Datasets:

Languages:
English
ArXiv:
License:
ImageRewardDB / README.md
wuyuchen's picture
Update README.md
659a32f
|
raw
history blame
7.01 kB
metadata
license: apache-2.0
task_categories:
  - text-to-image
language:
  - en
pretty_name: ImageReward Dataset
size_categories:
  - 1K<n<10K

ImageRewardDB

Dataset Description

Dataset Summary

ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference. It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB. To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and annotator training, optimizing labeling experience, and ensuring quality validation. And ImageRewardDB is now public available at πŸ€— Hugging Face Dataset.

Languages

The text in the dataset is all in English.

Four Subsets

Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs. For all subsets, the validation and test splits remain the same. The validation split(1.08GB) contains 412 prompts and 3.2K images and the test(1.14GB) split cotains 466 prompts and 3.4K images. The information of the train split in different scales is as following:

Subset Num of Images Num of Prompts Size
ImageRewardDB 1K 7.8K 1K 2.7GB
ImageRewardDB 2K 15.6K 2K 5.4GB
ImageRewardDB 4K 31.4K 4K 10.6GB
ImageRewardDB 8K 62.6K 8K 20.6GB

Dataset Structure

All the data in this repository is stored in a well organized way. The 62.6K images in ImageRewardDB are split into several folders, stored in corresponding directories under "./images" according to its split. Each folder contains around 500 prompts, its corresponding images, and a JSON file. The JSON file links the image with its corresponding prompt and annotation. The file structure is as following:

# ImageRewardDB
./
β”œβ”€β”€ images
β”‚   β”œβ”€β”€ train
β”‚   β”‚   β”œβ”€β”€ train_1
β”‚   β”‚   β”‚   β”œβ”€β”€ 0a1ed3a5-04f6-4a1b-aee6-d584e7c8ed9c.webp
β”‚   β”‚   β”‚   β”œβ”€β”€ 0a58cfa8-ff61-4d31-9757-27322aec3aaf.webp
β”‚   β”‚   β”‚   β”œβ”€β”€ [...]
β”‚   β”‚   β”‚   └── train_1.json
β”‚   β”‚   β”œβ”€β”€ train_2
β”‚   β”‚   β”œβ”€β”€ train_3
β”‚   β”‚   β”œβ”€β”€ [...]
β”‚   β”‚   └── train_32
β”‚   β”œβ”€β”€ validation
β”‚   β”‚   └── [...]
β”‚   └── test
β”‚       └── [...]
β”œβ”€β”€ metadata-train.parquet
β”œβ”€β”€ metadata-validation.parquet
└── metadata-test.parquet

The sub-folders have the name of _, and the JSON file have the same name as the sub-folder. Each image is a lossless WebP file, and has a unique name generated by UUID.

Data Instances

For instance, below is the image of 1b4b2d61-89c2-4091-a1c0-f547ad5065cb.webp and its information in train_1.json.

{
  "image_path": "images/train/train_1/0280642d-f69f-41d1-8598-5a44e296aa8b.webp",
  "prompt_id": "000864-0061",
  "prompt": "painting of a holy woman, decorated, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8 k ",
  "classification": "People",
  "image_amount_in_total": 9,
  "rank": 5,
  "overall_rating": 4,
  "image_text_alignment_rating": 3,
  "fidelity_rating": 4
}

Data Fields

  • image: The image object
  • prompt_id: The id of the corresponding prompt
  • prompt: The text of the corresponding prompt
  • classification: The classification of the corresponding prompt
  • image_amount_in_total: Total amount of images related to the prompt
  • rank: The relative rank of the image in all related images
  • overall_rating: The overall score of this image
  • image_text_alignment_rating: The score of how well the generated image matchs the given text
  • fidelity_rating: The score of whether the output image is true to the shape and characteristics that the object should have

Data Splits

As we mentioned above, all scales of the subsets we provided have three spilts of "train", "validtion", and "test". And all the subsets share the same validation and test splits.

Dataset Metadata

We also include three metadata tables metadata-train.parquet, metadata-validation.parquet, and metadata-test.parquet to help you access and comprehend ImageRewardDB without downloading the Zip files.

All the tables share the same schema, and each row refers to an image. The schema is shown below, and actually the JSON files we mentioned above share the same schema:

Column Type Description
image_path string The relative path of the image in the repository.
prompt_id string The id of the corresponding prompt.
prompt string The text of the corresponding prompt.
classification string The classification of the corresponding prompt.
image_amount_in_total int Total amount of images related to the prompt.
rank int The relative rank of the image in all related images.
overall_rating int The overall score of this image.
image_text_alignment_rating int The score of how well the generated image matchs the given text.
fidelity_rating int The score of whether the output image is true to the shape and characteristics that the object should have.

Below are an example row from metadata-train.parquet.

image_path prompt_id prompt classification image_amount_in_total rank overall_rating image_text_alignment_rating fidelity_rating
images/train/train_1/1b4b2d61-89c2-4091-a1c0-f547ad5065cb.webp 001324-0093 a magical forest that separates the good world from the dark world, fantasy art by greg rutkowski, loish, rhads, ferdinand knab, makoto shinkai and lois van baarle, ilya kuvshinov, rossdraws, tom bagshaw, global illumination, radiant light, detailed and intricate environment Outdoor Scenes 9 3 6 6 6

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]