metadata
license: mit
task_categories:
- time-series-forecasting
language:
- en
size_categories:
- n<1K
Timeseries Data Processing
This repository contains a script for loading and processing timeseries data using the datasets
library and converting it to a pandas DataFrame for further analysis.
Dataset
The dataset used in this example is Weijie1996/load_timeseries
, which contains timeseries data with the following features:
id
datetime
target
category
Requirements
- Python 3.6+
datasets
librarypandas
library
You can install the required libraries using pip:
pip install datasets pandas
Usage
The following example demonstrates how to load the dataset and convert it to a pandas DataFrame.
import datasets
import pandas as pd
# Load the dataset
ds = datasets.load_dataset("Weijie1996/load_timeseries", split="train")
# Convert the dataset to a pandas DataFrame
df = ds.to_pandas()
# Display the first few rows of the DataFrame
print(df.head())
# Optional: Display basic info about the DataFrame
print(df.info())
print(df.describe())
Output
id datetime target category
0 NL_1 2013-01-01 00:00:00 0.117475 60m
1 NL_1 2013-01-01 01:00:00 0.104347 60m
2 NL_1 2013-01-01 02:00:00 0.103173 60m
3 NL_1 2013-01-01 03:00:00 0.101686 60m
4 NL_1 2013-01-01 04:00:00 0.099632 60m