hyperedge
int64
1
113k
nodes
stringlengths
3
180
timestamp
float64
0
3,612B
1
[1]
3,547,497,600,000
2
[2]
1,594,425,600,000
8
[6]
3,193,689,600,000
9
[7]
3,247,257,600,000
10
[7]
3,247,257,600,000
11
[7]
3,247,257,600,000
12
[8, 6]
3,385,065,600,000
13
[8, 6]
3,281,212,800,000
14
[8, 6]
3,281,212,800,000
15
[8, 6]
3,281,212,800,000
16
[8, 6]
3,281,212,800,000
17
[9]
3,302,294,400,000
18
[7]
3,247,257,600,000
19
[7]
3,247,257,600,000
20
[9]
3,302,294,400,000
21
[7]
3,317,328,000,000
22
[7]
3,317,328,000,000
23
[9]
3,472,502,400,000
24
[8]
3,076,012,800,000
25
[8]
3,053,116,800,000
26
[8]
3,053,116,800,000
27
[8]
3,053,116,800,000
28
[10]
3,093,033,600,000
29
[10]
3,093,033,600,000
30
[8]
3,156,451,200,000
31
[8]
3,192,393,600,000
32
[8]
3,168,806,400,000
33
[8]
3,168,806,400,000
34
[8]
3,208,291,200,000
35
[8]
3,208,291,200,000
42
[13]
2,964,988,800,000
44
[15]
3,041,107,200,000
45
[15]
3,041,107,200,000
46
[16]
3,043,699,200,000
47
[16]
3,154,809,600,000
48
[16]
3,154,809,600,000
49
[16]
3,096,921,600,000
50
[8]
3,289,766,400,000
51
[17]
3,284,841,600,000
52
[17]
3,398,112,000,000
53
[18]
3,607,027,200,000
54
[18]
3,607,027,200,000
56
[16]
3,043,699,200,000
60
[21]
2,634,508,800,000
61
[21]
2,634,508,800,000
62
[22]
3,247,257,600,000
63
[21]
2,974,060,800,000
64
[21]
2,823,811,200,000
65
[16]
3,398,025,600,000
66
[16]
3,398,025,600,000
67
[16]
3,398,025,600,000
68
[21]
3,592,771,200,000
69
[21]
3,592,771,200,000
75
[24]
3,439,756,800,000
77
[26]
3,517,084,800,000
79
[27]
3,360,355,200,000
80
[27]
3,360,355,200,000
81
[27]
3,360,355,200,000
82
[28]
3,452,803,200,000
83
[27]
3,421,094,400,000
84
[27]
3,497,212,800,000
85
[27]
3,497,212,800,000
86
[29]
3,565,641,600,000
87
[29]
3,565,641,600,000
88
[30]
3,321,043,200,000
89
[30]
3,321,043,200,000
90
[30]
3,321,043,200,000
91
[31]
2,981,404,800,000
92
[31]
2,981,404,800,000
93
[31]
2,981,404,800,000
94
[31]
2,981,404,800,000
95
[31]
3,050,956,800,000
96
[32]
3,439,756,800,000
97
[32]
3,520,886,400,000
98
[33]
3,479,068,800,000
99
[33]
3,479,068,800,000
101
[35]
3,510,000,000,000
102
[35]
3,510,000,000,000
103
[33]
3,479,068,800,000
104
[33]
3,479,068,800,000
105
[32]
3,520,886,400,000
106
[32]
3,520,886,400,000
115
[39]
3,452,803,200,000
116
[39]
3,452,803,200,000
117
[39]
3,452,803,200,000
118
[28]
3,452,803,200,000
119
[28]
3,452,803,200,000
120
[28]
3,452,803,200,000
123
[41]
2,379,888,000,000
124
[41]
2,379,888,000,000
125
[42]
3,247,862,400,000
126
[41]
2,379,888,000,000
127
[43]
3,235,680,000,000
128
[43]
3,515,875,200,000
129
[44]
3,312,230,400,000
130
[44]
3,027,196,800,000
131
[45]
3,501,532,800,000
132
[46]
3,008,448,000,000
133
[46]
3,075,667,200,000
134
[46]
3,116,188,800,000

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="NDC-substances", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
68

Collection including SauravMaheshkar/NDC-substances