load_timeseries / README.md
Weijie1996's picture
Update README.md
0d7fdda verified
|
raw
history blame
1.43 kB
metadata
license: mit
task_categories:
  - time-series-forecasting
language:
  - en
size_categories:
  - n<1K

Timeseries Data Processing

This repository contains a script for loading and processing timeseries data using the datasets library and converting it to a pandas DataFrame for further analysis.

Dataset

The dataset used in this example is Weijie1996/load_timeseries, which contains timeseries data with the following features:

  • id
  • datetime
  • target
  • category

Requirements

  • Python 3.6+
  • datasets library
  • pandas library

You can install the required libraries using pip:

pip install datasets pandas

Usage

The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.

import datasets
import pandas as pd

# Load the dataset
ds = datasets.load_dataset("Weijie1996/load_timeseries", split="train")

# Convert the dataset to a pandas DataFrame
df = ds.to_pandas()

# Display the first few rows of the DataFrame
print(df.head())

# Optional: Display basic info about the DataFrame
print(df.info())
print(df.describe())

Output

        id            datetime    target category
0  NL_1  2013-01-01 00:00:00  0.117475      60m
1  NL_1  2013-01-01 01:00:00  0.104347      60m
2  NL_1  2013-01-01 02:00:00  0.103173      60m
3  NL_1  2013-01-01 03:00:00  0.101686      60m
4  NL_1  2013-01-01 04:00:00  0.099632      60m