|
--- |
|
task_categories: |
|
- image-classification |
|
language: |
|
- en |
|
tags: |
|
- Images |
|
pretty_name: 'Material Classification Hands On ' |
|
size_categories: |
|
- n<1K |
|
dataset_info: |
|
config_name: plain_text |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': Brick |
|
'1': Metal |
|
'2': Paper |
|
'3': Plastic |
|
'4': Wood |
|
splits: |
|
- name: train |
|
num_examples: 120 |
|
- name: test |
|
num_examples: 30 |
|
license: mit |
|
--- |
|
# Dataset Card for Material Classification |
|
|
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** https://semillerocv.github.io/proyectos.html |
|
- **Repository:** https://github.com/Sneider-exe/Clasificacion_Materiales |
|
|
|
### Dataset Summary |
|
|
|
The Material_classification_2U dataset consists of 150 256x256 color images, categorized into 5 classes with 30 images per class. The dataset is divided into two main subsets: 120 images for training and 30 images for testing. Each image is labeled into one of the following five categories: Brick, Metal, Paper, Plastic, and Wood. |
|
### Supported Tasks and Leaderboards |
|
|
|
- `image-classification`: The goal of this task is to classify a given image into one of 5 classes. |
|
|
|
### Languages |
|
|
|
English |
|
|
|
## Dataset Structure |
|
### Dataset Structure |
|
|
|
- **Total Images:** 150 |
|
- **Image Size:** 256x256 pixels |
|
- **Color:** RGB (Color images) |
|
- **Classes:** 5 |
|
- **Brick:** 30 images |
|
- **Metal:** 30 images |
|
- **Paper:** 30 images |
|
- **Plastic:** 30 images |
|
- **Wood:** 30 images |
|
- **Splits:** |
|
- **Train:** 120 images (24 per class) |
|
- **Test:** 30 images (6 per class) |
|
|
|
### Data Instances |
|
|
|
A sample from the training set is provided below: |
|
|
|
``` |
|
{ |
|
'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=256x256>, |
|
'label': 1 |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
- image: A `PIL.Image.Image` object containing the 256x256 image. Note that when accessing the image column: `dataset['train']["image"]` the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. |
|
- label: 0-4 with the following correspondence |
|
'0': Brick |
|
'1': Metal |
|
'2': Paper |
|
'3': Plastic |
|
'4': Wood |
|
|
|
### Data Splits |
|
|
|
Train and Test |
|
|
|
|
|
|
|
|
|
|
|
### Citation Information |
|
|
|
``` |
|
@TECHREPORT{ |
|
author = {Brayan Sneider Sánchez, Dana Meliza Villamizar, Cesar Vanegas, Juan Jose Calderón}, |
|
title = {Material Classification}, |
|
institution = {Universidad Industrial de Santander}, |
|
year = {2024} |
|
} |
|
``` |