|
1 |
|
00:00:20,920 --> 00:00:24,640 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ููุจุฏุฃ ูู ุงูู
ุญุงุถุฑุฉ ูุฐู |
|
|
|
2 |
|
00:00:24,640 --> 00:00:29,600 |
|
chapter ุฌุฏูุฏ ููู chapter ุฃุฑุจุนุฉ ูู ุงููุชุงุจ ุงูู
ูุฑุฑ |
|
|
|
3 |
|
00:00:29,600 --> 00:00:35,280 |
|
ุนููุงู ุงูู chapter limits of functions ู ููุจุฏุฃ ุฃูู |
|
|
|
4 |
|
00:00:35,280 --> 00:00:39,540 |
|
section ูู ุงูู chapter ูุฐุง ู ุจุฑุถู ุนููุงู ุงูู section |
|
|
|
5 |
|
00:00:39,540 --> 00:00:44,180 |
|
ุงูุฃูู ูู ููุณ ุนููุงู ุงูู chapter limits of functions |
|
|
|
6 |
|
00:00:44,180 --> 00:00:52,780 |
|
ููุจู ู
ุง ูุนุฑู limit of a function ุจุฏูุง ูุชุนุฑู ุนูู |
|
|
|
7 |
|
00:00:52,780 --> 00:01:00,060 |
|
ู
ุตุทูุญ ุฌุฏูุฏ ููู cluster point of a set ููุทุฉ ุชุฑุงูู
|
|
|
|
8 |
|
00:01:00,060 --> 00:01:04,780 |
|
ุงูู cluster point ุฃู ุจุนุถ ุงููุชุจ ุจูุณู
ููุง accumulation |
|
|
|
9 |
|
00:01:04,780 --> 00:01:12,120 |
|
point ู ูุชุจ ุฃุฎุฑู ุจูุณู
ููุง limit point ููู ูู ุนูุฏู |
|
|
|
10 |
|
00:01:12,120 --> 00:01:18,200 |
|
set A subset ู
ู R set of real numbers ู C real |
|
|
|
11 |
|
00:01:18,200 --> 00:01:23,190 |
|
number ูุงูู real number ูุฐุง ุจูุณู
ูู cluster point |
|
|
|
12 |
|
00:01:23,190 --> 00:01:28,030 |
|
ููุณุช a if and only if the following condition is |
|
|
|
13 |
|
00:01:28,030 --> 00:01:33,770 |
|
satisfied for every delta ุนุฏุฏ ู
ูุฌุจ ููุฏุฑ ูุฌุฏ x |
|
|
|
14 |
|
00:01:33,770 --> 00:01:39,650 |
|
ููุชู
ู ุฅูู ุงูู
ุฌู
ูุนุฉ a ู ุงูู x ูุฐู ู
ุฎุชููุฉ ุนู ุงูููุทุฉ c |
|
|
|
15 |
|
00:01:39,650 --> 00:01:45,330 |
|
ุจุญูุซ ุงู ุงูู
ุณุงูุฉ ุจูู x ู c ุชููู ุฃุตุบุฑ ู
ู delta ูุฐุง |
|
|
|
16 |
|
00:01:45,330 --> 00:01:49,410 |
|
ุงูุดุฑุท ูุฐุง |
|
|
|
17 |
|
00:01:49,410 --> 00:01:54,020 |
|
ุงูุดุฑุท is equivalent to saying ุจูุงูุฆ ุงู ุงูุง ุงููู |
|
|
|
18 |
|
00:01:54,020 --> 00:01:59,160 |
|
every delta neighborhood every delta neighborhood |
|
|
|
19 |
|
00:01:59,160 --> 00:02:03,940 |
|
ูููุทุฉ c ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ุงููู ู
ุฑูุฒูุง c ููุต |
|
|
|
20 |
|
00:02:03,940 --> 00:02:11,500 |
|
ูุทุฑุฉ delta every delta neighborhood of c ูุชูุงุทุน ู
ุน |
|
|
|
21 |
|
00:02:11,500 --> 00:02:18,200 |
|
ุงูู
ุฌู
ูุนุฉ a ูู ููุทุฉ ูุงุญุฏุฉ ุนูู ุงูุฃูู x ู
ุฎุชููุฉ ุนู ุงูู |
|
|
|
22 |
|
00:02:18,200 --> 00:02:25,720 |
|
c ูุนูู ุจู
ุนูู ุฃุฎุฑ ุจูุฏุฑ ุฃูุงูู ูู ุงูุชูุงุทุน ูุฐุง ููุทุฉ x |
|
|
|
23 |
|
00:02:25,720 --> 00:02:32,440 |
|
ูุนูู ุงูุชูุงุทุน ูุฐุง ูุง ูุณุงูู five okay |
|
|
|
24 |
|
00:02:32,440 --> 00:02:37,990 |
|
ูู
ุงู ู
ุฑุฉ ุงูููุทุฉ C ูุฐู ุจุชููู cluster point ููู
ุฌู
ูุนุฉ |
|
|
|
25 |
|
00:02:37,990 --> 00:02:44,370 |
|
A ุฅุฐุง ุฃู delta neighborhood ููููุทุฉ C ุจูุชูุงุทุน ู
ุน |
|
|
|
26 |
|
00:02:44,370 --> 00:02:52,690 |
|
ุงูู
ุฌู
ูุนุฉ A ูู ููุทุฉ X ู
ุฎุชููุฉ ุนู ุงููC ุจุณ ูุงุฒู
|
|
|
|
27 |
|
00:02:52,690 --> 00:02:58,060 |
|
ูู delta neighborhood ููC ูุชูุงุทุน ู
ุน ุงูู
ุฌู
ูุนุฉ A ูู |
|
|
|
28 |
|
00:02:58,060 --> 00:03:02,720 |
|
ููุทุฉ X ู
ุฎุชููุฉ ุนู ุงููC ุทุจ ุนุดุงู ุงุซุจุช ุงู ุงููC ููุณุช |
|
|
|
29 |
|
00:03:02,720 --> 00:03:09,000 |
|
cluster point ุจููู ุงูุดุฑุท ูุฐุง ูููู ุงู ุงููู there |
|
|
|
30 |
|
00:03:09,000 --> 00:03:14,520 |
|
exist ุจุฏู for every delta ุงู every delta |
|
|
|
31 |
|
00:03:14,520 --> 00:03:18,860 |
|
neighborhood ูููู ุงู ุงุฌูุจ there exists delta |
|
|
|
32 |
|
00:03:18,860 --> 00:03:24,720 |
|
neighborhood ูุงุญุฏ ู C ู ุงูุชูุงุทุน ูุฐุง ุจุณุงูู ูุงู ูุนูู |
|
|
|
33 |
|
00:03:24,720 --> 00:03:30,540 |
|
ุจุญูุซ ุงู ุงูู delta neighborhood ูุง ูุชูุงุทุน ู
ุน ุงู |
|
|
|
34 |
|
00:03:30,540 --> 00:03:39,180 |
|
ู
ุดููู ู
ููุง C ุจุงูู
ุฑุฉ ูุงุฎุฏ ูุธุฑูุฉ ุงูุฃูู ุงูู definition |
|
|
|
35 |
|
00:03:39,180 --> 00:03:43,180 |
|
ูุฐุง ุจููุงูุฆ ุงููุธุฑูุฉ ุงูุชุงููุฉ ุจุชููู ุงู |
|
|
|
36 |
|
00:03:46,060 --> 00:03:53,140 |
|
ุงูู condition ูุฐุง ุชุจุน ุงูุชุนุฑูู ุจูุงูุฆ ุดุฑุท ุชุงูู ุงุฐุง |
|
|
|
37 |
|
00:03:53,140 --> 00:04:06,140 |
|
ููุง let A subset ู
ู R ู C real number C |
|
|
|
38 |
|
00:04:06,140 --> 00:04:16,740 |
|
is a cluster is a cluster point of the set A if and |
|
|
|
39 |
|
00:04:16,740 --> 00:04:22,400 |
|
only if the following condition is satisfied there |
|
|
|
40 |
|
00:04:22,400 --> 00:04:26,600 |
|
exist a |
|
|
|
41 |
|
00:04:26,600 --> 00:04:38,640 |
|
sequence a n contained in A ููู ุนูุงุตุฑูุง ู
ุฎุชููุฉ |
|
|
|
42 |
|
00:04:38,640 --> 00:04:52,650 |
|
ุนู ุงู C such that limit a n ุจุณุงูู c ุงุฐุง ูุฐุง ุงูุดุฑุท |
|
|
|
43 |
|
00:04:52,650 --> 00:04:59,310 |
|
ุจูุงูุฆ ุงูุดุฑุท ุงููู ููุงู ุงูุดุฑุท ูุฐุง ุงู ุงููู ุจูุงูู |
|
|
|
44 |
|
00:04:59,310 --> 00:05:06,290 |
|
ููุจุฑูุงู ุฐูู ุงุฐุง ูู
ุงู ู
ุฑุฉ ุงูุง ุนุดุงู ุงุซุจุช ุงู c is a |
|
|
|
45 |
|
00:05:06,290 --> 00:05:10,610 |
|
cluster point ููู
ุฌู
ูุน ูุนูู ูููู ุงู ุงุซุจุช ุงู ููุฌุฏ |
|
|
|
46 |
|
00:05:12,310 --> 00:05:17,950 |
|
ุณูููุงูุณ ูู ุงูู
ุฌู
ูุนุฉ A ููู ุนูู ุณุฑูุง ู
ุฎุชููุฉ ูุงุชุณุงูู |
|
|
|
47 |
|
00:05:17,950 --> 00:05:23,370 |
|
C ูุงูููุชูุง ุจุงูุณุงูู ูุนุฏุฏ C ูุชุนุงูู ูุจุฑูู ุงููุธุฑูุฉ ูุฐู |
|
|
|
48 |
|
00:05:23,370 --> 00:05:28,850 |
|
ูุจุฑูู ุงูู only if part ุงูุฃูู ูุงูู only if part ูุนูู |
|
|
|
49 |
|
00:05:28,850 --> 00:05:36,910 |
|
ุงูู assumption assume ุงู C is a cluster is |
|
|
|
50 |
|
00:05:36,910 --> 00:05:39,230 |
|
a cluster point |
|
|
|
51 |
|
00:05:40,700 --> 00:05:49,140 |
|
of a then |
|
|
|
52 |
|
00:05:49,140 --> 00:06:00,080 |
|
for every n ููุชู
ู ุฅูู n ููู ุนุฏุฏ ุทุจูุนู n take delta |
|
|
|
53 |
|
00:06:00,080 --> 00:06:08,110 |
|
ุจุณุงูู ูุงุญุฏ ุนูู n ุนุฏุฏ ู
ูุฌุจ ุจู
ุง ุงูู C is a cluster |
|
|
|
54 |
|
00:06:08,110 --> 00:06:11,230 |
|
point ู A then by definition of a cluster point |
|
|
|
55 |
|
00:06:11,230 --> 00:06:14,410 |
|
then |
|
|
|
56 |
|
00:06:14,410 --> 00:06:23,770 |
|
by definition there exist a N ููุชู
ู ุฅูู A ู
ุฎุชูู ุนู |
|
|
|
57 |
|
00:06:23,770 --> 00:06:28,210 |
|
ุงู C such that |
|
|
|
58 |
|
00:06:28,210 --> 00:06:31,070 |
|
ุงู .. |
|
|
|
59 |
|
00:06:34,910 --> 00:06:42,950 |
|
ุงูู AN ูุฐุง ููุชู
ู ููู Delta neighborhood ููู |
|
|
|
60 |
|
00:06:42,950 --> 00:06:56,090 |
|
C ูุทุจุนุง ููุชู
ู ุฅูู A negative C ูุนู
ู |
|
|
|
61 |
|
00:06:56,090 --> 00:07:02,810 |
|
ุงูุชุนุฑูู ูุฐุงูู
ุง ุงูู ุงูู C is a cluster point ูุฃู |
|
|
|
62 |
|
00:07:02,810 --> 00:07:09,410 |
|
Delta ุฃูุจุฑ ู
ู ุงูุณูุฑ ุฎุฏ Delta ุจุณุงูู ูุงุญุฏ ุนูู N ููู |
|
|
|
63 |
|
00:07:09,410 --> 00:07:13,290 |
|
ุนุฏุฏ ุทุจูุนู N ูุฐุง ุจูุทูุน ุนุฏุฏ ู
ูุฌุจ ูุฐูู ูู Delta ุจุณุงูู |
|
|
|
64 |
|
00:07:13,290 --> 00:07:18,470 |
|
ูุงุญุฏ ุนูู N ุจูุฏุฑ ุฃูุงุฌูู ุนูุตุฑ X ุงููู ูู ุณุงู
ูู An |
|
|
|
65 |
|
00:07:18,470 --> 00:07:24,470 |
|
ูุนุชู
ุฏ ุนูู ุงูู Delta ููุฐุง ุงูุนูุตุฑ ู
ูุฌูุฏ ูู A ู
ุฎุชูู |
|
|
|
66 |
|
00:07:24,470 --> 00:07:30,570 |
|
ุนู ุงูู Cู ุฃูุถุง ู
ูุฌูุฏ ูู ุงูู delta neighborhood ูู |
|
|
|
67 |
|
00:07:30,570 --> 00:07:38,370 |
|
C ุทูุจ |
|
|
|
68 |
|
00:07:38,370 --> 00:07:42,610 |
|
ุฅุฐุง ู |
|
|
|
69 |
|
00:07:42,610 --> 00:07:51,230 |
|
ูุงุถุญ ููุง ู
ู ุงูู AN ููุชู
ู ู ุงูู |
|
|
|
70 |
|
00:07:51,230 --> 00:07:56,150 |
|
AN ููุชู
ู ู DN ุงูู |
|
|
|
71 |
|
00:07:56,150 --> 00:08:01,970 |
|
delta ุฃู ุงูู 1 ุนูู N neighborhood ููู C ุงููู ูู C |
|
|
|
72 |
|
00:08:01,970 --> 00:08:09,750 |
|
ุณุงูุจ ูุงุญุฏ ุนูู N C ู
ูุฌุจ ูุงุญุฏ ุนูู N ููุฐุง ุตุญูุญ ููู N |
|
|
|
73 |
|
00:08:09,750 --> 00:08:16,270 |
|
ุจููุฏู ุงูู ุจููุฏู |
|
|
|
74 |
|
00:08:16,270 --> 00:08:20,890 |
|
ุงูู C ุณุงูู
A N ุฃู |
|
|
|
75 |
|
00:08:24,630 --> 00:08:31,950 |
|
absolute a n ุณุงูุจ c ุฃุตุบุฑ ู
ู ูุงุญุฏ ุนูู n ููุฐุง ุตุญูุญ |
|
|
|
76 |
|
00:08:31,950 --> 00:08:36,370 |
|
ููู n ูุฒุจูุชุ |
|
|
|
77 |
|
00:08:36,370 --> 00:08:40,750 |
|
ูุงู a n ุฃูุจุฑ ู
ู c ุณุงูุจ ูุงุญุฏ ุนูู n ุฃุตุบุฑ ู
ู c ุฒุงุฏ |
|
|
|
78 |
|
00:08:40,750 --> 00:08:45,310 |
|
ูุงุญุฏ ุนูู n ูุฐุง ู
ุนูุงู absolute a n minus c ุฃุตุบุฑ ู
ู |
|
|
|
79 |
|
00:08:45,310 --> 00:08:48,790 |
|
ูุงุญุฏ ุนูู n ููู n ูุฐุง ุตุญูุญ ููู n |
|
|
|
80 |
|
00:08:52,390 --> 00:08:56,990 |
|
ุฅุฐุง ูุงู ูููุง sequence ุฅุฐุง ูุงู ุฃุซุจุชูุง ู
ุงููุฌุฏ |
|
|
|
81 |
|
00:08:56,990 --> 00:09:09,350 |
|
sequence ุฅุฐุง am is a sequence in a ููู ุญุฏูุฏูุง |
|
|
|
82 |
|
00:09:09,350 --> 00:09:16,610 |
|
ู
ุฎุชููุฉ ุนู ุงู c and by theorem ุงุชููู ุงุฑุจุนุฉ ุงูุดููุฑุฉ |
|
|
|
83 |
|
00:09:18,560 --> 00:09:21,560 |
|
ุฃูุง ุนูุฏู ุงูู absolute value ูุฐู ุฃุตุบุฑ ู
ู ูุงุญุฏ ุนูู N |
|
|
|
84 |
|
00:09:21,560 --> 00:09:26,480 |
|
ููู N limit ูุงุญุฏ ุนูู N ุจุงูุณุงูู ุณูุฑ ุฎุฏ C ุจุงูุณุงูู |
|
|
|
85 |
|
00:09:26,480 --> 00:09:33,760 |
|
ูุงุญุฏ ุนุฏู ู
ูุฌุจ ูุฃู ุจูุทูุน limit ุงูู sequence A N as N |
|
|
|
86 |
|
00:09:33,760 --> 00:09:39,300 |
|
tends to infinity ุจุณุงูู S C ุฅุฐู ููู ุฃุซุจุชูุง ุฅูู ูู |
|
|
|
87 |
|
00:09:39,300 --> 00:09:44,920 |
|
ูุงูุช C cluster point ูุฃุซุจุชูุง ุฅูู ููุฌุฏ sequence A N |
|
|
|
88 |
|
00:09:44,920 --> 00:09:51,380 |
|
ูู ุงูู
ุฌู
ูุนุฉ A ููู ุนูุงุตุฑูุง ู
ุฎุชููุฉ ุนู ุงูู C ูููุงูุชูุง |
|
|
|
89 |
|
00:09:51,380 --> 00:09:59,080 |
|
ุจุณุงูู ุงูู C ุฅุฐุง ูุฐุง ุจุซุจุช ุฌุฒุก ุงูู only if part ุงูุขู |
|
|
|
90 |
|
00:09:59,080 --> 00:10:04,220 |
|
ูุซุจุช ุงูุนูุณ ูุฅุซุจุงุช |
|
|
|
91 |
|
00:10:04,220 --> 00:10:04,920 |
|
ุงูุนูุณ |
|
|
|
92 |
|
00:10:21,910 --> 00:10:28,090 |
|
assume ุฃู ุงูุดุฑุท ุงููู ุญุตู ุจุชุชุญูู |
|
|
|
93 |
|
00:10:28,090 --> 00:10:41,250 |
|
assume ุงูู condition ุงููู ุญุตู holds ูุนูู ุจุชุชุญูู to |
|
|
|
94 |
|
00:10:41,250 --> 00:10:48,890 |
|
show c is a cluster point of |
|
|
|
95 |
|
00:10:48,890 --> 00:11:03,360 |
|
a let delta ุฃูุจุฑ ู
ู ุงูุณูุฑ is given since |
|
|
|
96 |
|
00:11:03,360 --> 00:11:15,160 |
|
by star ู
ู ุงูุดุฑุท star ูุฏู limit ูุงู ุจุณุงูู c ู |
|
|
|
97 |
|
00:11:15,160 --> 00:11:19,260 |
|
delta ุฃูุจุฑ ู
ู ุงูุณูุฑ is given ุฅุฐุง ู
ู ุชุนุฑูู delta |
|
|
|
98 |
|
00:11:19,260 --> 00:11:25,560 |
|
capital N ููู limit ูุฃู delta ุฃู ุฅุจุณููู ุนุฏุฏ ู
ูุฌุจ |
|
|
|
99 |
|
00:11:25,560 --> 00:11:31,320 |
|
there exist n ูุนุชู
ุฏ ุนูู delta natural number ุฏุญูุซ |
|
|
|
100 |
|
00:11:31,320 --> 00:11:40,140 |
|
ุฃูู ููู n ุฃูุจุฑ ู
ู ุฃู ุณูู capital N ูุฐุง ุจููุฏู ุฃูู |
|
|
|
101 |
|
00:11:40,140 --> 00:11:47,000 |
|
absolute a n minus c ุฃุตุบุฑ ู
ู delta |
|
|
|
102 |
|
00:11:50,570 --> 00:11:57,870 |
|
ุฅุฐุงู ูุฐุง ุจููุฏูู ุฅูู ููุนูุฏู am |
|
|
|
103 |
|
00:12:02,990 --> 00:12:08,910 |
|
ุทุจุนุง ูุฏู ููุจู ุฃู a n ุฃุตุบุฑ |
|
|
|
104 |
|
00:12:08,910 --> 00:12:15,370 |
|
ู
ู c ุฒุงุฆุฏ delta ุฃูุจุฑ ู
ู c negative delta ูุนูู a n |
|
|
|
105 |
|
00:12:15,370 --> 00:12:22,630 |
|
ุชูุชู
ู ุฅูู v delta of c ูุชูุชู
ู ุทุจุนุง ู
ู ุงูู condition |
|
|
|
106 |
|
00:12:22,630 --> 00:12:32,780 |
|
star ุชูุชู
ู ุฅูู a difference c ููุฐุง ุตุญูุญ ููู n ุฃูุจุฑ |
|
|
|
107 |
|
00:12:32,780 --> 00:12:38,660 |
|
ู
ู ุฃู ุณุงูู capital N ุฅุฐุง ูุงู ูู delta neighborhood |
|
|
|
108 |
|
00:12:38,660 --> 00:12:50,240 |
|
ู C ุจูุชูุงุทุน ู
ุน A ูู ุนุฏุฏ ูุงููุงุฆู ู
ู ุงูููุงุท ุงูู
ุฎุชููุฉ |
|
|
|
109 |
|
00:12:50,240 --> 00:12:57,420 |
|
ุนู ุงู C ูุจุงูุชุงูู ุงูุดุฑุท ุชุจุน ุงูู definition ููุชุญููู |
|
|
|
110 |
|
00:12:57,420 --> 00:13:05,660 |
|
then by definition .. by definition C is a cluster |
|
|
|
111 |
|
00:13:05,660 --> 00:13:14,000 |
|
point of the set A ู ูุฏุง ุจูู
ู ุงูู F part and |
|
|
|
112 |
|
00:13:14,000 --> 00:13:19,140 |
|
therefore completes the proof of the theorem okay |
|
|
|
113 |
|
00:13:19,140 --> 00:13:20,000 |
|
ุชู
ุงู
ุ |
|
|
|
114 |
|
00:13:25,140 --> 00:13:27,540 |
|
Fine ุฎููููุง ูุงุฎุฏ ุจุนุถ ุงูุฃู
ุซูุฉ |
|
|
|
115 |
|
00:13:49,070 --> 00:14:05,410 |
|
ุชุดูุฑ ุฅูู ุฃู ูู X ููุชู
ู ุฅูู ู
ููู ู
ููู ู
ููู |
|
|
|
116 |
|
00:14:05,410 --> 00:14:16,770 |
|
ู
ููู |
|
|
|
117 |
|
00:14:23,120 --> 00:14:29,460 |
|
of set A1 ุจุณุงูู ุงููุชุฑุฉ |
|
|
|
118 |
|
00:14:29,460 --> 00:14:40,780 |
|
ุงูู
ูุชูุญุฉ ู
ู ุณูุฑ ุฅูู ูุงุญุฏ ู
ู |
|
|
|
119 |
|
00:14:40,780 --> 00:14:45,460 |
|
ููุง ูุซุจุช ุฅู ูู X ุงููุชุฑุฉ ุงูู
ุบููุฉ ู
ู ุณูุฑ ุฅูู ูุงุญุฏ ูู |
|
|
|
120 |
|
00:14:45,460 --> 00:14:50,480 |
|
cluster point ูููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุณูุฑ ุฅูู ูุงุญุฏ |
|
|
|
121 |
|
00:15:01,360 --> 00:15:09,580 |
|
ููู ุงูุฃูู ุจุฏู ุฃุซุจุช ุฃูู ูู ููุทุฉ ุฏุงุฎู ุงููุชุฑุฉ ุงูู
ุบููุฉ |
|
|
|
122 |
|
00:15:09,580 --> 00:15:14,460 |
|
ูู cluster point ููู
ุฌู
ูุน ุนุงุฏู ู ุจุนุฏูู ูู ุงูู
ุฑุญูุฉ |
|
|
|
123 |
|
00:15:14,460 --> 00:15:19,840 |
|
ุงูุชุงููุฉ ุญุชุฉ ู
ู ููุงุท ุงูุฃุทุฑุงู ุงููู ูู 01 ุชุทูุน ุฃูุถุง |
|
|
|
124 |
|
00:15:19,840 --> 00:15:26,620 |
|
cluster point ูุณุช A1 ููุดูู ู
ุน ุจุนุถ ุงู ุงูู claim 1 |
|
|
|
125 |
|
00:15:34,010 --> 00:15:45,190 |
|
ุจูุซุจุช ุงู ูู X ููุชู
ู ูููุชุฑุฉ ุงูู
ูุชูุญุฉ is a cluster |
|
|
|
126 |
|
00:15:45,190 --> 00:15:50,410 |
|
point of |
|
|
|
127 |
|
00:15:50,410 --> 00:15:58,730 |
|
set A1 ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ููุณูุง ูุจุฑูุงู ุฐูู to |
|
|
|
128 |
|
00:15:58,730 --> 00:16:09,390 |
|
see this ุงูุจุฑูู ุฐูู fix ููุชู
ู |
|
|
|
129 |
|
00:16:09,390 --> 00:16:17,470 |
|
ูููุชุฑุฉ ุงูู
ูุชูุญุฉ ููุซุจุช ุงู cluster point ููู
ุฌู
ูุนุฉ a1 |
|
|
|
130 |
|
00:16:17,470 --> 00:16:29,940 |
|
ุงุฐุง fix x and let delta ุฃูุจุฑ ู
ู ุงูุณูุฑ be given ูุจุฏุฃ |
|
|
|
131 |
|
00:16:29,940 --> 00:16:35,900 |
|
ุจุงูู delta ุฃูุจุฑ ู
ู 0 ููุซุจุช ุฃู ูู delta |
|
|
|
132 |
|
00:16:35,900 --> 00:16:42,820 |
|
neighborhood ููููุทุฉ X ุจูุชูุงุทุน ู
ุน ุงูู
ุฌู
ูุนุฉ A1 ูู |
|
|
|
133 |
|
00:16:42,820 --> 00:16:49,400 |
|
ููุทุฉ ู
ุฎุชููุฉ ุนู X ูุจุงูุชุงูู ุงูู X ูุชุทูุน cluster |
|
|
|
134 |
|
00:16:49,400 --> 00:16:55,960 |
|
point ุญุณุจ ุงูุชุนุฑูู ุทูุจ ูุญู |
|
|
|
135 |
|
00:16:55,960 --> 00:16:56,920 |
|
ูุฏููุง ุงุชุตุงููู |
|
|
|
136 |
|
00:17:01,270 --> 00:17:07,090 |
|
two cases ุญุงูุชูู ุงูุญุงูุฉ |
|
|
|
137 |
|
00:17:07,090 --> 00:17:10,270 |
|
ุงูุฃููู ุงู ุงูู delta ูุฐู ุงููู ุงูุง ุงุฎุชุฑุชูุง ุงูุนุดูุงุฆูุฉ |
|
|
|
138 |
|
00:17:10,270 --> 00:17:17,310 |
|
ุงูู delta ุงููู ุงูุง ุงุฎุชุฑุชูุง ู
ู
ูู ุชููู ุงุตุบุฑ ู
ู .. |
|
|
|
139 |
|
00:17:17,310 --> 00:17:23,590 |
|
ุทุจุนุง ู
ูุฌุจุฉ ูู ู
ู
ูู ุชููู ุงุตุบุฑ ู
ู ูุงุญุฏ ู in this |
|
|
|
140 |
|
00:17:23,590 --> 00:17:27,930 |
|
case in |
|
|
|
141 |
|
00:17:27,930 --> 00:17:30,050 |
|
in this case ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
142 |
|
00:17:35,000 --> 00:17:49,440 |
|
ูุฏููุง in this |
|
|
|
143 |
|
00:17:49,440 --> 00:17:58,680 |
|
case ุงูู delta neighborhood ูู X ุงููู ูู X minus |
|
|
|
144 |
|
00:17:58,680 --> 00:18:06,650 |
|
Delta X ู
ูุฌุจ Delta ุจููุงุญุธ ุฃูู ุชูุงุทุน ู
ุน ุงูู
ุฌู
ูุนุฉ A |
|
|
|
145 |
|
00:18:06,650 --> 00:18:14,050 |
|
ุงููู ูู ุงููุชุฑุฉ ุงููู ู
ูุชูุญุฉ ู
ู ุตูุฑ ููุงุญุฏ ุจูุทูุน |
|
|
|
146 |
|
00:18:14,050 --> 00:18:23,080 |
|
ูุงุญุฏ ู
ู ุงูุฎูุงุฑุงุช ุงูุชุงููุฉ: ุฅู
ุง ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ x |
|
|
|
147 |
|
00:18:23,080 --> 00:18:28,820 |
|
negative delta x positive delta ุฃู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ |
|
|
|
148 |
|
00:18:28,820 --> 00:18:36,420 |
|
ู
ู ุตูุฑ ุฅูู x positive delta ุฃู ุงููุชุฑุฉ |
|
|
|
149 |
|
00:18:36,420 --> 00:18:40,340 |
|
ุงูู
ูุชูุญุฉ ู
ู x negative delta ุฅูู ูุงุญุฏ ุฃู ุงููุชุฑุฉ |
|
|
|
150 |
|
00:18:40,340 --> 00:18:42,920 |
|
ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ |
|
|
|
151 |
|
00:18:48,470 --> 00:18:55,310 |
|
ุญุณุจ ููู
ุฉ ุงูู Delta ูุนูู ุฃูุง |
|
|
|
152 |
|
00:18:55,310 --> 00:19:03,030 |
|
ุนูุฏู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู 0 ุฅูู 1 ูุฐู ุงููุชุฑุฉ |
|
|
|
153 |
|
00:19:03,030 --> 00:19:12,350 |
|
ุงูู
ูุชูุญุฉ ุชุจุนุชู ุงููู ูู A1 ูุฐุง ุงูู set A1 ูุฃูุง ุนูุฏู |
|
|
|
154 |
|
00:19:12,350 --> 00:19:20,080 |
|
ุงูู Delta ุนุฏุฏ ู
ูุฌุจ ุฃุตุบุฑ ู
ู 1 ูุงูู X ูุฐู ุชูุชู
ู .. ุงูู |
|
|
|
155 |
|
00:19:20,080 --> 00:19:27,300 |
|
X ูุฐู ููุทุฉ ู
ุง ูู ุงููุชุฑุฉ |
|
|
|
156 |
|
00:19:27,300 --> 00:19:38,320 |
|
fixed number ุจูู 0 ู 1 ุงูุขู |
|
|
|
157 |
|
00:19:38,320 --> 00:19:41,160 |
|
ุฃูุง ุนูุฏู ุงูู delta neighborhood ูู X ูุฐุง ูู ู
ู
ูู |
|
|
|
158 |
|
00:19:41,160 --> 00:19:46,510 |
|
ูููู ุฒู ููู ุดููู ูุจุงูุชุงูู ุชูุงุทุน ุชูุงุทุนู ู
ุน ุงููุชุฑุฉ |
|
|
|
159 |
|
00:19:46,510 --> 00:19:53,310 |
|
ุงูู
ูุชูุญุฉ ูู ููุณูุ ุตุญุ ุฅุฐุง ูุงู ุฒู ููู ุฃู ู
ู
ูู ูููู |
|
|
|
160 |
|
00:19:53,310 --> 00:19:57,250 |
|
ุงูู delta neighborhood ููู X ูููู ุดููู ุฒู ููู |
|
|
|
161 |
|
00:19:57,250 --> 00:20:01,430 |
|
ูุจุงูุชุงูู |
|
|
|
162 |
|
00:20:01,430 --> 00:20:06,150 |
|
ุชูุงุทุนู ู
ุน ุงููุชุฑุฉ .. ู
ุน ุงูู set ูุงุญุฏุ ููููู ุงููุชุฑุฉ |
|
|
|
163 |
|
00:20:06,150 --> 00:20:10,830 |
|
ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู X ุฒู ุงูู Delta ุงููู ูู ุงูุซุงููุฉ |
|
|
|
164 |
|
00:20:10,830 --> 00:20:17,310 |
|
ูุนูู ุตุญ ูู
ู
ูู ูููู ุงูู |
|
|
|
165 |
|
00:20:17,310 --> 00:20:21,810 |
|
delta neighborhood ุงูู X ุชููู ูุฑูุจุฉ ู
ู ุงููุงุญุฏ ุฒู |
|
|
|
166 |
|
00:20:21,810 --> 00:20:26,410 |
|
ููู ูุงูู delta neighborhood ุญูุงููู ุงูู X ูููู ุฒู |
|
|
|
167 |
|
00:20:26,410 --> 00:20:34,190 |
|
ููู ุดููู ูุงู x negative delta x positive delta |
|
|
|
168 |
|
00:20:35,200 --> 00:20:39,440 |
|
ูุจุงูุชุงูู ุชูุงุทุน ู
ุน ุงููุชุฑุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ ููุนุทููู |
|
|
|
169 |
|
00:20:39,440 --> 00:20:44,700 |
|
ุงูุฌุฒุก ูุฐุง ุงููู ูู ูุชุฑุฉ ู
ูุชูุญุฉ ู
ู X ุณุงูุจ Delta ุฅูู |
|
|
|
170 |
|
00:20:44,700 --> 00:20:48,360 |
|
ูุงุญุฏ ูู
ู
ูู |
|
|
|
171 |
|
00:20:48,360 --> 00:20:56,170 |
|
ุงูู Delta neighborhood ุงูู X ุชููู ูุฑูุจุฉ ู
ู ุงูู
ูุชุตู ูุงูู |
|
|
|
172 |
|
00:20:56,170 --> 00:20:59,250 |
|
Delta ุชููู ูุฑูุจุฉ ู
ู ุงููุงุญุฏ ููู
ุชูุง ุฃุตุบุฑ ู
ู ูุงุญุฏ ููู |
|
|
|
173 |
|
00:20:59,250 --> 00:21:04,250 |
|
ูุฑูุจุฉ ู
ู ูุงุญุฏ ูุจุงูุชุงูู ุงูู Delta neighborhood ููู X |
|
|
|
174 |
|
00:21:04,250 --> 00:21:09,150 |
|
ูููู ุฒู ููู ูุจุงูุชุงูู ุชูุงุทุนู ู
ุน ุงูู
ุฌู
ูุนุฉ A ูุงุญุฏ |
|
|
|
175 |
|
00:21:09,150 --> 00:21:12,970 |
|
ุจูุทูุน ุงูู
ุฌู
ูุนุฉ A ูุงุญุฏ ููุณูุงุ ุตุญูุญุ ุฅู ูุฐู ูู |
|
|
|
176 |
|
00:21:12,970 --> 00:21:20,590 |
|
ุงูุงุญุชู
ุงูุงุช ููู ูู ุงูุฃุญูุงู ุงูุชูุงุทุน ูุฐุง ุจูุทูุน infinite |
|
|
|
177 |
|
00:21:20,590 --> 00:21:22,090 |
|
is infinite |
|
|
|
178 |
|
00:21:25,670 --> 00:21:29,890 |
|
ุชูุงุทุน ุงูู
ุฌู
ูุนุชูู ูุฐูู ุจูุทูุน ูุชุฑุฉ ูุงููุชุฑุฉ ุฃู ูุชุฑุฉ |
|
|
|
179 |
|
00:21:29,890 --> 00:21:33,330 |
|
ู
ูุชูุญุฉ ุงูู cardinal number ุชุจุนูุง ุจูุณุงูู ุงูู cardinal |
|
|
|
180 |
|
00:21:33,330 --> 00:21:36,310 |
|
number ุชุจุน ุงูู real numbers ุงููู ูู uncountable set |
|
|
|
181 |
|
00:21:36,310 --> 00:21:41,270 |
|
ูุจุงูุชุงูู infinite ุฅุฐุง ุงูุชูุงุทุน ูุฐุง infinite ููุฐุง |
|
|
|
182 |
|
00:21:41,270 --> 00:21:46,410 |
|
ุจูููุฏ ุฅูู ุฃู ุงูู V |
|
|
|
183 |
|
00:21:46,410 --> 00:21:57,490 |
|
Delta of X ุชูุงุทุน ุงูู a1 ู
ูุฒูุนุฉ ู
ููุง ุงูู X ููุทูุน |
|
|
|
184 |
|
00:21:57,490 --> 00:22:03,390 |
|
ุจุงูุชุฃููุฏ ูุง ูุณุงูู ูู ูุฃู ุงูุชูุงุทุน ูุฐุง ุจูุทูุน |
|
|
|
185 |
|
00:22:03,390 --> 00:22:07,630 |
|
infinite ูุจุงูุชุงูู ููู ุจูููู ุฃุซุจุชูุง ุฃู ูู Delta |
|
|
|
186 |
|
00:22:07,630 --> 00:22:13,370 |
|
neighborhood ูู X ุจูุชูุงุทุน ู
ุน a1 ูู ููุทุฉ ู
ุฎุชููุฉ ุนู X |
|
|
|
187 |
|
00:22:23,000 --> 00:22:31,840 |
|
ุงูุญุงูุฉ ุงูุซุงููุฉ case two ุฃู ุงูู Delta ูุฐู ุชููู ุฃูุจุฑ |
|
|
|
188 |
|
00:22:31,840 --> 00:22:36,670 |
|
ู
ู ุฃู ูุณุงูู ูุงุญุฏ ุจุฑุถู ูู ุงูุญุงูุฉ ุฏู ุจูุฃุชู ูุซุจุช ุฃูู ูู |
|
|
|
189 |
|
00:22:36,670 --> 00:22:41,170 |
|
delta neighborhood ูู X ุจุชูุงุทุน ู
ุน A ูุงุญุฏ ูู ููุทุฉ |
|
|
|
190 |
|
00:22:41,170 --> 00:22:49,730 |
|
ู
ุฎุชููุฉ ุนู ุงูู X ูุดูู ู
ุน ุจุนุถ in this case in |
|
|
|
191 |
|
00:22:49,730 --> 00:22:57,310 |
|
this case ุงูู X negative ุฃู ุงูู negative delta X |
|
|
|
192 |
|
00:22:57,310 --> 00:23:01,310 |
|
ู
ูุฌุจ delta ูุฐุง ุงููู ูู ุงูู delta neighborhood ูู X |
|
|
|
193 |
|
00:23:01,310 --> 00:23:06,620 |
|
ุชูุงุทุน ุงูู
ุฌู
ูุนุฉ A1 ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู 0 ุฅูู |
|
|
|
194 |
|
00:23:06,620 --> 00:23:17,040 |
|
1 ููุทูุน ุจูุณุงูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู 0 ุฅูู 1 ูุฃู ุงูู |
|
|
|
195 |
|
00:23:17,040 --> 00:23:24,780 |
|
Delta ููุง ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงููุงุญุฏ ูุนูู ูู ุนูุฏู ู
ู 0 |
|
|
|
196 |
|
00:23:24,780 --> 00:23:36,180 |
|
ุฅูู 1 ูุฐู ุงููู ูู ุงูู
ุฌู
ูุนุฉ A ููู X ููุทุฉ ู
ุง ุฏุงุฎู |
|
|
|
197 |
|
00:23:36,180 --> 00:23:42,300 |
|
ุงููุชุฑุฉ ููู
ุง ูููู X ุฒุงุฆุฏ ุงูู Delta ูู
ุง ุชููู ุงูู Delta |
|
|
|
198 |
|
00:23:42,300 --> 00:23:49,160 |
|
ุชุจุนุชู ุฃูุจุฑ ู
ู ูุงุญุฏ ูู X ุฒุงุฆุฏ ุงูู Delta ูุชููู ููุง ู X |
|
|
|
199 |
|
00:23:49,160 --> 00:23:55,880 |
|
ุณุงูุจ ุงูู Delta ุจุงูุชุฃููุฏ ูุชููู ููุง ูุจุงูุชุงูู ุงูู Delta |
|
|
|
200 |
|
00:23:55,880 --> 00:24:01,640 |
|
neighborhood ูู X ููุญุชูู ุงูู
ุฌู
ูุนุฉ A ูุงุญุฏ ูุจุงูุชุงูู |
|
|
|
201 |
|
00:24:01,640 --> 00:24:06,760 |
|
ุชูุงุทุน ู
ุนุงูุง ุชุทูุน ุงูู
ุฌู
ูุนุฉ A ูุงุญุฏ ููุฐุง is infinite |
|
|
|
202 |
|
00:24:06,760 --> 00:24:11,680 |
|
ูุจุงูุชุงูู |
|
|
|
203 |
|
00:24:11,680 --> 00:24:18,060 |
|
ุฅุฐุง ุงูู delta neighborhood ูุฐุง ุชูุงุทุน ุงููุชุฑุฉ |
|
|
|
204 |
|
00:24:18,060 --> 00:24:20,460 |
|
ุงูู
ูุชูุญุฉ minus X |
|
|
|
205 |
|
00:24:23,650 --> 00:24:29,910 |
|
ูุง ุฃููุฏ ุจุชุฃููุฏ ูุง ูุณุงูู five okay ุชู
ุงู
ุฅุฐุง ูู |
|
|
|
206 |
|
00:24:29,910 --> 00:24:34,470 |
|
ุงูุญุงูุชูู ุงูู condition ุชุจุน ุงูู cluster point ุชุชุญูู |
|
|
|
207 |
|
00:24:34,470 --> 00:24:44,730 |
|
therefore by definition X is cluster point is |
|
|
|
208 |
|
00:24:44,730 --> 00:24:50,780 |
|
cluster point of ุงูู set A ูุงุญุฏ ุงููู ูู ุงููุชุฑุฉ |
|
|
|
209 |
|
00:24:50,780 --> 00:24:56,280 |
|
ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ ุทุจุนุงู ุฅุฐุง ูุฐุง ุจูุซุจุช ุงูู |
|
|
|
210 |
|
00:24:56,280 --> 00:25:09,140 |
|
claim ุงูุฃููุงูู ุทุจุนุงู ุงูุขู ูุฃุซุจุช claim ุซุงูู ุงูู claim |
|
|
|
211 |
|
00:25:09,140 --> 00:25:09,880 |
|
ุงูุซุงูู |
|
|
|
212 |
|
00:25:16,660 --> 00:25:25,180 |
|
ุงูููุทุฉ 0 is a cluster point |
|
|
|
213 |
|
00:25:25,180 --> 00:25:36,460 |
|
of set A1 ุงููุชุฑุฉ ู
ูุชูุญุฉ ู
ู 0 ุฅูู 1 ูุฅุซุจุงุช |
|
|
|
214 |
|
00:25:36,460 --> 00:25:37,020 |
|
ุฐูู |
|
|
|
215 |
|
00:25:47,440 --> 00:25:55,860 |
|
to see this let ูุจุฏุฃ let Delta ุฃูุจุฑ ู
ู ุงูุตูุฑ be |
|
|
|
216 |
|
00:25:55,860 --> 00:26:03,120 |
|
given ูููุง |
|
|
|
217 |
|
00:26:03,120 --> 00:26:11,380 |
|
ูุฃู Delta ุงูู Delta |
|
|
|
218 |
|
00:26:11,380 --> 00:26:16,140 |
|
neighborhood ููุตูุฑ ุงููู ูู ููุทูุน |
|
|
|
219 |
|
00:26:18,570 --> 00:26:28,630 |
|
ุณุงูุจ Delta ุฒุงุฆุฏ ุตูุฑ ูู
ูุฌุจ Delta ุฒุงุฆุฏ ุตูุฑ ูุชูุงุทุน ูุฐุง ู
ุน |
|
|
|
220 |
|
00:26:28,630 --> 00:26:35,150 |
|
ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ ุจูุณุงูู |
|
|
|
221 |
|
00:26:36,900 --> 00:26:44,360 |
|
ูู ุฎูุงุฑูู ุฅู
ุง ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู Delta ุฅุฐุง |
|
|
|
222 |
|
00:26:44,360 --> 00:26:52,680 |
|
ูุงูุช ุงูู Delta ุฃุตุบุฑ ู
ู ูุงุญุฏ ุทุจุนุงู ุฃูุจุฑ ู
ู ุตูุฑ ูุจุณุงูู |
|
|
|
223 |
|
00:26:52,680 --> 00:26:57,600 |
|
ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ ุฅุฐุง ูุงู ุงูู Delta |
|
|
|
224 |
|
00:26:57,600 --> 00:27:04,220 |
|
ุฃูุจุฑ ู
ู ุฃู ูุณุงูู ุงููุงุญุฏ ุฒู ู
ุง ุดูููุง ูู ุจุฑูุงู ุงูููุงู
|
|
|
|
225 |
|
00:27:04,220 --> 00:27:12,240 |
|
ุงูุฃููุงูู ู
ุธุจูุท ูุงู ุงูุงูุฏู ุงููุชุฑุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ |
|
|
|
226 |
|
00:27:12,240 --> 00:27:19,520 |
|
ูุฐู ุงูู
ุฌู
ูุนุฉ A1 ููู |
|
|
|
227 |
|
00:27:19,520 --> 00:27:27,700 |
|
X ููุทุฉ .. ูุฃ ูุงู ุงูุตูุฑ ุจุงูุฏูุชุฑ ุฃู ุงูุตูุฑ cluster |
|
|
|
228 |
|
00:27:27,700 --> 00:27:34,660 |
|
point ููู
ุฌู
ูุนุฉ A1 ูุฃุฎุฐุช ุฃู Delta ุฃูุจุฑ ู
ู ุงูุตูุฑ ุงูุขู |
|
|
|
229 |
|
00:27:34,660 --> 00:27:38,260 |
|
ุงูู Delta ูุฐู ูู ูุงูุช ุงูู Delta ูุฐู ุฅุฐุง ูู ุณุงูุจ |
|
|
|
230 |
|
00:27:38,260 --> 00:27:42,720 |
|
Delta ู
ูุฌุจ Delta ูู ูุงูุช ุงูู Delta ูุฐู ุฃุตุบุฑ ู
ู ูุงุญุฏ |
|
|
|
231 |
|
00:27:42,720 --> 00:27:47,120 |
|
ูุชูุงุทุน ุงูู Delta neighborhood ู
ุน ุงูู A ูุงุญุฏ ููููู |
|
|
|
232 |
|
00:27:47,120 --> 00:27:51,140 |
|
ุงูุฌุฒุก ูุฐุง ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ูู Delta |
|
|
|
233 |
|
00:27:51,140 --> 00:27:57,100 |
|
ุตุญุ ููู ูุงูุช ุงูู Delta ูุฐู ุฃูุจุฑ ู
ู ูุงุญุฏ ูู ูุงูุช ุงูู |
|
|
|
234 |
|
00:27:57,100 --> 00:27:58,940 |
|
Delta ูุฐู ุฃูุจุฑ ู
ู ูุงุญุฏ |
|
|
|
235 |
|
00:28:01,680 --> 00:28:11,060 |
|
ูุงูู .. ูู Delta ูุชููู ูุงู Delta ุฃูุจุฑ ู
ู ูุงุญุฏ ูุณุงูุจ |
|
|
|
236 |
|
00:28:11,060 --> 00:28:15,120 |
|
Delta ูุชููู ููุง ูุจุงูุชุงูู ุงูู Delta neighborhood ูุฐุง |
|
|
|
237 |
|
00:28:15,120 --> 00:28:24,220 |
|
ุชูุงุทุน ู
ุน A ูุงุญุฏ ุจูุณุงูู A ูุงุญุฏ ู
ุธุจูุท ุตุญุ ุชู
ุงู
ุ ููู |
|
|
|
238 |
|
00:28:24,220 --> 00:28:27,840 |
|
ูู ุงูุฃุญูุงู ุงูุชูุงุทุน ูุฐุง ุจูุทูุน infinite is infinite |
|
|
|
239 |
|
00:28:27,840 --> 00:28:31,000 |
|
infinite set ูุฃูู open interval |
|
|
|
240 |
|
00:28:38,080 --> 00:28:46,040 |
|
ุชูุงุทุน A-A1 ูู |
|
|
|
241 |
|
00:28:46,040 --> 00:28:53,940 |
|
ููุณ ุชูุงุทุน A1 |
|
|
|
242 |
|
00:29:00,690 --> 00:29:03,830 |
|
ุฅุฐู ูู ุงููู ุฃุซุจุชุช ุฅู ูู Delta neighborhood ููุตูุฑ |
|
|
|
243 |
|
00:29:03,830 --> 00:29:09,590 |
|
ูุชูุงุทุน ู
ุน ุงูู
ุฌู
ูุนุฉ A1 ูู ููุทุฉ ู
ุฎุชููุฉ ุนู ุงูุตูุฑ ูู |
|
|
|
244 |
|
00:29:09,590 --> 00:29:14,070 |
|
ุญูููุฉ ุงูุฃู
ุฑ ูู ุญูููุฉ ุงูุฃู
ุฑ ูู Delta neighborhood |
|
|
|
245 |
|
00:29:14,070 --> 00:29:19,250 |
|
ููุตูุฑ ุจุชูุงุทุน ู
ุน A1 ูู ุนุฏุฏ ูุงููุงุฆู ู
ู ุงูููุงุท ุงููู |
|
|
|
246 |
|
00:29:19,250 --> 00:29:24,350 |
|
ู
ูุฌูุฏุฉ ูู A1 ูู
ุฎุชููุฉ ุนู ุงูุตูุฑ ุฅุฐู by definition |
|
|
|
247 |
|
00:29:24,350 --> 00:29:27,610 |
|
zero is a cluster |
|
|
|
248 |
|
00:29:30,120 --> 00:29:36,540 |
|
point of A1 ุงููู ูู ุงููุชุฑุฉ ู
ูุชูุญุฉ ู
ู ุตูุฑ ููุงุญุฏ |
|
|
|
249 |
|
00:29:36,540 --> 00:29:43,720 |
|
ูุจูู ูุฅูู
ุงู ุงูุจุฑูุงู ูู
ูู ุฃู ูุธูุฑ ุงููููู
ุงูุซุงูุซ |
|
|
|
250 |
|
00:29:43,720 --> 00:29:55,560 |
|
ุจุงูู ุฃูุซุจุช ุฃู ุงููุงุญุฏ is a cluster point of set A1 |
|
|
|
251 |
|
00:29:55,560 --> 00:30:02,300 |
|
ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ู
ู ุตูุฑ ููุงุญุฏ ูุจุฑูุงู ุงูู claim |
|
|
|
252 |
|
00:30:02,300 --> 00:30:07,360 |
|
ุงูุซุงูุซ ุฒู .. similar ูุจุฑูุงู ุงูู claim ุงูุซุงูุซ ุฅุฐุง |
|
|
|
253 |
|
00:30:07,360 --> 00:30:19,280 |
|
ููุง the proof its proof is similar to |
|
|
|
254 |
|
00:30:19,280 --> 00:30:20,260 |
|
claim to |
|
|
|
255 |
|
00:30:23,650 --> 00:30:27,990 |
|
ูุญุงุณูุจูู
ุฃูุชู
ุชูุชุจูุง ูุจุงูุชุงูู ููู ุจูููู ุฃุซุจุชูุง |
|
|
|
256 |
|
00:30:27,990 --> 00:30:32,250 |
|
ุฃู ูู ููุทุฉ ูู ุงููุชุฑุฉ ุงูู
ุบููุฉ ุณูุงุก ูุงูุช ููุทุฉ ุงูุทุฑู |
|
|
|
257 |
|
00:30:32,250 --> 00:30:37,570 |
|
ุงููู ูู 0 ุฃู 1 ุฃู ููุทุฉ ุฏุงุฎููุฉ interior point ููุทุฉ |
|
|
|
258 |
|
00:30:37,570 --> 00:30:41,290 |
|
ุฏุงุฎู ุงููุชุฑุฉ ุงูู
ุบููุฉ ูู ุงูููุงุท ูุฐู ุจุชุทูุน cluster |
|
|
|
259 |
|
00:30:41,290 --> 00:30:47,970 |
|
points ูู
ุฌู
ูุนุฉ A1 ุงููู ูู ุงููุชุฑุฉ ุงูู
ูุชูุญุฉ ุชู
ุงู
ุ |
|
|
|
260 |
|
00:30:52,450 --> 00:31:05,790 |
|
ุจุงูู
ุซู ู
ู
ูู ุฅุซุจุงุช ุฃู |
|
|
|
261 |
|
00:31:05,790 --> 00:31:09,250 |
|
ูู ููุทุฉ ูู ุงููุชุฑุฉ ุงูู
ุบููุฉ is cluster point |
|
|
|
262 |
|
00:31:09,250 --> 00:31:16,990 |
|
ููู
ุฌู
ูุนุฉ A2 ุงููู ูู ุงููุชุฑุฉ ุงูู
ุบููุฉ ู
ู 0 ุฅูู 1 |
|
|
|
263 |
|
00:31:16,990 --> 00:31:20,390 |
|
ูุงูุจุฑูุงู |
|
|
|
264 |
|
00:31:20,390 --> 00:31:28,770 |
|
ูู ููุณู ุจูุนู
ู three claims ููู ูู ุจุฑูุงู ููููู ุงููุฑู |
|
|
|
265 |
|
00:31:28,770 --> 00:31:35,430 |
|
ุฃูู ุนูุฏู ุฃูุง A ุจุฏู A1 ููููู A2 ููุชููู ุงููู ูู |
|
|
|
266 |
|
00:31:35,430 --> 00:31:41,370 |
|
ุงููุชุฑุงุช ูุฐู ูุชุฑุฉ ู
ุบููุฉ ู
ู ุตูุฑ ุฅูู ูุงุญุฏ ูุจุงูุชุงูู |
|
|
|
267 |
|
00:31:41,370 --> 00:31:47,910 |
|
ุจูุตูุฑ ูุฐู ุงููุชุฑุฉ ู
ู ููุง ู
ุบููุฉ ุนูุฏ ุงูุตูุฑ ูู
ุบููุฉ ุนูุฏ |
|
|
|
268 |
|
00:31:47,910 --> 00:31:54,070 |
|
ุงูุตูุฑ ูู
ุบููุฉ ุนูุฏ ุงููุงุญุฏ ูููุฐุง ููุณ ุงูุจุฑูุงู ูุณุฎ ูุตู |
|
|
|
269 |
|
00:31:54,070 --> 00:31:59,790 |
|
ู
ุน ุงูุชุนุฏููุงุช ุงูุจุณูุทุฉ ุฃู A ูุงุญุฏ ุงูุขู ุฃุตุจุญุช ุจุฏู ู
ุง |
|
|
|
270 |
|
00:31:59,790 --> 00:32:03,270 |
|
ูุงูุช ูุชุฑุฉ ู
ูุชูุญุฉ ู
ู ุตูุฑ ููุงุญุฏ ุฃุตุจุญุช ูุชุฑุฉ ู
ุบููุฉ |
|
|
|
271 |
|
00:32:03,270 --> 00:32:06,830 |
|
ูุจุงูุชุงูู ูู ุงูุชูุงุทุนุงุช ุงูุญุณุงุจุงุช ูุบูู ุงููู ูู |
|
|
|
272 |
|
00:32:06,830 --> 00:32:13,590 |
|
ุงููุชุฑุงุช and ุงูุญุงุฌุฉ ุงูู
ุทููุจุฉ okay ูุจุงูุชุงูู ููุณ |
|
|
|
273 |
|
00:32:13,590 --> 00:32:18,910 |
|
ุงูุจุฑูุงู will go through ููู
ุดู ุจุงูุชู
ุงู
ูุงููู
ุงู Okay |
|
|
|
274 |
|
00:32:18,910 --> 00:32:24,270 |
|
ุชู
ุงู
ุ ุฅุฐุง ูุฐุง ุงูุจุฑูุงู ู
ุดุงุจู ูุจุฑูุงู ุงูู
ุซุงู ุงูุฃูู |
|
|
|
275 |
|
00:32:24,270 --> 00:32:34,010 |
|
ูุฃุฎุฐ ูู
ุงู ู
ุซุงู ุขุฎุฑ ู
ุซุงู |
|
|
|
276 |
|
00:32:34,010 --> 00:32:43,770 |
|
ุซุงูุซ every every |
|
|
|
277 |
|
00:32:43,770 --> 00:32:44,310 |
|
finite |
|
|
|
278 |
|
00:32:46,970 --> 00:32:59,350 |
|
set A contained in R has no |
|
|
|
279 |
|
00:32:59,350 --> 00:33:03,070 |
|
cluster |
|
|
|
280 |
|
00:33:03,070 --> 00:33:09,730 |
|
points |
|
|
|
281 |
|
00:33:09,730 --> 00:33:19,970 |
|
ูู finite set ู
ุง ููุงุด ููุง cluster point ูุงูุจุฑูุงู ุณูู |
|
|
|
282 |
|
00:33:19,970 --> 00:33:24,950 |
|
proof say |
|
|
|
283 |
|
00:33:24,950 --> 00:33:35,030 |
|
ุฏุนูุง ุงูู set a ูุณู
ู ุนูุงุตุฑูุง a1, a2 ุฅูู an ูุฏู ู
ุด |
|
|
|
284 |
|
00:33:35,030 --> 00:33:39,950 |
|
ูุฏู finite set ุฅุฐุง ุนูุงุตุฑูู
ู
ู
ูู ุฃุนู
ููู
list a1, a2 |
|
|
|
285 |
|
00:33:39,950 --> 00:33:47,530 |
|
ุฅูู an ู ู
ู
ูู ุฃุนู
ููู
order ุฃุฑุชุจูู
ุญุณุจ ุงูู
ุคุดุฑ ุชุจุนูู
|
|
|
|
286 |
|
00:33:47,530 --> 00:33:57,450 |
|
ูุนูู a1 ุฃุตุบุฑ ู
ู a2 ุฃุตุบุฑ ู
ู a3 ุฃุตุบุฑ ู
ู ุฃุตุบุฑ ู
ู an |
|
|
|
287 |
|
00:33:57,450 --> 00:34:03,570 |
|
ู
ู
ูู ูุนู
ู ููู
ุฉ ู
ู ูุฐุง ููุง ูุฃ ู
ู
ูู by the ordering |
|
|
|
288 |
|
00:34:03,570 --> 00:34:04,370 |
|
principle |
|
|
|
289 |
|
00:34:11,360 --> 00:34:20,780 |
|
ุฃู ุจุงุณุชุฎุฏุงู
ุงูู ordering ุชุจุน ุงูู real numbers ุฅุฐุง |
|
|
|
290 |
|
00:34:20,780 --> 00:34:30,880 |
|
ูู ุนูุฏู ุงูู set A ุชุจุนุชู ูู ุฎุท ุงูุนุฏุงุฏ ููู A1 ููู A2 ููู |
|
|
|
291 |
|
00:34:30,880 --> 00:34:36,160 |
|
A3 ู
ุด ุดุฑุท ุงูู
ุณุงูุฉ ุจูู ูู ุฃูุตุงุฑ ูุงูุชุงูู ุชููู |
|
|
|
292 |
|
00:34:36,160 --> 00:34:46,230 |
|
ู
ุชุณุงููุฉ ูููุฐุง ุฅูู ุฃุฎุฑ ุนูุตุฑ AN ู |
|
|
|
293 |
|
00:34:46,230 --> 00:34:49,910 |
|
fix X |
|
|
|
294 |
|
00:34:49,910 --> 00:35:01,190 |
|
ููุชู
ู ุฅูู R ู ุจุฏู ุฃุซุจุช ุฃู claim X is not a cluster |
|
|
|
295 |
|
00:35:01,190 --> 00:35:01,910 |
|
point |
|
|
|
296 |
|
00:35:09,790 --> 00:35:12,850 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
297 |
|
00:35:12,850 --> 00:35:16,770 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
298 |
|
00:35:16,770 --> 00:35:16,790 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
299 |
|
00:35:16,790 --> 00:35:17,530 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
300 |
|
00:35:17,530 --> 00:35:17,750 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
301 |
|
00:35:17,750 --> 00:35:18,430 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
302 |
|
00:35:18,430 --> 00:35:19,070 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
303 |
|
00:35:19,070 --> 00:35:19,690 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
304 |
|
00:35:19,690 --> 00:35:25,170 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
305 |
|
00:35:25,170 --> 00:35:28,870 |
|
ุจุงูุชุงูู ุงูู
ุฌู
ูุนุฉ A ููุณ ูุฏูู ุฃู cluster point |
|
|
|
306 |
|
00:35:28,870 --> 00:35:33,950 |
|
ุจุงูุชุงูู ุงูู
ุฌู
|
|
|
|
307 |
|
00:35:37,690 --> 00:35:44,410 |
|
ุฅู
ุง X ุชูุชู
ู ุฅูู A ุฃู X ุชูุชู
ู ุฅูู ุงูู complement |
|
|
|
308 |
|
00:35:44,410 --> 00:35:50,530 |
|
ูุนูู ูุง ุชูุชู
ู ุฅูู A ุตุญุ |
|
|
|
309 |
|
00:35:50,530 --> 00:35:59,870 |
|
ููู ุงูุญุงูุฉ ุงูุฃููู case ูุงุญุฏ ุฃุซุฑ ู
ู X ุชูุชู
ู ุฅูู A |
|
|
|
310 |
|
00:35:59,870 --> 00:36:03,970 |
|
ูุจุงูุฏูุน ุชุซุจุช ุฅู X ููุณุช cluster point |
|
|
|
311 |
|
00:36:10,180 --> 00:36:18,560 |
|
say x ุจุณุงูู a m for some m ุฃูุจุฑ ู
ู ุฃู ุณุงูู ูุงุญุฏ |
|
|
|
312 |
|
00:36:18,560 --> 00:36:24,180 |
|
ุฃุตุบุฑ ู
ู ุฃู ุณุงูู ู
ุด ูุฐุง ุงูู x ู
ูุฌูุฏ ูู a ู a ุนูู |
|
|
|
313 |
|
00:36:24,180 --> 00:36:29,460 |
|
ุณุฑูุง a ูุงุญุฏ ุฅูู a n ุฅุฐุง ูุฐุง ุงูู x ูู a m for some m |
|
|
|
314 |
|
00:36:29,460 --> 00:36:36,300 |
|
ุจูู ูุงุญุฏ ู n ุทูุจ let |
|
|
|
315 |
|
00:36:37,980 --> 00:36:48,860 |
|
delta ุจุณุงูู ูุต ุงูู
ุณุงูุฉ ุงูู minimum ุงูู
ุณุงูุฉ |
|
|
|
316 |
|
00:36:48,860 --> 00:37:04,760 |
|
ุจูู am minus am minus ูุงุญุฏ ูam ุฒุงุฆุฏ ูุงุญุฏ minus am |
|
|
|
317 |
|
00:37:11,460 --> 00:37:21,160 |
|
ูุนูู ูุงู ุงูู X ูุงู ุงูู M ูุงู AM ููุงู AM ุฒุงุฏ ูุงุญุฏ |
|
|
|
318 |
|
00:37:21,160 --> 00:37:30,960 |
|
ูุงูุฃูุตุฑ ุงููู ุฌุงุจ ููุง AM minus ูุงุญุฏ ุงุญูุง ูููุง ุงูู X |
|
|
|
319 |
|
00:37:30,960 --> 00:37:39,850 |
|
ุณุจุนุชู ุงูู X ุณุจุนุชู ูู ุงูู AM ุงูุขู ุจุงุฎุฏ ุงูู
ุณุงูุฉ ูุฐู |
|
|
|
320 |
|
00:37:39,850 --> 00:37:46,030 |
|
ุงููู ูู ุจูู a m ุฒู ุฏูู ุงููู ูู ุงูู
ุณุงูุฉ ูุฐู ู ุจุงุฎุฏ |
|
|
|
321 |
|
00:37:46,030 --> 00:37:51,150 |
|
ุงูู
ุณุงูุฉ ูุฐู ุจูู a m ู a m ุณุงูุจ ูุงุญุฏ ูุงุฒู
ูุงุญุฏุฉ |
|
|
|
322 |
|
00:37:51,150 --> 00:37:55,730 |
|
ุชููู ุฃุตุบุฑ ู
ู ุฃู ูุณุงูู ุงูุชุงููุฉ ุจุงุฎุฏูุง ุงูู minimum ุงูู |
|
|
|
323 |
|
00:37:55,730 --> 00:37:57,730 |
|
minimum .. ุงูู minimum ุจูู ุงูู
ุณุงูุชูู .. ุงูุฃุตุบุฑ ุจูู |
|
|
|
324 |
|
00:37:57,730 --> 00:38:02,650 |
|
ุงูู
ุณุงูุชูู ูุฏูู ู ุจุงุฎุฏ ูุตูุง ู ุจุงุฎุฏ ูุตูุง ุจุณู
ููุง |
|
|
|
325 |
|
00:38:02,650 --> 00:38:08,720 |
|
delta ููุต .. ูู ูููุง ุงูุฃุตุบุฑ ูู ูููุง ู
ุซูุง ุงูุฃุตุบุฑ |
|
|
|
326 |
|
00:38:08,720 --> 00:38:15,400 |
|
ุงููู ูู ูุฐู ููุต ุงูุฏูุชุง ูุฐุง ูู ูุฅุฐุง ุงูู delta ูุชููู |
|
|
|
327 |
|
00:38:15,400 --> 00:38:21,040 |
|
ุงูู
ุณุงูุฉ ูุฐู ู ุจูููู delta neighborhood ุญูุงููู ุงูู X |
|
|
|
328 |
|
00:38:21,040 --> 00:38:29,720 |
|
ุงูุขู ุงูู delta neighborhood ูุฐุง then verify |
|
|
|
329 |
|
00:38:29,720 --> 00:38:34,860 |
|
ู
ู
ูููู
ุชุชุญูููุง verify that |
|
|
|
330 |
|
00:38:37,340 --> 00:38:43,600 |
|
ุงูู Delta neighborhood V Delta ู A M ุงููู ูู ุงูู X |
|
|
|
331 |
|
00:38:43,600 --> 00:38:46,760 |
|
ุชูุงุทุน |
|
|
|
332 |
|
00:38:46,760 --> 00:38:55,280 |
|
ุงูู set A ูุงู ู
ูุฒูุนุฉ ู
ููุง A M ููุทูุน ุจุณุงูู ุงููุงู |
|
|
|
333 |
|
00:38:55,280 --> 00:39:01,980 |
|
ู
ุงููุด ุชูุงุทุน ุจูููู
ูุจุงูุชุงูู therefore by definition |
|
|
|
334 |
|
00:39:04,480 --> 00:39:13,200 |
|
ุงู
ุงูุณ ุจุณุงูู ุงู
is not a |
|
|
|
335 |
|
00:39:13,200 --> 00:39:22,360 |
|
cluster point of set A ูุฃู ุนุดุงู ุชููู ู
ุง ุชููููุด |
|
|
|
336 |
|
00:39:22,360 --> 00:39:28,040 |
|
cluster point ูู
ุฌู
ูุนุฉ A ูุงุฒู
ุฃุซุจุช ุฅูู ููุฌุฏ there |
|
|
|
337 |
|
00:39:28,040 --> 00:39:35,840 |
|
exist delta neighborhood ููู X ุชุจุนุช ุงููู ูู AM ุจุญูุซ |
|
|
|
338 |
|
00:39:35,840 --> 00:39:42,980 |
|
ุฅูู ุงูู delta neighborhood ูุฐุง ู
ุง ูุชูุทุนุด ู
ุน ุงูู set A ูู |
|
|
|
339 |
|
00:39:42,980 --> 00:39:50,440 |
|
ุฃู ููุทุฉ ู
ุฎุชููุฉ ุนู ุงูููุทุฉ X ููุฐุง ุญุตู Okay ุชู
ุงู
ุฅุฐุง |
|
|
|
340 |
|
00:39:50,440 --> 00:39:56,140 |
|
ูุฐุง ูู ุญุงูุฉ ูู
ุง ุงูู X ุชููู ู
ูุฌูุฏุฉ ูู A ุงูุญุงูุฉ |
|
|
|
341 |
|
00:39:56,140 --> 00:40:03,340 |
|
ุงูุชุงููุฉ ุงู ุงูู case 2 case |
|
|
|
342 |
|
00:40:03,340 --> 00:40:13,040 |
|
2 ุงู ุงูู X ูุง ุชูุชู
ู ุงูู ุงูู set A ููู ุงูุญุงูุฉ ูุฐู |
|
|
|
343 |
|
00:40:14,910 --> 00:40:20,590 |
|
ู
ุนูุงุชู x ู
ุงุจุชุณุงููุด ููุง ูุงุญุฏ ู
ู ุงูุนูุงุตุฑ ูุฐู ูุงูุญุงูุฉ |
|
|
|
344 |
|
00:40:20,590 --> 00:40:26,690 |
|
ูุฐู ู
ู
ูู ุฃุฌุฒููุง ุฅูู ุชูุช ุญุงูุงุช ุงูุญุงูุฉ |
|
|
|
345 |
|
00:40:26,690 --> 00:40:32,750 |
|
ุงูุฃููู ุงู ุงูู x ุชุจุนุชู ุชููู ุฃุตุบุฑ ู
ู a ูุงุญุฏ ูุจุงูุชุงูู |
|
|
|
346 |
|
00:40:32,750 --> 00:40:37,010 |
|
ูุงุถุญ ุงู ุงูู
ุณุงูุฉ ุจูู X ู A ูุงุญุฏ ูุจูุฑุฉ ูุจุงุฎุฏ ูุต |
|
|
|
347 |
|
00:40:37,010 --> 00:40:43,930 |
|
ุงูู
ุณุงูุฉ ุฏูุชุง ุฅุฐุง ูููุฌุฏ ุฏูุชุง ูุจุฑูุฏ ู X ูู
ุงุจุชูุทุนุด |
|
|
|
348 |
|
00:40:43,930 --> 00:40:47,650 |
|
ู
ุน ุงูู
ุฌู
ูุนุฉ A ุจุงูู
ุฑุฉ ูุจุงูุชุงูู X is not cluster |
|
|
|
349 |
|
00:40:47,650 --> 00:40:54,250 |
|
point ู
ู
ูู ุงูุญุงูุฉ ุงูุชุงููุฉ ุฃู X ุชููู ุฃูุจุฑ ู
ู ุงูู AM |
|
|
|
350 |
|
00:40:54,250 --> 00:40:59,470 |
|
ุจุฑุถู ุจุงุฎุฏ ุงูู
ุณุงูุฉ ุฏู ุจุฌูุจูุง ู ุจุงุฎุฏ ูุตูุง ุนูู ุงูู |
|
|
|
351 |
|
00:40:59,470 --> 00:41:03,670 |
|
Delta ู ุจููู Delta neighborhood ุญูุงููู ุงูู X ูุฐุง ุงูู |
|
|
|
352 |
|
00:41:03,670 --> 00:41:06,530 |
|
Delta neighborhood ูุงุถุญ ุงูู ู
ุงุจุชูุทุนุด ู
ุน ุงูู set A |
|
|
|
353 |
|
00:41:06,530 --> 00:41:11,910 |
|
ุจุงูู
ุฑุฉ ูุจุงูุชุงูู ุฅุฐุง X ูู ุงูุญุงูุฉ ุฏู ููุณุช cluster |
|
|
|
354 |
|
00:41:11,910 --> 00:41:20,190 |
|
point ุงูุญุงูุฉ ุงูุชุงูุชุฉ ุงู X ุชููู ูุงูุนุฉ ุจูู ุนูุตุฑูู ู
ู |
|
|
|
355 |
|
00:41:20,190 --> 00:41:25,170 |
|
ุนูุงุตุฑ ุงูู set ูุจุงุฎุฏ ุงููู ูู ุงูู
ุณุงูุฉ ุงูุฃุตุบุฑ ู
ู |
|
|
|
356 |
|
00:41:25,170 --> 00:41:29,310 |
|
ุงูู
ุณุงูุชูู ูุฏูู ู ูู ุชููู ูุงุฏู ู ุจุงุฎุฏ ูุตูุง delta ู |
|
|
|
357 |
|
00:41:29,310 --> 00:41:32,890 |
|
ุจููู delta neighborhood ุญูุงูููุง ูุฐุง ุงูู delta |
|
|
|
358 |
|
00:41:32,890 --> 00:41:36,510 |
|
neighborhood ุจุชูุทุนุด ู
ุน ุงูู
ุฌู
ูุนุฉ ูุงุฏ ุงูู
ุฑุฉ ูุจุงูุชุงูู |
|
|
|
359 |
|
00:41:36,510 --> 00:41:38,990 |
|
ุญุณุจ ุงูุชุนุฑูู x ููุณุช cluster point |
|
|
|
360 |
|
00:41:43,100 --> 00:41:46,360 |
|
ู
ุง ุงุญูุง ูููุง ุฅุฐุง ูุงูุช X ุชูุชู
ู ูุฃูู ูู ุจุฑูุงูุฉ MA ูุง |
|
|
|
361 |
|
00:41:46,360 --> 00:41:52,640 |
|
ุชูุชู
ู ูุฃ ุชูุชู
ู ุงู ููุด ูุฏุงู
ูุง ุจูู ุชูุชู
ู ู ูุง ุชูุชู
ู |
|
|
|
362 |
|
00:41:52,640 --> 00:41:58,420 |
|
ู
ุง ูู ุงูู X ู
ุง ุชูุชู
ูุด ูุฃูู ูู
ู
ูู ุชููู ุจูู ุนูุตุฑูู ู
ู |
|
|
|
363 |
|
00:41:58,420 --> 00:42:03,360 |
|
ุนูุตุฑูู
ูู ุชูุชู
ู ูู R ู
ุง ุชูุชู
ูุด ูุฃูู ูู
ู
ูู ุชููู |
|
|
|
364 |
|
00:42:03,360 --> 00:42:09,640 |
|
ู
ูุฌูุฏุฉ ุจูู A2 ู A3 ุตุญ ุฃู ุจูู A1 ู A2 ุฃู ุจูู A3 ุฃู |
|
|
|
365 |
|
00:42:09,640 --> 00:42:16,530 |
|
A ู ููุฐุง ุฃู ู
ู
ูู ุชููู ุงูู X ุนูู ูู
ูู ุงูู AN ุฃู ุญุงูุฉ |
|
|
|
366 |
|
00:42:16,530 --> 00:42:20,190 |
|
ุชุงูุชุฉ X ุชููู ุนูู ูุณุงุฑ ุงูู A ูุงุญุฏ ูุดูููุง ูู ูู |
|
|
|
367 |
|
00:42:20,190 --> 00:42:24,310 |
|
ุงูุญุงูุงุช ูุฐู ุงูุชูุงุชุฉ ุฃูู ุจูุฏุฑ ุฃูุงูู delta |
|
|
|
368 |
|
00:42:24,310 --> 00:42:27,990 |
|
neighborhood ุญูุงููู ุงูู X ูุง ูุชูุงุทุน ู
ุน ุงูู
ุฌู
ูุนุฉ A |
|
|
|
369 |
|
00:42:27,990 --> 00:42:32,330 |
|
ุจุงูู
ุฑุฉ ูุจุงูุชุงูู X ููุณุช cluster point ุฅุฐุง ุงูููุงู
|
|
|
|
370 |
|
00:42:32,330 --> 00:42:37,110 |
|
ูุฐุง ูุงุถุญ ุญุงูููุง ุชูุชุจูู ุจุทุฑููุฉ ูุนูู ู
ูุทููุฉ okay |
|
|
|
371 |
|
00:42:37,110 --> 00:42:37,810 |
|
ุชู
ุงู
ุ |
|
|
|
372 |
|
00:42:42,120 --> 00:42:46,900 |
|
ุฃูุง ู
ุชุฎููุฉ ุงูู A ุนุจุงุฑุฉ ุนู set ุฏุงุฆุฑ ู
ุซูุง ุฃูุง ููู |
|
|
|
373 |
|
00:42:46,900 --> 00:42:50,340 |
|
ู
ุชุฎููุฉ ู ุฃูู ู
ุซูุง ุงูู cluster point ูู ุนุจุงุฑุฉ ุนู |
|
|
|
374 |
|
00:42:50,340 --> 00:42:54,820 |
|
ููุทุฉ .. ูุฃ ุงูู A ู
ุงุชุชุฎูููุด ุงูู A ุนูุฏ ุงูู set ุงูู A ูู |
|
|
|
375 |
|
00:42:54,820 --> 00:43:01,140 |
|
ุฌุฒุก ู
ู ุงูุฃุนุฏุงุฏ ุงูุญููููุฉ subset ู
ู R ู R ุฎุท ูุงุฒู
|
|
|
|
376 |
|
00:43:01,140 --> 00:43:04,200 |
|
ูุนูู ุชุชุฎูู ุงูุญุงุฌุงุช ุฒู
ุงู ุนูู ุงูู interior point ู ุงูู |
|
|
|
377 |
|
00:43:04,200 --> 00:43:08,260 |
|
boundary ูุฐุง ูู ุงูู topology ุญุงุฌุฉ ุชุงููุฉ ูู ุฒู ุงุช |
|
|
|
378 |
|
00:43:08,260 --> 00:43:11,140 |
|
ุดุจููุง ูุนูู ู
ู
ูู ูููู
ูุง ุจูุฐุง ุงูุทุฑููุฉ ุจุณ ู
ู
ูู ุงู |
|
|
|
379 |
|
00:43:11,140 --> 00:43:13,860 |
|
ู
ู
ูู ุจุณ ุงุญูุง ููุง ุนูู ุงูู real line ูุนูู ุฎูููู ุงุญูุง |
|
|
|
380 |
|
00:43:13,860 --> 00:43:18,820 |
|
ูุชููุฏ ุจุงูู sets ุงููู ู
ูุฌูุฏุฉ ุนูู ุงูู real line ุฃู
ุง ูู |
|
|
|
381 |
|
00:43:18,820 --> 00:43:24,080 |
|
ุทุจุนุง ูู ุชุนูู ู
ู ุงูููุงู
ูุฐุง ูู ุญุงุฌุงุช ุฃุนู
ู ูุฑุบุงุช |
|
|
|
382 |
|
00:43:24,080 --> 00:43:28,550 |
|
ุฃุนู
ู
ู ุงูู .. ุงูู real number ุงููู ูู ุงูู topological |
|
|
|
383 |
|
00:43:28,550 --> 00:43:36,030 |
|
spaces ู ูุฐุง ู
ูุถูุน ุทุจุนุง ู
ุชุดุนุจ ู ุจุฏู ูุนูู ุชุฏุฑุณ ุงูู |
|
|
|
384 |
|
00:43:36,030 --> 00:43:40,530 |
|
topology ุนุดุงู ุชููู
ูู ุดูุก okay ูู ุฃู ุฃุณุฆูุฉ ุชุงููุ |
|
|
|
385 |
|
00:43:40,530 --> 00:43:44,430 |
|
okay ูููุชูู ุจูุฐุง ุงููุฏุฑ ู ุฅู ุดุงุก ุงููู ุจููู
ู |
|
|
|
386 |
|
00:43:44,430 --> 00:43:52,670 |
|
ุงูู
ุญุงุถุฑุฉ ุงูุฌุงูุฉ ุงูู
ูุถูุน ู ุจูุฎุด ุจุชุนุฑูู ุงูู limit ููู |
|
|
|
387 |
|
00:43:52,670 --> 00:43:53,110 |
|
functions |
|
|