axes - new_axes = [self.grouper.result_index, y, x] - - result = Panel._from_axes(result, new_axes) - - if self.axis == 1: - result = result.swapaxes(0, 1).swapaxes(0, 2) - elif self.axis == 2: - result = result.swapaxes(0, 2) - - return result - - def _aggregate_item_by_item(self, func, *args, **kwargs): - obj = self._obj_with_exclusions - result = {} - - if self.axis > 0: - for item in obj: - try: - itemg = DataFrameGroupBy(obj[item], - axis=self.axis - 1, - grouper=self.grouper) - result[item] = itemg.aggregate(func, *args, **kwargs) - except (ValueError, TypeError): - raise - new_axes = list(obj.axes) - new_axes[self.axis] = self.grouper.result_index - return Panel._from_axes(result, new_axes) - else: - raise ValueError("axis value must be greater than 0") - - def _wrap_aggregated_output(self, output, names=None): - raise AbstractMethodError(self) diff --git a/pandas/core/panel.py b/pandas/core/panel.py index c8afafde48ac2..de535eeea4b5e 100644 --- a/pandas/core/panel.py +++ b/pandas/core/panel.py @@ -917,9 +917,7 @@ def groupby(self, function, axis='major'): ------- grouped : PanelGroupBy """ - from pandas.core.groupby import PanelGroupBy - axis = self._get_axis_number(axis) - return PanelGroupBy(self, function, axis=axis) + raise NotImplementedError("Panel is removed in pandas 0.25.0") def to_frame(self, filter_observations=True): """ diff --git a/pandas/core/resample.py b/pandas/core/resample.py index a7204fcd9dd20..fbddc9ff29ce9 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -20,7 +20,7 @@ import pandas.core.algorithms as algos from pandas.core.generic import _shared_docs from pandas.core.groupby.base import GroupByMixin -from pandas.core.groupby.generic import PanelGroupBy, SeriesGroupBy +from pandas.core.groupby.generic import SeriesGroupBy from pandas.core.groupby.groupby import ( GroupBy, _GroupBy, _pipe_template, groupby) from pandas.core.groupby.grouper import Grouper @@ -340,12 +340,7 @@ def _groupby_and_aggregate(self, how, grouper=None, *args, **kwargs): obj = self._selected_obj - try: - grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis) - except TypeError: - - # panel grouper - grouped = PanelGroupBy(obj, grouper=grouper, axis=self.axis) + grouped = groupby(obj, by=None, grouper=grouper, axis=self.axis) try: if isinstance(obj, ABCDataFrame) and compat.callable(how): diff --git a/pandas/io/pytables.py b/pandas/io/pytables.py index 2ab6ddb5b25c7..00fa01bb23c8c 100644 --- a/pandas/io/pytables.py +++ b/pandas/io/pytables.py @@ -31,7 +31,7 @@ PeriodIndex, Series, SparseDataFrame, SparseSeries, TimedeltaIndex, compat, concat, isna, to_datetime) from pandas.core import config -from pandas.core.algorithms import match, unique +from pandas.core.algorithms import unique from pandas.core.arrays.categorical import ( Categorical, _factorize_from_iterables) from pandas.core.arrays.sparse import BlockIndex, IntIndex @@ -3944,29 +3944,7 @@ def read(self, where=None, columns=None, **kwargs): objs.append(obj) else: - warnings.warn(duplicate_doc, DuplicateWarning, stacklevel=5) - - # reconstruct - long_index = MultiIndex.from_arrays( - [i.values for i in self.index_axes]) - - for c in self.values_axes: - lp = DataFrame(c.data, index=long_index, columns=c.values) - - # need a better algorithm - tuple_index = long_index.values - - unique_tuples = unique(tuple_index) - unique_tuples = com.asarray_tuplesafe(unique_tuples) - - indexer = match(unique_tuples, tuple_index) - indexer = ensure_platform_int(indexer) - - new_index = long_index.take(indexer) - new_values = lp.values.take(indexer, axis=0) - - lp = DataFrame(new_values, index=new_index, columns=lp.columns) - objs.append(lp.to_panel()) + raise NotImplementedError("Panel is removed in pandas 0.25.0") # create the composite object if len(objs) == 1: @@ -4875,16 +4853,3 @@ def select_coords(self): return self.coordinates return np.arange(start, stop) - -# utilities ### - - -def timeit(key, df, fn=None, remove=True, **kwargs): - if fn is None: - fn = 'timeit.h5' - store = HDFStore(fn, mode='w') - store.append(key, df, **kwargs) - store.close() - - if remove: - os.remove(fn) diff --git a/pandas/tests/dtypes/test_generic.py b/pandas/tests/dtypes/test_generic.py index 1622088d05f4d..2bb3559d56d61 100644 --- a/pandas/tests/dtypes/test_generic.py +++ b/pandas/tests/dtypes/test_generic.py @@ -1,6 +1,6 @@ # -*- coding: utf-8 -*- -from warnings import catch_warnings, simplefilter +from warnings import catch_warnings import numpy as np @@ -39,9 +39,6 @@ def test_abc_types(self): assert isinstance(pd.Int64Index([1, 2, 3]), gt.ABCIndexClass) assert isinstance(pd.Series([1, 2, 3]), gt.ABCSeries) assert isinstance(self.df, gt.ABCDataFrame) - with catch_warnings(record=True): - simplefilter('ignore', FutureWarning) - assert isinstance(self.df.to_panel(), gt.ABCPanel) assert isinstance(self.sparse_series, gt.ABCSparseSeries) assert isinstance(self.sparse_array, gt.ABCSparseArray) assert isinstance(self.sparse_frame, gt.ABCSparseDataFrame) diff --git a/pandas/tests/frame/test_subclass.py b/pandas/tests/frame/test_subclass.py index 4f0747c0d6945..2e3696e7e04cc 100644 --- a/pandas/tests/frame/test_subclass.py +++ b/pandas/tests/frame/test_subclass.py @@ -6,7 +6,7 @@ import pytest import pandas as pd -from pandas import DataFrame, Index, MultiIndex, Panel, Series +from pandas import DataFrame, Index, MultiIndex, Series from pandas.tests.frame.common import TestData import pandas.util.testing as tm @@ -125,29 +125,6 @@ def test_indexing_sliced(self): tm.assert_series_equal(res, exp) assert isinstance(res, tm.SubclassedSeries) - @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") - def test_to_panel_expanddim(self): - # GH 9762 - - class SubclassedFrame(DataFrame): - - @property - def _constructor_expanddim(self): - return SubclassedPanel - - class SubclassedPanel(Panel): - pass - - index = MultiIndex.from_tuples([(0, 0), (0, 1), (0, 2)]) - df = SubclassedFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]}, index=index) - result = df.to_panel() - assert isinstance(result, SubclassedPanel) - expected = SubclassedPanel([[[1, 2, 3]], [[4, 5, 6]]], - items=['X', 'Y'], major_axis=[0], - minor_axis=[0, 1, 2], - dtype='int64') - tm.assert_panel_equal(result, expected) - def test_subclass_attr_err_propagation(self): # GH 11808 class A(DataFrame): diff --git a/pandas/tests/groupby/test_groupby.py b/pandas/tests/groupby/test_groupby.py index 98c917a6eca3c..0bfc7ababd18a 100644 --- a/pandas/tests/groupby/test_groupby.py +++ b/pandas/tests/groupby/test_groupby.py @@ -1239,31 +1239,6 @@ def _check_work(gp): # _check_work(panel.groupby(lambda x: x.month, axis=1)) [email protected]("ignore:\\nPanel:FutureWarning") -def test_panel_groupby(): - panel = tm.makePanel() - tm.add_nans(panel) - grouped = panel.groupby({'ItemA': 0, 'ItemB': 0, 'ItemC': 1}, - axis='items') - agged = grouped.mean() - agged2 = grouped.agg(lambda x: x.mean('items')) - - tm.assert_panel_equal(agged, agged2) - - tm.assert_index_equal(agged.items, Index([0, 1])) - - grouped = panel.groupby(lambda x: x.month, axis='major') - agged = grouped.mean() - - exp = Index(sorted(list(set(panel.major_axis.month)))) - tm.assert_index_equal(agged.major_axis, exp) - - grouped = panel.groupby({'A': 0, 'B': 0, 'C': 1, 'D': 1}, - axis='minor') - agged = grouped.mean() - tm.assert_index_equal(agged.minor_axis, Index([0, 1])) - - def test_groupby_2d_malformed(): d = DataFrame(index=lrange(2)) d['group'] = ['g1', 'g2'] diff --git a/pandas/tests/groupby/test_grouping.py b/pandas/tests/groupby/test_grouping.py index a509a7cb57c97..44b5bd5f13992 100644 --- a/pandas/tests/groupby/test_grouping.py +++ b/pandas/tests/groupby/test_grouping.py @@ -14,8 +14,7 @@ from pandas.core.groupby.grouper import Grouping import pandas.util.testing as tm from pandas.util.testing import ( - assert_almost_equal, assert_frame_equal, assert_panel_equal, - assert_series_equal) + assert_almost_equal, assert_frame_equal, assert_series_equal) # selection # -------------------------------- @@ -563,17 +562,7 @@ def test_list_grouper_with_nat(self): # -------------------------------- class TestGetGroup(): - - @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") def test_get_group(self): - wp = tm.makePanel() - grouped = wp.groupby(lambda x: x.month, axis='major') - - gp = grouped.get_group(1) - expected = wp.reindex( - major=[x for x in wp.major_axis if x.month == 1]) - assert_panel_equal(gp, expected) - # GH 5267 # be datelike friendly df = DataFrame({'DATE': pd.to_datetime( @@ -755,19 +744,6 @@ def test_multi_iter_frame(self, three_group): for key, group in grouped: pass - @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") - def test_multi_iter_panel(self): - wp = tm.makePanel() - grouped = wp.groupby([lambda x: x.month, lambda x: x.weekday()], - axis=1) - - for (month, wd), group in grouped: - exp_axis = [x - for x in wp.major_axis - if x.month == month and x.weekday() == wd] - expected = wp.reindex(major=exp_axis) - assert_panel_equal(group, expected) - def test_dictify(self, df): dict(iter(df.groupby('A'))) dict(iter(df.groupby(['A', 'B']))) diff --git a/pandas/tests/io/test_pytables.py b/pandas/tests/io/test_pytables.py index 9430011288f27..c339c33751b5f 100644 --- a/pandas/tests/io/test_pytables.py +++ b/pandas/tests/io/test_pytables.py @@ -3050,29 +3050,6 @@ def test_select_with_dups(self): result = store.select('df', columns=['B', 'A']) assert_frame_equal(result, expected, by_blocks=True) - @pytest.mark.filterwarnings( - "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" - ) - def test_wide_table_dups(self): - with ensure_clean_store(self.path) as store: - with catch_warnings(record=True): - - wp = tm.makePanel() - store.put('panel', wp, format='table') - store.put('panel', wp, format='table', append=True) - - recons = store['panel'] - - assert_panel_equal(recons, wp) - - def test_long(self): - def _check(left, right): - assert_panel_equal(left.to_panel(), right.to_panel()) - - with catch_warnings(record=True): - wp = tm.makePanel() - self._check_roundtrip(wp.to_frame(), _check) - def test_overwrite_node(self): with ensure_clean_store(self.path) as store: diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py index 856c4df5380e5..ceccb48194f85 100644 --- a/pandas/tests/resample/test_datetime_index.py +++ b/pandas/tests/resample/test_datetime_index.py @@ -1,6 +1,5 @@ from datetime import datetime, timedelta from functools import partial -from warnings import catch_warnings, simplefilter import numpy as np import pytest @@ -10,7 +9,7 @@ from pandas.errors import UnsupportedFunctionCall import pandas as pd -from pandas import DataFrame, Panel, Series, Timedelta, Timestamp, isna, notna +from pandas import DataFrame, Series, Timedelta, Timestamp, isna, notna from pandas.core.indexes.datetimes import date_range from pandas.core.indexes.period import Period, period_range from pandas.core.resample import ( @@ -692,56 +691,6 @@ def test_resample_axis1(): tm.assert_frame_equal(result, expected) -def test_resample_panel(): - rng = date_range('1/1/2000', '6/30/2000') - n = len(rng) - - with catch_warnings(record=True): - simplefilter("ignore", FutureWarning) - panel = Panel(np.random.randn(3, n, 5), - items=['one', 'two', 'three'], - major_axis=rng, - minor_axis=['a', 'b', 'c', 'd', 'e']) - - result = panel.resample('M', axis=1).mean() - - def p_apply(panel, f): - result = {} - for item in panel.items: - result[item] = f(panel[item]) - return Panel(result, items=panel.items) - - expected = p_apply(panel, lambda x: x.resample('M').mean()) - tm.assert_panel_equal(result, expected) - - panel2 = panel.swapaxes(1, 2) - result = panel2.resample('M', axis=2).mean() - expected = p_apply(panel2, - lambda x: x.resample('M', axis=1).mean()) - tm.assert_panel_equal(result, expected) - - [email protected]("ignore:\\nPanel:FutureWarning") -def test_resample_panel_numpy(): - rng = date_range('1/1/2000', '6/30/2000') - n = len(rng) - - with catch_warnings(record=True): - panel = Panel(np.random.randn(3, n, 5), - items=['one', 'two', 'three'], - major_axis=rng, - minor_axis=['a', 'b', 'c', 'd', 'e']) - - result = panel.resample('M', axis=1).apply(lambda x: x.mean(1)) - expected = panel.resample('M', axis=1).mean() - tm.assert_panel_equal(result, expected) - - panel = panel.swapaxes(1, 2) - result = panel.resample('M', axis=2).apply(lambda x: x.mean(2)) - expected = panel.resample('M', axis=2).mean() - tm.assert_panel_equal(result, expected) - - def test_resample_anchored_ticks(): # If a fixed delta (5 minute, 4 hour) evenly divides a day, we should # "anchor" the origin at midnight so we get regular intervals rather diff --git a/pandas/tests/resample/test_time_grouper.py b/pandas/tests/resample/test_time_grouper.py index a4eb7933738c0..2f330d1f2484b 100644 --- a/pandas/tests/resample/test_time_grouper.py +++ b/pandas/tests/resample/test_time_grouper.py @@ -5,7 +5,7 @@ import pytest import pandas as pd -from pandas import DataFrame, Panel, Series +from pandas import DataFrame, Series from pandas.core.indexes.datetimes import date_range from pandas.core.resample import TimeGrouper import pandas.util.testing as tm @@ -79,27 +79,6 @@ def f(df): tm.assert_index_equal(result.index, df.index) [email protected]("ignore:\\nPanel:FutureWarning") -def test_panel_aggregation(): - ind = pd.date_range('1/1/2000', periods=100) - data = np.random.randn(2, len(ind), 4) - - wp = Panel(data, items=['Item1', 'Item2'], major_axis=ind, - minor_axis=['A', 'B', 'C', 'D']) - - tg = TimeGrouper('M', axis=1) - _, grouper, _ = tg._get_grouper(wp) - bingrouped = wp.groupby(grouper) - binagg = bingrouped.mean() - - def f(x): - assert (isinstance(x, Panel)) - return x.mean(1) - - result = bingrouped.agg(f) - tm.assert_panel_equal(result, binagg) - - @pytest.mark.parametrize('name, func', [ ('Int64Index', tm.makeIntIndex), ('Index', tm.makeUnicodeIndex), diff --git a/pandas/tests/test_panel.py b/pandas/tests/test_panel.py index ba0ad72e624f7..6b20acc844829 100644 --- a/pandas/tests/test_panel.py +++ b/pandas/tests/test_panel.py @@ -1653,61 +1653,6 @@ def test_transpose_copy(self): panel.values[0, 1, 1] = np.nan assert notna(result.values[1, 0, 1]) - def test_to_frame(self): - # filtered - filtered = self.panel.to_frame() - expected = self.panel.to_frame().dropna(how='any') - assert_frame_equal(filtered, expected) - - # unfiltered - unfiltered = self.panel.to_frame(filter_observations=False) - assert_panel_equal(unfiltered.to_panel(), self.panel) - - # names - assert unfiltered.index.names == ('major', 'minor') - - # unsorted, round trip - df = self.panel.to_frame(filter_observations=False) - unsorted = df.take(np.random.permutation(len(df))) - pan = unsorted.to_panel() - assert_panel_equal(pan, self.panel) - - # preserve original index names - df = DataFrame(np.random.randn(6, 2), - index=[['a', 'a', 'b', 'b', 'c', 'c'], - [0, 1, 0, 1, 0, 1]], - columns=['one', 'two']) - df.index.names = ['foo', 'bar'] - df.columns.name = 'baz' - - rdf = df.to_panel().to_frame() - assert rdf.index.names == df.index.names - assert rdf.columns.names == df.columns.names - - def test_to_frame_mixed(self): - panel = self.panel.fillna(0) - panel['str'] = 'foo' - panel['bool'] = panel['ItemA'] > 0 - - lp = panel.to_frame() - wp = lp.to_panel() - assert wp['bool'].values.dtype == np.bool_ - # Previously, this was mutating the underlying - # index and changing its name - assert_frame_equal(wp['bool'], panel['bool'], check_names=False) - - # GH 8704 - # with categorical - df = panel.to_frame() - df['category'] = df['str'].astype('category') - - # to_panel - # TODO: this converts back to object - p = df.to_panel() - expected = panel.copy() - expected['category'] = 'foo' - assert_panel_equal(p, expected) - def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples( [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')]) @@ -1808,22 +1753,6 @@ def test_to_frame_multi_drop_level(self): expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) - def test_to_panel_na_handling(self): - df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), - index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], - [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) - - panel = df.to_panel() - assert isna(panel[0].loc[1, [0, 1]]).all() - - def test_to_panel_duplicates(self): - # #2441 - df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) - idf = df.set_index(['a', 'b']) - - with pytest.raises(ValueError, match='non-uniquely indexed'): - idf.to_panel() - def test_panel_dups(self): # GH 4960 @@ -2121,14 +2050,6 @@ def test_get_attr(self): self.panel['i'] = self.panel['ItemA'] assert_frame_equal(self.panel['i'], self.panel.i) - def test_from_frame_level1_unsorted(self): - tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1), - ('MSFT', 1)] - midx = MultiIndex.from_tuples(tuples) - df = DataFrame(np.random.rand(5, 4), index=midx) - p = df.to_panel() - assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index()) - def test_to_excel(self): try: import xlwt # noqa @@ -2404,40 +2325,11 @@ def setup_method(self, method): self.panel = panel.to_frame() self.unfiltered_panel = panel.to_frame(filter_observations=False) - def test_ops_differently_indexed(self): - # trying to set non-identically indexed panel - wp = self.panel.to_panel() - wp2 = wp.reindex(major=wp.major_axis[:-1]) - lp2 = wp2.to_frame() - - result = self.panel + lp2 - assert_frame_equal(result.reindex(lp2.index), lp2 * 2) - - # careful, mutation - self.panel['foo'] = lp2['ItemA'] - assert_series_equal(self.panel['foo'].reindex(lp2.index), - lp2['ItemA'], - check_names=False) - def test_ops_scalar(self): result = self.panel.mul(2) expected = DataFrame.__mul__(self.panel, 2) assert_frame_equal(result, expected) - def test_combineFrame(self): - wp = self.panel.to_panel() - result = self.panel.add(wp['ItemA'].stack(), axis=0) - assert_frame_equal(result.to_panel()['ItemA'], wp['ItemA'] * 2) - - def test_combinePanel(self): - wp = self.panel.to_panel() - result = self.panel.add(self.panel) - wide_result = result.to_panel() - assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA']) - - # one item - result = self.panel.add(self.panel.filter(['ItemA'])) - def test_combine_scalar(self): result = self.panel.mul(2) expected = DataFrame(self.panel._data) * 2 @@ -2454,34 +2346,6 @@ def test_combine_series(self): expected = DataFrame.add(self.panel, s, axis=1) assert_frame_equal(result, expected) - def test_operators(self): - wp = self.panel.to_panel() - result = (self.panel + 1).to_panel() - assert_frame_equal(wp['ItemA'] + 1, result['ItemA']) - - def test_arith_flex_panel(self): - ops = ['add', 'sub', 'mul', 'div', - 'truediv', 'pow', 'floordiv', 'mod'] - if not compat.PY3: - aliases = {} - else: - aliases = {'div': 'truediv'} - self.panel = self.panel.to_panel() - - for n in [np.random.randint(-50, -1), np.random.randint(1, 50), 0]: - for op in ops: - alias = aliases.get(op, op) - f = getattr(operator, alias) - exp = f(self.panel, n) - result = getattr(self.panel, op)(n) - assert_panel_equal(result, exp, check_panel_type=True) - - # rops - r_f = lambda x, y: f(y, x) - exp = r_f(self.panel, n) - result = getattr(self.panel, 'r' + op)(n) - assert_panel_equal(result, exp) - def test_sort(self): def is_sorted(arr): return (arr[1:] > arr[:-1]).any() @@ -2502,45 +2366,6 @@ def test_to_sparse(self): with pytest.raises(NotImplementedError, match=msg): self.panel.to_sparse - def test_truncate(self): - dates = self.panel.index.levels[0] - start, end = dates[1], dates[5] - - trunced = self.panel.truncate(start, end).to_panel() - expected = self.panel.to_panel()['ItemA'].truncate(start, end) - - # TODO truncate drops index.names - assert_frame_equal(trunced['ItemA'], expected, check_names=False) - - trunced = self.panel.truncate(before=start).to_panel() - expected = self.panel.to_panel()['ItemA'].truncate(before=start) - - # TODO truncate drops index.names - assert_frame_equal(trunced['ItemA'], expected, check_names=False) - - trunced = self.panel.truncate(after=end).to_panel() - expected = self.panel.to_panel()['ItemA'].truncate(after=end) - - # TODO truncate drops index.names - assert_frame_equal(trunced['ItemA'], expected, check_names=False) - - # truncate on dates that aren't in there - wp = self.panel.to_panel() - new_index = wp.major_axis[::5] - - wp2 = wp.reindex(major=new_index) - - lp2 = wp2.to_frame() - lp_trunc = lp2.truncate(wp.major_axis[2], wp.major_axis[-2]) - - wp_trunc = wp2.truncate(wp.major_axis[2], wp.major_axis[-2]) - - assert_panel_equal(wp_trunc, lp_trunc.to_panel()) - - # throw proper exception - pytest.raises(Exception, lp2.truncate, wp.major_axis[-2], - wp.major_axis[2]) - def test_axis_dummies(self): from pandas.core.reshape.reshape import make_axis_dummies @@ -2567,20 +2392,6 @@ def test_get_dummies(self): dummies = get_dummies(self.panel['Label']) tm.assert_numpy_array_equal(dummies.values, minor_dummies.values) - def test_mean(self): - means = self.panel.mean(level='minor') - - # test versus Panel version - wide_means = self.panel.to_panel().mean('major') - assert_frame_equal(means, wide_means) - - def test_sum(self): - sums = self.panel.sum(level='minor') - - # test versus Panel version - wide_sums = self.panel.to_panel().sum('major') - assert_frame_equal(sums, wide_sums) - def test_count(self): index = self.panel.index
My understanding is that we're removing Panel in 0.25.0. A local attempt to do this all-at-once got messy quick (largely due to io.pytables and io.msgpack). This gets the ball rolling by removing only PanelGroupBy and DataFrame.to_panel, followed by all of the code+tests that rely on either of these.
https://api.github.com/repos/pandas-dev/pandas/pulls/25047
2019-01-31T03:50:28Z
2019-02-06T03:47:26Z
2019-02-06T03:47:26Z
2019-02-09T08:53:29Z
ENH: Support fold argument in Timestamp.replace
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index a9fa8b2174dd0..8e1fc352ba4f7 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -19,7 +19,7 @@ including other versions of pandas. Other Enhancements ^^^^^^^^^^^^^^^^^^ -- +- :meth:`Timestamp.replace` now supports the ``fold`` argument to disambiguate DST transition times (:issue:`25017`) - - diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx index a55d15a7c4e85..c719bcb2ef135 100644 --- a/pandas/_libs/tslibs/nattype.pyx +++ b/pandas/_libs/tslibs/nattype.pyx @@ -669,7 +669,6 @@ class NaTType(_NaT): nanosecond : int, optional tzinfo : tz-convertible, optional fold : int, optional, default is 0 - added in 3.6, NotImplemented Returns ------- diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx index fe0564cb62c30..85d94f822056b 100644 --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -1,4 +1,5 @@ # -*- coding: utf-8 -*- +import sys import warnings from cpython cimport (PyObject_RichCompareBool, PyObject_RichCompare, @@ -43,10 +44,11 @@ from pandas._libs.tslibs.timezones import UTC # Constants _zero_time = datetime_time(0, 0) _no_input = object() - +PY36 = sys.version_info >= (3, 6) # ---------------------------------------------------------------------- + def maybe_integer_op_deprecated(obj): # GH#22535 add/sub of integers and int-arrays is deprecated if obj.freq is not None: @@ -1195,7 +1197,6 @@ class Timestamp(_Timestamp): nanosecond : int, optional tzinfo : tz-convertible, optional fold : int, optional, default is 0 - added in 3.6, NotImplemented Returns ------- @@ -1252,12 +1253,16 @@ class Timestamp(_Timestamp): # see GH#18319 ts_input = _tzinfo.localize(datetime(dts.year, dts.month, dts.day, dts.hour, dts.min, dts.sec, - dts.us)) + dts.us), + is_dst=not bool(fold)) _tzinfo = ts_input.tzinfo else: - ts_input = datetime(dts.year, dts.month, dts.day, - dts.hour, dts.min, dts.sec, dts.us, - tzinfo=_tzinfo) + kwargs = {'year': dts.year, 'month': dts.month, 'day': dts.day, + 'hour': dts.hour, 'minute': dts.min, 'second': dts.sec, + 'microsecond': dts.us, 'tzinfo': _tzinfo} + if PY36: + kwargs['fold'] = fold + ts_input = datetime(**kwargs) ts = convert_datetime_to_tsobject(ts_input, _tzinfo) value = ts.value + (dts.ps // 1000) diff --git a/pandas/tests/scalar/timestamp/test_unary_ops.py b/pandas/tests/scalar/timestamp/test_unary_ops.py index 3f9a30d254126..adcf66200a672 100644 --- a/pandas/tests/scalar/timestamp/test_unary_ops.py +++ b/pandas/tests/scalar/timestamp/test_unary_ops.py @@ -8,7 +8,7 @@ from pandas._libs.tslibs import conversion from pandas._libs.tslibs.frequencies import INVALID_FREQ_ERR_MSG -from pandas.compat import PY3 +from pandas.compat import PY3, PY36 import pandas.util._test_decorators as td from pandas import NaT, Timestamp @@ -329,6 +329,19 @@ def test_replace_dst_border(self): expected = Timestamp('2013-11-3 03:00:00', tz='America/Chicago') assert result == expected + @pytest.mark.skipif(not PY36, reason='Fold not available until PY3.6') + @pytest.mark.parametrize('fold', [0, 1]) + @pytest.mark.parametrize('tz', ['dateutil/Europe/London', 'Europe/London']) + def test_replace_dst_fold(self, fold, tz): + # GH 25017 + d = datetime(2019, 10, 27, 2, 30) + ts = Timestamp(d, tz=tz) + result = ts.replace(hour=1, fold=fold) + expected = Timestamp(datetime(2019, 10, 27, 1, 30)).tz_localize( + tz, ambiguous=not fold + ) + assert result == expected + # -------------------------------------------------------------- # Timestamp.normalize
- [x] closes #25017 - [x] tests added / passed - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [x] whatsnew entry Since `Timestamp` has its own `replace` method, I think we can still introduce this while still supporting PY3.5 (`datetime.replace` gained the `fold` argument in 3.6) while it mimics the functionality in PY3.6
https://api.github.com/repos/pandas-dev/pandas/pulls/25046
2019-01-31T01:54:09Z
2019-02-01T18:40:56Z
2019-02-01T18:40:56Z
2019-02-01T18:51:05Z
PERF: use new to_records() argument in to_stata()
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index 939fb8b9415bd..130477f588c26 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -23,14 +23,6 @@ Other Enhancements - - -.. _whatsnew_0250.performance: - -Performance Improvements -~~~~~~~~~~~~~~~~~~~~~~~~ - - Significant speedup in `SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`) - - - .. _whatsnew_0250.api_breaking: Backwards incompatible API changes @@ -69,8 +61,8 @@ Removal of prior version deprecations/changes Performance Improvements ~~~~~~~~~~~~~~~~~~~~~~~~ -- -- +- Significant speedup in `SparseArray` initialization that benefits most operations, fixing performance regression introduced in v0.20.0 (:issue:`24985`) +- `DataFrame.to_stata()` is now faster when outputting data with any string or non-native endian columns (:issue:`25045`) - diff --git a/pandas/io/stata.py b/pandas/io/stata.py index 1b0660171ecac..0bd084f4e5df7 100644 --- a/pandas/io/stata.py +++ b/pandas/io/stata.py @@ -2385,32 +2385,22 @@ def _prepare_data(self): data = self._convert_strls(data) # 3. Convert bad string data to '' and pad to correct length - dtypes = [] - data_cols = [] - has_strings = False + dtypes = {} native_byteorder = self._byteorder == _set_endianness(sys.byteorder) for i, col in enumerate(data): typ = typlist[i] if typ <= self._max_string_length: - has_strings = True data[col] = data[col].fillna('').apply(_pad_bytes, args=(typ,)) stype = 'S{type}'.format(type=typ) - dtypes.append(('c' + str(i), stype)) - string = data[col].str.encode(self._encoding) - data_cols.append(string.values.astype(stype)) + dtypes[col] = stype + data[col] = data[col].str.encode(self._encoding).astype(stype) else: - values = data[col].values dtype = data[col].dtype if not native_byteorder: dtype = dtype.newbyteorder(self._byteorder) - dtypes.append(('c' + str(i), dtype)) - data_cols.append(values) - dtypes = np.dtype(dtypes) + dtypes[col] = dtype - if has_strings or not native_byteorder: - self.data = np.fromiter(zip(*data_cols), dtype=dtypes) - else: - self.data = data.to_records(index=False) + self.data = data.to_records(index=False, column_dtypes=dtypes) def _write_data(self): data = self.data
The `to_stata()` function spends ~25-50% of its time massaging string/different endian data and creating a `np.recarray` in a roundabout way. Using `column_dtypes` in `to_records()` allows some cleanup and for a decent performance bump: ``` $ asv compare upstream/master HEAD -s --sort ratio Benchmarks that have improved: before after ratio [4cbee179] [9bf67cc5] <to_stata~1> <to_stata> - 709±9ms 552±20ms 0.78 io.stata.Stata.time_write_stata('tw') - 409±30ms 233±30ms 0.57 io.stata.Stata.time_write_stata('tq') - 402±20ms 227±30ms 0.56 io.stata.Stata.time_write_stata('tc') - 398±9ms 222±30ms 0.56 io.stata.Stata.time_write_stata('th') - 420±20ms 231±30ms 0.55 io.stata.Stata.time_write_stata('tm') - 396±10ms 214±3ms 0.54 io.stata.Stata.time_write_stata('ty') - 389±8ms 207±10ms 0.53 io.stata.Stata.time_write_stata('td') Benchmarks that have stayed the same: before after ratio [4cbee179] [9bf67cc5] <to_stata~1> <to_stata> 527±6ms 563±30ms 1.07 io.stata.Stata.time_read_stata('th') 507±20ms 531±9ms 1.05 io.stata.Stata.time_read_stata('ty') 519±10ms 543±30ms 1.05 io.stata.Stata.time_read_stata('tm') 484±10ms 504±10ms 1.04 io.stata.Stata.time_read_stata('tw') 149±6ms 152±2ms 1.02 io.stata.Stata.time_read_stata('tc') 152±3ms 153±8ms 1.01 io.stata.Stata.time_read_stata('td') 533±20ms 533±6ms 1.00 io.stata.Stata.time_read_stata('tq') ``` - [ ] closes #xxxx - [ ] tests added / passed - [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25045
2019-01-30T23:41:47Z
2019-02-01T20:56:06Z
2019-02-01T20:56:06Z
2019-02-01T20:56:09Z
CLN: to_pickle internals
diff --git a/pandas/compat/pickle_compat.py b/pandas/compat/pickle_compat.py index 61295b8249f58..8f16f8154b952 100644 --- a/pandas/compat/pickle_compat.py +++ b/pandas/compat/pickle_compat.py @@ -201,7 +201,7 @@ def load_newobj_ex(self): pass -def load(fh, encoding=None, compat=False, is_verbose=False): +def load(fh, encoding=None, is_verbose=False): """load a pickle, with a provided encoding if compat is True: @@ -212,7 +212,6 @@ def load(fh, encoding=None, compat=False, is_verbose=False): ---------- fh : a filelike object encoding : an optional encoding - compat : provide Series compatibility mode, boolean, default False is_verbose : show exception output """ diff --git a/pandas/io/pickle.py b/pandas/io/pickle.py index 789f55a62dc58..ab4a266853a78 100644 --- a/pandas/io/pickle.py +++ b/pandas/io/pickle.py @@ -1,8 +1,7 @@ """ pickle compat """ import warnings -import numpy as np -from numpy.lib.format import read_array, write_array +from numpy.lib.format import read_array from pandas.compat import PY3, BytesIO, cPickle as pkl, pickle_compat as pc @@ -76,6 +75,7 @@ def to_pickle(obj, path, compression='infer', protocol=pkl.HIGHEST_PROTOCOL): try: f.write(pkl.dumps(obj, protocol=protocol)) finally: + f.close() for _f in fh: _f.close() @@ -138,63 +138,32 @@ def read_pickle(path, compression='infer'): >>> os.remove("./dummy.pkl") """ path = _stringify_path(path) + f, fh = _get_handle(path, 'rb', compression=compression, is_text=False) + + # 1) try with cPickle + # 2) try with the compat pickle to handle subclass changes + # 3) pass encoding only if its not None as py2 doesn't handle the param - def read_wrapper(func): - # wrapper file handle open/close operation - f, fh = _get_handle(path, 'rb', - compression=compression, - is_text=False) - try: - return func(f) - finally: - for _f in fh: - _f.close() - - def try_read(path, encoding=None): - # try with cPickle - # try with current pickle, if we have a Type Error then - # try with the compat pickle to handle subclass changes - # pass encoding only if its not None as py2 doesn't handle - # the param - - # cpickle - # GH 6899 - try: - with warnings.catch_warnings(record=True): - # We want to silence any warnings about, e.g. moved modules. - warnings.simplefilter("ignore", Warning) - return read_wrapper(lambda f: pkl.load(f)) - except Exception: # noqa: E722 - # reg/patched pickle - # compat not used in pandas/compat/pickle_compat.py::load - # TODO: remove except block OR modify pc.load to use compat - try: - return read_wrapper( - lambda f: pc.load(f, encoding=encoding, compat=False)) - # compat pickle - except Exception: # noqa: E722 - return read_wrapper( - lambda f: pc.load(f, encoding=encoding, compat=True)) try: - return try_read(path) + with warnings.catch_warnings(record=True): + # We want to silence any warnings about, e.g. moved modules. + warnings.simplefilter("ignore", Warning) + return pkl.load(f) except Exception: # noqa: E722 - if PY3: - return try_read(path, encoding='latin1') - raise - + try: + return pc.load(f, encoding=None) + except Exception: # noqa: E722 + if PY3: + return pc.load(f, encoding='latin1') + raise + finally: + f.close() + for _f in fh: + _f.close() # compat with sparse pickle / unpickle -def _pickle_array(arr): - arr = arr.view(np.ndarray) - - buf = BytesIO() - write_array(buf, arr) - - return buf.getvalue() - - def _unpickle_array(bytes): arr = read_array(BytesIO(bytes))
- [x] tests added / passed - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff`
https://api.github.com/repos/pandas-dev/pandas/pulls/25044
2019-01-30T23:27:07Z
2019-02-01T18:50:36Z
2019-02-01T18:50:36Z
2019-02-01T18:51:56Z
Backport PR #24993 on branch 0.24.x (Test nested PandasArray)
diff --git a/pandas/core/arrays/numpy_.py b/pandas/core/arrays/numpy_.py index 47517782e2bbf..791ff44303e96 100644 --- a/pandas/core/arrays/numpy_.py +++ b/pandas/core/arrays/numpy_.py @@ -222,7 +222,7 @@ def __getitem__(self, item): item = item._ndarray result = self._ndarray[item] - if not lib.is_scalar(result): + if not lib.is_scalar(item): result = type(self)(result) return result diff --git a/pandas/tests/extension/numpy_/__init__.py b/pandas/tests/extension/numpy_/__init__.py new file mode 100644 index 0000000000000..e69de29bb2d1d diff --git a/pandas/tests/extension/numpy_/conftest.py b/pandas/tests/extension/numpy_/conftest.py new file mode 100644 index 0000000000000..daa93571c2957 --- /dev/null +++ b/pandas/tests/extension/numpy_/conftest.py @@ -0,0 +1,38 @@ +import numpy as np +import pytest + +from pandas.core.arrays.numpy_ import PandasArray + + [email protected] +def allow_in_pandas(monkeypatch): + """ + A monkeypatch to tell pandas to let us in. + + By default, passing a PandasArray to an index / series / frame + constructor will unbox that PandasArray to an ndarray, and treat + it as a non-EA column. We don't want people using EAs without + reason. + + The mechanism for this is a check against ABCPandasArray + in each constructor. + + But, for testing, we need to allow them in pandas. So we patch + the _typ of PandasArray, so that we evade the ABCPandasArray + check. + """ + with monkeypatch.context() as m: + m.setattr(PandasArray, '_typ', 'extension') + yield + + [email protected] +def na_value(): + return np.nan + + [email protected] +def na_cmp(): + def cmp(a, b): + return np.isnan(a) and np.isnan(b) + return cmp diff --git a/pandas/tests/extension/test_numpy.py b/pandas/tests/extension/numpy_/test_numpy.py similarity index 84% rename from pandas/tests/extension/test_numpy.py rename to pandas/tests/extension/numpy_/test_numpy.py index 7ca6882c7441b..4c93d5ee0b9d7 100644 --- a/pandas/tests/extension/test_numpy.py +++ b/pandas/tests/extension/numpy_/test_numpy.py @@ -6,7 +6,7 @@ from pandas.core.arrays.numpy_ import PandasArray, PandasDtype import pandas.util.testing as tm -from . import base +from .. import base @pytest.fixture @@ -14,28 +14,6 @@ def dtype(): return PandasDtype(np.dtype('float')) [email protected] -def allow_in_pandas(monkeypatch): - """ - A monkeypatch to tells pandas to let us in. - - By default, passing a PandasArray to an index / series / frame - constructor will unbox that PandasArray to an ndarray, and treat - it as a non-EA column. We don't want people using EAs without - reason. - - The mechanism for this is a check against ABCPandasArray - in each constructor. - - But, for testing, we need to allow them in pandas. So we patch - the _typ of PandasArray, so that we evade the ABCPandasArray - check. - """ - with monkeypatch.context() as m: - m.setattr(PandasArray, '_typ', 'extension') - yield - - @pytest.fixture def data(allow_in_pandas, dtype): return PandasArray(np.arange(1, 101, dtype=dtype._dtype)) @@ -46,18 +24,6 @@ def data_missing(allow_in_pandas): return PandasArray(np.array([np.nan, 1.0])) [email protected] -def na_value(): - return np.nan - - [email protected] -def na_cmp(): - def cmp(a, b): - return np.isnan(a) and np.isnan(b) - return cmp - - @pytest.fixture def data_for_sorting(allow_in_pandas): """Length-3 array with a known sort order. diff --git a/pandas/tests/extension/numpy_/test_numpy_nested.py b/pandas/tests/extension/numpy_/test_numpy_nested.py new file mode 100644 index 0000000000000..cf9b34dd08798 --- /dev/null +++ b/pandas/tests/extension/numpy_/test_numpy_nested.py @@ -0,0 +1,286 @@ +""" +Tests for PandasArray with nested data. Users typically won't create +these objects via `pd.array`, but they can show up through `.array` +on a Series with nested data. + +We partition these tests into their own file, as many of the base +tests fail, as they aren't appropriate for nested data. It is easier +to have a seperate file with its own data generating fixtures, than +trying to skip based upon the value of a fixture. +""" +import pytest + +import pandas as pd +from pandas.core.arrays.numpy_ import PandasArray, PandasDtype + +from .. import base + +# For NumPy <1.16, np.array([np.nan, (1,)]) raises +# ValueError: setting an array element with a sequence. +np = pytest.importorskip('numpy', minversion='1.16.0') + + [email protected] +def dtype(): + return PandasDtype(np.dtype('object')) + + [email protected] +def data(allow_in_pandas, dtype): + return pd.Series([(i,) for i in range(100)]).array + + [email protected] +def data_missing(allow_in_pandas): + return PandasArray(np.array([np.nan, (1,)])) + + [email protected] +def data_for_sorting(allow_in_pandas): + """Length-3 array with a known sort order. + + This should be three items [B, C, A] with + A < B < C + """ + # Use an empty tuple for first element, then remove, + # to disable np.array's shape inference. + return PandasArray( + np.array([(), (2,), (3,), (1,)])[1:] + ) + + [email protected] +def data_missing_for_sorting(allow_in_pandas): + """Length-3 array with a known sort order. + + This should be three items [B, NA, A] with + A < B and NA missing. + """ + return PandasArray( + np.array([(1,), np.nan, (0,)]) + ) + + [email protected] +def data_for_grouping(allow_in_pandas): + """Data for factorization, grouping, and unique tests. + + Expected to be like [B, B, NA, NA, A, A, B, C] + + Where A < B < C and NA is missing + """ + a, b, c = (1,), (2,), (3,) + return PandasArray(np.array( + [b, b, np.nan, np.nan, a, a, b, c] + )) + + +skip_nested = pytest.mark.skip(reason="Skipping for nested PandasArray") + + +class BaseNumPyTests(object): + pass + + +class TestCasting(BaseNumPyTests, base.BaseCastingTests): + + @skip_nested + def test_astype_str(self, data): + pass + + +class TestConstructors(BaseNumPyTests, base.BaseConstructorsTests): + @pytest.mark.skip(reason="We don't register our dtype") + # We don't want to register. This test should probably be split in two. + def test_from_dtype(self, data): + pass + + @skip_nested + def test_array_from_scalars(self, data): + pass + + +class TestDtype(BaseNumPyTests, base.BaseDtypeTests): + + @pytest.mark.skip(reason="Incorrect expected.") + # we unsurprisingly clash with a NumPy name. + def test_check_dtype(self, data): + pass + + +class TestGetitem(BaseNumPyTests, base.BaseGetitemTests): + + @skip_nested + def test_getitem_scalar(self, data): + pass + + @skip_nested + def test_take_series(self, data): + pass + + +class TestGroupby(BaseNumPyTests, base.BaseGroupbyTests): + @skip_nested + def test_groupby_extension_apply(self, data_for_grouping, op): + pass + + +class TestInterface(BaseNumPyTests, base.BaseInterfaceTests): + @skip_nested + def test_array_interface(self, data): + # NumPy array shape inference + pass + + +class TestMethods(BaseNumPyTests, base.BaseMethodsTests): + + @pytest.mark.skip(reason="TODO: remove?") + def test_value_counts(self, all_data, dropna): + pass + + @pytest.mark.skip(reason="Incorrect expected") + # We have a bool dtype, so the result is an ExtensionArray + # but expected is not + def test_combine_le(self, data_repeated): + super(TestMethods, self).test_combine_le(data_repeated) + + @skip_nested + def test_combine_add(self, data_repeated): + # Not numeric + pass + + @skip_nested + def test_shift_fill_value(self, data): + # np.array shape inference. Shift implementation fails. + super().test_shift_fill_value(data) + + @skip_nested + def test_unique(self, data, box, method): + # Fails creating expected + pass + + @skip_nested + def test_fillna_copy_frame(self, data_missing): + # The "scalar" for this array isn't a scalar. + pass + + @skip_nested + def test_fillna_copy_series(self, data_missing): + # The "scalar" for this array isn't a scalar. + pass + + @skip_nested + def test_hash_pandas_object_works(self, data, as_frame): + # ndarray of tuples not hashable + pass + + @skip_nested + def test_searchsorted(self, data_for_sorting, as_series): + # Test setup fails. + pass + + @skip_nested + def test_where_series(self, data, na_value, as_frame): + # Test setup fails. + pass + + @skip_nested + def test_repeat(self, data, repeats, as_series, use_numpy): + # Fails creating expected + pass + + +class TestPrinting(BaseNumPyTests, base.BasePrintingTests): + pass + + +class TestMissing(BaseNumPyTests, base.BaseMissingTests): + + @skip_nested + def test_fillna_scalar(self, data_missing): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_series_method(self, data_missing, method): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_series(self, data_missing): + # Non-scalar "scalar" values. + pass + + @skip_nested + def test_fillna_frame(self, data_missing): + # Non-scalar "scalar" values. + pass + + +class TestReshaping(BaseNumPyTests, base.BaseReshapingTests): + + @pytest.mark.skip("Incorrect parent test") + # not actually a mixed concat, since we concat int and int. + def test_concat_mixed_dtypes(self, data): + super(TestReshaping, self).test_concat_mixed_dtypes(data) + + @skip_nested + def test_merge(self, data, na_value): + # Fails creating expected + pass + + @skip_nested + def test_merge_on_extension_array(self, data): + # Fails creating expected + pass + + @skip_nested + def test_merge_on_extension_array_duplicates(self, data): + # Fails creating expected + pass + + +class TestSetitem(BaseNumPyTests, base.BaseSetitemTests): + + @skip_nested + def test_setitem_scalar_series(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_sequence(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_sequence_mismatched_length_raises(self, data, as_array): + pass + + @skip_nested + def test_setitem_sequence_broadcasts(self, data, box_in_series): + pass + + @skip_nested + def test_setitem_loc_scalar_mixed(self, data): + pass + + @skip_nested + def test_setitem_loc_scalar_multiple_homogoneous(self, data): + pass + + @skip_nested + def test_setitem_iloc_scalar_mixed(self, data): + pass + + @skip_nested + def test_setitem_iloc_scalar_multiple_homogoneous(self, data): + pass + + @skip_nested + def test_setitem_mask_broadcast(self, data, setter): + pass + + @skip_nested + def test_setitem_scalar_key_sequence_raise(self, data): + pass + + +# Skip Arithmetics, NumericReduce, BooleanReduce, Parsing
Backport PR #24993: Test nested PandasArray
https://api.github.com/repos/pandas-dev/pandas/pulls/25042
2019-01-30T21:18:28Z
2019-01-30T22:28:45Z
2019-01-30T22:28:45Z
2019-01-30T22:28:46Z
Backport PR #25033 on branch 0.24.x (BUG: Fixed merging on tz-aware)
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 57fdff041db28..047404e93914b 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -23,6 +23,7 @@ Fixed Regressions - Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) - Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) - Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). +- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`). .. _whatsnew_0241.enhancements: diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py index 4a16707a376e9..640587b7f9f31 100644 --- a/pandas/core/internals/concat.py +++ b/pandas/core/internals/concat.py @@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na): is_datetime64tz_dtype(empty_dtype)): if self.block is None: array = empty_dtype.construct_array_type() - return array(np.full(self.shape[1], fill_value), + return array(np.full(self.shape[1], fill_value.value), dtype=empty_dtype) pass elif getattr(self.block, 'is_categorical', False): @@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units): elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'datetimetz' in upcast_classes: + # GH-25014. We use NaT instead of iNaT, since this eventually + # ends up in DatetimeArray.take, which does not allow iNaT. dtype = upcast_classes['datetimetz'] - return dtype[0], tslibs.iNaT + return dtype[0], tslibs.NaT elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslibs.iNaT elif 'timedelta' in upcast_classes: diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py index f0a3ddc8ce8a4..1e60fdbebfeb3 100644 --- a/pandas/tests/reshape/merge/test_merge.py +++ b/pandas/tests/reshape/merge/test_merge.py @@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self): assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]' assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]' + def test_merge_on_datetime64tz_empty(self): + # https://github.com/pandas-dev/pandas/issues/25014 + dtz = pd.DatetimeTZDtype(tz='UTC') + right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)], + 'value': [4.0], + 'date2': [pd.Timestamp('2019', tz=dtz.tz)]}, + columns=['date', 'value', 'date2']) + left = right[:0] + result = left.merge(right, on='date') + expected = pd.DataFrame({ + 'value_x': pd.Series(dtype=float), + 'date2_x': pd.Series(dtype=dtz), + 'date': pd.Series(dtype=dtz), + 'value_y': pd.Series(dtype=float), + 'date2_y': pd.Series(dtype=dtz), + }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y']) + tm.assert_frame_equal(result, expected) + def test_merge_datetime64tz_with_dst_transition(self): # GH 18885 df1 = pd.DataFrame(pd.date_range(
Backport PR #25033: BUG: Fixed merging on tz-aware
https://api.github.com/repos/pandas-dev/pandas/pulls/25041
2019-01-30T21:17:40Z
2019-01-30T22:27:20Z
2019-01-30T22:27:20Z
2019-01-30T22:27:20Z
BUG: to_clipboard text truncated for Python 3 on Windows for UTF-16 text
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index a9fa8b2174dd0..880eaed3b5dfb 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -163,6 +163,7 @@ MultiIndex I/O ^^^ +- Fixed bug in missing text when using :meth:`to_clipboard` if copying utf-16 characters in Python 3 on Windows (:issue:`25040`) - - - diff --git a/pandas/io/clipboard/windows.py b/pandas/io/clipboard/windows.py index 3d979a61b5f2d..4f5275af693b7 100644 --- a/pandas/io/clipboard/windows.py +++ b/pandas/io/clipboard/windows.py @@ -29,6 +29,7 @@ def init_windows_clipboard(): HINSTANCE, HMENU, BOOL, UINT, HANDLE) windll = ctypes.windll + msvcrt = ctypes.CDLL('msvcrt') safeCreateWindowExA = CheckedCall(windll.user32.CreateWindowExA) safeCreateWindowExA.argtypes = [DWORD, LPCSTR, LPCSTR, DWORD, INT, INT, @@ -71,6 +72,10 @@ def init_windows_clipboard(): safeGlobalUnlock.argtypes = [HGLOBAL] safeGlobalUnlock.restype = BOOL + wcslen = CheckedCall(msvcrt.wcslen) + wcslen.argtypes = [c_wchar_p] + wcslen.restype = UINT + GMEM_MOVEABLE = 0x0002 CF_UNICODETEXT = 13 @@ -129,13 +134,13 @@ def copy_windows(text): # If the hMem parameter identifies a memory object, # the object must have been allocated using the # function with the GMEM_MOVEABLE flag. - count = len(text) + 1 + count = wcslen(text) + 1 handle = safeGlobalAlloc(GMEM_MOVEABLE, count * sizeof(c_wchar)) locked_handle = safeGlobalLock(handle) - ctypes.memmove(c_wchar_p(locked_handle), - c_wchar_p(text), count * sizeof(c_wchar)) + ctypes.memmove(c_wchar_p(locked_handle), c_wchar_p(text), + count * sizeof(c_wchar)) safeGlobalUnlock(handle) safeSetClipboardData(CF_UNICODETEXT, handle) diff --git a/pandas/tests/io/test_clipboard.py b/pandas/tests/io/test_clipboard.py index 8eb26d9f3dec5..565db92210b0a 100644 --- a/pandas/tests/io/test_clipboard.py +++ b/pandas/tests/io/test_clipboard.py @@ -12,6 +12,7 @@ from pandas.util import testing as tm from pandas.util.testing import makeCustomDataframe as mkdf +from pandas.io.clipboard import clipboard_get, clipboard_set from pandas.io.clipboard.exceptions import PyperclipException try: @@ -30,8 +31,8 @@ def build_kwargs(sep, excel): return kwargs [email protected](params=['delims', 'utf8', 'string', 'long', 'nonascii', - 'colwidth', 'mixed', 'float', 'int']) [email protected](params=['delims', 'utf8', 'utf16', 'string', 'long', + 'nonascii', 'colwidth', 'mixed', 'float', 'int']) def df(request): data_type = request.param @@ -41,6 +42,10 @@ def df(request): elif data_type == 'utf8': return pd.DataFrame({'a': ['µasd', 'Ωœ∑´'], 'b': ['øπ∆˚¬', 'œ∑´®']}) + elif data_type == 'utf16': + return pd.DataFrame({'a': ['\U0001f44d\U0001f44d', + '\U0001f44d\U0001f44d'], + 'b': ['abc', 'def']}) elif data_type == 'string': return mkdf(5, 3, c_idx_type='s', r_idx_type='i', c_idx_names=[None], r_idx_names=[None]) @@ -225,3 +230,14 @@ def test_invalid_encoding(self, df): @pytest.mark.parametrize('enc', ['UTF-8', 'utf-8', 'utf8']) def test_round_trip_valid_encodings(self, enc, df): self.check_round_trip_frame(df, encoding=enc) + + [email protected] [email protected] [email protected](not _DEPS_INSTALLED, + reason="clipboard primitives not installed") [email protected]('data', [u'\U0001f44d...', u'Ωœ∑´...', 'abcd...']) +def test_raw_roundtrip(data): + # PR #25040 wide unicode wasn't copied correctly on PY3 on windows + clipboard_set(data) + assert data == clipboard_get()
- [ ] closes #xxxx - [x] tests added / passed - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry For windows users where Python is compiled with UCS-4 (Python 3 primarily), tables copied to clipboard are missing data from the end when there are any unicode characters in the dataframe that have a 4-byte representation in UTF-16 (i.e. in the U+010000 to U+10FFFF range). The bug can be reproduced here: ```python import pandas obj=pandas.DataFrame([u'\U0001f44d\U0001f44d', u'12345']) obj.to_clipboard() ``` where the clipboard text results in ``` 0 0 👍👍 1 1234 ``` One character is chopped from the end of the clipboard string for each 4-byte unicode character copied. or more to the point: ```python pandas.io.clipboard.clipboard_set(u'\U0001f44d 12345') ``` produces ``` 👍 1234 ``` The cause of this issue is that ```len(u'\U0001f44d')==1``` when python is in UCS-4, and Pandas allocates 2 bytes per python character in the clipboard buffer but the character consumes 4 bytes, displacing another character at the end of the string to be copied. In UCS-2 (most Python 2 builds), ```len(u'\U0001f44d')==2``` and so 4 bytes are allocated and consumed by the character. My proposed change (affecting only windows clipboard operations) first converts the text to UTF-16 little endian because that is the format used by windows, then measures the length of the resulting byte string, rather than using Python's ```len(text) * 2``` to measure how many bytes should be allocated to the clipboard buffer. I've tested this change in python 3.6 and 2.7 on windows 7 x64. I don't expect this causing other issues with other versions of windows but I would appreciate if anyone on older versions of windows would double check.
https://api.github.com/repos/pandas-dev/pandas/pulls/25040
2019-01-30T21:17:08Z
2019-02-01T20:53:57Z
2019-02-01T20:53:56Z
2019-02-01T20:53:59Z
BUG: avoid usage in_qtconsole for recent IPython versions
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 047404e93914b..521319c55a503 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -83,7 +83,7 @@ Bug Fixes **Other** -- +- Fixed AttributeError when printing a DataFrame's HTML repr after accessing the IPython config object (:issue:`25036`) - .. _whatsnew_0.241.contributors: diff --git a/pandas/core/frame.py b/pandas/core/frame.py index 2049a8aa960bf..78c9f2aa96472 100644 --- a/pandas/core/frame.py +++ b/pandas/core/frame.py @@ -17,6 +17,7 @@ import itertools import sys import warnings +from distutils.version import LooseVersion from textwrap import dedent import numpy as np @@ -646,9 +647,15 @@ def _repr_html_(self): # XXX: In IPython 3.x and above, the Qt console will not attempt to # display HTML, so this check can be removed when support for # IPython 2.x is no longer needed. - if console.in_qtconsole(): - # 'HTML output is disabled in QtConsole' - return None + try: + import IPython + except ImportError: + pass + else: + if LooseVersion(IPython.__version__) < LooseVersion('3.0'): + if console.in_qtconsole(): + # 'HTML output is disabled in QtConsole' + return None if self._info_repr(): buf = StringIO(u("")) diff --git a/pandas/tests/io/formats/test_format.py b/pandas/tests/io/formats/test_format.py index 5d922ccaf1fd5..b0cf5a2f17609 100644 --- a/pandas/tests/io/formats/test_format.py +++ b/pandas/tests/io/formats/test_format.py @@ -12,6 +12,7 @@ import os import re import sys +import textwrap import warnings import dateutil @@ -2777,3 +2778,17 @@ def test_format_percentiles(): fmt.format_percentiles([2, 0.1, 0.5]) with pytest.raises(ValueError, match=msg): fmt.format_percentiles([0.1, 0.5, 'a']) + + +def test_repr_html_ipython_config(ip): + code = textwrap.dedent("""\ + import pandas as pd + df = pd.DataFrame({"A": [1, 2]}) + df._repr_html_() + + cfg = get_ipython().config + cfg['IPKernelApp']['parent_appname'] + df._repr_html_() + """) + result = ip.run_cell(code) + assert not result.error_in_exec
I've verified this manually with qtconsole 4.4.0, but if others want to check that'd be helpful. ![screen shot 2019-01-30 at 2 22 06 pm](https://user-images.githubusercontent.com/1312546/52010178-794a8080-249a-11e9-9376-a9254ce6bbf9.png) What release should this be done in? 0.24.1, 0.24.2 or 0.25.0? Closes https://github.com/pandas-dev/pandas/issues/25036
https://api.github.com/repos/pandas-dev/pandas/pulls/25039
2019-01-30T20:23:35Z
2019-01-31T16:02:38Z
2019-01-31T16:02:37Z
2019-01-31T16:02:38Z
DOC: fix error in documentation #24981
diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst index 953f40d1afebe..2c2e5c5425216 100644 --- a/doc/source/user_guide/groupby.rst +++ b/doc/source/user_guide/groupby.rst @@ -15,7 +15,7 @@ steps: Out of these, the split step is the most straightforward. In fact, in many situations we may wish to split the data set into groups and do something with -those groups. In the apply step, we might wish to one of the +those groups. In the apply step, we might wish to do one of the following: * **Aggregation**: compute a summary statistic (or statistics) for each
Added "do" in the last sentence of the second paragraph. - [ ] closes #xxxx - [ ] tests added / passed - [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25038
2019-01-30T20:06:46Z
2019-01-30T21:56:44Z
2019-01-30T21:56:44Z
2019-01-30T21:56:47Z
DOC: Example from docstring was proposing wrong interpolation order
diff --git a/pandas/core/generic.py b/pandas/core/generic.py index a351233a77465..cff685c2ad7cb 100644 --- a/pandas/core/generic.py +++ b/pandas/core/generic.py @@ -6601,7 +6601,7 @@ def replace(self, to_replace=None, value=None, inplace=False, limit=None, 'barycentric', 'polynomial': Passed to `scipy.interpolate.interp1d`. Both 'polynomial' and 'spline' require that you also specify an `order` (int), - e.g. ``df.interpolate(method='polynomial', order=4)``. + e.g. ``df.interpolate(method='polynomial', order=5)``. These use the numerical values of the index. * 'krogh', 'piecewise_polynomial', 'spline', 'pchip', 'akima': Wrappers around the SciPy interpolation methods of similar
Currently doctring explaining interpolation proposes using polynomial interpolation with order equal to 4. Unfortunately, scipy does not allow that value to be used, throwing an ValueError from here: https://github.com/scipy/scipy/blob/5875fd397eb4e6adcfa0c65f7b9006424c066cb0/scipy/interpolate/_bsplines.py#L583 Looking at the blame, last edit was 5 years ago so that rather do not depend on any reasonable scipy version. Interpolations with order equal to 2 that are spread around docstrings (and doctests) do not pass through the method throwing that exception so they are okay. - [-] closes #xxxx - [x] tests added / passed - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [-] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25035
2019-01-30T17:55:28Z
2019-01-31T12:25:55Z
2019-01-31T12:25:55Z
2019-01-31T12:25:57Z
BUG: Fixed merging on tz-aware
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 57fdff041db28..047404e93914b 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -23,6 +23,7 @@ Fixed Regressions - Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) - Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) - Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). +- Fixed regression in :func:`merge` when merging an empty ``DataFrame`` with multiple timezone-aware columns on one of the timezone-aware columns (:issue:`25014`). .. _whatsnew_0241.enhancements: diff --git a/pandas/core/internals/concat.py b/pandas/core/internals/concat.py index 4a16707a376e9..640587b7f9f31 100644 --- a/pandas/core/internals/concat.py +++ b/pandas/core/internals/concat.py @@ -183,7 +183,7 @@ def get_reindexed_values(self, empty_dtype, upcasted_na): is_datetime64tz_dtype(empty_dtype)): if self.block is None: array = empty_dtype.construct_array_type() - return array(np.full(self.shape[1], fill_value), + return array(np.full(self.shape[1], fill_value.value), dtype=empty_dtype) pass elif getattr(self.block, 'is_categorical', False): @@ -335,8 +335,10 @@ def get_empty_dtype_and_na(join_units): elif 'category' in upcast_classes: return np.dtype(np.object_), np.nan elif 'datetimetz' in upcast_classes: + # GH-25014. We use NaT instead of iNaT, since this eventually + # ends up in DatetimeArray.take, which does not allow iNaT. dtype = upcast_classes['datetimetz'] - return dtype[0], tslibs.iNaT + return dtype[0], tslibs.NaT elif 'datetime' in upcast_classes: return np.dtype('M8[ns]'), tslibs.iNaT elif 'timedelta' in upcast_classes: diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py index c17c301968269..a0a20d1da6cef 100644 --- a/pandas/tests/reshape/merge/test_merge.py +++ b/pandas/tests/reshape/merge/test_merge.py @@ -616,6 +616,24 @@ def test_merge_on_datetime64tz(self): assert result['value_x'].dtype == 'datetime64[ns, US/Eastern]' assert result['value_y'].dtype == 'datetime64[ns, US/Eastern]' + def test_merge_on_datetime64tz_empty(self): + # https://github.com/pandas-dev/pandas/issues/25014 + dtz = pd.DatetimeTZDtype(tz='UTC') + right = pd.DataFrame({'date': [pd.Timestamp('2018', tz=dtz.tz)], + 'value': [4.0], + 'date2': [pd.Timestamp('2019', tz=dtz.tz)]}, + columns=['date', 'value', 'date2']) + left = right[:0] + result = left.merge(right, on='date') + expected = pd.DataFrame({ + 'value_x': pd.Series(dtype=float), + 'date2_x': pd.Series(dtype=dtz), + 'date': pd.Series(dtype=dtz), + 'value_y': pd.Series(dtype=float), + 'date2_y': pd.Series(dtype=dtz), + }, columns=['value_x', 'date2_x', 'date', 'value_y', 'date2_y']) + tm.assert_frame_equal(result, expected) + def test_merge_datetime64tz_with_dst_transition(self): # GH 18885 df1 = pd.DataFrame(pd.date_range(
Closes https://github.com/pandas-dev/pandas/issues/25014
https://api.github.com/repos/pandas-dev/pandas/pulls/25033
2019-01-30T16:05:41Z
2019-01-30T21:17:31Z
2019-01-30T21:17:31Z
2019-01-30T21:17:35Z
(Closes #25029) Removed extra bracket from cheatsheet code example.
diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet.pdf b/doc/cheatsheet/Pandas_Cheat_Sheet.pdf index 696ed288cf7a6..d50896dc5ccc5 100644 Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet.pdf and b/doc/cheatsheet/Pandas_Cheat_Sheet.pdf differ diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet.pptx b/doc/cheatsheet/Pandas_Cheat_Sheet.pptx index f8b98a6f1f8e4..95f2771017db5 100644 Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet.pptx and b/doc/cheatsheet/Pandas_Cheat_Sheet.pptx differ diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf index daa65a944e68a..05e4b87f6a210 100644 Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf and b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pdf differ diff --git a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx index 6270a71e20ee8..cb0f058db5448 100644 Binary files a/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx and b/doc/cheatsheet/Pandas_Cheat_Sheet_JA.pptx differ
Closes #25029 There was an additional bracket present under the "Create DataFrame with a MultiIndex" code example. I removed this in both the English and Japanese versions of the cheatsheet.
https://api.github.com/repos/pandas-dev/pandas/pulls/25032
2019-01-30T15:58:02Z
2019-02-09T17:26:39Z
2019-02-09T17:26:39Z
2019-02-09T17:26:42Z
ENH: Support index=True for io.sql.get_schema
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 222963a7ff71a..0923b05d41479 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -31,7 +31,6 @@ Fixed Regressions Enhancements ^^^^^^^^^^^^ - .. _whatsnew_0241.bug_fixes: Bug Fixes diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index 939fb8b9415bd..052f052420e41 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -165,7 +165,7 @@ MultiIndex I/O ^^^ -- +- :func:`get_schema` now accepts an `index` parameter (default: `False`) that includes the index in the generated schema. (:issue:`9084`) - - diff --git a/pandas/io/sql.py b/pandas/io/sql.py index aaface5415384..7e4cefddc2746 100644 --- a/pandas/io/sql.py +++ b/pandas/io/sql.py @@ -1223,8 +1223,9 @@ def drop_table(self, table_name, schema=None): self.get_table(table_name, schema).drop() self.meta.clear() - def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): - table = SQLTable(table_name, self, frame=frame, index=False, keys=keys, + def _create_sql_schema(self, frame, table_name, keys=None, dtype=None, + index=False): + table = SQLTable(table_name, self, frame=frame, index=index, keys=keys, dtype=dtype) return str(table.sql_schema()) @@ -1565,13 +1566,14 @@ def drop_table(self, name, schema=None): name=_get_valid_sqlite_name(name)) self.execute(drop_sql) - def _create_sql_schema(self, frame, table_name, keys=None, dtype=None): - table = SQLiteTable(table_name, self, frame=frame, index=False, + def _create_sql_schema(self, frame, table_name, keys=None, dtype=None, + index=False): + table = SQLiteTable(table_name, self, frame=frame, index=index, keys=keys, dtype=dtype) return str(table.sql_schema()) -def get_schema(frame, name, keys=None, con=None, dtype=None): +def get_schema(frame, name, keys=None, con=None, dtype=None, index=False): """ Get the SQL db table schema for the given frame. @@ -1589,8 +1591,11 @@ def get_schema(frame, name, keys=None, con=None, dtype=None): dtype : dict of column name to SQL type, default None Optional specifying the datatype for columns. The SQL type should be a SQLAlchemy type, or a string for sqlite3 fallback connection. + index : boolean, default False + Whether to include DataFrame index as a column """ pandas_sql = pandasSQL_builder(con=con) - return pandas_sql._create_sql_schema(frame, name, keys=keys, dtype=dtype) + return pandas_sql._create_sql_schema( + frame, name, keys=keys, dtype=dtype, index=index) diff --git a/pandas/tests/io/test_sql.py b/pandas/tests/io/test_sql.py index 75a6d8d009083..e37921441596b 100644 --- a/pandas/tests/io/test_sql.py +++ b/pandas/tests/io/test_sql.py @@ -823,6 +823,21 @@ def test_get_schema_keys(self): constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql + @pytest.mark.parametrize("index_arg, expected", [ + ({}, False), + ({"index": False}, False), + ({"index": True}, True), + ]) + def test_get_schema_with_index(self, index_arg, expected): + frame = DataFrame({ + 'one': pd.Series([1, 2, 3], index=['a', 'b', 'c']), + 'two': pd.Series([1, 2, 3], index=['a', 'b', 'c']) + }) + frame.index.name = 'alphabet' + + create_sql = sql.get_schema(frame, 'test', con=self.conn, **index_arg) + assert ('alphabet' in create_sql) == expected + def test_chunksize_read(self): df = DataFrame(np.random.randn(22, 5), columns=list('abcde')) df.to_sql('test_chunksize', self.conn, index=False)
Closes pandas-dev/pandas#9084 - Decided to keep the default as `index=False` to keep the API consistent. `to_sql` has `index=True`. - Tempted to name the parameter `include_dataframe_index` as "index" has a different meaning in a SQL context. - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [x] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25030
2019-01-30T15:46:49Z
2019-05-03T05:37:19Z
null
2019-05-03T05:37:20Z
CLN: typo fixups
diff --git a/pandas/_libs/interval.pyx b/pandas/_libs/interval.pyx index 3147f36dcc835..eb511b1adb28a 100644 --- a/pandas/_libs/interval.pyx +++ b/pandas/_libs/interval.pyx @@ -18,7 +18,6 @@ cnp.import_array() cimport pandas._libs.util as util -util.import_array() from pandas._libs.hashtable cimport Int64Vector, Int64VectorData diff --git a/pandas/_libs/tslibs/nattype.pyx b/pandas/_libs/tslibs/nattype.pyx index a55d15a7c4e85..92cbcce6c7042 100644 --- a/pandas/_libs/tslibs/nattype.pyx +++ b/pandas/_libs/tslibs/nattype.pyx @@ -382,7 +382,7 @@ class NaTType(_NaT): ) combine = _make_error_func('combine', # noqa:E128 """ - Timsetamp.combine(date, time) + Timestamp.combine(date, time) date, time -> datetime with same date and time fields """ diff --git a/pandas/_libs/tslibs/timestamps.pyx b/pandas/_libs/tslibs/timestamps.pyx index fe0564cb62c30..3e6763e226a4a 100644 --- a/pandas/_libs/tslibs/timestamps.pyx +++ b/pandas/_libs/tslibs/timestamps.pyx @@ -197,7 +197,7 @@ def round_nsint64(values, mode, freq): # This is PITA. Because we inherit from datetime, which has very specific # construction requirements, we need to do object instantiation in python -# (see Timestamp class above). This will serve as a C extension type that +# (see Timestamp class below). This will serve as a C extension type that # shadows the python class, where we do any heavy lifting. cdef class _Timestamp(datetime): @@ -670,7 +670,7 @@ class Timestamp(_Timestamp): @classmethod def combine(cls, date, time): """ - Timsetamp.combine(date, time) + Timestamp.combine(date, time) date, time -> datetime with same date and time fields """ diff --git a/pandas/core/internals/blocks.py b/pandas/core/internals/blocks.py index df764aa4ba666..36144c31dfef9 100644 --- a/pandas/core/internals/blocks.py +++ b/pandas/core/internals/blocks.py @@ -2072,17 +2072,9 @@ def get_values(self, dtype=None): return object dtype as boxed values, such as Timestamps/Timedelta """ if is_object_dtype(dtype): - values = self.values - - if self.ndim > 1: - values = values.ravel() - - values = lib.map_infer(values, self._box_func) - - if self.ndim > 1: - values = values.reshape(self.values.shape) - - return values + values = self.values.ravel() + result = self._holder(values).astype(object) + return result.reshape(self.values.shape) return self.values
Also edit DatetimeLikeBlockMixin.get_values to be much simpler.
https://api.github.com/repos/pandas-dev/pandas/pulls/25028
2019-01-30T14:57:35Z
2019-01-31T12:27:49Z
2019-01-31T12:27:49Z
2020-04-05T17:36:54Z
DOC: 0.24.1 whatsnew
diff --git a/doc/source/index.rst.template b/doc/source/index.rst.template index 51487c0d325b5..df2a29a76f3c5 100644 --- a/doc/source/index.rst.template +++ b/doc/source/index.rst.template @@ -39,7 +39,7 @@ See the :ref:`overview` for more detail about what's in the library. {% endif %} {% if not single_doc -%} - What's New in 0.24.0 <whatsnew/v0.24.0> + What's New in 0.24.1 <whatsnew/v0.24.1> install getting_started/index user_guide/index
This PR has the documentation changes that are just for 0.24.x. I'll have another PR later with changes to 0.24.1.rst that should go to master first, before being backported.
https://api.github.com/repos/pandas-dev/pandas/pulls/25027
2019-01-30T14:52:06Z
2019-02-01T20:09:00Z
2019-02-01T20:09:00Z
2019-02-01T20:09:03Z
DOC: Start 0.24.2.rst
diff --git a/doc/source/whatsnew/v0.24.2.rst b/doc/source/whatsnew/v0.24.2.rst new file mode 100644 index 0000000000000..cba21ce7ee1e6 --- /dev/null +++ b/doc/source/whatsnew/v0.24.2.rst @@ -0,0 +1,99 @@ +:orphan: + +.. _whatsnew_0242: + +Whats New in 0.24.2 (February XX, 2019) +--------------------------------------- + +.. warning:: + + The 0.24.x series of releases will be the last to support Python 2. Future feature + releases will support Python 3 only. See :ref:`install.dropping-27` for more. + +{{ header }} + +These are the changes in pandas 0.24.2. See :ref:`release` for a full changelog +including other versions of pandas. + +.. _whatsnew_0242.regressions: + +Fixed Regressions +^^^^^^^^^^^^^^^^^ + +- +- +- + +.. _whatsnew_0242.enhancements: + +Enhancements +^^^^^^^^^^^^ + +- +- + +.. _whatsnew_0242.bug_fixes: + +Bug Fixes +~~~~~~~~~ + +**Conversion** + +- +- +- + +**Indexing** + +- +- +- + +**I/O** + +- +- +- + +**Categorical** + +- +- +- + +**Timezones** + +- +- +- + +**Timedelta** + +- +- +- + +**Reshaping** + +- +- +- + +**Visualization** + +- +- +- + +**Other** + +- +- +- + +.. _whatsnew_0.242.contributors: + +Contributors +~~~~~~~~~~~~ + +.. contributors:: v0.24.1..v0.24.2 \ No newline at end of file
[ci skip]
https://api.github.com/repos/pandas-dev/pandas/pulls/25026
2019-01-30T14:18:55Z
2019-02-01T12:27:16Z
2019-02-01T12:27:16Z
2019-02-01T12:27:16Z
Backport PR #24961 on branch 0.24.x (fix+test to_timedelta('NaT', box=False))
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 8f4c3982c745f..82885f851e86b 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -65,7 +65,7 @@ Bug Fixes - **Timedelta** - +- Bug in :func:`to_timedelta` with `box=False` incorrectly returning a ``datetime64`` object instead of a ``timedelta64`` object (:issue:`24961`) - - - diff --git a/pandas/core/tools/timedeltas.py b/pandas/core/tools/timedeltas.py index e3428146b91d8..ddd21d0f62d08 100644 --- a/pandas/core/tools/timedeltas.py +++ b/pandas/core/tools/timedeltas.py @@ -120,7 +120,8 @@ def _coerce_scalar_to_timedelta_type(r, unit='ns', box=True, errors='raise'): try: result = Timedelta(r, unit) if not box: - result = result.asm8 + # explicitly view as timedelta64 for case when result is pd.NaT + result = result.asm8.view('timedelta64[ns]') except ValueError: if errors == 'raise': raise diff --git a/pandas/tests/scalar/timedelta/test_timedelta.py b/pandas/tests/scalar/timedelta/test_timedelta.py index 9b5fdfb06a9fa..e1838e0160fec 100644 --- a/pandas/tests/scalar/timedelta/test_timedelta.py +++ b/pandas/tests/scalar/timedelta/test_timedelta.py @@ -309,8 +309,13 @@ def test_iso_conversion(self): assert to_timedelta('P0DT0H0M1S') == expected def test_nat_converters(self): - assert to_timedelta('nat', box=False).astype('int64') == iNaT - assert to_timedelta('nan', box=False).astype('int64') == iNaT + result = to_timedelta('nat', box=False) + assert result.dtype.kind == 'm' + assert result.astype('int64') == iNaT + + result = to_timedelta('nan', box=False) + assert result.dtype.kind == 'm' + assert result.astype('int64') == iNaT @pytest.mark.parametrize('units, np_unit', [(['Y', 'y'], 'Y'),
Backport PR #24961: fix+test to_timedelta('NaT', box=False)
https://api.github.com/repos/pandas-dev/pandas/pulls/25025
2019-01-30T12:43:22Z
2019-01-30T13:18:39Z
2019-01-30T13:18:39Z
2019-01-30T13:20:24Z
REGR: fix read_sql delegation for queries on MySQL/pymysql
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 828c35c10e958..defb84f438e3a 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -22,6 +22,7 @@ Fixed Regressions - Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) - Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) +- Fixed regression in :func:`read_sql` when passing certain queries with MySQL/pymysql (:issue:`24988`). - Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). .. _whatsnew_0241.enhancements: diff --git a/pandas/io/sql.py b/pandas/io/sql.py index 5d1163b3e0024..aaface5415384 100644 --- a/pandas/io/sql.py +++ b/pandas/io/sql.py @@ -381,7 +381,8 @@ def read_sql(sql, con, index_col=None, coerce_float=True, params=None, try: _is_table_name = pandas_sql.has_table(sql) - except (ImportError, AttributeError): + except Exception: + # using generic exception to catch errors from sql drivers (GH24988) _is_table_name = False if _is_table_name:
Closes #24988, see discussion there regarding lack of test.
https://api.github.com/repos/pandas-dev/pandas/pulls/25024
2019-01-30T09:49:43Z
2019-01-31T21:24:58Z
2019-01-31T21:24:57Z
2019-01-31T21:24:58Z
BUG: to_datetime(strs, utc=True) used previous UTC offset
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index 867007b2ba7f5..24e3b42859416 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -103,7 +103,7 @@ Timedelta Timezones ^^^^^^^^^ -- +- Bug in :func:`to_datetime` with ``utc=True`` and datetime strings that would apply previously parsed UTC offsets to subsequent arguments (:issue:`24992`) - - diff --git a/pandas/_libs/tslib.pyx b/pandas/_libs/tslib.pyx index 798e338d5581b..f932e236b5218 100644 --- a/pandas/_libs/tslib.pyx +++ b/pandas/_libs/tslib.pyx @@ -645,6 +645,8 @@ cpdef array_to_datetime(ndarray[object] values, str errors='raise', out_tzoffset_vals.add(out_tzoffset * 60.) tz = pytz.FixedOffset(out_tzoffset) value = tz_convert_single(value, tz, UTC) + out_local = 0 + out_tzoffset = 0 else: # Add a marker for naive string, to track if we are # parsing mixed naive and aware strings diff --git a/pandas/tests/indexes/datetimes/test_tools.py b/pandas/tests/indexes/datetimes/test_tools.py index 38f5eab15041f..b94935d2521eb 100644 --- a/pandas/tests/indexes/datetimes/test_tools.py +++ b/pandas/tests/indexes/datetimes/test_tools.py @@ -714,6 +714,29 @@ def test_iso_8601_strings_with_different_offsets(self): NaT], tz='UTC') tm.assert_index_equal(result, expected) + def test_iss8601_strings_mixed_offsets_with_naive(self): + # GH 24992 + result = pd.to_datetime([ + '2018-11-28T00:00:00', + '2018-11-28T00:00:00+12:00', + '2018-11-28T00:00:00', + '2018-11-28T00:00:00+06:00', + '2018-11-28T00:00:00' + ], utc=True) + expected = pd.to_datetime([ + '2018-11-28T00:00:00', + '2018-11-27T12:00:00', + '2018-11-28T00:00:00', + '2018-11-27T18:00:00', + '2018-11-28T00:00:00' + ], utc=True) + tm.assert_index_equal(result, expected) + + items = ['2018-11-28T00:00:00+12:00', '2018-11-28T00:00:00'] + result = pd.to_datetime(items, utc=True) + expected = pd.to_datetime(list(reversed(items)), utc=True)[::-1] + tm.assert_index_equal(result, expected) + def test_non_iso_strings_with_tz_offset(self): result = to_datetime(['March 1, 2018 12:00:00+0400'] * 2) expected = DatetimeIndex([datetime(2018, 3, 1, 12,
- [x] closes #24992 - [x] tests added / passed - [x] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [x] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25020
2019-01-30T07:04:27Z
2019-01-31T12:29:33Z
2019-01-31T12:29:32Z
2019-01-31T15:59:28Z
CLN: do not use .repeat asv setting for storing benchmark data
diff --git a/asv_bench/benchmarks/strings.py b/asv_bench/benchmarks/strings.py index e9f2727f64e15..b5b2c955f0133 100644 --- a/asv_bench/benchmarks/strings.py +++ b/asv_bench/benchmarks/strings.py @@ -102,10 +102,10 @@ def setup(self, repeats): N = 10**5 self.s = Series(tm.makeStringIndex(N)) repeat = {'int': 1, 'array': np.random.randint(1, 3, N)} - self.repeat = repeat[repeats] + self.values = repeat[repeats] def time_repeat(self, repeats): - self.s.str.repeat(self.repeat) + self.s.str.repeat(self.values) class Cat(object):
`asv` uses `.repeat` to specify the number of times a benchmark should be repeated; our `strings.Replace` benchmark inadvertently uses this to store benchmark data. This doesn't cause issues until after the first parameter: ``` [ 99.87%] ··· strings.Repeat.time_repeat 1/2 failed [ 99.87%] ··· ========= =========== repeats --------- ----------- int 151±0.9ms array failed ========= =========== [ 99.87%] ···· For parameters: 'array' Traceback (most recent call last): File "/home/chris/code/asv/asv/benchmark.py", line 595, in run min_repeat, max_repeat, max_time = self.repeat ValueError: too many values to unpack (expected 3) During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/chris/code/asv/asv/benchmark.py", line 1170, in main_run_server main_run(run_args) File "/home/chris/code/asv/asv/benchmark.py", line 1044, in main_run result = benchmark.do_run() File "/home/chris/code/asv/asv/benchmark.py", line 523, in do_run return self.run(*self._current_params) File "/home/chris/code/asv/asv/benchmark.py", line 597, in run if self.repeat == 0: ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all() ``` With this PR, both parameters now succeed: ``` [ 0.00%] · For pandas commit 8825f78e <repeat>: [ 0.00%] ·· Benchmarking conda-py3.6-Cython-matplotlib-numexpr-numpy-openpyxl-pytables-pytest-scipy-sqlalchemy-xlrd-xlsxwriter-xlwt [ 50.00%] ··· Running (strings.Repeat.time_repeat--). [100.00%] ··· strings.Repeat.time_repeat ok [100.00%] ··· ========= =========== repeats --------- ----------- int 152±1ms array 150±0.6ms ========= =========== ``` - [ ] closes #xxxx - [ ] tests added / passed - [ ] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry
https://api.github.com/repos/pandas-dev/pandas/pulls/25015
2019-01-29T23:21:55Z
2019-01-30T05:48:52Z
2019-01-30T05:48:52Z
2019-01-30T05:48:59Z
Backport PR #24967 on branch 0.24.x (REGR: Preserve order by default in Index.difference)
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 8f4c3982c745f..828c35c10e958 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -22,6 +22,7 @@ Fixed Regressions - Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) - Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) +- Fixed regression in :class:`Index.intersection` incorrectly sorting the values by default (:issue:`24959`). .. _whatsnew_0241.enhancements: diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 767da81c5c43a..3d176012df22b 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -2333,7 +2333,7 @@ def union(self, other, sort=True): def _wrap_setop_result(self, other, result): return self._constructor(result, name=get_op_result_name(self, other)) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two Index objects. @@ -2342,11 +2342,15 @@ def intersection(self, other, sort=True): Parameters ---------- other : Index or array-like - sort : bool, default True + sort : bool, default False Sort the resulting index if possible .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- intersection : Index diff --git a/pandas/core/indexes/datetimes.py b/pandas/core/indexes/datetimes.py index cc373c06efcc9..ef941ab87ba12 100644 --- a/pandas/core/indexes/datetimes.py +++ b/pandas/core/indexes/datetimes.py @@ -594,7 +594,7 @@ def _wrap_setop_result(self, other, result): name = get_op_result_name(self, other) return self._shallow_copy(result, name=name, freq=None, tz=self.tz) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Specialized intersection for DatetimeIndex objects. May be much faster than Index.intersection @@ -602,6 +602,14 @@ def intersection(self, other, sort=True): Parameters ---------- other : DatetimeIndex or array-like + sort : bool, default True + Sort the resulting index if possible. + + .. versionadded:: 0.24.0 + + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. Returns ------- diff --git a/pandas/core/indexes/interval.py b/pandas/core/indexes/interval.py index 0210560aaa21f..736de94991181 100644 --- a/pandas/core/indexes/interval.py +++ b/pandas/core/indexes/interval.py @@ -1093,8 +1093,8 @@ def equals(self, other): def overlaps(self, other): return self._data.overlaps(other) - def _setop(op_name): - def func(self, other, sort=True): + def _setop(op_name, sort=True): + def func(self, other, sort=sort): other = self._as_like_interval_index(other) # GH 19016: ensure set op will not return a prohibited dtype @@ -1128,7 +1128,7 @@ def is_all_dates(self): return False union = _setop('union') - intersection = _setop('intersection') + intersection = _setop('intersection', sort=False) difference = _setop('difference') symmetric_difference = _setop('symmetric_difference') diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py index e4d01a40bd181..16af3fe8eef26 100644 --- a/pandas/core/indexes/multi.py +++ b/pandas/core/indexes/multi.py @@ -2910,7 +2910,7 @@ def union(self, other, sort=True): return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0, names=result_names) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two MultiIndex objects. @@ -2922,6 +2922,10 @@ def intersection(self, other, sort=True): .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- Index diff --git a/pandas/core/indexes/range.py b/pandas/core/indexes/range.py index ebf5b279563cf..e17a6a682af40 100644 --- a/pandas/core/indexes/range.py +++ b/pandas/core/indexes/range.py @@ -343,7 +343,7 @@ def equals(self, other): return super(RangeIndex, self).equals(other) - def intersection(self, other, sort=True): + def intersection(self, other, sort=False): """ Form the intersection of two Index objects. @@ -355,6 +355,10 @@ def intersection(self, other, sort=True): .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default from ``True`` to ``False``. + Returns ------- intersection : Index diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py index f3e9d835c7391..20e439de46bde 100644 --- a/pandas/tests/indexes/test_base.py +++ b/pandas/tests/indexes/test_base.py @@ -765,6 +765,11 @@ def test_intersect_str_dates(self, sort): assert len(result) == 0 + def test_intersect_nosort(self): + result = pd.Index(['c', 'b', 'a']).intersection(['b', 'a']) + expected = pd.Index(['b', 'a']) + tm.assert_index_equal(result, expected) + @pytest.mark.parametrize("sort", [True, False]) def test_chained_union(self, sort): # Chained unions handles names correctly @@ -1595,20 +1600,27 @@ def test_drop_tuple(self, values, to_drop): for drop_me in to_drop[1], [to_drop[1]]: pytest.raises(KeyError, removed.drop, drop_me) - @pytest.mark.parametrize("method,expected", [ + @pytest.mark.parametrize("method,expected,sort", [ + ('intersection', np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], + dtype=[('num', int), ('let', 'a1')]), + False), + ('intersection', np.array([(1, 'A'), (1, 'B'), (2, 'A'), (2, 'B')], - dtype=[('num', int), ('let', 'a1')])), + dtype=[('num', int), ('let', 'a1')]), + True), + ('union', np.array([(1, 'A'), (1, 'B'), (1, 'C'), (2, 'A'), (2, 'B'), - (2, 'C')], dtype=[('num', int), ('let', 'a1')])) + (2, 'C')], dtype=[('num', int), ('let', 'a1')]), + True) ]) - def test_tuple_union_bug(self, method, expected): + def test_tuple_union_bug(self, method, expected, sort): index1 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B')], dtype=[('num', int), ('let', 'a1')])) index2 = Index(np.array([(1, 'A'), (2, 'A'), (1, 'B'), (2, 'B'), (1, 'C'), (2, 'C')], dtype=[('num', int), ('let', 'a1')])) - result = getattr(index1, method)(index2) + result = getattr(index1, method)(index2, sort=sort) assert result.ndim == 1 expected = Index(expected)
Backport PR #24967: REGR: Preserve order by default in Index.difference
https://api.github.com/repos/pandas-dev/pandas/pulls/25013
2019-01-29T21:43:34Z
2019-01-30T12:50:04Z
2019-01-30T12:50:04Z
2019-01-30T12:50:04Z
BUG-24212 fix when other_index has incompatible dtype
diff --git a/doc/source/whatsnew/v0.25.0.rst b/doc/source/whatsnew/v0.25.0.rst index b2a379d9fe6f5..bb7fdf97c9383 100644 --- a/doc/source/whatsnew/v0.25.0.rst +++ b/doc/source/whatsnew/v0.25.0.rst @@ -399,7 +399,7 @@ Reshaping ^^^^^^^^^ - Bug in :func:`pandas.merge` adds a string of ``None``, if ``None`` is assigned in suffixes instead of remain the column name as-is (:issue:`24782`). -- Bug in :func:`merge` when merging by index name would sometimes result in an incorrectly numbered index (:issue:`24212`) +- Bug in :func:`merge` when merging by index name would sometimes result in an incorrectly numbered index (missing index values are now assigned NA) (:issue:`24212`, :issue:`25009`) - :func:`to_records` now accepts dtypes to its ``column_dtypes`` parameter (:issue:`24895`) - Bug in :func:`concat` where order of ``OrderedDict`` (and ``dict`` in Python 3.6+) is not respected, when passed in as ``objs`` argument (:issue:`21510`) - Bug in :func:`pivot_table` where columns with ``NaN`` values are dropped even if ``dropna`` argument is ``False``, when the ``aggfunc`` argument contains a ``list`` (:issue:`22159`) diff --git a/pandas/core/reshape/merge.py b/pandas/core/reshape/merge.py index 0837186e33267..78309ce9c863c 100644 --- a/pandas/core/reshape/merge.py +++ b/pandas/core/reshape/merge.py @@ -803,22 +803,18 @@ def _create_join_index(self, index, other_index, indexer, ------- join_index """ - join_index = index.take(indexer) if (self.how in (how, 'outer') and not isinstance(other_index, MultiIndex)): # if final index requires values in other_index but not target # index, indexer may hold missing (-1) values, causing Index.take - # to take the final value in target index + # to take the final value in target index. So, we set the last + # element to be the desired fill value. We do not use allow_fill + # and fill_value because it throws a ValueError on integer indices mask = indexer == -1 if np.any(mask): - # if values missing (-1) from target index, - # take from other_index instead - join_list = join_index.to_numpy() - other_list = other_index.take(other_indexer).to_numpy() - join_list[mask] = other_list[mask] - join_index = Index(join_list, dtype=join_index.dtype, - name=join_index.name) - return join_index + fill_value = na_value_for_dtype(index.dtype, compat=False) + index = index.append(Index([fill_value])) + return index.take(indexer) def _get_merge_keys(self): """ diff --git a/pandas/tests/reshape/merge/test_merge.py b/pandas/tests/reshape/merge/test_merge.py index b4a58628faa4d..8bc68cc7f8fc2 100644 --- a/pandas/tests/reshape/merge/test_merge.py +++ b/pandas/tests/reshape/merge/test_merge.py @@ -15,7 +15,8 @@ import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Float64Index, - Int64Index, MultiIndex, RangeIndex, Series, UInt64Index) + Int64Index, IntervalIndex, MultiIndex, PeriodIndex, RangeIndex, Series, + TimedeltaIndex, UInt64Index) from pandas.api.types import CategoricalDtype as CDT from pandas.core.reshape.concat import concat from pandas.core.reshape.merge import MergeError, merge @@ -1034,11 +1035,30 @@ def test_merge_two_empty_df_no_division_error(self): merge(a, a, on=('a', 'b')) @pytest.mark.parametrize('how', ['right', 'outer']) - def test_merge_on_index_with_more_values(self, how): + @pytest.mark.parametrize( + 'index,expected_index', + [(CategoricalIndex([1, 2, 4]), + CategoricalIndex([1, 2, 4, None, None, None])), + (DatetimeIndex(['2001-01-01', '2002-02-02', '2003-03-03']), + DatetimeIndex(['2001-01-01', '2002-02-02', '2003-03-03', + pd.NaT, pd.NaT, pd.NaT])), + (Float64Index([1, 2, 3]), + Float64Index([1, 2, 3, None, None, None])), + (Int64Index([1, 2, 3]), + Float64Index([1, 2, 3, None, None, None])), + (IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4)]), + IntervalIndex.from_tuples([(1, 2), (2, 3), (3, 4), + np.nan, np.nan, np.nan])), + (PeriodIndex(['2001-01-01', '2001-01-02', '2001-01-03'], freq='D'), + PeriodIndex(['2001-01-01', '2001-01-02', '2001-01-03', + pd.NaT, pd.NaT, pd.NaT], freq='D')), + (TimedeltaIndex(['1d', '2d', '3d']), + TimedeltaIndex(['1d', '2d', '3d', pd.NaT, pd.NaT, pd.NaT]))]) + def test_merge_on_index_with_more_values(self, how, index, expected_index): # GH 24212 # pd.merge gets [0, 1, 2, -1, -1, -1] as left_indexer, ensure that # -1 is interpreted as a missing value instead of the last element - df1 = pd.DataFrame({'a': [1, 2, 3], 'key': [0, 2, 2]}) + df1 = pd.DataFrame({'a': [1, 2, 3], 'key': [0, 2, 2]}, index=index) df2 = pd.DataFrame({'b': [1, 2, 3, 4, 5]}) result = df1.merge(df2, left_on='key', right_index=True, how=how) expected = pd.DataFrame([[1.0, 0, 1], @@ -1048,7 +1068,7 @@ def test_merge_on_index_with_more_values(self, how): [np.nan, 3, 4], [np.nan, 4, 5]], columns=['a', 'key', 'b']) - expected.set_index(Int64Index([0, 1, 2, 1, 3, 4]), inplace=True) + expected.set_index(expected_index, inplace=True) assert_frame_equal(result, expected) def test_merge_right_index_right(self): @@ -1062,11 +1082,27 @@ def test_merge_right_index_right(self): 'key': [0, 1, 1, 2], 'b': [1, 2, 2, 3]}, columns=['a', 'key', 'b'], - index=[0, 1, 2, 2]) + index=[0, 1, 2, np.nan]) result = left.merge(right, left_on='key', right_index=True, how='right') tm.assert_frame_equal(result, expected) + def test_merge_take_missing_values_from_index_of_other_dtype(self): + # GH 24212 + left = pd.DataFrame({'a': [1, 2, 3], + 'key': pd.Categorical(['a', 'a', 'b'], + categories=list('abc'))}) + right = pd.DataFrame({'b': [1, 2, 3]}, + index=pd.CategoricalIndex(['a', 'b', 'c'])) + result = left.merge(right, left_on='key', + right_index=True, how='right') + expected = pd.DataFrame({'a': [1, 2, 3, None], + 'key': pd.Categorical(['a', 'a', 'b', 'c']), + 'b': [1, 1, 2, 3]}, + index=[0, 1, 2, np.nan]) + expected = expected.reindex(columns=['a', 'key', 'b']) + tm.assert_frame_equal(result, expected) + def _check_merge(x, y): for how in ['inner', 'left', 'outer']:
- [X] closes #25001 - [X] tests added / passed - [X] passes `git diff upstream/master -u -- "*.py" | flake8 --diff` - [ ] whatsnew entry Followup to #24916, addresses the case when the other index has an incompatible dtype, so we cannot take directly from it. Currently, this PR ~naively replaces the missing index values with the number of the rows in the other index that caused them~ replaces the missing index values with the appropriate NA value. ~Still working on adding cases when it is possible to combine indices of sparse/categorical dtypes without densifying.~
https://api.github.com/repos/pandas-dev/pandas/pulls/25009
2019-01-29T19:32:15Z
2019-05-05T21:21:55Z
2019-05-05T21:21:55Z
2019-05-05T21:22:00Z
require Return section only if return is not None nor commentary
diff --git a/scripts/tests/test_validate_docstrings.py b/scripts/tests/test_validate_docstrings.py index bb58449843096..6f78b91653a3f 100644 --- a/scripts/tests/test_validate_docstrings.py +++ b/scripts/tests/test_validate_docstrings.py @@ -229,6 +229,27 @@ def good_imports(self): """ pass + def no_returns(self): + """ + Say hello and have no returns. + """ + pass + + def empty_returns(self): + """ + Say hello and always return None. + + Since this function never returns a value, this + docstring doesn't need a return section. + """ + def say_hello(): + return "Hello World!" + say_hello() + if True: + return + else: + return None + class BadGenericDocStrings(object): """Everything here has a bad docstring @@ -783,7 +804,7 @@ def test_good_class(self, capsys): @pytest.mark.parametrize("func", [ 'plot', 'sample', 'random_letters', 'sample_values', 'head', 'head1', - 'contains', 'mode', 'good_imports']) + 'contains', 'mode', 'good_imports', 'no_returns', 'empty_returns']) def test_good_functions(self, capsys, func): errors = validate_one(self._import_path( klass='GoodDocStrings', func=func))['errors'] diff --git a/scripts/validate_docstrings.py b/scripts/validate_docstrings.py index bce33f7e78daa..446cd60968312 100755 --- a/scripts/validate_docstrings.py +++ b/scripts/validate_docstrings.py @@ -26,6 +26,8 @@ import importlib import doctest import tempfile +import ast +import textwrap import flake8.main.application @@ -490,9 +492,45 @@ def yields(self): @property def method_source(self): try: - return inspect.getsource(self.obj) + source = inspect.getsource(self.obj) except TypeError: return '' + return textwrap.dedent(source) + + @property + def method_returns_something(self): + ''' + Check if the docstrings method can return something. + + Bare returns, returns valued None and returns from nested functions are + disconsidered. + + Returns + ------- + bool + Whether the docstrings method can return something. + ''' + + def get_returns_not_on_nested_functions(node): + returns = [node] if isinstance(node, ast.Return) else [] + for child in ast.iter_child_nodes(node): + # Ignore nested functions and its subtrees. + if not isinstance(child, ast.FunctionDef): + child_returns = get_returns_not_on_nested_functions(child) + returns.extend(child_returns) + return returns + + tree = ast.parse(self.method_source).body + if tree: + returns = get_returns_not_on_nested_functions(tree[0]) + return_values = [r.value for r in returns] + # Replace NameConstant nodes valued None for None. + for i, v in enumerate(return_values): + if isinstance(v, ast.NameConstant) and v.value is None: + return_values[i] = None + return any(return_values) + else: + return False @property def first_line_ends_in_dot(self): @@ -691,7 +729,7 @@ def get_validation_data(doc): if doc.is_function_or_method: if not doc.returns: - if 'return' in doc.method_source: + if doc.method_returns_something: errs.append(error('RT01')) else: if len(doc.returns) == 1 and doc.returns[0][1]:
- [ ] closes #23488 Updated return lookup at source in validate_docstrings.py: - ignore "return None" - ignore empty return - ignore the word "return" on commentaries Updated test_validate_docstrings.py: - added a test which contains the "returns" listed above and has a valid docstring with no Return section
https://api.github.com/repos/pandas-dev/pandas/pulls/25008
2019-01-29T18:23:09Z
2019-03-11T12:02:05Z
2019-03-11T12:02:04Z
2019-03-11T12:02:05Z
API: Change default for Index.union sort
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 047404e93914b..948350df140eb 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -15,10 +15,84 @@ Whats New in 0.24.1 (February XX, 2019) These are the changes in pandas 0.24.1. See :ref:`release` for a full changelog including other versions of pandas. +.. _whatsnew_0241.api: + +API Changes +~~~~~~~~~~~ + +Changing the ``sort`` parameter for :meth:`Index.union` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The default ``sort`` value for :meth:`Index.union` has changed from ``True`` to ``None`` (:issue:`24959`). +The default *behavior* remains the same: The result is sorted, unless + +1. ``self`` and ``other`` are identical +2. ``self`` or ``other`` is empty +3. ``self`` or ``other`` contain values that can not be compared (a ``RuntimeWarning`` is raised). + +This allows ``sort=True`` to now mean "always sort". A ``TypeError`` is raised if the values cannot be compared. + +**Behavior in 0.24.0** + +.. ipython:: python + + In [1]: idx = pd.Index(['b', 'a']) + + In [2]: idx.union(idx) # sort=True was the default. + Out[2]: Index(['b', 'a'], dtype='object') + + In [3]: idx.union(idx, sort=True) # result is still not sorted. + Out[32]: Index(['b', 'a'], dtype='object') + +**New Behavior** + +.. ipython:: python + + idx = pd.Index(['b', 'a']) + idx.union(idx) # sort=None is the default. Don't sort identical operands. + + idx.union(idx, sort=True) + +The same change applies to :meth:`Index.difference` and :meth:`Index.symmetric_difference`, which +would previously not sort the result when ``sort=True`` but the values could not be compared. + +Changed the behavior of :meth:`Index.intersection` with ``sort=True`` +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +When ``sort=True`` is provided to :meth:`Index.intersection`, the values are always sorted. In 0.24.0, +the values would not be sorted when ``self`` and ``other`` were identical. Pass ``sort=False`` to not +sort the values. This matches the behavior of pandas 0.23.4 and earlier. + +**Behavior in 0.23.4** + +.. ipython:: python + + In [2]: idx = pd.Index(['b', 'a']) + + In [3]: idx.intersection(idx) # sort was not a keyword. + Out[3]: Index(['b', 'a'], dtype='object') + +**Behavior in 0.24.0** + +.. ipython:: python + + In [5]: idx.intersection(idx) # sort=True by default. Don't sort identical. + Out[5]: Index(['b', 'a'], dtype='object') + + In [6]: idx.intersection(idx, sort=True) + Out[6]: Index(['b', 'a'], dtype='object') + +**New Behavior** + +.. ipython:: python + + idx.intersection(idx) # sort=False by default + idx.intersection(idx, sort=True) + .. _whatsnew_0241.regressions: Fixed Regressions -^^^^^^^^^^^^^^^^^ +~~~~~~~~~~~~~~~~~ - Bug in :meth:`DataFrame.itertuples` with ``records`` orient raising an ``AttributeError`` when the ``DataFrame`` contained more than 255 columns (:issue:`24939`) - Bug in :meth:`DataFrame.itertuples` orient converting integer column names to strings prepended with an underscore (:issue:`24940`) @@ -28,7 +102,7 @@ Fixed Regressions .. _whatsnew_0241.enhancements: Enhancements -^^^^^^^^^^^^ +~~~~~~~~~~~~ .. _whatsnew_0241.bug_fixes: diff --git a/pandas/_libs/lib.pyx b/pandas/_libs/lib.pyx index 4a3440e14ba14..c9473149d8a84 100644 --- a/pandas/_libs/lib.pyx +++ b/pandas/_libs/lib.pyx @@ -233,11 +233,14 @@ def fast_unique_multiple(list arrays, sort: bool=True): if val not in table: table[val] = stub uniques.append(val) - if sort: + if sort is None: try: uniques.sort() except Exception: + # TODO: RuntimeWarning? pass + elif sort: + uniques.sort() return uniques diff --git a/pandas/core/indexes/base.py b/pandas/core/indexes/base.py index 3d176012df22b..12880ed93cc2a 100644 --- a/pandas/core/indexes/base.py +++ b/pandas/core/indexes/base.py @@ -2245,18 +2245,34 @@ def _get_reconciled_name_object(self, other): return self._shallow_copy(name=name) return self - def union(self, other, sort=True): + def union(self, other, sort=None): """ Form the union of two Index objects. Parameters ---------- other : Index or array-like - sort : bool, default True - Sort the resulting index if possible + sort : bool or None, default None + Whether to sort the resulting Index. + + * None : Sort the result, except when + + 1. `self` and `other` are equal. + 2. `self` or `other` has length 0. + 3. Some values in `self` or `other` cannot be compared. + A RuntimeWarning is issued in this case. + + * True : sort the result. A TypeError is raised when the + values cannot be compared. + * False : do not sort the result. .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default `sort` to None, matching the + behavior of pandas 0.23.4 and earlier. + Returns ------- union : Index @@ -2273,10 +2289,16 @@ def union(self, other, sort=True): other = ensure_index(other) if len(other) == 0 or self.equals(other): - return self._get_reconciled_name_object(other) + result = self._get_reconciled_name_object(other) + if sort: + result = result.sort_values() + return result if len(self) == 0: - return other._get_reconciled_name_object(self) + result = other._get_reconciled_name_object(self) + if sort: + result = result.sort_values() + return result # TODO: is_dtype_union_equal is a hack around # 1. buggy set ops with duplicates (GH #13432) @@ -2319,13 +2341,16 @@ def union(self, other, sort=True): else: result = lvals - if sort: + if sort is None: try: result = sorting.safe_sort(result) except TypeError as e: warnings.warn("{}, sort order is undefined for " "incomparable objects".format(e), RuntimeWarning, stacklevel=3) + elif sort: + # raise if not sortable. + result = sorting.safe_sort(result) # for subclasses return self._wrap_setop_result(other, result) @@ -2342,8 +2367,12 @@ def intersection(self, other, sort=False): Parameters ---------- other : Index or array-like - sort : bool, default False - Sort the resulting index if possible + sort : bool or None, default False + Whether to sort the resulting index. + + * False : do not sort the result. + * True : sort the result. A TypeError is raised when the + values cannot be compared. .. versionadded:: 0.24.0 @@ -2367,7 +2396,10 @@ def intersection(self, other, sort=False): other = ensure_index(other) if self.equals(other): - return self._get_reconciled_name_object(other) + result = self._get_reconciled_name_object(other) + if sort: + result = result.sort_values() + return result if not is_dtype_equal(self.dtype, other.dtype): this = self.astype('O') @@ -2415,7 +2447,7 @@ def intersection(self, other, sort=False): return taken - def difference(self, other, sort=True): + def difference(self, other, sort=None): """ Return a new Index with elements from the index that are not in `other`. @@ -2425,11 +2457,24 @@ def difference(self, other, sort=True): Parameters ---------- other : Index or array-like - sort : bool, default True - Sort the resulting index if possible + sort : bool or None, default None + Whether to sort the resulting index. By default, the + values are attempted to be sorted, but any TypeError from + incomparable elements is caught by pandas. + + * None : Attempt to sort the result, but catch any TypeErrors + from comparing incomparable elements. + * False : Do not sort the result. + * True : Sort the result, raising a TypeError if any elements + cannot be compared. .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Added the `None` option, which matches the behavior of + pandas 0.23.4 and earlier. + Returns ------- difference : Index @@ -2460,15 +2505,17 @@ def difference(self, other, sort=True): label_diff = np.setdiff1d(np.arange(this.size), indexer, assume_unique=True) the_diff = this.values.take(label_diff) - if sort: + if sort is None: try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass + elif sort: + the_diff = sorting.safe_sort(the_diff) return this._shallow_copy(the_diff, name=result_name, freq=None) - def symmetric_difference(self, other, result_name=None, sort=True): + def symmetric_difference(self, other, result_name=None, sort=None): """ Compute the symmetric difference of two Index objects. @@ -2476,11 +2523,24 @@ def symmetric_difference(self, other, result_name=None, sort=True): ---------- other : Index or array-like result_name : str - sort : bool, default True - Sort the resulting index if possible + sort : bool or None, default None + Whether to sort the resulting index. By default, the + values are attempted to be sorted, but any TypeError from + incomparable elements is caught by pandas. + + * None : Attempt to sort the result, but catch any TypeErrors + from comparing incomparable elements. + * False : Do not sort the result. + * True : Sort the result, raising a TypeError if any elements + cannot be compared. .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Added the `None` option, which matches the behavior of + pandas 0.23.4 and earlier. + Returns ------- symmetric_difference : Index @@ -2524,11 +2584,13 @@ def symmetric_difference(self, other, result_name=None, sort=True): right_diff = other.values.take(right_indexer) the_diff = _concat._concat_compat([left_diff, right_diff]) - if sort: + if sort is None: try: the_diff = sorting.safe_sort(the_diff) except TypeError: pass + elif sort: + the_diff = sorting.safe_sort(the_diff) attribs = self._get_attributes_dict() attribs['name'] = result_name diff --git a/pandas/core/indexes/multi.py b/pandas/core/indexes/multi.py index 16af3fe8eef26..32a5a09359019 100644 --- a/pandas/core/indexes/multi.py +++ b/pandas/core/indexes/multi.py @@ -2879,18 +2879,34 @@ def equal_levels(self, other): return False return True - def union(self, other, sort=True): + def union(self, other, sort=None): """ Form the union of two MultiIndex objects Parameters ---------- other : MultiIndex or array / Index of tuples - sort : bool, default True - Sort the resulting MultiIndex if possible + sort : bool or None, default None + Whether to sort the resulting Index. + + * None : Sort the result, except when + + 1. `self` and `other` are equal. + 2. `self` has length 0. + 3. Some values in `self` or `other` cannot be compared. + A RuntimeWarning is issued in this case. + + * True : sort the result. A TypeError is raised when the + values cannot be compared. + * False : do not sort the result. .. versionadded:: 0.24.0 + .. versionchanged:: 0.24.1 + + Changed the default `sort` to None, matching the + behavior of pandas 0.23.4 and earlier. + Returns ------- Index @@ -2901,8 +2917,12 @@ def union(self, other, sort=True): other, result_names = self._convert_can_do_setop(other) if len(other) == 0 or self.equals(other): + if sort: + return self.sort_values() return self + # TODO: Index.union returns other when `len(self)` is 0. + uniq_tuples = lib.fast_unique_multiple([self._ndarray_values, other._ndarray_values], sort=sort) @@ -2917,7 +2937,7 @@ def intersection(self, other, sort=False): Parameters ---------- other : MultiIndex or array / Index of tuples - sort : bool, default True + sort : bool, default False Sort the resulting MultiIndex if possible .. versionadded:: 0.24.0 @@ -2934,6 +2954,8 @@ def intersection(self, other, sort=False): other, result_names = self._convert_can_do_setop(other) if self.equals(other): + if sort: + return self.sort_values() return self self_tuples = self._ndarray_values @@ -2951,7 +2973,7 @@ def intersection(self, other, sort=False): return MultiIndex.from_arrays(lzip(*uniq_tuples), sortorder=0, names=result_names) - def difference(self, other, sort=True): + def difference(self, other, sort=None): """ Compute set difference of two MultiIndex objects @@ -2971,6 +2993,8 @@ def difference(self, other, sort=True): other, result_names = self._convert_can_do_setop(other) if len(other) == 0: + if sort: + return self.sort_values() return self if self.equals(other): diff --git a/pandas/tests/indexes/multi/test_set_ops.py b/pandas/tests/indexes/multi/test_set_ops.py index 208d6cf1c639f..6a42e29aa8f5c 100644 --- a/pandas/tests/indexes/multi/test_set_ops.py +++ b/pandas/tests/indexes/multi/test_set_ops.py @@ -174,7 +174,10 @@ def test_difference(idx, sort): # name from empty array result = first.difference([], sort=sort) - assert first.equals(result) + if sort: + assert first.sort_values().equals(result) + else: + assert first.equals(result) assert first.names == result.names # name from non-empty array @@ -189,6 +192,36 @@ def test_difference(idx, sort): first.difference([1, 2, 3, 4, 5], sort=sort) +def test_difference_sort_special(): + idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']]) + # sort=None, the default + result = idx.difference([]) + tm.assert_index_equal(result, idx) + + result = idx.difference([], sort=True) + expected = pd.MultiIndex.from_product([[0, 1], ['a', 'b']]) + tm.assert_index_equal(result, expected) + + +def test_difference_sort_incomparable(): + idx = pd.MultiIndex.from_product([[1, pd.Timestamp('2000'), 2], + ['a', 'b']]) + + other = pd.MultiIndex.from_product([[3, pd.Timestamp('2000'), 4], + ['c', 'd']]) + # sort=None, the default + # result = idx.difference(other) + # tm.assert_index_equal(result, idx) + + # sort=False + result = idx.difference(other) + tm.assert_index_equal(result, idx) + + # sort=True, raises + with pytest.raises(TypeError): + idx.difference(other, sort=True) + + @pytest.mark.parametrize("sort", [True, False]) def test_union(idx, sort): piece1 = idx[:5][::-1] @@ -203,10 +236,16 @@ def test_union(idx, sort): # corner case, pass self or empty thing: the_union = idx.union(idx, sort=sort) - assert the_union is idx + if sort: + tm.assert_index_equal(the_union, idx.sort_values()) + else: + assert the_union is idx the_union = idx.union(idx[:0], sort=sort) - assert the_union is idx + if sort: + tm.assert_index_equal(the_union, idx.sort_values()) + else: + assert the_union is idx # won't work in python 3 # tuples = _index.values @@ -238,7 +277,10 @@ def test_intersection(idx, sort): # corner case, pass self the_int = idx.intersection(idx, sort=sort) - assert the_int is idx + if sort: + tm.assert_index_equal(the_int, idx.sort_values()) + else: + assert the_int is idx # empty intersection: disjoint empty = idx[:2].intersection(idx[2:], sort=sort) @@ -249,3 +291,47 @@ def test_intersection(idx, sort): # tuples = _index.values # result = _index & tuples # assert result.equals(tuples) + + +def test_intersect_equal_sort(): + idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']]) + sorted_ = pd.MultiIndex.from_product([[0, 1], ['a', 'b']]) + tm.assert_index_equal(idx.intersection(idx, sort=False), idx) + tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) + + [email protected]('slice_', [slice(None), slice(0)]) +def test_union_sort_other_empty(slice_): + # https://github.com/pandas-dev/pandas/issues/24959 + idx = pd.MultiIndex.from_product([[1, 0], ['a', 'b']]) + + # default, sort=None + other = idx[slice_] + tm.assert_index_equal(idx.union(other), idx) + # MultiIndex does not special case empty.union(idx) + # tm.assert_index_equal(other.union(idx), idx) + + # sort=False + tm.assert_index_equal(idx.union(other, sort=False), idx) + + # sort=True + result = idx.union(other, sort=True) + expected = pd.MultiIndex.from_product([[0, 1], ['a', 'b']]) + tm.assert_index_equal(result, expected) + + +def test_union_sort_other_incomparable(): + # https://github.com/pandas-dev/pandas/issues/24959 + idx = pd.MultiIndex.from_product([[1, pd.Timestamp('2000')], ['a', 'b']]) + + # default, sort=None + result = idx.union(idx[:1]) + tm.assert_index_equal(result, idx) + + # sort=False + result = idx.union(idx[:1], sort=False) + tm.assert_index_equal(result, idx) + + # sort=True + with pytest.raises(TypeError, match='Cannot compare'): + idx.union(idx[:1], sort=True) diff --git a/pandas/tests/indexes/test_base.py b/pandas/tests/indexes/test_base.py index 20e439de46bde..4e8555cbe1aab 100644 --- a/pandas/tests/indexes/test_base.py +++ b/pandas/tests/indexes/test_base.py @@ -3,6 +3,7 @@ from collections import defaultdict from datetime import datetime, timedelta import math +import operator import sys import numpy as np @@ -695,7 +696,10 @@ def test_intersection(self, sort): # Corner cases inter = first.intersection(first, sort=sort) - assert inter is first + if sort: + tm.assert_index_equal(inter, first.sort_values()) + else: + assert inter is first @pytest.mark.parametrize("index2,keeps_name", [ (Index([3, 4, 5, 6, 7], name="index"), True), # preserve same name @@ -770,6 +774,12 @@ def test_intersect_nosort(self): expected = pd.Index(['b', 'a']) tm.assert_index_equal(result, expected) + def test_intersect_equal_sort(self): + idx = pd.Index(['c', 'a', 'b']) + sorted_ = pd.Index(['a', 'b', 'c']) + tm.assert_index_equal(idx.intersection(idx, sort=False), idx) + tm.assert_index_equal(idx.intersection(idx, sort=True), sorted_) + @pytest.mark.parametrize("sort", [True, False]) def test_chained_union(self, sort): # Chained unions handles names correctly @@ -799,6 +809,41 @@ def test_union(self, sort): tm.assert_index_equal(union, everything.sort_values()) assert tm.equalContents(union, everything) + @pytest.mark.parametrize('slice_', [slice(None), slice(0)]) + def test_union_sort_other_special(self, slice_): + # https://github.com/pandas-dev/pandas/issues/24959 + + idx = pd.Index([1, 0, 2]) + # default, sort=None + other = idx[slice_] + tm.assert_index_equal(idx.union(other), idx) + tm.assert_index_equal(other.union(idx), idx) + + # sort=False + tm.assert_index_equal(idx.union(other, sort=False), idx) + + # sort=True + result = idx.union(other, sort=True) + expected = pd.Index([0, 1, 2]) + tm.assert_index_equal(result, expected) + + def test_union_sort_other_incomparable(self): + # https://github.com/pandas-dev/pandas/issues/24959 + idx = pd.Index([1, pd.Timestamp('2000')]) + # default, sort=None + with tm.assert_produces_warning(RuntimeWarning): + result = idx.union(idx[:1]) + + tm.assert_index_equal(result, idx) + + # sort=True + with pytest.raises(TypeError, match='.*'): + idx.union(idx[:1], sort=True) + + # sort=False + result = idx.union(idx[:1], sort=False) + tm.assert_index_equal(result, idx) + @pytest.mark.parametrize("klass", [ np.array, Series, list]) @pytest.mark.parametrize("sort", [True, False]) @@ -815,19 +860,20 @@ def test_union_from_iterables(self, klass, sort): tm.assert_index_equal(result, everything.sort_values()) assert tm.equalContents(result, everything) - @pytest.mark.parametrize("sort", [True, False]) + @pytest.mark.parametrize("sort", [None, True, False]) def test_union_identity(self, sort): # TODO: replace with fixturesult first = self.strIndex[5:20] union = first.union(first, sort=sort) - assert union is first + # i.e. identity is not preserved when sort is True + assert (union is first) is (not sort) union = first.union([], sort=sort) - assert union is first + assert (union is first) is (not sort) union = Index([]).union(first, sort=sort) - assert union is first + assert (union is first) is (not sort) @pytest.mark.parametrize("first_list", [list('ba'), list()]) @pytest.mark.parametrize("second_list", [list('ab'), list()]) @@ -1054,6 +1100,29 @@ def test_symmetric_difference(self, sort): assert tm.equalContents(result, expected) assert result.name is None + @pytest.mark.parametrize('opname', ['difference', 'symmetric_difference']) + def test_difference_incomparable(self, opname): + a = pd.Index([3, pd.Timestamp('2000'), 1]) + b = pd.Index([2, pd.Timestamp('1999'), 1]) + op = operator.methodcaller(opname, b) + + # sort=None, the default + result = op(a) + expected = pd.Index([3, pd.Timestamp('2000'), 2, pd.Timestamp('1999')]) + if opname == 'difference': + expected = expected[:2] + tm.assert_index_equal(result, expected) + + # sort=False + op = operator.methodcaller(opname, b, sort=False) + result = op(a) + tm.assert_index_equal(result, expected) + + # sort=True, raises + op = operator.methodcaller(opname, b, sort=True) + with pytest.raises(TypeError, match='Cannot compare'): + op(a) + @pytest.mark.parametrize("sort", [True, False]) def test_symmetric_difference_mi(self, sort): index1 = MultiIndex.from_tuples(self.tuples)
Closes https://github.com/pandas-dev/pandas/issues/24959 Haven't done MultiIndex yet, just opening for discussion on *if* we should do this for 0.24.1.
https://api.github.com/repos/pandas-dev/pandas/pulls/25007
2019-01-29T18:02:12Z
2019-02-04T22:12:40Z
null
2019-02-04T22:12:43Z
Backport PR #24973: fix for BUG: grouping with tz-aware: Values falls…
diff --git a/doc/source/whatsnew/v0.24.1.rst b/doc/source/whatsnew/v0.24.1.rst index 7647e199030d2..8f4c3982c745f 100644 --- a/doc/source/whatsnew/v0.24.1.rst +++ b/doc/source/whatsnew/v0.24.1.rst @@ -70,6 +70,9 @@ Bug Fixes - - +**Reshaping** + +- Bug in :meth:`DataFrame.groupby` with :class:`Grouper` when there is a time change (DST) and grouping frequency is ``'1d'`` (:issue:`24972`) **Visualization** diff --git a/pandas/core/resample.py b/pandas/core/resample.py index 6822225273906..7723827ff478a 100644 --- a/pandas/core/resample.py +++ b/pandas/core/resample.py @@ -30,8 +30,7 @@ from pandas.core.indexes.timedeltas import TimedeltaIndex, timedelta_range from pandas.tseries.frequencies import to_offset -from pandas.tseries.offsets import ( - DateOffset, Day, Nano, Tick, delta_to_nanoseconds) +from pandas.tseries.offsets import DateOffset, Day, Nano, Tick _shared_docs_kwargs = dict() @@ -1613,20 +1612,20 @@ def _get_timestamp_range_edges(first, last, offset, closed='left', base=0): A tuple of length 2, containing the adjusted pd.Timestamp objects. """ if isinstance(offset, Tick): - is_day = isinstance(offset, Day) - day_nanos = delta_to_nanoseconds(timedelta(1)) - - # #1165 and #24127 - if (is_day and not offset.nanos % day_nanos) or not is_day: - first, last = _adjust_dates_anchored(first, last, offset, - closed=closed, base=base) - if is_day and first.tz is not None: - # _adjust_dates_anchored assumes 'D' means 24H, but first/last - # might contain a DST transition (23H, 24H, or 25H). - # Ensure first/last snap to midnight. - first = first.normalize() - last = last.normalize() - return first, last + if isinstance(offset, Day): + # _adjust_dates_anchored assumes 'D' means 24H, but first/last + # might contain a DST transition (23H, 24H, or 25H). + # So "pretend" the dates are naive when adjusting the endpoints + tz = first.tz + first = first.tz_localize(None) + last = last.tz_localize(None) + + first, last = _adjust_dates_anchored(first, last, offset, + closed=closed, base=base) + if isinstance(offset, Day): + first = first.tz_localize(tz) + last = last.tz_localize(tz) + return first, last else: first = first.normalize() diff --git a/pandas/tests/resample/test_datetime_index.py b/pandas/tests/resample/test_datetime_index.py index 73995cbe79ecd..b743aeecdc756 100644 --- a/pandas/tests/resample/test_datetime_index.py +++ b/pandas/tests/resample/test_datetime_index.py @@ -1276,6 +1276,21 @@ def test_resample_across_dst(): assert_frame_equal(result, expected) +def test_groupby_with_dst_time_change(): + # GH 24972 + index = pd.DatetimeIndex([1478064900001000000, 1480037118776792000], + tz='UTC').tz_convert('America/Chicago') + + df = pd.DataFrame([1, 2], index=index) + result = df.groupby(pd.Grouper(freq='1d')).last() + expected_index_values = pd.date_range('2016-11-02', '2016-11-24', + freq='d', tz='America/Chicago') + + index = pd.DatetimeIndex(expected_index_values) + expected = pd.DataFrame([1.0] + ([np.nan] * 21) + [2.0], index=index) + assert_frame_equal(result, expected) + + def test_resample_dst_anchor(): # 5172 dti = DatetimeIndex([datetime(2012, 11, 4, 23)], tz='US/Eastern')
… after last bin
https://api.github.com/repos/pandas-dev/pandas/pulls/25005
2019-01-29T16:12:28Z
2019-01-29T16:46:52Z
2019-01-29T16:46:52Z
2019-01-29T16:46:56Z

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
72
Add dataset card