|
--- |
|
license: mit |
|
task_categories: |
|
- time-series-forecasting |
|
language: |
|
- en |
|
size_categories: |
|
- 1M<n<1B |
|
tags: |
|
- finance |
|
--- |
|
|
|
|
|
# Timeseries Data Processing |
|
|
|
This repository contains a script for loading and processing timeseries data using the `datasets` library and converting it to a pandas DataFrame for further analysis. |
|
|
|
## Dataset |
|
|
|
The dataset used in this example is `Weijie1996/load_timeseries`, which contains timeseries data with the following features: |
|
- `id` |
|
- `datetime` |
|
- `target` |
|
- `category` |
|
|
|
## Requirements |
|
|
|
- Python 3.6+ |
|
- `datasets` library |
|
- `pandas` library |
|
|
|
You can install the required libraries using pip: |
|
|
|
```sh |
|
pip install datasets pandas |
|
``` |
|
|
|
## Usage |
|
|
|
The following example demonstrates how to load the dataset and convert it to a pandas DataFrame. |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("Weijie1996/load_timeseries") |
|
# Print the category of the dataset |
|
|
|
print(set(ds['category'])) |
|
print(set(ds['id'])) |
|
|
|
# Filter the dataset that category is 15m and id is GE_1 |
|
ds = ds.filter(lambda x: x['category'] == '30m' and x['id'] == 'GE_1') |
|
|
|
# Transform the dataset to a pandas dataframe |
|
df = ds.to_pandas() |
|
|
|
``` |
|
|
|
## Output |
|
``` data |
|
id datetime target category |
|
0 NL_1 2013-01-01 00:00:00 0.117475 60m |
|
1 NL_1 2013-01-01 01:00:00 0.104347 60m |
|
2 NL_1 2013-01-01 02:00:00 0.103173 60m |
|
3 NL_1 2013-01-01 03:00:00 0.101686 60m |
|
4 NL_1 2013-01-01 04:00:00 0.099632 60m |
|
``` |