Datasets:
Tasks:
Image-to-Image
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
1K - 10K
License:
metadata
annotations_creators: []
language: en
license: other
size_categories:
- 1K<n<10K
task_categories:
- image-to-image
task_ids: []
pretty_name: Urban100
tags:
- fiftyone
- image
- super-resolution
dataset_summary: >
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 2200
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/Urban100")
# Launch the App
session = fo.launch_app(dataset)
```
Dataset Card for Urban100
This is a FiftyOne dataset with 2200 samples.
Installation
If you haven't already, install FiftyOne:
pip install -U fiftyone
Usage
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("jamarks/Urban100")
# Launch the App
session = fo.launch_app(dataset)
Dataset Details
Dataset Description
The Urban100 dataset contains 100 images of urban scenes. It commonly used as a test set to evaluate the performance of super-resolution models.
- Curated by: Jia-Bin Huang, Abhishek Singh, Narendra Ahuja
- Language(s) (NLP): en
- License: other
Dataset Sources
- Repository: https://github.com/jbhuang0604/SelfExSR
- Paper: https://openaccess.thecvf.com/content_cvpr_2015/papers/Huang_Single_Image_Super-Resolution_2015_CVPR_paper.pdf
- Demo: https://try.fiftyone.ai/datasets/urban100/samples
Citation
BibTeX:
@InProceedings{Huang_2015_CVPR,
author = {Huang, Jia-Bin and Singh, Abhishek and Ahuja, Narendra},
title = {Single Image Super-Resolution From Transformed Self-Exemplars},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2015}
}