abdullah's picture
Add files using upload-large-folder tool
0f8a521 verified
raw
history blame
38.6 kB
1
00:00:20,920 --> 00:00:24,640
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ู†ุจุฏุฃ ููŠ ุงู„ู…ุญุงุถุฑุฉ ู‡ุฐู‡
2
00:00:24,640 --> 00:00:29,600
chapter ุฌุฏูŠุฏ ูˆู‡ูˆ chapter ุฃุฑุจุนุฉ ููŠ ุงู„ูƒุชุงุจ ุงู„ู…ู‚ุฑุฑ
3
00:00:29,600 --> 00:00:35,280
ุนู†ูˆุงู† ุงู„ู€ chapter limits of functions ูˆ ู‡ู†ุจุฏุฃ ุฃูˆู„
4
00:00:35,280 --> 00:00:39,540
section ููŠ ุงู„ู€ chapter ู‡ุฐุง ูˆ ุจุฑุถู‡ ุนู†ูˆุงู† ุงู„ู€ section
5
00:00:39,540 --> 00:00:44,180
ุงู„ุฃูˆู„ ู‡ูˆ ู†ูุณ ุนู†ูˆุงู† ุงู„ู€ chapter limits of functions
6
00:00:44,180 --> 00:00:52,780
ูู‚ุจู„ ู…ุง ู†ุนุฑู limit of a function ุจุฏู†ุง ู†ุชุนุฑู ุนู„ู‰
7
00:00:52,780 --> 00:01:00,060
ู…ุตุทู„ุญ ุฌุฏูŠุฏ ูˆู‡ูˆ cluster point of a set ู†ู‚ุทุฉ ุชุฑุงูƒู…
8
00:01:00,060 --> 00:01:04,780
ุงู„ู€ cluster point ุฃูˆ ุจุนุถ ุงู„ูƒุชุจ ุจูŠุณู…ูˆู‡ุง accumulation
9
00:01:04,780 --> 00:01:12,120
point ูˆ ูƒุชุจ ุฃุฎุฑู‰ ุจูŠุณู…ูŠู‡ุง limit point ูู„ูˆ ููŠ ุนู†ุฏูŠ
10
00:01:12,120 --> 00:01:18,200
set A subset ู…ู† R set of real numbers ูˆ C real
11
00:01:18,200 --> 00:01:23,190
number ูุงู„ู€ real number ู‡ุฐุง ุจู†ุณู…ูŠู‡ cluster point
12
00:01:23,190 --> 00:01:28,030
ู„ู„ุณุช a if and only if the following condition is
13
00:01:28,030 --> 00:01:33,770
satisfied for every delta ุนุฏุฏ ู…ูˆุฌุจ ู†ู‚ุฏุฑ ู†ุฌุฏ x
14
00:01:33,770 --> 00:01:39,650
ูŠู†ุชู…ูŠ ุฅู„ู‰ ุงู„ู…ุฌู…ูˆุนุฉ a ูˆ ุงู„ู€ x ู‡ุฐู‡ ู…ุฎุชู„ูุฉ ุนู† ุงู„ู†ู‚ุทุฉ c
15
00:01:39,650 --> 00:01:45,330
ุจุญูŠุซ ุงู† ุงู„ู…ุณุงูุฉ ุจูŠู† x ูˆ c ุชูƒูˆู† ุฃุตุบุฑ ู…ู† delta ู‡ุฐุง
16
00:01:45,330 --> 00:01:49,410
ุงู„ุดุฑุท ู‡ุฐุง
17
00:01:49,410 --> 00:01:54,020
ุงู„ุดุฑุท is equivalent to saying ุจูƒุงูุฆ ุงู† ุงู†ุง ุงู‚ูˆู„
18
00:01:54,020 --> 00:01:59,160
every delta neighborhood every delta neighborhood
19
00:01:59,160 --> 00:02:03,940
ู„ู†ู‚ุทุฉ c ุงู„ู„ู‰ ู‡ูˆ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ุงู„ู„ู‰ ู…ุฑูƒุฒู‡ุง c ูˆู†ุต
20
00:02:03,940 --> 00:02:11,500
ู‚ุทุฑุฉ delta every delta neighborhood of c ูŠุชู‚ุงุทุน ู…ุน
21
00:02:11,500 --> 00:02:18,200
ุงู„ู…ุฌู…ูˆุนุฉ a ููŠ ู†ู‚ุทุฉ ูˆุงุญุฏุฉ ุนู„ู‰ ุงู„ุฃู‚ู„ x ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€
22
00:02:18,200 --> 00:02:25,720
c ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุฃุฎุฑ ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ ููŠ ุงู„ุชู‚ุงุทุน ู‡ุฐุง ู†ู‚ุทุฉ x
23
00:02:25,720 --> 00:02:32,440
ูŠุนู†ูŠ ุงู„ุชู‚ุงุทุน ู‡ุฐุง ู„ุง ูŠุณุงูˆูŠ five okay
24
00:02:32,440 --> 00:02:37,990
ูƒู…ุงู† ู…ุฑุฉ ุงู„ู†ู‚ุทุฉ C ู‡ุฐู‡ ุจุชูƒูˆู† cluster point ู„ู„ู…ุฌู…ูˆุนุฉ
25
00:02:37,990 --> 00:02:44,370
A ุฅุฐุง ุฃูŠ delta neighborhood ู„ู„ู†ู‚ุทุฉ C ุจูŠุชู‚ุงุทุน ู…ุน
26
00:02:44,370 --> 00:02:52,690
ุงู„ู…ุฌู…ูˆุนุฉ A ููŠ ู†ู‚ุทุฉ X ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€C ุจุณ ู„ุงุฒู…
27
00:02:52,690 --> 00:02:58,060
ูƒู„ delta neighborhood ู„ู€C ูŠุชู‚ุงุทุน ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A ููŠ
28
00:02:58,060 --> 00:03:02,720
ู†ู‚ุทุฉ X ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€C ุทุจ ุนุดุงู† ุงุซุจุช ุงู† ุงู„ู€C ู„ูŠุณุช
29
00:03:02,720 --> 00:03:09,000
cluster point ุจู†ููŠ ุงู„ุดุฑุท ู‡ุฐุง ูŠูƒููŠ ุงู† ุงู‚ูˆู„ there
30
00:03:09,000 --> 00:03:14,520
exist ุจุฏู„ for every delta ุงูˆ every delta
31
00:03:14,520 --> 00:03:18,860
neighborhood ูŠูƒูู‰ ุงู† ุงุฌูŠุจ there exists delta
32
00:03:18,860 --> 00:03:24,720
neighborhood ูˆุงุญุฏ ู„ C ูˆ ุงู„ุชู‚ุงุทุน ู‡ุฐุง ุจุณุงูˆูŠ ูุงูŠ ูŠุนู†ูŠ
33
00:03:24,720 --> 00:03:30,540
ุจุญูŠุซ ุงู† ุงู„ู€ delta neighborhood ู„ุง ูŠุชู‚ุงุทุน ู…ุน ุงูŠ
34
00:03:30,540 --> 00:03:39,180
ู…ุดูŠูˆู„ ู…ู†ู‡ุง C ุจุงู„ู…ุฑุฉ ู†ุงุฎุฏ ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ ุงู„ู€ definition
35
00:03:39,180 --> 00:03:43,180
ู‡ุฐุง ุจูŠูƒุงูุฆ ุงู„ู†ุธุฑูŠุฉ ุงู„ุชุงู†ูŠุฉ ุจุชู‚ูˆู„ ุงู†
36
00:03:46,060 --> 00:03:53,140
ุงู„ู€ condition ู‡ุฐุง ุชุจุน ุงู„ุชุนุฑูŠู ุจูƒุงูุฆ ุดุฑุท ุชุงู†ูŠ ุงุฐุง
37
00:03:53,140 --> 00:04:06,140
ู‡ู†ุง let A subset ู…ู† R ูˆ C real number C
38
00:04:06,140 --> 00:04:16,740
is a cluster is a cluster point of the set A if and
39
00:04:16,740 --> 00:04:22,400
only if the following condition is satisfied there
40
00:04:22,400 --> 00:04:26,600
exist a
41
00:04:26,600 --> 00:04:38,640
sequence a n contained in A ูˆูƒู„ ุนู†ุงุตุฑู‡ุง ู…ุฎุชู„ูุฉ
42
00:04:38,640 --> 00:04:52,650
ุนู† ุงู„ C such that limit a n ุจุณุงูˆูŠ c ุงุฐุง ู‡ุฐุง ุงู„ุดุฑุท
43
00:04:52,650 --> 00:04:59,310
ุจูƒุงูุฆ ุงู„ุดุฑุท ุงู„ู„ูŠ ู‡ู†ุงูƒ ุงู„ุดุฑุท ู‡ุฐุง ุงูˆ ุงู„ู„ูŠ ุจูƒุงูู‡
44
00:04:59,310 --> 00:05:06,290
ูู„ุจุฑู‡ุงู† ุฐู„ูƒ ุงุฐุง ูƒู…ุงู† ู…ุฑุฉ ุงู†ุง ุนุดุงู† ุงุซุจุช ุงู† c is a
45
00:05:06,290 --> 00:05:10,610
cluster point ู„ู„ู…ุฌู…ูˆุน ูŠุนู†ูŠ ูŠูƒููŠ ุงู† ุงุซุจุช ุงู† ูŠูˆุฌุฏ
46
00:05:12,310 --> 00:05:17,950
ุณูŠูƒูˆุงู†ุณ ููŠ ุงู„ู…ุฌู…ูˆุนุฉ A ูˆูƒู„ ุนู„ู‰ ุณุฑู‡ุง ู…ุฎุชู„ูุฉ ู„ุงุชุณุงูˆูŠ
47
00:05:17,950 --> 00:05:23,370
C ูˆุงู†ู‡ูŠุชู‡ุง ุจุงู„ุณุงูˆูŠ ู„ุนุฏุฏ C ูุชุนุงู„ู‰ ู†ุจุฑู‡ู† ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡
48
00:05:23,370 --> 00:05:28,850
ู†ุจุฑู‡ู† ุงู„ู€ only if part ุงู„ุฃูˆู„ ูุงู„ู€ only if part ูŠุนู†ูŠ
49
00:05:28,850 --> 00:05:36,910
ุงู„ู€ assumption assume ุงู† C is a cluster is
50
00:05:36,910 --> 00:05:39,230
a cluster point
51
00:05:40,700 --> 00:05:49,140
of a then
52
00:05:49,140 --> 00:06:00,080
for every n ูŠู†ุชู…ูŠ ุฅู„ู‰ n ู„ูƒู„ ุนุฏุฏ ุทุจูŠุนูŠ n take delta
53
00:06:00,080 --> 00:06:08,110
ุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ n ุนุฏุฏ ู…ูˆุฌุจ ุจู…ุง ุงู†ู‡ C is a cluster
54
00:06:08,110 --> 00:06:11,230
point ู„ A then by definition of a cluster point
55
00:06:11,230 --> 00:06:14,410
then
56
00:06:14,410 --> 00:06:23,770
by definition there exist a N ูŠู†ุชู…ูŠ ุฅู„ู‰ A ู…ุฎุชู„ู ุนู†
57
00:06:23,770 --> 00:06:28,210
ุงู„ C such that
58
00:06:28,210 --> 00:06:31,070
ุงู„ ..
59
00:06:34,910 --> 00:06:42,950
ุงู„ู€ AN ู‡ุฐุง ูŠู†ุชู…ูŠ ู„ู„ู€ Delta neighborhood ู„ู„ู€
60
00:06:42,950 --> 00:06:56,090
C ูˆุทุจุนุง ูŠู†ุชู…ูŠ ุฅู„ู‰ A negative C ู‡ุนู…ู„
61
00:06:56,090 --> 00:07:02,810
ุงู„ุชุนุฑูŠู ู‡ุฐุงู„ู…ุง ุงู†ู‡ ุงู„ู€ C is a cluster point ู„ุฃูŠ
62
00:07:02,810 --> 00:07:09,410
Delta ุฃูƒุจุฑ ู…ู† ุงู„ุณูุฑ ุฎุฏ Delta ุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ N ู„ูƒู„
63
00:07:09,410 --> 00:07:13,290
ุนุฏุฏ ุทุจูŠุนูŠ N ู‡ุฐุง ุจูŠุทู„ุน ุนุฏุฏ ู…ูˆุฌุจ ู„ุฐู„ูƒ ู„ู€ Delta ุจุณุงูˆูŠ
64
00:07:13,290 --> 00:07:18,470
ูˆุงุญุฏ ุนู„ู‰ N ุจู‚ุฏุฑ ุฃู„ุงุฌู†ูŠ ุนู†ุตุฑ X ุงู„ู„ูŠ ู‡ูˆ ุณุงู…ูŠู‡ An
65
00:07:18,470 --> 00:07:24,470
ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ Delta ูˆู‡ุฐุง ุงู„ุนู†ุตุฑ ู…ูˆุฌูˆุฏ ููŠ A ู…ุฎุชู„ู
66
00:07:24,470 --> 00:07:30,570
ุนู† ุงู„ู€ Cูˆ ุฃูŠุถุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ delta neighborhood ู„ู€
67
00:07:30,570 --> 00:07:38,370
C ุทูŠุจ
68
00:07:38,370 --> 00:07:42,610
ุฅุฐุง ูˆ
69
00:07:42,610 --> 00:07:51,230
ูˆุงุถุญ ู‡ู†ุง ู…ู† ุงู„ู€ AN ูŠู†ุชู…ูŠ ู„ ุงู„ู€
70
00:07:51,230 --> 00:07:56,150
AN ูŠู†ุชู…ูŠ ู„ DN ุงู„ู€
71
00:07:56,150 --> 00:08:01,970
delta ุฃูˆ ุงู„ู€ 1 ุนู„ู‰ N neighborhood ู„ู„ู€ C ุงู„ู„ูŠ ู‡ูˆ C
72
00:08:01,970 --> 00:08:09,750
ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ N C ู…ูˆุฌุจ ูˆุงุญุฏ ุนู„ู‰ N ูˆู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ N
73
00:08:09,750 --> 00:08:16,270
ุจูŠู‚ุฏูŠ ุงู†ู‡ ุจูŠู‚ุฏูŠ
74
00:08:16,270 --> 00:08:20,890
ุงู†ู‡ C ุณุงู„ู… A N ุฃูˆ
75
00:08:24,630 --> 00:08:31,950
absolute a n ุณุงู„ุจ c ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ n ูˆู‡ุฐุง ุตุญูŠุญ
76
00:08:31,950 --> 00:08:36,370
ู„ูƒู„ n ู‡ุฒุจูˆุชุŸ
77
00:08:36,370 --> 00:08:40,750
ู‡ุงูŠ a n ุฃูƒุจุฑ ู…ู† c ุณุงู„ุจ ูˆุงุญุฏ ุนู„ู‰ n ุฃุตุบุฑ ู…ู† c ุฒุงุฏ
78
00:08:40,750 --> 00:08:45,310
ูˆุงุญุฏ ุนู„ู‰ n ู‡ุฐุง ู…ุนู†ุงู‡ absolute a n minus c ุฃุตุบุฑ ู…ู†
79
00:08:45,310 --> 00:08:48,790
ูˆุงุญุฏ ุนู„ู‰ n ู„ูƒู„ n ู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ n
80
00:08:52,390 --> 00:08:56,990
ุฅุฐุง ู‡ุงูŠ ููŠู‡ุง sequence ุฅุฐุง ู‡ุงูŠ ุฃุซุจุชู†ุง ู…ุงูŠูˆุฌุฏ
81
00:08:56,990 --> 00:09:09,350
sequence ุฅุฐุง am is a sequence in a ูˆูƒู„ ุญุฏูˆุฏู‡ุง
82
00:09:09,350 --> 00:09:16,610
ู…ุฎุชู„ูุฉ ุนู† ุงู„ c and by theorem ุงุชู†ูŠู† ุงุฑุจุนุฉ ุงู„ุดู‡ูŠุฑุฉ
83
00:09:18,560 --> 00:09:21,560
ุฃู†ุง ุนู†ุฏูŠ ุงู„ู€ absolute value ู‡ุฐูŠ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ N
84
00:09:21,560 --> 00:09:26,480
ู„ูƒู„ N limit ูˆุงุญุฏ ุนู„ู‰ N ุจุงู„ุณุงูˆูŠ ุณูุฑ ุฎุฏ C ุจุงู„ุณุงูˆูŠ
85
00:09:26,480 --> 00:09:33,760
ูˆุงุญุฏ ุนุฏู† ู…ูˆุฌุจ ู„ุฃู† ุจูŠุทู„ุน limit ุงู„ู€ sequence A N as N
86
00:09:33,760 --> 00:09:39,300
tends to infinity ุจุณุงูˆูŠ S C ุฅุฐู† ู‡ูŠู† ุฃุซุจุชู†ุง ุฅู†ู‡ ู„ูˆ
87
00:09:39,300 --> 00:09:44,920
ูƒุงู†ุช C cluster point ูุฃุซุจุชู†ุง ุฅู†ู‡ ูŠูˆุฌุฏ sequence A N
88
00:09:44,920 --> 00:09:51,380
ููŠ ุงู„ู…ุฌู…ูˆุนุฉ A ูˆูƒู„ ุนู†ุงุตุฑู‡ุง ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€ C ูˆู†ู‡ุงูŠุชู‡ุง
89
00:09:51,380 --> 00:09:59,080
ุจุณุงูˆูŠ ุงู„ู€ C ุฅุฐุง ู‡ุฐุง ุจุซุจุช ุฌุฒุก ุงู„ู€ only if part ุงู„ุขู†
90
00:09:59,080 --> 00:10:04,220
ู„ุซุจุช ุงู„ุนูƒุณ ู„ุฅุซุจุงุช
91
00:10:04,220 --> 00:10:04,920
ุงู„ุนูƒุณ
92
00:10:21,910 --> 00:10:28,090
assume ุฃู† ุงู„ุดุฑุท ุงู„ู„ูŠ ุญุตู„ ุจุชุชุญู‚ู‚
93
00:10:28,090 --> 00:10:41,250
assume ุงู„ู€ condition ุงู„ู„ูŠ ุญุตู„ holds ูŠุนู†ูŠ ุจุชุชุญู‚ู‚ to
94
00:10:41,250 --> 00:10:48,890
show c is a cluster point of
95
00:10:48,890 --> 00:11:03,360
a let delta ุฃูƒุจุฑ ู…ู† ุงู„ุณูุฑ is given since
96
00:11:03,360 --> 00:11:15,160
by star ู…ู† ุงู„ุดุฑุท star ู„ุฏูŠ limit ู„ุงู† ุจุณุงูˆูŠ c ูˆ
97
00:11:15,160 --> 00:11:19,260
delta ุฃูƒุจุฑ ู…ู† ุงู„ุณูุฑ is given ุฅุฐุง ู…ู† ุชุนุฑูŠู delta
98
00:11:19,260 --> 00:11:25,560
capital N ู„ู„ู€ limit ู„ุฃูŠ delta ุฃูˆ ุฅุจุณู„ูˆู† ุนุฏุฏ ู…ูˆุฌุจ
99
00:11:25,560 --> 00:11:31,320
there exist n ูŠุนุชู…ุฏ ุนู„ู‰ delta natural number ุฏุญูŠุซ
100
00:11:31,320 --> 00:11:40,140
ุฃู†ู‡ ู„ูƒู„ n ุฃูƒุจุฑ ู…ู† ุฃูˆ ุณูˆู‰ capital N ู‡ุฐุง ุจูŠู‚ุฏูŠ ุฃู†ู‡
101
00:11:40,140 --> 00:11:47,000
absolute a n minus c ุฃุตุบุฑ ู…ู† delta
102
00:11:50,570 --> 00:11:57,870
ุฅุฐุงู‹ ู‡ุฐุง ุจูŠู‚ุฏู‘ูŠ ุฅู†ู‡ ู‡ูŠุนู†ุฏูŠ am
103
00:12:02,990 --> 00:12:08,910
ุทุจุนุง ู‡ุฏู ู‚ู„ุจูŠ ุฃู† a n ุฃุตุบุฑ
104
00:12:08,910 --> 00:12:15,370
ู…ู† c ุฒุงุฆุฏ delta ุฃูƒุจุฑ ู…ู† c negative delta ูŠุนู†ูŠ a n
105
00:12:15,370 --> 00:12:22,630
ุชู†ุชู…ูŠ ุฅู„ู‰ v delta of c ูˆุชู†ุชู…ูŠ ุทุจุนุง ู…ู† ุงู„ู€ condition
106
00:12:22,630 --> 00:12:32,780
star ุชู†ุชู…ูŠ ุฅู„ู‰ a difference c ูˆู‡ุฐุง ุตุญูŠุญ ู„ูƒู„ n ุฃูƒุจุฑ
107
00:12:32,780 --> 00:12:38,660
ู…ู† ุฃูˆ ุณุงูˆูŠ capital N ุฅุฐุง ู‡ุงูŠ ูƒู„ delta neighborhood
108
00:12:38,660 --> 00:12:50,240
ู„ C ุจูŠุชู‚ุงุทุน ู…ุน A ููŠ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ู†ู‚ุงุท ุงู„ู…ุฎุชู„ูุฉ
109
00:12:50,240 --> 00:12:57,420
ุนู† ุงู„ C ูˆุจุงู„ุชุงู„ูŠ ุงู„ุดุฑุท ุชุจุน ุงู„ู€ definition ู‡ูŠุชุญู‚ู‚ูˆ
110
00:12:57,420 --> 00:13:05,660
then by definition .. by definition C is a cluster
111
00:13:05,660 --> 00:13:14,000
point of the set A ูˆ ู‡ุฏุง ุจูƒู…ู„ ุงู„ู€ F part and
112
00:13:14,000 --> 00:13:19,140
therefore completes the proof of the theorem okay
113
00:13:19,140 --> 00:13:20,000
ุชู…ุงู…ุŸ
114
00:13:25,140 --> 00:13:27,540
Fine ุฎู„ู‘ูŠู†ุง ู†ุงุฎุฏ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ
115
00:13:49,070 --> 00:14:05,410
ุชุดูŠุฑ ุฅู„ู‰ ุฃู† ูƒู„ X ูŠู†ุชู…ูŠ ุฅู„ู‰ ู…ู‚ูู„ ู…ู‚ูู„ ู…ู‚ูู„
116
00:14:05,410 --> 00:14:16,770
ู…ู‚ูู„
117
00:14:23,120 --> 00:14:29,460
of set A1 ุจุณุงูˆูŠ ุงู„ูุชุฑุฉ
118
00:14:29,460 --> 00:14:40,780
ุงู„ู…ูุชูˆุญุฉ ู…ู† ุณูุฑ ุฅู„ู‰ ูˆุงุญุฏ ู…ู†
119
00:14:40,780 --> 00:14:45,460
ู‡ู†ุง ูŠุซุจุช ุฅู† ูƒู„ X ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ู…ู† ุณูุฑ ุฅู„ู‰ ูˆุงุญุฏ ู‡ูŠ
120
00:14:45,460 --> 00:14:50,480
cluster point ู„ู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุณูุฑ ุฅู„ู‰ ูˆุงุญุฏ
121
00:15:01,360 --> 00:15:09,580
ูููŠ ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุซุจุช ุฃู†ู‡ ูƒู„ ู†ู‚ุทุฉ ุฏุงุฎู„ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ
122
00:15:09,580 --> 00:15:14,460
ู‡ูŠ cluster point ู„ู„ู…ุฌู…ูˆุน ุนุงุฏูŠ ูˆ ุจุนุฏูŠู† ููŠ ุงู„ู…ุฑุญู„ุฉ
123
00:15:14,460 --> 00:15:19,840
ุงู„ุชุงู†ูŠุฉ ุญุชุฉ ู…ู† ู†ู‚ุงุท ุงู„ุฃุทุฑุงู ุงู„ู„ูŠ ู‡ูŠ 01 ุชุทู„ุน ุฃูŠุถุง
124
00:15:19,840 --> 00:15:26,620
cluster point ู„ุณุช A1 ูู†ุดูˆู ู…ุน ุจุนุถ ุงู† ุงู„ู€ claim 1
125
00:15:34,010 --> 00:15:45,190
ุจู†ุซุจุช ุงู† ูƒู„ X ูŠู†ุชู…ูŠ ู„ู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ is a cluster
126
00:15:45,190 --> 00:15:50,410
point of
127
00:15:50,410 --> 00:15:58,730
set A1 ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู†ูุณู‡ุง ู„ุจุฑู‡ุงู† ุฐู„ูƒ to
128
00:15:58,730 --> 00:16:09,390
see this ุงู„ุจุฑู‡ู† ุฐู„ูƒ fix ูŠู†ุชู…ูŠ
129
00:16:09,390 --> 00:16:17,470
ู„ู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ูˆู†ุซุจุช ุงู† cluster point ู„ู„ู…ุฌู…ูˆุนุฉ a1
130
00:16:17,470 --> 00:16:29,940
ุงุฐุง fix x and let delta ุฃูƒุจุฑ ู…ู† ุงู„ุณูุฑ be given ู†ุจุฏุฃ
131
00:16:29,940 --> 00:16:35,900
ุจุงู„ู€ delta ุฃูƒุจุฑ ู…ู† 0 ูˆู†ุซุจุช ุฃู† ูƒู„ delta
132
00:16:35,900 --> 00:16:42,820
neighborhood ู„ู„ู†ู‚ุทุฉ X ุจูŠุชู‚ุงุทุน ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A1 ููŠ
133
00:16:42,820 --> 00:16:49,400
ู†ู‚ุทุฉ ู…ุฎุชู„ูุฉ ุนู† X ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ X ู‡ุชุทู„ุน cluster
134
00:16:49,400 --> 00:16:55,960
point ุญุณุจ ุงู„ุชุนุฑูŠู ุทูŠุจ ู†ุญู†
135
00:16:55,960 --> 00:16:56,920
ู„ุฏูŠู†ุง ุงุชุตุงู„ูŠู†
136
00:17:01,270 --> 00:17:07,090
two cases ุญุงู„ุชูŠู† ุงู„ุญุงู„ุฉ
137
00:17:07,090 --> 00:17:10,270
ุงู„ุฃูˆู„ู‰ ุงู† ุงู„ู€ delta ู‡ุฐู‡ ุงู„ู„ู‰ ุงู†ุง ุงุฎุชุฑุชู‡ุง ุงู„ุนุดูˆุงุฆูŠุฉ
138
00:17:10,270 --> 00:17:17,310
ุงู„ู€ delta ุงู„ู„ู‰ ุงู†ุง ุงุฎุชุฑุชู‡ุง ู…ู…ูƒู† ุชูƒูˆู† ุงุตุบุฑ ู…ู† ..
139
00:17:17,310 --> 00:17:23,590
ุทุจุนุง ู…ูˆุฌุจุฉ ู‡ูŠ ู…ู…ูƒู† ุชูƒูˆู† ุงุตุบุฑ ู…ู† ูˆุงุญุฏ ู in this
140
00:17:23,590 --> 00:17:27,930
case in
141
00:17:27,930 --> 00:17:30,050
in this case ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
142
00:17:35,000 --> 00:17:49,440
ู„ุฏูŠู†ุง in this
143
00:17:49,440 --> 00:17:58,680
case ุงู„ู€ delta neighborhood ู„ู€ X ุงู„ู„ูŠ ู‡ูˆ X minus
144
00:17:58,680 --> 00:18:06,650
Delta X ู…ูˆุฌุจ Delta ุจู†ู„ุงุญุธ ุฃู†ู‡ ุชู‚ุงุทุน ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A
145
00:18:06,650 --> 00:18:14,050
ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ู„ูˆุงุญุฏ ุจูŠุทู„ุน
146
00:18:14,050 --> 00:18:23,080
ูˆุงุญุฏ ู…ู† ุงู„ุฎูŠุงุฑุงุช ุงู„ุชุงู„ูŠุฉ: ุฅู…ุง ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ x
147
00:18:23,080 --> 00:18:28,820
negative delta x positive delta ุฃูˆ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ
148
00:18:28,820 --> 00:18:36,420
ู…ู† ุตูุฑ ุฅู„ู‰ x positive delta ุฃูˆ ุงู„ูุชุฑุฉ
149
00:18:36,420 --> 00:18:40,340
ุงู„ู…ูุชูˆุญุฉ ู…ู† x negative delta ุฅู„ู‰ ูˆุงุญุฏ ุฃูˆ ุงู„ูุชุฑุฉ
150
00:18:40,340 --> 00:18:42,920
ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ
151
00:18:48,470 --> 00:18:55,310
ุญุณุจ ู‚ูŠู…ุฉ ุงู„ู€ Delta ูŠุนู†ูŠ ุฃู†ุง
152
00:18:55,310 --> 00:19:03,030
ุนู†ุฏูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† 0 ุฅู„ู‰ 1 ู‡ุฐู‡ ุงู„ูุชุฑุฉ
153
00:19:03,030 --> 00:19:12,350
ุงู„ู…ูุชูˆุญุฉ ุชุจุนุชูŠ ุงู„ู„ูŠ ู‡ูŠ A1 ู‡ุฐุง ุงู„ู€ set A1 ูˆุฃู†ุง ุนู†ุฏูŠ
154
00:19:12,350 --> 00:19:20,080
ุงู„ู€ Delta ุนุฏุฏ ู…ูˆุฌุจ ุฃุตุบุฑ ู…ู† 1 ูˆุงู„ู€ X ู‡ุฐู‡ ุชู†ุชู…ูŠ .. ุงู„ู€
155
00:19:20,080 --> 00:19:27,300
X ู‡ุฐู‡ ู†ู‚ุทุฉ ู…ุง ููŠ ุงู„ูุชุฑุฉ
156
00:19:27,300 --> 00:19:38,320
fixed number ุจูŠู† 0 ูˆ 1 ุงู„ุขู†
157
00:19:38,320 --> 00:19:41,160
ุฃู†ุง ุนู†ุฏูŠ ุงู„ู€ delta neighborhood ู„ู€ X ู‡ุฐุง ู‡ูˆ ู…ู…ูƒู†
158
00:19:41,160 --> 00:19:46,510
ูŠูƒูˆู† ุฒูŠ ู‡ูŠูƒ ุดูƒู„ู‡ ูˆุจุงู„ุชุงู„ูŠ ุชู‚ุงุทุน ุชู‚ุงุทุนู‡ ู…ุน ุงู„ูุชุฑุฉ
159
00:19:46,510 --> 00:19:53,310
ุงู„ู…ูุชูˆุญุฉ ู‡ูˆ ู†ูุณู‡ุŒ ุตุญุŸ ุฅุฐุง ูƒุงู† ุฒูŠ ู‡ูŠูƒ ุฃูˆ ู…ู…ูƒู† ูŠูƒูˆู†
160
00:19:53,310 --> 00:19:57,250
ุงู„ู€ delta neighborhood ู„ู„ู€ X ูŠูƒูˆู† ุดูƒู„ู‡ ุฒูŠ ู‡ูŠูƒ
161
00:19:57,250 --> 00:20:01,430
ูˆุจุงู„ุชุงู„ูŠ
162
00:20:01,430 --> 00:20:06,150
ุชู‚ุงุทุนู‡ ู…ุน ุงู„ูุชุฑุฉ .. ู…ุน ุงู„ู€ set ูˆุงุญุฏุŒ ู‡ูŠูƒูˆู† ุงู„ูุชุฑุฉ
163
00:20:06,150 --> 00:20:10,830
ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ X ุฒูŠ ุงู„ู€ Delta ุงู„ู„ูŠ ู‡ูŠ ุงู„ุซุงู†ูŠุฉ
164
00:20:10,830 --> 00:20:17,310
ูŠุนู†ูŠ ุตุญ ูˆู…ู…ูƒู† ูŠูƒูˆู† ุงู„ู€
165
00:20:17,310 --> 00:20:21,810
delta neighborhood ุงู„ู€ X ุชูƒูˆู† ู‚ุฑูŠุจุฉ ู…ู† ุงู„ูˆุงุญุฏ ุฒูŠ
166
00:20:21,810 --> 00:20:26,410
ู‡ูŠูƒ ูˆุงู„ู€ delta neighborhood ุญูˆุงู„ูŠู† ุงู„ู€ X ูŠูƒูˆู† ุฒูŠ
167
00:20:26,410 --> 00:20:34,190
ู‡ูŠูƒ ุดูƒู„ู‡ ู‡ุงูŠ x negative delta x positive delta
168
00:20:35,200 --> 00:20:39,440
ูˆุจุงู„ุชุงู„ูŠ ุชู‚ุงุทุน ู…ุน ุงู„ูุชุฑุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ ู‡ูŠุนุทูŠู†ูŠ
169
00:20:39,440 --> 00:20:44,700
ุงู„ุฌุฒุก ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ูุชุฑุฉ ู…ูุชูˆุญุฉ ู…ู† X ุณุงู„ุจ Delta ุฅู„ู‰
170
00:20:44,700 --> 00:20:48,360
ูˆุงุญุฏ ูˆู…ู…ูƒู†
171
00:20:48,360 --> 00:20:56,170
ุงู„ู€ Delta neighborhood ุงู„ู€ X ุชูƒูˆู† ู‚ุฑูŠุจุฉ ู…ู† ุงู„ู…ู†ุชุตู ูˆุงู„ู€
172
00:20:56,170 --> 00:20:59,250
Delta ุชูƒูˆู† ู‚ุฑูŠุจุฉ ู…ู† ุงู„ูˆุงุญุฏ ู‚ูŠู…ุชู‡ุง ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ู„ูƒู†
173
00:20:59,250 --> 00:21:04,250
ู‚ุฑูŠุจุฉ ู…ู† ูˆุงุญุฏ ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Delta neighborhood ู„ู„ู€ X
174
00:21:04,250 --> 00:21:09,150
ูŠูƒูˆู† ุฒูŠ ู‡ูŠูƒ ูˆุจุงู„ุชุงู„ูŠ ุชู‚ุงุทุนู‡ ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A ูˆุงุญุฏ
175
00:21:09,150 --> 00:21:12,970
ุจูŠุทู„ุน ุงู„ู…ุฌู…ูˆุนุฉ A ูˆุงุญุฏ ู†ูุณู‡ุงุŒ ุตุญูŠุญุŸ ุฅู† ู‡ุฐู‡ ูƒู„
176
00:21:12,970 --> 00:21:20,590
ุงู„ุงุญุชู…ุงู„ุงุช ูˆููŠ ูƒู„ ุงู„ุฃุญูˆุงู„ ุงู„ุชู‚ุงุทุน ู‡ุฐุง ุจูŠุทู„ุน infinite
177
00:21:20,590 --> 00:21:22,090
is infinite
178
00:21:25,670 --> 00:21:29,890
ุชู‚ุงุทุน ุงู„ู…ุฌู…ูˆุนุชูŠู† ู‡ุฐูˆู„ ุจูŠุทู„ุน ูุชุฑุฉ ูˆุงู„ูุชุฑุฉ ุฃูŠ ูุชุฑุฉ
179
00:21:29,890 --> 00:21:33,330
ู…ูุชูˆุญุฉ ุงู„ู€ cardinal number ุชุจุนู‡ุง ุจูŠุณุงูˆูŠ ุงู„ู€ cardinal
180
00:21:33,330 --> 00:21:36,310
number ุชุจุน ุงู„ู€ real numbers ุงู„ู„ูŠ ู‡ูŠ uncountable set
181
00:21:36,310 --> 00:21:41,270
ูˆุจุงู„ุชุงู„ูŠ infinite ุฅุฐุง ุงู„ุชู‚ุงุทุน ู‡ุฐุง infinite ูˆู‡ุฐุง
182
00:21:41,270 --> 00:21:46,410
ุจูŠู‚ูˆุฏ ุฅู„ู‰ ุฃู† ุงู„ู€ V
183
00:21:46,410 --> 00:21:57,490
Delta of X ุชู‚ุงุทุน ุงู„ู€ a1 ู…ู†ุฒูˆุนุฉ ู…ู†ู‡ุง ุงู„ู€ X ู‡ูŠุทู„ุน
184
00:21:57,490 --> 00:22:03,390
ุจุงู„ุชุฃูƒูŠุฏ ู„ุง ูŠุณุงูˆูŠ ููŠ ู„ุฃู† ุงู„ุชู‚ุงุทุน ู‡ุฐุง ุจูŠุทู„ุน
185
00:22:03,390 --> 00:22:07,630
infinite ูˆุจุงู„ุชุงู„ูŠ ู‡ูŠูƒ ุจูŠูƒูˆู† ุฃุซุจุชู†ุง ุฃู† ูƒู„ Delta
186
00:22:07,630 --> 00:22:13,370
neighborhood ู„ู€ X ุจูŠุชู‚ุงุทุน ู…ุน a1 ููŠ ู†ู‚ุทุฉ ู…ุฎุชู„ูุฉ ุนู† X
187
00:22:23,000 --> 00:22:31,840
ุงู„ุญุงู„ุฉ ุงู„ุซุงู†ูŠุฉ case two ุฃู† ุงู„ู€ Delta ู‡ุฐู‡ ุชูƒูˆู† ุฃูƒุจุฑ
188
00:22:31,840 --> 00:22:36,670
ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุจุฑุถู‡ ููŠ ุงู„ุญุงู„ุฉ ุฏูŠ ุจู†ุฃุชูŠ ู†ุซุจุช ุฃู†ู‡ ูƒู„
189
00:22:36,670 --> 00:22:41,170
delta neighborhood ู„ู€ X ุจุชู‚ุงุทุน ู…ุน A ูˆุงุญุฏ ููŠ ู†ู‚ุทุฉ
190
00:22:41,170 --> 00:22:49,730
ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€ X ู†ุดูˆู ู…ุน ุจุนุถ in this case in
191
00:22:49,730 --> 00:22:57,310
this case ุงู„ู€ X negative ุฃูˆ ุงู„ู€ negative delta X
192
00:22:57,310 --> 00:23:01,310
ู…ูˆุฌุจ delta ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ delta neighborhood ู„ู€ X
193
00:23:01,310 --> 00:23:06,620
ุชู‚ุงุทุน ุงู„ู…ุฌู…ูˆุนุฉ A1 ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† 0 ุฅู„ู‰
194
00:23:06,620 --> 00:23:17,040
1 ู‡ูŠุทู„ุน ุจูŠุณุงูˆูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† 0 ุฅู„ู‰ 1 ู„ุฃู† ุงู„ู€
195
00:23:17,040 --> 00:23:24,780
Delta ู‡ู†ุง ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ูŠุนู†ูŠ ู‡ูŠ ุนู†ุฏูŠ ู…ู† 0
196
00:23:24,780 --> 00:23:36,180
ุฅู„ู‰ 1 ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ูˆู‡ูŠ X ู†ู‚ุทุฉ ู…ุง ุฏุงุฎู„
197
00:23:36,180 --> 00:23:42,300
ุงู„ูุชุฑุฉ ูู„ู…ุง ูŠูƒูˆู† X ุฒุงุฆุฏ ุงู„ู€ Delta ู„ู…ุง ุชูƒูˆู† ุงู„ู€ Delta
198
00:23:42,300 --> 00:23:49,160
ุชุจุนุชูŠ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูู€ X ุฒุงุฆุฏ ุงู„ู€ Delta ู‡ุชูƒูˆู† ู‡ู†ุง ูˆ X
199
00:23:49,160 --> 00:23:55,880
ุณุงู„ุจ ุงู„ู€ Delta ุจุงู„ุชุฃูƒูŠุฏ ู‡ุชูƒูˆู† ู‡ู†ุง ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Delta
200
00:23:55,880 --> 00:24:01,640
neighborhood ู„ู€ X ู‡ูŠุญุชูˆูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ูˆุงุญุฏ ูˆุจุงู„ุชุงู„ูŠ
201
00:24:01,640 --> 00:24:06,760
ุชู‚ุงุทุน ู…ุนุงู‡ุง ุชุทู„ุน ุงู„ู…ุฌู…ูˆุนุฉ A ูˆุงุญุฏ ูˆู‡ุฐุง is infinite
202
00:24:06,760 --> 00:24:11,680
ูˆุจุงู„ุชุงู„ูŠ
203
00:24:11,680 --> 00:24:18,060
ุฅุฐุง ุงู„ู€ delta neighborhood ู‡ุฐุง ุชู‚ุงุทุน ุงู„ูุชุฑุฉ
204
00:24:18,060 --> 00:24:20,460
ุงู„ู…ูุชูˆุญุฉ minus X
205
00:24:23,650 --> 00:24:29,910
ู„ุง ุฃูƒูŠุฏ ุจุชุฃูƒูŠุฏ ู„ุง ูŠุณุงูˆูŠ five okay ุชู…ุงู… ุฅุฐุง ููŠ
206
00:24:29,910 --> 00:24:34,470
ุงู„ุญุงู„ุชูŠู† ุงู„ู€ condition ุชุจุน ุงู„ู€ cluster point ุชุชุญู‚ู‚
207
00:24:34,470 --> 00:24:44,730
therefore by definition X is cluster point is
208
00:24:44,730 --> 00:24:50,780
cluster point of ุงู„ู€ set A ูˆุงุญุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ
209
00:24:50,780 --> 00:24:56,280
ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ ุทุจุนุงู‹ ุฅุฐุง ู‡ุฐุง ุจูŠุซุจุช ุงู„ู€
210
00:24:56,280 --> 00:25:09,140
claim ุงู„ุฃูˆู„ุงู†ูŠ ุทุจุนุงู‹ ุงู„ุขู† ู‡ุฃุซุจุช claim ุซุงู†ูŠ ุงู„ู€ claim
211
00:25:09,140 --> 00:25:09,880
ุงู„ุซุงู†ูŠ
212
00:25:16,660 --> 00:25:25,180
ุงู„ู†ู‚ุทุฉ 0 is a cluster point
213
00:25:25,180 --> 00:25:36,460
of set A1 ุงู„ูุชุฑุฉ ู…ูุชูˆุญุฉ ู…ู† 0 ุฅู„ู‰ 1 ู„ุฅุซุจุงุช
214
00:25:36,460 --> 00:25:37,020
ุฐู„ูƒ
215
00:25:47,440 --> 00:25:55,860
to see this let ู†ุจุฏุฃ let Delta ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ be
216
00:25:55,860 --> 00:26:03,120
given ูู‡ู†ุง
217
00:26:03,120 --> 00:26:11,380
ู„ุฃูŠ Delta ุงู„ู€ Delta
218
00:26:11,380 --> 00:26:16,140
neighborhood ู„ู„ุตูุฑ ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠุทู„ุน
219
00:26:18,570 --> 00:26:28,630
ุณุงู„ุจ Delta ุฒุงุฆุฏ ุตูุฑ ูˆู…ูˆุฌุจ Delta ุฒุงุฆุฏ ุตูุฑ ูุชู‚ุงุทุน ู‡ุฐุง ู…ุน
220
00:26:28,630 --> 00:26:35,150
ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ ุจูŠุณุงูˆูŠ
221
00:26:36,900 --> 00:26:44,360
ููŠ ุฎูŠุงุฑูŠู† ุฅู…ุง ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ Delta ุฅุฐุง
222
00:26:44,360 --> 00:26:52,680
ูƒุงู†ุช ุงู„ู€ Delta ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ ุทุจุนุงู‹ ุฃูƒุจุฑ ู…ู† ุตูุฑ ูˆุจุณุงูˆูŠ
223
00:26:52,680 --> 00:26:57,600
ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ ุฅุฐุง ูƒุงู† ุงู„ู€ Delta
224
00:26:57,600 --> 00:27:04,220
ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ูˆุงุญุฏ ุฒูŠ ู…ุง ุดูˆูู†ุง ููŠ ุจุฑู‡ุงู† ุงู„ูƒู„ุงู…
225
00:27:04,220 --> 00:27:12,240
ุงู„ุฃูˆู„ุงู†ูŠ ู…ุธุจูˆุท ู‡ุงูŠ ุงู„ุงู†ุฏูŠ ุงู„ูุชุฑุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ
226
00:27:12,240 --> 00:27:19,520
ู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ A1 ูˆู‡ูŠ
227
00:27:19,520 --> 00:27:27,700
X ู†ู‚ุทุฉ .. ู„ุฃ ู‡ุงูŠ ุงู„ุตูุฑ ุจุงู„ุฏูุชุฑ ุฃู† ุงู„ุตูุฑ cluster
228
00:27:27,700 --> 00:27:34,660
point ู„ู„ู…ุฌู…ูˆุนุฉ A1 ูุฃุฎุฐุช ุฃูŠ Delta ุฃูƒุจุฑ ู…ู† ุงู„ุตูุฑ ุงู„ุขู†
229
00:27:34,660 --> 00:27:38,260
ุงู„ู€ Delta ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ุงู„ู€ Delta ู‡ุฐู‡ ุฅุฐุง ู‡ูŠ ุณุงู„ุจ
230
00:27:38,260 --> 00:27:42,720
Delta ู…ูˆุฌุจ Delta ู„ูˆ ูƒุงู†ุช ุงู„ู€ Delta ู‡ุฐู‡ ุฃุตุบุฑ ู…ู† ูˆุงุญุฏ
231
00:27:42,720 --> 00:27:47,120
ูุชู‚ุงุทุน ุงู„ู€ Delta neighborhood ู…ุน ุงู„ู€ A ูˆุงุญุฏ ู‡ูŠูƒูˆู†
232
00:27:47,120 --> 00:27:51,140
ุงู„ุฌุฒุก ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ู„ู€ Delta
233
00:27:51,140 --> 00:27:57,100
ุตุญุŸ ูˆู„ูˆ ูƒุงู†ุช ุงู„ู€ Delta ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู„ูˆ ูƒุงู†ุช ุงู„ู€
234
00:27:57,100 --> 00:27:58,940
Delta ู‡ุฐู‡ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ
235
00:28:01,680 --> 00:28:11,060
ูุงู„ู€ .. ูู€ Delta ู‡ุชูƒูˆู† ู‡ุงูŠ Delta ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ
236
00:28:11,060 --> 00:28:15,120
Delta ู‡ุชูƒูˆู† ู‡ู†ุง ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ Delta neighborhood ู‡ุฐุง
237
00:28:15,120 --> 00:28:24,220
ุชู‚ุงุทุน ู…ุน A ูˆุงุญุฏ ุจูŠุณุงูˆูŠ A ูˆุงุญุฏ ู…ุธุจูˆุท ุตุญุŸ ุชู…ุงู…ุŸ ูˆููŠ
238
00:28:24,220 --> 00:28:27,840
ูƒู„ ุงู„ุฃุญูˆุงู„ ุงู„ุชู‚ุงุทุน ู‡ุฐุง ุจูŠุทู„ุน infinite is infinite
239
00:28:27,840 --> 00:28:31,000
infinite set ู„ุฃู†ู‡ open interval
240
00:28:38,080 --> 00:28:46,040
ุชู‚ุงุทุน A-A1 ู‡ูˆ
241
00:28:46,040 --> 00:28:53,940
ู†ูุณ ุชู‚ุงุทุน A1
242
00:29:00,690 --> 00:29:03,830
ุฅุฐู† ู‡ูŠ ุงู„ู„ูŠ ุฃุซุจุชุช ุฅู† ูƒู„ Delta neighborhood ู„ู„ุตูุฑ
243
00:29:03,830 --> 00:29:09,590
ูŠุชู‚ุงุทุน ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A1 ููŠ ู†ู‚ุทุฉ ู…ุฎุชู„ูุฉ ุนู† ุงู„ุตูุฑ ููŠ
244
00:29:09,590 --> 00:29:14,070
ุญู‚ูŠู‚ุฉ ุงู„ุฃู…ุฑ ููŠ ุญู‚ูŠู‚ุฉ ุงู„ุฃู…ุฑ ูƒู„ Delta neighborhood
245
00:29:14,070 --> 00:29:19,250
ู„ู„ุตูุฑ ุจุชู‚ุงุทุน ู…ุน A1 ููŠ ุนุฏุฏ ู„ุงู†ู‡ุงุฆูŠ ู…ู† ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ
246
00:29:19,250 --> 00:29:24,350
ู…ูˆุฌูˆุฏุฉ ููŠ A1 ูˆู…ุฎุชู„ูุฉ ุนู† ุงู„ุตูุฑ ุฅุฐู† by definition
247
00:29:24,350 --> 00:29:27,610
zero is a cluster
248
00:29:30,120 --> 00:29:36,540
point of A1 ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ู„ูˆุงุญุฏ
249
00:29:36,540 --> 00:29:43,720
ูŠุจู‚ู‰ ู„ุฅูƒู…ุงู„ ุงู„ุจุฑู‡ุงู† ูŠู…ูƒู† ุฃู† ูŠุธู‡ุฑ ุงู„ูƒู„ูŠู… ุงู„ุซุงู„ุซ
250
00:29:43,720 --> 00:29:55,560
ุจุงู‚ูŠ ุฃูุซุจุช ุฃู† ุงู„ูˆุงุญุฏ is a cluster point of set A1
251
00:29:55,560 --> 00:30:02,300
ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ู„ูˆุงุญุฏ ูˆุจุฑู‡ุงู† ุงู„ู€ claim
252
00:30:02,300 --> 00:30:07,360
ุงู„ุซุงู„ุซ ุฒูŠ .. similar ู„ุจุฑู‡ุงู† ุงู„ู€ claim ุงู„ุซุงู„ุซ ุฅุฐุง
253
00:30:07,360 --> 00:30:19,280
ู‡ู†ุง the proof its proof is similar to
254
00:30:19,280 --> 00:30:20,260
claim to
255
00:30:23,650 --> 00:30:27,990
ูุญุงุณูŠุจูƒู… ุฃู†ุชู… ุชูƒุชุจูˆุง ูˆุจุงู„ุชุงู„ูŠ ู‡ูŠูƒ ุจูŠูƒูˆู† ุฃุซุจุชู†ุง
256
00:30:27,990 --> 00:30:32,250
ุฃู† ูƒู„ ู†ู‚ุทุฉ ููŠ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ุณูˆุงุก ูƒุงู†ุช ู†ู‚ุทุฉ ุงู„ุทุฑู
257
00:30:32,250 --> 00:30:37,570
ุงู„ู„ูŠ ู‡ูŠ 0 ุฃูˆ 1 ุฃูˆ ู†ู‚ุทุฉ ุฏุงุฎู„ูŠุฉ interior point ู†ู‚ุทุฉ
258
00:30:37,570 --> 00:30:41,290
ุฏุงุฎู„ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ูƒู„ ุงู„ู†ู‚ุงุท ู‡ุฐู‡ ุจุชุทู„ุน cluster
259
00:30:41,290 --> 00:30:47,970
points ู„ู…ุฌู…ูˆุนุฉ A1 ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ูุชูˆุญุฉ ุชู…ุงู…ุŸ
260
00:30:52,450 --> 00:31:05,790
ุจุงู„ู…ุซู„ ู…ู…ูƒู† ุฅุซุจุงุช ุฃู†
261
00:31:05,790 --> 00:31:09,250
ูƒู„ ู†ู‚ุทุฉ ููŠ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ is cluster point
262
00:31:09,250 --> 00:31:16,990
ู„ู„ู…ุฌู…ูˆุนุฉ A2 ุงู„ู„ูŠ ู‡ูŠ ุงู„ูุชุฑุฉ ุงู„ู…ุบู„ู‚ุฉ ู…ู† 0 ุฅู„ู‰ 1
263
00:31:16,990 --> 00:31:20,390
ูˆุงู„ุจุฑู‡ุงู†
264
00:31:20,390 --> 00:31:28,770
ู‡ูˆ ู†ูุณู‡ ุจู†ุนู…ู„ three claims ูˆููŠ ูƒู„ ุจุฑู‡ุงู† ู‡ูŠูƒูˆู† ุงู„ูุฑู‚
265
00:31:28,770 --> 00:31:35,430
ุฃู†ู‡ ุนู†ุฏูŠ ุฃู†ุง A ุจุฏู„ A1 ู‡ูŠูƒูˆู† A2 ูู‡ุชูƒูˆู† ุงู„ู„ูŠ ู‡ูˆ
266
00:31:35,430 --> 00:31:41,370
ุงู„ูุชุฑุงุช ู‡ุฐู‡ ูุชุฑุฉ ู…ุบู„ู‚ุฉ ู…ู† ุตูุฑ ุฅู„ู‰ ูˆุงุญุฏ ูˆุจุงู„ุชุงู„ูŠ
267
00:31:41,370 --> 00:31:47,910
ุจูŠุตูŠุฑ ู‡ุฐู‡ ุงู„ูุชุฑุฉ ู…ู† ู‡ู†ุง ู…ุบู„ู‚ุฉ ุนู†ุฏ ุงู„ุตูุฑ ูˆู…ุบู„ู‚ุฉ ุนู†ุฏ
268
00:31:47,910 --> 00:31:54,070
ุงู„ุตูุฑ ูˆู…ุบู„ู‚ุฉ ุนู†ุฏ ุงู„ูˆุงุญุฏ ูˆู‡ูƒุฐุง ู†ูุณ ุงู„ุจุฑู‡ุงู† ู†ุณุฎ ู„ุตู‚
269
00:31:54,070 --> 00:31:59,790
ู…ุน ุงู„ุชุนุฏูŠู„ุงุช ุงู„ุจุณูŠุทุฉ ุฃู† A ูˆุงุญุฏ ุงู„ุขู† ุฃุตุจุญุช ุจุฏู„ ู…ุง
270
00:31:59,790 --> 00:32:03,270
ูƒุงู†ุช ูุชุฑุฉ ู…ูุชูˆุญุฉ ู…ู† ุตูุฑ ู„ูˆุงุญุฏ ุฃุตุจุญุช ูุชุฑุฉ ู…ุบู„ู‚ุฉ
271
00:32:03,270 --> 00:32:06,830
ูˆุจุงู„ุชุงู„ูŠ ููŠ ุงู„ุชู‚ุงุทุนุงุช ุงู„ุญุณุงุจุงุช ู†ุบู„ู‚ ุงู„ู„ูŠ ู‡ูˆ
272
00:32:06,830 --> 00:32:13,590
ุงู„ูุชุฑุงุช and ุงู„ุญุงุฌุฉ ุงู„ู…ุทู„ูˆุจุฉ okay ูˆุจุงู„ุชุงู„ูŠ ู†ูุณ
273
00:32:13,590 --> 00:32:18,910
ุงู„ุจุฑู‡ุงู† will go through ู‡ูŠู…ุดูŠ ุจุงู„ุชู…ุงู… ูˆุงู„ูƒู…ุงู„ Okay
274
00:32:18,910 --> 00:32:24,270
ุชู…ุงู…ุŸ ุฅุฐุง ู‡ุฐุง ุงู„ุจุฑู‡ุงู† ู…ุดุงุจู‡ ู„ุจุฑู‡ุงู† ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„
275
00:32:24,270 --> 00:32:34,010
ู†ุฃุฎุฐ ูƒู…ุงู† ู…ุซุงู„ ุขุฎุฑ ู…ุซุงู„
276
00:32:34,010 --> 00:32:43,770
ุซุงู„ุซ every every
277
00:32:43,770 --> 00:32:44,310
finite
278
00:32:46,970 --> 00:32:59,350
set A contained in R has no
279
00:32:59,350 --> 00:33:03,070
cluster
280
00:33:03,070 --> 00:33:09,730
points
281
00:33:09,730 --> 00:33:19,970
ูƒู„ finite set ู…ุง ู„ู‡ุงุด ูˆู„ุง cluster point ูˆุงู„ุจุฑู‡ุงู† ุณู‡ู„
282
00:33:19,970 --> 00:33:24,950
proof say
283
00:33:24,950 --> 00:33:35,030
ุฏุนู†ุง ุงู„ู€ set a ู†ุณู…ูŠ ุนู†ุงุตุฑู‡ุง a1, a2 ุฅู„ู‰ an ู‡ุฏู ู…ุด
284
00:33:35,030 --> 00:33:39,950
ู‡ุฏู finite set ุฅุฐุง ุนู†ุงุตุฑู‡ู… ู…ู…ูƒู† ุฃุนู…ู„ู‡ู… list a1, a2
285
00:33:39,950 --> 00:33:47,530
ุฅู„ู‰ an ูˆ ู…ู…ูƒู† ุฃุนู…ู„ู‡ู… order ุฃุฑุชุจู‡ู… ุญุณุจ ุงู„ู…ุคุดุฑ ุชุจุนู‡ู…
286
00:33:47,530 --> 00:33:57,450
ูŠุนู†ูŠ a1 ุฃุตุบุฑ ู…ู† a2 ุฃุตุบุฑ ู…ู† a3 ุฃุตุบุฑ ู…ู† ุฃุตุบุฑ ู…ู† an
287
00:33:57,450 --> 00:34:03,570
ู…ู…ูƒู† ู†ุนู…ู„ ูƒู„ู…ุฉ ู…ู† ู‡ุฐุง ูˆู„ุง ู„ุฃ ู…ู…ูƒู† by the ordering
288
00:34:03,570 --> 00:34:04,370
principle
289
00:34:11,360 --> 00:34:20,780
ุฃูˆ ุจุงุณุชุฎุฏุงู… ุงู„ู€ ordering ุชุจุน ุงู„ู€ real numbers ุฅุฐุง
290
00:34:20,780 --> 00:34:30,880
ู‡ูŠ ุนู†ุฏูŠ ุงู„ู€ set A ุชุจุนุชูŠ ู‡ูŠ ุฎุท ุงู„ุนุฏุงุฏ ูˆู‡ูŠ A1 ูˆู‡ูŠ A2 ูˆู‡ูŠ
291
00:34:30,880 --> 00:34:36,160
A3 ู…ุด ุดุฑุท ุงู„ู…ุณุงูุฉ ุจูŠู† ูƒู„ ุฃู†ุตุงุฑ ูˆุงู„ุชุงู†ูŠ ุชูƒูˆู†
292
00:34:36,160 --> 00:34:46,230
ู…ุชุณุงูˆูŠุฉ ูˆู‡ูƒุฐุง ุฅู„ู‰ ุฃุฎุฑ ุนู†ุตุฑ AN ู
293
00:34:46,230 --> 00:34:49,910
fix X
294
00:34:49,910 --> 00:35:01,190
ูŠู†ุชู…ูŠ ุฅู„ู‰ R ูˆ ุจุฏูŠ ุฃุซุจุช ุฃู† claim X is not a cluster
295
00:35:01,190 --> 00:35:01,910
point
296
00:35:09,790 --> 00:35:12,850
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
297
00:35:12,850 --> 00:35:16,770
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
298
00:35:16,770 --> 00:35:16,790
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
299
00:35:16,790 --> 00:35:17,530
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
300
00:35:17,530 --> 00:35:17,750
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
301
00:35:17,750 --> 00:35:18,430
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
302
00:35:18,430 --> 00:35:19,070
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
303
00:35:19,070 --> 00:35:19,690
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
304
00:35:19,690 --> 00:35:25,170
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
305
00:35:25,170 --> 00:35:28,870
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…ูˆุนุฉ A ู„ูŠุณ ู„ุฏูŠู‡ ุฃูŠ cluster point
306
00:35:28,870 --> 00:35:33,950
ุจุงู„ุชุงู„ูŠ ุงู„ู…ุฌู…
307
00:35:37,690 --> 00:35:44,410
ุฅู…ุง X ุชู†ุชู…ูŠ ุฅู„ู‰ A ุฃูˆ X ุชู†ุชู…ูŠ ุฅู„ู‰ ุงู„ู€ complement
308
00:35:44,410 --> 00:35:50,530
ูŠุนู†ูŠ ู„ุง ุชู†ุชู…ูŠ ุฅู„ู‰ A ุตุญุŸ
309
00:35:50,530 --> 00:35:59,870
ูููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰ case ูˆุงุญุฏ ุฃุซุฑ ู…ู† X ุชู†ุชู…ูŠ ุฅู„ู‰ A
310
00:35:59,870 --> 00:36:03,970
ูˆุจุงู„ุฏูุน ุชุซุจุช ุฅู† X ู„ูŠุณุช cluster point
311
00:36:10,180 --> 00:36:18,560
say x ุจุณุงูˆูŠ a m for some m ุฃูƒุจุฑ ู…ู† ุฃูˆ ุณุงูˆูŠ ูˆุงุญุฏ
312
00:36:18,560 --> 00:36:24,180
ุฃุตุบุฑ ู…ู† ุฃูˆ ุณุงูˆูŠ ู…ุด ู‡ุฐุง ุงู„ู€ x ู…ูˆุฌูˆุฏ ููŠ a ูˆ a ุนู„ู‰
313
00:36:24,180 --> 00:36:29,460
ุณุฑู‡ุง a ูˆุงุญุฏ ุฅู„ู‰ a n ุฅุฐุง ู‡ุฐุง ุงู„ู€ x ู‡ูˆ a m for some m
314
00:36:29,460 --> 00:36:36,300
ุจูŠู† ูˆุงุญุฏ ูˆ n ุทูŠุจ let
315
00:36:37,980 --> 00:36:48,860
delta ุจุณุงูˆูŠ ู†ุต ุงู„ู…ุณุงูุฉ ุงู„ู€ minimum ุงู„ู…ุณุงูุฉ
316
00:36:48,860 --> 00:37:04,760
ุจูŠู† am minus am minus ูˆุงุญุฏ ูˆam ุฒุงุฆุฏ ูˆุงุญุฏ minus am
317
00:37:11,460 --> 00:37:21,160
ูŠุนู†ูŠ ู‡ุงูŠ ุงู„ู€ X ู‡ุงูŠ ุงู„ู€ M ู‡ุงูŠ AM ูˆู‡ุงูŠ AM ุฒุงุฏ ูˆุงุญุฏ
318
00:37:21,160 --> 00:37:30,960
ูˆุงู„ุฃู†ุตุฑ ุงู„ู„ูŠ ุฌุงุจ ู„ู‡ุง AM minus ูˆุงุญุฏ ุงุญู†ุง ู‚ู„ู†ุง ุงู„ู€ X
319
00:37:30,960 --> 00:37:39,850
ุณุจุนุชูŠ ุงู„ู€ X ุณุจุนุชูŠ ู‡ูŠ ุงู„ู€ AM ุงู„ุขู† ุจุงุฎุฏ ุงู„ู…ุณุงูุฉ ู‡ุฐู‡
320
00:37:39,850 --> 00:37:46,030
ุงู„ู„ูŠ ู‡ูŠ ุจูŠู† a m ุฒูŠ ุฏูˆู„ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ ูˆ ุจุงุฎุฏ
321
00:37:46,030 --> 00:37:51,150
ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ ุจูŠู† a m ูˆ a m ุณุงู„ุจ ูˆุงุญุฏ ู„ุงุฒู… ูˆุงุญุฏุฉ
322
00:37:51,150 --> 00:37:55,730
ุชูƒูˆู† ุฃุตุบุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ ุงู„ุชุงู†ูŠุฉ ุจุงุฎุฏู‡ุง ุงู„ู€ minimum ุงู„ู€
323
00:37:55,730 --> 00:37:57,730
minimum .. ุงู„ู€ minimum ุจูŠู† ุงู„ู…ุณุงูุชูŠู† .. ุงู„ุฃุตุบุฑ ุจูŠู†
324
00:37:57,730 --> 00:38:02,650
ุงู„ู…ุณุงูุชูŠู† ู‡ุฏูˆู„ ูˆ ุจุงุฎุฏ ู†ุตู‡ุง ูˆ ุจุงุฎุฏ ู†ุตู‡ุง ุจุณู…ูŠู‡ุง
325
00:38:02,650 --> 00:38:08,720
delta ูู†ุต .. ู„ูˆ ู‚ู„ู†ุง ุงู„ุฃุตุบุฑ ู„ูˆ ู‚ู„ู†ุง ู…ุซู„ุง ุงู„ุฃุตุบุฑ
326
00:38:08,720 --> 00:38:15,400
ุงู„ู„ูŠ ู‡ูŠ ู‡ุฐู‡ ูู†ุต ุงู„ุฏู„ุชุง ู‡ุฐุง ู‡ูŠ ูุฅุฐุง ุงู„ู€ delta ู‡ุชูƒูˆู†
327
00:38:15,400 --> 00:38:21,040
ุงู„ู…ุณุงูุฉ ู‡ุฐู‡ ูˆ ุจูƒูˆู‘ู† delta neighborhood ุญูˆุงู„ูŠู† ุงู„ู€ X
328
00:38:21,040 --> 00:38:29,720
ุงู„ุขู† ุงู„ู€ delta neighborhood ู‡ุฐุง then verify
329
00:38:29,720 --> 00:38:34,860
ู…ู…ูƒู†ูƒู… ุชุชุญู‚ู‚ูˆุง verify that
330
00:38:37,340 --> 00:38:43,600
ุงู„ู€ Delta neighborhood V Delta ู„ A M ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ X
331
00:38:43,600 --> 00:38:46,760
ุชู‚ุงุทุน
332
00:38:46,760 --> 00:38:55,280
ุงู„ู€ set A ูุงูŠ ู…ู†ุฒูˆุนุฉ ู…ู†ู‡ุง A M ู‡ูŠุทู„ุน ุจุณุงูˆูŠ ุงู„ูุงูŠ
333
00:38:55,280 --> 00:39:01,980
ู…ุงููŠุด ุชู‚ุงุทุน ุจูŠู†ู‡ู… ูˆุจุงู„ุชุงู„ูŠ therefore by definition
334
00:39:04,480 --> 00:39:13,200
ุงู… ุงูƒุณ ุจุณุงูˆูŠ ุงู… is not a
335
00:39:13,200 --> 00:39:22,360
cluster point of set A ู„ุฃู† ุนุดุงู† ุชูƒูˆู† ู…ุง ุชูƒูˆู†ูŠุด
336
00:39:22,360 --> 00:39:28,040
cluster point ู„ู…ุฌู…ูˆุนุฉ A ู„ุงุฒู… ุฃุซุจุช ุฅู†ู‡ ูŠูˆุฌุฏ there
337
00:39:28,040 --> 00:39:35,840
exist delta neighborhood ู„ู„ู€ X ุชุจุนุช ุงู„ู„ูŠ ู‡ูŠ AM ุจุญูŠุซ
338
00:39:35,840 --> 00:39:42,980
ุฅู†ู‡ ุงู„ู€ delta neighborhood ู‡ุฐุง ู…ุง ูŠุชู‚ุทุนุด ู…ุน ุงู„ู€ set A ููŠ
339
00:39:42,980 --> 00:39:50,440
ุฃูŠ ู†ู‚ุทุฉ ู…ุฎุชู„ูุฉ ุนู† ุงู„ู†ู‚ุทุฉ X ูˆู‡ุฐุง ุญุตู„ Okay ุชู…ุงู… ุฅุฐุง
340
00:39:50,440 --> 00:39:56,140
ู‡ุฐุง ููŠ ุญุงู„ุฉ ู„ู…ุง ุงู„ู€ X ุชูƒูˆู† ู…ูˆุฌูˆุฏุฉ ููŠ A ุงู„ุญุงู„ุฉ
341
00:39:56,140 --> 00:40:03,340
ุงู„ุชุงู†ูŠุฉ ุงู† ุงู„ู€ case 2 case
342
00:40:03,340 --> 00:40:13,040
2 ุงู† ุงู„ู€ X ู„ุง ุชู†ุชู…ูŠ ุงู„ู€ ุงู„ู€ set A ูููŠ ุงู„ุญุงู„ุฉ ู‡ุฐู‡
343
00:40:14,910 --> 00:40:20,590
ู…ุนู†ุงุชู‡ x ู…ุงุจุชุณุงูˆูŠุด ูˆู„ุง ูˆุงุญุฏ ู…ู† ุงู„ุนู†ุงุตุฑ ู‡ุฐู‡ ูุงู„ุญุงู„ุฉ
344
00:40:20,590 --> 00:40:26,690
ู‡ุฐู‡ ู…ู…ูƒู† ุฃุฌุฒูŠู‡ุง ุฅู„ู‰ ุชู„ุช ุญุงู„ุงุช ุงู„ุญุงู„ุฉ
345
00:40:26,690 --> 00:40:32,750
ุงู„ุฃูˆู„ู‰ ุงู† ุงู„ู€ x ุชุจุนุชูŠ ุชูƒูˆู† ุฃุตุบุฑ ู…ู† a ูˆุงุญุฏ ูˆุจุงู„ุชุงู„ูŠ
346
00:40:32,750 --> 00:40:37,010
ูˆุงุถุญ ุงู† ุงู„ู…ุณุงูุฉ ุจูŠู† X ูˆ A ูˆุงุญุฏ ูƒุจูŠุฑุฉ ูˆุจุงุฎุฏ ู†ุต
347
00:40:37,010 --> 00:40:43,930
ุงู„ู…ุณุงูุฉ ุฏู„ุชุง ุฅุฐุง ู‡ูŠูˆุฌุฏ ุฏู„ุชุง ู†ุจุฑูˆุฏ ู„ X ูˆู…ุงุจุชู‚ุทุนุด
348
00:40:43,930 --> 00:40:47,650
ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A ุจุงู„ู…ุฑุฉ ูˆุจุงู„ุชุงู„ูŠ X is not cluster
349
00:40:47,650 --> 00:40:54,250
point ู…ู…ูƒู† ุงู„ุญุงู„ุฉ ุงู„ุชุงู†ูŠุฉ ุฃู† X ุชูƒูˆู† ุฃูƒุจุฑ ู…ู† ุงู„ู€ AM
350
00:40:54,250 --> 00:40:59,470
ุจุฑุถู‡ ุจุงุฎุฏ ุงู„ู…ุณุงูุฉ ุฏูŠ ุจุฌูŠุจู‡ุง ูˆ ุจุงุฎุฏ ู†ุตู‡ุง ุนู„ู‰ ุงู†ู‡
351
00:40:59,470 --> 00:41:03,670
Delta ูˆ ุจูƒูˆู† Delta neighborhood ุญูˆุงู„ูŠู† ุงู„ู€ X ู‡ุฐุง ุงู„ู€
352
00:41:03,670 --> 00:41:06,530
Delta neighborhood ูˆุงุถุญ ุงู†ู‡ ู…ุงุจุชู‚ุทุนุด ู…ุน ุงู„ู€ set A
353
00:41:06,530 --> 00:41:11,910
ุจุงู„ู…ุฑุฉ ูˆุจุงู„ุชุงู„ูŠ ุฅุฐุง X ููŠ ุงู„ุญุงู„ุฉ ุฏูŠ ู„ูŠุณุช cluster
354
00:41:11,910 --> 00:41:20,190
point ุงู„ุญุงู„ุฉ ุงู„ุชุงู„ุชุฉ ุงู† X ุชูƒูˆู† ูˆุงู‚ุนุฉ ุจูŠู† ุนู†ุตุฑูŠู† ู…ู†
355
00:41:20,190 --> 00:41:25,170
ุนู†ุงุตุฑ ุงู„ู€ set ูุจุงุฎุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุณุงูุฉ ุงู„ุฃุตุบุฑ ู…ู†
356
00:41:25,170 --> 00:41:29,310
ุงู„ู…ุณุงูุชูŠู† ู‡ุฏูˆู„ ูˆ ู‡ูŠ ุชูƒูˆู† ู‡ุงุฏูŠ ูˆ ุจุงุฎุฏ ู†ุตู‡ุง delta ูˆ
357
00:41:29,310 --> 00:41:32,890
ุจูƒูˆู† delta neighborhood ุญูˆุงู„ูŠู‡ุง ู‡ุฐุง ุงู„ู€ delta
358
00:41:32,890 --> 00:41:36,510
neighborhood ุจุชู‚ุทุนุด ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ ู‡ุงุฏ ุงู„ู…ุฑุฉ ูˆุจุงู„ุชุงู„ูŠ
359
00:41:36,510 --> 00:41:38,990
ุญุณุจ ุงู„ุชุนุฑูŠู x ู„ูŠุณุช cluster point
360
00:41:43,100 --> 00:41:46,360
ู…ุง ุงุญู†ุง ู‚ู„ู†ุง ุฅุฐุง ูƒุงู†ุช X ุชู†ุชู…ูŠ ู„ุฃูŠู‡ ู‡ูŠ ุจุฑู‡ุงู†ุฉ MA ู„ุง
361
00:41:46,360 --> 00:41:52,640
ุชู†ุชู…ูŠ ู„ุฃ ุชู†ุชู…ูŠ ุงู‡ ู„ูŠุด ู‚ุฏุงู…ู‡ุง ุจูŠู† ุชู†ุชู…ูŠ ูˆ ู„ุง ุชู†ุชู…ูŠ
362
00:41:52,640 --> 00:41:58,420
ู…ุง ู‡ูŠ ุงู„ู€ X ู…ุง ุชู†ุชู…ูŠุด ู„ุฃูŠู‡ ูู…ู…ูƒู† ุชูƒูˆู† ุจูŠู† ุนู†ุตุฑูŠู† ู…ู†
363
00:41:58,420 --> 00:42:03,360
ุนู†ุตุฑู‡ู… ู‡ูŠ ุชู†ุชู…ูŠ ู„ู€ R ู…ุง ุชู†ุชู…ูŠุด ู„ุฃูŠู‡ ูู…ู…ูƒู† ุชูƒูˆู†
364
00:42:03,360 --> 00:42:09,640
ู…ูˆุฌูˆุฏุฉ ุจูŠู† A2 ูˆ A3 ุตุญ ุฃูˆ ุจูŠู† A1 ูˆ A2 ุฃูˆ ุจูŠู† A3 ุฃูˆ
365
00:42:09,640 --> 00:42:16,530
A ูˆ ู‡ูƒุฐุง ุฃูˆ ู…ู…ูƒู† ุชูƒูˆู† ุงู„ู€ X ุนู„ู‰ ูŠู…ูŠู† ุงู„ู€ AN ุฃูˆ ุญุงู„ุฉ
366
00:42:16,530 --> 00:42:20,190
ุชุงู„ุชุฉ X ุชูƒูˆู† ุนู„ู‰ ูŠุณุงุฑ ุงู„ู€ A ูˆุงุญุฏ ูˆุดูˆูู†ุง ููŠ ูƒู„
367
00:42:20,190 --> 00:42:24,310
ุงู„ุญุงู„ุงุช ู‡ุฐู‡ ุงู„ุชู„ุงุชุฉ ุฃู†ู‡ ุจู‚ุฏุฑ ุฃู„ุงู‚ูŠ delta
368
00:42:24,310 --> 00:42:27,990
neighborhood ุญูˆุงู„ูŠู† ุงู„ู€ X ู„ุง ูŠุชู‚ุงุทุน ู…ุน ุงู„ู…ุฌู…ูˆุนุฉ A
369
00:42:27,990 --> 00:42:32,330
ุจุงู„ู…ุฑุฉ ูˆุจุงู„ุชุงู„ูŠ X ู„ูŠุณุช cluster point ุฅุฐุง ุงู„ูƒู„ุงู…
370
00:42:32,330 --> 00:42:37,110
ู‡ุฐุง ูˆุงุถุญ ุญุงูˆู„ูˆุง ุชูƒุชุจูˆู‡ ุจุทุฑูŠู‚ุฉ ูŠุนู†ูŠ ู…ู†ุทู‚ูŠุฉ okay
371
00:42:37,110 --> 00:42:37,810
ุชู…ุงู…ุŸ
372
00:42:42,120 --> 00:42:46,900
ุฃู†ุง ู…ุชุฎูŠู„ุฉ ุงู„ู€ A ุนุจุงุฑุฉ ุนู† set ุฏุงุฆุฑ ู…ุซู„ุง ุฃู†ุง ู‡ูŠูƒ
373
00:42:46,900 --> 00:42:50,340
ู…ุชุฎูŠู„ุฉ ูˆ ุฃู†ู‡ ู…ุซู„ุง ุงู„ู€ cluster point ู‡ูŠ ุนุจุงุฑุฉ ุนู†
374
00:42:50,340 --> 00:42:54,820
ู†ู‚ุทุฉ .. ู„ุฃ ุงู„ู€ A ู…ุงุชุชุฎูŠู„ูŠุด ุงู„ู€ A ุนู†ุฏ ุงู„ู€ set ุงู„ู€ A ู‡ูŠ
375
00:42:54,820 --> 00:43:01,140
ุฌุฒุก ู…ู† ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ subset ู…ู† R ูˆ R ุฎุท ู„ุงุฒู…
376
00:43:01,140 --> 00:43:04,200
ูŠุนู†ูŠ ุชุชุฎูŠู„ ุงู„ุญุงุฌุงุช ุฒู…ุงู† ุนู„ู‰ ุงู„ู€ interior point ูˆ ุงู„ู€
377
00:43:04,200 --> 00:43:08,260
boundary ู‡ุฐุง ููŠ ุงู„ู€ topology ุญุงุฌุฉ ุชุงู†ูŠุฉ ู‡ูŠ ุฒูŠ ุงุช
378
00:43:08,260 --> 00:43:11,140
ุดุจู‡ู‡ุง ูŠุนู†ูŠ ู…ู…ูƒู† ู†ูู‡ู…ู‡ุง ุจู‡ุฐุง ุงู„ุทุฑูŠู‚ุฉ ุจุณ ู…ู…ูƒู† ุงู‡
379
00:43:11,140 --> 00:43:13,860
ู…ู…ูƒู† ุจุณ ุงุญู†ุง ู‡ู†ุง ุนู„ู‰ ุงู„ู€ real line ูŠุนู†ูŠ ุฎู„ูŠู†ูŠ ุงุญู†ุง
380
00:43:13,860 --> 00:43:18,820
ู†ุชู‚ูŠุฏ ุจุงู„ู€ sets ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ ุงู„ู€ real line ุฃู…ุง ู‡ูˆ
381
00:43:18,820 --> 00:43:24,080
ุทุจุนุง ููŠ ุชุนู†ูŠ ู…ู† ุงู„ูƒู„ุงู… ู‡ุฐุง ููŠ ุญุงุฌุงุช ุฃุนู… ูˆ ูุฑุบุงุช
382
00:43:24,080 --> 00:43:28,550
ุฃุนู… ู…ู† ุงู„ู€ .. ุงู„ู€ real number ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ topological
383
00:43:28,550 --> 00:43:36,030
spaces ูˆ ู‡ุฐุง ู…ูˆุถูˆุน ุทุจุนุง ู…ุชุดุนุจ ูˆ ุจุฏู‡ ูŠุนู†ูŠ ุชุฏุฑุณ ุงู„ู€
384
00:43:36,030 --> 00:43:40,530
topology ุนุดุงู† ุชูู‡ู… ูƒู„ ุดูŠุก okay ูู‰ ุฃูŠ ุฃุณุฆู„ุฉ ุชุงู†ูŠุŸ
385
00:43:40,530 --> 00:43:44,430
okay ู„ู†ูƒุชููŠ ุจู‡ุฐุง ุงู„ู‚ุฏุฑ ูˆ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจู†ูƒู…ู„
386
00:43:44,430 --> 00:43:52,670
ุงู„ู…ุญุงุถุฑุฉ ุงู„ุฌุงูŠุฉ ุงู„ู…ูˆุถูˆุน ูˆ ุจู†ุฎุด ุจุชุนุฑูŠู ุงู„ู€ limit ู„ู„ู€
387
00:43:52,670 --> 00:43:53,110
functions