|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""SQUAD: The Stanford Question Answering Dataset.""" |
|
import csv |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """ |
|
@article{2016arXiv160605250R, |
|
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, |
|
Konstantin and {Liang}, Percy}, |
|
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", |
|
journal = {arXiv e-prints}, |
|
year = 2016, |
|
eid = {arXiv:1606.05250}, |
|
pages = {arXiv:1606.05250}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1606.05250}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Stanford Question Answering Dataset (SQuAD) is a reading comprehension |
|
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia |
|
articles, where the answer to every question is a segment of text, or span, |
|
from the corresponding reading passage, or the question might be unanswerable. |
|
""" |
|
|
|
train_url = "https://raw.githubusercontent.com/Sampson2016/test/master/train.csv?token=GHSAT0AAAAAABR4XKTH73T5VNFVZ3KS33FYYVQLQAA" |
|
|
|
_URLS = { |
|
"train": train_url, |
|
"test": train_url, |
|
} |
|
|
|
|
|
class Demo2Config(datasets.BuilderConfig): |
|
|
|
def __init__(self, **kwargs): |
|
super(Demo2Config, self).__init__(**kwargs) |
|
|
|
|
|
class Demo2(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
Demo2Config( |
|
name="plain_text", |
|
version=datasets.Version("1.0.0", ""), |
|
description="Plain text", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=['0', '1']) |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://rajpurkar.github.io/SQuAD-explorer/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
demo2 = csv.DictReader(f) |
|
for key, row in enumerate(demo2): |
|
yield key, { |
|
"text": row['text'], |
|
"label": row['label'], |
|
} |