repo_id
stringclasses
20 values
file_path
stringlengths
44
119
content
stringlengths
460
28.1k
__index_level_0__
int64
0
0
index
int64
90
4.01k
secrets
stringlengths
68
2.61k
has_secrets
bool
1 class
number_secrets
int64
1
28
new_content
stringlengths
454
28.4k
modified
bool
1 class
references
stringlengths
469
28.8k
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/unit_tests
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/unit_tests/document_loaders/test_confluence.py
import unittest from typing import Dict from unittest.mock import MagicMock, patch import pytest import requests from langchain.docstore.document import Document from langchain.document_loaders.confluence import ConfluenceLoader, ContentFormat @pytest.fixture def mock_confluence(): # type: ignore with patch("atlassian.Confluence") as mock_confluence: yield mock_confluence @pytest.mark.requires("atlassian", "bs4", "lxml") class TestConfluenceLoader: CONFLUENCE_URL = "https://example.atlassian.com/wiki" MOCK_USERNAME = "[email protected]" MOCK_API_TOKEN = "api_token" MOCK_SPACE_KEY = "spaceId123" def test_confluence_loader_initialization(self, mock_confluence: MagicMock) -> None: ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) mock_confluence.assert_called_once_with( url=self.CONFLUENCE_URL, username="[email protected]", password="api_token", cloud=True, ) def test_confluence_loader_initialization_invalid(self) -> None: with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, token="foo", ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, oauth2={ "access_token": "bar", "access_token_secret": "bar", "consumer_key": "bar", "key_cert": "bar", }, ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, session=requests.Session(), ) def test_confluence_loader_initialization_from_env( self, mock_confluence: MagicMock ) -> None: with unittest.mock.patch.dict( "os.environ", { "CONFLUENCE_USERNAME": self.MOCK_USERNAME, "CONFLUENCE_API_TOKEN": self.MOCK_API_TOKEN, }, ): ConfluenceLoader(url=self.CONFLUENCE_URL) mock_confluence.assert_called_with( url=self.CONFLUENCE_URL, username=None, password=None, cloud=True ) def test_confluence_loader_load_data_invalid_args(self) -> None: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) with pytest.raises( ValueError, match="Must specify at least one among `space_key`, `page_ids`, `label`, `cql` parameters.", # noqa: E501 ): confluence_loader.load() def test_confluence_loader_load_data_by_page_ids( self, mock_confluence: MagicMock ) -> None: mock_confluence.get_page_by_id.side_effect = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) mock_page_ids = ["123", "456"] documents = confluence_loader.load(page_ids=mock_page_ids) assert mock_confluence.get_page_by_id.call_count == 2 assert mock_confluence.get_all_restrictions_for_content.call_count == 2 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_all_pages_from_space.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_load_data_by_space_id( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load(space_key=self.MOCK_SPACE_KEY, max_pages=2) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_when_content_format_and_keep_markdown_format_enabled( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123", ContentFormat.VIEW), self._get_mock_page("456", ContentFormat.VIEW), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load( space_key=self.MOCK_SPACE_KEY, content_format=ContentFormat.VIEW, keep_markdown_format=True, max_pages=2, ) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123\n\n" assert documents[1].page_content == "Content 456\n\n" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def _get_mock_confluence_loader( self, mock_confluence: MagicMock ) -> ConfluenceLoader: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) confluence_loader.confluence = mock_confluence return confluence_loader def _get_mock_page( self, page_id: str, content_format: ContentFormat = ContentFormat.STORAGE ) -> Dict: return { "id": f"{page_id}", "title": f"Page {page_id}", "body": { f"{content_format.name.lower()}": {"value": f"<p>Content {page_id}</p>"} }, "status": "current", "type": "page", "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}", "tinyui": "/x/tiny_ui_link", "editui": f"/pages/resumedraft.action?draftId={page_id}", "webui": f"/spaces/{self.MOCK_SPACE_KEY}/overview", }, } def _get_mock_page_restrictions(self, page_id: str) -> Dict: return { "read": { "operation": "read", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/read" # noqa: E501 }, }, "update": { "operation": "update", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/update" # noqa: E501 }, }, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation", # noqa: E501 "base": self.CONFLUENCE_URL, "context": "/wiki", }, }
0
1,929
[{"tag": "EMAIL", "value": "[email protected]", "start": 551, "end": 565}, {"tag": "EMAIL", "value": "[email protected]", "start": 983, "end": 997}]
true
2
import unittest from typing import Dict from unittest.mock import MagicMock, patch import pytest import requests from langchain.docstore.document import Document from langchain.document_loaders.confluence import ConfluenceLoader, ContentFormat @pytest.fixture def mock_confluence(): # type: ignore with patch("atlassian.Confluence") as mock_confluence: yield mock_confluence @pytest.mark.requires("atlassian", "bs4", "lxml") class TestConfluenceLoader: CONFLUENCE_URL = "https://example.atlassian.com/wiki" MOCK_USERNAME = "[email protected]" MOCK_API_TOKEN = "api_token" MOCK_SPACE_KEY = "spaceId123" def test_confluence_loader_initialization(self, mock_confluence: MagicMock) -> None: ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) mock_confluence.assert_called_once_with( url=self.CONFLUENCE_URL, username="[email protected]", password="api_token", cloud=True, ) def test_confluence_loader_initialization_invalid(self) -> None: with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, token="foo", ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, oauth2={ "access_token": "bar", "access_token_secret": "bar", "consumer_key": "bar", "key_cert": "bar", }, ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, session=requests.Session(), ) def test_confluence_loader_initialization_from_env( self, mock_confluence: MagicMock ) -> None: with unittest.mock.patch.dict( "os.environ", { "CONFLUENCE_USERNAME": self.MOCK_USERNAME, "CONFLUENCE_API_TOKEN": self.MOCK_API_TOKEN, }, ): ConfluenceLoader(url=self.CONFLUENCE_URL) mock_confluence.assert_called_with( url=self.CONFLUENCE_URL, username=None, password=None, cloud=True ) def test_confluence_loader_load_data_invalid_args(self) -> None: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) with pytest.raises( ValueError, match="Must specify at least one among `space_key`, `page_ids`, `label`, `cql` parameters.", # noqa: E501 ): confluence_loader.load() def test_confluence_loader_load_data_by_page_ids( self, mock_confluence: MagicMock ) -> None: mock_confluence.get_page_by_id.side_effect = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) mock_page_ids = ["123", "456"] documents = confluence_loader.load(page_ids=mock_page_ids) assert mock_confluence.get_page_by_id.call_count == 2 assert mock_confluence.get_all_restrictions_for_content.call_count == 2 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_all_pages_from_space.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_load_data_by_space_id( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load(space_key=self.MOCK_SPACE_KEY, max_pages=2) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_when_content_format_and_keep_markdown_format_enabled( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123", ContentFormat.VIEW), self._get_mock_page("456", ContentFormat.VIEW), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load( space_key=self.MOCK_SPACE_KEY, content_format=ContentFormat.VIEW, keep_markdown_format=True, max_pages=2, ) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123\n\n" assert documents[1].page_content == "Content 456\n\n" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def _get_mock_confluence_loader( self, mock_confluence: MagicMock ) -> ConfluenceLoader: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) confluence_loader.confluence = mock_confluence return confluence_loader def _get_mock_page( self, page_id: str, content_format: ContentFormat = ContentFormat.STORAGE ) -> Dict: return { "id": f"{page_id}", "title": f"Page {page_id}", "body": { f"{content_format.name.lower()}": {"value": f"<p>Content {page_id}</p>"} }, "status": "current", "type": "page", "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}", "tinyui": "/x/tiny_ui_link", "editui": f"/pages/resumedraft.action?draftId={page_id}", "webui": f"/spaces/{self.MOCK_SPACE_KEY}/overview", }, } def _get_mock_page_restrictions(self, page_id: str) -> Dict: return { "read": { "operation": "read", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/read" # noqa: E501 }, }, "update": { "operation": "update", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/update" # noqa: E501 }, }, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation", # noqa: E501 "base": self.CONFLUENCE_URL, "context": "/wiki", }, }
true
import unittest from typing import Dict from unittest.mock import MagicMock, patch import pytest import requests from langchain.docstore.document import Document from langchain.document_loaders.confluence import ConfluenceLoader, ContentFormat @pytest.fixture def mock_confluence(): # type: ignore with patch("atlassian.Confluence") as mock_confluence: yield mock_confluence @pytest.mark.requires("atlassian", "bs4", "lxml") class TestConfluenceLoader: CONFLUENCE_URL = "https://example.atlassian.com/wiki" MOCK_USERNAME = "PI:EMAIL:[email protected]_PI" MOCK_API_TOKEN = "api_token" MOCK_SPACE_KEY = "spaceId123" def test_confluence_loader_initialization(self, mock_confluence: MagicMock) -> None: ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) mock_confluence.assert_called_once_with( url=self.CONFLUENCE_URL, username="PI:EMAIL:[email protected]_PI", password="api_token", cloud=True, ) def test_confluence_loader_initialization_invalid(self) -> None: with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, token="foo", ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, oauth2={ "access_token": "bar", "access_token_secret": "bar", "consumer_key": "bar", "key_cert": "bar", }, ) with pytest.raises(ValueError): ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, session=requests.Session(), ) def test_confluence_loader_initialization_from_env( self, mock_confluence: MagicMock ) -> None: with unittest.mock.patch.dict( "os.environ", { "CONFLUENCE_USERNAME": self.MOCK_USERNAME, "CONFLUENCE_API_TOKEN": self.MOCK_API_TOKEN, }, ): ConfluenceLoader(url=self.CONFLUENCE_URL) mock_confluence.assert_called_with( url=self.CONFLUENCE_URL, username=None, password=None, cloud=True ) def test_confluence_loader_load_data_invalid_args(self) -> None: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) with pytest.raises( ValueError, match="Must specify at least one among `space_key`, `page_ids`, `label`, `cql` parameters.", # noqa: E501 ): confluence_loader.load() def test_confluence_loader_load_data_by_page_ids( self, mock_confluence: MagicMock ) -> None: mock_confluence.get_page_by_id.side_effect = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) mock_page_ids = ["123", "456"] documents = confluence_loader.load(page_ids=mock_page_ids) assert mock_confluence.get_page_by_id.call_count == 2 assert mock_confluence.get_all_restrictions_for_content.call_count == 2 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_all_pages_from_space.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_load_data_by_space_id( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123"), self._get_mock_page("456"), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load(space_key=self.MOCK_SPACE_KEY, max_pages=2) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123" assert documents[1].page_content == "Content 456" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def test_confluence_loader_when_content_format_and_keep_markdown_format_enabled( self, mock_confluence: MagicMock ) -> None: # one response with two pages mock_confluence.get_all_pages_from_space.return_value = [ self._get_mock_page("123", ContentFormat.VIEW), self._get_mock_page("456", ContentFormat.VIEW), ] mock_confluence.get_all_restrictions_for_content.side_effect = [ self._get_mock_page_restrictions("123"), self._get_mock_page_restrictions("456"), ] confluence_loader = self._get_mock_confluence_loader(mock_confluence) documents = confluence_loader.load( space_key=self.MOCK_SPACE_KEY, content_format=ContentFormat.VIEW, keep_markdown_format=True, max_pages=2, ) assert mock_confluence.get_all_pages_from_space.call_count == 1 assert len(documents) == 2 assert all(isinstance(doc, Document) for doc in documents) assert documents[0].page_content == "Content 123\n\n" assert documents[1].page_content == "Content 456\n\n" assert mock_confluence.get_page_by_id.call_count == 0 assert mock_confluence.get_all_pages_by_label.call_count == 0 assert mock_confluence.cql.call_count == 0 assert mock_confluence.get_page_child_by_type.call_count == 0 def _get_mock_confluence_loader( self, mock_confluence: MagicMock ) -> ConfluenceLoader: confluence_loader = ConfluenceLoader( self.CONFLUENCE_URL, username=self.MOCK_USERNAME, api_key=self.MOCK_API_TOKEN, ) confluence_loader.confluence = mock_confluence return confluence_loader def _get_mock_page( self, page_id: str, content_format: ContentFormat = ContentFormat.STORAGE ) -> Dict: return { "id": f"{page_id}", "title": f"Page {page_id}", "body": { f"{content_format.name.lower()}": {"value": f"<p>Content {page_id}</p>"} }, "status": "current", "type": "page", "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}", "tinyui": "/x/tiny_ui_link", "editui": f"/pages/resumedraft.action?draftId={page_id}", "webui": f"/spaces/{self.MOCK_SPACE_KEY}/overview", }, } def _get_mock_page_restrictions(self, page_id: str) -> Dict: return { "read": { "operation": "read", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/read" # noqa: E501 }, }, "update": { "operation": "update", "restrictions": { "user": {"results": [], "start": 0, "limit": 200, "size": 0}, "group": {"results": [], "start": 0, "limit": 200, "size": 0}, }, "_expandable": {"content": f"/rest/api/content/{page_id}"}, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation/update" # noqa: E501 }, }, "_links": { "self": f"{self.CONFLUENCE_URL}/rest/api/content/{page_id}/restriction/byOperation", # noqa: E501 "base": self.CONFLUENCE_URL, "context": "/wiki", }, }
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain/llms/replicate.py
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.schema.output import GenerationChunk from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from replicate.prediction import Prediction logger = logging.getLogger(__name__) class Replicate(LLM): """Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format model_kwargs={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate( model=( "stability-ai/stable-diffusion: " "27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478", ), model_kwargs={"image_dimensions": "512x512"} ) """ model: str model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input") replicate_api_token: Optional[str] = None prompt_key: Optional[str] = None version_obj: Any = Field(default=None, exclude=True) """Optionally pass in the model version object during initialization to avoid having to make an extra API call to retrieve it during streaming. NOTE: not serializable, is excluded from serialization. """ streaming: bool = False """Whether to stream the results.""" stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" class Config: """Configuration for this pydantic config.""" allow_population_by_field_name = True extra = Extra.forbid @property def lc_secrets(self) -> Dict[str, str]: return {"replicate_api_token": "REPLICATE_API_TOKEN"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} input = values.pop("input", {}) if input: logger.warning( "Init param `input` is deprecated, please use `model_kwargs` instead." ) extra = {**values.pop("model_kwargs", {}), **input} for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "replicate_api_token", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" if self.streaming: completion: Optional[str] = None for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): if completion is None: completion = chunk.text else: completion += chunk.text else: prediction = self._create_prediction(prompt, **kwargs) prediction.wait() if prediction.status == "failed": raise RuntimeError(prediction.error) if isinstance(prediction.output, str): completion = prediction.output else: completion = "".join(prediction.output) assert completion is not None stop_conditions = stop or self.stop for s in stop_conditions: if s in completion: completion = completion[: completion.find(s)] return completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: prediction = self._create_prediction(prompt, **kwargs) stop_conditions = stop or self.stop stop_condition_reached = False current_completion: str = "" for output in prediction.output_iterator(): current_completion += output # test for stop conditions, if specified for s in stop_conditions: if s in current_completion: prediction.cancel() stop_condition_reached = True # Potentially some tokens that should still be yielded before ending # stream. stop_index = max(output.find(s), 0) output = output[:stop_index] if not output: break if output: yield GenerationChunk(text=output) if run_manager: run_manager.on_llm_new_token( output, verbose=self.verbose, ) if stop_condition_reached: break def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction: try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version if self.version_obj is None: model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) self.version_obj = model.versions.get(version_str) if self.prompt_key is None: # sort through the openapi schema to get the name of the first input input_properties = sorted( self.version_obj.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) self.prompt_key = input_properties[0][0] input_: Dict = { self.prompt_key: prompt, **self.model_kwargs, **kwargs, } return replicate_python.predictions.create( version=self.version_obj, input=input_ )
0
2,192
[{"tag": "KEY", "value": "27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478", "start": 1136, "end": 1200}]
true
1
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.schema.output import GenerationChunk from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from replicate.prediction import Prediction logger = logging.getLogger(__name__) class Replicate(LLM): """Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format model_kwargs={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate( model=( "stability-ai/stable-diffusion: " "ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7", ), model_kwargs={"image_dimensions": "512x512"} ) """ model: str model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input") replicate_api_token: Optional[str] = None prompt_key: Optional[str] = None version_obj: Any = Field(default=None, exclude=True) """Optionally pass in the model version object during initialization to avoid having to make an extra API call to retrieve it during streaming. NOTE: not serializable, is excluded from serialization. """ streaming: bool = False """Whether to stream the results.""" stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" class Config: """Configuration for this pydantic config.""" allow_population_by_field_name = True extra = Extra.forbid @property def lc_secrets(self) -> Dict[str, str]: return {"replicate_api_token": "REPLICATE_API_TOKEN"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} input = values.pop("input", {}) if input: logger.warning( "Init param `input` is deprecated, please use `model_kwargs` instead." ) extra = {**values.pop("model_kwargs", {}), **input} for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "replicate_api_token", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" if self.streaming: completion: Optional[str] = None for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): if completion is None: completion = chunk.text else: completion += chunk.text else: prediction = self._create_prediction(prompt, **kwargs) prediction.wait() if prediction.status == "failed": raise RuntimeError(prediction.error) if isinstance(prediction.output, str): completion = prediction.output else: completion = "".join(prediction.output) assert completion is not None stop_conditions = stop or self.stop for s in stop_conditions: if s in completion: completion = completion[: completion.find(s)] return completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: prediction = self._create_prediction(prompt, **kwargs) stop_conditions = stop or self.stop stop_condition_reached = False current_completion: str = "" for output in prediction.output_iterator(): current_completion += output # test for stop conditions, if specified for s in stop_conditions: if s in current_completion: prediction.cancel() stop_condition_reached = True # Potentially some tokens that should still be yielded before ending # stream. stop_index = max(output.find(s), 0) output = output[:stop_index] if not output: break if output: yield GenerationChunk(text=output) if run_manager: run_manager.on_llm_new_token( output, verbose=self.verbose, ) if stop_condition_reached: break def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction: try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version if self.version_obj is None: model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) self.version_obj = model.versions.get(version_str) if self.prompt_key is None: # sort through the openapi schema to get the name of the first input input_properties = sorted( self.version_obj.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) self.prompt_key = input_properties[0][0] input_: Dict = { self.prompt_key: prompt, **self.model_kwargs, **kwargs, } return replicate_python.predictions.create( version=self.version_obj, input=input_ )
true
from __future__ import annotations import logging from typing import TYPE_CHECKING, Any, Dict, Iterator, List, Optional from langchain.callbacks.manager import CallbackManagerForLLMRun from langchain.llms.base import LLM from langchain.pydantic_v1 import Extra, Field, root_validator from langchain.schema.output import GenerationChunk from langchain.utils import get_from_dict_or_env if TYPE_CHECKING: from replicate.prediction import Prediction logger = logging.getLogger(__name__) class Replicate(LLM): """Replicate models. To use, you should have the ``replicate`` python package installed, and the environment variable ``REPLICATE_API_TOKEN`` set with your API token. You can find your token here: https://replicate.com/account The model param is required, but any other model parameters can also be passed in with the format model_kwargs={model_param: value, ...} Example: .. code-block:: python from langchain.llms import Replicate replicate = Replicate( model=( "stability-ai/stable-diffusion: " "PI:KEY:ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7END_PI", ), model_kwargs={"image_dimensions": "512x512"} ) """ model: str model_kwargs: Dict[str, Any] = Field(default_factory=dict, alias="input") replicate_api_token: Optional[str] = None prompt_key: Optional[str] = None version_obj: Any = Field(default=None, exclude=True) """Optionally pass in the model version object during initialization to avoid having to make an extra API call to retrieve it during streaming. NOTE: not serializable, is excluded from serialization. """ streaming: bool = False """Whether to stream the results.""" stop: List[str] = Field(default_factory=list) """Stop sequences to early-terminate generation.""" class Config: """Configuration for this pydantic config.""" allow_population_by_field_name = True extra = Extra.forbid @property def lc_secrets(self) -> Dict[str, str]: return {"replicate_api_token": "REPLICATE_API_TOKEN"} @classmethod def is_lc_serializable(cls) -> bool: return True @root_validator(pre=True) def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: """Build extra kwargs from additional params that were passed in.""" all_required_field_names = {field.alias for field in cls.__fields__.values()} input = values.pop("input", {}) if input: logger.warning( "Init param `input` is deprecated, please use `model_kwargs` instead." ) extra = {**values.pop("model_kwargs", {}), **input} for field_name in list(values): if field_name not in all_required_field_names: if field_name in extra: raise ValueError(f"Found {field_name} supplied twice.") logger.warning( f"""{field_name} was transferred to model_kwargs. Please confirm that {field_name} is what you intended.""" ) extra[field_name] = values.pop(field_name) values["model_kwargs"] = extra return values @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key and python package exists in environment.""" replicate_api_token = get_from_dict_or_env( values, "replicate_api_token", "REPLICATE_API_TOKEN" ) values["replicate_api_token"] = replicate_api_token return values @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "model_kwargs": self.model_kwargs, } @property def _llm_type(self) -> str: """Return type of model.""" return "replicate" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: """Call to replicate endpoint.""" if self.streaming: completion: Optional[str] = None for chunk in self._stream( prompt, stop=stop, run_manager=run_manager, **kwargs ): if completion is None: completion = chunk.text else: completion += chunk.text else: prediction = self._create_prediction(prompt, **kwargs) prediction.wait() if prediction.status == "failed": raise RuntimeError(prediction.error) if isinstance(prediction.output, str): completion = prediction.output else: completion = "".join(prediction.output) assert completion is not None stop_conditions = stop or self.stop for s in stop_conditions: if s in completion: completion = completion[: completion.find(s)] return completion def _stream( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> Iterator[GenerationChunk]: prediction = self._create_prediction(prompt, **kwargs) stop_conditions = stop or self.stop stop_condition_reached = False current_completion: str = "" for output in prediction.output_iterator(): current_completion += output # test for stop conditions, if specified for s in stop_conditions: if s in current_completion: prediction.cancel() stop_condition_reached = True # Potentially some tokens that should still be yielded before ending # stream. stop_index = max(output.find(s), 0) output = output[:stop_index] if not output: break if output: yield GenerationChunk(text=output) if run_manager: run_manager.on_llm_new_token( output, verbose=self.verbose, ) if stop_condition_reached: break def _create_prediction(self, prompt: str, **kwargs: Any) -> Prediction: try: import replicate as replicate_python except ImportError: raise ImportError( "Could not import replicate python package. " "Please install it with `pip install replicate`." ) # get the model and version if self.version_obj is None: model_str, version_str = self.model.split(":") model = replicate_python.models.get(model_str) self.version_obj = model.versions.get(version_str) if self.prompt_key is None: # sort through the openapi schema to get the name of the first input input_properties = sorted( self.version_obj.openapi_schema["components"]["schemas"]["Input"][ "properties" ].items(), key=lambda item: item[1].get("x-order", 0), ) self.prompt_key = input_properties[0][0] input_: Dict = { self.prompt_key: prompt, **self.model_kwargs, **kwargs, } return replicate_python.predictions.create( version=self.version_obj, input=input_ )
hf_public_repos/gkamradt/langchain-tutorials/data
hf_public_repos/gkamradt/langchain-tutorials/data/thefuzz/setup.py
#!/usr/bin/env python # Copyright (c) 2014 SeatGeek # This file is part of thefuzz. from thefuzz import __version__ import os try: from setuptools import setup except ImportError: from distutils.core import setup def open_file(fname): return open(os.path.join(os.path.dirname(__file__), fname)) setup( name='thefuzz', version=__version__, author='Adam Cohen', author_email='[email protected]', packages=['thefuzz'], extras_require={'speedup': ['python-levenshtein>=0.12']}, url='https://github.com/seatgeek/thefuzz', license="GPLv2", classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License v2 (GPLv2)', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3 :: Only', ], description='Fuzzy string matching in python', long_description=open_file('README.rst').read(), zip_safe=True, )
0
136
[{"tag": "EMAIL", "value": "[email protected]", "start": 410, "end": 427}]
true
1
#!/usr/bin/env python # Copyright (c) 2014 SeatGeek # This file is part of thefuzz. from thefuzz import __version__ import os try: from setuptools import setup except ImportError: from distutils.core import setup def open_file(fname): return open(os.path.join(os.path.dirname(__file__), fname)) setup( name='thefuzz', version=__version__, author='Adam Cohen', author_email='[email protected]', packages=['thefuzz'], extras_require={'speedup': ['python-levenshtein>=0.12']}, url='https://github.com/seatgeek/thefuzz', license="GPLv2", classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License v2 (GPLv2)', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3 :: Only', ], description='Fuzzy string matching in python', long_description=open_file('README.rst').read(), zip_safe=True, )
true
#!/usr/bin/env python # Copyright (c) 2014 SeatGeek # This file is part of thefuzz. from thefuzz import __version__ import os try: from setuptools import setup except ImportError: from distutils.core import setup def open_file(fname): return open(os.path.join(os.path.dirname(__file__), fname)) setup( name='thefuzz', version=__version__, author='Adam Cohen', author_email='PI:EMAIL:[email protected]_PI', packages=['thefuzz'], extras_require={'speedup': ['python-levenshtein>=0.12']}, url='https://github.com/seatgeek/thefuzz', license="GPLv2", classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: GNU General Public License v2 (GPLv2)', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', 'Programming Language :: Python :: 3.10', 'Programming Language :: Python :: 3.11', 'Programming Language :: Python :: 3 :: Only', ], description='Fuzzy string matching in python', long_description=open_file('README.rst').read(), zip_safe=True, )
hf_public_repos/zilliztech/GPTCache/tests/unit_tests
hf_public_repos/zilliztech/GPTCache/tests/unit_tests/processor/test_context.py
from tempfile import TemporaryDirectory from typing import Any, Dict from unittest.mock import patch from gptcache import cache from gptcache.adapter import openai from gptcache.manager import manager_factory from gptcache.processor import ContextProcess from gptcache.processor.pre import all_content from gptcache.utils.response import get_message_from_openai_answer class CITestContextProcess(ContextProcess): def __init__(self): self.content = "" def format_all_content(self, data: Dict[str, Any], **params: Dict[str, Any]): self.content = all_content(data) def process_all_content(self) -> (Any, Any): save_content = self.content.upper() embedding_content = self.content return save_content, embedding_content def test_context_process(): with TemporaryDirectory(dir="./") as root: map_manager = manager_factory(data_dir=root) context_process = CITestContextProcess() cache.init( pre_embedding_func=context_process.pre_process, data_manager=map_manager ) question = "test calculate 1+3" expect_answer = "the result is 4" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) assert get_message_from_openai_answer(response) == expect_answer, response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) answer_text = get_message_from_openai_answer(response) assert answer_text == expect_answer, answer_text cache.flush() map_manager = manager_factory(data_dir=root) content = f"You are a helpful assistant.\n{question}" cache_answer = map_manager.search(content)[0] assert cache_answer[0] == content.upper() assert cache_answer[1].answer == expect_answer assert cache_answer[2] == content
0
866
[{"tag": "KEY", "value": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD", "start": 1561, "end": 1599}]
true
1
from tempfile import TemporaryDirectory from typing import Any, Dict from unittest.mock import patch from gptcache import cache from gptcache.adapter import openai from gptcache.manager import manager_factory from gptcache.processor import ContextProcess from gptcache.processor.pre import all_content from gptcache.utils.response import get_message_from_openai_answer class CITestContextProcess(ContextProcess): def __init__(self): self.content = "" def format_all_content(self, data: Dict[str, Any], **params: Dict[str, Any]): self.content = all_content(data) def process_all_content(self) -> (Any, Any): save_content = self.content.upper() embedding_content = self.content return save_content, embedding_content def test_context_process(): with TemporaryDirectory(dir="./") as root: map_manager = manager_factory(data_dir=root) context_process = CITestContextProcess() cache.init( pre_embedding_func=context_process.pre_process, data_manager=map_manager ) question = "test calculate 1+3" expect_answer = "the result is 4" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "949d1u22cbffbrarjh182eig55721odj", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) assert get_message_from_openai_answer(response) == expect_answer, response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) answer_text = get_message_from_openai_answer(response) assert answer_text == expect_answer, answer_text cache.flush() map_manager = manager_factory(data_dir=root) content = f"You are a helpful assistant.\n{question}" cache_answer = map_manager.search(content)[0] assert cache_answer[0] == content.upper() assert cache_answer[1].answer == expect_answer assert cache_answer[2] == content
true
from tempfile import TemporaryDirectory from typing import Any, Dict from unittest.mock import patch from gptcache import cache from gptcache.adapter import openai from gptcache.manager import manager_factory from gptcache.processor import ContextProcess from gptcache.processor.pre import all_content from gptcache.utils.response import get_message_from_openai_answer class CITestContextProcess(ContextProcess): def __init__(self): self.content = "" def format_all_content(self, data: Dict[str, Any], **params: Dict[str, Any]): self.content = all_content(data) def process_all_content(self) -> (Any, Any): save_content = self.content.upper() embedding_content = self.content return save_content, embedding_content def test_context_process(): with TemporaryDirectory(dir="./") as root: map_manager = manager_factory(data_dir=root) context_process = CITestContextProcess() cache.init( pre_embedding_func=context_process.pre_process, data_manager=map_manager ) question = "test calculate 1+3" expect_answer = "the result is 4" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "PI:KEY:949d1u22cbffbrarjh182eig55721odjEND_PI", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) assert get_message_from_openai_answer(response) == expect_answer, response response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": question}, ], ) answer_text = get_message_from_openai_answer(response) assert answer_text == expect_answer, answer_text cache.flush() map_manager = manager_factory(data_dir=root) content = f"You are a helpful assistant.\n{question}" cache_answer = map_manager.search(content)[0] assert cache_answer[0] == content.upper() assert cache_answer[1].answer == expect_answer assert cache_answer[2] == content
hf_public_repos/langchain-ai/langchain/docs/docs/integrations
hf_public_repos/langchain-ai/langchain/docs/docs/integrations/vectorstores/vearch.ipynb
from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from transformers import AutoModel, AutoTokenizer from langchain.vectorstores.vearch import Vearch # repalce to your local model path model_path = "/data/zhx/zhx/langchain-ChatGLM_new/chatglm2-6b" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)query = "你好!" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") query = "你知道凌波微步吗,你知道都有谁学会了吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n")# Add your local knowledge files file_path = "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt" # Your local file path" loader = TextLoader(file_path, encoding="utf-8") documents = loader.load() # split text into sentences and embedding the sentences text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) # replace to your model path embedding_path = "/data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese" embeddings = HuggingFaceEmbeddings(model_name=embedding_path)# first add your document into vearch vectorstore vearch_standalone = Vearch.from_documents( texts, embeddings, path_or_url="/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/localdb_new_test", table_name="localdb_new_test", flag=0, ) print("***************after is cluster res*****************") vearch_cluster = Vearch.from_documents( texts, embeddings, path_or_url="http://test-vearch-langchain-router.vectorbase.svc.ht1.n.jd.local", db_name="vearch_cluster_langchian", table_name="tobenumone", flag=1, )query = "你知道凌波微步吗,你知道都有谁会凌波微步?" vearch_standalone_res = vearch_standalone.similarity_search(query, 3) for idx, tmp in enumerate(vearch_standalone_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context = "".join([tmp.page_content for tmp in vearch_standalone_res]) new_query = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context} \n 回答用户这个问题:{query}\n\n" response, history = model.chat(tokenizer, new_query, history=[]) print(f"********ChatGLM:{response}\n") print("***************************after is cluster res******************************") query_c = "你知道凌波微步吗,你知道都有谁会凌波微步?" cluster_res = vearch_cluster.similarity_search(query_c, 3) for idx, tmp in enumerate(cluster_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context_c = "".join([tmp.page_content for tmp in cluster_res]) new_query_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context_c} \n 回答用户这个问题:{query_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query_c, history=[]) print(f"********ChatGLM:{response_c}\n")query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n") vearch_info = [ "Vearch 是一款存储大语言模型数据的向量数据库,用于存储和快速搜索模型embedding后的向量,可用于基于个人知识库的大模型应用", "Vearch 支持OpenAI, Llama, ChatGLM等模型,以及LangChain库", "vearch 是基于C语言,go语言开发的,并提供python接口,可以直接通过pip安装", ] vearch_source = [ { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, ] vearch_standalone.add_texts(vearch_info, vearch_source) print("*****************after is cluster res********************") vearch_cluster.add_texts(vearch_info, vearch_source)query3 = "你知道vearch是什么吗?" res1 = vearch_standalone.similarity_search(query3, 3) for idx, tmp in enumerate(res1): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1 = "".join([tmp.page_content for tmp in res1]) new_query1 = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1} \n 回答用户这个问题:{query3}\n\n" response, history = model.chat(tokenizer, new_query1, history=[]) print(f"***************ChatGLM:{response}\n") print("***************after is cluster res******************") query3_c = "你知道vearch是什么吗?" res1_c = vearch_standalone.similarity_search(query3_c, 3) for idx, tmp in enumerate(res1_c): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1_C = "".join([tmp.page_content for tmp in res1_c]) new_query1_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1_C} \n 回答用户这个问题:{query3_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query1_c, history=[]) print(f"***************ChatGLM:{response_c}\n")##delete and get function need to maintian docids ##your docid res_d = vearch_standalone.delete( [ "eee5e7468434427eb49829374c1e8220", "2776754da8fc4bb58d3e482006010716", "9223acd6d89d4c2c84ff42677ac0d47c", ] ) print("delete vearch standalone docid", res_d) query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") res_cluster = vearch_cluster.delete( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("delete vearch cluster docid", res_cluster) query_c = "你知道vearch是什么吗?" response_c, history = model.chat(tokenizer, query_c, history=[]) print(f"Human: {query}\nChatGLM:{response_c}\n") get_delet_doc = vearch_standalone.get( [ "eee5e7468434427eb49829374c1e8220", "2776754da8fc4bb58d3e482006010716", "9223acd6d89d4c2c84ff42677ac0d47c", ] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_standalone.get( [ "18ce6747dca04a2c833e60e8dfd83c04", "aafacb0e46574b378a9f433877ab06a8", "9776bccfdd8643a8b219ccee0596f370", "9223acd6d89d4c2c84ff42677ac0d47c", ] ) print("get existed docid", get_id_doc) get_delet_doc = vearch_cluster.get( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_cluster.get( [ "1841638988191686991", "-4519586577642625749", "5028230008472292907", "1342026762029067927", ] ) print("get existed docid", get_id_doc)
0
3,535
[{"tag": "KEY", "value": "2776754da8fc4bb58d3e482006010716", "start": 5018, "end": 5050}, {"tag": "KEY", "value": "2776754da8fc4bb58d3e482006010716", "start": 5692, "end": 5724}, {"tag": "KEY", "value": "9776bccfdd8643a8b219ccee0596f370", "start": 5977, "end": 6009}, {"tag": "KEY", "value": "9223acd6d89d4c2c84ff42677ac0d47c", "start": 5062, "end": 5094}, {"tag": "KEY", "value": "9223acd6d89d4c2c84ff42677ac0d47c", "start": 5736, "end": 5768}, {"tag": "KEY", "value": "9223acd6d89d4c2c84ff42677ac0d47c", "start": 6021, "end": 6053}]
true
6
from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from transformers import AutoModel, AutoTokenizer from langchain.vectorstores.vearch import Vearch # repalce to your local model path model_path = "/data/zhx/zhx/langchain-ChatGLM_new/chatglm2-6b" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)query = "你好!" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") query = "你知道凌波微步吗,你知道都有谁学会了吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n")# Add your local knowledge files file_path = "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt" # Your local file path" loader = TextLoader(file_path, encoding="utf-8") documents = loader.load() # split text into sentences and embedding the sentences text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) # replace to your model path embedding_path = "/data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese" embeddings = HuggingFaceEmbeddings(model_name=embedding_path)# first add your document into vearch vectorstore vearch_standalone = Vearch.from_documents( texts, embeddings, path_or_url="/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/localdb_new_test", table_name="localdb_new_test", flag=0, ) print("***************after is cluster res*****************") vearch_cluster = Vearch.from_documents( texts, embeddings, path_or_url="http://test-vearch-langchain-router.vectorbase.svc.ht1.n.jd.local", db_name="vearch_cluster_langchian", table_name="tobenumone", flag=1, )query = "你知道凌波微步吗,你知道都有谁会凌波微步?" vearch_standalone_res = vearch_standalone.similarity_search(query, 3) for idx, tmp in enumerate(vearch_standalone_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context = "".join([tmp.page_content for tmp in vearch_standalone_res]) new_query = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context} \n 回答用户这个问题:{query}\n\n" response, history = model.chat(tokenizer, new_query, history=[]) print(f"********ChatGLM:{response}\n") print("***************************after is cluster res******************************") query_c = "你知道凌波微步吗,你知道都有谁会凌波微步?" cluster_res = vearch_cluster.similarity_search(query_c, 3) for idx, tmp in enumerate(cluster_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context_c = "".join([tmp.page_content for tmp in cluster_res]) new_query_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context_c} \n 回答用户这个问题:{query_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query_c, history=[]) print(f"********ChatGLM:{response_c}\n")query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n") vearch_info = [ "Vearch 是一款存储大语言模型数据的向量数据库,用于存储和快速搜索模型embedding后的向量,可用于基于个人知识库的大模型应用", "Vearch 支持OpenAI, Llama, ChatGLM等模型,以及LangChain库", "vearch 是基于C语言,go语言开发的,并提供python接口,可以直接通过pip安装", ] vearch_source = [ { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, ] vearch_standalone.add_texts(vearch_info, vearch_source) print("*****************after is cluster res********************") vearch_cluster.add_texts(vearch_info, vearch_source)query3 = "你知道vearch是什么吗?" res1 = vearch_standalone.similarity_search(query3, 3) for idx, tmp in enumerate(res1): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1 = "".join([tmp.page_content for tmp in res1]) new_query1 = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1} \n 回答用户这个问题:{query3}\n\n" response, history = model.chat(tokenizer, new_query1, history=[]) print(f"***************ChatGLM:{response}\n") print("***************after is cluster res******************") query3_c = "你知道vearch是什么吗?" res1_c = vearch_standalone.similarity_search(query3_c, 3) for idx, tmp in enumerate(res1_c): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1_C = "".join([tmp.page_content for tmp in res1_c]) new_query1_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1_C} \n 回答用户这个问题:{query3_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query1_c, history=[]) print(f"***************ChatGLM:{response_c}\n")##delete and get function need to maintian docids ##your docid res_d = vearch_standalone.delete( [ "eee5e7468434427eb49829374c1e8220", "caf86f4uutaoxfysmf7anj01xl6sv3ps", "74t3tndxag9o7h0890bnpfzh4olk2h9x", ] ) print("delete vearch standalone docid", res_d) query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") res_cluster = vearch_cluster.delete( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("delete vearch cluster docid", res_cluster) query_c = "你知道vearch是什么吗?" response_c, history = model.chat(tokenizer, query_c, history=[]) print(f"Human: {query}\nChatGLM:{response_c}\n") get_delet_doc = vearch_standalone.get( [ "eee5e7468434427eb49829374c1e8220", "caf86f4uutaoxfysmf7anj01xl6sv3ps", "74t3tndxag9o7h0890bnpfzh4olk2h9x", ] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_standalone.get( [ "18ce6747dca04a2c833e60e8dfd83c04", "aafacb0e46574b378a9f433877ab06a8", "ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6b", "74t3tndxag9o7h0890bnpfzh4olk2h9x", ] ) print("get existed docid", get_id_doc) get_delet_doc = vearch_cluster.get( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_cluster.get( [ "1841638988191686991", "-4519586577642625749", "5028230008472292907", "1342026762029067927", ] ) print("get existed docid", get_id_doc)
true
from langchain.document_loaders import TextLoader from langchain.embeddings.huggingface import HuggingFaceEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from transformers import AutoModel, AutoTokenizer from langchain.vectorstores.vearch import Vearch # repalce to your local model path model_path = "/data/zhx/zhx/langchain-ChatGLM_new/chatglm2-6b" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda(0)query = "你好!" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") query = "你知道凌波微步吗,你知道都有谁学会了吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n")# Add your local knowledge files file_path = "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/天龙八部/lingboweibu.txt" # Your local file path" loader = TextLoader(file_path, encoding="utf-8") documents = loader.load() # split text into sentences and embedding the sentences text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) texts = text_splitter.split_documents(documents) # replace to your model path embedding_path = "/data/zhx/zhx/langchain-ChatGLM_new/text2vec/text2vec-large-chinese" embeddings = HuggingFaceEmbeddings(model_name=embedding_path)# first add your document into vearch vectorstore vearch_standalone = Vearch.from_documents( texts, embeddings, path_or_url="/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/localdb_new_test", table_name="localdb_new_test", flag=0, ) print("***************after is cluster res*****************") vearch_cluster = Vearch.from_documents( texts, embeddings, path_or_url="http://test-vearch-langchain-router.vectorbase.svc.ht1.n.jd.local", db_name="vearch_cluster_langchian", table_name="tobenumone", flag=1, )query = "你知道凌波微步吗,你知道都有谁会凌波微步?" vearch_standalone_res = vearch_standalone.similarity_search(query, 3) for idx, tmp in enumerate(vearch_standalone_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context = "".join([tmp.page_content for tmp in vearch_standalone_res]) new_query = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context} \n 回答用户这个问题:{query}\n\n" response, history = model.chat(tokenizer, new_query, history=[]) print(f"********ChatGLM:{response}\n") print("***************************after is cluster res******************************") query_c = "你知道凌波微步吗,你知道都有谁会凌波微步?" cluster_res = vearch_cluster.similarity_search(query_c, 3) for idx, tmp in enumerate(cluster_res): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") # combine your local knowleadge and query context_c = "".join([tmp.page_content for tmp in cluster_res]) new_query_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context_c} \n 回答用户这个问题:{query_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query_c, history=[]) print(f"********ChatGLM:{response_c}\n")query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=history) print(f"Human: {query}\nChatGLM:{response}\n") vearch_info = [ "Vearch 是一款存储大语言模型数据的向量数据库,用于存储和快速搜索模型embedding后的向量,可用于基于个人知识库的大模型应用", "Vearch 支持OpenAI, Llama, ChatGLM等模型,以及LangChain库", "vearch 是基于C语言,go语言开发的,并提供python接口,可以直接通过pip安装", ] vearch_source = [ { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, { "source": "/data/zhx/zhx/langchain-ChatGLM_new/knowledge_base/tlbb/three_body.txt" }, ] vearch_standalone.add_texts(vearch_info, vearch_source) print("*****************after is cluster res********************") vearch_cluster.add_texts(vearch_info, vearch_source)query3 = "你知道vearch是什么吗?" res1 = vearch_standalone.similarity_search(query3, 3) for idx, tmp in enumerate(res1): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1 = "".join([tmp.page_content for tmp in res1]) new_query1 = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1} \n 回答用户这个问题:{query3}\n\n" response, history = model.chat(tokenizer, new_query1, history=[]) print(f"***************ChatGLM:{response}\n") print("***************after is cluster res******************") query3_c = "你知道vearch是什么吗?" res1_c = vearch_standalone.similarity_search(query3_c, 3) for idx, tmp in enumerate(res1_c): print(f"{'#'*20}第{idx+1}段相关文档{'#'*20}\n\n{tmp.page_content}\n") context1_C = "".join([tmp.page_content for tmp in res1_c]) new_query1_c = f"基于以下信息,尽可能准确的来回答用户的问题。背景信息:\n {context1_C} \n 回答用户这个问题:{query3_c}\n\n" response_c, history_c = model.chat(tokenizer, new_query1_c, history=[]) print(f"***************ChatGLM:{response_c}\n")##delete and get function need to maintian docids ##your docid res_d = vearch_standalone.delete( [ "eee5e7468434427eb49829374c1e8220", "PI:KEY:caf86f4uutaoxfysmf7anj01xl6sv3psEND_PI", "PI:KEY:74t3tndxag9o7h0890bnpfzh4olk2h9xEND_PI", ] ) print("delete vearch standalone docid", res_d) query = "你知道vearch是什么吗?" response, history = model.chat(tokenizer, query, history=[]) print(f"Human: {query}\nChatGLM:{response}\n") res_cluster = vearch_cluster.delete( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("delete vearch cluster docid", res_cluster) query_c = "你知道vearch是什么吗?" response_c, history = model.chat(tokenizer, query_c, history=[]) print(f"Human: {query}\nChatGLM:{response_c}\n") get_delet_doc = vearch_standalone.get( [ "eee5e7468434427eb49829374c1e8220", "PI:KEY:caf86f4uutaoxfysmf7anj01xl6sv3psEND_PI", "PI:KEY:74t3tndxag9o7h0890bnpfzh4olk2h9xEND_PI", ] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_standalone.get( [ "18ce6747dca04a2c833e60e8dfd83c04", "aafacb0e46574b378a9f433877ab06a8", "PI:KEY:ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6bEND_PI", "PI:KEY:74t3tndxag9o7h0890bnpfzh4olk2h9xEND_PI", ] ) print("get existed docid", get_id_doc) get_delet_doc = vearch_cluster.get( ["-4311783201092343475", "-2899734009733762895", "1342026762029067927"] ) print("after delete docid to query again:", get_delet_doc) get_id_doc = vearch_cluster.get( [ "1841638988191686991", "-4519586577642625749", "5028230008472292907", "1342026762029067927", ] ) print("get existed docid", get_id_doc)
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain/retrievers/you.py
from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import root_validator from langchain.schema import BaseRetriever, Document from langchain.utils import get_from_dict_or_env class YouRetriever(BaseRetriever): """`You` retriever that uses You.com's search API. To connect to the You.com api requires an API key which you can get by emailing [email protected]. You can check out our docs at https://documentation.you.com. You need to set the environment variable `YDC_API_KEY` for retriever to operate. """ ydc_api_key: str k: Optional[int] = None endpoint_type: str = "web" @root_validator(pre=True) def validate_client( cls, values: Dict[str, Any], ) -> Dict[str, Any]: values["ydc_api_key"] = get_from_dict_or_env( values, "ydc_api_key", "YDC_API_KEY" ) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: import requests headers = {"X-API-Key": self.ydc_api_key} if self.endpoint_type == "web": results = requests.get( f"https://api.ydc-index.io/search?query={query}", headers=headers, ).json() docs = [] for hit in results["hits"]: for snippet in hit["snippets"]: docs.append(Document(page_content=snippet)) if self.k is not None and len(docs) >= self.k: return docs return docs elif self.endpoint_type == "snippet": results = requests.get( f"https://api.ydc-index.io/snippet_search?query={query}", headers=headers, ).json() return [Document(page_content=snippet) for snippet in results] else: raise RuntimeError(f"Invalid endpoint type provided {self.endpoint_type}")
0
2,956
[{"tag": "EMAIL", "value": "[email protected]", "start": 449, "end": 460}]
true
1
from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import root_validator from langchain.schema import BaseRetriever, Document from langchain.utils import get_from_dict_or_env class YouRetriever(BaseRetriever): """`You` retriever that uses You.com's search API. To connect to the You.com api requires an API key which you can get by emailing [email protected]. You can check out our docs at https://documentation.you.com. You need to set the environment variable `YDC_API_KEY` for retriever to operate. """ ydc_api_key: str k: Optional[int] = None endpoint_type: str = "web" @root_validator(pre=True) def validate_client( cls, values: Dict[str, Any], ) -> Dict[str, Any]: values["ydc_api_key"] = get_from_dict_or_env( values, "ydc_api_key", "YDC_API_KEY" ) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: import requests headers = {"X-API-Key": self.ydc_api_key} if self.endpoint_type == "web": results = requests.get( f"https://api.ydc-index.io/search?query={query}", headers=headers, ).json() docs = [] for hit in results["hits"]: for snippet in hit["snippets"]: docs.append(Document(page_content=snippet)) if self.k is not None and len(docs) >= self.k: return docs return docs elif self.endpoint_type == "snippet": results = requests.get( f"https://api.ydc-index.io/snippet_search?query={query}", headers=headers, ).json() return [Document(page_content=snippet) for snippet in results] else: raise RuntimeError(f"Invalid endpoint type provided {self.endpoint_type}")
true
from typing import Any, Dict, List, Optional from langchain.callbacks.manager import CallbackManagerForRetrieverRun from langchain.pydantic_v1 import root_validator from langchain.schema import BaseRetriever, Document from langchain.utils import get_from_dict_or_env class YouRetriever(BaseRetriever): """`You` retriever that uses You.com's search API. To connect to the You.com api requires an API key which you can get by emailing PI:EMAIL:[email protected]_PI. You can check out our docs at https://documentation.you.com. You need to set the environment variable `YDC_API_KEY` for retriever to operate. """ ydc_api_key: str k: Optional[int] = None endpoint_type: str = "web" @root_validator(pre=True) def validate_client( cls, values: Dict[str, Any], ) -> Dict[str, Any]: values["ydc_api_key"] = get_from_dict_or_env( values, "ydc_api_key", "YDC_API_KEY" ) return values def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: import requests headers = {"X-API-Key": self.ydc_api_key} if self.endpoint_type == "web": results = requests.get( f"https://api.ydc-index.io/search?query={query}", headers=headers, ).json() docs = [] for hit in results["hits"]: for snippet in hit["snippets"]: docs.append(Document(page_content=snippet)) if self.k is not None and len(docs) >= self.k: return docs return docs elif self.endpoint_type == "snippet": results = requests.get( f"https://api.ydc-index.io/snippet_search?query={query}", headers=headers, ).json() return [Document(page_content=snippet) for snippet in results] else: raise RuntimeError(f"Invalid endpoint type provided {self.endpoint_type}")
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/unit_tests
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/unit_tests/document_loaders/test_git.py
import os import py import pytest from langchain.document_loaders import GitLoader def init_repo(tmpdir: py.path.local, dir_name: str) -> str: from git import Repo repo_dir = tmpdir.mkdir(dir_name) repo = Repo.init(repo_dir) git = repo.git git.checkout(b="main") git.config("user.name", "Test User") git.config("user.email", "[email protected]") sample_file = "file.txt" with open(os.path.join(repo_dir, sample_file), "w") as f: f.write("content") git.add([sample_file]) git.commit(m="Initial commit") return str(repo_dir) @pytest.mark.requires("git") def test_load_twice(tmpdir: py.path.local) -> None: """ Test that loading documents twice from the same repository does not raise an error. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 documents = loader.load() assert len(documents) == 1 @pytest.mark.requires("git") def test_clone_different_repo(tmpdir: py.path.local) -> None: """ Test that trying to clone a different repository into a directory already containing a clone raises a ValueError. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 other_clone_url = init_repo(tmpdir, "other_remote_repo") other_loader = GitLoader(repo_path=repo_path, clone_url=other_clone_url) with pytest.raises(ValueError): other_loader.load()
0
1,938
[{"tag": "EMAIL", "value": "[email protected]", "start": 360, "end": 376}]
true
1
import os import py import pytest from langchain.document_loaders import GitLoader def init_repo(tmpdir: py.path.local, dir_name: str) -> str: from git import Repo repo_dir = tmpdir.mkdir(dir_name) repo = Repo.init(repo_dir) git = repo.git git.checkout(b="main") git.config("user.name", "Test User") git.config("user.email", "[email protected]") sample_file = "file.txt" with open(os.path.join(repo_dir, sample_file), "w") as f: f.write("content") git.add([sample_file]) git.commit(m="Initial commit") return str(repo_dir) @pytest.mark.requires("git") def test_load_twice(tmpdir: py.path.local) -> None: """ Test that loading documents twice from the same repository does not raise an error. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 documents = loader.load() assert len(documents) == 1 @pytest.mark.requires("git") def test_clone_different_repo(tmpdir: py.path.local) -> None: """ Test that trying to clone a different repository into a directory already containing a clone raises a ValueError. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 other_clone_url = init_repo(tmpdir, "other_remote_repo") other_loader = GitLoader(repo_path=repo_path, clone_url=other_clone_url) with pytest.raises(ValueError): other_loader.load()
true
import os import py import pytest from langchain.document_loaders import GitLoader def init_repo(tmpdir: py.path.local, dir_name: str) -> str: from git import Repo repo_dir = tmpdir.mkdir(dir_name) repo = Repo.init(repo_dir) git = repo.git git.checkout(b="main") git.config("user.name", "Test User") git.config("user.email", "PI:EMAIL:[email protected]_PI") sample_file = "file.txt" with open(os.path.join(repo_dir, sample_file), "w") as f: f.write("content") git.add([sample_file]) git.commit(m="Initial commit") return str(repo_dir) @pytest.mark.requires("git") def test_load_twice(tmpdir: py.path.local) -> None: """ Test that loading documents twice from the same repository does not raise an error. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 documents = loader.load() assert len(documents) == 1 @pytest.mark.requires("git") def test_clone_different_repo(tmpdir: py.path.local) -> None: """ Test that trying to clone a different repository into a directory already containing a clone raises a ValueError. """ clone_url = init_repo(tmpdir, "remote_repo") repo_path = tmpdir.mkdir("local_repo").strpath loader = GitLoader(repo_path=repo_path, clone_url=clone_url) documents = loader.load() assert len(documents) == 1 other_clone_url = init_repo(tmpdir, "other_remote_repo") other_loader = GitLoader(repo_path=repo_path, clone_url=other_clone_url) with pytest.raises(ValueError): other_loader.load()
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/integration_tests
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/integration_tests/vectorstores/test_atlas.py
"""Test Atlas functionality.""" import time from langchain.vectorstores import AtlasDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings ATLAS_TEST_API_KEY = "7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6" def test_atlas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" def test_atlas_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), metadatas=metadatas, reset_project_if_exists=True, ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" assert output[0].metadata["page"] == "0"
0
1,441
[{"tag": "KEY", "value": "7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6", "start": 191, "end": 236}]
true
1
"""Test Atlas functionality.""" import time from langchain.vectorstores import AtlasDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings ATLAS_TEST_API_KEY = "ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6b" def test_atlas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" def test_atlas_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), metadatas=metadatas, reset_project_if_exists=True, ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" assert output[0].metadata["page"] == "0"
true
"""Test Atlas functionality.""" import time from langchain.vectorstores import AtlasDB from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings ATLAS_TEST_API_KEY = "PI:KEY:ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6bEND_PI" def test_atlas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" def test_atlas_with_metadatas() -> None: """Test end to end construction and search.""" texts = ["foo", "bar", "baz"] metadatas = [{"page": str(i)} for i in range(len(texts))] docsearch = AtlasDB.from_texts( name="langchain_test_project" + str(time.time()), texts=texts, api_key=ATLAS_TEST_API_KEY, embedding=FakeEmbeddings(), metadatas=metadatas, reset_project_if_exists=True, ) output = docsearch.similarity_search("foo", k=1) assert len(output) == 1 assert output[0].page_content == "foo" assert output[0].metadata["page"] == "0"
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain
hf_public_repos/langchain-ai/langchain/libs/langchain/langchain/utilities/pubmed.py
import json import logging import time import urllib.error import urllib.parse import urllib.request from typing import Any, Dict, Iterator, List from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class PubMedAPIWrapper(BaseModel): """ Wrapper around PubMed API. This wrapper will use the PubMed API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results of an input search. Parameters: top_k_results: number of the top-scored document used for the PubMed tool MAX_QUERY_LENGTH: maximum length of the query. Default is 300 characters. doc_content_chars_max: maximum length of the document content. Content will be truncated if it exceeds this length. Default is 2000 characters. max_retry: maximum number of retries for a request. Default is 5. sleep_time: time to wait between retries. Default is 0.2 seconds. email: email address to be used for the PubMed API. """ parse: Any #: :meta private: base_url_esearch: str = ( "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?" ) base_url_efetch: str = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?" max_retry: int = 5 sleep_time: float = 0.2 # Default values for the parameters top_k_results: int = 3 MAX_QUERY_LENGTH: int = 300 doc_content_chars_max: int = 2000 email: str = "[email protected]" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import xmltodict values["parse"] = xmltodict.parse except ImportError: raise ImportError( "Could not import xmltodict python package. " "Please install it with `pip install xmltodict`." ) return values def run(self, query: str) -> str: """ Run PubMed search and get the article meta information. See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch It uses only the most informative fields of article meta information. """ try: # Retrieve the top-k results for the query docs = [ f"Published: {result['Published']}\n" f"Title: {result['Title']}\n" f"Copyright Information: {result['Copyright Information']}\n" f"Summary::\n{result['Summary']}" for result in self.load(query[: self.MAX_QUERY_LENGTH]) ] # Join the results and limit the character count return ( "\n\n".join(docs)[: self.doc_content_chars_max] if docs else "No good PubMed Result was found" ) except Exception as ex: return f"PubMed exception: {ex}" def lazy_load(self, query: str) -> Iterator[dict]: """ Search PubMed for documents matching the query. Return an iterator of dictionaries containing the document metadata. """ url = ( self.base_url_esearch + "db=pubmed&term=" + str({urllib.parse.quote(query)}) + f"&retmode=json&retmax={self.top_k_results}&usehistory=y" ) result = urllib.request.urlopen(url) text = result.read().decode("utf-8") json_text = json.loads(text) webenv = json_text["esearchresult"]["webenv"] for uid in json_text["esearchresult"]["idlist"]: yield self.retrieve_article(uid, webenv) def load(self, query: str) -> List[dict]: """ Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata. """ return list(self.lazy_load(query)) def _dict2document(self, doc: dict) -> Document: summary = doc.pop("Summary") return Document(page_content=summary, metadata=doc) def lazy_load_docs(self, query: str) -> Iterator[Document]: for d in self.lazy_load(query=query): yield self._dict2document(d) def load_docs(self, query: str) -> List[Document]: return list(self.lazy_load_docs(query=query)) def retrieve_article(self, uid: str, webenv: str) -> dict: url = ( self.base_url_efetch + "db=pubmed&retmode=xml&id=" + uid + "&webenv=" + webenv ) retry = 0 while True: try: result = urllib.request.urlopen(url) break except urllib.error.HTTPError as e: if e.code == 429 and retry < self.max_retry: # Too Many Requests errors # wait for an exponentially increasing amount of time print( f"Too Many Requests, " f"waiting for {self.sleep_time:.2f} seconds..." ) time.sleep(self.sleep_time) self.sleep_time *= 2 retry += 1 else: raise e xml_text = result.read().decode("utf-8") text_dict = self.parse(xml_text) return self._parse_article(uid, text_dict) def _parse_article(self, uid: str, text_dict: dict) -> dict: try: ar = text_dict["PubmedArticleSet"]["PubmedArticle"]["MedlineCitation"][ "Article" ] except KeyError: ar = text_dict["PubmedArticleSet"]["PubmedBookArticle"]["BookDocument"] abstract_text = ar.get("Abstract", {}).get("AbstractText", []) summaries = [ f"{txt['@Label']}: {txt['#text']}" for txt in abstract_text if "#text" in txt and "@Label" in txt ] summary = ( "\n".join(summaries) if summaries else ( abstract_text if isinstance(abstract_text, str) else ( "\n".join(str(value) for value in abstract_text.values()) if isinstance(abstract_text, dict) else "No abstract available" ) ) ) a_d = ar.get("ArticleDate", {}) pub_date = "-".join( [a_d.get("Year", ""), a_d.get("Month", ""), a_d.get("Day", "")] ) return { "uid": uid, "Title": ar.get("ArticleTitle", ""), "Published": pub_date, "Copyright Information": ar.get("Abstract", {}).get( "CopyrightInformation", "" ), "Summary": summary, }
0
2,689
[{"tag": "EMAIL", "value": "[email protected]", "start": 1576, "end": 1598}]
true
1
import json import logging import time import urllib.error import urllib.parse import urllib.request from typing import Any, Dict, Iterator, List from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class PubMedAPIWrapper(BaseModel): """ Wrapper around PubMed API. This wrapper will use the PubMed API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results of an input search. Parameters: top_k_results: number of the top-scored document used for the PubMed tool MAX_QUERY_LENGTH: maximum length of the query. Default is 300 characters. doc_content_chars_max: maximum length of the document content. Content will be truncated if it exceeds this length. Default is 2000 characters. max_retry: maximum number of retries for a request. Default is 5. sleep_time: time to wait between retries. Default is 0.2 seconds. email: email address to be used for the PubMed API. """ parse: Any #: :meta private: base_url_esearch: str = ( "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?" ) base_url_efetch: str = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?" max_retry: int = 5 sleep_time: float = 0.2 # Default values for the parameters top_k_results: int = 3 MAX_QUERY_LENGTH: int = 300 doc_content_chars_max: int = 2000 email: str = "[email protected]" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import xmltodict values["parse"] = xmltodict.parse except ImportError: raise ImportError( "Could not import xmltodict python package. " "Please install it with `pip install xmltodict`." ) return values def run(self, query: str) -> str: """ Run PubMed search and get the article meta information. See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch It uses only the most informative fields of article meta information. """ try: # Retrieve the top-k results for the query docs = [ f"Published: {result['Published']}\n" f"Title: {result['Title']}\n" f"Copyright Information: {result['Copyright Information']}\n" f"Summary::\n{result['Summary']}" for result in self.load(query[: self.MAX_QUERY_LENGTH]) ] # Join the results and limit the character count return ( "\n\n".join(docs)[: self.doc_content_chars_max] if docs else "No good PubMed Result was found" ) except Exception as ex: return f"PubMed exception: {ex}" def lazy_load(self, query: str) -> Iterator[dict]: """ Search PubMed for documents matching the query. Return an iterator of dictionaries containing the document metadata. """ url = ( self.base_url_esearch + "db=pubmed&term=" + str({urllib.parse.quote(query)}) + f"&retmode=json&retmax={self.top_k_results}&usehistory=y" ) result = urllib.request.urlopen(url) text = result.read().decode("utf-8") json_text = json.loads(text) webenv = json_text["esearchresult"]["webenv"] for uid in json_text["esearchresult"]["idlist"]: yield self.retrieve_article(uid, webenv) def load(self, query: str) -> List[dict]: """ Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata. """ return list(self.lazy_load(query)) def _dict2document(self, doc: dict) -> Document: summary = doc.pop("Summary") return Document(page_content=summary, metadata=doc) def lazy_load_docs(self, query: str) -> Iterator[Document]: for d in self.lazy_load(query=query): yield self._dict2document(d) def load_docs(self, query: str) -> List[Document]: return list(self.lazy_load_docs(query=query)) def retrieve_article(self, uid: str, webenv: str) -> dict: url = ( self.base_url_efetch + "db=pubmed&retmode=xml&id=" + uid + "&webenv=" + webenv ) retry = 0 while True: try: result = urllib.request.urlopen(url) break except urllib.error.HTTPError as e: if e.code == 429 and retry < self.max_retry: # Too Many Requests errors # wait for an exponentially increasing amount of time print( f"Too Many Requests, " f"waiting for {self.sleep_time:.2f} seconds..." ) time.sleep(self.sleep_time) self.sleep_time *= 2 retry += 1 else: raise e xml_text = result.read().decode("utf-8") text_dict = self.parse(xml_text) return self._parse_article(uid, text_dict) def _parse_article(self, uid: str, text_dict: dict) -> dict: try: ar = text_dict["PubmedArticleSet"]["PubmedArticle"]["MedlineCitation"][ "Article" ] except KeyError: ar = text_dict["PubmedArticleSet"]["PubmedBookArticle"]["BookDocument"] abstract_text = ar.get("Abstract", {}).get("AbstractText", []) summaries = [ f"{txt['@Label']}: {txt['#text']}" for txt in abstract_text if "#text" in txt and "@Label" in txt ] summary = ( "\n".join(summaries) if summaries else ( abstract_text if isinstance(abstract_text, str) else ( "\n".join(str(value) for value in abstract_text.values()) if isinstance(abstract_text, dict) else "No abstract available" ) ) ) a_d = ar.get("ArticleDate", {}) pub_date = "-".join( [a_d.get("Year", ""), a_d.get("Month", ""), a_d.get("Day", "")] ) return { "uid": uid, "Title": ar.get("ArticleTitle", ""), "Published": pub_date, "Copyright Information": ar.get("Abstract", {}).get( "CopyrightInformation", "" ), "Summary": summary, }
true
import json import logging import time import urllib.error import urllib.parse import urllib.request from typing import Any, Dict, Iterator, List from langchain.pydantic_v1 import BaseModel, root_validator from langchain.schema import Document logger = logging.getLogger(__name__) class PubMedAPIWrapper(BaseModel): """ Wrapper around PubMed API. This wrapper will use the PubMed API to conduct searches and fetch document summaries. By default, it will return the document summaries of the top-k results of an input search. Parameters: top_k_results: number of the top-scored document used for the PubMed tool MAX_QUERY_LENGTH: maximum length of the query. Default is 300 characters. doc_content_chars_max: maximum length of the document content. Content will be truncated if it exceeds this length. Default is 2000 characters. max_retry: maximum number of retries for a request. Default is 5. sleep_time: time to wait between retries. Default is 0.2 seconds. email: email address to be used for the PubMed API. """ parse: Any #: :meta private: base_url_esearch: str = ( "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?" ) base_url_efetch: str = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?" max_retry: int = 5 sleep_time: float = 0.2 # Default values for the parameters top_k_results: int = 3 MAX_QUERY_LENGTH: int = 300 doc_content_chars_max: int = 2000 email: str = "PI:EMAIL:[email protected]_PI" @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in environment.""" try: import xmltodict values["parse"] = xmltodict.parse except ImportError: raise ImportError( "Could not import xmltodict python package. " "Please install it with `pip install xmltodict`." ) return values def run(self, query: str) -> str: """ Run PubMed search and get the article meta information. See https://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ESearch It uses only the most informative fields of article meta information. """ try: # Retrieve the top-k results for the query docs = [ f"Published: {result['Published']}\n" f"Title: {result['Title']}\n" f"Copyright Information: {result['Copyright Information']}\n" f"Summary::\n{result['Summary']}" for result in self.load(query[: self.MAX_QUERY_LENGTH]) ] # Join the results and limit the character count return ( "\n\n".join(docs)[: self.doc_content_chars_max] if docs else "No good PubMed Result was found" ) except Exception as ex: return f"PubMed exception: {ex}" def lazy_load(self, query: str) -> Iterator[dict]: """ Search PubMed for documents matching the query. Return an iterator of dictionaries containing the document metadata. """ url = ( self.base_url_esearch + "db=pubmed&term=" + str({urllib.parse.quote(query)}) + f"&retmode=json&retmax={self.top_k_results}&usehistory=y" ) result = urllib.request.urlopen(url) text = result.read().decode("utf-8") json_text = json.loads(text) webenv = json_text["esearchresult"]["webenv"] for uid in json_text["esearchresult"]["idlist"]: yield self.retrieve_article(uid, webenv) def load(self, query: str) -> List[dict]: """ Search PubMed for documents matching the query. Return a list of dictionaries containing the document metadata. """ return list(self.lazy_load(query)) def _dict2document(self, doc: dict) -> Document: summary = doc.pop("Summary") return Document(page_content=summary, metadata=doc) def lazy_load_docs(self, query: str) -> Iterator[Document]: for d in self.lazy_load(query=query): yield self._dict2document(d) def load_docs(self, query: str) -> List[Document]: return list(self.lazy_load_docs(query=query)) def retrieve_article(self, uid: str, webenv: str) -> dict: url = ( self.base_url_efetch + "db=pubmed&retmode=xml&id=" + uid + "&webenv=" + webenv ) retry = 0 while True: try: result = urllib.request.urlopen(url) break except urllib.error.HTTPError as e: if e.code == 429 and retry < self.max_retry: # Too Many Requests errors # wait for an exponentially increasing amount of time print( f"Too Many Requests, " f"waiting for {self.sleep_time:.2f} seconds..." ) time.sleep(self.sleep_time) self.sleep_time *= 2 retry += 1 else: raise e xml_text = result.read().decode("utf-8") text_dict = self.parse(xml_text) return self._parse_article(uid, text_dict) def _parse_article(self, uid: str, text_dict: dict) -> dict: try: ar = text_dict["PubmedArticleSet"]["PubmedArticle"]["MedlineCitation"][ "Article" ] except KeyError: ar = text_dict["PubmedArticleSet"]["PubmedBookArticle"]["BookDocument"] abstract_text = ar.get("Abstract", {}).get("AbstractText", []) summaries = [ f"{txt['@Label']}: {txt['#text']}" for txt in abstract_text if "#text" in txt and "@Label" in txt ] summary = ( "\n".join(summaries) if summaries else ( abstract_text if isinstance(abstract_text, str) else ( "\n".join(str(value) for value in abstract_text.values()) if isinstance(abstract_text, dict) else "No abstract available" ) ) ) a_d = ar.get("ArticleDate", {}) pub_date = "-".join( [a_d.get("Year", ""), a_d.get("Month", ""), a_d.get("Day", "")] ) return { "uid": uid, "Title": ar.get("ArticleTitle", ""), "Published": pub_date, "Copyright Information": ar.get("Abstract", {}).get( "CopyrightInformation", "" ), "Summary": summary, }
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/integration_tests
hf_public_repos/langchain-ai/langchain/libs/langchain/tests/integration_tests/document_loaders/test_mastodon.py
"""Tests for the Mastodon toots loader""" from langchain.document_loaders import MastodonTootsLoader def test_mastodon_toots_loader() -> None: """Test Mastodon toots loader with an external query.""" # Query the Mastodon CEO's account loader = MastodonTootsLoader( mastodon_accounts=["@[email protected]"], number_toots=1 ) docs = loader.load() assert len(docs) == 1 assert docs[0].metadata["user_info"]["id"] == 1
0
1,633
[{"tag": "EMAIL", "value": "[email protected]", "start": 308, "end": 331}]
true
1
"""Tests for the Mastodon toots loader""" from langchain.document_loaders import MastodonTootsLoader def test_mastodon_toots_loader() -> None: """Test Mastodon toots loader with an external query.""" # Query the Mastodon CEO's account loader = MastodonTootsLoader( mastodon_accounts=["@[email protected]"], number_toots=1 ) docs = loader.load() assert len(docs) == 1 assert docs[0].metadata["user_info"]["id"] == 1
true
"""Tests for the Mastodon toots loader""" from langchain.document_loaders import MastodonTootsLoader def test_mastodon_toots_loader() -> None: """Test Mastodon toots loader with an external query.""" # Query the Mastodon CEO's account loader = MastodonTootsLoader( mastodon_accounts=["@PI:EMAIL:[email protected]_PI"], number_toots=1 ) docs = loader.load() assert len(docs) == 1 assert docs[0].metadata["user_info"]["id"] == 1
hf_public_repos/zilliztech/GPTCache/tests/unit_tests
hf_public_repos/zilliztech/GPTCache/tests/unit_tests/adapter/test_langchain_models.py
import asyncio import os import random from unittest.mock import patch from gptcache import Cache, Config from gptcache.adapter import openai from gptcache.adapter.api import init_similar_cache, get from gptcache.adapter.langchain_models import LangChainLLMs, LangChainChat, _cache_msg_data_convert from gptcache.processor.pre import get_prompt, last_content_without_template, get_messages_last_content from gptcache.utils import import_pydantic, import_langchain from gptcache.utils.response import get_message_from_openai_answer import_pydantic() import_langchain() from langchain import OpenAI, PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage def test_langchain_llms(): question = "test_langchain_llms" expect_answer = "hello" llm_cache = Cache() llm_cache.init( pre_embedding_func=get_prompt, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = OpenAI(model_name="text-ada-001") llm = LangChainLLMs(llm=langchain_openai,cache_obj=llm_cache) assert str(langchain_openai) == str(llm) with patch("openai.Completion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "text": expect_answer, } ], "created": 1677825456, "id": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = llm(prompt=question) assert expect_answer == answer answer = llm(prompt=question) assert expect_answer == answer def test_langchain_chats(): question = [HumanMessage(content="test_langchain_chats")] question2 = [HumanMessage(content="test_langchain_chats2")] msg = "chat models" expect_answer = { "role": "assistant", "message": msg, "content": msg, } llm_cache = Cache() llm_cache.init( pre_embedding_func=get_messages_last_content, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = ChatOpenAI(temperature=0) chat = LangChainChat(chat=langchain_openai,cache_obj=llm_cache) assert chat.get_num_tokens("hello") == langchain_openai.get_num_tokens("hello") assert chat.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) \ == langchain_openai.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) with patch("openai.ChatCompletion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message with patch("openai.ChatCompletion.acreate") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message answer = asyncio.run(chat.agenerate([question])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text def test_last_content_without_template(): string_prompt = PromptTemplate.from_template("tell me a joke about {subject}") template = string_prompt.template cache_obj = Cache() data_dir = str(random.random()) init_similar_cache(data_dir=data_dir, cache_obj=cache_obj, pre_func=last_content_without_template, config=Config(template=template)) subject_str = "animal" expect_answer = "this is a joke" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": string_prompt.format(subject=subject_str)}, ], cache_obj=cache_obj, ) assert get_message_from_openai_answer(response) == expect_answer, response cache_obj.flush() init_similar_cache(data_dir=data_dir, cache_obj=cache_obj) cache_res = get(str([subject_str]), cache_obj=cache_obj) print(str([subject_str])) assert cache_res == expect_answer, cache_res
0
859
[{"tag": "KEY", "value": "chatcmpl-6ptKyqKOGXZT6iQnqiXAH8adNLUzD", "start": 5596, "end": 5634}, {"tag": "KEY", "value": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "start": 1446, "end": 1484}, {"tag": "KEY", "value": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "start": 3146, "end": 3184}, {"tag": "KEY", "value": "chatcmpl-6ptKqrhgRoVchm58Bby0UvJzq2ZuQ", "start": 3951, "end": 3989}]
true
4
import asyncio import os import random from unittest.mock import patch from gptcache import Cache, Config from gptcache.adapter import openai from gptcache.adapter.api import init_similar_cache, get from gptcache.adapter.langchain_models import LangChainLLMs, LangChainChat, _cache_msg_data_convert from gptcache.processor.pre import get_prompt, last_content_without_template, get_messages_last_content from gptcache.utils import import_pydantic, import_langchain from gptcache.utils.response import get_message_from_openai_answer import_pydantic() import_langchain() from langchain import OpenAI, PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage def test_langchain_llms(): question = "test_langchain_llms" expect_answer = "hello" llm_cache = Cache() llm_cache.init( pre_embedding_func=get_prompt, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = OpenAI(model_name="text-ada-001") llm = LangChainLLMs(llm=langchain_openai,cache_obj=llm_cache) assert str(langchain_openai) == str(llm) with patch("openai.Completion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "text": expect_answer, } ], "created": 1677825456, "id": "ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6b", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = llm(prompt=question) assert expect_answer == answer answer = llm(prompt=question) assert expect_answer == answer def test_langchain_chats(): question = [HumanMessage(content="test_langchain_chats")] question2 = [HumanMessage(content="test_langchain_chats2")] msg = "chat models" expect_answer = { "role": "assistant", "message": msg, "content": msg, } llm_cache = Cache() llm_cache.init( pre_embedding_func=get_messages_last_content, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = ChatOpenAI(temperature=0) chat = LangChainChat(chat=langchain_openai,cache_obj=llm_cache) assert chat.get_num_tokens("hello") == langchain_openai.get_num_tokens("hello") assert chat.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) \ == langchain_openai.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) with patch("openai.ChatCompletion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6b", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message with patch("openai.ChatCompletion.acreate") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6b", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message answer = asyncio.run(chat.agenerate([question])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text def test_last_content_without_template(): string_prompt = PromptTemplate.from_template("tell me a joke about {subject}") template = string_prompt.template cache_obj = Cache() data_dir = str(random.random()) init_similar_cache(data_dir=data_dir, cache_obj=cache_obj, pre_func=last_content_without_template, config=Config(template=template)) subject_str = "animal" expect_answer = "this is a joke" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "caf86f4uutaoxfysmf7anj01xl6sv3ps", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": string_prompt.format(subject=subject_str)}, ], cache_obj=cache_obj, ) assert get_message_from_openai_answer(response) == expect_answer, response cache_obj.flush() init_similar_cache(data_dir=data_dir, cache_obj=cache_obj) cache_res = get(str([subject_str]), cache_obj=cache_obj) print(str([subject_str])) assert cache_res == expect_answer, cache_res
true
import asyncio import os import random from unittest.mock import patch from gptcache import Cache, Config from gptcache.adapter import openai from gptcache.adapter.api import init_similar_cache, get from gptcache.adapter.langchain_models import LangChainLLMs, LangChainChat, _cache_msg_data_convert from gptcache.processor.pre import get_prompt, last_content_without_template, get_messages_last_content from gptcache.utils import import_pydantic, import_langchain from gptcache.utils.response import get_message_from_openai_answer import_pydantic() import_langchain() from langchain import OpenAI, PromptTemplate from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage def test_langchain_llms(): question = "test_langchain_llms" expect_answer = "hello" llm_cache = Cache() llm_cache.init( pre_embedding_func=get_prompt, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = OpenAI(model_name="text-ada-001") llm = LangChainLLMs(llm=langchain_openai,cache_obj=llm_cache) assert str(langchain_openai) == str(llm) with patch("openai.Completion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "text": expect_answer, } ], "created": 1677825456, "id": "PI:KEY:ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6bEND_PI", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = llm(prompt=question) assert expect_answer == answer answer = llm(prompt=question) assert expect_answer == answer def test_langchain_chats(): question = [HumanMessage(content="test_langchain_chats")] question2 = [HumanMessage(content="test_langchain_chats2")] msg = "chat models" expect_answer = { "role": "assistant", "message": msg, "content": msg, } llm_cache = Cache() llm_cache.init( pre_embedding_func=get_messages_last_content, ) os.environ["OPENAI_API_KEY"] = "API" langchain_openai = ChatOpenAI(temperature=0) chat = LangChainChat(chat=langchain_openai,cache_obj=llm_cache) assert chat.get_num_tokens("hello") == langchain_openai.get_num_tokens("hello") assert chat.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) \ == langchain_openai.get_num_tokens_from_messages(messages=[HumanMessage(content="test_langchain_chats")]) with patch("openai.ChatCompletion.create") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "PI:KEY:ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6bEND_PI", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message with patch("openai.ChatCompletion.acreate") as mock_create: mock_create.return_value = { "choices": [ { "finish_reason": "stop", "index": 0, "message": expect_answer, } ], "delta": {"role": "assistant"}, "created": 1677825456, "id": "PI:KEY:ax5kh6jaqkcd2tiexxs8v6xjo8yv8a6bEND_PI", "model": "gpt-3.5-turbo-0301", "object": "chat.completion", "usage": { "completion_tokens": 301, "prompt_tokens": 36, "total_tokens": 337 } } answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = chat(messages=question) assert answer == _cache_msg_data_convert(msg).generations[0].message answer = asyncio.run(chat.agenerate([question])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text answer = asyncio.run(chat.agenerate([question2])) assert answer.generations[0][0].text == _cache_msg_data_convert(msg).generations[0].text def test_last_content_without_template(): string_prompt = PromptTemplate.from_template("tell me a joke about {subject}") template = string_prompt.template cache_obj = Cache() data_dir = str(random.random()) init_similar_cache(data_dir=data_dir, cache_obj=cache_obj, pre_func=last_content_without_template, config=Config(template=template)) subject_str = "animal" expect_answer = "this is a joke" with patch("openai.ChatCompletion.create") as mock_create: datas = { "choices": [ { "message": {"content": expect_answer, "role": "assistant"}, "finish_reason": "stop", "index": 0, } ], "created": 1677825464, "id": "PI:KEY:caf86f4uutaoxfysmf7anj01xl6sv3psEND_PI", "model": "gpt-3.5-turbo-0301", "object": "chat.completion.chunk", } mock_create.return_value = datas response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": string_prompt.format(subject=subject_str)}, ], cache_obj=cache_obj, ) assert get_message_from_openai_answer(response) == expect_answer, response cache_obj.flush() init_similar_cache(data_dir=data_dir, cache_obj=cache_obj) cache_res = get(str([subject_str]), cache_obj=cache_obj) print(str([subject_str])) assert cache_res == expect_answer, cache_res
hf_public_repos/langchain-ai/langchain/docs/docs/integrations
hf_public_repos/langchain-ai/langchain/docs/docs/integrations/document_loaders/mastodon.ipynb
from langchain.document_loaders import MastodonTootsLoader#!pip install Mastodon.pyloader = MastodonTootsLoader( mastodon_accounts=["@[email protected]"], number_toots=50, # Default value is 100 ) # Or set up access information to use a Mastodon app. # Note that the access token can either be passed into # constructor or you can set the environment "MASTODON_ACCESS_TOKEN". # loader = MastodonTootsLoader( # access_token="<ACCESS TOKEN OF MASTODON APP>", # api_base_url="<API BASE URL OF MASTODON APP INSTANCE>", # mastodon_accounts=["@[email protected]"], # number_toots=50, # Default value is 100 # )documents = loader.load() for doc in documents[:3]: print(doc.page_content) print("=" * 80)
0
3,916
[{"tag": "EMAIL", "value": "[email protected]", "start": 138, "end": 161}, {"tag": "EMAIL", "value": "[email protected]", "start": 566, "end": 589}]
true
2
from langchain.document_loaders import MastodonTootsLoader#!pip install Mastodon.pyloader = MastodonTootsLoader( mastodon_accounts=["@[email protected]"], number_toots=50, # Default value is 100 ) # Or set up access information to use a Mastodon app. # Note that the access token can either be passed into # constructor or you can set the environment "MASTODON_ACCESS_TOKEN". # loader = MastodonTootsLoader( # access_token="<ACCESS TOKEN OF MASTODON APP>", # api_base_url="<API BASE URL OF MASTODON APP INSTANCE>", # mastodon_accounts=["@[email protected]"], # number_toots=50, # Default value is 100 # )documents = loader.load() for doc in documents[:3]: print(doc.page_content) print("=" * 80)
true
from langchain.document_loaders import MastodonTootsLoader#!pip install Mastodon.pyloader = MastodonTootsLoader( mastodon_accounts=["@PI:EMAIL:[email protected]_PI"], number_toots=50, # Default value is 100 ) # Or set up access information to use a Mastodon app. # Note that the access token can either be passed into # constructor or you can set the environment "MASTODON_ACCESS_TOKEN". # loader = MastodonTootsLoader( # access_token="<ACCESS TOKEN OF MASTODON APP>", # api_base_url="<API BASE URL OF MASTODON APP INSTANCE>", # mastodon_accounts=["@PI:EMAIL:[email protected]_PI"], # number_toots=50, # Default value is 100 # )documents = loader.load() for doc in documents[:3]: print(doc.page_content) print("=" * 80)
hf_public_repos/zilliztech
hf_public_repos/zilliztech/GPTCache/setup.py
import codecs import os import re from typing import List import setuptools from setuptools import find_packages here = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r") as fh: long_description = fh.read() def parse_requirements(file_name: str) -> List[str]: with open(file_name) as f: return [ require.strip() for require in f if require.strip() and not require.startswith('#') ] def read(*parts): with codecs.open(os.path.join(here, *parts), "r") as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setuptools.setup( name="gptcache", packages=find_packages(), version=find_version("gptcache", "__init__.py"), author="SimFG", author_email="[email protected]", description="GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat " "applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, " "similar to how Redis works for traditional applications.", long_description=long_description, long_description_content_type="text/markdown", install_requires=parse_requirements('requirements.txt'), url="https://github.com/zilliztech/GPTCache", license='https://opensource.org/license/mit/', python_requires='>=3.8.1', entry_points={ 'console_scripts': [ 'gptcache_server=gptcache_server.server:main', ], }, )
0
782
[{"tag": "EMAIL", "value": "[email protected]", "start": 1000, "end": 1018}]
true
1
import codecs import os import re from typing import List import setuptools from setuptools import find_packages here = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r") as fh: long_description = fh.read() def parse_requirements(file_name: str) -> List[str]: with open(file_name) as f: return [ require.strip() for require in f if require.strip() and not require.startswith('#') ] def read(*parts): with codecs.open(os.path.join(here, *parts), "r") as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setuptools.setup( name="gptcache", packages=find_packages(), version=find_version("gptcache", "__init__.py"), author="SimFG", author_email="[email protected]", description="GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat " "applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, " "similar to how Redis works for traditional applications.", long_description=long_description, long_description_content_type="text/markdown", install_requires=parse_requirements('requirements.txt'), url="https://github.com/zilliztech/GPTCache", license='https://opensource.org/license/mit/', python_requires='>=3.8.1', entry_points={ 'console_scripts': [ 'gptcache_server=gptcache_server.server:main', ], }, )
true
import codecs import os import re from typing import List import setuptools from setuptools import find_packages here = os.path.abspath(os.path.dirname(__file__)) with open("README.md", "r") as fh: long_description = fh.read() def parse_requirements(file_name: str) -> List[str]: with open(file_name) as f: return [ require.strip() for require in f if require.strip() and not require.startswith('#') ] def read(*parts): with codecs.open(os.path.join(here, *parts), "r") as fp: return fp.read() def find_version(*file_paths): version_file = read(*file_paths) version_match = re.search(r"^__version__ = ['\"]([^'\"]*)['\"]", version_file, re.M) if version_match: return version_match.group(1) raise RuntimeError("Unable to find version string.") setuptools.setup( name="gptcache", packages=find_packages(), version=find_version("gptcache", "__init__.py"), author="SimFG", author_email="PI:EMAIL:[email protected]_PI", description="GPTCache, a powerful caching library that can be used to speed up and lower the cost of chat " "applications that rely on the LLM service. GPTCache works as a memcache for AIGC applications, " "similar to how Redis works for traditional applications.", long_description=long_description, long_description_content_type="text/markdown", install_requires=parse_requirements('requirements.txt'), url="https://github.com/zilliztech/GPTCache", license='https://opensource.org/license/mit/', python_requires='>=3.8.1', entry_points={ 'console_scripts': [ 'gptcache_server=gptcache_server.server:main', ], }, )
hf_public_repos/langchain-ai/langchain/libs/experimental/tests
hf_public_repos/langchain-ai/langchain/libs/experimental/tests/unit_tests/test_reversible_data_anonymizer.py
import os from typing import Iterator, List import pytest from . import is_libcublas_available @pytest.fixture(scope="module", autouse=True) def check_spacy_model() -> Iterator[None]: import spacy if not spacy.util.is_package("en_core_web_lg"): pytest.skip(reason="Spacy model 'en_core_web_lg' not installed") yield @pytest.fixture(scope="module", autouse=True) def check_libcublas() -> Iterator[None]: if not is_libcublas_available(): pytest.skip(reason="libcublas.so is not available") yield @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)], ) def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)], ) def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"]) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_multiple() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "John Smith's phone number is 313-666-7440 and email is [email protected]" anonymizer = PresidioReversibleAnonymizer() anonymized_text = anonymizer.anonymize(text) for phrase in ["John Smith", "313-666-7440", "[email protected]"]: assert phrase not in anonymized_text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_check_instances() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "This is John Smith. John Smith works in a bakery." "John Smith is a good guy" ) anonymizer = PresidioReversibleAnonymizer(["PERSON"], faker_seed=42) anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 1 anonymized_name = persons[0] assert anonymized_text.count(anonymized_name) == 3 anonymized_text = anonymizer.anonymize(text) assert anonymized_text.count(anonymized_name) == 3 assert anonymizer.deanonymizer_mapping["PERSON"][anonymized_name] == "John Smith" text = "This is Jane Smith" anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 2 @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_with_custom_operator() -> None: """Test anonymize a name with a custom operator""" from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})} anonymizer = PresidioReversibleAnonymizer(operators=custom_operator) text = "Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "NAME was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_add_recognizer_operator() -> None: """ Test add recognizer and anonymize a new type of entity and with a custom operator """ from presidio_analyzer import PatternRecognizer from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) titles_list = ["Sir", "Madam", "Professor"] custom_recognizer = PatternRecognizer( supported_entity="TITLE", deny_list=titles_list ) anonymizer.add_recognizer(custom_recognizer) # anonymizing with custom recognizer text = "Madam Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "<TITLE> Jane Doe was here." # anonymizing with custom recognizer and operator anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) anonymizer.add_recognizer(custom_recognizer) custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})} anonymizer.add_operators(custom_operator) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "Dear Jane Doe was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymizer_mapping() -> None: """Test if deanonymizer mapping is correctly populated""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer( analyzed_fields=["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] ) anonymizer.anonymize("Hello, my name is John Doe and my number is 444 555 6666.") # ["PERSON", "PHONE_NUMBER"] assert len(anonymizer.deanonymizer_mapping.keys()) == 2 assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "444 555 6666" in anonymizer.deanonymizer_mapping.get("PHONE_NUMBER", {}).values() ) text_to_anonymize = ( "And my name is Jane Doe, my email is [email protected] and " "my credit card is 4929 5319 6292 5362." ) anonymizer.anonymize(text_to_anonymize) # ["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] assert len(anonymizer.deanonymizer_mapping.keys()) == 4 assert "Jane Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "[email protected]" in anonymizer.deanonymizer_mapping.get("EMAIL_ADDRESS", {}).values() ) assert ( "4929 5319 6292 5362" in anonymizer.deanonymizer_mapping.get("CREDIT_CARD", {}).values() ) @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymize() -> None: """Test deanonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymized_text = anonymizer.anonymize(text) deanonymized_text = anonymizer.deanonymize(anonymized_text) assert deanonymized_text == text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_save_load_deanonymizer_mapping() -> None: from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymizer.anonymize("Hello, my name is John Doe.") try: anonymizer.save_deanonymizer_mapping("test_file.json") assert os.path.isfile("test_file.json") anonymizer = PresidioReversibleAnonymizer() anonymizer.load_deanonymizer_mapping("test_file.json") assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() finally: os.remove("test_file.json") @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_non_faker_values() -> None: """Test anonymizing multiple items in a sentence without faker values""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "My name is John Smith. Your name is Adam Smith. Her name is Jane Smith." "Our names are: John Smith, Adam Smith, Jane Smith." ) expected_result = ( "My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>." "Our names are: <PERSON>, <PERSON_2>, <PERSON_3>." ) anonymizer = PresidioReversibleAnonymizer(add_default_faker_operators=False) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == expected_result
0
1,319
[{"tag": "EMAIL", "value": "[email protected]", "start": 2213, "end": 2232}, {"tag": "EMAIL", "value": "[email protected]", "start": 2381, "end": 2400}, {"tag": "EMAIL", "value": "[email protected]", "start": 6241, "end": 6255}, {"tag": "EMAIL", "value": "[email protected]", "start": 6593, "end": 6607}]
true
4
import os from typing import Iterator, List import pytest from . import is_libcublas_available @pytest.fixture(scope="module", autouse=True) def check_spacy_model() -> Iterator[None]: import spacy if not spacy.util.is_package("en_core_web_lg"): pytest.skip(reason="Spacy model 'en_core_web_lg' not installed") yield @pytest.fixture(scope="module", autouse=True) def check_libcublas() -> Iterator[None]: if not is_libcublas_available(): pytest.skip(reason="libcublas.so is not available") yield @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)], ) def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)], ) def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"]) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_multiple() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "John Smith's phone number is 313-666-7440 and email is [email protected]" anonymizer = PresidioReversibleAnonymizer() anonymized_text = anonymizer.anonymize(text) for phrase in ["John Smith", "313-666-7440", "[email protected]"]: assert phrase not in anonymized_text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_check_instances() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "This is John Smith. John Smith works in a bakery." "John Smith is a good guy" ) anonymizer = PresidioReversibleAnonymizer(["PERSON"], faker_seed=42) anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 1 anonymized_name = persons[0] assert anonymized_text.count(anonymized_name) == 3 anonymized_text = anonymizer.anonymize(text) assert anonymized_text.count(anonymized_name) == 3 assert anonymizer.deanonymizer_mapping["PERSON"][anonymized_name] == "John Smith" text = "This is Jane Smith" anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 2 @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_with_custom_operator() -> None: """Test anonymize a name with a custom operator""" from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})} anonymizer = PresidioReversibleAnonymizer(operators=custom_operator) text = "Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "NAME was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_add_recognizer_operator() -> None: """ Test add recognizer and anonymize a new type of entity and with a custom operator """ from presidio_analyzer import PatternRecognizer from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) titles_list = ["Sir", "Madam", "Professor"] custom_recognizer = PatternRecognizer( supported_entity="TITLE", deny_list=titles_list ) anonymizer.add_recognizer(custom_recognizer) # anonymizing with custom recognizer text = "Madam Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "<TITLE> Jane Doe was here." # anonymizing with custom recognizer and operator anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) anonymizer.add_recognizer(custom_recognizer) custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})} anonymizer.add_operators(custom_operator) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "Dear Jane Doe was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymizer_mapping() -> None: """Test if deanonymizer mapping is correctly populated""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer( analyzed_fields=["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] ) anonymizer.anonymize("Hello, my name is John Doe and my number is 444 555 6666.") # ["PERSON", "PHONE_NUMBER"] assert len(anonymizer.deanonymizer_mapping.keys()) == 2 assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "444 555 6666" in anonymizer.deanonymizer_mapping.get("PHONE_NUMBER", {}).values() ) text_to_anonymize = ( "And my name is Jane Doe, my email is [email protected] and " "my credit card is 4929 5319 6292 5362." ) anonymizer.anonymize(text_to_anonymize) # ["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] assert len(anonymizer.deanonymizer_mapping.keys()) == 4 assert "Jane Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "[email protected]" in anonymizer.deanonymizer_mapping.get("EMAIL_ADDRESS", {}).values() ) assert ( "4929 5319 6292 5362" in anonymizer.deanonymizer_mapping.get("CREDIT_CARD", {}).values() ) @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymize() -> None: """Test deanonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymized_text = anonymizer.anonymize(text) deanonymized_text = anonymizer.deanonymize(anonymized_text) assert deanonymized_text == text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_save_load_deanonymizer_mapping() -> None: from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymizer.anonymize("Hello, my name is John Doe.") try: anonymizer.save_deanonymizer_mapping("test_file.json") assert os.path.isfile("test_file.json") anonymizer = PresidioReversibleAnonymizer() anonymizer.load_deanonymizer_mapping("test_file.json") assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() finally: os.remove("test_file.json") @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_non_faker_values() -> None: """Test anonymizing multiple items in a sentence without faker values""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "My name is John Smith. Your name is Adam Smith. Her name is Jane Smith." "Our names are: John Smith, Adam Smith, Jane Smith." ) expected_result = ( "My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>." "Our names are: <PERSON>, <PERSON_2>, <PERSON_3>." ) anonymizer = PresidioReversibleAnonymizer(add_default_faker_operators=False) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == expected_result
true
import os from typing import Iterator, List import pytest from . import is_libcublas_available @pytest.fixture(scope="module", autouse=True) def check_spacy_model() -> Iterator[None]: import spacy if not spacy.util.is_package("en_core_web_lg"): pytest.skip(reason="Spacy model 'en_core_web_lg' not installed") yield @pytest.fixture(scope="module", autouse=True) def check_libcublas() -> Iterator[None]: if not is_libcublas_available(): pytest.skip(reason="libcublas.so is not available") yield @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], False), (["PHONE_NUMBER"], True), (None, False)], ) def test_anonymize(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") @pytest.mark.parametrize( "analyzed_fields,should_contain", [(["PERSON"], True), (["PHONE_NUMBER"], True), (None, True)], ) def test_anonymize_allow_list(analyzed_fields: List[str], should_contain: bool) -> None: """Test anonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=analyzed_fields) anonymized_text = anonymizer.anonymize(text, allow_list=["John Doe"]) assert ("John Doe" in anonymized_text) == should_contain @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_multiple() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "John Smith's phone number is 313-666-7440 and email is PI:EMAIL:[email protected]_PI" anonymizer = PresidioReversibleAnonymizer() anonymized_text = anonymizer.anonymize(text) for phrase in ["John Smith", "313-666-7440", "PI:EMAIL:[email protected]_PI"]: assert phrase not in anonymized_text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_check_instances() -> None: """Test anonymizing multiple items in a sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "This is John Smith. John Smith works in a bakery." "John Smith is a good guy" ) anonymizer = PresidioReversibleAnonymizer(["PERSON"], faker_seed=42) anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 1 anonymized_name = persons[0] assert anonymized_text.count(anonymized_name) == 3 anonymized_text = anonymizer.anonymize(text) assert anonymized_text.count(anonymized_name) == 3 assert anonymizer.deanonymizer_mapping["PERSON"][anonymized_name] == "John Smith" text = "This is Jane Smith" anonymized_text = anonymizer.anonymize(text) persons = list(anonymizer.deanonymizer_mapping["PERSON"].keys()) assert len(persons) == 2 @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_anonymize_with_custom_operator() -> None: """Test anonymize a name with a custom operator""" from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer custom_operator = {"PERSON": OperatorConfig("replace", {"new_value": "NAME"})} anonymizer = PresidioReversibleAnonymizer(operators=custom_operator) text = "Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "NAME was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_add_recognizer_operator() -> None: """ Test add recognizer and anonymize a new type of entity and with a custom operator """ from presidio_analyzer import PatternRecognizer from presidio_anonymizer.entities import OperatorConfig from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) titles_list = ["Sir", "Madam", "Professor"] custom_recognizer = PatternRecognizer( supported_entity="TITLE", deny_list=titles_list ) anonymizer.add_recognizer(custom_recognizer) # anonymizing with custom recognizer text = "Madam Jane Doe was here." anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "<TITLE> Jane Doe was here." # anonymizing with custom recognizer and operator anonymizer = PresidioReversibleAnonymizer(analyzed_fields=[]) anonymizer.add_recognizer(custom_recognizer) custom_operator = {"TITLE": OperatorConfig("replace", {"new_value": "Dear"})} anonymizer.add_operators(custom_operator) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == "Dear Jane Doe was here." @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymizer_mapping() -> None: """Test if deanonymizer mapping is correctly populated""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer( analyzed_fields=["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] ) anonymizer.anonymize("Hello, my name is John Doe and my number is 444 555 6666.") # ["PERSON", "PHONE_NUMBER"] assert len(anonymizer.deanonymizer_mapping.keys()) == 2 assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "444 555 6666" in anonymizer.deanonymizer_mapping.get("PHONE_NUMBER", {}).values() ) text_to_anonymize = ( "And my name is Jane Doe, my email is PI:EMAIL:[email protected]_PI and " "my credit card is 4929 5319 6292 5362." ) anonymizer.anonymize(text_to_anonymize) # ["PERSON", "PHONE_NUMBER", "EMAIL_ADDRESS", "CREDIT_CARD"] assert len(anonymizer.deanonymizer_mapping.keys()) == 4 assert "Jane Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() assert ( "PI:EMAIL:[email protected]_PI" in anonymizer.deanonymizer_mapping.get("EMAIL_ADDRESS", {}).values() ) assert ( "4929 5319 6292 5362" in anonymizer.deanonymizer_mapping.get("CREDIT_CARD", {}).values() ) @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_deanonymize() -> None: """Test deanonymizing a name in a simple sentence""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = "Hello, my name is John Doe." anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymized_text = anonymizer.anonymize(text) deanonymized_text = anonymizer.deanonymize(anonymized_text) assert deanonymized_text == text @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_save_load_deanonymizer_mapping() -> None: from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer anonymizer = PresidioReversibleAnonymizer(analyzed_fields=["PERSON"]) anonymizer.anonymize("Hello, my name is John Doe.") try: anonymizer.save_deanonymizer_mapping("test_file.json") assert os.path.isfile("test_file.json") anonymizer = PresidioReversibleAnonymizer() anonymizer.load_deanonymizer_mapping("test_file.json") assert "John Doe" in anonymizer.deanonymizer_mapping.get("PERSON", {}).values() finally: os.remove("test_file.json") @pytest.mark.requires("presidio_analyzer", "presidio_anonymizer", "faker") def test_non_faker_values() -> None: """Test anonymizing multiple items in a sentence without faker values""" from langchain_experimental.data_anonymizer import PresidioReversibleAnonymizer text = ( "My name is John Smith. Your name is Adam Smith. Her name is Jane Smith." "Our names are: John Smith, Adam Smith, Jane Smith." ) expected_result = ( "My name is <PERSON>. Your name is <PERSON_2>. Her name is <PERSON_3>." "Our names are: <PERSON>, <PERSON_2>, <PERSON_3>." ) anonymizer = PresidioReversibleAnonymizer(add_default_faker_operators=False) anonymized_text = anonymizer.anonymize(text) assert anonymized_text == expected_result
hf_public_repos/langchain-ai/langchain/docs/docs/integrations
hf_public_repos/langchain-ai/langchain/docs/docs/integrations/vectorstores/atlas.ipynb
import time from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import SpacyTextSplitter from langchain.vectorstores import AtlasDB from langchain.document_loaders import TextLoaderATLAS_TEST_API_KEY = "7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6"loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = SpacyTextSplitter(separator="|") texts = [] for doc in text_splitter.split_documents(documents): texts.extend(doc.page_content.split("|")) texts = [e.strip() for e in texts]db = AtlasDB.from_texts( texts=texts, name="test_index_" + str(time.time()), # unique name for your vector store description="test_index", # a description for your vector store api_key=ATLAS_TEST_API_KEY, index_kwargs={"build_topic_model": True}, )db.project.wait_for_project_lock()db.project
0
3,538
[{"tag": "KEY", "value": "7xDPkYXSYDc1_ErdTPIcoAR9RNd8YDlkS3nVNXcVoIMZ6", "start": 237, "end": 282}]
true
1
import time from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import SpacyTextSplitter from langchain.vectorstores import AtlasDB from langchain.document_loaders import TextLoaderATLAS_TEST_API_KEY = "ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7"loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = SpacyTextSplitter(separator="|") texts = [] for doc in text_splitter.split_documents(documents): texts.extend(doc.page_content.split("|")) texts = [e.strip() for e in texts]db = AtlasDB.from_texts( texts=texts, name="test_index_" + str(time.time()), # unique name for your vector store description="test_index", # a description for your vector store api_key=ATLAS_TEST_API_KEY, index_kwargs={"build_topic_model": True}, )db.project.wait_for_project_lock()db.project
true
import time from langchain.embeddings.openai import OpenAIEmbeddings from langchain.text_splitter import SpacyTextSplitter from langchain.vectorstores import AtlasDB from langchain.document_loaders import TextLoaderATLAS_TEST_API_KEY = "PI:KEY:ngw6fo1pu3tjgnp9jnlp7vnwvfqb9yn7END_PI"loader = TextLoader("../../modules/state_of_the_union.txt") documents = loader.load() text_splitter = SpacyTextSplitter(separator="|") texts = [] for doc in text_splitter.split_documents(documents): texts.extend(doc.page_content.split("|")) texts = [e.strip() for e in texts]db = AtlasDB.from_texts( texts=texts, name="test_index_" + str(time.time()), # unique name for your vector store description="test_index", # a description for your vector store api_key=ATLAS_TEST_API_KEY, index_kwargs={"build_topic_model": True}, )db.project.wait_for_project_lock()db.project

Dataset Card for "bigcode-pii-pjj_checks"

More Information needed

Downloads last month
31
Edit dataset card