SerdarHelli's picture
Update README.md
cc0385e
|
raw
history blame
4.34 kB
---
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
- teeth_segmentation
- segmentation
- dentalimaging
- medicalimaging
- image-segmentation
train-eval-index:
- config: plain_text
task: semantic_segmentation
task_id: semantic_segmentation
splits:
train_split: train
eval_split: test
col_mapping:
image: image
label: image
---
# Dataset Card for [Dataset Name]
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)
- **Repository:** [https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)
- **Paper:** [Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing](https://dergipark.org.tr/tr/pub/dubited/issue/68307/950568)
- **Leaderboard:**
- **Point of Contact:** S.Serdar Helli
### Dataset Summary
# Semantic-Segmentation-of-Teeth-in-Panoramic-X-ray-Image
The aim of this study is automatic semantic segmentation and measurement total length of teeth in one-shot panoramic x-ray image by using deep learning method with U-Net Model and binary image analysis in order to provide diagnostic information for the management of dental disorders, diseases, and conditions.
[***Github Link***](https://github.com/SerdarHelli/Segmentation-of-Teeth-in-Panoramic-X-ray-Image-Using-U-Net)
***Original Dataset For Only Images***
DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015
[Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1)
### Supported Tasks and Leaderboards
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
"image": X-ray Image (Image),
"label": Binary Image Segmentation Map (Image)
}
```
## Dataset Creation
### Source Data
***Original Dataset For Only Images***
DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015
[Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1)
### Annotations
#### Annotation process
The annotation was made manually.
#### Who are the annotators?
S.Serdar Helli
### Other Known Limitations
To Check Out:
***Original Dataset For Only Images***
DATASET ref - H. Abdi, S. Kasaei, and M. Mehdizadeh, “Automatic segmentation of mandible in panoramic x-ray,” J. Med. Imaging, vol. 2, no. 4, p. 44003, 2015
[Link DATASET for only original images.](https://data.mendeley.com/datasets/hxt48yk462/1)
## Additional Information
### Citation Information
For Labelling
```
@article{helli10tooth,
title={Tooth Instance Segmentation on Panoramic Dental Radiographs Using U-Nets and Morphological Processing},
author={HELL{\.I}, Serdar and HAMAMCI, Anda{\c{c}}},
journal={D{\"u}zce {\"U}niversitesi Bilim ve Teknoloji Dergisi},
volume={10},
number={1},
pages={39--50}
}
```
For Original Images
```
@article{abdi2015automatic,
title={Automatic segmentation of mandible in panoramic x-ray},
author={Abdi, Amir Hossein and Kasaei, Shohreh and Mehdizadeh, Mojdeh},
journal={Journal of Medical Imaging},
volume={2},
number={4},
pages={044003},
year={2015},
publisher={SPIE}
}
```
### Contributions
Thanks to [@SerdarHelli](https://github.com/SerdarHelli) for adding this dataset.