hyperedge
int64
2
165k
nodes
stringlengths
3
113
timestamp
float64
2.8k
33M
2
[3, 4]
2,797
3
[3, 5]
3,304
4
[6, 7]
4,523
5
[8, 6]
7,926
6
[6, 7]
8,061
7
[9, 10]
19,403
8
[11, 12]
19,560
9
[13, 14]
21,077
10
[13, 15]
21,280
12
[18, 19]
21,799
13
[20, 13]
22,038
14
[21, 22]
23,175
16
[32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 24, 25, 26, 27, 28, 29, 30, 31]
23,553
17
[42, 43]
23,646
19
[46, 47]
23,712
20
[48, 49]
23,813
21
[50, 51]
24,004
22
[42, 52]
24,076
25
[61, 62]
24,710
26
[55]
24,832
29
[5, 63]
25,431
30
[67, 68]
25,503
31
[69, 70]
25,597
32
[67, 68]
25,608
33
[42, 43]
25,654
34
[72, 71]
25,656
35
[73, 22]
25,811
36
[72, 71]
25,870
37
[72, 71]
25,991
39
[49, 76, 77]
26,225
40
[78, 79]
26,272
41
[80, 78]
26,402
42
[80, 78]
26,484
44
[20, 63]
27,094
45
[42, 52]
27,119
46
[83, 84]
27,133
48
[83, 85]
27,176
49
[73, 22]
27,187
51
[83, 87]
27,254
52
[89, 90]
27,343
53
[91, 92]
27,362
54
[21, 93]
27,408
56
[89, 90, 97]
27,598
58
[104, 105]
27,718
59
[104, 105]
27,822
60
[42, 52]
28,102
61
[106, 83, 84, 85]
28,137
63
[108, 63]
28,193
65
[114, 115]
28,326
66
[116, 117]
28,393
67
[118, 119]
28,544
68
[120, 77]
28,555
69
[121, 18]
28,632
70
[106, 83, 84, 85, 87, 122]
28,784
71
[123, 124]
28,792
72
[13, 15]
29,181
73
[125, 126]
29,445
74
[14, 127]
29,586
76
[132, 133]
29,693
77
[41, 27, 30]
29,736
79
[19, 134]
29,824
81
[135, 7]
29,871
82
[116, 63]
29,928
83
[136, 137]
29,929
84
[138, 139]
29,998
86
[140, 141]
30,009
87
[142, 143]
30,072
88
[144, 52, 134]
30,076
89
[145, 146]
30,105
90
[89, 90]
30,114
91
[145, 146]
30,153
92
[147, 148]
30,274
93
[83, 84]
30,276
94
[149, 150]
30,281
95
[104, 151]
30,392
96
[50, 85]
30,463
97
[152, 29]
30,470
98
[153, 154]
30,512
99
[153, 154]
30,668
100
[155, 156]
30,698
101
[13, 14]
30,809
102
[157, 158]
30,899
104
[160, 159]
30,953
105
[3, 4, 5]
30,970
106
[19, 134]
30,981
107
[13, 15]
31,082
108
[40, 24, 36, 30]
31,085
109
[161, 162]
31,232
110
[163, 72, 50, 51, 85]
31,258
111
[163, 72, 50, 51, 85]
31,286
112
[108, 63]
31,307
115
[140, 165]
31,377
116
[120, 77]
31,435
118
[168, 169]
31,471
119
[123, 124]
31,491
120
[170, 171, 116]
31,576
121
[41, 172]
31,652
122
[83, 84]
31,682
123
[104, 124, 173, 62]
31,721
124
[25, 97]
31,773

Source Paper: https://arxiv.org/abs/1802.06916

Usage

from torch_geometric.datasets.cornell import CornellTemporalHyperGraphDataset

dataset = CornellTemporalHyperGraphDataset(root = "./", name="email-Eu", split="train")

Citation

@article{Benson-2018-simplicial,
 author = {Benson, Austin R. and Abebe, Rediet and Schaub, Michael T. and Jadbabaie, Ali and Kleinberg, Jon},
 title = {Simplicial closure and higher-order link prediction},
 year = {2018},
 doi = {10.1073/pnas.1800683115},
 publisher = {National Academy of Sciences},
 issn = {0027-8424},
 journal = {Proceedings of the National Academy of Sciences}
}
Downloads last month
78

Models trained or fine-tuned on SauravMaheshkar/email-Eu

Collection including SauravMaheshkar/email-Eu