depth_overlap_simple_shape / figure_generate.py
Yossh's picture
Upload 4 files
1433dbd
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import random
import math
class SimplePolygon:
pow2 = None
def __init__(self, file_name, depth_name, tags_name,resolution=(512, 512), init_color=(255, 255, 255)):
self.file_name = file_name
self.depth_name = depth_name
self.tags_name = tags_name
self.width = resolution[0]
self.height = resolution[1]
self.components= [set([(wi, hi) for wi in range(512) for hi in range(512)])]
self.img1 = np.full((self.width, self.height, 3), np.random.randint(0, 256, size=(3,), dtype=np.uint8), dtype=np.uint8)
self.img2 = np.zeros([self.width, self.height, 3], dtype=np.uint8)
self.count = 0
if self.pow2 is None:
self.pow2 = [x**2 for x in range(max(resolution[0],resolution[1])+1)]
def component_check(self, comp):
retv = set()
for wi, hi in comp:
if 0<=wi<self.width and 0<=hi<self.height:
retv.add((wi, hi))
return retv
def components_check(self, components):
retv = []
for i in range(len(components)):
is_contain = False
for j in range(i+1, len(components)):
if components[i] <= components[j]:
is_contain = True
break
if not is_contain:
retv.append(self.components[i])
return retv
def generate(self):
# 別の図形に含まれている図形は削除
self.components = self.components_check(self.components)
# 画像外の座標は除去
for i in range(len(self.components)):
self.components[i]=self.component_check(self.components[i])
layer = np.zeros_like(self.components, dtype=np.uint16)
noise = np.zeros(3, dtype=np.int16)
if random.randint(1, 5)==1:
noise = np.random.randint(-10, 10, size=(3,), dtype=np.int16)
for i in range(len(self.components)):
# ↓に重なってる図形の層+1 のmax
for j in range(i-1, -1, -1):
if not self.components[i].isdisjoint(self.components[j]):
layer[i]=max(layer[i], layer[j]+1)
# 色付ける
color = np.random.randint(0, 255, size=(3,), dtype=np.int16)
vec = np.random.randint(0, 255, size=(3,), dtype=np.int16)
ep = np.random.normal(0, 2, size=(2,))
for wi, hi in self.components[i]:
self.img1[wi][hi] = np.abs((color + vec * (ep[0] * wi / self.width + ep[1] * hi / self.height)+noise) % 512 - 256).astype(np.uint8)
# depth画像生成
self.layer_max = np.max(layer)
normalized_layer = ( (255 * layer) // self.layer_max).astype(np.uint8)
for wi in range(self.width):
for hi in range(self.height):
for i in range(len(self.components)-1, -1, -1):
if (wi,hi) in self.components[i]:
self.img2[wi][hi][0] = normalized_layer[i]
self.img2[wi][hi][1] = normalized_layer[i]
self.img2[wi][hi][2] = normalized_layer[i]
break
def add_rect(self):
left_top = [random.randint(0, self.width//10*9), random.randint(0, self.height//10*9)]
poly_width = random.randint(60, self.width//2)
poly_height = random.randint(60, self.height//2)
poly = set()
for wi in range(left_top[0], min(left_top[0]+poly_width, self.width)):
for hi in range(left_top[1], min(left_top[1]+poly_height, self.height)):
poly.add((wi, hi))
self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
return poly
def add_ellipse(self):
center = [random.randint(self.width//10, self.width//10*9), random.randint(self.height//10, self.height//10*9)]
radius_width = random.randint(60, self.width//4)
radius_height = random.randint(60, self.height//4)
poly = set()
r = radius_width**2 * radius_height**2
h2 = radius_height**2
w2 = radius_width**2
for wi in range(self.width):
xx = h2 * self.pow2[abs(wi-center[0])]
if xx > r:
continue
for hi in range(self.height):
if xx + w2 * self.pow2[abs(hi-center[1])] <= r:
poly.add((wi, hi))
self.components.append(self.rotate_component(poly, random.uniform(-math.pi, math.pi)))
return poly
def rotate_component(self, comp, rad):
retv = set()
for wi, hi in comp:
new_wi = math.cos(rad)*(wi-self.width/2)-math.sin(rad)*(hi-self.height/2)+self.width/2
new_hi = math.sin(rad)*(wi-self.width/2)+math.cos(rad)*(hi-self.height/2)+self.height/2
new_wi = round(new_wi)
new_hi = round(new_hi)
for i in range(-1, 2): # -1,0,1
for j in range(-1, 2):
retv.add((new_wi+i, new_hi+j))
return retv
def save(self):
Image.fromarray(self.img1).filter(filter=ImageFilter.GaussianBlur(random.randint(0, 1))).save(self.file_name)
Image.fromarray(self.img2).save(self.depth_name)
with open(self.tags_name, "w") as file:
if self.layer_max is None:
file.write("")
else:
file.write(f"{self.layer_max+1}depth")
import uuid
import concurrent.futures
from tqdm import tqdm
import os
import threading
def process_polygon():
random_uuid = str(uuid.uuid4())
polygon = SimplePolygon(f"conditioning_images/{random_uuid}.png", f"images/{random_uuid}.png", f"conditioning_images/{random_uuid}.txt")
for _ in range(random.randint(4, 20)):
if random.randint(0,1)==0:
polygon.add_ellipse()
else:
polygon.add_rect()
polygon.generate()
polygon.save()
def main():
if not os.path.exists("conditioning_images"):
os.makedirs("conditioning_images")
if not os.path.exists("images"):
os.makedirs("images")
num_processes = 24
total_runs = 21037
with tqdm(total=total_runs, ncols=80) as pbar:
with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
futures = [executor.submit(process_polygon) for _ in range(total_runs)]
for future in concurrent.futures.as_completed(futures):
try:
result = future.result()
pbar.update(1)
except Exception as e:
print(f"Error occurred: {e}")
pbar.update(1)
if __name__ == "__main__":
main()