Datasets:
Name
stringlengths 9
9
| Level
int64 0
5
| generated_images
imagewidth (px) 512
512
| real_images
imagewidth (px) 150
8.1k
|
---|---|---|---|
CAP000008 | 2 | ||
CAP000013 | 4 | ||
CAP000018 | 0 | ||
CAP000025 | 1 | ||
CAP000030 | 1 | ||
CAP000031 | 2 | ||
CAP000035 | 3 | ||
CAP000051 | 2 | ||
CAP000065 | 1 | ||
CAP000066 | 1 | ||
CAP000074 | 0 | ||
CAP000076 | 3 | ||
CAP000089 | 2 | ||
CAP000095 | 0 | ||
CAP000113 | 3 | ||
CAP000115 | 2 | ||
CAP000136 | 2 | ||
CAP000156 | 2 | ||
CAP000162 | 0 | ||
CAP000164 | 3 | ||
CAP000179 | 0 | ||
CAP000225 | 5 | ||
CAP000258 | 4 | ||
CAP000264 | 0 | ||
CAP000282 | 0 | ||
CAP000294 | 3 | ||
CAP000303 | 1 | ||
CAP000305 | 2 | ||
CAP000307 | 4 | ||
CAP000329 | 5 | ||
CAP000331 | 2 | ||
CAP000337 | 1 | ||
CAP000340 | 5 | ||
CAP000341 | 1 | ||
CAP000347 | 4 | ||
CAP000353 | 5 | ||
CAP000357 | 3 | ||
CAP000364 | 4 | ||
CAP000390 | 0 | ||
CAP000396 | 4 | ||
CAP000397 | 3 | ||
CAP000401 | 3 | ||
CAP000424 | 3 | ||
CAP000436 | 5 | ||
CAP000440 | 5 | ||
CAP000455 | 5 | ||
CAP000477 | 3 | ||
CAP000481 | 1 | ||
CAP000493 | 4 | ||
CAP000513 | 2 | ||
CAP000522 | 1 | ||
CAP000544 | 2 | ||
CAP000550 | 2 | ||
CAP000557 | 1 | ||
CAP000564 | 5 | ||
CAP000568 | 2 | ||
CAP000569 | 2 | ||
CAP000595 | 0 | ||
CAP000598 | 0 | ||
CAP000628 | 3 | ||
CAP000635 | 0 | ||
CAP000642 | 0 | ||
CAP000645 | 1 | ||
CAP000652 | 4 | ||
CAP000653 | 4 | ||
CAP000669 | 2 | ||
CAP000682 | 3 | ||
CAP000684 | 3 | ||
CAP000686 | 1 | ||
CAP000689 | 4 | ||
CAP000699 | 1 | ||
CAP000707 | 3 | ||
CAP000713 | 5 | ||
CAP000714 | 5 | ||
CAP000722 | 0 | ||
CAP000727 | 4 | ||
CAP000734 | 2 | ||
CAP000744 | 1 | ||
CAP000789 | 3 | ||
CAP000803 | 1 | ||
CAP000810 | 2 | ||
CAP000812 | 3 | ||
CAP000819 | 4 | ||
CAP000824 | 0 | ||
CAP000831 | 0 | ||
CAP000842 | 0 | ||
CAP000853 | 3 | ||
CAP000865 | 0 | ||
CAP000885 | 0 | ||
CAP000890 | 3 | ||
CAP000891 | 4 | ||
CAP000892 | 5 | ||
CAP000899 | 2 | ||
CAP000905 | 0 | ||
CAP000927 | 0 | ||
CAP000932 | 5 | ||
CAP000934 | 1 | ||
CAP000935 | 1 | ||
CAP000939 | 3 | ||
CAP000949 | 4 |
Summary
This is the dataset proposed in our paper Image Copy Detection for Diffusion Models (NeurIPS 2024).
D-Rep consists of 40, 000 image-replica pairs, in which each replica is generated by a diffusion model. The 40, 000 image-replica pairs are manually labeled with 6 replication levels ranging from 0 (no replication) to 5 (total replication). We divide D-Rep into a training set with 90% (36, 000) pairs and a test set with the remaining 10% (4, 000) pairs.
Download
Automatical
Install the datasets library first, by:
pip install datasets
Then it can be downloaded automatically with
from datasets import load_dataset
dataset = load_dataset('WenhaoWang/D-Rep')
Manual
You can also download each file by wget
:
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/training_pairs.tar
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/test_pairs.tar
wget https://huggingface.co/datasets/WenhaoWang/D-Rep/resolve/main/labels.csv
Curators
D-Rep is created by Wenhao Wang, Dr. Yifan Sun, Zhentao Tan and Professor Yi Yang.
License
We release our D-Rep under the CC-BY-NC-4.0 license.
Helpful Links
The project homepage: https://icdiff.github.io/
The code of image copy detection for diffusion models: https://github.com/WangWenhao0716/PDF-Embedding
The official reviews of our paper: https://openreview.net/forum?id=gvlOQC6oP1
The Arxiv: https://arxiv.org/abs/2409.19952
Citation
@article{wang2024icdiff,
title={Image Copy Detection for Diffusion Models},
author={Wang, Wenhao and Sun, Yifan and Tan, Zhentao and Yang, Yi},
booktitle={Thirty-eighth Conference on Neural Information Processing Systems},
year={2024},
url={https://openreview.net/forum?id=gvlOQC6oP1}
}
Contact
If you have any questions, feel free to contact Wenhao Wang ([email protected]).
- Downloads last month
- 84