url
stringlengths
58
61
repository_url
stringclasses
1 value
labels_url
stringlengths
72
75
comments_url
stringlengths
67
70
events_url
stringlengths
65
68
html_url
stringlengths
46
51
id
int64
599M
2.51B
node_id
stringlengths
18
32
number
int64
1
7.14k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
4
milestone
dict
comments
sequencelengths
0
30
created_at
timestamp[ns]
updated_at
timestamp[ns]
closed_at
timestamp[ns]
author_association
stringclasses
4 values
active_lock_reason
float64
draft
float64
0
1
pull_request
dict
body
stringlengths
0
228k
reactions
dict
timeline_url
stringlengths
67
70
performed_via_github_app
float64
state_reason
stringclasses
3 values
is_pull_request
bool
2 classes
https://api.github.com/repos/huggingface/datasets/issues/7143
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7143/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7143/comments
https://api.github.com/repos/huggingface/datasets/issues/7143/events
https://github.com/huggingface/datasets/pull/7143
2,512,327,211
PR_kwDODunzps56xCm6
7,143
Modify add_column() to optionally accept a pyarrow schema as param
{ "avatar_url": "https://avatars.githubusercontent.com/u/20443618?v=4", "events_url": "https://api.github.com/users/varadhbhatnagar/events{/privacy}", "followers_url": "https://api.github.com/users/varadhbhatnagar/followers", "following_url": "https://api.github.com/users/varadhbhatnagar/following{/other_user}", "gists_url": "https://api.github.com/users/varadhbhatnagar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/varadhbhatnagar", "id": 20443618, "login": "varadhbhatnagar", "node_id": "MDQ6VXNlcjIwNDQzNjE4", "organizations_url": "https://api.github.com/users/varadhbhatnagar/orgs", "received_events_url": "https://api.github.com/users/varadhbhatnagar/received_events", "repos_url": "https://api.github.com/users/varadhbhatnagar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/varadhbhatnagar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/varadhbhatnagar/subscriptions", "type": "User", "url": "https://api.github.com/users/varadhbhatnagar" }
[]
open
false
null
[]
null
[ "Requesting review @lhoestq \r\nI will also update the docs if this looks good.", "Cool ! maybe you can rename the argument `feature` and with type `FeatureType` ? This way it would work the same way as `.cast_column()` ?", "@lhoestq Since there is no way to get a `pyarrow.Schema` from a `FeatureType`, I had to go via `Features`. How does this look?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7143). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "@lhoestq done!" ]
2024-09-08T10:56:57
2024-09-08T11:10:17
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7143.diff", "html_url": "https://github.com/huggingface/datasets/pull/7143", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7143.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7143" }
[Open Issue](https://github.com/huggingface/datasets/issues/7142) **Before (Add + Cast)**: ``` from datasets import load_dataset, Value ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] ds = ds.add_column("new_col", lst) # Assigns int64 to new_col by default print(ds.features) ds = ds.cast_column("new_col", Value(dtype="uint16", id=None)) print(ds.features) ``` **Before (Numpy Workaround)**: ``` from datasets import load_dataset import numpy as np ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] ds = ds.add_column("new_col", np.array(lst, dtype=np.uint16)) print(ds.features) ``` **After**: ``` from datasets import load_dataset import pyarrow as pa ds = load_dataset("rotten_tomatoes", split="test") lst = [i for i in range(len(ds))] schema = pa.schema([("new_col", pa.uint16())]) ds = ds.add_column("new_col", lst, pyarrow_schema=schema) print(ds.features) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7143/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7143/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7142
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7142/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7142/comments
https://api.github.com/repos/huggingface/datasets/issues/7142/events
https://github.com/huggingface/datasets/issues/7142
2,512,244,938
I_kwDODunzps6VvdDK
7,142
Specifying datatype when adding a column to a dataset.
{ "avatar_url": "https://avatars.githubusercontent.com/u/20443618?v=4", "events_url": "https://api.github.com/users/varadhbhatnagar/events{/privacy}", "followers_url": "https://api.github.com/users/varadhbhatnagar/followers", "following_url": "https://api.github.com/users/varadhbhatnagar/following{/other_user}", "gists_url": "https://api.github.com/users/varadhbhatnagar/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/varadhbhatnagar", "id": 20443618, "login": "varadhbhatnagar", "node_id": "MDQ6VXNlcjIwNDQzNjE4", "organizations_url": "https://api.github.com/users/varadhbhatnagar/orgs", "received_events_url": "https://api.github.com/users/varadhbhatnagar/received_events", "repos_url": "https://api.github.com/users/varadhbhatnagar/repos", "site_admin": false, "starred_url": "https://api.github.com/users/varadhbhatnagar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/varadhbhatnagar/subscriptions", "type": "User", "url": "https://api.github.com/users/varadhbhatnagar" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "#self-assign" ]
2024-09-08T07:34:24
2024-09-08T07:35:26
null
NONE
null
null
null
### Feature request There should be a way to specify the datatype of a column in `datasets.add_column()`. ### Motivation To specify a custom datatype, we have to use `datasets.add_column()` followed by `datasets.cast_column()` which is slow for large datasets. Another workaround is to pass a `numpy.array()` of desired type to the `datasets.add_column()` function. IMO this functionality should be natively supported. https://discuss.huggingface.co/t/add-column-with-a-particular-type-in-datasets/95674 ### Your contribution I can submit a PR for this.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7142/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7142/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7141
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7141/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7141/comments
https://api.github.com/repos/huggingface/datasets/issues/7141/events
https://github.com/huggingface/datasets/issues/7141
2,510,797,653
I_kwDODunzps6Vp7tV
7,141
Older datasets throwing safety errors with 2.21.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/1050316?v=4", "events_url": "https://api.github.com/users/alvations/events{/privacy}", "followers_url": "https://api.github.com/users/alvations/followers", "following_url": "https://api.github.com/users/alvations/following{/other_user}", "gists_url": "https://api.github.com/users/alvations/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alvations", "id": 1050316, "login": "alvations", "node_id": "MDQ6VXNlcjEwNTAzMTY=", "organizations_url": "https://api.github.com/users/alvations/orgs", "received_events_url": "https://api.github.com/users/alvations/received_events", "repos_url": "https://api.github.com/users/alvations/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alvations/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alvations/subscriptions", "type": "User", "url": "https://api.github.com/users/alvations" }
[]
closed
false
null
[]
null
[ "I am also getting this error with this dataset: https://huggingface.co/datasets/google/IFEval", "Me too, didn't have this issue few hours ago.", "same observation. I even downgraded `datasets==2.20.0` and `huggingface_hub==0.23.5` leading me to believe it's an issue on the server.\r\n\r\nany known workarounds?\r\n", "Not a good idea, but commenting out the whole security block at `/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py` is a temporary workaround:\r\n\r\n```\r\n #security = kwargs.pop(\"security\", None)\r\n #if security is not None:\r\n # security = BlobSecurityInfo(\r\n # safe=security[\"safe\"], av_scan=security[\"avScan\"], pickle_import_scan=security[\"pickleImportScan\"]\r\n # )\r\n #self.security = security\r\n```\r\n", "Uploading a dataset to Huggingface also results in the following error in the Dataset Preview:\r\n```\r\nThe full dataset viewer is not available (click to read why). Only showing a preview of the rows.\r\n'safe'\r\nError code: UnexpectedError\r\nNeed help to make the dataset viewer work? Make sure to review [how to configure the dataset viewer](link1), and [open a discussion](link2) for direct support.\r\n```\r\nI used jsonl format for the dataset in this case. Same exact dataset worked previously.", "Same issue here. Even reverting to older version of `datasets` (e.g., `2.19.0`) results in same error:\r\n\r\n```python\r\n>>> datasets.load_dataset('allenai/ai2_arc', 'ARC-Easy')\r\n\r\nFile \"/Users/lucas/miniforge3/envs/oe-eval-internal/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 3048, in <listcomp>\r\n RepoFile(**path_info) if path_info[\"type\"] == \"file\" else RepoFolder(**path_info)\r\n File \"/Users/lucas/miniforge3/envs/oe-eval-internal/lib/python3.10/site-packages/huggingface_hub/hf_api.py\", line 534, in __init__\r\n safe=security[\"safe\"], av_scan=security[\"avScan\"], pickle_import_scan=security[\"pickleImportScan\"]\r\nKeyError: 'safe'\r\n```", "i just had this issue a few minutes ago, crawled the internet and found nothing. came here to open an issue and found this. it is really frustrating. anyone found a fix?", "hi, me and my team have the same problem", "Yeah, this just suddenly appeared without client-side code changes, within the last hours.\r\n\r\nHere's a patch to fix the issue temporarily:\r\n```python\r\nimport huggingface_hub\r\ndef patched_repofolder_init(self, **kwargs):\r\n self.path = kwargs.pop(\"path\")\r\n self.tree_id = kwargs.pop(\"oid\")\r\n last_commit = kwargs.pop(\"lastCommit\", None) or kwargs.pop(\"last_commit\", None)\r\n if last_commit is not None:\r\n last_commit = huggingface_hub.hf_api.LastCommitInfo(\r\n oid=last_commit[\"id\"],\r\n title=last_commit[\"title\"],\r\n date=huggingface_hub.utils.parse_datetime(last_commit[\"date\"]),\r\n )\r\n self.last_commit = last_commit\r\n\r\n\r\ndef patched_repo_file_init(self, **kwargs):\r\n self.path = kwargs.pop(\"path\")\r\n self.size = kwargs.pop(\"size\")\r\n self.blob_id = kwargs.pop(\"oid\")\r\n lfs = kwargs.pop(\"lfs\", None)\r\n if lfs is not None:\r\n lfs = huggingface_hub.hf_api.BlobLfsInfo(size=lfs[\"size\"], sha256=lfs[\"oid\"], pointer_size=lfs[\"pointerSize\"])\r\n self.lfs = lfs\r\n last_commit = kwargs.pop(\"lastCommit\", None) or kwargs.pop(\"last_commit\", None)\r\n if last_commit is not None:\r\n last_commit = huggingface_hub.hf_api.LastCommitInfo(\r\n oid=last_commit[\"id\"],\r\n title=last_commit[\"title\"],\r\n date=huggingface_hub.utils.parse_datetime(last_commit[\"date\"]),\r\n )\r\n self.last_commit = last_commit\r\n self.security = None\r\n\r\n # backwards compatibility\r\n self.rfilename = self.path\r\n self.lastCommit = self.last_commit\r\n\r\n\r\nhuggingface_hub.hf_api.RepoFile.__init__ = patched_repo_file_init\r\nhuggingface_hub.hf_api.RepoFolder.__init__ = patched_repofolder_init\r\n```\r\n", "Also discussed here:\r\nhttps://discuss.huggingface.co/t/i-keep-getting-keyerror-safe-when-loading-my-datasets/105669/1", "i'm thinking this should be a server issue, i mean no client code was changed on my end. so weird!", "As far as I can tell, this seems to be happening with **all** datasets that use RepoFolder (probably represents most datasets on huggingface, right?)", "> Here is a temporary fix for the problem: https://discuss.huggingface.co/t/i-keep-getting-keyerror-safe-when-loading-my-datasets/105669/12?u=mlscientist\r\n\r\nthis doesn't seem to work!", "In case you are using Colab or similar, remember to restart your session after modyfing the hf_api.py file", "No need to modify the file directly, just monkey-patch.\r\n\r\nI'm now more sure that the error appears because the backend expects the api code to look like it does on `main`. If `RepoFile` and `RepoFolder` look about like they look on main, they work again.\r\n\r\nIf not fixed like above, a secondary error that will appear is \r\n```\r\n return self.info(path, expand_info=False)[\"type\"] == \"directory\"\r\n ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n\r\n \"tree_id\": path_info.tree_id,\r\n ^^^^^^^^^^^^^^^^^\r\nAttributeError: 'RepoFolder' object has no attribute 'tree_id'\r\n```\r\n", "We've reverted the deployment, please let us know if the issue still persists!", "thanks @muellerzr!" ]
2024-09-06T16:26:30
2024-09-06T21:14:14
2024-09-06T19:09:29
NONE
null
null
null
### Describe the bug The dataset loading was throwing some safety errors for this popular dataset `wmt14`. [in]: ``` import datasets # train_data = datasets.load_dataset("wmt14", "de-en", split="train") train_data = datasets.load_dataset("wmt14", "de-en", split="train") val_data = datasets.load_dataset("wmt14", "de-en", split="validation[:10%]") ``` [out]: ``` --------------------------------------------------------------------------- KeyError Traceback (most recent call last) [<ipython-input-9-445f0ecc4817>](https://localhost:8080/#) in <cell line: 4>() 2 3 # train_data = datasets.load_dataset("wmt14", "de-en", split="train") ----> 4 train_data = datasets.load_dataset("wmt14", "de-en", split="train") 5 val_data = datasets.load_dataset("wmt14", "de-en", split="validation[:10%]") 12 frames [/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py](https://localhost:8080/#) in __init__(self, **kwargs) 636 if security is not None: 637 security = BlobSecurityInfo( --> 638 safe=security["safe"], av_scan=security["avScan"], pickle_import_scan=security["pickleImportScan"] 639 ) 640 self.security = security KeyError: 'safe' ``` ### Steps to reproduce the bug See above. ### Expected behavior Dataset properly loaded. ### Environment info version: 2.21.0
{ "+1": 26, "-1": 0, "confused": 2, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 28, "url": "https://api.github.com/repos/huggingface/datasets/issues/7141/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7141/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7139
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7139/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7139/comments
https://api.github.com/repos/huggingface/datasets/issues/7139/events
https://github.com/huggingface/datasets/issues/7139
2,508,078,858
I_kwDODunzps6Vfj8K
7,139
Use load_dataset to load imagenet-1K But find a empty dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/105094708?v=4", "events_url": "https://api.github.com/users/fscdc/events{/privacy}", "followers_url": "https://api.github.com/users/fscdc/followers", "following_url": "https://api.github.com/users/fscdc/following{/other_user}", "gists_url": "https://api.github.com/users/fscdc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fscdc", "id": 105094708, "login": "fscdc", "node_id": "U_kgDOBkOeNA", "organizations_url": "https://api.github.com/users/fscdc/orgs", "received_events_url": "https://api.github.com/users/fscdc/received_events", "repos_url": "https://api.github.com/users/fscdc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fscdc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fscdc/subscriptions", "type": "User", "url": "https://api.github.com/users/fscdc" }
[]
open
false
null
[]
null
[]
2024-09-05T15:12:22
2024-09-05T15:12:22
null
NONE
null
null
null
### Describe the bug ```python def get_dataset(data_path, train_folder="train", val_folder="val"): traindir = os.path.join(data_path, train_folder) valdir = os.path.join(data_path, val_folder) def transform_val_examples(examples): transform = Compose([ Resize(256), CenterCrop(224), ToTensor(), ]) examples["image"] = [transform(image.convert("RGB")) for image in examples["image"]] return examples def transform_train_examples(examples): transform = Compose([ RandomResizedCrop(224), RandomHorizontalFlip(), ToTensor(), ]) examples["image"] = [transform(image.convert("RGB")) for image in examples["image"]] return examples # @fengsicheng: This way is very slow for big dataset like ImageNet-1K (but can pass the network problem using local dataset) # train_set = load_dataset("imagefolder", data_dir=traindir, num_proc=4) # test_set = load_dataset("imagefolder", data_dir=valdir, num_proc=4) train_set = load_dataset("imagenet-1K", split="train", trust_remote_code=True) test_set = load_dataset("imagenet-1K", split="test", trust_remote_code=True) print(train_set["label"]) train_set.set_transform(transform_train_examples) test_set.set_transform(transform_val_examples) return train_set, test_set ``` above the code, but output of the print is a list of None: <img width="952" alt="image" src="https://github.com/user-attachments/assets/c4e2fdd8-3b8f-481e-8f86-9bbeb49d79fb"> ### Steps to reproduce the bug 1. just ran the code 2. see the print ### Expected behavior I do not know how to fix this, can anyone provide help or something? It is hurry for me ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-5.4.0-190-generic-x86_64-with-glibc2.31 - Python version: 3.10.14 - `huggingface_hub` version: 0.24.6 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7139/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7139/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7138
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7138/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7138/comments
https://api.github.com/repos/huggingface/datasets/issues/7138/events
https://github.com/huggingface/datasets/issues/7138
2,507,738,308
I_kwDODunzps6VeQzE
7,138
Cache only changed columns?
{ "avatar_url": "https://avatars.githubusercontent.com/u/37351874?v=4", "events_url": "https://api.github.com/users/Modexus/events{/privacy}", "followers_url": "https://api.github.com/users/Modexus/followers", "following_url": "https://api.github.com/users/Modexus/following{/other_user}", "gists_url": "https://api.github.com/users/Modexus/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Modexus", "id": 37351874, "login": "Modexus", "node_id": "MDQ6VXNlcjM3MzUxODc0", "organizations_url": "https://api.github.com/users/Modexus/orgs", "received_events_url": "https://api.github.com/users/Modexus/received_events", "repos_url": "https://api.github.com/users/Modexus/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Modexus/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Modexus/subscriptions", "type": "User", "url": "https://api.github.com/users/Modexus" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "so I guess a workaround to this is to simply remove all columns except the ones to cache and then add them back with `concatenate_datasets(..., axis=1)`." ]
2024-09-05T12:56:47
2024-09-05T13:56:13
null
CONTRIBUTOR
null
null
null
### Feature request Cache only the actual changes to the dataset i.e. changed columns. ### Motivation I realized that caching actually saves the complete dataset again. This is especially problematic for image datasets if one wants to only change another column e.g. some metadata and then has to save 5 TB again. ### Your contribution Is this even viable in the current architecture of the package? I quickly looked into it and it seems it would require significant changes. I would spend some time looking into this but maybe somebody could help with the feasibility and some plan to implement before spending too much time on it?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7138/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7138/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7137
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7137/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7137/comments
https://api.github.com/repos/huggingface/datasets/issues/7137/events
https://github.com/huggingface/datasets/issues/7137
2,506,851,048
I_kwDODunzps6Va4Lo
7,137
dataset_info sequence format unexpected behavior in README.md YAML
{ "avatar_url": "https://avatars.githubusercontent.com/u/13214530?v=4", "events_url": "https://api.github.com/users/ain-soph/events{/privacy}", "followers_url": "https://api.github.com/users/ain-soph/followers", "following_url": "https://api.github.com/users/ain-soph/following{/other_user}", "gists_url": "https://api.github.com/users/ain-soph/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ain-soph", "id": 13214530, "login": "ain-soph", "node_id": "MDQ6VXNlcjEzMjE0NTMw", "organizations_url": "https://api.github.com/users/ain-soph/orgs", "received_events_url": "https://api.github.com/users/ain-soph/received_events", "repos_url": "https://api.github.com/users/ain-soph/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ain-soph/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ain-soph/subscriptions", "type": "User", "url": "https://api.github.com/users/ain-soph" }
[]
open
false
null
[]
null
[ "The non-sequence case works well (`dict[str, str]` instead of `list[dict[str, str]]`), which makes me believe it shall be a bug for `sequence` and my proposed behavior shall be expected.\r\n```\r\ndataset_info:\r\n- config_name: default\r\n features:\r\n - name: answers\r\n dtype:\r\n - name: text\r\n dtype: string\r\n - name: label\r\n dtype: string\r\n\r\n\r\n# data\r\n{\"answers\": {\"text\": \"ADDRESS\", \"label\": \"abc\"}}\r\n```" ]
2024-09-05T06:06:06
2024-09-05T06:10:56
null
NONE
null
null
null
### Describe the bug When working on `dataset_info` yaml, I find my data column with format `list[dict[str, str]]` cannot be coded correctly. My data looks like ``` {"answers":[{"text": "ADDRESS", "label": "abc"}]} ``` My `dataset_info` in README.md is: ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` **Error log**: ``` pyarrow.lib.ArrowNotImplementedError: Unsupported cast from list<item: struct<text: string, label: string>> to struct using function cast_struct ``` ## Potential Reason After some analysis, it turns out that my yaml config is requiring `dict[str, list[str]]` instead of `list[dict[str, str]]`. It would work if I change my data to ``` {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` These following 2 different `dataset_info` are actually equivalent. ``` dataset_info: - config_name: default features: - name: answers dtype: - name: text sequence: string - name: label sequence: string dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` ### Steps to reproduce the bug ``` # README.md --- dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string configs: - config_name: default default: true data_files: - split: train path: - "test.jsonl" --- # test.jsonl # expected but not working {"answers":[{"text": "ADDRESS", "label": "abc"}]} # unexpected but working {"answers":{"text": ["ADDRESS"], "label": ["abc", "def"]}} ``` ### Expected behavior ``` dataset_info: - config_name: default features: - name: answers sequence: - name: text dtype: string - name: label dtype: string ``` Should work on following data format: ``` {"answers":[{"text":"ADDRESS", "label": "abc"}]} ``` ### Environment info - `datasets` version: 2.21.0 - Platform: macOS-14.6.1-arm64-arm-64bit - Python version: 3.12.4 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.6.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7137/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7137/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7136
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7136/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7136/comments
https://api.github.com/repos/huggingface/datasets/issues/7136/events
https://github.com/huggingface/datasets/pull/7136
2,506,115,857
PR_kwDODunzps56b9R-
7,136
Do not consume unnecessary memory during sharding
{ "avatar_url": "https://avatars.githubusercontent.com/u/12694897?v=4", "events_url": "https://api.github.com/users/janEbert/events{/privacy}", "followers_url": "https://api.github.com/users/janEbert/followers", "following_url": "https://api.github.com/users/janEbert/following{/other_user}", "gists_url": "https://api.github.com/users/janEbert/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/janEbert", "id": 12694897, "login": "janEbert", "node_id": "MDQ6VXNlcjEyNjk0ODk3", "organizations_url": "https://api.github.com/users/janEbert/orgs", "received_events_url": "https://api.github.com/users/janEbert/received_events", "repos_url": "https://api.github.com/users/janEbert/repos", "site_admin": false, "starred_url": "https://api.github.com/users/janEbert/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/janEbert/subscriptions", "type": "User", "url": "https://api.github.com/users/janEbert" }
[]
open
false
null
[]
null
[]
2024-09-04T19:26:06
2024-09-04T19:28:23
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7136.diff", "html_url": "https://github.com/huggingface/datasets/pull/7136", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7136.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7136" }
When sharding `IterableDataset`s, a temporary list is created that is then indexed. There is no need to create a temporary list of a potentially very large step/world size, with standard `islice` functionality, so we avoid it. ```shell pytest tests/test_distributed.py -k iterable ``` Runs successfully.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7136/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7136/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7135
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7135/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7135/comments
https://api.github.com/repos/huggingface/datasets/issues/7135/events
https://github.com/huggingface/datasets/issues/7135
2,503,318,328
I_kwDODunzps6VNZs4
7,135
Bug: Type Mismatch in Dataset Mapping
{ "avatar_url": "https://avatars.githubusercontent.com/u/45327989?v=4", "events_url": "https://api.github.com/users/marko1616/events{/privacy}", "followers_url": "https://api.github.com/users/marko1616/followers", "following_url": "https://api.github.com/users/marko1616/following{/other_user}", "gists_url": "https://api.github.com/users/marko1616/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/marko1616", "id": 45327989, "login": "marko1616", "node_id": "MDQ6VXNlcjQ1MzI3OTg5", "organizations_url": "https://api.github.com/users/marko1616/orgs", "received_events_url": "https://api.github.com/users/marko1616/received_events", "repos_url": "https://api.github.com/users/marko1616/repos", "site_admin": false, "starred_url": "https://api.github.com/users/marko1616/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/marko1616/subscriptions", "type": "User", "url": "https://api.github.com/users/marko1616" }
[]
open
false
null
[]
null
[ "By the way, following code is working. This show the inconsistentcy.\r\n```python\r\nfrom datasets import Dataset\r\n\r\n# Original data\r\ndata = {\r\n 'text': ['Hello', 'world', 'this', 'is', 'a', 'test'],\r\n 'label': [0, 1, 0, 1, 1, 0]\r\n}\r\n\r\n# Creating a Dataset object\r\ndataset = Dataset.from_dict(data)\r\n\r\n# Mapping function to convert label to string\r\ndef add_one(example):\r\n example['label'] += 1\r\n return example\r\n\r\n# Applying the mapping function\r\ndataset = dataset.map(add_one)\r\n\r\n# Iterating over the dataset to show results\r\nfor item in dataset:\r\n print(item)\r\n print(type(item['label']))\r\n```", "Hello, thanks for submitting an issue.\r\n\r\nFWIU, the issue is that `datasets` tries to limit casting [ref](https://github.com/huggingface/datasets/blob/ca58154bba185c1916ca5eea4e33b27258642044/src/datasets/arrow_writer.py#L526) and as such will try to convert your strings back to int to preserve the `Features`. \r\n\r\nA quick solution would be to use `dataset.cast` or to supply `features` when calling `dataset.map`.\r\n\r\n\r\n```python\r\n# using Dataset.cast\r\ndataset = dataset.cast_column('label', Value('string'))\r\n\r\n# Alternative, supply features\r\ndataset = dataset.map(add_one, features=Features({**dataset.features, 'label': Value('string')}))\r\n```", "LGTM! Thanks for the review.\r\n\r\nJust to clarify, is this intended behavior, or is it something that might be addressed in a future update?\r\nI'll leave this issue open until it's fixed if this is not the intended behavior." ]
2024-09-03T16:37:01
2024-09-05T14:09:05
null
NONE
null
null
null
# Issue: Type Mismatch in Dataset Mapping ## Description There is an issue with the `map` function in the `datasets` library where the mapped output does not reflect the expected type change. After applying a mapping function to convert an integer label to a string, the resulting type remains an integer instead of a string. ## Reproduction Code Below is a Python script that demonstrates the problem: ```python from datasets import Dataset # Original data data = { 'text': ['Hello', 'world', 'this', 'is', 'a', 'test'], 'label': [0, 1, 0, 1, 1, 0] } # Creating a Dataset object dataset = Dataset.from_dict(data) # Mapping function to convert label to string def add_one(example): example['label'] = str(example['label']) return example # Applying the mapping function dataset = dataset.map(add_one) # Iterating over the dataset to show results for item in dataset: print(item) print(type(item['label'])) ``` ## Expected Output After applying the mapping function, the expected output should have the `label` field as strings: ```plaintext {'text': 'Hello', 'label': '0'} <class 'str'> {'text': 'world', 'label': '1'} <class 'str'> {'text': 'this', 'label': '0'} <class 'str'> {'text': 'is', 'label': '1'} <class 'str'> {'text': 'a', 'label': '1'} <class 'str'> {'text': 'test', 'label': '0'} <class 'str'> ``` ## Actual Output The actual output still shows the `label` field values as integers: ```plaintext {'text': 'Hello', 'label': 0} <class 'int'> {'text': 'world', 'label': 1} <class 'int'> {'text': 'this', 'label': 0} <class 'int'> {'text': 'is', 'label': 1} <class 'int'> {'text': 'a', 'label': 1} <class 'int'> {'text': 'test', 'label': 0} <class 'int'> ``` ## Why necessary In the case of Image process we often need to convert PIL to tensor with same column name. Thank for every dev who review this issue. 🤗
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7135/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7135/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7134
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7134/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7134/comments
https://api.github.com/repos/huggingface/datasets/issues/7134/events
https://github.com/huggingface/datasets/issues/7134
2,499,484,041
I_kwDODunzps6U-xmJ
7,134
Attempting to return a rank 3 grayscale image from dataset.map results in extreme slowdown
{ "avatar_url": "https://avatars.githubusercontent.com/u/46371349?v=4", "events_url": "https://api.github.com/users/navidmafi/events{/privacy}", "followers_url": "https://api.github.com/users/navidmafi/followers", "following_url": "https://api.github.com/users/navidmafi/following{/other_user}", "gists_url": "https://api.github.com/users/navidmafi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/navidmafi", "id": 46371349, "login": "navidmafi", "node_id": "MDQ6VXNlcjQ2MzcxMzQ5", "organizations_url": "https://api.github.com/users/navidmafi/orgs", "received_events_url": "https://api.github.com/users/navidmafi/received_events", "repos_url": "https://api.github.com/users/navidmafi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/navidmafi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/navidmafi/subscriptions", "type": "User", "url": "https://api.github.com/users/navidmafi" }
[]
open
false
null
[]
null
[]
2024-09-01T13:55:41
2024-09-02T10:34:53
null
NONE
null
null
null
### Describe the bug Background: Digital images are often represented as a (Height, Width, Channel) tensor. This is the same for huggingface datasets that contain images. These images are loaded in Pillow containers which offer, for example, the `.convert` method. I can convert an image from a (H,W,3) shape to a grayscale (H,W) image and I have no problems with this. But when attempting to return a (H,W,1) shaped matrix from a map function, it never completes and sometimes even results in an OOM from the OS. I've used various methods to expand a (H,W) shaped array to a (H,W,1) array. But they all resulted in extremely long map operations consuming a lot of CPU and RAM. ### Steps to reproduce the bug Below is a minimal example using two methods to get the desired output. Both of which don't work ```py import tensorflow as tf import datasets import numpy as np ds = datasets.load_dataset("project-sloth/captcha-images") to_gray_pillow = lambda sample: {'image': np.expand_dims(sample['image'].convert("L"), axis=-1)} ds_gray = ds.map(to_gray_pillow) # Alternatively ds = datasets.load_dataset("project-sloth/captcha-images").with_format("tensorflow") to_gray_tf = lambda sample: {'image': tf.expand_dims(tf.image.rgb_to_grayscale(sample['image']), axis=-1)} ds_gray = ds.map(to_gray_tf) ``` ### Expected behavior I expect the map operation to complete and return a new dataset containing grayscale images in a (H,W,1) shape. ### Environment info datasets 2.21.0 python tested with both 3.11 and 3.12 host os : linux
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7134/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7134/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7133
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7133/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7133/comments
https://api.github.com/repos/huggingface/datasets/issues/7133/events
https://github.com/huggingface/datasets/pull/7133
2,496,474,495
PR_kwDODunzps557zng
7,133
remove filecheck to enable symlinks
{ "avatar_url": "https://avatars.githubusercontent.com/u/23191892?v=4", "events_url": "https://api.github.com/users/fschlatt/events{/privacy}", "followers_url": "https://api.github.com/users/fschlatt/followers", "following_url": "https://api.github.com/users/fschlatt/following{/other_user}", "gists_url": "https://api.github.com/users/fschlatt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fschlatt", "id": 23191892, "login": "fschlatt", "node_id": "MDQ6VXNlcjIzMTkxODky", "organizations_url": "https://api.github.com/users/fschlatt/orgs", "received_events_url": "https://api.github.com/users/fschlatt/received_events", "repos_url": "https://api.github.com/users/fschlatt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fschlatt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fschlatt/subscriptions", "type": "User", "url": "https://api.github.com/users/fschlatt" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7133). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The CI is failing, looks like it breaks imagefolder loading.\r\n\r\nI just checked fsspec internals and maybe instead we can detect symlink by checking `islink` and `size` to make sure it's a file\r\n```python\r\nif info[\"type\"] == \"file\" or (info.get(\"islink\") and info[\"size\"])\r\n```\r\n", "hmm actually `size` doesn't seem to filter symlinked directories, we need another way", "Does fsspec perhaps allow resolving symlinks? Something like https://docs.python.org/3/library/pathlib.html#pathlib.Path.resolve", "there is `info[\"destination\"]` in case of a symlink, so maybe\r\n\r\n\r\n```python\r\nif info[\"type\"] == \"file\" or (info.get(\"islink\") and info.get(\"destination\") and os.path.isfile(info[\"destination\"]))\r\n```" ]
2024-08-30T07:36:56
2024-09-04T12:46:56
null
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7133.diff", "html_url": "https://github.com/huggingface/datasets/pull/7133", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7133.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7133" }
Enables streaming from local symlinks #7083 @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7133/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7133/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7132
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7132/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7132/comments
https://api.github.com/repos/huggingface/datasets/issues/7132/events
https://github.com/huggingface/datasets/pull/7132
2,494,510,464
PR_kwDODunzps551k1C
7,132
Fix data file module inference
{ "avatar_url": "https://avatars.githubusercontent.com/u/1714412?v=4", "events_url": "https://api.github.com/users/HennerM/events{/privacy}", "followers_url": "https://api.github.com/users/HennerM/followers", "following_url": "https://api.github.com/users/HennerM/following{/other_user}", "gists_url": "https://api.github.com/users/HennerM/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HennerM", "id": 1714412, "login": "HennerM", "node_id": "MDQ6VXNlcjE3MTQ0MTI=", "organizations_url": "https://api.github.com/users/HennerM/orgs", "received_events_url": "https://api.github.com/users/HennerM/received_events", "repos_url": "https://api.github.com/users/HennerM/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HennerM/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HennerM/subscriptions", "type": "User", "url": "https://api.github.com/users/HennerM" }
[]
open
false
null
[]
null
[ "Hi ! datasets saved using `save_to_disk` should be loaded with `load_from_disk` ;)", "It is convienient to just pass in a path to a local dataset or one from the hub and use the same function to load it. Is it not possible to get this fix merged in to allow this? ", "We can modify `save_to_disk` to write the dataset in a structure supported by the Hub in this case, it's kind of a legacy function anyway" ]
2024-08-29T13:48:16
2024-09-02T19:52:13
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7132.diff", "html_url": "https://github.com/huggingface/datasets/pull/7132", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7132.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7132" }
I saved a dataset with two splits to disk with `DatasetDict.save_to_disk`. The train is bigger and ended up in 10 shards, whereas the test split only resulted in 1 split. Now when trying to load the dataset, an error is raised that not all splits have the same data format: > ValueError: Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('arrow', {}), NamedSplit('test'): ('json', {})} This is not expected because both splits are saved as arrow files. I did some debugging and found that this is the case because the list of data_files includes a `state.json` file. Now this means for train split I get 10 ".arrow" and 1 ".json" file. Since datasets picks based on the most common extension this is correctly inferred as "arrow". In the test split, there is 1 .arrow and 1 .json file. Given the function description: > It picks the module based on the most common file extension. In case of a draw ".parquet" is the favorite, and then alphabetical order. This is not quite true though, because in a tie the extensions are actually based on reverse-alphabetical order: ``` for (ext, _), _ in sorted(extensions_counter.items(), key=sort_key, *reverse=True*): ``` Which thus leads to the module wrongly inferred as "json", whereas it should be "arrow", matching the train split. I first thought about adding "state.json" in the list of excluded files for the inference: https://github.com/huggingface/datasets/blob/main/src/datasets/load.py#L513. However, I think from digging into the code it looks like the right thing to do is to exclude it in the list of `data_files` to start with, because it is more of a metadata than a data file.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7132/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7132/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7129
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7129/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7129/comments
https://api.github.com/repos/huggingface/datasets/issues/7129/events
https://github.com/huggingface/datasets/issues/7129
2,491,942,650
I_kwDODunzps6UiAb6
7,129
Inconsistent output in documentation example: `num_classes` not displayed in `ClassLabel` output
{ "avatar_url": "https://avatars.githubusercontent.com/u/17179696?v=4", "events_url": "https://api.github.com/users/sergiopaniego/events{/privacy}", "followers_url": "https://api.github.com/users/sergiopaniego/followers", "following_url": "https://api.github.com/users/sergiopaniego/following{/other_user}", "gists_url": "https://api.github.com/users/sergiopaniego/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sergiopaniego", "id": 17179696, "login": "sergiopaniego", "node_id": "MDQ6VXNlcjE3MTc5Njk2", "organizations_url": "https://api.github.com/users/sergiopaniego/orgs", "received_events_url": "https://api.github.com/users/sergiopaniego/received_events", "repos_url": "https://api.github.com/users/sergiopaniego/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sergiopaniego/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sergiopaniego/subscriptions", "type": "User", "url": "https://api.github.com/users/sergiopaniego" }
[]
open
false
null
[]
null
[]
2024-08-28T12:27:48
2024-08-28T12:27:48
null
NONE
null
null
null
In the documentation for [ClassLabel](https://huggingface.co/docs/datasets/v2.21.0/en/package_reference/main_classes#datasets.ClassLabel), there is an example of usage with the following code: ```` from datasets import Features features = Features({'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'])}) features ```` which expects to output (as stated in the documentation): ```` {'label': ClassLabel(num_classes=3, names=['bad', 'ok', 'good'], id=None)} ```` but it generates the following ```` {'label': ClassLabel(names=['bad', 'ok', 'good'], id=None)} ```` If my understanding is correct, this happens because although num_classes is used during the init of the object, it is afterward ignored: https://github.com/huggingface/datasets/blob/be5cff059a2a5b89d7a97bc04739c4919ab8089f/src/datasets/features/features.py#L975 I would like to work on this issue if this is something needed 😄
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7129/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7129/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7128
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7128/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7128/comments
https://api.github.com/repos/huggingface/datasets/issues/7128/events
https://github.com/huggingface/datasets/issues/7128
2,490,274,775
I_kwDODunzps6UbpPX
7,128
Filter Large Dataset Entry by Entry
{ "avatar_url": "https://avatars.githubusercontent.com/u/36057290?v=4", "events_url": "https://api.github.com/users/QiyaoWei/events{/privacy}", "followers_url": "https://api.github.com/users/QiyaoWei/followers", "following_url": "https://api.github.com/users/QiyaoWei/following{/other_user}", "gists_url": "https://api.github.com/users/QiyaoWei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/QiyaoWei", "id": 36057290, "login": "QiyaoWei", "node_id": "MDQ6VXNlcjM2MDU3Mjkw", "organizations_url": "https://api.github.com/users/QiyaoWei/orgs", "received_events_url": "https://api.github.com/users/QiyaoWei/received_events", "repos_url": "https://api.github.com/users/QiyaoWei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/QiyaoWei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/QiyaoWei/subscriptions", "type": "User", "url": "https://api.github.com/users/QiyaoWei" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-27T20:31:09
2024-08-27T20:31:09
null
NONE
null
null
null
### Feature request I am not sure if this is a new feature, but I wanted to post this problem here, and hear if others have ways of optimizing and speeding up this process. Let's say I have a really large dataset that I cannot load into memory. At this point, I am only aware of `streaming=True` to load the dataset. Now, the dataset consists of many tables. Ideally, I would want to have some simple filtering criterion, such that I only see the "good" tables. Here is an example of what the code might look like: ``` dataset = load_dataset( "really-large-dataset", streaming=True ) # And let's say we process the dataset bit by bit because we want intermediate results dataset = islice(dataset, 10000) # Define a function to filter the data def filter_function(table): if some_condition: return True else: return False # Use the filter function on your dataset filtered_dataset = (ex for ex in dataset if filter_function(ex)) ``` And then I work on the processed dataset, which would be magnitudes faster than working on the original. I would love to hear if the problem setup + solution makes sense to people, and if anyone has suggestions! ### Motivation See description above ### Your contribution Happy to make PR if this is a new feature
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7128/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7128/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7127
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7127/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7127/comments
https://api.github.com/repos/huggingface/datasets/issues/7127/events
https://github.com/huggingface/datasets/issues/7127
2,486,524,966
I_kwDODunzps6UNVwm
7,127
Caching shuffles by np.random.Generator results in unintiutive behavior
{ "avatar_url": "https://avatars.githubusercontent.com/u/11832922?v=4", "events_url": "https://api.github.com/users/el-hult/events{/privacy}", "followers_url": "https://api.github.com/users/el-hult/followers", "following_url": "https://api.github.com/users/el-hult/following{/other_user}", "gists_url": "https://api.github.com/users/el-hult/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/el-hult", "id": 11832922, "login": "el-hult", "node_id": "MDQ6VXNlcjExODMyOTIy", "organizations_url": "https://api.github.com/users/el-hult/orgs", "received_events_url": "https://api.github.com/users/el-hult/received_events", "repos_url": "https://api.github.com/users/el-hult/repos", "site_admin": false, "starred_url": "https://api.github.com/users/el-hult/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/el-hult/subscriptions", "type": "User", "url": "https://api.github.com/users/el-hult" }
[]
open
false
null
[]
null
[ "I first thought this was a mistake of mine, and also posted on stack overflow. https://stackoverflow.com/questions/78913797/iterating-a-huggingface-dataset-from-disk-using-generator-seems-broken-how-to-d \r\n\r\nIt seems to me the issue is the caching step in \r\n\r\nhttps://github.com/huggingface/datasets/blob/be5cff059a2a5b89d7a97bc04739c4919ab8089f/src/datasets/arrow_dataset.py#L4306-L4316\r\n\r\nbecause the shuffle happens after checking the cache, the rng state won't advance if the cache is used. This is VERY confusing. Also not documented.\r\n\r\nMy proposal is that you remove the API for using a Generator, and only keep the seed-based API since that is functional and cache-compatible." ]
2024-08-26T10:29:48
2024-08-26T10:35:57
null
NONE
null
null
null
### Describe the bug Create a dataset. Save it to disk. Load from disk. Shuffle, usning a `np.random.Generator`. Iterate. Shuffle again. Iterate. The iterates are different since the supplied np.random.Generator has progressed between the shuffles. Load dataset from disk again. Shuffle and Iterate. See same result as before. Shuffle and iterate, and this time it does not have the same shuffling as ion previous run. The motivation is I have a deep learning loop with ``` for epoch in range(10): for batch in dataset.shuffle(generator=generator).iter(batch_size=32): .... # do stuff ``` where I want a new shuffling at every epoch. Instead I get the same shuffling. ### Steps to reproduce the bug Run the code below two times. ```python import datasets import numpy as np generator = np.random.default_rng(0) ds = datasets.Dataset.from_dict(mapping={"X":range(1000)}) ds.save_to_disk("tmp") print("First loop: ", end="") for _ in range(10): print(next(ds.shuffle(generator=generator).iter(batch_size=1))['X'], end=", ") print("") print("Second loop: ", end="") ds = datasets.Dataset.load_from_disk("tmp") for _ in range(10): print(next(ds.shuffle(generator=generator).iter(batch_size=1))['X'], end=", ") print("") ``` The output is: ``` $ python main.py Saving the dataset (1/1 shards): 100%|███████████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 495019.95 examples/s] First loop: 459, 739, 72, 943, 241, 181, 845, 830, 896, 334, Second loop: 741, 847, 944, 795, 483, 842, 717, 865, 231, 840, $ python main.py Saving the dataset (1/1 shards): 100%|████████████████████████████████████████████████████████████████████████| 1000/1000 [00:00<00:00, 22243.40 examples/s] First loop: 459, 739, 72, 943, 241, 181, 845, 830, 896, 334, Second loop: 741, 741, 741, 741, 741, 741, 741, 741, 741, 741, ``` The second loop, on the second run, only spits out "741, 741, 741...." which is *not* the desired output ### Expected behavior I want the dataset to shuffle at every epoch since I provide it with a generator for shuffling. ### Environment info Datasets version 2.21.0 Ubuntu linux.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7127/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7127/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7126
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7126/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7126/comments
https://api.github.com/repos/huggingface/datasets/issues/7126/events
https://github.com/huggingface/datasets/pull/7126
2,485,939,495
PR_kwDODunzps55Y-Ws
7,126
Disable implicit token in CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7126). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005232 / 0.011353 (-0.006121) | 0.003428 / 0.011008 (-0.007580) | 0.062673 / 0.038508 (0.024164) | 0.030111 / 0.023109 (0.007002) | 0.238017 / 0.275898 (-0.037881) | 0.262655 / 0.323480 (-0.060825) | 0.003015 / 0.007986 (-0.004971) | 0.002664 / 0.004328 (-0.001665) | 0.050010 / 0.004250 (0.045759) | 0.045620 / 0.037052 (0.008567) | 0.251800 / 0.258489 (-0.006689) | 0.278829 / 0.293841 (-0.015011) | 0.029838 / 0.128546 (-0.098709) | 0.011703 / 0.075646 (-0.063943) | 0.204503 / 0.419271 (-0.214768) | 0.036173 / 0.043533 (-0.007359) | 0.242850 / 0.255139 (-0.012289) | 0.263811 / 0.283200 (-0.019389) | 0.019027 / 0.141683 (-0.122656) | 1.168028 / 1.452155 (-0.284126) | 1.208975 / 1.492716 (-0.283742) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091309 / 0.018006 (0.073303) | 0.299583 / 0.000490 (0.299093) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018451 / 0.037411 (-0.018960) | 0.062516 / 0.014526 (0.047991) | 0.073983 / 0.176557 (-0.102573) | 0.120952 / 0.737135 (-0.616184) | 0.075275 / 0.296338 (-0.221063) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286870 / 0.215209 (0.071661) | 2.810498 / 2.077655 (0.732843) | 1.490028 / 1.504120 (-0.014092) | 1.362249 / 1.541195 (-0.178946) | 1.368939 / 1.468490 (-0.099551) | 0.736643 / 4.584777 (-3.848134) | 2.414237 / 3.745712 (-1.331475) | 2.898911 / 5.269862 (-2.370951) | 1.840630 / 4.565676 (-2.725047) | 0.077872 / 0.424275 (-0.346403) | 0.005087 / 0.007607 (-0.002520) | 0.337054 / 0.226044 (0.111009) | 3.390734 / 2.268929 (1.121806) | 1.844174 / 55.444624 (-53.600451) | 1.532741 / 6.876477 (-5.343736) | 1.551650 / 2.142072 (-0.590422) | 0.778642 / 4.805227 (-4.026585) | 0.131899 / 6.500664 (-6.368765) | 0.041801 / 0.075469 (-0.033668) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.958362 / 1.841788 (-0.883425) | 11.323330 / 8.074308 (3.249022) | 9.396199 / 10.191392 (-0.795193) | 0.131154 / 0.680424 (-0.549270) | 0.014705 / 0.534201 (-0.519496) | 0.302424 / 0.579283 (-0.276859) | 0.261870 / 0.434364 (-0.172494) | 0.340788 / 0.540337 (-0.199550) | 0.433360 / 1.386936 (-0.953576) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005571 / 0.011353 (-0.005782) | 0.003388 / 0.011008 (-0.007621) | 0.050366 / 0.038508 (0.011858) | 0.032633 / 0.023109 (0.009524) | 0.261847 / 0.275898 (-0.014051) | 0.292197 / 0.323480 (-0.031283) | 0.005070 / 0.007986 (-0.002916) | 0.002753 / 0.004328 (-0.001575) | 0.048613 / 0.004250 (0.044363) | 0.040272 / 0.037052 (0.003219) | 0.275441 / 0.258489 (0.016952) | 0.309175 / 0.293841 (0.015334) | 0.032403 / 0.128546 (-0.096143) | 0.011734 / 0.075646 (-0.063912) | 0.059532 / 0.419271 (-0.359740) | 0.033886 / 0.043533 (-0.009647) | 0.263453 / 0.255139 (0.008314) | 0.281997 / 0.283200 (-0.001203) | 0.018522 / 0.141683 (-0.123161) | 1.150364 / 1.452155 (-0.301791) | 1.204090 / 1.492716 (-0.288627) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093129 / 0.018006 (0.075123) | 0.303691 / 0.000490 (0.303201) | 0.000231 / 0.000200 (0.000031) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022084 / 0.037411 (-0.015327) | 0.076354 / 0.014526 (0.061828) | 0.087710 / 0.176557 (-0.088847) | 0.128907 / 0.737135 (-0.608228) | 0.088603 / 0.296338 (-0.207735) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.301161 / 0.215209 (0.085952) | 2.954780 / 2.077655 (0.877125) | 1.601366 / 1.504120 (0.097246) | 1.477225 / 1.541195 (-0.063970) | 1.482355 / 1.468490 (0.013865) | 0.722461 / 4.584777 (-3.862315) | 0.981439 / 3.745712 (-2.764273) | 2.927006 / 5.269862 (-2.342856) | 1.884444 / 4.565676 (-2.681233) | 0.079044 / 0.424275 (-0.345231) | 0.005530 / 0.007607 (-0.002077) | 0.347082 / 0.226044 (0.121037) | 3.491984 / 2.268929 (1.223056) | 1.944317 / 55.444624 (-53.500307) | 1.645792 / 6.876477 (-5.230685) | 1.649506 / 2.142072 (-0.492567) | 0.800822 / 4.805227 (-4.004405) | 0.133936 / 6.500664 (-6.366729) | 0.041198 / 0.075469 (-0.034271) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029764 / 1.841788 (-0.812024) | 11.928840 / 8.074308 (3.854532) | 10.021390 / 10.191392 (-0.170002) | 0.141608 / 0.680424 (-0.538816) | 0.014921 / 0.534201 (-0.519280) | 0.302050 / 0.579283 (-0.277233) | 0.124151 / 0.434364 (-0.310213) | 0.347143 / 0.540337 (-0.193195) | 0.467649 / 1.386936 (-0.919287) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e4c87a6bf57b3aa094c28895c5b89b91b3509c58 \"CML watermark\")\n" ]
2024-08-26T05:29:46
2024-08-26T06:05:01
2024-08-26T05:59:15
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7126.diff", "html_url": "https://github.com/huggingface/datasets/pull/7126", "merged_at": "2024-08-26T05:59:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7126.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7126" }
Disable implicit token in CI. This PR allows running CI tests locally without implicitly using the local user HF token. For example, run locally the tests in: - #7124
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7126/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7126/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7125
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7125/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7125/comments
https://api.github.com/repos/huggingface/datasets/issues/7125/events
https://github.com/huggingface/datasets/pull/7125
2,485,912,246
PR_kwDODunzps55Y4TM
7,125
Fix wrong SHA in CI tests of HubDatasetModuleFactoryWithParquetExport
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7125). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005741 / 0.011353 (-0.005612) | 0.004011 / 0.011008 (-0.006998) | 0.063962 / 0.038508 (0.025454) | 0.031512 / 0.023109 (0.008403) | 0.242249 / 0.275898 (-0.033649) | 0.269601 / 0.323480 (-0.053879) | 0.004502 / 0.007986 (-0.003483) | 0.002835 / 0.004328 (-0.001494) | 0.049878 / 0.004250 (0.045628) | 0.048012 / 0.037052 (0.010959) | 0.250454 / 0.258489 (-0.008035) | 0.283266 / 0.293841 (-0.010575) | 0.030752 / 0.128546 (-0.097794) | 0.012655 / 0.075646 (-0.062991) | 0.211043 / 0.419271 (-0.208229) | 0.037165 / 0.043533 (-0.006367) | 0.246815 / 0.255139 (-0.008324) | 0.264306 / 0.283200 (-0.018893) | 0.018343 / 0.141683 (-0.123340) | 1.140452 / 1.452155 (-0.311702) | 1.214849 / 1.492716 (-0.277867) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098048 / 0.018006 (0.080042) | 0.292201 / 0.000490 (0.291712) | 0.000217 / 0.000200 (0.000017) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018732 / 0.037411 (-0.018679) | 0.062887 / 0.014526 (0.048361) | 0.074353 / 0.176557 (-0.102204) | 0.120794 / 0.737135 (-0.616341) | 0.077066 / 0.296338 (-0.219272) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276335 / 0.215209 (0.061126) | 2.722905 / 2.077655 (0.645250) | 1.423080 / 1.504120 (-0.081040) | 1.305443 / 1.541195 (-0.235752) | 1.342142 / 1.468490 (-0.126348) | 0.741899 / 4.584777 (-3.842878) | 2.407567 / 3.745712 (-1.338145) | 3.070263 / 5.269862 (-2.199599) | 1.935732 / 4.565676 (-2.629944) | 0.081371 / 0.424275 (-0.342904) | 0.005207 / 0.007607 (-0.002401) | 0.328988 / 0.226044 (0.102943) | 3.240771 / 2.268929 (0.971842) | 1.801028 / 55.444624 (-53.643597) | 1.490593 / 6.876477 (-5.385884) | 1.521317 / 2.142072 (-0.620756) | 0.794051 / 4.805227 (-4.011176) | 0.136398 / 6.500664 (-6.364266) | 0.042902 / 0.075469 (-0.032567) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.974186 / 1.841788 (-0.867602) | 12.280011 / 8.074308 (4.205703) | 9.453389 / 10.191392 (-0.738003) | 0.132627 / 0.680424 (-0.547797) | 0.014608 / 0.534201 (-0.519593) | 0.309298 / 0.579283 (-0.269985) | 0.275911 / 0.434364 (-0.158452) | 0.348261 / 0.540337 (-0.192077) | 0.439031 / 1.386936 (-0.947905) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006248 / 0.011353 (-0.005105) | 0.004369 / 0.011008 (-0.006639) | 0.050588 / 0.038508 (0.012080) | 0.032880 / 0.023109 (0.009771) | 0.268979 / 0.275898 (-0.006919) | 0.294714 / 0.323480 (-0.028766) | 0.004518 / 0.007986 (-0.003467) | 0.002995 / 0.004328 (-0.001333) | 0.048776 / 0.004250 (0.044525) | 0.041696 / 0.037052 (0.004644) | 0.283413 / 0.258489 (0.024924) | 0.322137 / 0.293841 (0.028296) | 0.032809 / 0.128546 (-0.095737) | 0.012559 / 0.075646 (-0.063087) | 0.060456 / 0.419271 (-0.358815) | 0.034564 / 0.043533 (-0.008968) | 0.267263 / 0.255139 (0.012124) | 0.292633 / 0.283200 (0.009434) | 0.019011 / 0.141683 (-0.122672) | 1.199820 / 1.452155 (-0.252335) | 1.251829 / 1.492716 (-0.240887) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097615 / 0.018006 (0.079609) | 0.313764 / 0.000490 (0.313274) | 0.000220 / 0.000200 (0.000020) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024365 / 0.037411 (-0.013046) | 0.089301 / 0.014526 (0.074775) | 0.092964 / 0.176557 (-0.083592) | 0.131724 / 0.737135 (-0.605412) | 0.094792 / 0.296338 (-0.201546) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305119 / 0.215209 (0.089910) | 2.932192 / 2.077655 (0.854537) | 1.610573 / 1.504120 (0.106453) | 1.487502 / 1.541195 (-0.053693) | 1.533300 / 1.468490 (0.064810) | 0.717223 / 4.584777 (-3.867554) | 0.964402 / 3.745712 (-2.781310) | 3.111398 / 5.269862 (-2.158464) | 1.957942 / 4.565676 (-2.607734) | 0.079160 / 0.424275 (-0.345116) | 0.005639 / 0.007607 (-0.001968) | 0.358971 / 0.226044 (0.132927) | 3.564401 / 2.268929 (1.295472) | 2.043079 / 55.444624 (-53.401546) | 1.742681 / 6.876477 (-5.133795) | 1.784758 / 2.142072 (-0.357314) | 0.798508 / 4.805227 (-4.006719) | 0.133905 / 6.500664 (-6.366759) | 0.043008 / 0.075469 (-0.032461) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031715 / 1.841788 (-0.810073) | 13.374312 / 8.074308 (5.300004) | 10.789098 / 10.191392 (0.597706) | 0.133663 / 0.680424 (-0.546761) | 0.016692 / 0.534201 (-0.517509) | 0.304716 / 0.579283 (-0.274567) | 0.129074 / 0.434364 (-0.305290) | 0.346440 / 0.540337 (-0.193897) | 0.464593 / 1.386936 (-0.922343) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#880a52cea337032d39e90e6f0dcc55198a75a285 \"CML watermark\")\n" ]
2024-08-26T05:09:35
2024-08-26T05:33:15
2024-08-26T05:27:09
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7125.diff", "html_url": "https://github.com/huggingface/datasets/pull/7125", "merged_at": "2024-08-26T05:27:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/7125.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7125" }
Fix wrong SHA in CI tests of HubDatasetModuleFactoryWithParquetExport.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7125/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7125/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7124
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7124/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7124/comments
https://api.github.com/repos/huggingface/datasets/issues/7124/events
https://github.com/huggingface/datasets/pull/7124
2,485,890,442
PR_kwDODunzps55YzWr
7,124
Test get_dataset_config_info with non-existing/gated/private dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7124). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005339 / 0.011353 (-0.006014) | 0.003640 / 0.011008 (-0.007368) | 0.064012 / 0.038508 (0.025504) | 0.030424 / 0.023109 (0.007314) | 0.239966 / 0.275898 (-0.035932) | 0.264361 / 0.323480 (-0.059119) | 0.004247 / 0.007986 (-0.003739) | 0.002847 / 0.004328 (-0.001481) | 0.049640 / 0.004250 (0.045390) | 0.044903 / 0.037052 (0.007851) | 0.250174 / 0.258489 (-0.008315) | 0.281423 / 0.293841 (-0.012418) | 0.029419 / 0.128546 (-0.099127) | 0.012221 / 0.075646 (-0.063426) | 0.205907 / 0.419271 (-0.213365) | 0.036654 / 0.043533 (-0.006878) | 0.245805 / 0.255139 (-0.009334) | 0.265029 / 0.283200 (-0.018170) | 0.018081 / 0.141683 (-0.123602) | 1.113831 / 1.452155 (-0.338324) | 1.156443 / 1.492716 (-0.336274) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.134389 / 0.018006 (0.116383) | 0.300637 / 0.000490 (0.300147) | 0.000240 / 0.000200 (0.000040) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019111 / 0.037411 (-0.018300) | 0.062585 / 0.014526 (0.048059) | 0.075909 / 0.176557 (-0.100647) | 0.121382 / 0.737135 (-0.615753) | 0.074980 / 0.296338 (-0.221359) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285062 / 0.215209 (0.069853) | 2.850130 / 2.077655 (0.772476) | 1.519877 / 1.504120 (0.015757) | 1.388711 / 1.541195 (-0.152484) | 1.397284 / 1.468490 (-0.071206) | 0.723100 / 4.584777 (-3.861677) | 2.393184 / 3.745712 (-1.352529) | 2.908418 / 5.269862 (-2.361443) | 1.871024 / 4.565676 (-2.694653) | 0.078230 / 0.424275 (-0.346045) | 0.005158 / 0.007607 (-0.002449) | 0.345622 / 0.226044 (0.119577) | 3.357611 / 2.268929 (1.088683) | 1.844492 / 55.444624 (-53.600132) | 1.584237 / 6.876477 (-5.292240) | 1.577158 / 2.142072 (-0.564915) | 0.789702 / 4.805227 (-4.015525) | 0.132045 / 6.500664 (-6.368619) | 0.042304 / 0.075469 (-0.033165) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977166 / 1.841788 (-0.864622) | 11.306118 / 8.074308 (3.231810) | 9.490778 / 10.191392 (-0.700614) | 0.143536 / 0.680424 (-0.536888) | 0.015304 / 0.534201 (-0.518897) | 0.313892 / 0.579283 (-0.265391) | 0.267009 / 0.434364 (-0.167355) | 0.345560 / 0.540337 (-0.194778) | 0.435649 / 1.386936 (-0.951287) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005700 / 0.011353 (-0.005653) | 0.003490 / 0.011008 (-0.007519) | 0.049990 / 0.038508 (0.011482) | 0.032070 / 0.023109 (0.008961) | 0.272622 / 0.275898 (-0.003276) | 0.298265 / 0.323480 (-0.025215) | 0.004379 / 0.007986 (-0.003606) | 0.002786 / 0.004328 (-0.001543) | 0.048271 / 0.004250 (0.044020) | 0.040102 / 0.037052 (0.003050) | 0.286433 / 0.258489 (0.027944) | 0.319306 / 0.293841 (0.025465) | 0.032872 / 0.128546 (-0.095675) | 0.011870 / 0.075646 (-0.063776) | 0.059886 / 0.419271 (-0.359385) | 0.034281 / 0.043533 (-0.009252) | 0.275588 / 0.255139 (0.020450) | 0.292951 / 0.283200 (0.009751) | 0.018095 / 0.141683 (-0.123588) | 1.130870 / 1.452155 (-0.321285) | 1.190761 / 1.492716 (-0.301955) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093346 / 0.018006 (0.075340) | 0.307506 / 0.000490 (0.307016) | 0.000214 / 0.000200 (0.000014) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022873 / 0.037411 (-0.014538) | 0.077070 / 0.014526 (0.062544) | 0.089152 / 0.176557 (-0.087404) | 0.130186 / 0.737135 (-0.606949) | 0.090244 / 0.296338 (-0.206095) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297950 / 0.215209 (0.082740) | 2.942360 / 2.077655 (0.864705) | 1.614324 / 1.504120 (0.110204) | 1.495795 / 1.541195 (-0.045400) | 1.506155 / 1.468490 (0.037665) | 0.730307 / 4.584777 (-3.854470) | 0.966312 / 3.745712 (-2.779400) | 2.928955 / 5.269862 (-2.340906) | 1.940049 / 4.565676 (-2.625627) | 0.079589 / 0.424275 (-0.344686) | 0.006004 / 0.007607 (-0.001604) | 0.356630 / 0.226044 (0.130585) | 3.516652 / 2.268929 (1.247724) | 1.963196 / 55.444624 (-53.481429) | 1.674489 / 6.876477 (-5.201988) | 1.677558 / 2.142072 (-0.464514) | 0.806447 / 4.805227 (-3.998780) | 0.133819 / 6.500664 (-6.366845) | 0.040762 / 0.075469 (-0.034707) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.038495 / 1.841788 (-0.803293) | 11.829186 / 8.074308 (3.754878) | 10.214158 / 10.191392 (0.022766) | 0.140590 / 0.680424 (-0.539834) | 0.014729 / 0.534201 (-0.519472) | 0.300557 / 0.579283 (-0.278726) | 0.122772 / 0.434364 (-0.311592) | 0.344618 / 0.540337 (-0.195720) | 0.460064 / 1.386936 (-0.926872) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#be5cff059a2a5b89d7a97bc04739c4919ab8089f \"CML watermark\")\n" ]
2024-08-26T04:53:59
2024-08-26T06:15:33
2024-08-26T06:09:42
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7124.diff", "html_url": "https://github.com/huggingface/datasets/pull/7124", "merged_at": "2024-08-26T06:09:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/7124.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7124" }
Test get_dataset_config_info with non-existing/gated/private dataset. Related to: - #7109 See also: - https://github.com/huggingface/dataset-viewer/pull/3037: https://github.com/huggingface/dataset-viewer/pull/3037/commits/bb1a7e00c53c242088597cab6572e4fd57797ecb
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7124/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7124/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7123
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7123/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7123/comments
https://api.github.com/repos/huggingface/datasets/issues/7123/events
https://github.com/huggingface/datasets/issues/7123
2,484,003,937
I_kwDODunzps6UDuRh
7,123
Make dataset viewer more flexible in displaying metadata alongside images
{ "avatar_url": "https://avatars.githubusercontent.com/u/38985481?v=4", "events_url": "https://api.github.com/users/egrace479/events{/privacy}", "followers_url": "https://api.github.com/users/egrace479/followers", "following_url": "https://api.github.com/users/egrace479/following{/other_user}", "gists_url": "https://api.github.com/users/egrace479/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/egrace479", "id": 38985481, "login": "egrace479", "node_id": "MDQ6VXNlcjM4OTg1NDgx", "organizations_url": "https://api.github.com/users/egrace479/orgs", "received_events_url": "https://api.github.com/users/egrace479/received_events", "repos_url": "https://api.github.com/users/egrace479/repos", "site_admin": false, "starred_url": "https://api.github.com/users/egrace479/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/egrace479/subscriptions", "type": "User", "url": "https://api.github.com/users/egrace479" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-23T22:56:01
2024-08-23T23:01:42
null
NONE
null
null
null
### Feature request To display images with their associated metadata in the dataset viewer, a `metadata.csv` file is required. In the case of a dataset with multiple subsets, this would require the CSVs to be contained in the same folder as the images since they all need to be named `metadata.csv`. The request is that this be made more flexible for datasets with multiple subsets to avoid the need to put a `metadata.csv` into each image directory where they are not as easily accessed. ### Motivation When creating datasets with multiple subsets I can't get the images to display alongside their associated metadata (it's usually one or the other that will show up). Since this requires a file specifically named `metadata.csv`, I then have to place that file within the image directory, which makes it much more difficult to access. Additionally, it still doesn't necessarily display the images alongside their metadata correctly (see, for instance, [this discussion](https://huggingface.co/datasets/imageomics/2018-NEON-beetles/discussions/8)). It was suggested I bring this discussion to GitHub on another dataset struggling with a similar issue ([discussion](https://huggingface.co/datasets/imageomics/fish-vista/discussions/4)). In that case, it's a mix of data subsets, where some just reference the image URLs, while others actually have the images uploaded. The ones with images uploaded are not displaying images, but renaming that file to just `metadata.csv` would diminish the clarity of the construction of the dataset itself (and I'm not entirely convinced it would solve the issue). ### Your contribution I can make a suggestion for one approach to address the issue: For instance, even if it could just end in `_metadata.csv` or `-metadata.csv`, that would be very helpful to allow for more flexibility of dataset structure without impacting clarity. I would think that the functionality on the backend looking for `metadata.csv` could reasonably be adapted to look for such an ending on a filename (maybe also check that it has a `file_name` column?). Presumably, requiring the `configs` in a setup like on [this dataset](https://huggingface.co/datasets/imageomics/rare-species/blob/main/README.md) could also help in figuring out how it should work? ``` configs: - config_name: <image subset> data_files: - <image-metadata>.csv - <path/to/images>/*.jpg ``` I'd also be happy to look at whatever solution is decided upon and contribute to the ideation. Thanks for your time and consideration! The dataset viewer really is fabulous when it works :)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7123/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7123/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7122
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7122/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7122/comments
https://api.github.com/repos/huggingface/datasets/issues/7122/events
https://github.com/huggingface/datasets/issues/7122
2,482,491,258
I_kwDODunzps6T9896
7,122
[interleave_dataset] sample batches from a single source at a time
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-23T07:21:15
2024-08-23T07:21:15
null
NONE
null
null
null
### Feature request interleave_dataset and [RandomlyCyclingMultiSourcesExamplesIterable](https://github.com/huggingface/datasets/blob/3813ce846e52824b38e53895810682f0a496a2e3/src/datasets/iterable_dataset.py#L816) enable us to sample data examples from different sources. But can we also sample batches in a similar manner (each batch only contains data from a single source)? ### Motivation Some recent research [[1](https://blog.salesforceairesearch.com/sfr-embedded-mistral/), [2](https://arxiv.org/pdf/2310.07554)] shows that source homogenous batching can be helpful for contrastive learning. Can we add a function called `RandomlyCyclingMultiSourcesBatchesIterable` to support this functionality? ### Your contribution I can contribute a PR. But I wonder what the best way is to test its correctness and robustness.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7122/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7122/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7121
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7121/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7121/comments
https://api.github.com/repos/huggingface/datasets/issues/7121/events
https://github.com/huggingface/datasets/pull/7121
2,480,978,483
PR_kwDODunzps55Iukl
7,121
Fix typed examples iterable state dict
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7121). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005273 / 0.011353 (-0.006079) | 0.003789 / 0.011008 (-0.007219) | 0.062811 / 0.038508 (0.024303) | 0.031055 / 0.023109 (0.007946) | 0.238663 / 0.275898 (-0.037235) | 0.269706 / 0.323480 (-0.053774) | 0.004105 / 0.007986 (-0.003881) | 0.002781 / 0.004328 (-0.001547) | 0.048800 / 0.004250 (0.044549) | 0.045759 / 0.037052 (0.008707) | 0.260467 / 0.258489 (0.001978) | 0.288800 / 0.293841 (-0.005041) | 0.029341 / 0.128546 (-0.099205) | 0.012413 / 0.075646 (-0.063233) | 0.203493 / 0.419271 (-0.215778) | 0.037270 / 0.043533 (-0.006263) | 0.246130 / 0.255139 (-0.009009) | 0.269046 / 0.283200 (-0.014154) | 0.017788 / 0.141683 (-0.123895) | 1.175537 / 1.452155 (-0.276617) | 1.197909 / 1.492716 (-0.294808) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.098258 / 0.018006 (0.080251) | 0.305283 / 0.000490 (0.304794) | 0.000216 / 0.000200 (0.000016) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019066 / 0.037411 (-0.018345) | 0.062723 / 0.014526 (0.048197) | 0.075827 / 0.176557 (-0.100730) | 0.121371 / 0.737135 (-0.615764) | 0.075167 / 0.296338 (-0.221171) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296650 / 0.215209 (0.081441) | 2.910593 / 2.077655 (0.832939) | 1.510798 / 1.504120 (0.006678) | 1.375461 / 1.541195 (-0.165733) | 1.386423 / 1.468490 (-0.082067) | 0.743818 / 4.584777 (-3.840959) | 2.437848 / 3.745712 (-1.307864) | 2.943661 / 5.269862 (-2.326201) | 1.888977 / 4.565676 (-2.676699) | 0.080126 / 0.424275 (-0.344149) | 0.005168 / 0.007607 (-0.002439) | 0.348699 / 0.226044 (0.122654) | 3.477686 / 2.268929 (1.208758) | 1.901282 / 55.444624 (-53.543343) | 1.574847 / 6.876477 (-5.301629) | 1.594359 / 2.142072 (-0.547714) | 0.793415 / 4.805227 (-4.011812) | 0.133982 / 6.500664 (-6.366682) | 0.042435 / 0.075469 (-0.033034) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963057 / 1.841788 (-0.878731) | 11.597217 / 8.074308 (3.522909) | 9.285172 / 10.191392 (-0.906220) | 0.130510 / 0.680424 (-0.549914) | 0.013964 / 0.534201 (-0.520237) | 0.299334 / 0.579283 (-0.279949) | 0.267775 / 0.434364 (-0.166589) | 0.336922 / 0.540337 (-0.203416) | 0.430493 / 1.386936 (-0.956443) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005701 / 0.011353 (-0.005652) | 0.003941 / 0.011008 (-0.007067) | 0.050204 / 0.038508 (0.011696) | 0.032275 / 0.023109 (0.009166) | 0.271076 / 0.275898 (-0.004822) | 0.295565 / 0.323480 (-0.027914) | 0.004393 / 0.007986 (-0.003592) | 0.002881 / 0.004328 (-0.001447) | 0.048032 / 0.004250 (0.043782) | 0.040430 / 0.037052 (0.003378) | 0.281631 / 0.258489 (0.023142) | 0.317964 / 0.293841 (0.024124) | 0.032318 / 0.128546 (-0.096228) | 0.012348 / 0.075646 (-0.063298) | 0.060336 / 0.419271 (-0.358936) | 0.034148 / 0.043533 (-0.009385) | 0.273803 / 0.255139 (0.018664) | 0.292068 / 0.283200 (0.008868) | 0.018693 / 0.141683 (-0.122990) | 1.155704 / 1.452155 (-0.296451) | 1.192245 / 1.492716 (-0.300472) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097588 / 0.018006 (0.079582) | 0.311760 / 0.000490 (0.311270) | 0.000232 / 0.000200 (0.000032) | 0.000055 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022825 / 0.037411 (-0.014586) | 0.077698 / 0.014526 (0.063172) | 0.088567 / 0.176557 (-0.087989) | 0.129689 / 0.737135 (-0.607446) | 0.090626 / 0.296338 (-0.205712) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299791 / 0.215209 (0.084582) | 2.978558 / 2.077655 (0.900903) | 1.594095 / 1.504120 (0.089975) | 1.468476 / 1.541195 (-0.072719) | 1.482880 / 1.468490 (0.014390) | 0.717553 / 4.584777 (-3.867224) | 0.977501 / 3.745712 (-2.768211) | 2.954289 / 5.269862 (-2.315572) | 1.895473 / 4.565676 (-2.670203) | 0.078452 / 0.424275 (-0.345824) | 0.005508 / 0.007607 (-0.002099) | 0.350882 / 0.226044 (0.124837) | 3.480878 / 2.268929 (1.211949) | 1.965240 / 55.444624 (-53.479385) | 1.672448 / 6.876477 (-5.204029) | 1.674319 / 2.142072 (-0.467753) | 0.789049 / 4.805227 (-4.016178) | 0.132715 / 6.500664 (-6.367949) | 0.041081 / 0.075469 (-0.034388) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.022953 / 1.841788 (-0.818834) | 12.123349 / 8.074308 (4.049041) | 10.336115 / 10.191392 (0.144723) | 0.142233 / 0.680424 (-0.538191) | 0.015416 / 0.534201 (-0.518785) | 0.303088 / 0.579283 (-0.276195) | 0.124942 / 0.434364 (-0.309422) | 0.338454 / 0.540337 (-0.201883) | 0.460039 / 1.386936 (-0.926897) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3813ce846e52824b38e53895810682f0a496a2e3 \"CML watermark\")\n" ]
2024-08-22T14:45:03
2024-08-22T14:54:56
2024-08-22T14:49:06
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7121.diff", "html_url": "https://github.com/huggingface/datasets/pull/7121", "merged_at": "2024-08-22T14:49:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/7121.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7121" }
fix https://github.com/huggingface/datasets/issues/7085 as noted by @VeryLazyBoy and reported by @AjayP13
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7121/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7121/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7120
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7120/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7120/comments
https://api.github.com/repos/huggingface/datasets/issues/7120/events
https://github.com/huggingface/datasets/pull/7120
2,480,674,237
PR_kwDODunzps55HrBy
7,120
don't mention the script if trust_remote_code=False
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7120). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Note that in this case, we could even expect this kind of message:\r\n\r\n```\r\nDataFilesNotFoundError: Unable to find 'hf://datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes@12b0313ba4c3189ee5a24cb76200959e9bf7492e/data.csv'\r\n```\r\n\r\nWe generally return `DataFilesNotFoundError` for this case (data files passed as an argument), not sure why it does not occur with this dataset.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005484 / 0.011353 (-0.005869) | 0.003932 / 0.011008 (-0.007077) | 0.063177 / 0.038508 (0.024669) | 0.031311 / 0.023109 (0.008202) | 0.254881 / 0.275898 (-0.021017) | 0.273818 / 0.323480 (-0.049662) | 0.003312 / 0.007986 (-0.004674) | 0.003251 / 0.004328 (-0.001078) | 0.049307 / 0.004250 (0.045057) | 0.046189 / 0.037052 (0.009137) | 0.268182 / 0.258489 (0.009693) | 0.303659 / 0.293841 (0.009818) | 0.029312 / 0.128546 (-0.099234) | 0.013649 / 0.075646 (-0.061997) | 0.204240 / 0.419271 (-0.215032) | 0.036607 / 0.043533 (-0.006926) | 0.252232 / 0.255139 (-0.002907) | 0.271960 / 0.283200 (-0.011239) | 0.018043 / 0.141683 (-0.123640) | 1.148601 / 1.452155 (-0.303553) | 1.212313 / 1.492716 (-0.280403) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096354 / 0.018006 (0.078348) | 0.302575 / 0.000490 (0.302085) | 0.000246 / 0.000200 (0.000046) | 0.000055 / 0.000054 (0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019023 / 0.037411 (-0.018389) | 0.064821 / 0.014526 (0.050295) | 0.077046 / 0.176557 (-0.099510) | 0.122896 / 0.737135 (-0.614239) | 0.078300 / 0.296338 (-0.218038) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283681 / 0.215209 (0.068472) | 2.801473 / 2.077655 (0.723818) | 1.505611 / 1.504120 (0.001491) | 1.385832 / 1.541195 (-0.155363) | 1.430284 / 1.468490 (-0.038206) | 0.752041 / 4.584777 (-3.832736) | 2.406138 / 3.745712 (-1.339574) | 2.941370 / 5.269862 (-2.328492) | 1.887681 / 4.565676 (-2.677996) | 0.078693 / 0.424275 (-0.345582) | 0.005266 / 0.007607 (-0.002341) | 0.336484 / 0.226044 (0.110440) | 3.372262 / 2.268929 (1.103334) | 1.861541 / 55.444624 (-53.583084) | 1.572782 / 6.876477 (-5.303694) | 1.592387 / 2.142072 (-0.549685) | 0.796557 / 4.805227 (-4.008670) | 0.134923 / 6.500664 (-6.365741) | 0.043007 / 0.075469 (-0.032462) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982690 / 1.841788 (-0.859097) | 11.700213 / 8.074308 (3.625905) | 9.122642 / 10.191392 (-1.068750) | 0.141430 / 0.680424 (-0.538994) | 0.014971 / 0.534201 (-0.519230) | 0.300938 / 0.579283 (-0.278345) | 0.268315 / 0.434364 (-0.166049) | 0.339891 / 0.540337 (-0.200447) | 0.428302 / 1.386936 (-0.958634) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005732 / 0.011353 (-0.005621) | 0.003905 / 0.011008 (-0.007103) | 0.049900 / 0.038508 (0.011392) | 0.032255 / 0.023109 (0.009145) | 0.267929 / 0.275898 (-0.007969) | 0.295595 / 0.323480 (-0.027885) | 0.004437 / 0.007986 (-0.003549) | 0.003008 / 0.004328 (-0.001321) | 0.048357 / 0.004250 (0.044107) | 0.040118 / 0.037052 (0.003066) | 0.282859 / 0.258489 (0.024370) | 0.319243 / 0.293841 (0.025402) | 0.032793 / 0.128546 (-0.095754) | 0.012091 / 0.075646 (-0.063555) | 0.060082 / 0.419271 (-0.359189) | 0.034426 / 0.043533 (-0.009107) | 0.273668 / 0.255139 (0.018529) | 0.292110 / 0.283200 (0.008910) | 0.019002 / 0.141683 (-0.122680) | 1.165850 / 1.452155 (-0.286304) | 1.209195 / 1.492716 (-0.283521) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099267 / 0.018006 (0.081261) | 0.316746 / 0.000490 (0.316256) | 0.000267 / 0.000200 (0.000067) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023117 / 0.037411 (-0.014294) | 0.076691 / 0.014526 (0.062165) | 0.092190 / 0.176557 (-0.084367) | 0.130620 / 0.737135 (-0.606515) | 0.091068 / 0.296338 (-0.205271) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296419 / 0.215209 (0.081210) | 2.933964 / 2.077655 (0.856309) | 1.595015 / 1.504120 (0.090895) | 1.467610 / 1.541195 (-0.073585) | 1.487386 / 1.468490 (0.018896) | 0.730927 / 4.584777 (-3.853850) | 0.971276 / 3.745712 (-2.774436) | 2.969735 / 5.269862 (-2.300127) | 1.916126 / 4.565676 (-2.649550) | 0.078863 / 0.424275 (-0.345412) | 0.005506 / 0.007607 (-0.002101) | 0.345191 / 0.226044 (0.119147) | 3.407481 / 2.268929 (1.138553) | 1.955966 / 55.444624 (-53.488659) | 1.677365 / 6.876477 (-5.199112) | 1.716052 / 2.142072 (-0.426020) | 0.797208 / 4.805227 (-4.008020) | 0.132853 / 6.500664 (-6.367811) | 0.041691 / 0.075469 (-0.033778) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.042331 / 1.841788 (-0.799456) | 12.186080 / 8.074308 (4.111772) | 10.288961 / 10.191392 (0.097569) | 0.141897 / 0.680424 (-0.538526) | 0.015321 / 0.534201 (-0.518880) | 0.308302 / 0.579283 (-0.270981) | 0.123292 / 0.434364 (-0.311072) | 0.348515 / 0.540337 (-0.191823) | 0.473045 / 1.386936 (-0.913891) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#cedffa52879ebc5e4df43f0bcf8660ee7229f0dc \"CML watermark\")\n" ]
2024-08-22T12:32:32
2024-08-22T14:39:52
2024-08-22T14:33:52
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7120.diff", "html_url": "https://github.com/huggingface/datasets/pull/7120", "merged_at": "2024-08-22T14:33:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/7120.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7120" }
See https://huggingface.co/datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes for example. The error is: ``` FileNotFoundError: Couldn't find a dataset script at /src/services/worker/Omega02gdfdd/bioclip-demo-zero-shot-mistakes/bioclip-demo-zero-shot-mistakes.py or any data file in the same directory. Couldn't find 'Omega02gdfdd/bioclip-demo-zero-shot-mistakes' on the Hugging Face Hub either: FileNotFoundError: Unable to find 'hf://datasets/Omega02gdfdd/bioclip-demo-zero-shot-mistakes@12b0313ba4c3189ee5a24cb76200959e9bf7492e/data.csv' with any supported extension ['.csv', '.tsv', '.json', '.jsonl', '.parquet', '.geoparquet', '.gpq', '.arrow', '.txt', '.tar', '.blp', '.bmp', '.dib', '.bufr', '.cur', '.pcx', '.dcx', '.dds', '.ps', '.eps', '.fit', '.fits', '.fli', '.flc', '.ftc', '.ftu', '.gbr', '.gif', '.grib', '.h5', '.hdf', '.png', '.apng', '.jp2', '.j2k', '.jpc', '.jpf', '.jpx', '.j2c', '.icns', '.ico', '.im', '.iim', '.tif', '.tiff', '.jfif', '.jpe', '.jpg', '.jpeg', '.mpg', '.mpeg', '.msp', '.pcd', '.pxr', '.pbm', '.pgm', '.ppm', '.pnm', '.psd', '.bw', '.rgb', '.rgba', '.sgi', '.ras', '.tga', '.icb', '.vda', '.vst', '.webp', '.wmf', '.emf', '.xbm', '.xpm', '.BLP', '.BMP', '.DIB', '.BUFR', '.CUR', '.PCX', '.DCX', '.DDS', '.PS', '.EPS', '.FIT', '.FITS', '.FLI', '.FLC', '.FTC', '.FTU', '.GBR', '.GIF', '.GRIB', '.H5', '.HDF', '.PNG', '.APNG', '.JP2', '.J2K', '.JPC', '.JPF', '.JPX', '.J2C', '.ICNS', '.ICO', '.IM', '.IIM', '.TIF', '.TIFF', '.JFIF', '.JPE', '.JPG', '.JPEG', '.MPG', '.MPEG', '.MSP', '.PCD', '.PXR', '.PBM', '.PGM', '.PPM', '.PNM', '.PSD', '.BW', '.RGB', '.RGBA', '.SGI', '.RAS', '.TGA', '.ICB', '.VDA', '.VST', '.WEBP', '.WMF', '.EMF', '.XBM', '.XPM', '.aiff', '.au', '.avr', '.caf', '.flac', '.htk', '.svx', '.mat4', '.mat5', '.mpc2k', '.ogg', '.paf', '.pvf', '.raw', '.rf64', '.sd2', '.sds', '.ircam', '.voc', '.w64', '.wav', '.nist', '.wavex', '.wve', '.xi', '.mp3', '.opus', '.AIFF', '.AU', '.AVR', '.CAF', '.FLAC', '.HTK', '.SVX', '.MAT4', '.MAT5', '.MPC2K', '.OGG', '.PAF', '.PVF', '.RAW', '.RF64', '.SD2', '.SDS', '.IRCAM', '.VOC', '.W64', '.WAV', '.NIST', '.WAVEX', '.WVE', '.XI', '.MP3', '.OPUS', '.zip'] ``` The issue there is that a `configs` parameter is set in the README, while the mentioned data file (`data.csv`) does not exist.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7120/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7120/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7119
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7119/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7119/comments
https://api.github.com/repos/huggingface/datasets/issues/7119/events
https://github.com/huggingface/datasets/pull/7119
2,477,766,493
PR_kwDODunzps54-GjY
7,119
Install transformers with numpy-2 CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7119). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005156 / 0.011353 (-0.006197) | 0.003365 / 0.011008 (-0.007643) | 0.063451 / 0.038508 (0.024943) | 0.029510 / 0.023109 (0.006401) | 0.244825 / 0.275898 (-0.031074) | 0.265157 / 0.323480 (-0.058323) | 0.004239 / 0.007986 (-0.003747) | 0.002732 / 0.004328 (-0.001596) | 0.050412 / 0.004250 (0.046162) | 0.043608 / 0.037052 (0.006556) | 0.256635 / 0.258489 (-0.001854) | 0.277472 / 0.293841 (-0.016369) | 0.029329 / 0.128546 (-0.099217) | 0.012318 / 0.075646 (-0.063329) | 0.204751 / 0.419271 (-0.214520) | 0.036468 / 0.043533 (-0.007065) | 0.246773 / 0.255139 (-0.008366) | 0.263932 / 0.283200 (-0.019268) | 0.017053 / 0.141683 (-0.124629) | 1.173249 / 1.452155 (-0.278905) | 1.234186 / 1.492716 (-0.258531) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092398 / 0.018006 (0.074391) | 0.309473 / 0.000490 (0.308983) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018553 / 0.037411 (-0.018858) | 0.062546 / 0.014526 (0.048020) | 0.073943 / 0.176557 (-0.102613) | 0.120498 / 0.737135 (-0.616638) | 0.075185 / 0.296338 (-0.221153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296899 / 0.215209 (0.081690) | 2.919088 / 2.077655 (0.841433) | 1.533146 / 1.504120 (0.029026) | 1.395441 / 1.541195 (-0.145754) | 1.399089 / 1.468490 (-0.069401) | 0.742750 / 4.584777 (-3.842027) | 2.390317 / 3.745712 (-1.355395) | 2.883166 / 5.269862 (-2.386695) | 1.854003 / 4.565676 (-2.711674) | 0.077140 / 0.424275 (-0.347136) | 0.005176 / 0.007607 (-0.002432) | 0.349391 / 0.226044 (0.123347) | 3.466043 / 2.268929 (1.197114) | 1.870619 / 55.444624 (-53.574005) | 1.559173 / 6.876477 (-5.317303) | 1.605480 / 2.142072 (-0.536592) | 0.786753 / 4.805227 (-4.018474) | 0.134869 / 6.500664 (-6.365795) | 0.042176 / 0.075469 (-0.033293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954256 / 1.841788 (-0.887532) | 11.194758 / 8.074308 (3.120449) | 9.129670 / 10.191392 (-1.061722) | 0.138318 / 0.680424 (-0.542106) | 0.014299 / 0.534201 (-0.519902) | 0.303704 / 0.579283 (-0.275579) | 0.262513 / 0.434364 (-0.171851) | 0.346539 / 0.540337 (-0.193798) | 0.429524 / 1.386936 (-0.957412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005692 / 0.011353 (-0.005661) | 0.003423 / 0.011008 (-0.007586) | 0.050618 / 0.038508 (0.012110) | 0.031053 / 0.023109 (0.007944) | 0.275901 / 0.275898 (0.000003) | 0.294404 / 0.323480 (-0.029076) | 0.004303 / 0.007986 (-0.003682) | 0.002728 / 0.004328 (-0.001600) | 0.049757 / 0.004250 (0.045507) | 0.039997 / 0.037052 (0.002945) | 0.287291 / 0.258489 (0.028802) | 0.319186 / 0.293841 (0.025345) | 0.032558 / 0.128546 (-0.095988) | 0.012088 / 0.075646 (-0.063558) | 0.060746 / 0.419271 (-0.358525) | 0.034046 / 0.043533 (-0.009486) | 0.276170 / 0.255139 (0.021031) | 0.293673 / 0.283200 (0.010474) | 0.018018 / 0.141683 (-0.123665) | 1.158453 / 1.452155 (-0.293701) | 1.198599 / 1.492716 (-0.294118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093134 / 0.018006 (0.075127) | 0.304511 / 0.000490 (0.304021) | 0.000216 / 0.000200 (0.000016) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022991 / 0.037411 (-0.014421) | 0.077548 / 0.014526 (0.063022) | 0.087887 / 0.176557 (-0.088670) | 0.131786 / 0.737135 (-0.605349) | 0.088747 / 0.296338 (-0.207591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302811 / 0.215209 (0.087602) | 2.959276 / 2.077655 (0.881621) | 1.591348 / 1.504120 (0.087229) | 1.464731 / 1.541195 (-0.076464) | 1.474112 / 1.468490 (0.005622) | 0.741573 / 4.584777 (-3.843204) | 0.959229 / 3.745712 (-2.786483) | 2.895750 / 5.269862 (-2.374111) | 1.896051 / 4.565676 (-2.669625) | 0.079012 / 0.424275 (-0.345264) | 0.005494 / 0.007607 (-0.002113) | 0.355699 / 0.226044 (0.129655) | 3.524833 / 2.268929 (1.255905) | 1.972358 / 55.444624 (-53.472266) | 1.667249 / 6.876477 (-5.209228) | 1.658635 / 2.142072 (-0.483438) | 0.813184 / 4.805227 (-3.992044) | 0.134226 / 6.500664 (-6.366438) | 0.041087 / 0.075469 (-0.034382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.038963 / 1.841788 (-0.802824) | 11.785835 / 8.074308 (3.711526) | 10.397027 / 10.191392 (0.205635) | 0.141748 / 0.680424 (-0.538676) | 0.014738 / 0.534201 (-0.519463) | 0.300056 / 0.579283 (-0.279227) | 0.127442 / 0.434364 (-0.306922) | 0.345013 / 0.540337 (-0.195324) | 0.449598 / 1.386936 (-0.937338) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#70bac27ef861b2b11f581a291a6b76adeee24f98 \"CML watermark\")\n" ]
2024-08-21T11:14:59
2024-08-21T11:42:35
2024-08-21T11:36:50
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7119.diff", "html_url": "https://github.com/huggingface/datasets/pull/7119", "merged_at": "2024-08-21T11:36:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/7119.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7119" }
Install transformers with numpy-2 CI. Note that transformers no longer pins numpy < 2 since transformers-4.43.0: - https://github.com/huggingface/transformers/pull/32018 - https://github.com/huggingface/transformers/releases/tag/v4.43.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7119/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7119/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7118
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7118/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7118/comments
https://api.github.com/repos/huggingface/datasets/issues/7118/events
https://github.com/huggingface/datasets/pull/7118
2,477,676,893
PR_kwDODunzps549yu4
7,118
Allow numpy-2.1 and test it without audio extra
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7118). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005674 / 0.011353 (-0.005679) | 0.003919 / 0.011008 (-0.007089) | 0.062665 / 0.038508 (0.024157) | 0.031750 / 0.023109 (0.008641) | 0.234809 / 0.275898 (-0.041089) | 0.264454 / 0.323480 (-0.059026) | 0.004265 / 0.007986 (-0.003720) | 0.002757 / 0.004328 (-0.001572) | 0.048921 / 0.004250 (0.044671) | 0.050765 / 0.037052 (0.013713) | 0.246185 / 0.258489 (-0.012305) | 0.287011 / 0.293841 (-0.006829) | 0.030754 / 0.128546 (-0.097792) | 0.012368 / 0.075646 (-0.063278) | 0.203841 / 0.419271 (-0.215431) | 0.037579 / 0.043533 (-0.005953) | 0.238165 / 0.255139 (-0.016974) | 0.264375 / 0.283200 (-0.018824) | 0.018663 / 0.141683 (-0.123020) | 1.143897 / 1.452155 (-0.308258) | 1.218130 / 1.492716 (-0.274586) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102112 / 0.018006 (0.084106) | 0.303214 / 0.000490 (0.302724) | 0.000232 / 0.000200 (0.000032) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019401 / 0.037411 (-0.018010) | 0.062444 / 0.014526 (0.047919) | 0.076497 / 0.176557 (-0.100060) | 0.122309 / 0.737135 (-0.614826) | 0.077178 / 0.296338 (-0.219160) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282931 / 0.215209 (0.067722) | 2.783587 / 2.077655 (0.705932) | 1.464076 / 1.504120 (-0.040044) | 1.333912 / 1.541195 (-0.207282) | 1.367391 / 1.468490 (-0.101099) | 0.736702 / 4.584777 (-3.848075) | 2.413625 / 3.745712 (-1.332087) | 2.949549 / 5.269862 (-2.320313) | 1.910308 / 4.565676 (-2.655369) | 0.077419 / 0.424275 (-0.346856) | 0.005159 / 0.007607 (-0.002448) | 0.345595 / 0.226044 (0.119551) | 3.433205 / 2.268929 (1.164277) | 1.844443 / 55.444624 (-53.600181) | 1.527475 / 6.876477 (-5.349002) | 1.544315 / 2.142072 (-0.597758) | 0.803942 / 4.805227 (-4.001285) | 0.134131 / 6.500664 (-6.366533) | 0.042638 / 0.075469 (-0.032831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975158 / 1.841788 (-0.866629) | 11.726187 / 8.074308 (3.651879) | 9.403347 / 10.191392 (-0.788045) | 0.131583 / 0.680424 (-0.548840) | 0.014358 / 0.534201 (-0.519843) | 0.301360 / 0.579283 (-0.277923) | 0.266529 / 0.434364 (-0.167835) | 0.341669 / 0.540337 (-0.198668) | 0.425751 / 1.386936 (-0.961186) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005911 / 0.011353 (-0.005442) | 0.004093 / 0.011008 (-0.006915) | 0.049936 / 0.038508 (0.011428) | 0.031828 / 0.023109 (0.008719) | 0.273874 / 0.275898 (-0.002025) | 0.296871 / 0.323480 (-0.026609) | 0.004470 / 0.007986 (-0.003516) | 0.002902 / 0.004328 (-0.001426) | 0.048848 / 0.004250 (0.044597) | 0.042320 / 0.037052 (0.005268) | 0.287957 / 0.258489 (0.029468) | 0.321033 / 0.293841 (0.027192) | 0.032996 / 0.128546 (-0.095550) | 0.012244 / 0.075646 (-0.063403) | 0.060493 / 0.419271 (-0.358779) | 0.034630 / 0.043533 (-0.008902) | 0.277254 / 0.255139 (0.022115) | 0.292822 / 0.283200 (0.009623) | 0.017966 / 0.141683 (-0.123717) | 1.167432 / 1.452155 (-0.284723) | 1.231837 / 1.492716 (-0.260880) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099970 / 0.018006 (0.081964) | 0.313240 / 0.000490 (0.312750) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022928 / 0.037411 (-0.014483) | 0.077058 / 0.014526 (0.062532) | 0.090147 / 0.176557 (-0.086409) | 0.129416 / 0.737135 (-0.607720) | 0.091021 / 0.296338 (-0.205318) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300697 / 0.215209 (0.085488) | 2.944649 / 2.077655 (0.866995) | 1.609106 / 1.504120 (0.104986) | 1.483762 / 1.541195 (-0.057433) | 1.519433 / 1.468490 (0.050943) | 0.714129 / 4.584777 (-3.870648) | 0.991848 / 3.745712 (-2.753864) | 2.966340 / 5.269862 (-2.303521) | 1.905427 / 4.565676 (-2.660249) | 0.079041 / 0.424275 (-0.345234) | 0.005671 / 0.007607 (-0.001936) | 0.356037 / 0.226044 (0.129993) | 3.504599 / 2.268929 (1.235670) | 1.979207 / 55.444624 (-53.465417) | 1.695030 / 6.876477 (-5.181447) | 1.703978 / 2.142072 (-0.438095) | 0.800871 / 4.805227 (-4.004357) | 0.134414 / 6.500664 (-6.366250) | 0.041743 / 0.075469 (-0.033726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029879 / 1.841788 (-0.811909) | 12.132252 / 8.074308 (4.057944) | 10.596576 / 10.191392 (0.405184) | 0.132237 / 0.680424 (-0.548187) | 0.016239 / 0.534201 (-0.517962) | 0.301831 / 0.579283 (-0.277452) | 0.127966 / 0.434364 (-0.306398) | 0.341081 / 0.540337 (-0.199256) | 0.448996 / 1.386936 (-0.937940) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a0fa48a68c3502edfa50273b881f909e4e6e70c \"CML watermark\")\n" ]
2024-08-21T10:29:35
2024-08-21T11:05:03
2024-08-21T10:58:15
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7118.diff", "html_url": "https://github.com/huggingface/datasets/pull/7118", "merged_at": "2024-08-21T10:58:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7118.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7118" }
Allow numpy-2.1 and test it without audio extra. This PR reverts: - #7114 Note that audio extra tests can be included again with numpy-2.1 once next numba-0.61.0 version is released.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7118/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7118/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7117
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7117/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7117/comments
https://api.github.com/repos/huggingface/datasets/issues/7117/events
https://github.com/huggingface/datasets/issues/7117
2,476,555,659
I_kwDODunzps6TnT2L
7,117
Audio dataset load everything in RAM and is very slow
{ "avatar_url": "https://avatars.githubusercontent.com/u/64205064?v=4", "events_url": "https://api.github.com/users/Jourdelune/events{/privacy}", "followers_url": "https://api.github.com/users/Jourdelune/followers", "following_url": "https://api.github.com/users/Jourdelune/following{/other_user}", "gists_url": "https://api.github.com/users/Jourdelune/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Jourdelune", "id": 64205064, "login": "Jourdelune", "node_id": "MDQ6VXNlcjY0MjA1MDY0", "organizations_url": "https://api.github.com/users/Jourdelune/orgs", "received_events_url": "https://api.github.com/users/Jourdelune/received_events", "repos_url": "https://api.github.com/users/Jourdelune/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Jourdelune/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Jourdelune/subscriptions", "type": "User", "url": "https://api.github.com/users/Jourdelune" }
[]
open
false
null
[]
null
[ "Hi ! I think the issue comes from the fact that you return `row` entirely, and therefore the dataset has to re-encode the audio data in `row`.\r\n\r\nCan you try this instead ?\r\n\r\n```python\r\n# map the dataset\r\ndef transcribe_audio(row):\r\n audio = row[\"audio\"] # get the audio but do nothing with it\r\n return {\"transcribed\": True}\r\n```\r\n\r\nPS: no need to iter on the dataset to trigger the `map` function on a `Dataset` - `map` runs directly when it's called (contrary to `IterableDataset` taht you can get when streaming, which are lazy)", "No, that doesn't change anything, I manage to solve this problem by setting with_indices=True in the map function and directly retrieving the audio corresponding to the index.\r\n```py\r\nfrom datasets import load_dataset\r\nimport time\r\n\r\nds = load_dataset(\"WaveGenAI/audios2\", split=\"train[:50]\")\r\n\r\n\r\n# map the dataset\r\ndef transcribe_audio(row, idx):\r\n audio = ds[idx][\"audio\"] # get the audio but do nothing with it\r\n row[\"transcribed\"] = True\r\n return row\r\n\r\n\r\ntime1 = time.time()\r\nds = ds.map(\r\n transcribe_audio, with_indices=True\r\n) # set low writer_batch_size to avoid memory issues\r\n\r\nfor row in ds:\r\n pass # do nothing, just iterate to trigger the map function\r\n\r\nprint(f\"Time taken: {time.time() - time1:.2f} seconds\")\r\n```", "Hmm maybe accessing `row[\"audio\"]` makes `map()` reencode what's inside `row[\"audio\"]` in case there are in-place modifications" ]
2024-08-20T21:18:12
2024-08-26T13:11:55
null
NONE
null
null
null
Hello, I'm working with an audio dataset. I want to transcribe the audio that the dataset contain, and for that I use whisper. My issue is that the dataset load everything in the RAM when I map the dataset, obviously, when RAM usage is too high, the program crashes. To fix this issue, I'm using writer_batch_size that I set to 10, but in this case, the mapping of the dataset is extremely slow. To illustrate this, on 50 examples, with `writer_batch_size` set to 10, it takes 123.24 seconds to process the dataset, but without `writer_batch_size` set to 10, it takes about ten seconds to process the dataset, but then the process remains blocked (I assume that it is writing the dataset and therefore suffers from the same problem as `writer_batch_size`) ### Steps to reproduce the bug Hug ram usage but fast (but actually slow when saving the dataset): ```py from datasets import load_dataset import time ds = load_dataset("WaveGenAI/audios2", split="train[:50]") # map the dataset def transcribe_audio(row): audio = row["audio"] # get the audio but do nothing with it row["transcribed"] = True return row time1 = time.time() ds = ds.map( transcribe_audio ) for row in ds: pass # do nothing, just iterate to trigger the map function print(f"Time taken: {time.time() - time1:.2f} seconds") ``` Low ram usage but very very slow: ```py from datasets import load_dataset import time ds = load_dataset("WaveGenAI/audios2", split="train[:50]") # map the dataset def transcribe_audio(row): audio = row["audio"] # get the audio but do nothing with it row["transcribed"] = True return row time1 = time.time() ds = ds.map( transcribe_audio, writer_batch_size=10 ) # set low writer_batch_size to avoid memory issues for row in ds: pass # do nothing, just iterate to trigger the map function print(f"Time taken: {time.time() - time1:.2f} seconds") ``` ### Expected behavior I think the processing should be much faster, on only 50 audio examples, the mapping takes several minutes while nothing is done (just loading the audio). ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.10.5-arch1-1-x86_64-with-glibc2.40 - Python version: 3.10.4 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 1.5.3 - `fsspec` version: 2024.6.1 # Extra The dataset has been generated by using audio folder, so I don't think anything specific in my code is causing this problem. ```py import argparse from datasets import load_dataset parser = argparse.ArgumentParser() parser.add_argument("--folder", help="folder path", default="/media/works/test/") args = parser.parse_args() dataset = load_dataset("audiofolder", data_dir=args.folder) # push the dataset to hub dataset.push_to_hub("WaveGenAI/audios") ``` Also, it's the combination of `audio = row["audio"]` and `row["transcribed"] = True` which causes problems, `row["transcribed"] = True `alone does nothing and `audio = row["audio"]` alone sometimes causes problems, sometimes not.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7117/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7117/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7116
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7116/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7116/comments
https://api.github.com/repos/huggingface/datasets/issues/7116/events
https://github.com/huggingface/datasets/issues/7116
2,475,522,721
I_kwDODunzps6TjXqh
7,116
datasets cannot handle nested json if features is given.
{ "avatar_url": "https://avatars.githubusercontent.com/u/38550511?v=4", "events_url": "https://api.github.com/users/ljw20180420/events{/privacy}", "followers_url": "https://api.github.com/users/ljw20180420/followers", "following_url": "https://api.github.com/users/ljw20180420/following{/other_user}", "gists_url": "https://api.github.com/users/ljw20180420/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ljw20180420", "id": 38550511, "login": "ljw20180420", "node_id": "MDQ6VXNlcjM4NTUwNTEx", "organizations_url": "https://api.github.com/users/ljw20180420/orgs", "received_events_url": "https://api.github.com/users/ljw20180420/received_events", "repos_url": "https://api.github.com/users/ljw20180420/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ljw20180420/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ljw20180420/subscriptions", "type": "User", "url": "https://api.github.com/users/ljw20180420" }
[]
closed
false
null
[]
null
[ "Hi ! `Sequence` has a weird behavior for dictionaries (from tensorflow-datasets), use a regular list instead:\r\n\r\n```python\r\nds = datasets.load_dataset('json', data_files=\"./temp.json\", features=datasets.Features({\r\n 'ref1': datasets.Value('string'),\r\n 'ref2': datasets.Value('string'),\r\n 'cuts': [{\r\n \"cut1\": datasets.Value(\"uint16\"),\r\n \"cut2\": datasets.Value(\"uint16\")\r\n }]\r\n}))\r\n```", "> Hi ! `Sequence` has a weird behavior for dictionaries (from tensorflow-datasets), use a regular list instead:\r\n> \r\n> ```python\r\n> ds = datasets.load_dataset('json', data_files=\"./temp.json\", features=datasets.Features({\r\n> 'ref1': datasets.Value('string'),\r\n> 'ref2': datasets.Value('string'),\r\n> 'cuts': [{\r\n> \"cut1\": datasets.Value(\"uint16\"),\r\n> \"cut2\": datasets.Value(\"uint16\")\r\n> }]\r\n> }))\r\n> ```\r\nThank you!\r\n", "It works." ]
2024-08-20T12:27:49
2024-09-03T10:18:23
2024-09-03T10:18:07
NONE
null
null
null
### Describe the bug I have a json named temp.json. ```json {"ref1": "ABC", "ref2": "DEF", "cuts":[{"cut1": 3, "cut2": 5}]} ``` I want to load it. ```python ds = datasets.load_dataset('json', data_files="./temp.json", features=datasets.Features({ 'ref1': datasets.Value('string'), 'ref2': datasets.Value('string'), 'cuts': datasets.Sequence({ "cut1": datasets.Value("uint16"), "cut2": datasets.Value("uint16") }) })) ``` The above code does not work. However, I can load it without giving features. ```python ds = datasets.load_dataset('json', data_files="./temp.json") ``` Is it possible to load integers as uint16 to save some memory? ### Steps to reproduce the bug As in the bug description. ### Expected behavior The data are loaded and integers are uint16. ### Environment info Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.21.0 - Platform: Linux-5.15.0-118-generic-x86_64-with-glibc2.35 - Python version: 3.11.9 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7116/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7116/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7115
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7115/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7115/comments
https://api.github.com/repos/huggingface/datasets/issues/7115/events
https://github.com/huggingface/datasets/issues/7115
2,475,363,142
I_kwDODunzps6TiwtG
7,115
module 'pyarrow.lib' has no attribute 'ListViewType'
{ "avatar_url": "https://avatars.githubusercontent.com/u/175128880?v=4", "events_url": "https://api.github.com/users/neurafusionai/events{/privacy}", "followers_url": "https://api.github.com/users/neurafusionai/followers", "following_url": "https://api.github.com/users/neurafusionai/following{/other_user}", "gists_url": "https://api.github.com/users/neurafusionai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/neurafusionai", "id": 175128880, "login": "neurafusionai", "node_id": "U_kgDOCnBBMA", "organizations_url": "https://api.github.com/users/neurafusionai/orgs", "received_events_url": "https://api.github.com/users/neurafusionai/received_events", "repos_url": "https://api.github.com/users/neurafusionai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/neurafusionai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neurafusionai/subscriptions", "type": "User", "url": "https://api.github.com/users/neurafusionai" }
[]
open
false
null
[]
null
[ "https://github.com/neurafusionai/Hugging_Face/blob/main/meta_opt_350m_customer_support_lora_v1.ipynb\r\n\r\ncouldnt train because of GPU\r\nI didnt pip install datasets -U\r\nbut looks like restarting worked" ]
2024-08-20T11:05:44
2024-08-20T12:06:20
null
NONE
null
null
null
### Describe the bug Code: `!pipuninstall -y pyarrow !pip install --no-cache-dir pyarrow !pip uninstall -y pyarrow !pip install pyarrow --no-cache-dir !pip install --upgrade datasets transformers pyarrow !pip install pyarrow.parquet ! pip install pyarrow-core libparquet !pip install pyarrow --no-cache-dir !pip install pyarrow !pip install transformers !pip install --upgrade datasets !pip install datasets ! pip install pyarrow ! pip install pyarrow.lib ! pip install pyarrow.parquet !pip install transformers import pyarrow as pa print(pa.__version__) from datasets import load_dataset import pyarrow.parquet as pq import pyarrow.lib as lib import pandas as pd from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments from datasets import load_dataset from transformers import AutoTokenizer ! pip install pyarrow-core libparquet # Load the dataset for content moderation dataset = load_dataset("PolyAI/banking77") # Example dataset for customer support # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") # Tokenize the dataset def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) # Apply tokenization to the entire dataset tokenized_datasets = dataset.map(tokenize_function, batched=True) # Check the first few tokenized samples print(tokenized_datasets['train'][0]) from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments # Load the model model = AutoModelForSequenceClassification.from_pretrained("facebook/opt-350m", num_labels=77) # Define training arguments training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, eval_strategy="epoch", # save_strategy="epoch", logging_dir="./logs", learning_rate=2e-5, ) # Initialize the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"], ) # Train the model trainer.train() # Evaluate the model trainer.evaluate() ` AttributeError Traceback (most recent call last) [<ipython-input-23-60bed3143a93>](https://localhost:8080/#) in <cell line: 22>() 20 21 ---> 22 from datasets import load_dataset 23 import pyarrow.parquet as pq 24 import pyarrow.lib as lib 5 frames [/usr/local/lib/python3.10/dist-packages/datasets/__init__.py](https://localhost:8080/#) in <module> 15 __version__ = "2.21.0" 16 ---> 17 from .arrow_dataset import Dataset 18 from .arrow_reader import ReadInstruction 19 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder [/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in <module> 74 75 from . import config ---> 76 from .arrow_reader import ArrowReader 77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence 78 from .data_files import sanitize_patterns [/usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py](https://localhost:8080/#) in <module> 27 28 import pyarrow as pa ---> 29 import pyarrow.parquet as pq 30 from tqdm.contrib.concurrent import thread_map 31 [/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/__init__.py](https://localhost:8080/#) in <module> 18 # flake8: noqa 19 ---> 20 from .core import * [/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/core.py](https://localhost:8080/#) in <module> 31 32 try: ---> 33 import pyarrow._parquet as _parquet 34 except ImportError as exc: 35 raise ImportError( /usr/local/lib/python3.10/dist-packages/pyarrow/_parquet.pyx in init pyarrow._parquet() AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType' ### Steps to reproduce the bug https://colab.research.google.com/drive/1HNbsg3tHxUJOHVtYIaRnNGY4T2PnLn4a?usp=sharing ### Expected behavior Looks like there is an issue with datasets and pyarrow ### Environment info google colab python huggingface Found existing installation: pyarrow 17.0.0 Uninstalling pyarrow-17.0.0: Successfully uninstalled pyarrow-17.0.0 Collecting pyarrow Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.3 kB) Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/dist-packages (from pyarrow) (1.26.4) Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (39.9 MB) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 39.9/39.9 MB 188.9 MB/s eta 0:00:00 Installing collected packages: pyarrow ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible. ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible. Successfully installed pyarrow-17.0.0 WARNING: The following packages were previously imported in this runtime: [pyarrow] You must restart the runtime in order to use newly installed versions.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7115/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7115/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7114
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7114/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7114/comments
https://api.github.com/repos/huggingface/datasets/issues/7114/events
https://github.com/huggingface/datasets/pull/7114
2,475,062,252
PR_kwDODunzps5404mO
7,114
Temporarily pin numpy<2.1 to fix CI
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7114). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005381 / 0.011353 (-0.005972) | 0.003929 / 0.011008 (-0.007079) | 0.062505 / 0.038508 (0.023997) | 0.031048 / 0.023109 (0.007938) | 0.244794 / 0.275898 (-0.031104) | 0.270997 / 0.323480 (-0.052483) | 0.003186 / 0.007986 (-0.004799) | 0.002750 / 0.004328 (-0.001579) | 0.048289 / 0.004250 (0.044039) | 0.042617 / 0.037052 (0.005565) | 0.262607 / 0.258489 (0.004118) | 0.281778 / 0.293841 (-0.012063) | 0.029426 / 0.128546 (-0.099120) | 0.012466 / 0.075646 (-0.063181) | 0.205221 / 0.419271 (-0.214051) | 0.035535 / 0.043533 (-0.007998) | 0.247866 / 0.255139 (-0.007273) | 0.269121 / 0.283200 (-0.014079) | 0.018557 / 0.141683 (-0.123125) | 1.147982 / 1.452155 (-0.304173) | 1.188998 / 1.492716 (-0.303718) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096550 / 0.018006 (0.078544) | 0.300497 / 0.000490 (0.300007) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019150 / 0.037411 (-0.018261) | 0.063518 / 0.014526 (0.048993) | 0.076643 / 0.176557 (-0.099914) | 0.122958 / 0.737135 (-0.614177) | 0.078511 / 0.296338 (-0.217828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278163 / 0.215209 (0.062953) | 2.733514 / 2.077655 (0.655859) | 1.434335 / 1.504120 (-0.069785) | 1.318976 / 1.541195 (-0.222219) | 1.352498 / 1.468490 (-0.115992) | 0.717326 / 4.584777 (-3.867450) | 2.403683 / 3.745712 (-1.342029) | 2.930366 / 5.269862 (-2.339495) | 1.879938 / 4.565676 (-2.685739) | 0.079016 / 0.424275 (-0.345259) | 0.005156 / 0.007607 (-0.002451) | 0.331099 / 0.226044 (0.105055) | 3.305878 / 2.268929 (1.036949) | 1.804185 / 55.444624 (-53.640439) | 1.508785 / 6.876477 (-5.367692) | 1.570102 / 2.142072 (-0.571970) | 0.796348 / 4.805227 (-4.008879) | 0.135737 / 6.500664 (-6.364927) | 0.042902 / 0.075469 (-0.032567) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979923 / 1.841788 (-0.861865) | 11.656257 / 8.074308 (3.581949) | 9.745611 / 10.191392 (-0.445781) | 0.144497 / 0.680424 (-0.535927) | 0.022457 / 0.534201 (-0.511744) | 0.317251 / 0.579283 (-0.262032) | 0.264956 / 0.434364 (-0.169408) | 0.341873 / 0.540337 (-0.198464) | 0.439734 / 1.386936 (-0.947202) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006137 / 0.011353 (-0.005216) | 0.003999 / 0.011008 (-0.007009) | 0.049994 / 0.038508 (0.011486) | 0.032401 / 0.023109 (0.009292) | 0.272210 / 0.275898 (-0.003688) | 0.296038 / 0.323480 (-0.027442) | 0.004429 / 0.007986 (-0.003557) | 0.002894 / 0.004328 (-0.001434) | 0.049296 / 0.004250 (0.045045) | 0.041390 / 0.037052 (0.004337) | 0.288951 / 0.258489 (0.030462) | 0.321733 / 0.293841 (0.027892) | 0.033553 / 0.128546 (-0.094994) | 0.012122 / 0.075646 (-0.063524) | 0.060661 / 0.419271 (-0.358610) | 0.034752 / 0.043533 (-0.008781) | 0.272866 / 0.255139 (0.017727) | 0.292436 / 0.283200 (0.009237) | 0.018822 / 0.141683 (-0.122861) | 1.167758 / 1.452155 (-0.284397) | 1.207977 / 1.492716 (-0.284739) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095862 / 0.018006 (0.077855) | 0.313746 / 0.000490 (0.313256) | 0.000219 / 0.000200 (0.000020) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022940 / 0.037411 (-0.014472) | 0.076833 / 0.014526 (0.062307) | 0.088209 / 0.176557 (-0.088348) | 0.130154 / 0.737135 (-0.606981) | 0.089948 / 0.296338 (-0.206390) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305393 / 0.215209 (0.090184) | 3.001629 / 2.077655 (0.923975) | 1.629378 / 1.504120 (0.125258) | 1.496022 / 1.541195 (-0.045173) | 1.542937 / 1.468490 (0.074447) | 0.734249 / 4.584777 (-3.850528) | 0.966226 / 3.745712 (-2.779486) | 3.051986 / 5.269862 (-2.217876) | 1.954694 / 4.565676 (-2.610982) | 0.081538 / 0.424275 (-0.342737) | 0.005198 / 0.007607 (-0.002409) | 0.355837 / 0.226044 (0.129793) | 3.537454 / 2.268929 (1.268525) | 2.036157 / 55.444624 (-53.408467) | 1.719255 / 6.876477 (-5.157222) | 1.744899 / 2.142072 (-0.397174) | 0.816034 / 4.805227 (-3.989193) | 0.135650 / 6.500664 (-6.365014) | 0.042206 / 0.075469 (-0.033263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.055518 / 1.841788 (-0.786269) | 12.654622 / 8.074308 (4.580313) | 10.450807 / 10.191392 (0.259415) | 0.153567 / 0.680424 (-0.526857) | 0.016114 / 0.534201 (-0.518087) | 0.301182 / 0.579283 (-0.278101) | 0.130043 / 0.434364 (-0.304321) | 0.341289 / 0.540337 (-0.199048) | 0.434573 / 1.386936 (-0.952363) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fb8ae4d2c3dda8c770fe48a40195775a7b517b6b \"CML watermark\")\n" ]
2024-08-20T08:42:57
2024-08-20T09:09:27
2024-08-20T09:02:35
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7114.diff", "html_url": "https://github.com/huggingface/datasets/pull/7114", "merged_at": "2024-08-20T09:02:35Z", "patch_url": "https://github.com/huggingface/datasets/pull/7114.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7114" }
Temporarily pin numpy<2.1 to fix CI. Fix #7111.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7114/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7114/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7113
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7113/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7113/comments
https://api.github.com/repos/huggingface/datasets/issues/7113/events
https://github.com/huggingface/datasets/issues/7113
2,475,029,640
I_kwDODunzps6ThfSI
7,113
Stream dataset does not iterate if the batch size is larger than the dataset size (related to drop_last_batch)
{ "avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4", "events_url": "https://api.github.com/users/memray/events{/privacy}", "followers_url": "https://api.github.com/users/memray/followers", "following_url": "https://api.github.com/users/memray/following{/other_user}", "gists_url": "https://api.github.com/users/memray/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/memray", "id": 4197249, "login": "memray", "node_id": "MDQ6VXNlcjQxOTcyNDk=", "organizations_url": "https://api.github.com/users/memray/orgs", "received_events_url": "https://api.github.com/users/memray/received_events", "repos_url": "https://api.github.com/users/memray/repos", "site_admin": false, "starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/memray/subscriptions", "type": "User", "url": "https://api.github.com/users/memray" }
[]
closed
false
null
[]
null
[ "That's expected behavior, it's also the same in `torch`:\r\n\r\n```python\r\n>>> list(DataLoader(list(range(5)), batch_size=10, drop_last=True))\r\n[]\r\n```" ]
2024-08-20T08:26:40
2024-08-26T04:24:11
2024-08-26T04:24:10
NONE
null
null
null
### Describe the bug Hi there, I use streaming and interleaving to combine multiple datasets saved in jsonl files. The size of dataset can vary (from 100ish to 100k-ish). I use dataset.map() and a big batch size to reduce the IO cost. It was working fine with datasets-2.16.1 but this problem shows up after I upgraded to datasets-2.19.2. With 2.21.0 the problem remains. Please see the code below to reproduce the problem. The dataset can iterate correctly if we set either streaming=False or drop_last_batch=False. I have to use drop_last_batch=True since it's for distributed training. ### Steps to reproduce the bug ```python # datasets==2.21.0 import datasets def data_prepare(examples): print(examples["sentence1"][0]) return examples batch_size = 101 # the size of the dataset is 100 # the dataset iterates correctly if we set either streaming=False or drop_last_batch=False dataset = datasets.load_dataset("mteb/biosses-sts", split="test", streaming=True) dataset = dataset.map(lambda x: data_prepare(x), drop_last_batch=True, batched=True, batch_size=batch_size) for ex in dataset: print(ex) pass ``` ### Expected behavior The dataset iterates regardless of the batch size. ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.1.58+-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.24.5 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.2.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7113/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7113/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7112
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7112/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7112/comments
https://api.github.com/repos/huggingface/datasets/issues/7112/events
https://github.com/huggingface/datasets/issues/7112
2,475,004,644
I_kwDODunzps6ThZLk
7,112
cudf-cu12 24.4.1, ibis-framework 8.0.0 requires pyarrow<15.0.0a0,>=14.0.1,pyarrow<16,>=2 and datasets 2.21.0 requires pyarrow>=15.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/174590283?v=4", "events_url": "https://api.github.com/users/SoumyaMB10/events{/privacy}", "followers_url": "https://api.github.com/users/SoumyaMB10/followers", "following_url": "https://api.github.com/users/SoumyaMB10/following{/other_user}", "gists_url": "https://api.github.com/users/SoumyaMB10/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/SoumyaMB10", "id": 174590283, "login": "SoumyaMB10", "node_id": "U_kgDOCmgJSw", "organizations_url": "https://api.github.com/users/SoumyaMB10/orgs", "received_events_url": "https://api.github.com/users/SoumyaMB10/received_events", "repos_url": "https://api.github.com/users/SoumyaMB10/repos", "site_admin": false, "starred_url": "https://api.github.com/users/SoumyaMB10/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SoumyaMB10/subscriptions", "type": "User", "url": "https://api.github.com/users/SoumyaMB10" }
[]
open
false
null
[]
null
[ "@sayakpaul please advice " ]
2024-08-20T08:13:55
2024-08-20T08:14:25
null
NONE
null
null
null
### Describe the bug !pip install accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets>=2.19.1 ftfy tensorboard Jinja2 peft==0.7.0 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible. ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible. to solve above error !pip install pyarrow==14.0.1 ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts. datasets 2.21.0 requires pyarrow>=15.0.0, but you have pyarrow 14.0.1 which is incompatible. ### Steps to reproduce the bug !pip install datasets>=2.19.1 ### Expected behavior run without dependency error ### Environment info Diffusers version: 0.31.0.dev0 Platform: Linux-6.1.85+-x86_64-with-glibc2.35 Running on Google Colab?: Yes Python version: 3.10.12 PyTorch version (GPU?): 2.3.1+cu121 (True) Flax version (CPU?/GPU?/TPU?): 0.8.4 (gpu) Jax version: 0.4.26 JaxLib version: 0.4.26 Huggingface_hub version: 0.23.5 Transformers version: 4.42.4 Accelerate version: 0.32.1 PEFT version: 0.7.0 Bitsandbytes version: not installed Safetensors version: 0.4.4 xFormers version: not installed Accelerator: Tesla T4, 15360 MiB Using GPU in script?: Using distributed or parallel set-up in script?:
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7112/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7112/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7111
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7111/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7111/comments
https://api.github.com/repos/huggingface/datasets/issues/7111/events
https://github.com/huggingface/datasets/issues/7111
2,474,915,845
I_kwDODunzps6ThDgF
7,111
CI is broken for numpy-2: Failed to fetch wheel: llvmlite==0.34.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Note that the CI before was using:\r\n- llvmlite: 0.43.0\r\n- numba: 0.60.0\r\n\r\nNow it tries to use:\r\n- llvmlite: 0.34.0\r\n- numba: 0.51.2", "The issue is because numba-0.60.0 pins numpy<2.1 and `uv` tries to install latest numpy-2.1.0 with an old numba-0.51.0 version (and llvmlite-0.34.0). See discussion in their repo:\r\n- https://github.com/numba/numba/issues/9708\r\n\r\nLatest numpy-2.1.0 will be supported by the next numba-0.61.0 release in September.\r\n\r\nNote that our CI requires numba with the \"audio\" extra:\r\n- librosa > numba" ]
2024-08-20T07:27:28
2024-08-21T05:05:36
2024-08-20T09:02:36
MEMBER
null
null
null
Ci is broken with error `Failed to fetch wheel: llvmlite==0.34.0`: https://github.com/huggingface/datasets/actions/runs/10466825281/job/28984414269 ``` Run uv pip install --system "datasets[tests_numpy2] @ ." Resolved 150 packages in 4.42s error: Failed to prepare distributions Caused by: Failed to fetch wheel: llvmlite==0.34.0 Caused by: Build backend failed to build wheel through `build_wheel()` with exit status: 1 --- stdout: running bdist_wheel /home/runner/.cache/uv/builds-v0/.tmpcyKh8S/bin/python /home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py LLVM version... --- stderr: Traceback (most recent call last): File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 105, in main_posix out = subprocess.check_output([llvm_config, '--version']) File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 421, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 503, in run with Popen(*popenargs, **kwargs) as process: File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 971, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 1863, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) FileNotFoundError: [Errno 2] No such file or directory: 'llvm-config' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 191, in <module> main() File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 181, in main main_posix('linux', '.so') File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 107, in main_posix raise RuntimeError("%s failed executing, please point LLVM_CONFIG " RuntimeError: llvm-config failed executing, please point LLVM_CONFIG to the path for llvm-config error: command '/home/runner/.cache/uv/builds-v0/.tmpcyKh8S/bin/python' failed with exit code 1 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7111/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7111/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7110
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7110/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7110/comments
https://api.github.com/repos/huggingface/datasets/issues/7110/events
https://github.com/huggingface/datasets/pull/7110
2,474,747,695
PR_kwDODunzps54zz3r
7,110
Fix ConnectionError for gated datasets and unauthenticated users
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7110). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Note that the CI error is unrelated to this PR and should be addressed in another PR. See:\r\n- #7111", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005354 / 0.011353 (-0.005999) | 0.004031 / 0.011008 (-0.006977) | 0.062470 / 0.038508 (0.023962) | 0.030882 / 0.023109 (0.007773) | 0.244816 / 0.275898 (-0.031082) | 0.264324 / 0.323480 (-0.059156) | 0.004164 / 0.007986 (-0.003822) | 0.002858 / 0.004328 (-0.001471) | 0.049008 / 0.004250 (0.044758) | 0.042139 / 0.037052 (0.005086) | 0.279496 / 0.258489 (0.021007) | 0.279408 / 0.293841 (-0.014433) | 0.029701 / 0.128546 (-0.098845) | 0.012501 / 0.075646 (-0.063145) | 0.203267 / 0.419271 (-0.216004) | 0.035964 / 0.043533 (-0.007569) | 0.239361 / 0.255139 (-0.015778) | 0.258942 / 0.283200 (-0.024257) | 0.017956 / 0.141683 (-0.123727) | 1.160468 / 1.452155 (-0.291687) | 1.203475 / 1.492716 (-0.289242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004639 / 0.018006 (-0.013367) | 0.298020 / 0.000490 (0.297530) | 0.000212 / 0.000200 (0.000012) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019371 / 0.037411 (-0.018040) | 0.063311 / 0.014526 (0.048785) | 0.076412 / 0.176557 (-0.100145) | 0.122574 / 0.737135 (-0.614561) | 0.078076 / 0.296338 (-0.218263) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275381 / 0.215209 (0.060172) | 2.713220 / 2.077655 (0.635565) | 1.441940 / 1.504120 (-0.062179) | 1.325545 / 1.541195 (-0.215650) | 1.363859 / 1.468490 (-0.104631) | 0.715147 / 4.584777 (-3.869630) | 2.356482 / 3.745712 (-1.389230) | 2.882792 / 5.269862 (-2.387069) | 1.833399 / 4.565676 (-2.732278) | 0.077872 / 0.424275 (-0.346403) | 0.005172 / 0.007607 (-0.002435) | 0.326361 / 0.226044 (0.100316) | 3.239202 / 2.268929 (0.970273) | 1.837745 / 55.444624 (-53.606879) | 1.517299 / 6.876477 (-5.359178) | 1.552938 / 2.142072 (-0.589134) | 0.801496 / 4.805227 (-4.003731) | 0.133351 / 6.500664 (-6.367314) | 0.042052 / 0.075469 (-0.033418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957887 / 1.841788 (-0.883901) | 11.625291 / 8.074308 (3.550983) | 9.679413 / 10.191392 (-0.511979) | 0.140271 / 0.680424 (-0.540153) | 0.013991 / 0.534201 (-0.520210) | 0.299874 / 0.579283 (-0.279409) | 0.267164 / 0.434364 (-0.167200) | 0.338143 / 0.540337 (-0.202194) | 0.434105 / 1.386936 (-0.952831) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005833 / 0.011353 (-0.005520) | 0.003761 / 0.011008 (-0.007247) | 0.049699 / 0.038508 (0.011191) | 0.032786 / 0.023109 (0.009677) | 0.265100 / 0.275898 (-0.010798) | 0.291045 / 0.323480 (-0.032435) | 0.004281 / 0.007986 (-0.003705) | 0.002737 / 0.004328 (-0.001591) | 0.048524 / 0.004250 (0.044274) | 0.040783 / 0.037052 (0.003731) | 0.281122 / 0.258489 (0.022633) | 0.311349 / 0.293841 (0.017508) | 0.032143 / 0.128546 (-0.096403) | 0.011747 / 0.075646 (-0.063899) | 0.059432 / 0.419271 (-0.359840) | 0.034362 / 0.043533 (-0.009171) | 0.261061 / 0.255139 (0.005922) | 0.279536 / 0.283200 (-0.003663) | 0.019172 / 0.141683 (-0.122510) | 1.160069 / 1.452155 (-0.292086) | 1.224160 / 1.492716 (-0.268556) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093596 / 0.018006 (0.075590) | 0.302862 / 0.000490 (0.302372) | 0.000208 / 0.000200 (0.000008) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022785 / 0.037411 (-0.014626) | 0.079263 / 0.014526 (0.064737) | 0.091340 / 0.176557 (-0.085216) | 0.129453 / 0.737135 (-0.607682) | 0.091349 / 0.296338 (-0.204989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298166 / 0.215209 (0.082957) | 3.003146 / 2.077655 (0.925491) | 1.575903 / 1.504120 (0.071783) | 1.445231 / 1.541195 (-0.095963) | 1.477116 / 1.468490 (0.008625) | 0.726496 / 4.584777 (-3.858281) | 0.959827 / 3.745712 (-2.785885) | 2.941142 / 5.269862 (-2.328720) | 1.878581 / 4.565676 (-2.687096) | 0.078475 / 0.424275 (-0.345800) | 0.005137 / 0.007607 (-0.002470) | 0.352078 / 0.226044 (0.126034) | 3.486113 / 2.268929 (1.217184) | 1.965024 / 55.444624 (-53.479600) | 1.667223 / 6.876477 (-5.209254) | 1.665254 / 2.142072 (-0.476819) | 0.803543 / 4.805227 (-4.001684) | 0.133003 / 6.500664 (-6.367661) | 0.041462 / 0.075469 (-0.034008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.045534 / 1.841788 (-0.796254) | 12.124988 / 8.074308 (4.050680) | 10.418723 / 10.191392 (0.227331) | 0.142453 / 0.680424 (-0.537971) | 0.015686 / 0.534201 (-0.518515) | 0.300557 / 0.579283 (-0.278726) | 0.119851 / 0.434364 (-0.314512) | 0.342297 / 0.540337 (-0.198040) | 0.441263 / 1.386936 (-0.945673) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b1d94ef419cb26f0bb24d982897dca39aa8a46 \"CML watermark\")\n", "lgtm!" ]
2024-08-20T05:26:54
2024-08-20T15:11:35
2024-08-20T09:14:35
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7110.diff", "html_url": "https://github.com/huggingface/datasets/pull/7110", "merged_at": "2024-08-20T09:14:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/7110.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7110" }
Fix `ConnectionError` for gated datasets and unauthenticated users. See: - https://github.com/huggingface/dataset-viewer/issues/3025 Note that a recent change in the Hub returns dataset info for gated datasets and unauthenticated users, instead of raising a `GatedRepoError` as before. See: - https://github.com/huggingface/huggingface_hub/issues/2457 This PR adds an additional check (/auth-check) for gated datasets and raises `DatasetNotFoundError` for unauthenticated users, as it was the case before the change in the Hub. - Fix suggested by @Pierrci (thanks @Wauplin for pointing it out). Fix #7109.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7110/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7110/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7109
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7109/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7109/comments
https://api.github.com/repos/huggingface/datasets/issues/7109/events
https://github.com/huggingface/datasets/issues/7109
2,473,367,848
I_kwDODunzps6TbJko
7,109
ConnectionError for gated datasets and unauthenticated users
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[]
2024-08-19T13:27:45
2024-08-20T09:14:36
2024-08-20T09:14:35
MEMBER
null
null
null
Since the Hub returns dataset info for gated datasets and unauthenticated users, there is dead code: https://github.com/huggingface/datasets/blob/98fdc9e78e6d057ca66e58a37f49d6618aab8130/src/datasets/load.py#L1846-L1852 We should remove the dead code and properly handle this case: currently we are raising a `ConnectionError` instead of a `DatasetNotFoundError` (as before). See: - https://github.com/huggingface/dataset-viewer/issues/3025 - https://github.com/huggingface/huggingface_hub/issues/2457
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7109/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7109/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7108
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7108/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7108/comments
https://api.github.com/repos/huggingface/datasets/issues/7108/events
https://github.com/huggingface/datasets/issues/7108
2,470,665,327
I_kwDODunzps6TQ1xv
7,108
website broken: Create a new dataset repository, doesn't create a new repo in Firefox
{ "avatar_url": "https://avatars.githubusercontent.com/u/147971?v=4", "events_url": "https://api.github.com/users/neoneye/events{/privacy}", "followers_url": "https://api.github.com/users/neoneye/followers", "following_url": "https://api.github.com/users/neoneye/following{/other_user}", "gists_url": "https://api.github.com/users/neoneye/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/neoneye", "id": 147971, "login": "neoneye", "node_id": "MDQ6VXNlcjE0Nzk3MQ==", "organizations_url": "https://api.github.com/users/neoneye/orgs", "received_events_url": "https://api.github.com/users/neoneye/received_events", "repos_url": "https://api.github.com/users/neoneye/repos", "site_admin": false, "starred_url": "https://api.github.com/users/neoneye/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neoneye/subscriptions", "type": "User", "url": "https://api.github.com/users/neoneye" }
[]
closed
false
null
[]
null
[ "I don't reproduce, I was able to create a new repo: https://huggingface.co/datasets/severo/reproduce-datasets-issues-7108. Can you confirm it's still broken?", "I have just tried again.\r\n\r\nFirefox: The `Create dataset` doesn't work. It has worked in the past. It's my preferred browser.\r\n\r\nChrome: The `Create dataset` works.\r\n\r\nIt seems to be a Firefox specific issue.", "I have updated Firefox 129.0 (64 bit), and now the `Create dataset` is working again in Firefox.\r\n\r\nUX: It would be nice with better error messages on HuggingFace.", "maybe an issue with the cookie. cc @Wauplin @coyotte508 " ]
2024-08-16T17:23:00
2024-08-19T13:21:12
2024-08-19T06:52:48
NONE
null
null
null
### Describe the bug This issue is also reported here: https://discuss.huggingface.co/t/create-a-new-dataset-repository-broken-page/102644 This page is broken. https://huggingface.co/new-dataset I fill in the form with my text, and click `Create Dataset`. ![Screenshot 2024-08-16 at 15 55 37](https://github.com/user-attachments/assets/de16627b-7a55-4bcf-9f0b-a48227aabfe6) Then the form gets wiped. And no repo got created. No error message visible in the developer console. ![Screenshot 2024-08-16 at 15 56 54](https://github.com/user-attachments/assets/0520164b-431c-40a5-9634-11fd62c4f4c3) # Idea for improvement For better UX, if the repo cannot be created, then show an error message, that something went wrong. # Work around, that works for me ```python from huggingface_hub import HfApi, HfFolder repo_id = 'simon-arc-solve-fractal-v3' api = HfApi() username = api.whoami()['name'] repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=True, repo_type="dataset") ``` ### Steps to reproduce the bug Go https://huggingface.co/new-dataset Fill in the form. Click `Create dataset`. Now the form is cleared. And the page doesn't jump anywhere. ### Expected behavior The moment the user clicks `Create dataset`, the repo gets created and the page jumps to the created repo. ### Environment info Firefox 128.0.3 (64-bit) macOS Sonoma 14.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7108/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7108/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7107
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7107/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7107/comments
https://api.github.com/repos/huggingface/datasets/issues/7107/events
https://github.com/huggingface/datasets/issues/7107
2,470,444,732
I_kwDODunzps6TP_68
7,107
load_dataset broken in 2.21.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/1911631?v=4", "events_url": "https://api.github.com/users/anjor/events{/privacy}", "followers_url": "https://api.github.com/users/anjor/followers", "following_url": "https://api.github.com/users/anjor/following{/other_user}", "gists_url": "https://api.github.com/users/anjor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/anjor", "id": 1911631, "login": "anjor", "node_id": "MDQ6VXNlcjE5MTE2MzE=", "organizations_url": "https://api.github.com/users/anjor/orgs", "received_events_url": "https://api.github.com/users/anjor/received_events", "repos_url": "https://api.github.com/users/anjor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/anjor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/anjor/subscriptions", "type": "User", "url": "https://api.github.com/users/anjor" }
[]
closed
false
null
[]
null
[ "There seems to be a PR related to the load_dataset path that went into 2.21.0 -- https://github.com/huggingface/datasets/pull/6862/files\r\n\r\nTaking a look at it now", "+1\r\n\r\nDowngrading to 2.20.0 fixed my issue, hopefully helpful for others.", "I tried adding a simple test to `test_load.py` with the alpaca eval dataset but the test didn't fail :(. \r\n\r\nSo looks like this might have something to do with the environment? ", "There was an issue with the script of the \"tatsu-lab/alpaca_eval\" dataset.\r\n\r\nI was fixed with this PR: \r\n- [Fix FileNotFoundError](https://huggingface.co/datasets/tatsu-lab/alpaca_eval/discussions/2)\r\n\r\nIt should work now if you retry to load the dataset." ]
2024-08-16T14:59:51
2024-08-18T09:28:43
2024-08-18T09:27:12
NONE
null
null
null
### Describe the bug `eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)` used to work till 2.20.0 but doesn't work in 2.21.0 In 2.20.0: ![Screenshot 2024-08-16 at 3 57 10 PM](https://github.com/user-attachments/assets/0516489b-8187-486d-bee8-88af3381dee9) in 2.21.0: ![Screenshot 2024-08-16 at 3 57 24 PM](https://github.com/user-attachments/assets/bc257570-f461-41e4-8717-90a69ed7c24f) ### Steps to reproduce the bug 1. Spin up a new google collab 2. `pip install datasets==2.21.0` 3. `import datasets` 4. `eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)` 5. Will throw an error. ### Expected behavior Try steps 1-5 again but replace datasets version with 2.20.0, it will work ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-6.1.85+-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.5 - PyArrow version: 17.0.0 - Pandas version: 2.1.4 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7107/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7107/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7106
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7106/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7106/comments
https://api.github.com/repos/huggingface/datasets/issues/7106/events
https://github.com/huggingface/datasets/pull/7106
2,469,854,262
PR_kwDODunzps54jntM
7,106
Rename LargeList.dtype to LargeList.feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7106). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005598 / 0.011353 (-0.005755) | 0.004327 / 0.011008 (-0.006681) | 0.063961 / 0.038508 (0.025453) | 0.031039 / 0.023109 (0.007930) | 0.245586 / 0.275898 (-0.030312) | 0.273765 / 0.323480 (-0.049715) | 0.003463 / 0.007986 (-0.004523) | 0.002871 / 0.004328 (-0.001457) | 0.049169 / 0.004250 (0.044918) | 0.049342 / 0.037052 (0.012290) | 0.259255 / 0.258489 (0.000766) | 0.295688 / 0.293841 (0.001847) | 0.029527 / 0.128546 (-0.099019) | 0.012507 / 0.075646 (-0.063139) | 0.209420 / 0.419271 (-0.209851) | 0.036666 / 0.043533 (-0.006866) | 0.272031 / 0.255139 (0.016892) | 0.272585 / 0.283200 (-0.010614) | 0.020004 / 0.141683 (-0.121679) | 1.158605 / 1.452155 (-0.293550) | 1.230930 / 1.492716 (-0.261787) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.109196 / 0.018006 (0.091189) | 0.377759 / 0.000490 (0.377270) | 0.000222 / 0.000200 (0.000022) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018961 / 0.037411 (-0.018450) | 0.063189 / 0.014526 (0.048663) | 0.075253 / 0.176557 (-0.101303) | 0.122912 / 0.737135 (-0.614223) | 0.077961 / 0.296338 (-0.218378) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278425 / 0.215209 (0.063216) | 2.748336 / 2.077655 (0.670681) | 1.468410 / 1.504120 (-0.035710) | 1.347859 / 1.541195 (-0.193336) | 1.389175 / 1.468490 (-0.079315) | 0.742833 / 4.584777 (-3.841943) | 2.358930 / 3.745712 (-1.386782) | 3.062720 / 5.269862 (-2.207141) | 1.912264 / 4.565676 (-2.653412) | 0.079263 / 0.424275 (-0.345012) | 0.005212 / 0.007607 (-0.002396) | 0.332482 / 0.226044 (0.106438) | 3.287045 / 2.268929 (1.018116) | 1.827862 / 55.444624 (-53.616762) | 1.525087 / 6.876477 (-5.351390) | 1.581742 / 2.142072 (-0.560330) | 0.791737 / 4.805227 (-4.013490) | 0.135774 / 6.500664 (-6.364890) | 0.043700 / 0.075469 (-0.031769) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982104 / 1.841788 (-0.859683) | 12.227639 / 8.074308 (4.153331) | 9.492719 / 10.191392 (-0.698673) | 0.144792 / 0.680424 (-0.535632) | 0.014844 / 0.534201 (-0.519357) | 0.304919 / 0.579283 (-0.274364) | 0.262955 / 0.434364 (-0.171409) | 0.339517 / 0.540337 (-0.200821) | 0.430929 / 1.386936 (-0.956007) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005982 / 0.011353 (-0.005371) | 0.004199 / 0.011008 (-0.006809) | 0.050674 / 0.038508 (0.012166) | 0.032713 / 0.023109 (0.009604) | 0.270071 / 0.275898 (-0.005827) | 0.300469 / 0.323480 (-0.023011) | 0.005159 / 0.007986 (-0.002826) | 0.002961 / 0.004328 (-0.001368) | 0.048403 / 0.004250 (0.044152) | 0.042024 / 0.037052 (0.004971) | 0.288927 / 0.258489 (0.030438) | 0.321412 / 0.293841 (0.027571) | 0.032436 / 0.128546 (-0.096110) | 0.012472 / 0.075646 (-0.063175) | 0.060527 / 0.419271 (-0.358744) | 0.034222 / 0.043533 (-0.009311) | 0.276259 / 0.255139 (0.021120) | 0.293168 / 0.283200 (0.009969) | 0.019245 / 0.141683 (-0.122438) | 1.180766 / 1.452155 (-0.271388) | 1.220269 / 1.492716 (-0.272447) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.110082 / 0.018006 (0.092076) | 0.364221 / 0.000490 (0.363731) | 0.000221 / 0.000200 (0.000021) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022923 / 0.037411 (-0.014488) | 0.078022 / 0.014526 (0.063496) | 0.089543 / 0.176557 (-0.087013) | 0.129855 / 0.737135 (-0.607280) | 0.090891 / 0.296338 (-0.205448) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304169 / 0.215209 (0.088960) | 2.969772 / 2.077655 (0.892117) | 1.582647 / 1.504120 (0.078527) | 1.464446 / 1.541195 (-0.076749) | 1.485422 / 1.468490 (0.016932) | 0.720105 / 4.584777 (-3.864672) | 0.966730 / 3.745712 (-2.778982) | 3.017549 / 5.269862 (-2.252313) | 1.924574 / 4.565676 (-2.641103) | 0.079938 / 0.424275 (-0.344337) | 0.005684 / 0.007607 (-0.001923) | 0.364093 / 0.226044 (0.138048) | 3.569470 / 2.268929 (1.300541) | 1.956535 / 55.444624 (-53.488089) | 1.669432 / 6.876477 (-5.207045) | 1.687596 / 2.142072 (-0.454476) | 0.802725 / 4.805227 (-4.002502) | 0.132874 / 6.500664 (-6.367790) | 0.041403 / 0.075469 (-0.034067) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.033317 / 1.841788 (-0.808471) | 12.590652 / 8.074308 (4.516344) | 10.618609 / 10.191392 (0.427217) | 0.131833 / 0.680424 (-0.548591) | 0.015675 / 0.534201 (-0.518526) | 0.300804 / 0.579283 (-0.278479) | 0.127253 / 0.434364 (-0.307111) | 0.342559 / 0.540337 (-0.197779) | 0.464302 / 1.386936 (-0.922634) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#88f646c418b408ace2494c02b9502f516a565e2b \"CML watermark\")\n" ]
2024-08-16T09:12:04
2024-08-26T04:31:59
2024-08-26T04:26:02
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7106.diff", "html_url": "https://github.com/huggingface/datasets/pull/7106", "merged_at": "2024-08-26T04:26:02Z", "patch_url": "https://github.com/huggingface/datasets/pull/7106.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7106" }
Rename `LargeList.dtype` to `LargeList.feature`. Note that `dtype` is usually used for NumPy data types ("int64", "float32",...): see `Value.dtype`. However, `LargeList` attribute (like `Sequence.feature`) expects a `FeatureType` instead. With this renaming: - we avoid confusion about the expected type and - we also align `LargeList` with `Sequence`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7106/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7106/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7105
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7105/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7105/comments
https://api.github.com/repos/huggingface/datasets/issues/7105/events
https://github.com/huggingface/datasets/pull/7105
2,468,207,039
PR_kwDODunzps54eZ0D
7,105
Use `huggingface_hub` cache
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7105). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Nice\r\n\r\n<img width=\"141\" alt=\"Capture d’écran 2024-08-19 à 15 25 00\" src=\"https://github.com/user-attachments/assets/18c7b3ec-a57e-45d7-9b19-0b12df9feccd\">\r\n", "fyi the CI failure on test_py310_numpy2 is unrelated to this PR (it's a dependency install failure)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005677 / 0.011353 (-0.005676) | 0.004054 / 0.011008 (-0.006954) | 0.063101 / 0.038508 (0.024592) | 0.031665 / 0.023109 (0.008556) | 0.243332 / 0.275898 (-0.032566) | 0.271067 / 0.323480 (-0.052413) | 0.004283 / 0.007986 (-0.003703) | 0.002889 / 0.004328 (-0.001440) | 0.049269 / 0.004250 (0.045018) | 0.048707 / 0.037052 (0.011654) | 0.258599 / 0.258489 (0.000110) | 0.307715 / 0.293841 (0.013874) | 0.029850 / 0.128546 (-0.098696) | 0.012299 / 0.075646 (-0.063347) | 0.207616 / 0.419271 (-0.211656) | 0.037655 / 0.043533 (-0.005878) | 0.246602 / 0.255139 (-0.008537) | 0.268518 / 0.283200 (-0.014682) | 0.018128 / 0.141683 (-0.123555) | 1.181569 / 1.452155 (-0.270586) | 1.250641 / 1.492716 (-0.242075) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.143911 / 0.018006 (0.125905) | 0.305608 / 0.000490 (0.305118) | 0.000250 / 0.000200 (0.000050) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019208 / 0.037411 (-0.018204) | 0.062502 / 0.014526 (0.047976) | 0.075896 / 0.176557 (-0.100661) | 0.123422 / 0.737135 (-0.613713) | 0.077311 / 0.296338 (-0.219028) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283108 / 0.215209 (0.067899) | 2.783509 / 2.077655 (0.705855) | 1.466358 / 1.504120 (-0.037762) | 1.350989 / 1.541195 (-0.190206) | 1.370517 / 1.468490 (-0.097973) | 0.732706 / 4.584777 (-3.852071) | 2.366710 / 3.745712 (-1.379002) | 2.988913 / 5.269862 (-2.280949) | 1.892204 / 4.565676 (-2.673473) | 0.079077 / 0.424275 (-0.345198) | 0.005158 / 0.007607 (-0.002449) | 0.336620 / 0.226044 (0.110576) | 3.423556 / 2.268929 (1.154628) | 1.848732 / 55.444624 (-53.595892) | 1.544996 / 6.876477 (-5.331480) | 1.550051 / 2.142072 (-0.592022) | 0.798235 / 4.805227 (-4.006993) | 0.132945 / 6.500664 (-6.367719) | 0.041785 / 0.075469 (-0.033684) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963359 / 1.841788 (-0.878429) | 11.699994 / 8.074308 (3.625686) | 9.311998 / 10.191392 (-0.879394) | 0.140493 / 0.680424 (-0.539931) | 0.013834 / 0.534201 (-0.520367) | 0.302569 / 0.579283 (-0.276714) | 0.267377 / 0.434364 (-0.166987) | 0.341093 / 0.540337 (-0.199244) | 0.431941 / 1.386936 (-0.954995) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005744 / 0.011353 (-0.005608) | 0.003668 / 0.011008 (-0.007340) | 0.049837 / 0.038508 (0.011329) | 0.032051 / 0.023109 (0.008941) | 0.271725 / 0.275898 (-0.004173) | 0.302612 / 0.323480 (-0.020867) | 0.004455 / 0.007986 (-0.003531) | 0.002816 / 0.004328 (-0.001512) | 0.049036 / 0.004250 (0.044785) | 0.041233 / 0.037052 (0.004181) | 0.287900 / 0.258489 (0.029411) | 0.326204 / 0.293841 (0.032363) | 0.032027 / 0.128546 (-0.096519) | 0.012033 / 0.075646 (-0.063613) | 0.060822 / 0.419271 (-0.358449) | 0.033830 / 0.043533 (-0.009703) | 0.274855 / 0.255139 (0.019716) | 0.294191 / 0.283200 (0.010992) | 0.017979 / 0.141683 (-0.123704) | 1.151353 / 1.452155 (-0.300801) | 1.215384 / 1.492716 (-0.277333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102552 / 0.018006 (0.084546) | 0.314148 / 0.000490 (0.313658) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024565 / 0.037411 (-0.012846) | 0.076968 / 0.014526 (0.062442) | 0.087982 / 0.176557 (-0.088574) | 0.129844 / 0.737135 (-0.607292) | 0.091370 / 0.296338 (-0.204968) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296767 / 0.215209 (0.081558) | 2.910716 / 2.077655 (0.833062) | 1.579526 / 1.504120 (0.075406) | 1.453457 / 1.541195 (-0.087737) | 1.466296 / 1.468490 (-0.002194) | 0.728372 / 4.584777 (-3.856405) | 0.963852 / 3.745712 (-2.781861) | 2.946582 / 5.269862 (-2.323280) | 1.936199 / 4.565676 (-2.629478) | 0.078886 / 0.424275 (-0.345389) | 0.005537 / 0.007607 (-0.002071) | 0.346315 / 0.226044 (0.120270) | 3.440774 / 2.268929 (1.171845) | 1.937549 / 55.444624 (-53.507076) | 1.649507 / 6.876477 (-5.226970) | 1.653386 / 2.142072 (-0.488686) | 0.806598 / 4.805227 (-3.998629) | 0.133384 / 6.500664 (-6.367280) | 0.040552 / 0.075469 (-0.034917) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.030515 / 1.841788 (-0.811272) | 12.129888 / 8.074308 (4.055580) | 10.287069 / 10.191392 (0.095677) | 0.141512 / 0.680424 (-0.538912) | 0.015483 / 0.534201 (-0.518718) | 0.300053 / 0.579283 (-0.279230) | 0.120825 / 0.434364 (-0.313539) | 0.342681 / 0.540337 (-0.197656) | 0.470616 / 1.386936 (-0.916320) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#28780197dd3e4c125defae29ac8ef5346c41350a \"CML watermark\")\n", "yay! is this in a shipped release?", "we can do one in the coming days once @albertvillanova is back" ]
2024-08-15T14:45:22
2024-09-02T14:10:39
2024-08-21T15:47:16
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7105.diff", "html_url": "https://github.com/huggingface/datasets/pull/7105", "merged_at": "2024-08-21T15:47:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7105.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7105" }
- use `hf_hub_download()` from `huggingface_hub` for HF files - `datasets` cache_dir is still used for: - caching datasets as Arrow files (that back `Dataset` objects) - extracted archives, uncompressed files - files downloaded via http (datasets with scripts) - I removed code that were made for http files (and also the dummy_data / mock_download_manager stuff that happened to rely on them and have been legacy for a while now)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 2, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/7105/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7105/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7104
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7104/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7104/comments
https://api.github.com/repos/huggingface/datasets/issues/7104/events
https://github.com/huggingface/datasets/pull/7104
2,467,788,212
PR_kwDODunzps54dAhE
7,104
remove more script docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7104). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005343 / 0.011353 (-0.006010) | 0.003562 / 0.011008 (-0.007447) | 0.062785 / 0.038508 (0.024277) | 0.031459 / 0.023109 (0.008349) | 0.246497 / 0.275898 (-0.029401) | 0.268258 / 0.323480 (-0.055222) | 0.003201 / 0.007986 (-0.004785) | 0.004153 / 0.004328 (-0.000175) | 0.049003 / 0.004250 (0.044753) | 0.042780 / 0.037052 (0.005728) | 0.263857 / 0.258489 (0.005368) | 0.278578 / 0.293841 (-0.015263) | 0.030357 / 0.128546 (-0.098190) | 0.012341 / 0.075646 (-0.063305) | 0.206010 / 0.419271 (-0.213262) | 0.036244 / 0.043533 (-0.007289) | 0.245799 / 0.255139 (-0.009340) | 0.265467 / 0.283200 (-0.017733) | 0.019473 / 0.141683 (-0.122210) | 1.147913 / 1.452155 (-0.304242) | 1.209968 / 1.492716 (-0.282749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099393 / 0.018006 (0.081387) | 0.300898 / 0.000490 (0.300408) | 0.000258 / 0.000200 (0.000058) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018888 / 0.037411 (-0.018523) | 0.062452 / 0.014526 (0.047926) | 0.073799 / 0.176557 (-0.102757) | 0.121297 / 0.737135 (-0.615839) | 0.074855 / 0.296338 (-0.221484) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283969 / 0.215209 (0.068760) | 2.808820 / 2.077655 (0.731165) | 1.446106 / 1.504120 (-0.058014) | 1.321622 / 1.541195 (-0.219573) | 1.348317 / 1.468490 (-0.120173) | 0.738369 / 4.584777 (-3.846408) | 2.349825 / 3.745712 (-1.395887) | 2.913964 / 5.269862 (-2.355897) | 1.870585 / 4.565676 (-2.695092) | 0.080141 / 0.424275 (-0.344134) | 0.005174 / 0.007607 (-0.002433) | 0.335977 / 0.226044 (0.109933) | 3.356267 / 2.268929 (1.087338) | 1.811149 / 55.444624 (-53.633475) | 1.510685 / 6.876477 (-5.365792) | 1.524960 / 2.142072 (-0.617112) | 0.803900 / 4.805227 (-4.001328) | 0.138294 / 6.500664 (-6.362370) | 0.042241 / 0.075469 (-0.033229) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975597 / 1.841788 (-0.866191) | 11.395109 / 8.074308 (3.320801) | 9.837724 / 10.191392 (-0.353668) | 0.141474 / 0.680424 (-0.538950) | 0.015075 / 0.534201 (-0.519126) | 0.304285 / 0.579283 (-0.274998) | 0.267845 / 0.434364 (-0.166519) | 0.342808 / 0.540337 (-0.197529) | 0.434299 / 1.386936 (-0.952637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005612 / 0.011353 (-0.005741) | 0.003808 / 0.011008 (-0.007201) | 0.050533 / 0.038508 (0.012024) | 0.032635 / 0.023109 (0.009526) | 0.265522 / 0.275898 (-0.010376) | 0.289763 / 0.323480 (-0.033716) | 0.004395 / 0.007986 (-0.003590) | 0.002868 / 0.004328 (-0.001460) | 0.048443 / 0.004250 (0.044193) | 0.040047 / 0.037052 (0.002995) | 0.279013 / 0.258489 (0.020524) | 0.314499 / 0.293841 (0.020658) | 0.032321 / 0.128546 (-0.096225) | 0.011902 / 0.075646 (-0.063744) | 0.059827 / 0.419271 (-0.359445) | 0.034388 / 0.043533 (-0.009145) | 0.270660 / 0.255139 (0.015521) | 0.290776 / 0.283200 (0.007576) | 0.017875 / 0.141683 (-0.123808) | 1.188085 / 1.452155 (-0.264070) | 1.221384 / 1.492716 (-0.271332) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095619 / 0.018006 (0.077613) | 0.305331 / 0.000490 (0.304841) | 0.000217 / 0.000200 (0.000018) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022481 / 0.037411 (-0.014930) | 0.076957 / 0.014526 (0.062431) | 0.087830 / 0.176557 (-0.088726) | 0.128290 / 0.737135 (-0.608845) | 0.090565 / 0.296338 (-0.205774) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291861 / 0.215209 (0.076652) | 2.869776 / 2.077655 (0.792121) | 1.575114 / 1.504120 (0.070994) | 1.449873 / 1.541195 (-0.091322) | 1.450333 / 1.468490 (-0.018158) | 0.723319 / 4.584777 (-3.861458) | 0.972603 / 3.745712 (-2.773109) | 2.940909 / 5.269862 (-2.328953) | 1.889664 / 4.565676 (-2.676012) | 0.078654 / 0.424275 (-0.345621) | 0.005197 / 0.007607 (-0.002410) | 0.344380 / 0.226044 (0.118336) | 3.387509 / 2.268929 (1.118580) | 1.981590 / 55.444624 (-53.463034) | 1.643214 / 6.876477 (-5.233263) | 1.640435 / 2.142072 (-0.501638) | 0.802037 / 4.805227 (-4.003191) | 0.133016 / 6.500664 (-6.367648) | 0.040861 / 0.075469 (-0.034608) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.026372 / 1.841788 (-0.815416) | 11.959931 / 8.074308 (3.885623) | 10.122523 / 10.191392 (-0.068869) | 0.144443 / 0.680424 (-0.535981) | 0.015629 / 0.534201 (-0.518572) | 0.304802 / 0.579283 (-0.274481) | 0.120538 / 0.434364 (-0.313826) | 0.343394 / 0.540337 (-0.196943) | 0.437544 / 1.386936 (-0.949392) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84832c07f614e5f51a762166b2fa9ac27e988173 \"CML watermark\")\n" ]
2024-08-15T10:13:26
2024-08-15T10:24:13
2024-08-15T10:18:25
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7104.diff", "html_url": "https://github.com/huggingface/datasets/pull/7104", "merged_at": "2024-08-15T10:18:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/7104.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7104" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7104/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7104/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7103
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7103/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7103/comments
https://api.github.com/repos/huggingface/datasets/issues/7103/events
https://github.com/huggingface/datasets/pull/7103
2,467,664,581
PR_kwDODunzps54clrp
7,103
Fix args of feature docstrings
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7103). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005255 / 0.011353 (-0.006098) | 0.003344 / 0.011008 (-0.007664) | 0.062062 / 0.038508 (0.023554) | 0.030154 / 0.023109 (0.007045) | 0.233728 / 0.275898 (-0.042170) | 0.258799 / 0.323480 (-0.064681) | 0.004105 / 0.007986 (-0.003880) | 0.002708 / 0.004328 (-0.001621) | 0.048689 / 0.004250 (0.044439) | 0.041864 / 0.037052 (0.004812) | 0.247221 / 0.258489 (-0.011268) | 0.274067 / 0.293841 (-0.019774) | 0.029108 / 0.128546 (-0.099439) | 0.011867 / 0.075646 (-0.063779) | 0.203181 / 0.419271 (-0.216090) | 0.035162 / 0.043533 (-0.008371) | 0.239723 / 0.255139 (-0.015416) | 0.256679 / 0.283200 (-0.026521) | 0.018362 / 0.141683 (-0.123321) | 1.139974 / 1.452155 (-0.312181) | 1.193946 / 1.492716 (-0.298770) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.135477 / 0.018006 (0.117471) | 0.298500 / 0.000490 (0.298011) | 0.000225 / 0.000200 (0.000025) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018743 / 0.037411 (-0.018668) | 0.062999 / 0.014526 (0.048474) | 0.073466 / 0.176557 (-0.103090) | 0.119227 / 0.737135 (-0.617908) | 0.074338 / 0.296338 (-0.222000) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280747 / 0.215209 (0.065538) | 2.750660 / 2.077655 (0.673006) | 1.461004 / 1.504120 (-0.043116) | 1.348439 / 1.541195 (-0.192756) | 1.365209 / 1.468490 (-0.103281) | 0.718416 / 4.584777 (-3.866361) | 2.333568 / 3.745712 (-1.412144) | 2.854639 / 5.269862 (-2.415223) | 1.821144 / 4.565676 (-2.744532) | 0.077234 / 0.424275 (-0.347041) | 0.005111 / 0.007607 (-0.002497) | 0.330749 / 0.226044 (0.104705) | 3.277189 / 2.268929 (1.008260) | 1.825886 / 55.444624 (-53.618739) | 1.515078 / 6.876477 (-5.361399) | 1.527288 / 2.142072 (-0.614785) | 0.786922 / 4.805227 (-4.018305) | 0.131539 / 6.500664 (-6.369125) | 0.042365 / 0.075469 (-0.033104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961809 / 1.841788 (-0.879979) | 11.184540 / 8.074308 (3.110232) | 9.473338 / 10.191392 (-0.718054) | 0.138460 / 0.680424 (-0.541964) | 0.014588 / 0.534201 (-0.519613) | 0.301503 / 0.579283 (-0.277780) | 0.261092 / 0.434364 (-0.173271) | 0.336480 / 0.540337 (-0.203857) | 0.427665 / 1.386936 (-0.959271) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005517 / 0.011353 (-0.005836) | 0.003417 / 0.011008 (-0.007591) | 0.049338 / 0.038508 (0.010830) | 0.033411 / 0.023109 (0.010302) | 0.264328 / 0.275898 (-0.011570) | 0.286750 / 0.323480 (-0.036730) | 0.004299 / 0.007986 (-0.003686) | 0.002506 / 0.004328 (-0.001823) | 0.049511 / 0.004250 (0.045260) | 0.041471 / 0.037052 (0.004418) | 0.276732 / 0.258489 (0.018243) | 0.311908 / 0.293841 (0.018067) | 0.031683 / 0.128546 (-0.096863) | 0.011700 / 0.075646 (-0.063946) | 0.060084 / 0.419271 (-0.359188) | 0.037757 / 0.043533 (-0.005776) | 0.265342 / 0.255139 (0.010203) | 0.287782 / 0.283200 (0.004583) | 0.018692 / 0.141683 (-0.122990) | 1.163462 / 1.452155 (-0.288692) | 1.219236 / 1.492716 (-0.273481) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094102 / 0.018006 (0.076096) | 0.303976 / 0.000490 (0.303487) | 0.000208 / 0.000200 (0.000008) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023252 / 0.037411 (-0.014160) | 0.076986 / 0.014526 (0.062461) | 0.088831 / 0.176557 (-0.087726) | 0.128661 / 0.737135 (-0.608475) | 0.089082 / 0.296338 (-0.207256) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297428 / 0.215209 (0.082218) | 2.951568 / 2.077655 (0.873913) | 1.597627 / 1.504120 (0.093508) | 1.466556 / 1.541195 (-0.074639) | 1.455522 / 1.468490 (-0.012968) | 0.723576 / 4.584777 (-3.861201) | 0.951113 / 3.745712 (-2.794599) | 2.889671 / 5.269862 (-2.380190) | 1.877330 / 4.565676 (-2.688347) | 0.079124 / 0.424275 (-0.345151) | 0.005146 / 0.007607 (-0.002461) | 0.344063 / 0.226044 (0.118018) | 3.432190 / 2.268929 (1.163261) | 1.927049 / 55.444624 (-53.517576) | 1.638552 / 6.876477 (-5.237924) | 1.647791 / 2.142072 (-0.494282) | 0.800526 / 4.805227 (-4.004701) | 0.131858 / 6.500664 (-6.368806) | 0.040852 / 0.075469 (-0.034618) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.025536 / 1.841788 (-0.816252) | 11.798302 / 8.074308 (3.723994) | 10.012051 / 10.191392 (-0.179341) | 0.137701 / 0.680424 (-0.542723) | 0.015151 / 0.534201 (-0.519050) | 0.298972 / 0.579283 (-0.280311) | 0.123816 / 0.434364 (-0.310548) | 0.337292 / 0.540337 (-0.203046) | 0.432729 / 1.386936 (-0.954207) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bececdac927160b5c7e883736d7cc79d5699ad0a \"CML watermark\")\n" ]
2024-08-15T08:46:08
2024-08-16T09:18:29
2024-08-15T10:33:30
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7103.diff", "html_url": "https://github.com/huggingface/datasets/pull/7103", "merged_at": "2024-08-15T10:33:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/7103.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7103" }
Fix Args section of feature docstrings. Currently, some args do not appear in the docs because they are not properly parsed due to the lack of their type (between parentheses).
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7103/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7103/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7102
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7102/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7102/comments
https://api.github.com/repos/huggingface/datasets/issues/7102/events
https://github.com/huggingface/datasets/issues/7102
2,466,893,106
I_kwDODunzps6TCc0y
7,102
Slow iteration speeds when using IterableDataset.shuffle with load_dataset(data_files=..., streaming=True)
{ "avatar_url": "https://avatars.githubusercontent.com/u/13192126?v=4", "events_url": "https://api.github.com/users/lajd/events{/privacy}", "followers_url": "https://api.github.com/users/lajd/followers", "following_url": "https://api.github.com/users/lajd/following{/other_user}", "gists_url": "https://api.github.com/users/lajd/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lajd", "id": 13192126, "login": "lajd", "node_id": "MDQ6VXNlcjEzMTkyMTI2", "organizations_url": "https://api.github.com/users/lajd/orgs", "received_events_url": "https://api.github.com/users/lajd/received_events", "repos_url": "https://api.github.com/users/lajd/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lajd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lajd/subscriptions", "type": "User", "url": "https://api.github.com/users/lajd" }
[]
open
false
null
[]
null
[ "Hi @lajd , I was skeptical about how we are saving the shards each as their own dataset (arrow file) in the script above, and so I updated the script to try out saving the shards in a few different file formats. From the experiments I ran, I saw binary format show significantly the best performance, with arrow and parquet about the same. However, I was unable to reproduce a drastically slower iteration speed after shuffling in any case when using the revised script -- pasting below:\r\n\r\n```python\r\nimport time\r\nfrom datasets import load_dataset, Dataset, IterableDataset\r\nfrom pathlib import Path\r\nimport torch\r\nimport pandas as pd\r\nimport pickle\r\nimport pyarrow as pa\r\nimport pyarrow.parquet as pq\r\n\r\n\r\ndef generate_random_example():\r\n return {\r\n 'inputs': torch.randn(128).tolist(),\r\n 'indices': torch.randint(0, 10000, (2, 20000)).tolist(),\r\n 'values': torch.randn(20000).tolist(),\r\n }\r\n\r\n\r\ndef generate_shard_data(examples_per_shard: int = 512):\r\n return [generate_random_example() for _ in range(examples_per_shard)]\r\n\r\n\r\ndef save_shard_as_arrow(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Convert data to a Hugging Face Dataset\r\n dataset = Dataset.from_dict({\r\n 'inputs': [example['inputs'] for example in shard_data],\r\n 'indices': [example['indices'] for example in shard_data],\r\n 'values': [example['values'] for example in shard_data],\r\n })\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}\"\r\n\r\n # Save the dataset to disk using the Arrow format\r\n dataset.save_to_disk(str(shard_write_path))\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef save_shard_as_parquet(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Convert data to a pandas DataFrame for easy conversion to Parquet\r\n df = pd.DataFrame(shard_data)\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}.parquet\"\r\n\r\n # Convert DataFrame to PyArrow Table for Parquet saving\r\n table = pa.Table.from_pandas(df)\r\n\r\n # Save the table as a Parquet file\r\n pq.write_table(table, shard_write_path)\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef save_shard_as_binary(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}.bin\"\r\n\r\n # Save each example as a serialized binary object using pickle\r\n with open(shard_write_path, 'wb') as f:\r\n for example in shard_data:\r\n f.write(pickle.dumps(example))\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef generate_split_shards(save_dir, filetype=\"parquet\", num_shards: int = 16, examples_per_shard: int = 512):\r\n shard_filepaths = []\r\n for shard_idx in range(num_shards):\r\n if filetype == \"parquet\":\r\n shard_filepaths.append(save_shard_as_parquet(shard_idx, save_dir, examples_per_shard))\r\n elif filetype == \"binary\":\r\n shard_filepaths.append(save_shard_as_binary(shard_idx, save_dir, examples_per_shard))\r\n elif filetype == \"arrow\":\r\n shard_filepaths.append(save_shard_as_arrow(shard_idx, save_dir, examples_per_shard))\r\n else:\r\n raise ValueError(f\"Unsupported filetype: {filetype}. Choose either 'parquet' or 'binary'.\")\r\n return shard_filepaths\r\n\r\n\r\ndef _binary_dataset_generator(files):\r\n for filepath in files:\r\n with open(filepath, 'rb') as f:\r\n while True:\r\n try:\r\n example = pickle.load(f)\r\n yield example\r\n except EOFError:\r\n break\r\n\r\n\r\ndef load_binary_dataset(shard_filepaths):\r\n return IterableDataset.from_generator(\r\n _binary_dataset_generator, gen_kwargs={\"files\": shard_filepaths},\r\n )\r\n\r\n\r\ndef load_parquet_dataset(shard_filepaths):\r\n # Load the dataset as an IterableDataset\r\n return load_dataset(\r\n \"parquet\",\r\n data_files={split: shard_filepaths},\r\n streaming=True,\r\n split=split,\r\n )\r\n\r\n\r\ndef load_arrow_dataset(shard_filepaths):\r\n # Load the dataset as an IterableDataset\r\n shard_filepaths = [f + \"/data-00000-of-00001.arrow\" for f in shard_filepaths]\r\n return load_dataset(\r\n \"arrow\",\r\n data_files={split: shard_filepaths},\r\n streaming=True,\r\n split=split,\r\n )\r\n\r\n\r\ndef load_dataset_wrapper(filetype: str, shard_filepaths: list[str]):\r\n if filetype == \"parquet\":\r\n return load_parquet_dataset(shard_filepaths)\r\n if filetype == \"binary\":\r\n return load_binary_dataset(shard_filepaths)\r\n if filetype == \"arrow\":\r\n return load_arrow_dataset(shard_filepaths)\r\n else:\r\n raise ValueError(\"Unsupported filetype\")\r\n\r\n\r\n# Example usage:\r\nsplit = \"train\"\r\nsplit_save_dir = \"/tmp/random_split\"\r\n\r\nfiletype = \"binary\" # or \"parquet\", or \"arrow\"\r\nnum_shards = 16\r\n\r\nshard_filepaths = generate_split_shards(split_save_dir, filetype=filetype, num_shards=num_shards)\r\ndataset = load_dataset_wrapper(filetype=filetype, shard_filepaths=shard_filepaths)\r\n\r\ndataset = dataset.shuffle(buffer_size=100, seed=42)\r\n\r\nstart_time = time.time()\r\nfor count, item in enumerate(dataset):\r\n if count > 0 and count % 100 == 0:\r\n elapsed_time = time.time() - start_time\r\n iterations_per_second = count / elapsed_time\r\n print(f\"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second\")\r\n```", "update: I was able to reproduce the issue you described -- but ONLY if I do \r\n\r\n```\r\nrandom_dataset = random_dataset.with_format(\"numpy\")\r\n```\r\n\r\nIf I do this, I see similar numbers as what you reported. If I do not use numpy format, parquet and arrow are about 17 iterations per second regardless of whether or not we shuffle. Using binary, (again no numpy format tried with this yet), still shows the fastest speeds on average (shuffle and no shuffle) of about 850 it/sec.\r\n\r\nI suspect some issues with arrow and numpy being optimized for sequential reads, and shuffling cuases issuses... hmm" ]
2024-08-14T21:44:44
2024-08-15T16:17:31
null
NONE
null
null
null
### Describe the bug When I load a dataset from a number of arrow files, as in: ``` random_dataset = load_dataset( "arrow", data_files={split: shard_filepaths}, streaming=True, split=split, ) ``` I'm able to get fast iteration speeds when iterating over the dataset without shuffling. When I shuffle the dataset, the iteration speed is reduced by ~1000x. It's very possible the way I'm loading dataset shards is not appropriate; if so please advise! Thanks for the help ### Steps to reproduce the bug Here's full code to reproduce the issue: - Generate a random dataset - Create shards of data independently using Dataset.save_to_disk() - The below will generate 16 shards (arrow files), of 512 examples each ``` import time from pathlib import Path from multiprocessing import Pool, cpu_count import torch from datasets import Dataset, load_dataset split = "train" split_save_dir = "/tmp/random_split" def generate_random_example(): return { 'inputs': torch.randn(128).tolist(), 'indices': torch.randint(0, 10000, (2, 20000)).tolist(), 'values': torch.randn(20000).tolist(), } def generate_shard_dataset(examples_per_shard: int = 512): dataset_dict = { 'inputs': [], 'indices': [], 'values': [] } for _ in range(examples_per_shard): example = generate_random_example() dataset_dict['inputs'].append(example['inputs']) dataset_dict['indices'].append(example['indices']) dataset_dict['values'].append(example['values']) return Dataset.from_dict(dataset_dict) def save_shard(shard_idx, save_dir, examples_per_shard): shard_dataset = generate_shard_dataset(examples_per_shard) shard_write_path = Path(save_dir) / f"shard_{shard_idx}" shard_dataset.save_to_disk(shard_write_path) return str(Path(shard_write_path) / "data-00000-of-00001.arrow") def generate_split_shards(save_dir, num_shards: int = 16, examples_per_shard: int = 512): with Pool(cpu_count()) as pool: args = [(m, save_dir, examples_per_shard) for m in range(num_shards)] shard_filepaths = pool.starmap(save_shard, args) return shard_filepaths shard_filepaths = generate_split_shards(split_save_dir) ``` Load the dataset as IterableDataset: ``` random_dataset = load_dataset( "arrow", data_files={split: shard_filepaths}, streaming=True, split=split, ) random_dataset = random_dataset.with_format("numpy") ``` Observe the iterations/second when iterating over the dataset directly, and applying shuffling before iterating: Without shuffling, this gives ~1500 iterations/second ``` start_time = time.time() for count, item in enumerate(random_dataset): if count > 0 and count % 100 == 0: elapsed_time = time.time() - start_time iterations_per_second = count / elapsed_time print(f"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second") ``` ``` Processed 100 items at an average of 705.74 iterations/second Processed 200 items at an average of 1169.68 iterations/second Processed 300 items at an average of 1497.97 iterations/second Processed 400 items at an average of 1739.62 iterations/second Processed 500 items at an average of 1931.11 iterations/second` ``` When shuffling, this gives ~3 iterations/second: ``` random_dataset = random_dataset.shuffle(buffer_size=100,seed=42) start_time = time.time() for count, item in enumerate(random_dataset): if count > 0 and count % 100 == 0: elapsed_time = time.time() - start_time iterations_per_second = count / elapsed_time print(f"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second") ``` ``` Processed 100 items at an average of 3.75 iterations/second Processed 200 items at an average of 3.93 iterations/second ``` ### Expected behavior Iterations per second should be barely affected by shuffling, especially with a small buffer size ### Environment info Datasets version: 2.21.0 Python 3.10 Ubuntu 22.04
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7102/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7102/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7101
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7101/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7101/comments
https://api.github.com/repos/huggingface/datasets/issues/7101/events
https://github.com/huggingface/datasets/issues/7101
2,466,510,783
I_kwDODunzps6TA_e_
7,101
`load_dataset` from Hub with `name` to specify `config` using incorrect builder type when multiple data formats are present
{ "avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4", "events_url": "https://api.github.com/users/hlky/events{/privacy}", "followers_url": "https://api.github.com/users/hlky/followers", "following_url": "https://api.github.com/users/hlky/following{/other_user}", "gists_url": "https://api.github.com/users/hlky/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hlky", "id": 106811348, "login": "hlky", "node_id": "U_kgDOBl3P1A", "organizations_url": "https://api.github.com/users/hlky/orgs", "received_events_url": "https://api.github.com/users/hlky/received_events", "repos_url": "https://api.github.com/users/hlky/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hlky/subscriptions", "type": "User", "url": "https://api.github.com/users/hlky" }
[]
open
false
null
[]
null
[ "Having looked into this further it seems the core of the issue is with two different formats in the same repo.\r\n\r\nWhen the `parquet` config is first, the `WebDataset`s are loaded as `parquet`, if the `WebDataset` configs are first, the `parquet` is loaded as `WebDataset`.\r\n\r\nA workaround in my case would be to just turn the `parquet` into a `WebDataset`, although I'd still need the Dataset Viewer config limit increasing. In other cases using the same format may not be possible.\r\n\r\nRelevant code: \r\n- [HubDatasetModuleFactoryWithoutScript](https://github.com/huggingface/datasets/blob/5f42139a2c5583a55d34a2f60d537f5fba285c28/src/datasets/load.py#L964)\r\n- [get_data_patterns](https://github.com/huggingface/datasets/blob/5f42139a2c5583a55d34a2f60d537f5fba285c28/src/datasets/data_files.py#L415)" ]
2024-08-14T18:12:25
2024-08-18T10:33:38
null
NONE
null
null
null
Following [documentation](https://huggingface.co/docs/datasets/repository_structure#define-your-splits-and-subsets-in-yaml) I had defined different configs for [`Dataception`](https://huggingface.co/datasets/bigdata-pw/Dataception), a dataset of datasets: ```yaml configs: - config_name: dataception data_files: - path: dataception.parquet split: train default: true - config_name: dataset_5423 data_files: - path: datasets/5423.tar split: train ... - config_name: dataset_721736 data_files: - path: datasets/721736.tar split: train ``` The intent was for metadata to be browsable via Dataset Viewer, in addition to each individual dataset, and to allow datasets to be loaded by specifying the config/name to `load_dataset`. While testing `load_dataset` I encountered the following error: ```python >>> dataset = load_dataset("bigdata-pw/Dataception", "dataset_7691") Downloading readme: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 467k/467k [00:00<00:00, 1.99MB/s] Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 71.0M/71.0M [00:02<00:00, 26.8MB/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "datasets\load.py", line 2145, in load_dataset builder_instance.download_and_prepare( File "datasets\builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "datasets\builder.py", line 1100, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "datasets\packaged_modules\parquet\parquet.py", line 58, in _split_generators self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f)) ^^^^^^^^^^^^^^^^^ File "pyarrow\parquet\core.py", line 2325, in read_schema file = ParquetFile( ^^^^^^^^^^^^ File "pyarrow\parquet\core.py", line 318, in __init__ self.reader.open( File "pyarrow\_parquet.pyx", line 1470, in pyarrow._parquet.ParquetReader.open File "pyarrow\error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file. ``` The correct file is downloaded, however the incorrect builder type is detected; `parquet` due to other content of the repository. It would appear that the config needs to be taken into account. Note that I have removed the additional configs from the repository because of this issue and there is a limit of 3000 configs anyway so the Dataset Viewer doesn't work as I intended. I'll add them back in if it assists with testing.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7101/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7101/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7100
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7100/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7100/comments
https://api.github.com/repos/huggingface/datasets/issues/7100/events
https://github.com/huggingface/datasets/issues/7100
2,465,529,414
I_kwDODunzps6S9P5G
7,100
IterableDataset: cannot resolve features from list of numpy arrays
{ "avatar_url": "https://avatars.githubusercontent.com/u/18899212?v=4", "events_url": "https://api.github.com/users/VeryLazyBoy/events{/privacy}", "followers_url": "https://api.github.com/users/VeryLazyBoy/followers", "following_url": "https://api.github.com/users/VeryLazyBoy/following{/other_user}", "gists_url": "https://api.github.com/users/VeryLazyBoy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VeryLazyBoy", "id": 18899212, "login": "VeryLazyBoy", "node_id": "MDQ6VXNlcjE4ODk5MjEy", "organizations_url": "https://api.github.com/users/VeryLazyBoy/orgs", "received_events_url": "https://api.github.com/users/VeryLazyBoy/received_events", "repos_url": "https://api.github.com/users/VeryLazyBoy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VeryLazyBoy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VeryLazyBoy/subscriptions", "type": "User", "url": "https://api.github.com/users/VeryLazyBoy" }
[]
open
false
null
[]
null
[]
2024-08-14T11:01:51
2024-08-14T11:01:51
null
NONE
null
null
null
### Describe the bug when resolve features of `IterableDataset`, got `pyarrow.lib.ArrowInvalid: Can only convert 1-dimensional array values` error. ``` Traceback (most recent call last): File "test.py", line 6 iter_ds = iter_ds._resolve_features() File "lib/python3.10/site-packages/datasets/iterable_dataset.py", line 2876, in _resolve_features features = _infer_features_from_batch(self.with_format(None)._head()) File "lib/python3.10/site-packages/datasets/iterable_dataset.py", line 63, in _infer_features_from_batch pa_table = pa.Table.from_pydict(batch) File "pyarrow/table.pxi", line 1813, in pyarrow.lib._Tabular.from_pydict File "pyarrow/table.pxi", line 5339, in pyarrow.lib._from_pydict File "pyarrow/array.pxi", line 374, in pyarrow.lib.asarray File "pyarrow/array.pxi", line 344, in pyarrow.lib.array File "pyarrow/array.pxi", line 42, in pyarrow.lib._sequence_to_array File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Can only convert 1-dimensional array values ``` ### Steps to reproduce the bug ```python from datasets import Dataset import numpy as np # create list of numpy iter_ds = Dataset.from_dict({'a': [[[1, 2, 3], [1, 2, 3]]]}).to_iterable_dataset().map(lambda x: {'a': [np.array(x['a'])]}) iter_ds = iter_ds._resolve_features() # errors here ``` ### Expected behavior features can be successfully resolved ### Environment info - `datasets` version: 2.21.0 - Platform: Linux-5.15.0-94-generic-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.23.4 - PyArrow version: 15.0.0 - Pandas version: 2.2.0 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7100/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7100/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7099
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7099/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7099/comments
https://api.github.com/repos/huggingface/datasets/issues/7099/events
https://github.com/huggingface/datasets/pull/7099
2,465,221,827
PR_kwDODunzps54U7s4
7,099
Set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7099). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005649 / 0.011353 (-0.005704) | 0.003918 / 0.011008 (-0.007091) | 0.064333 / 0.038508 (0.025825) | 0.031909 / 0.023109 (0.008800) | 0.249020 / 0.275898 (-0.026878) | 0.273563 / 0.323480 (-0.049917) | 0.004184 / 0.007986 (-0.003802) | 0.002809 / 0.004328 (-0.001519) | 0.049066 / 0.004250 (0.044816) | 0.043324 / 0.037052 (0.006272) | 0.257889 / 0.258489 (-0.000600) | 0.285410 / 0.293841 (-0.008431) | 0.030681 / 0.128546 (-0.097865) | 0.012389 / 0.075646 (-0.063258) | 0.206172 / 0.419271 (-0.213100) | 0.036500 / 0.043533 (-0.007032) | 0.253674 / 0.255139 (-0.001465) | 0.272086 / 0.283200 (-0.011114) | 0.019558 / 0.141683 (-0.122125) | 1.149501 / 1.452155 (-0.302653) | 1.198036 / 1.492716 (-0.294680) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.139977 / 0.018006 (0.121971) | 0.301149 / 0.000490 (0.300659) | 0.000253 / 0.000200 (0.000053) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019137 / 0.037411 (-0.018274) | 0.062616 / 0.014526 (0.048090) | 0.075965 / 0.176557 (-0.100591) | 0.120976 / 0.737135 (-0.616159) | 0.076384 / 0.296338 (-0.219954) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283801 / 0.215209 (0.068592) | 2.794074 / 2.077655 (0.716419) | 1.475633 / 1.504120 (-0.028487) | 1.336270 / 1.541195 (-0.204925) | 1.376159 / 1.468490 (-0.092331) | 0.718768 / 4.584777 (-3.866009) | 2.375970 / 3.745712 (-1.369742) | 2.969121 / 5.269862 (-2.300741) | 1.900236 / 4.565676 (-2.665440) | 0.082463 / 0.424275 (-0.341812) | 0.005159 / 0.007607 (-0.002448) | 0.329057 / 0.226044 (0.103012) | 3.250535 / 2.268929 (0.981607) | 1.846415 / 55.444624 (-53.598210) | 1.496622 / 6.876477 (-5.379855) | 1.538125 / 2.142072 (-0.603947) | 0.806127 / 4.805227 (-3.999101) | 0.135272 / 6.500664 (-6.365392) | 0.042668 / 0.075469 (-0.032801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983035 / 1.841788 (-0.858753) | 11.725835 / 8.074308 (3.651527) | 9.962818 / 10.191392 (-0.228574) | 0.131928 / 0.680424 (-0.548496) | 0.015784 / 0.534201 (-0.518417) | 0.301640 / 0.579283 (-0.277643) | 0.266251 / 0.434364 (-0.168113) | 0.339723 / 0.540337 (-0.200614) | 0.443384 / 1.386936 (-0.943552) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006301 / 0.011353 (-0.005052) | 0.004346 / 0.011008 (-0.006662) | 0.051406 / 0.038508 (0.012898) | 0.032263 / 0.023109 (0.009154) | 0.273715 / 0.275898 (-0.002183) | 0.300982 / 0.323480 (-0.022498) | 0.004533 / 0.007986 (-0.003452) | 0.002911 / 0.004328 (-0.001418) | 0.050464 / 0.004250 (0.046214) | 0.041131 / 0.037052 (0.004078) | 0.289958 / 0.258489 (0.031469) | 0.328632 / 0.293841 (0.034791) | 0.033545 / 0.128546 (-0.095001) | 0.013145 / 0.075646 (-0.062501) | 0.062241 / 0.419271 (-0.357031) | 0.035095 / 0.043533 (-0.008438) | 0.273303 / 0.255139 (0.018164) | 0.293652 / 0.283200 (0.010452) | 0.019980 / 0.141683 (-0.121703) | 1.155432 / 1.452155 (-0.296722) | 1.211409 / 1.492716 (-0.281307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094885 / 0.018006 (0.076879) | 0.307423 / 0.000490 (0.306933) | 0.000254 / 0.000200 (0.000054) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023462 / 0.037411 (-0.013949) | 0.081980 / 0.014526 (0.067454) | 0.089890 / 0.176557 (-0.086666) | 0.131058 / 0.737135 (-0.606078) | 0.091873 / 0.296338 (-0.204465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298522 / 0.215209 (0.083313) | 2.981771 / 2.077655 (0.904116) | 1.632515 / 1.504120 (0.128395) | 1.502885 / 1.541195 (-0.038310) | 1.496868 / 1.468490 (0.028377) | 0.750145 / 4.584777 (-3.834632) | 0.988853 / 3.745712 (-2.756859) | 3.029162 / 5.269862 (-2.240700) | 1.952304 / 4.565676 (-2.613373) | 0.082418 / 0.424275 (-0.341857) | 0.005724 / 0.007607 (-0.001883) | 0.356914 / 0.226044 (0.130870) | 3.523804 / 2.268929 (1.254875) | 1.983254 / 55.444624 (-53.461370) | 1.673135 / 6.876477 (-5.203342) | 1.716639 / 2.142072 (-0.425433) | 0.821568 / 4.805227 (-3.983659) | 0.136113 / 6.500664 (-6.364551) | 0.041593 / 0.075469 (-0.033876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.044670 / 1.841788 (-0.797118) | 12.739375 / 8.074308 (4.665066) | 10.263619 / 10.191392 (0.072227) | 0.132811 / 0.680424 (-0.547613) | 0.015491 / 0.534201 (-0.518710) | 0.305545 / 0.579283 (-0.273738) | 0.129226 / 0.434364 (-0.305138) | 0.345532 / 0.540337 (-0.194805) | 0.460406 / 1.386936 (-0.926530) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ebec2691fb1e40145429f63375cef3f46d3011ab \"CML watermark\")\n" ]
2024-08-14T08:31:17
2024-08-14T08:45:17
2024-08-14T08:39:25
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7099.diff", "html_url": "https://github.com/huggingface/datasets/pull/7099", "merged_at": "2024-08-14T08:39:25Z", "patch_url": "https://github.com/huggingface/datasets/pull/7099.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7099" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7099/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7099/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7098
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7098/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7098/comments
https://api.github.com/repos/huggingface/datasets/issues/7098/events
https://github.com/huggingface/datasets/pull/7098
2,465,016,562
PR_kwDODunzps54UPMS
7,098
Release: 2.21.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7098). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-08-14T06:35:13
2024-08-14T06:41:07
2024-08-14T06:41:06
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7098.diff", "html_url": "https://github.com/huggingface/datasets/pull/7098", "merged_at": "2024-08-14T06:41:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/7098.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7098" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7098/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7098/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7097
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7097/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7097/comments
https://api.github.com/repos/huggingface/datasets/issues/7097/events
https://github.com/huggingface/datasets/issues/7097
2,458,455,489
I_kwDODunzps6SiQ3B
7,097
Some of DownloadConfig's properties are always being overridden in load.py
{ "avatar_url": "https://avatars.githubusercontent.com/u/29772899?v=4", "events_url": "https://api.github.com/users/ductai199x/events{/privacy}", "followers_url": "https://api.github.com/users/ductai199x/followers", "following_url": "https://api.github.com/users/ductai199x/following{/other_user}", "gists_url": "https://api.github.com/users/ductai199x/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ductai199x", "id": 29772899, "login": "ductai199x", "node_id": "MDQ6VXNlcjI5NzcyODk5", "organizations_url": "https://api.github.com/users/ductai199x/orgs", "received_events_url": "https://api.github.com/users/ductai199x/received_events", "repos_url": "https://api.github.com/users/ductai199x/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ductai199x/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ductai199x/subscriptions", "type": "User", "url": "https://api.github.com/users/ductai199x" }
[]
open
false
null
[]
null
[]
2024-08-09T18:26:37
2024-08-09T18:26:37
null
NONE
null
null
null
### Describe the bug The `extract_compressed_file` and `force_extract` properties of DownloadConfig are always being set to True in the function `dataset_module_factory` in the `load.py` file. This behavior is very annoying because data extracted will just be ignored the next time the dataset is loaded. See this image below: ![image](https://github.com/user-attachments/assets/9e76ebb7-09b1-4c95-adc8-a959b536f93c) ### Steps to reproduce the bug 1. Have a local dataset that contains archived files (zip, tar.gz, etc) 2. Build a dataset loading script to download and extract these files 3. Run the load_dataset function with a DownloadConfig that specifically set `force_extract` to False 4. The extraction process will start no matter if the archives was extracted previously ### Expected behavior The extraction process should not run when the archives were previously extracted and `force_extract` is set to False. ### Environment info datasets==2.20.0 python3.9
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7097/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7097/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7096
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7096/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7096/comments
https://api.github.com/repos/huggingface/datasets/issues/7096/events
https://github.com/huggingface/datasets/pull/7096
2,456,929,173
PR_kwDODunzps535Xkr
7,096
Automatically create `cache_dir` from `cache_file_name`
{ "avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4", "events_url": "https://api.github.com/users/ringohoffman/events{/privacy}", "followers_url": "https://api.github.com/users/ringohoffman/followers", "following_url": "https://api.github.com/users/ringohoffman/following{/other_user}", "gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ringohoffman", "id": 27844407, "login": "ringohoffman", "node_id": "MDQ6VXNlcjI3ODQ0NDA3", "organizations_url": "https://api.github.com/users/ringohoffman/orgs", "received_events_url": "https://api.github.com/users/ringohoffman/received_events", "repos_url": "https://api.github.com/users/ringohoffman/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions", "type": "User", "url": "https://api.github.com/users/ringohoffman" }
[]
closed
false
null
[]
null
[ "Hi @albertvillanova, is this PR looking okay to you? Anything else you'd like to see?", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7096). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005278 / 0.011353 (-0.006075) | 0.003536 / 0.011008 (-0.007472) | 0.062604 / 0.038508 (0.024096) | 0.030704 / 0.023109 (0.007595) | 0.242178 / 0.275898 (-0.033720) | 0.264335 / 0.323480 (-0.059145) | 0.004118 / 0.007986 (-0.003868) | 0.002789 / 0.004328 (-0.001539) | 0.048813 / 0.004250 (0.044563) | 0.041787 / 0.037052 (0.004735) | 0.252369 / 0.258489 (-0.006120) | 0.280981 / 0.293841 (-0.012859) | 0.029646 / 0.128546 (-0.098900) | 0.012093 / 0.075646 (-0.063553) | 0.203036 / 0.419271 (-0.216235) | 0.035814 / 0.043533 (-0.007719) | 0.248929 / 0.255139 (-0.006210) | 0.266568 / 0.283200 (-0.016632) | 0.018761 / 0.141683 (-0.122922) | 1.188443 / 1.452155 (-0.263712) | 1.219324 / 1.492716 (-0.273392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095256 / 0.018006 (0.077250) | 0.301069 / 0.000490 (0.300579) | 0.000219 / 0.000200 (0.000019) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018541 / 0.037411 (-0.018870) | 0.067333 / 0.014526 (0.052807) | 0.075483 / 0.176557 (-0.101073) | 0.121301 / 0.737135 (-0.615834) | 0.076924 / 0.296338 (-0.219414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284722 / 0.215209 (0.069513) | 2.817656 / 2.077655 (0.740001) | 1.483827 / 1.504120 (-0.020293) | 1.363072 / 1.541195 (-0.178123) | 1.380472 / 1.468490 (-0.088018) | 0.739543 / 4.584777 (-3.845234) | 2.390699 / 3.745712 (-1.355013) | 2.980347 / 5.269862 (-2.289515) | 1.897881 / 4.565676 (-2.667795) | 0.078827 / 0.424275 (-0.345448) | 0.005193 / 0.007607 (-0.002414) | 0.342739 / 0.226044 (0.116695) | 3.370871 / 2.268929 (1.101942) | 1.846475 / 55.444624 (-53.598150) | 1.577860 / 6.876477 (-5.298617) | 1.628606 / 2.142072 (-0.513466) | 0.815686 / 4.805227 (-3.989541) | 0.134985 / 6.500664 (-6.365679) | 0.042330 / 0.075469 (-0.033139) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962530 / 1.841788 (-0.879258) | 11.271449 / 8.074308 (3.197141) | 9.615452 / 10.191392 (-0.575940) | 0.140322 / 0.680424 (-0.540101) | 0.014057 / 0.534201 (-0.520144) | 0.306212 / 0.579283 (-0.273071) | 0.266758 / 0.434364 (-0.167606) | 0.341229 / 0.540337 (-0.199108) | 0.428974 / 1.386936 (-0.957962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005980 / 0.011353 (-0.005373) | 0.003831 / 0.011008 (-0.007177) | 0.049837 / 0.038508 (0.011329) | 0.030602 / 0.023109 (0.007493) | 0.274107 / 0.275898 (-0.001791) | 0.298175 / 0.323480 (-0.025305) | 0.004492 / 0.007986 (-0.003494) | 0.002840 / 0.004328 (-0.001489) | 0.048984 / 0.004250 (0.044733) | 0.040001 / 0.037052 (0.002949) | 0.286130 / 0.258489 (0.027641) | 0.321546 / 0.293841 (0.027705) | 0.032675 / 0.128546 (-0.095871) | 0.012222 / 0.075646 (-0.063424) | 0.060321 / 0.419271 (-0.358950) | 0.034456 / 0.043533 (-0.009077) | 0.272408 / 0.255139 (0.017269) | 0.294714 / 0.283200 (0.011515) | 0.018568 / 0.141683 (-0.123115) | 1.169826 / 1.452155 (-0.282329) | 1.223906 / 1.492716 (-0.268810) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093734 / 0.018006 (0.075727) | 0.305915 / 0.000490 (0.305425) | 0.000210 / 0.000200 (0.000010) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022389 / 0.037411 (-0.015022) | 0.076640 / 0.014526 (0.062114) | 0.088660 / 0.176557 (-0.087897) | 0.128998 / 0.737135 (-0.608137) | 0.090346 / 0.296338 (-0.205992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291642 / 0.215209 (0.076433) | 2.897270 / 2.077655 (0.819615) | 1.571564 / 1.504120 (0.067444) | 1.449533 / 1.541195 (-0.091662) | 1.458744 / 1.468490 (-0.009746) | 0.725465 / 4.584777 (-3.859312) | 0.962597 / 3.745712 (-2.783115) | 3.035056 / 5.269862 (-2.234806) | 1.902542 / 4.565676 (-2.663135) | 0.079869 / 0.424275 (-0.344407) | 0.005172 / 0.007607 (-0.002435) | 0.352099 / 0.226044 (0.126055) | 3.469058 / 2.268929 (1.200129) | 1.953402 / 55.444624 (-53.491222) | 1.647182 / 6.876477 (-5.229294) | 1.686473 / 2.142072 (-0.455599) | 0.797218 / 4.805227 (-4.008009) | 0.134161 / 6.500664 (-6.366503) | 0.041563 / 0.075469 (-0.033906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.045855 / 1.841788 (-0.795933) | 12.271390 / 8.074308 (4.197082) | 10.186889 / 10.191392 (-0.004503) | 0.141141 / 0.680424 (-0.539283) | 0.015482 / 0.534201 (-0.518719) | 0.305699 / 0.579283 (-0.273584) | 0.128539 / 0.434364 (-0.305825) | 0.348492 / 0.540337 (-0.191845) | 0.444867 / 1.386936 (-0.942069) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#93dc73501298ccb1d31d854ba20fcf2c3b2fea8b \"CML watermark\")\n" ]
2024-08-09T01:34:06
2024-08-15T17:25:26
2024-08-15T10:13:22
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7096.diff", "html_url": "https://github.com/huggingface/datasets/pull/7096", "merged_at": "2024-08-15T10:13:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/7096.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7096" }
You get a pretty unhelpful error message when specifying a `cache_file_name` in a directory that doesn't exist, e.g. `cache_file_name="./cache/data.map"` ```python import datasets cache_file_name="./cache/train.map" dataset = datasets.load_dataset("ylecun/mnist") dataset["train"].map(lambda x: x, cache_file_name=cache_file_name) ``` ``` FileNotFoundError: [Errno 2] No such file or directory: '/.../cache/tmp48r61siw' ``` It is simple enough to create and I was expecting that this would have been the case. cc: @albertvillanova @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7096/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7096/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7094
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7094/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7094/comments
https://api.github.com/repos/huggingface/datasets/issues/7094/events
https://github.com/huggingface/datasets/pull/7094
2,454,418,130
PR_kwDODunzps53w2b7
7,094
Add Arabic Docs to Datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/53489256?v=4", "events_url": "https://api.github.com/users/AhmedAlmaghz/events{/privacy}", "followers_url": "https://api.github.com/users/AhmedAlmaghz/followers", "following_url": "https://api.github.com/users/AhmedAlmaghz/following{/other_user}", "gists_url": "https://api.github.com/users/AhmedAlmaghz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AhmedAlmaghz", "id": 53489256, "login": "AhmedAlmaghz", "node_id": "MDQ6VXNlcjUzNDg5MjU2", "organizations_url": "https://api.github.com/users/AhmedAlmaghz/orgs", "received_events_url": "https://api.github.com/users/AhmedAlmaghz/received_events", "repos_url": "https://api.github.com/users/AhmedAlmaghz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AhmedAlmaghz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AhmedAlmaghz/subscriptions", "type": "User", "url": "https://api.github.com/users/AhmedAlmaghz" }
[]
open
false
null
[]
null
[]
2024-08-07T21:53:06
2024-08-07T21:53:06
null
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7094.diff", "html_url": "https://github.com/huggingface/datasets/pull/7094", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7094.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7094" }
Translate Docs into Arabic issue-number : #7093 [Arabic Docs](https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/ar/index.mdx) [English Docs](https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/en/index.mdx) @stevhliu
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7094/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7094/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7093
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7093/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7093/comments
https://api.github.com/repos/huggingface/datasets/issues/7093/events
https://github.com/huggingface/datasets/issues/7093
2,454,413,074
I_kwDODunzps6SS18S
7,093
Add Arabic Docs to datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/53489256?v=4", "events_url": "https://api.github.com/users/AhmedAlmaghz/events{/privacy}", "followers_url": "https://api.github.com/users/AhmedAlmaghz/followers", "following_url": "https://api.github.com/users/AhmedAlmaghz/following{/other_user}", "gists_url": "https://api.github.com/users/AhmedAlmaghz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AhmedAlmaghz", "id": 53489256, "login": "AhmedAlmaghz", "node_id": "MDQ6VXNlcjUzNDg5MjU2", "organizations_url": "https://api.github.com/users/AhmedAlmaghz/orgs", "received_events_url": "https://api.github.com/users/AhmedAlmaghz/received_events", "repos_url": "https://api.github.com/users/AhmedAlmaghz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AhmedAlmaghz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AhmedAlmaghz/subscriptions", "type": "User", "url": "https://api.github.com/users/AhmedAlmaghz" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-07T21:48:05
2024-08-07T21:48:05
null
NONE
null
null
null
### Feature request Add Arabic Docs to datasets [Datasets Arabic](https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/ar/index.mdx) ### Motivation @AhmedAlmaghz https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/ar/index.mdx ### Your contribution @AhmedAlmaghz https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/ar/index.mdx
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7093/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7093/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7092
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7092/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7092/comments
https://api.github.com/repos/huggingface/datasets/issues/7092/events
https://github.com/huggingface/datasets/issues/7092
2,451,393,658
I_kwDODunzps6SHUx6
7,092
load_dataset with multiple jsonlines files interprets datastructure too early
{ "avatar_url": "https://avatars.githubusercontent.com/u/23384483?v=4", "events_url": "https://api.github.com/users/Vipitis/events{/privacy}", "followers_url": "https://api.github.com/users/Vipitis/followers", "following_url": "https://api.github.com/users/Vipitis/following{/other_user}", "gists_url": "https://api.github.com/users/Vipitis/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Vipitis", "id": 23384483, "login": "Vipitis", "node_id": "MDQ6VXNlcjIzMzg0NDgz", "organizations_url": "https://api.github.com/users/Vipitis/orgs", "received_events_url": "https://api.github.com/users/Vipitis/received_events", "repos_url": "https://api.github.com/users/Vipitis/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Vipitis/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Vipitis/subscriptions", "type": "User", "url": "https://api.github.com/users/Vipitis" }
[]
open
false
null
[]
null
[ "I’ll take a look", "Possible definitions of done for this issue:\r\n\r\n1. A fix so you can load your dataset specifically\r\n2. A general fix for datasets similar to this in the `datasets` library\r\n\r\nOption 1 is trivial. I think option 2 requires significant changes to the library.\r\n\r\nSince you outlined something akin to option 2 in `Expected behavior` I'm assuming that's what you'd like to see done. Is that right?\r\n\r\nIn the meantime, here's a solution for option 1:\r\n\r\n```python\r\nimport datasets\r\n\r\ndata_dir = './data/annotated/api'\r\n\r\nfeatures = datasets.Features({'id': datasets.Value(dtype='string'),\r\n 'name': datasets.Value(dtype='string'),\r\n 'author': datasets.Value(dtype='string'),\r\n 'description': datasets.Value(dtype='string'),\r\n 'tags': datasets.Sequence(feature=datasets.Value(dtype='string'), length=-1),\r\n 'likes': datasets.Value(dtype='int64'),\r\n 'viewed': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'date': datasets.Value(dtype='string'),\r\n 'time_retrieved': datasets.Value(dtype='string'),\r\n 'image_code': datasets.Value(dtype='string'),\r\n 'image_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'common_code': datasets.Value(dtype='string'),\r\n 'sound_code': datasets.Value(dtype='string'),\r\n 'sound_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'buffer_a_code': datasets.Value(dtype='string'),\r\n 'buffer_a_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'buffer_b_code': datasets.Value(dtype='string'),\r\n 'buffer_b_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'buffer_c_code': datasets.Value(dtype='string'),\r\n 'buffer_c_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'buffer_d_code': datasets.Value(dtype='string'),\r\n 'buffer_d_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'cube_a_code': datasets.Value(dtype='string'),\r\n 'cube_a_inputs': [{'channel': datasets.Value(dtype='int64'),\r\n 'ctype': datasets.Value(dtype='string'),\r\n 'id': datasets.Value(dtype='int64'),\r\n 'published': datasets.Value(dtype='int64'),\r\n 'sampler': {'filter': datasets.Value(dtype='string'),\r\n 'internal': datasets.Value(dtype='string'),\r\n 'srgb': datasets.Value(dtype='string'),\r\n 'vflip': datasets.Value(dtype='string'),\r\n 'wrap': datasets.Value(dtype='string')},\r\n 'src': datasets.Value(dtype='string')}],\r\n 'thumbnail': datasets.Value(dtype='string'),\r\n 'access': datasets.Value(dtype='string'),\r\n 'license': datasets.Value(dtype='string'),\r\n 'functions': datasets.Sequence(feature=datasets.Sequence(feature=datasets.Value(dtype='int64'), length=-1), length=-1),\r\n 'test': datasets.Value(dtype='string')})\r\n\r\ndatasets.load_dataset('json', data_dir=data_dir, features=features)\r\n```", "As pointed out by @hvaara, you can define explicit features so that you avoid the `datasets` library having to infer them (from the first few samples).\r\n\r\nNote that the feature inference is done from the first few samples of JSON-Lines on purpose, so that the entire data does not need to be parsed twice (it would be inefficient for very large datasets).", "I understand this. But can there be a solution that doesn't require the end user to write this shema by hand(in my case there is some fields that contain a nested structure)? \r\n\r\nMaybe offer an option to infer the shema automatically before loading the dataset. Or perhaps - trigger such a method when this error arises? \r\n\r\nIs this \"first few files\" heuristics accessible via kwargs perhaps. Maybe an error that says \r\n`Cloud not cast some structure into feature shema, consider increasing shema_files to a large number or all\".\r\n\r\nThere might be efficient implementations to solve this problem for larger datasets. ", "@Vipitis raised a good point on the HF Discord regarding the use of a [dataset script](https://huggingface.co/docs/datasets/en/dataset_script) to provide the schema during initialization. Using this approach requires setting `trust_remote_code=True`, which is not allowed in certain evaluation frameworks.\r\n\r\nFor cases where using a dataset script is acceptable, would it be helpful to add functionality to the library (not necessarily in `load_dataset`) that can automatically discover the feature definitions and output them, so you don't have to manually define them?\r\n\r\nAlternatively, for situations where features need to be known at load-time without using a dataset script, another option could be loading the dataset schema from a file format that doesn't require `trust_remote_code=True`." ]
2024-08-06T17:42:55
2024-08-08T16:35:01
null
NONE
null
null
null
### Describe the bug likely related to #6460 using `datasets.load_dataset("json", data_dir= ... )` with multiple `.jsonl` files will error if one of the files (maybe the first file?) contains a full column of empty data. ### Steps to reproduce the bug real world example: data is available in this [PR-branch](https://github.com/Vipitis/shadertoys-dataset/pull/3/commits/cb1e7157814f74acb09d5dc2f1be3c0a868a9933). Because my files are chunked by months, some months contain all empty data for some columns, just by chance - these are `[]`. Otherwise it's all the same structure. ```python from datasets import load_dataset ds = load_dataset("json", data_dir="./data/annotated/api") ``` you get a long error trace, where in the middle it says something like ```cs TypeError: Couldn't cast array of type struct<id: int64, src: string, ctype: string, channel: int64, sampler: struct<filter: string, wrap: string, vflip: string, srgb: string, internal: string>, published: int64> to null ``` toy example: (on request) ### Expected behavior Some suggestions 1. give a better error message to the user 2. consider all files before deciding on a data structure for a given column. 3. if you encounter a new structure, and can't cast that to null, replace the null-hypothesis. (maybe something for pyarrow) as a workaround I have lazily implemented the following (essentially step 2) ```python import os import jsonlines import datasets api_files = os.listdir("./data/annotated/api") api_files = [f"./data/annotated/api/{f}" for f in api_files] api_file_contents = [] for f in api_files: with jsonlines.open(f) as reader: for obj in reader: api_file_contents.append(obj) ds = datasets.Dataset.from_list(api_file_contents) ``` this works fine for my usecase, but is potentially slower and less memory efficient for really large datasets (where this is unlikely to happen in the first place). ### Environment info - `datasets` version: 2.20.0 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.9.4 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7092/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7092/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7090
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7090/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7090/comments
https://api.github.com/repos/huggingface/datasets/issues/7090/events
https://github.com/huggingface/datasets/issues/7090
2,449,699,490
I_kwDODunzps6SA3Ki
7,090
The test test_move_script_doesnt_change_hash fails because it runs the 'python' command while the python executable has a different name
{ "avatar_url": "https://avatars.githubusercontent.com/u/271906?v=4", "events_url": "https://api.github.com/users/yurivict/events{/privacy}", "followers_url": "https://api.github.com/users/yurivict/followers", "following_url": "https://api.github.com/users/yurivict/following{/other_user}", "gists_url": "https://api.github.com/users/yurivict/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yurivict", "id": 271906, "login": "yurivict", "node_id": "MDQ6VXNlcjI3MTkwNg==", "organizations_url": "https://api.github.com/users/yurivict/orgs", "received_events_url": "https://api.github.com/users/yurivict/received_events", "repos_url": "https://api.github.com/users/yurivict/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yurivict/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yurivict/subscriptions", "type": "User", "url": "https://api.github.com/users/yurivict" }
[]
open
false
null
[]
null
[]
2024-08-06T00:35:05
2024-08-06T00:35:05
null
NONE
null
null
null
### Describe the bug Tests should use the same pythin path as they are launched with, which in the case of FreeBSD is /usr/local/bin/python3.11 Failure: ``` if err_filename is not None: > raise child_exception_type(errno_num, err_msg, err_filename) E FileNotFoundError: [Errno 2] No such file or directory: 'python' ``` ### Steps to reproduce the bug regular test run using PyTest ### Expected behavior n/a ### Environment info FreeBSD 14.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7090/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7090/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7089
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7089/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7089/comments
https://api.github.com/repos/huggingface/datasets/issues/7089/events
https://github.com/huggingface/datasets/issues/7089
2,449,479,500
I_kwDODunzps6SABdM
7,089
Missing pyspark dependency causes the testsuite to error out, instead of a few tests to be skipped
{ "avatar_url": "https://avatars.githubusercontent.com/u/271906?v=4", "events_url": "https://api.github.com/users/yurivict/events{/privacy}", "followers_url": "https://api.github.com/users/yurivict/followers", "following_url": "https://api.github.com/users/yurivict/following{/other_user}", "gists_url": "https://api.github.com/users/yurivict/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yurivict", "id": 271906, "login": "yurivict", "node_id": "MDQ6VXNlcjI3MTkwNg==", "organizations_url": "https://api.github.com/users/yurivict/orgs", "received_events_url": "https://api.github.com/users/yurivict/received_events", "repos_url": "https://api.github.com/users/yurivict/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yurivict/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yurivict/subscriptions", "type": "User", "url": "https://api.github.com/users/yurivict" }
[]
open
false
null
[]
null
[]
2024-08-05T21:05:11
2024-08-05T21:05:11
null
NONE
null
null
null
### Describe the bug see the subject ### Steps to reproduce the bug regular tests ### Expected behavior n/a ### Environment info version 2.20.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7089/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7089/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7088
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7088/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7088/comments
https://api.github.com/repos/huggingface/datasets/issues/7088/events
https://github.com/huggingface/datasets/issues/7088
2,447,383,940
I_kwDODunzps6R4B2E
7,088
Disable warning when using with_format format on tensors
{ "avatar_url": "https://avatars.githubusercontent.com/u/42048782?v=4", "events_url": "https://api.github.com/users/Haislich/events{/privacy}", "followers_url": "https://api.github.com/users/Haislich/followers", "following_url": "https://api.github.com/users/Haislich/following{/other_user}", "gists_url": "https://api.github.com/users/Haislich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Haislich", "id": 42048782, "login": "Haislich", "node_id": "MDQ6VXNlcjQyMDQ4Nzgy", "organizations_url": "https://api.github.com/users/Haislich/orgs", "received_events_url": "https://api.github.com/users/Haislich/received_events", "repos_url": "https://api.github.com/users/Haislich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Haislich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Haislich/subscriptions", "type": "User", "url": "https://api.github.com/users/Haislich" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-08-05T00:45:50
2024-08-05T00:45:50
null
NONE
null
null
null
### Feature request If we write this code: ```python """Get data and define datasets.""" from enum import StrEnum from datasets import load_dataset from torch.utils.data import DataLoader from torchvision import transforms class Split(StrEnum): """Describes what type of split to use in the dataloader""" TRAIN = "train" TEST = "test" VAL = "validation" class ImageNetDataLoader(DataLoader): """Create an ImageNetDataloader""" _preprocess_transform = transforms.Compose( [ transforms.Resize(256), transforms.CenterCrop(224), ] ) def __init__(self, batch_size: int = 4, split: Split = Split.TRAIN): dataset = ( load_dataset( "imagenet-1k", split=split, trust_remote_code=True, streaming=True, ) .with_format("torch") .map(self._preprocess) ) super().__init__(dataset=dataset, batch_size=batch_size) def _preprocess(self, data): if data["image"].shape[0] < 3: data["image"] = data["image"].repeat(3, 1, 1) data["image"] = self._preprocess_transform(data["image"].float()) return data if __name__ == "__main__": dataloader = ImageNetDataLoader(batch_size=2) for batch in dataloader: print(batch["image"]) break ``` This will trigger an user warning : ```bash datasets\formatting\torch_formatter.py:85: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) ``` ### Motivation This happens because the the way the formatted tensor is returned in `TorchFormatter._tensorize`. This function handle values of different types, according to some tests it seems that possible value types are `int`, `numpy.ndarray` and `torch.Tensor`. In particular this warning is triggered when the value type is `torch.Tensor`, because is not the suggested Pytorch way of doing it: - https://stackoverflow.com/questions/55266154/pytorch-preferred-way-to-copy-a-tensor - https://discuss.pytorch.org/t/it-is-recommended-to-use-source-tensor-clone-detach-or-sourcetensor-clone-detach-requires-grad-true/101218#:~:text=The%20warning%20points%20to%20wrapping%20a%20tensor%20in%20torch.tensor%2C%20which%20is%20not%20recommended.%0AInstead%20of%20torch.tensor(outputs)%20use%20outputs.clone().detach()%20or%20the%20same%20with%20.requires_grad_(True)%2C%20if%20necessary. ### Your contribution A solution that I found to be working is to change the current way of doing it: ```python return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) ``` To: ```python if (isinstance(value, torch.Tensor)): tensor = value.clone().detach() if self.torch_tensor_kwargs.get('requires_grad', False): tensor.requires_grad_() return tensor else: return torch.tensor(value, **{**default_dtype, **self.torch_tensor_kwargs}) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7088/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7088/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7087
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7087/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7087/comments
https://api.github.com/repos/huggingface/datasets/issues/7087/events
https://github.com/huggingface/datasets/issues/7087
2,447,158,643
I_kwDODunzps6R3K1z
7,087
Unable to create dataset card for Lushootseed language
{ "avatar_url": "https://avatars.githubusercontent.com/u/134876525?v=4", "events_url": "https://api.github.com/users/vaishnavsudarshan/events{/privacy}", "followers_url": "https://api.github.com/users/vaishnavsudarshan/followers", "following_url": "https://api.github.com/users/vaishnavsudarshan/following{/other_user}", "gists_url": "https://api.github.com/users/vaishnavsudarshan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vaishnavsudarshan", "id": 134876525, "login": "vaishnavsudarshan", "node_id": "U_kgDOCAoNbQ", "organizations_url": "https://api.github.com/users/vaishnavsudarshan/orgs", "received_events_url": "https://api.github.com/users/vaishnavsudarshan/received_events", "repos_url": "https://api.github.com/users/vaishnavsudarshan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vaishnavsudarshan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vaishnavsudarshan/subscriptions", "type": "User", "url": "https://api.github.com/users/vaishnavsudarshan" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Thanks for reporting.\r\n\r\nIt is weird, because the language entry is in the list. See: https://github.com/huggingface/huggingface.js/blob/98e32f0ed4ee057a596f66a1dec738e5db9643d5/packages/languages/src/languages_iso_639_3.ts#L15186-L15189\r\n\r\nI have reported the issue:\r\n- https://github.com/huggingface/huggingface.js/issues/834\r\n\r\n", "As explained in the reported issue above, the problem only appears in the autocomplete field: you can still enter the `lut` language directly in the markdown editor window." ]
2024-08-04T14:27:04
2024-08-06T06:59:23
2024-08-06T06:59:22
NONE
null
null
null
### Feature request While I was creating the dataset which contained all documents from the Lushootseed Wikipedia, the dataset card asked me to enter which language the dataset was in. Since Lushootseed is a critically endangered language, it was not available as one of the options. Is it possible to allow entering languages that aren't available in the options? ### Motivation I'd like to add more information about my dataset in the dataset card, and the language is one of the most important pieces of information, since the entire dataset is primarily concerned collecting Lushootseed documents. ### Your contribution I can submit a pull request
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7087/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7087/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7086
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7086/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7086/comments
https://api.github.com/repos/huggingface/datasets/issues/7086/events
https://github.com/huggingface/datasets/issues/7086
2,445,516,829
I_kwDODunzps6Rw6Ad
7,086
load_dataset ignores cached datasets and tries to hit HF Hub, resulting in API rate limit errors
{ "avatar_url": "https://avatars.githubusercontent.com/u/11379648?v=4", "events_url": "https://api.github.com/users/tginart/events{/privacy}", "followers_url": "https://api.github.com/users/tginart/followers", "following_url": "https://api.github.com/users/tginart/following{/other_user}", "gists_url": "https://api.github.com/users/tginart/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tginart", "id": 11379648, "login": "tginart", "node_id": "MDQ6VXNlcjExMzc5NjQ4", "organizations_url": "https://api.github.com/users/tginart/orgs", "received_events_url": "https://api.github.com/users/tginart/received_events", "repos_url": "https://api.github.com/users/tginart/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tginart/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tginart/subscriptions", "type": "User", "url": "https://api.github.com/users/tginart" }
[]
open
false
null
[]
null
[]
2024-08-02T18:12:23
2024-08-02T18:12:23
null
NONE
null
null
null
### Describe the bug I have been running lm-eval-harness a lot which has results in an API rate limit. This seems strange, since all of the data should be cached locally. I have in fact verified this. ### Steps to reproduce the bug 1. Be Me 2. Run `load_dataset("TAUR-Lab/MuSR")` 3. Hit rate limit error 4. Dataset is in .cache/huggingface/datasets 5. ??? ### Expected behavior We should not run into API rate limits if we have cached the dataset ### Environment info datasets 2.16.0 python 3.10.4
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7086/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7086/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7085
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7085/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7085/comments
https://api.github.com/repos/huggingface/datasets/issues/7085/events
https://github.com/huggingface/datasets/issues/7085
2,440,008,618
I_kwDODunzps6Rb5Oq
7,085
[Regression] IterableDataset is broken on 2.20.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/5404177?v=4", "events_url": "https://api.github.com/users/AjayP13/events{/privacy}", "followers_url": "https://api.github.com/users/AjayP13/followers", "following_url": "https://api.github.com/users/AjayP13/following{/other_user}", "gists_url": "https://api.github.com/users/AjayP13/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AjayP13", "id": 5404177, "login": "AjayP13", "node_id": "MDQ6VXNlcjU0MDQxNzc=", "organizations_url": "https://api.github.com/users/AjayP13/orgs", "received_events_url": "https://api.github.com/users/AjayP13/received_events", "repos_url": "https://api.github.com/users/AjayP13/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AjayP13/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AjayP13/subscriptions", "type": "User", "url": "https://api.github.com/users/AjayP13" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" } ]
null
[ "@lhoestq I detected this regression over on [DataDreamer](https://github.com/datadreamer-dev/DataDreamer)'s test suite. I put in these [monkey patches](https://github.com/datadreamer-dev/DataDreamer/blob/4cbaf9f39cf7bedde72bbaa68346e169788fbecb/src/_patches/datasets_reset_state_hack.py) in case that fixed it our tests failing in case it helps you figure out where this is coming from. I found it hard to reason through the resumable IterableDataset code though, so hopefully you have more intuition to implement a proper fix.", "I believe these lines in `TypedExamplesIterable` are responsible for stopping the re-iteration of `IterableDataset`:\r\n\r\nhttps://github.com/huggingface/datasets/blob/ebec2691fb1e40145429f63375cef3f46d3011ab/src/datasets/iterable_dataset.py#L1616-L1619\r\n\r\nIn contrast to other `Iterable`s, there is no check on whether `self._state_dict` is None or not. This particular case stands out and seems less straightforward to comprehend why. @lhoestq could you please assist us with this? Your help is much appreciated.", "Thanks for reporting for investigating - your assumption was correct @VeryLazyBoy !" ]
2024-07-31T13:01:59
2024-08-22T14:49:37
2024-08-22T14:49:07
NONE
null
null
null
### Describe the bug In the latest version of datasets there is a major regression, after creating an `IterableDataset` from a generator and applying a few operations (`map`, `select`), you can no longer iterate through the dataset multiple times. The issue seems to stem from the recent addition of "resumable IterableDatasets" (#6658) (@lhoestq). It seems like it's keeping state when it shouldn't. ### Steps to reproduce the bug Minimal Reproducible Example (comparing `datasets==2.17.0` and `datasets==2.20.0`) ``` #!/bin/bash # List of dataset versions to test versions=("2.17.0" "2.20.0") # Loop through each version for version in "${versions[@]}"; do # Install the specific version of the datasets library pip3 install -q datasets=="$version" 2>/dev/null # Run the Python script python3 - <<EOF from datasets import IterableDataset from datasets.features.features import Features, Value def test_gen(): yield from [{"foo": i} for i in range(10)] features = Features([("foo", Value("int64"))]) d = IterableDataset.from_generator(test_gen, features=features) mapped = d.map(lambda row: {"foo": row["foo"] * 2}) column = mapped.select_columns(["foo"]) print("Version $version - Iterate Once:", list(column)) print("Version $version - Iterate Twice:", list(column)) EOF done ``` The output looks like this: ``` Version 2.17.0 - Iterate Once: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.17.0 - Iterate Twice: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.20.0 - Iterate Once: [{'foo': 0}, {'foo': 2}, {'foo': 4}, {'foo': 6}, {'foo': 8}, {'foo': 10}, {'foo': 12}, {'foo': 14}, {'foo': 16}, {'foo': 18}] Version 2.20.0 - Iterate Twice: [] ``` ### Expected behavior The expected behavior is it version 2.20.0 should behave the same as 2.17.0. ### Environment info `datasets==2.20.0` on any platform.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7085/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7085/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7084
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7084/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7084/comments
https://api.github.com/repos/huggingface/datasets/issues/7084/events
https://github.com/huggingface/datasets/issues/7084
2,439,519,534
I_kwDODunzps6RaB0u
7,084
More easily support streaming local files
{ "avatar_url": "https://avatars.githubusercontent.com/u/23191892?v=4", "events_url": "https://api.github.com/users/fschlatt/events{/privacy}", "followers_url": "https://api.github.com/users/fschlatt/followers", "following_url": "https://api.github.com/users/fschlatt/following{/other_user}", "gists_url": "https://api.github.com/users/fschlatt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fschlatt", "id": 23191892, "login": "fschlatt", "node_id": "MDQ6VXNlcjIzMTkxODky", "organizations_url": "https://api.github.com/users/fschlatt/orgs", "received_events_url": "https://api.github.com/users/fschlatt/received_events", "repos_url": "https://api.github.com/users/fschlatt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fschlatt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fschlatt/subscriptions", "type": "User", "url": "https://api.github.com/users/fschlatt" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
2024-07-31T09:03:15
2024-07-31T09:05:58
null
CONTRIBUTOR
null
null
null
### Feature request Simplify downloading and streaming datasets locally. Specifically, perhaps add an option to `load_dataset(..., streaming="download_first")` or add better support for streaming symlinked or arrow files. ### Motivation I have downloaded FineWeb-edu locally and currently trying to stream the dataset from the local files. I have both the raw parquet files using `hugginface-cli download --repo-type dataset HuggingFaceFW/fineweb-edu` and the processed arrow files using `load_dataset("HuggingFaceFW/fineweb-edu")`. Streaming the files locally does not work well for both file types for two different reasons. **Arrow files** When running `load_dataset("arrow", data_files={"train": "~/.cache/huggingface/datasets/HuggingFaceFW___fineweb-edu/default/0.0.0/5b89d1ea9319fe101b3cbdacd89a903aca1d6052/fineweb-edu-train-*.arrow"})` resolving the data files is fast, but because `arrow` is not included in the known [extensions file list](https://github.com/huggingface/datasets/blob/ce4a0c573920607bc6c814605734091b06b860e7/src/datasets/utils/file_utils.py#L738) , all files are opened and scanned to determine the compression type. Adding `arrow` to the known extension types resolves this issue. **Parquet files** When running `load_dataset("arrow", data_files={"train": "~/.cache/huggingface/hub/dataset-HuggingFaceFW___fineweb-edu/snapshots/5b89d1ea9319fe101b3cbdacd89a903aca1d6052/data/CC-MAIN-*/train-*.parquet"})` the paths do not get resolved because the parquet files are symlinked from the blobs (which contain all files in case there are different versions). This occurs because the [pattern matching](https://github.com/huggingface/datasets/blob/ce4a0c573920607bc6c814605734091b06b860e7/src/datasets/data_files.py#L389) checks if the path is a file and does not check for symlinks. Symlinks (at least on my machine) are of type "other". ### Your contribution I have created a PR for fixing arrow file streaming and symlinks. However, I have not checked locally if the tests work or new tests need to be added. IMO, the easiest option would be to add a `streaming=download_first` option, but I'm afraid that exceeds my current knowledge of how the datasets library works. https://github.com/huggingface/datasets/pull/7083
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7084/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7084/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7083
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7083/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7083/comments
https://api.github.com/repos/huggingface/datasets/issues/7083/events
https://github.com/huggingface/datasets/pull/7083
2,439,518,466
PR_kwDODunzps5292hC
7,083
fix streaming from arrow files
{ "avatar_url": "https://avatars.githubusercontent.com/u/23191892?v=4", "events_url": "https://api.github.com/users/fschlatt/events{/privacy}", "followers_url": "https://api.github.com/users/fschlatt/followers", "following_url": "https://api.github.com/users/fschlatt/following{/other_user}", "gists_url": "https://api.github.com/users/fschlatt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fschlatt", "id": 23191892, "login": "fschlatt", "node_id": "MDQ6VXNlcjIzMTkxODky", "organizations_url": "https://api.github.com/users/fschlatt/orgs", "received_events_url": "https://api.github.com/users/fschlatt/received_events", "repos_url": "https://api.github.com/users/fschlatt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fschlatt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fschlatt/subscriptions", "type": "User", "url": "https://api.github.com/users/fschlatt" }
[]
closed
false
null
[]
null
[]
2024-07-31T09:02:42
2024-08-30T15:17:03
2024-08-30T15:17:03
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7083.diff", "html_url": "https://github.com/huggingface/datasets/pull/7083", "merged_at": "2024-08-30T15:17:03Z", "patch_url": "https://github.com/huggingface/datasets/pull/7083.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7083" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7083/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7083/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7082
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7082/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7082/comments
https://api.github.com/repos/huggingface/datasets/issues/7082/events
https://github.com/huggingface/datasets/pull/7082
2,437,354,975
PR_kwDODunzps522dTJ
7,082
Support HTTP authentication in non-streaming mode
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7082). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005280 / 0.011353 (-0.006073) | 0.003726 / 0.011008 (-0.007282) | 0.067028 / 0.038508 (0.028520) | 0.030833 / 0.023109 (0.007724) | 0.256888 / 0.275898 (-0.019010) | 0.271252 / 0.323480 (-0.052228) | 0.003149 / 0.007986 (-0.004836) | 0.004031 / 0.004328 (-0.000298) | 0.051178 / 0.004250 (0.046927) | 0.042751 / 0.037052 (0.005699) | 0.268385 / 0.258489 (0.009896) | 0.295547 / 0.293841 (0.001706) | 0.030218 / 0.128546 (-0.098328) | 0.012033 / 0.075646 (-0.063613) | 0.206389 / 0.419271 (-0.212882) | 0.036227 / 0.043533 (-0.007306) | 0.258778 / 0.255139 (0.003639) | 0.276027 / 0.283200 (-0.007172) | 0.020309 / 0.141683 (-0.121374) | 1.109689 / 1.452155 (-0.342466) | 1.139979 / 1.492716 (-0.352738) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093615 / 0.018006 (0.075609) | 0.301279 / 0.000490 (0.300789) | 0.000207 / 0.000200 (0.000007) | 0.000048 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018697 / 0.037411 (-0.018715) | 0.062627 / 0.014526 (0.048101) | 0.075119 / 0.176557 (-0.101438) | 0.119960 / 0.737135 (-0.617175) | 0.074606 / 0.296338 (-0.221732) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281042 / 0.215209 (0.065833) | 2.746232 / 2.077655 (0.668578) | 1.422351 / 1.504120 (-0.081769) | 1.290087 / 1.541195 (-0.251108) | 1.321067 / 1.468490 (-0.147423) | 0.727514 / 4.584777 (-3.857263) | 2.407086 / 3.745712 (-1.338626) | 2.914191 / 5.269862 (-2.355670) | 1.872206 / 4.565676 (-2.693471) | 0.079538 / 0.424275 (-0.344738) | 0.005250 / 0.007607 (-0.002357) | 0.335536 / 0.226044 (0.109491) | 3.324922 / 2.268929 (1.055994) | 1.790688 / 55.444624 (-53.653936) | 1.475738 / 6.876477 (-5.400739) | 1.492465 / 2.142072 (-0.649607) | 0.812342 / 4.805227 (-3.992885) | 0.135036 / 6.500664 (-6.365628) | 0.041484 / 0.075469 (-0.033985) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.948425 / 1.841788 (-0.893363) | 11.321564 / 8.074308 (3.247256) | 9.635661 / 10.191392 (-0.555731) | 0.142793 / 0.680424 (-0.537631) | 0.014988 / 0.534201 (-0.519213) | 0.300209 / 0.579283 (-0.279074) | 0.262303 / 0.434364 (-0.172061) | 0.337927 / 0.540337 (-0.202411) | 0.427962 / 1.386936 (-0.958975) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005664 / 0.011353 (-0.005689) | 0.003946 / 0.011008 (-0.007062) | 0.050034 / 0.038508 (0.011526) | 0.031652 / 0.023109 (0.008543) | 0.281139 / 0.275898 (0.005241) | 0.299203 / 0.323480 (-0.024277) | 0.004332 / 0.007986 (-0.003653) | 0.002769 / 0.004328 (-0.001560) | 0.048336 / 0.004250 (0.044086) | 0.039744 / 0.037052 (0.002692) | 0.289344 / 0.258489 (0.030855) | 0.320470 / 0.293841 (0.026629) | 0.032372 / 0.128546 (-0.096174) | 0.012090 / 0.075646 (-0.063557) | 0.060838 / 0.419271 (-0.358433) | 0.034227 / 0.043533 (-0.009306) | 0.275007 / 0.255139 (0.019868) | 0.293455 / 0.283200 (0.010256) | 0.017203 / 0.141683 (-0.124480) | 1.141577 / 1.452155 (-0.310578) | 1.176761 / 1.492716 (-0.315955) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093562 / 0.018006 (0.075556) | 0.302695 / 0.000490 (0.302205) | 0.000215 / 0.000200 (0.000015) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022638 / 0.037411 (-0.014774) | 0.078788 / 0.014526 (0.064262) | 0.088474 / 0.176557 (-0.088082) | 0.128421 / 0.737135 (-0.608714) | 0.089297 / 0.296338 (-0.207041) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302669 / 0.215209 (0.087459) | 2.963855 / 2.077655 (0.886200) | 1.600053 / 1.504120 (0.095933) | 1.461456 / 1.541195 (-0.079739) | 1.469877 / 1.468490 (0.001387) | 0.725752 / 4.584777 (-3.859025) | 0.968970 / 3.745712 (-2.776742) | 2.910502 / 5.269862 (-2.359359) | 1.902762 / 4.565676 (-2.662914) | 0.079977 / 0.424275 (-0.344298) | 0.005582 / 0.007607 (-0.002025) | 0.351626 / 0.226044 (0.125581) | 3.520593 / 2.268929 (1.251664) | 1.968950 / 55.444624 (-53.475675) | 1.662190 / 6.876477 (-5.214286) | 1.677909 / 2.142072 (-0.464163) | 0.791541 / 4.805227 (-4.013687) | 0.134647 / 6.500664 (-6.366017) | 0.040687 / 0.075469 (-0.034782) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.028885 / 1.841788 (-0.812903) | 11.928358 / 8.074308 (3.854050) | 10.199165 / 10.191392 (0.007773) | 0.142930 / 0.680424 (-0.537493) | 0.016479 / 0.534201 (-0.517722) | 0.302993 / 0.579283 (-0.276290) | 0.128878 / 0.434364 (-0.305486) | 0.342591 / 0.540337 (-0.197747) | 0.456735 / 1.386936 (-0.930201) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d298f5549893228c03e9e3a42727327cb83f3dff \"CML watermark\")\n" ]
2024-07-30T09:25:49
2024-08-08T08:29:55
2024-08-08T08:24:06
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7082.diff", "html_url": "https://github.com/huggingface/datasets/pull/7082", "merged_at": "2024-08-08T08:24:06Z", "patch_url": "https://github.com/huggingface/datasets/pull/7082.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7082" }
Support HTTP authentication in non-streaming mode, by support passing HTTP storage_options in non-streaming mode. - Note that currently, HTTP authentication is supported only in streaming mode. For example, this is necessary if a remote HTTP host requires authentication to download the data.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7082/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7082/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7081
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7081/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7081/comments
https://api.github.com/repos/huggingface/datasets/issues/7081/events
https://github.com/huggingface/datasets/pull/7081
2,437,059,657
PR_kwDODunzps521cGm
7,081
Set load_from_disk path type as PathLike
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7081). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005665 / 0.011353 (-0.005688) | 0.004130 / 0.011008 (-0.006878) | 0.064231 / 0.038508 (0.025723) | 0.030738 / 0.023109 (0.007628) | 0.251896 / 0.275898 (-0.024002) | 0.275182 / 0.323480 (-0.048298) | 0.003364 / 0.007986 (-0.004621) | 0.003569 / 0.004328 (-0.000759) | 0.049407 / 0.004250 (0.045157) | 0.048177 / 0.037052 (0.011124) | 0.253739 / 0.258489 (-0.004751) | 0.304087 / 0.293841 (0.010246) | 0.030457 / 0.128546 (-0.098089) | 0.012762 / 0.075646 (-0.062885) | 0.214312 / 0.419271 (-0.204959) | 0.036673 / 0.043533 (-0.006860) | 0.251838 / 0.255139 (-0.003301) | 0.274049 / 0.283200 (-0.009151) | 0.021133 / 0.141683 (-0.120550) | 1.143743 / 1.452155 (-0.308412) | 1.203681 / 1.492716 (-0.289036) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094668 / 0.018006 (0.076662) | 0.300323 / 0.000490 (0.299833) | 0.000222 / 0.000200 (0.000022) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018565 / 0.037411 (-0.018846) | 0.066096 / 0.014526 (0.051570) | 0.075700 / 0.176557 (-0.100857) | 0.122185 / 0.737135 (-0.614950) | 0.077688 / 0.296338 (-0.218651) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288804 / 0.215209 (0.073595) | 2.838336 / 2.077655 (0.760681) | 1.530575 / 1.504120 (0.026455) | 1.406716 / 1.541195 (-0.134478) | 1.438885 / 1.468490 (-0.029605) | 0.744809 / 4.584777 (-3.839968) | 2.447992 / 3.745712 (-1.297721) | 3.126261 / 5.269862 (-2.143601) | 1.999687 / 4.565676 (-2.565990) | 0.081536 / 0.424275 (-0.342739) | 0.005827 / 0.007607 (-0.001780) | 0.346367 / 0.226044 (0.120323) | 3.373268 / 2.268929 (1.104339) | 1.890293 / 55.444624 (-53.554332) | 1.590384 / 6.876477 (-5.286093) | 1.652101 / 2.142072 (-0.489971) | 0.805888 / 4.805227 (-3.999339) | 0.137687 / 6.500664 (-6.362977) | 0.044536 / 0.075469 (-0.030933) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.998393 / 1.841788 (-0.843395) | 12.392241 / 8.074308 (4.317933) | 10.055638 / 10.191392 (-0.135754) | 0.132347 / 0.680424 (-0.548077) | 0.014635 / 0.534201 (-0.519566) | 0.301939 / 0.579283 (-0.277344) | 0.266756 / 0.434364 (-0.167608) | 0.342730 / 0.540337 (-0.197608) | 0.435463 / 1.386936 (-0.951473) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006421 / 0.011353 (-0.004932) | 0.004494 / 0.011008 (-0.006514) | 0.051315 / 0.038508 (0.012806) | 0.035570 / 0.023109 (0.012460) | 0.271635 / 0.275898 (-0.004263) | 0.297082 / 0.323480 (-0.026398) | 0.004572 / 0.007986 (-0.003414) | 0.002886 / 0.004328 (-0.001443) | 0.049152 / 0.004250 (0.044902) | 0.043000 / 0.037052 (0.005948) | 0.281921 / 0.258489 (0.023432) | 0.321097 / 0.293841 (0.027256) | 0.033488 / 0.128546 (-0.095058) | 0.012835 / 0.075646 (-0.062811) | 0.061831 / 0.419271 (-0.357441) | 0.034674 / 0.043533 (-0.008858) | 0.272885 / 0.255139 (0.017746) | 0.292726 / 0.283200 (0.009527) | 0.019906 / 0.141683 (-0.121777) | 1.132234 / 1.452155 (-0.319920) | 1.155359 / 1.492716 (-0.337357) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096943 / 0.018006 (0.078937) | 0.308980 / 0.000490 (0.308490) | 0.000225 / 0.000200 (0.000025) | 0.000047 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023551 / 0.037411 (-0.013861) | 0.081682 / 0.014526 (0.067156) | 0.090987 / 0.176557 (-0.085569) | 0.132542 / 0.737135 (-0.604593) | 0.092844 / 0.296338 (-0.203494) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304190 / 0.215209 (0.088981) | 2.958591 / 2.077655 (0.880936) | 1.610211 / 1.504120 (0.106091) | 1.488216 / 1.541195 (-0.052978) | 1.525429 / 1.468490 (0.056939) | 0.752811 / 4.584777 (-3.831966) | 0.967887 / 3.745712 (-2.777825) | 2.982760 / 5.269862 (-2.287102) | 1.996623 / 4.565676 (-2.569053) | 0.080783 / 0.424275 (-0.343492) | 0.005337 / 0.007607 (-0.002270) | 0.354996 / 0.226044 (0.128951) | 3.540788 / 2.268929 (1.271860) | 1.997445 / 55.444624 (-53.447179) | 1.682232 / 6.876477 (-5.194245) | 1.883198 / 2.142072 (-0.258875) | 0.814444 / 4.805227 (-3.990783) | 0.135798 / 6.500664 (-6.364867) | 0.041750 / 0.075469 (-0.033719) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.048688 / 1.841788 (-0.793099) | 13.122809 / 8.074308 (5.048501) | 10.893354 / 10.191392 (0.701962) | 0.133710 / 0.680424 (-0.546713) | 0.016357 / 0.534201 (-0.517844) | 0.304364 / 0.579283 (-0.274919) | 0.126457 / 0.434364 (-0.307907) | 0.345747 / 0.540337 (-0.194591) | 0.441620 / 1.386936 (-0.945316) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#27ea8e8ead3e76bb07aa645f882945495d238ef3 \"CML watermark\")\n" ]
2024-07-30T07:00:38
2024-07-30T08:30:37
2024-07-30T08:21:50
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7081.diff", "html_url": "https://github.com/huggingface/datasets/pull/7081", "merged_at": "2024-07-30T08:21:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/7081.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7081" }
Set `load_from_disk` path type as `PathLike`. This way it is aligned with `save_to_disk`.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7081/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7081/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7080
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7080/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7080/comments
https://api.github.com/repos/huggingface/datasets/issues/7080/events
https://github.com/huggingface/datasets/issues/7080
2,434,275,664
I_kwDODunzps6RGBlQ
7,080
Generating train split takes a long time
{ "avatar_url": "https://avatars.githubusercontent.com/u/35648800?v=4", "events_url": "https://api.github.com/users/alexanderswerdlow/events{/privacy}", "followers_url": "https://api.github.com/users/alexanderswerdlow/followers", "following_url": "https://api.github.com/users/alexanderswerdlow/following{/other_user}", "gists_url": "https://api.github.com/users/alexanderswerdlow/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/alexanderswerdlow", "id": 35648800, "login": "alexanderswerdlow", "node_id": "MDQ6VXNlcjM1NjQ4ODAw", "organizations_url": "https://api.github.com/users/alexanderswerdlow/orgs", "received_events_url": "https://api.github.com/users/alexanderswerdlow/received_events", "repos_url": "https://api.github.com/users/alexanderswerdlow/repos", "site_admin": false, "starred_url": "https://api.github.com/users/alexanderswerdlow/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/alexanderswerdlow/subscriptions", "type": "User", "url": "https://api.github.com/users/alexanderswerdlow" }
[]
open
false
null
[]
null
[]
2024-07-29T01:42:43
2024-07-29T01:42:43
null
NONE
null
null
null
### Describe the bug Loading a simple webdataset takes ~45 minutes. ### Steps to reproduce the bug ``` from datasets import load_dataset dataset = load_dataset("PixArt-alpha/SAM-LLaVA-Captions10M") ``` ### Expected behavior The dataset should load immediately as it does when loaded through a normal indexed WebDataset loader. Generating splits should be optional and there should be a message showing how to disable it. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-4.18.0-372.32.1.el8_6.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.14 - `huggingface_hub` version: 0.24.1 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7080/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7080/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7079
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7079/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7079/comments
https://api.github.com/repos/huggingface/datasets/issues/7079/events
https://github.com/huggingface/datasets/issues/7079
2,433,363,298
I_kwDODunzps6RCi1i
7,079
HfHubHTTPError: 500 Server Error: Internal Server Error for url:
{ "avatar_url": "https://avatars.githubusercontent.com/u/147971?v=4", "events_url": "https://api.github.com/users/neoneye/events{/privacy}", "followers_url": "https://api.github.com/users/neoneye/followers", "following_url": "https://api.github.com/users/neoneye/following{/other_user}", "gists_url": "https://api.github.com/users/neoneye/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/neoneye", "id": 147971, "login": "neoneye", "node_id": "MDQ6VXNlcjE0Nzk3MQ==", "organizations_url": "https://api.github.com/users/neoneye/orgs", "received_events_url": "https://api.github.com/users/neoneye/received_events", "repos_url": "https://api.github.com/users/neoneye/repos", "site_admin": false, "starred_url": "https://api.github.com/users/neoneye/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/neoneye/subscriptions", "type": "User", "url": "https://api.github.com/users/neoneye" }
[]
closed
false
null
[]
null
[ "same issue here. @albertvillanova @lhoestq ", "Also impacted by this issue in many of my datasets (though not all) - in my case, this also seems to affect datasets that have been updated recently. Git cloning and the web interface still work:\r\n- https://huggingface.co/api/datasets/acmc/cheat_reduced\r\n- https://huggingface.co/api/datasets/acmc/ghostbuster_reuter_reduced\r\n- https://huggingface.co/api/datasets/acmc/ghostbuster_wp_reduced\r\n- https://huggingface.co/api/datasets/acmc/ghostbuster_essay_reduced\r\n\r\nOddly enough, the system status looks good: https://status.huggingface.co/", "Hey how to download these datasets using git cloning?", "Also reported here\r\nhttps://github.com/huggingface/huggingface_hub/issues/2425", "I have been getting the same error for the past 8 hours as well", "Same error since yesterday, fails on any new dataset created", "Same here. I cannot download the HelpSteer2 dataset: https://huggingface.co/datasets/nvidia/HelpSteer2 which has been uploaded about a month ago", "> Hey how to download these datasets using git cloning?\n\nYou'll find a guide [here](https://huggingface.co/docs/hub/en/datasets-downloading) 👍🏻", "Same here for imdb dataset", "It also happens with this dataset: https://huggingface.co/datasets/ylacombe/jenny-tts-6h-tagged", "same here for all datsets in the sentence-tramsformers repo and related collections.\r\n\r\nsame issue with dataset that i recently uploaded on my repo.\r\nseems that the upload date of the datset is not relevat (getting this issue with both old datasets and newer ones)\r\n\r\nfor some reason, i was able to get the dataset by turning it private and accessing it with the id token (accessing it as public while providing the token doesn not work)..... but i can say if that is just a random coincidence.\r\n\r\nseems not much deterministic, for a specific dataset (sentence-transformer nq ) , that was \"down\" since some hours , worked for like 5-10 minutes, then stopped again\r\n\r\nnow even this dataset (that worked since some min ago, and that i'm in the middle of processing steps) stopped working: _https://huggingface.co/datasets/bobox/msmarco-bm25-EduScore/_\r\n\r\nas already pointed out, there are no updates on **_https://status.huggingface.co/_**\r\n\r\n\\n\r\n\\n\r\n\r\nan example of the whole error message:\r\n``` \r\nHfHubHTTPError \r\n\r\n[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, trust_remote_code, **config_kwargs)\r\n 2592 \r\n 2593 # Create a dataset builder\r\n-> 2594 builder_instance = load_dataset_builder(\r\n 2595 path=path,\r\n 2596 name=name,\r\n\r\n[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, trust_remote_code, _require_default_config_name, **config_kwargs)\r\n 2264 download_config = download_config.copy() if download_config else DownloadConfig()\r\n 2265 download_config.storage_options.update(storage_options)\r\n-> 2266 dataset_module = dataset_module_factory(\r\n 2267 path,\r\n 2268 revision=revision,\r\n\r\n[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs)\r\n 1912 f\"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}\"\r\n 1913 ) from None\r\n-> 1914 raise e1 from None\r\n 1915 else:\r\n 1916 raise FileNotFoundError(\r\n\r\n[/usr/local/lib/python3.10/dist-packages/datasets/load.py](https://localhost:8080/#) in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, cache_dir, trust_remote_code, _require_default_config_name, _require_custom_configs, **download_kwargs)\r\n 1832 hf_api = HfApi(config.HF_ENDPOINT)\r\n 1833 try:\r\n-> 1834 dataset_info = hf_api.dataset_info(\r\n 1835 repo_id=path,\r\n 1836 revision=revision,\r\n\r\n[/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_validators.py](https://localhost:8080/#) in _inner_fn(*args, **kwargs)\r\n 112 kwargs = smoothly_deprecate_use_auth_token(fn_name=fn.__name__, has_token=has_token, kwargs=kwargs)\r\n 113 \r\n--> 114 return fn(*args, **kwargs)\r\n 115 \r\n 116 return _inner_fn # type: ignore\r\n\r\n[/usr/local/lib/python3.10/dist-packages/huggingface_hub/hf_api.py](https://localhost:8080/#) in dataset_info(self, repo_id, revision, timeout, files_metadata, token)\r\n 2362 \r\n 2363 r = get_session().get(path, headers=headers, timeout=timeout, params=params)\r\n-> 2364 hf_raise_for_status(r)\r\n 2365 data = r.json()\r\n 2366 return DatasetInfo(**data)\r\n\r\n[/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_errors.py](https://localhost:8080/#) in hf_raise_for_status(response, endpoint_name)\r\n 369 # Convert `HTTPError` into a `HfHubHTTPError` to display request information\r\n 370 # as well (request id and/or server error message)\r\n--> 371 raise HfHubHTTPError(str(e), response=response) from e\r\n 372 \r\n 373 \r\n\r\nHfHubHTTPError: 500 Server Error: Internal Server Error for url: https://huggingface.co/api/datasets/bobox/xSum-processed (Request ID: Root=1-66a527f0-756cfbc35cc466f075382289;7d5dc06a-37e9-4c22-874d-92b0b1023276)\r\n\r\nInternal Error - We're working hard to fix this as soon as possible!\r\n``` ", "we're working on a fix !", "We fixed the issue, you can load datasets again, sorry for the inconvenience !", "I can confirm, it's working now. I can load the dataset, yay. Thank you @lhoestq ", "@lhoestq thank you so much! " ]
2024-07-27T08:21:03
2024-07-27T20:06:44
2024-07-27T19:52:30
NONE
null
null
null
### Describe the bug newly uploaded datasets, since yesterday, yields an error. old datasets, works fine. Seems like the datasets api server returns a 500 I'm getting the same error, when I invoke `load_dataset` with my dataset. Long discussion about it here, but I'm not sure anyone from huggingface have seen it. https://discuss.huggingface.co/t/hfhubhttperror-500-server-error-internal-server-error-for-url/99580/1 ### Steps to reproduce the bug this api url: https://huggingface.co/api/datasets/neoneye/simon-arc-shape-v4-rev3 respond with: ``` {"error":"Internal Error - We're working hard to fix this as soon as possible!"} ``` ### Expected behavior return no error with newer datasets. With older datasets I can load the datasets fine. ### Environment info # Browser When I access the api in the browser: https://huggingface.co/api/datasets/neoneye/simon-arc-shape-v4-rev3 ``` {"error":"Internal Error - We're working hard to fix this as soon as possible!"} ``` ### Request headers ``` Accept text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8 Accept-Encoding gzip, deflate, br, zstd Accept-Language en-US,en;q=0.5 Connection keep-alive Host huggingface.co Priority u=1 Sec-Fetch-Dest document Sec-Fetch-Mode navigate Sec-Fetch-Site cross-site Upgrade-Insecure-Requests 1 User-Agent Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:127.0) Gecko/20100101 Firefox/127.0 ``` ### Response headers ``` X-Firefox-Spdy h2 access-control-allow-origin https://huggingface.co access-control-expose-headers X-Repo-Commit,X-Request-Id,X-Error-Code,X-Error-Message,X-Total-Count,ETag,Link,Accept-Ranges,Content-Range content-length 80 content-type application/json; charset=utf-8 cross-origin-opener-policy same-origin date Fri, 26 Jul 2024 19:09:45 GMT etag W/"50-9qrwU+BNI4SD0Fe32p/nofkmv0c" referrer-policy strict-origin-when-cross-origin vary Origin via 1.1 1624c79cd07e6098196697a6a7907e4a.cloudfront.net (CloudFront) x-amz-cf-id SP8E7n5qRaP6i9c9G83dNAiOzJBU4GXSrDRAcVNTomY895K35H0nJQ== x-amz-cf-pop CPH50-C1 x-cache Error from cloudfront x-error-message Internal Error - We're working hard to fix this as soon as possible! x-powered-by huggingface-moon x-request-id Root=1-66a3f479-026417465ef42f49349fdca1 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 4, "heart": 3, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 7, "url": "https://api.github.com/repos/huggingface/datasets/issues/7079/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7079/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7078
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7078/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7078/comments
https://api.github.com/repos/huggingface/datasets/issues/7078/events
https://github.com/huggingface/datasets/pull/7078
2,433,270,271
PR_kwDODunzps52oq4n
7,078
Fix CI test_convert_to_parquet
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7078). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005262 / 0.011353 (-0.006090) | 0.003733 / 0.011008 (-0.007275) | 0.062619 / 0.038508 (0.024111) | 0.029491 / 0.023109 (0.006382) | 0.248947 / 0.275898 (-0.026951) | 0.278741 / 0.323480 (-0.044739) | 0.003173 / 0.007986 (-0.004813) | 0.002777 / 0.004328 (-0.001551) | 0.049344 / 0.004250 (0.045094) | 0.043103 / 0.037052 (0.006051) | 0.252402 / 0.258489 (-0.006087) | 0.288030 / 0.293841 (-0.005811) | 0.029425 / 0.128546 (-0.099121) | 0.012058 / 0.075646 (-0.063589) | 0.204509 / 0.419271 (-0.214762) | 0.035721 / 0.043533 (-0.007812) | 0.249121 / 0.255139 (-0.006018) | 0.272171 / 0.283200 (-0.011029) | 0.019515 / 0.141683 (-0.122168) | 1.130088 / 1.452155 (-0.322067) | 1.148856 / 1.492716 (-0.343860) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093613 / 0.018006 (0.075607) | 0.300830 / 0.000490 (0.300340) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018381 / 0.037411 (-0.019030) | 0.061515 / 0.014526 (0.046989) | 0.074370 / 0.176557 (-0.102186) | 0.120751 / 0.737135 (-0.616384) | 0.074971 / 0.296338 (-0.221367) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280499 / 0.215209 (0.065290) | 2.763114 / 2.077655 (0.685459) | 1.458696 / 1.504120 (-0.045424) | 1.331214 / 1.541195 (-0.209981) | 1.343157 / 1.468490 (-0.125333) | 0.732775 / 4.584777 (-3.852002) | 2.381485 / 3.745712 (-1.364227) | 2.930117 / 5.269862 (-2.339745) | 1.887617 / 4.565676 (-2.678059) | 0.080543 / 0.424275 (-0.343732) | 0.005136 / 0.007607 (-0.002471) | 0.336924 / 0.226044 (0.110879) | 3.343071 / 2.268929 (1.074142) | 1.823677 / 55.444624 (-53.620948) | 1.572300 / 6.876477 (-5.304176) | 1.564040 / 2.142072 (-0.578032) | 0.802369 / 4.805227 (-4.002858) | 0.135198 / 6.500664 (-6.365466) | 0.041499 / 0.075469 (-0.033970) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961202 / 1.841788 (-0.880585) | 11.275695 / 8.074308 (3.201387) | 9.508052 / 10.191392 (-0.683340) | 0.136921 / 0.680424 (-0.543503) | 0.014055 / 0.534201 (-0.520146) | 0.300076 / 0.579283 (-0.279208) | 0.263403 / 0.434364 (-0.170961) | 0.340871 / 0.540337 (-0.199466) | 0.433452 / 1.386936 (-0.953484) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005683 / 0.011353 (-0.005670) | 0.003596 / 0.011008 (-0.007412) | 0.049913 / 0.038508 (0.011405) | 0.033275 / 0.023109 (0.010166) | 0.266011 / 0.275898 (-0.009887) | 0.295182 / 0.323480 (-0.028298) | 0.004336 / 0.007986 (-0.003649) | 0.002787 / 0.004328 (-0.001541) | 0.049035 / 0.004250 (0.044784) | 0.039833 / 0.037052 (0.002781) | 0.283520 / 0.258489 (0.025031) | 0.317437 / 0.293841 (0.023596) | 0.032578 / 0.128546 (-0.095968) | 0.011744 / 0.075646 (-0.063902) | 0.060174 / 0.419271 (-0.359097) | 0.034182 / 0.043533 (-0.009351) | 0.271821 / 0.255139 (0.016682) | 0.292189 / 0.283200 (0.008989) | 0.017045 / 0.141683 (-0.124638) | 1.127742 / 1.452155 (-0.324413) | 1.180621 / 1.492716 (-0.312095) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093798 / 0.018006 (0.075792) | 0.310715 / 0.000490 (0.310226) | 0.000213 / 0.000200 (0.000013) | 0.000046 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022379 / 0.037411 (-0.015032) | 0.076823 / 0.014526 (0.062298) | 0.088086 / 0.176557 (-0.088471) | 0.128926 / 0.737135 (-0.608210) | 0.089187 / 0.296338 (-0.207151) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293982 / 0.215209 (0.078773) | 2.930932 / 2.077655 (0.853277) | 1.576425 / 1.504120 (0.072305) | 1.445163 / 1.541195 (-0.096031) | 1.462118 / 1.468490 (-0.006372) | 0.725816 / 4.584777 (-3.858961) | 0.949767 / 3.745712 (-2.795945) | 2.832821 / 5.269862 (-2.437041) | 1.897064 / 4.565676 (-2.668612) | 0.079853 / 0.424275 (-0.344423) | 0.005352 / 0.007607 (-0.002255) | 0.344551 / 0.226044 (0.118507) | 3.442506 / 2.268929 (1.173578) | 1.938700 / 55.444624 (-53.505925) | 1.662205 / 6.876477 (-5.214272) | 1.769061 / 2.142072 (-0.373011) | 0.818089 / 4.805227 (-3.987139) | 0.134612 / 6.500664 (-6.366052) | 0.040419 / 0.075469 (-0.035050) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.032267 / 1.841788 (-0.809521) | 11.902598 / 8.074308 (3.828290) | 10.342229 / 10.191392 (0.150837) | 0.140509 / 0.680424 (-0.539915) | 0.015593 / 0.534201 (-0.518608) | 0.303326 / 0.579283 (-0.275957) | 0.127391 / 0.434364 (-0.306973) | 0.342095 / 0.540337 (-0.198243) | 0.438978 / 1.386936 (-0.947958) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#30000fb6ca53126917ee17e1b1987f94f07a1569 \"CML watermark\")\n" ]
2024-07-27T05:32:40
2024-07-27T05:50:57
2024-07-27T05:44:32
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7078.diff", "html_url": "https://github.com/huggingface/datasets/pull/7078", "merged_at": "2024-07-27T05:44:32Z", "patch_url": "https://github.com/huggingface/datasets/pull/7078.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7078" }
Fix `test_convert_to_parquet` by patching `HfApi.preupload_lfs_files` and revert temporary fix: - #7074
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7078/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7078/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7077
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7077/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7077/comments
https://api.github.com/repos/huggingface/datasets/issues/7077/events
https://github.com/huggingface/datasets/issues/7077
2,432,345,489
I_kwDODunzps6Q-qWR
7,077
column_names ignored by load_dataset() when loading CSV file
{ "avatar_url": "https://avatars.githubusercontent.com/u/9130265?v=4", "events_url": "https://api.github.com/users/luismsgomes/events{/privacy}", "followers_url": "https://api.github.com/users/luismsgomes/followers", "following_url": "https://api.github.com/users/luismsgomes/following{/other_user}", "gists_url": "https://api.github.com/users/luismsgomes/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/luismsgomes", "id": 9130265, "login": "luismsgomes", "node_id": "MDQ6VXNlcjkxMzAyNjU=", "organizations_url": "https://api.github.com/users/luismsgomes/orgs", "received_events_url": "https://api.github.com/users/luismsgomes/received_events", "repos_url": "https://api.github.com/users/luismsgomes/repos", "site_admin": false, "starred_url": "https://api.github.com/users/luismsgomes/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/luismsgomes/subscriptions", "type": "User", "url": "https://api.github.com/users/luismsgomes" }
[]
open
false
null
[]
null
[ "I confirm that `column_names` values are not copied to `names` variable because in this case `CsvConfig.__post_init__` is not called: `CsvConfig` is instantiated with default values and afterwards the `config_kwargs` are used to overwrite its attributes.\r\n\r\n@luismsgomes in the meantime, you can avoid the bug if you pass `names` instead of `column_names`." ]
2024-07-26T14:18:04
2024-07-30T07:52:26
null
NONE
null
null
null
### Describe the bug load_dataset() ignores the column_names kwarg when loading a CSV file. Instead, it uses whatever values are on the first line of the file. ### Steps to reproduce the bug Call `load_dataset` to load data from a CSV file and specify `column_names` kwarg. ### Expected behavior The resulting dataset should have the specified column names **and** the first line of the file should be considered as data values. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.10.0-30-cloud-amd64-x86_64-with-glibc2.31 - Python version: 3.9.2 - `huggingface_hub` version: 0.24.2 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7077/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7077/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7076
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7076/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7076/comments
https://api.github.com/repos/huggingface/datasets/issues/7076/events
https://github.com/huggingface/datasets/pull/7076
2,432,275,393
PR_kwDODunzps52lTDe
7,076
🧪 Do not mock create_commit
{ "avatar_url": "https://avatars.githubusercontent.com/u/342922?v=4", "events_url": "https://api.github.com/users/coyotte508/events{/privacy}", "followers_url": "https://api.github.com/users/coyotte508/followers", "following_url": "https://api.github.com/users/coyotte508/following{/other_user}", "gists_url": "https://api.github.com/users/coyotte508/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/coyotte508", "id": 342922, "login": "coyotte508", "node_id": "MDQ6VXNlcjM0MjkyMg==", "organizations_url": "https://api.github.com/users/coyotte508/orgs", "received_events_url": "https://api.github.com/users/coyotte508/received_events", "repos_url": "https://api.github.com/users/coyotte508/repos", "site_admin": false, "starred_url": "https://api.github.com/users/coyotte508/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/coyotte508/subscriptions", "type": "User", "url": "https://api.github.com/users/coyotte508" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7076). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-26T13:44:42
2024-07-27T05:48:17
2024-07-27T05:48:17
MEMBER
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/7076.diff", "html_url": "https://github.com/huggingface/datasets/pull/7076", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7076.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7076" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7076/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7076/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7075
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7075/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7075/comments
https://api.github.com/repos/huggingface/datasets/issues/7075/events
https://github.com/huggingface/datasets/pull/7075
2,432,027,412
PR_kwDODunzps52kciD
7,075
Update required soxr version from pre-release to release
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7075). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005717 / 0.011353 (-0.005636) | 0.004102 / 0.011008 (-0.006906) | 0.064343 / 0.038508 (0.025835) | 0.031510 / 0.023109 (0.008400) | 0.254534 / 0.275898 (-0.021364) | 0.275080 / 0.323480 (-0.048400) | 0.004243 / 0.007986 (-0.003742) | 0.002782 / 0.004328 (-0.001546) | 0.049554 / 0.004250 (0.045303) | 0.045291 / 0.037052 (0.008239) | 0.264118 / 0.258489 (0.005629) | 0.296476 / 0.293841 (0.002635) | 0.030298 / 0.128546 (-0.098248) | 0.012646 / 0.075646 (-0.063000) | 0.208403 / 0.419271 (-0.210869) | 0.036365 / 0.043533 (-0.007168) | 0.250294 / 0.255139 (-0.004845) | 0.276057 / 0.283200 (-0.007143) | 0.018687 / 0.141683 (-0.122996) | 1.128970 / 1.452155 (-0.323184) | 1.170923 / 1.492716 (-0.321793) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.134953 / 0.018006 (0.116947) | 0.301722 / 0.000490 (0.301232) | 0.000242 / 0.000200 (0.000042) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019650 / 0.037411 (-0.017761) | 0.063404 / 0.014526 (0.048878) | 0.074883 / 0.176557 (-0.101674) | 0.122846 / 0.737135 (-0.614289) | 0.077410 / 0.296338 (-0.218928) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287710 / 0.215209 (0.072501) | 2.813834 / 2.077655 (0.736179) | 1.454710 / 1.504120 (-0.049410) | 1.327303 / 1.541195 (-0.213891) | 1.375064 / 1.468490 (-0.093426) | 0.746831 / 4.584777 (-3.837946) | 2.361008 / 3.745712 (-1.384705) | 3.080869 / 5.269862 (-2.188993) | 1.969927 / 4.565676 (-2.595749) | 0.081045 / 0.424275 (-0.343230) | 0.005168 / 0.007607 (-0.002440) | 0.342657 / 0.226044 (0.116613) | 3.404883 / 2.268929 (1.135955) | 1.840761 / 55.444624 (-53.603863) | 1.535400 / 6.876477 (-5.341076) | 1.584613 / 2.142072 (-0.557460) | 0.828003 / 4.805227 (-3.977224) | 0.135564 / 6.500664 (-6.365100) | 0.042717 / 0.075469 (-0.032752) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.985301 / 1.841788 (-0.856487) | 11.945913 / 8.074308 (3.871605) | 9.887577 / 10.191392 (-0.303815) | 0.141261 / 0.680424 (-0.539163) | 0.014961 / 0.534201 (-0.519240) | 0.304134 / 0.579283 (-0.275150) | 0.264733 / 0.434364 (-0.169631) | 0.349993 / 0.540337 (-0.190345) | 0.440390 / 1.386936 (-0.946546) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006145 / 0.011353 (-0.005207) | 0.004259 / 0.011008 (-0.006749) | 0.051245 / 0.038508 (0.012737) | 0.034873 / 0.023109 (0.011764) | 0.274149 / 0.275898 (-0.001749) | 0.299761 / 0.323480 (-0.023719) | 0.004457 / 0.007986 (-0.003529) | 0.002938 / 0.004328 (-0.001390) | 0.049547 / 0.004250 (0.045297) | 0.042441 / 0.037052 (0.005389) | 0.284961 / 0.258489 (0.026472) | 0.322197 / 0.293841 (0.028356) | 0.033850 / 0.128546 (-0.094696) | 0.012615 / 0.075646 (-0.063031) | 0.061967 / 0.419271 (-0.357304) | 0.035229 / 0.043533 (-0.008304) | 0.273941 / 0.255139 (0.018802) | 0.293395 / 0.283200 (0.010195) | 0.020566 / 0.141683 (-0.121117) | 1.173423 / 1.452155 (-0.278732) | 1.219948 / 1.492716 (-0.272768) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096131 / 0.018006 (0.078125) | 0.305548 / 0.000490 (0.305059) | 0.000217 / 0.000200 (0.000017) | 0.000044 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023847 / 0.037411 (-0.013564) | 0.079536 / 0.014526 (0.065010) | 0.088889 / 0.176557 (-0.087667) | 0.129181 / 0.737135 (-0.607954) | 0.090879 / 0.296338 (-0.205460) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.299315 / 0.215209 (0.084106) | 2.952656 / 2.077655 (0.875001) | 1.587354 / 1.504120 (0.083234) | 1.453420 / 1.541195 (-0.087774) | 1.501784 / 1.468490 (0.033294) | 0.711481 / 4.584777 (-3.873296) | 0.971790 / 3.745712 (-2.773922) | 2.897636 / 5.269862 (-2.372226) | 1.947086 / 4.565676 (-2.618591) | 0.079700 / 0.424275 (-0.344575) | 0.005395 / 0.007607 (-0.002212) | 0.351340 / 0.226044 (0.125296) | 3.416472 / 2.268929 (1.147543) | 2.007559 / 55.444624 (-53.437066) | 1.660401 / 6.876477 (-5.216076) | 1.837049 / 2.142072 (-0.305024) | 0.817306 / 4.805227 (-3.987921) | 0.135176 / 6.500664 (-6.365488) | 0.041477 / 0.075469 (-0.033992) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.030033 / 1.841788 (-0.811755) | 12.528661 / 8.074308 (4.454353) | 10.603212 / 10.191392 (0.411820) | 0.142434 / 0.680424 (-0.537989) | 0.015603 / 0.534201 (-0.518598) | 0.304516 / 0.579283 (-0.274767) | 0.125324 / 0.434364 (-0.309040) | 0.343092 / 0.540337 (-0.197245) | 0.443359 / 1.386936 (-0.943577) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#45c5b3daacd7af212cae4c848a56e14d3cac291f \"CML watermark\")\n" ]
2024-07-26T11:24:35
2024-07-26T11:46:52
2024-07-26T11:40:49
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7075.diff", "html_url": "https://github.com/huggingface/datasets/pull/7075", "merged_at": "2024-07-26T11:40:49Z", "patch_url": "https://github.com/huggingface/datasets/pull/7075.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7075" }
Update required `soxr` version from pre-release to release 0.4.0: https://github.com/dofuuz/python-soxr/releases/tag/v0.4.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7075/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7075/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7074
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7074/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7074/comments
https://api.github.com/repos/huggingface/datasets/issues/7074/events
https://github.com/huggingface/datasets/pull/7074
2,431,772,703
PR_kwDODunzps52jkw4
7,074
Fix CI by temporarily marking test_convert_to_parquet as expected to fail
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7074). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005168 / 0.011353 (-0.006185) | 0.003572 / 0.011008 (-0.007436) | 0.062755 / 0.038508 (0.024247) | 0.030371 / 0.023109 (0.007262) | 0.250240 / 0.275898 (-0.025658) | 0.268091 / 0.323480 (-0.055389) | 0.003260 / 0.007986 (-0.004726) | 0.002706 / 0.004328 (-0.001622) | 0.048957 / 0.004250 (0.044706) | 0.044441 / 0.037052 (0.007389) | 0.251801 / 0.258489 (-0.006688) | 0.289401 / 0.293841 (-0.004440) | 0.028991 / 0.128546 (-0.099555) | 0.011871 / 0.075646 (-0.063775) | 0.203722 / 0.419271 (-0.215549) | 0.035911 / 0.043533 (-0.007622) | 0.248070 / 0.255139 (-0.007069) | 0.266480 / 0.283200 (-0.016720) | 0.019831 / 0.141683 (-0.121852) | 1.143429 / 1.452155 (-0.308726) | 1.160102 / 1.492716 (-0.332614) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096740 / 0.018006 (0.078734) | 0.302473 / 0.000490 (0.301983) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018367 / 0.037411 (-0.019045) | 0.062346 / 0.014526 (0.047820) | 0.074416 / 0.176557 (-0.102140) | 0.120507 / 0.737135 (-0.616628) | 0.076536 / 0.296338 (-0.219802) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284093 / 0.215209 (0.068884) | 2.738805 / 2.077655 (0.661150) | 1.469263 / 1.504120 (-0.034856) | 1.349122 / 1.541195 (-0.192073) | 1.355578 / 1.468490 (-0.112912) | 0.720364 / 4.584777 (-3.864413) | 2.360339 / 3.745712 (-1.385373) | 2.941134 / 5.269862 (-2.328728) | 1.888692 / 4.565676 (-2.676984) | 0.077111 / 0.424275 (-0.347164) | 0.005070 / 0.007607 (-0.002537) | 0.334122 / 0.226044 (0.108078) | 3.298378 / 2.268929 (1.029450) | 1.868514 / 55.444624 (-53.576111) | 1.528561 / 6.876477 (-5.347916) | 1.535319 / 2.142072 (-0.606754) | 0.778591 / 4.805227 (-4.026636) | 0.131364 / 6.500664 (-6.369300) | 0.041697 / 0.075469 (-0.033773) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.970243 / 1.841788 (-0.871544) | 11.324752 / 8.074308 (3.250443) | 9.612381 / 10.191392 (-0.579011) | 0.138842 / 0.680424 (-0.541582) | 0.014479 / 0.534201 (-0.519722) | 0.309415 / 0.579283 (-0.269868) | 0.264654 / 0.434364 (-0.169710) | 0.343695 / 0.540337 (-0.196642) | 0.435323 / 1.386936 (-0.951613) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005680 / 0.011353 (-0.005673) | 0.003614 / 0.011008 (-0.007394) | 0.060575 / 0.038508 (0.022067) | 0.031103 / 0.023109 (0.007994) | 0.269083 / 0.275898 (-0.006815) | 0.291556 / 0.323480 (-0.031923) | 0.004354 / 0.007986 (-0.003632) | 0.002739 / 0.004328 (-0.001589) | 0.049056 / 0.004250 (0.044806) | 0.039759 / 0.037052 (0.002707) | 0.280608 / 0.258489 (0.022119) | 0.324798 / 0.293841 (0.030957) | 0.032030 / 0.128546 (-0.096516) | 0.011862 / 0.075646 (-0.063784) | 0.060011 / 0.419271 (-0.359261) | 0.033960 / 0.043533 (-0.009573) | 0.271114 / 0.255139 (0.015975) | 0.293922 / 0.283200 (0.010722) | 0.019497 / 0.141683 (-0.122185) | 1.137871 / 1.452155 (-0.314284) | 1.180656 / 1.492716 (-0.312061) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094201 / 0.018006 (0.076194) | 0.306657 / 0.000490 (0.306167) | 0.000215 / 0.000200 (0.000015) | 0.000068 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022562 / 0.037411 (-0.014850) | 0.077170 / 0.014526 (0.062644) | 0.088915 / 0.176557 (-0.087642) | 0.129455 / 0.737135 (-0.607680) | 0.091571 / 0.296338 (-0.204767) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300753 / 0.215209 (0.085544) | 2.941929 / 2.077655 (0.864274) | 1.613451 / 1.504120 (0.109331) | 1.498365 / 1.541195 (-0.042830) | 1.517124 / 1.468490 (0.048634) | 0.709209 / 4.584777 (-3.875568) | 0.950478 / 3.745712 (-2.795235) | 2.799328 / 5.269862 (-2.470533) | 1.872895 / 4.565676 (-2.692782) | 0.078233 / 0.424275 (-0.346042) | 0.005613 / 0.007607 (-0.001994) | 0.349590 / 0.226044 (0.123545) | 3.500213 / 2.268929 (1.231284) | 2.001155 / 55.444624 (-53.443469) | 1.704845 / 6.876477 (-5.171632) | 1.810722 / 2.142072 (-0.331350) | 0.795326 / 4.805227 (-4.009901) | 0.132913 / 6.500664 (-6.367751) | 0.041209 / 0.075469 (-0.034260) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029513 / 1.841788 (-0.812274) | 12.005617 / 8.074308 (3.931309) | 10.119379 / 10.191392 (-0.072013) | 0.139767 / 0.680424 (-0.540657) | 0.015241 / 0.534201 (-0.518960) | 0.301164 / 0.579283 (-0.278119) | 0.121563 / 0.434364 (-0.312801) | 0.336672 / 0.540337 (-0.203666) | 0.431526 / 1.386936 (-0.955410) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#92bdab56a3c7d5ded10e8ae4134c943e32d3bc86 \"CML watermark\")\n" ]
2024-07-26T09:03:33
2024-07-26T09:23:33
2024-07-26T09:16:12
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7074.diff", "html_url": "https://github.com/huggingface/datasets/pull/7074", "merged_at": "2024-07-26T09:16:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/7074.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7074" }
As a hotfix for CI, temporarily mark test_convert_to_parquet as expected to fail. Fix #7073. Revert once root cause is fixed.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7074/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7074/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7073
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7073/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7073/comments
https://api.github.com/repos/huggingface/datasets/issues/7073/events
https://github.com/huggingface/datasets/issues/7073
2,431,706,568
I_kwDODunzps6Q8OXI
7,073
CI is broken for convert_to_parquet: Invalid rev id: refs/pr/1 404 error causes RevisionNotFoundError
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Any recent change in the API backend rejecting parameter `revision=\"refs/pr/1\"` to `HfApi.preupload_lfs_files`?\r\n```\r\nf\"{endpoint}/api/{repo_type}s/{repo_id}/preupload/{revision}\"\r\n\r\nhttps://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5188a8-17219154347516/preupload/refs%2Fpr%2F1.\r\nInvalid rev id: refs/pr/1\r\n```\r\n@Wauplin @huggingface/datasets @huggingface/moon-landing @huggingface/moon-landing-back ", "I have temporarily fixed the CI with:\r\n- #7074\r\n\r\nHowever, the underlying issue must be fixed and #7074 must be reverted.", "Hmm does it do the preupload call before creating the ref cc @Wauplin ?\r\n\r\n(in that case it should do a preupload call on the base branch with `?create_pr=1`)", "@coyotte508, the CI test was implemented 2 months ago and it was working OK until yesterday. See the CI status of the commits in the main branch of `datasets`: https://github.com/huggingface/datasets/commits/main/", "Yes i get that\r\n\r\nWe changed the preupload response to return the commit id in https://github.com/huggingface-internal/moon-landing/pull/10756\r\n\r\nThis line is probably causing the error: https://github.com/huggingface-internal/moon-landing/pull/10756/files#diff-558f6f9865e30bfa091b94d6a4a900138103ddb4eb0bec96b6deec5bf5626fa0R2322\r\n\r\nIt's weird the error is returned, it means that maybe a ref with 0 history (not even the first commit) was created\r\n\r\nDoes this change have any impact in production, or just the CI test? If it's just the CI test it should be fixed on your side, if it impacts production we can look at a solution", "@coyotte508 it impacts production: `convert_to_parquet` raises the above error when the dataset has more that one configs/subsets:\r\n- First subset calls `push_to_hub` with `create_pr=True`\r\n- Second subset uses the `refs/pr/#` returned by the call above, and calls `push_to_hub` with `revision=\"refs/pr/#\"`", "I tried removing the `mock_commit` call: https://github.com/huggingface/datasets/pull/7076\r\n\r\nAnd the tests seem to work.\r\n\r\nSo it's probably because the commit is not actually called, it doesn't actually create the pull request on the remote (and the associated `refs/pr/1`). But the `preupload` call is not mocked.\r\n\r\nAnyway it shouldn't impact production, since production isn't mocked", "@coyotte508 thanks a lot for the investigation and sorry for the noise. \r\nI promise not trying to fix things when I have a slight fever: my head does not work well.\r\n\r\nWe need indeed to mock `preupload_lfs_files`: before it was not necessary, but now it is.", "I fixed the test in:\r\n- #7078\r\n\r\nThanks again, @coyotte508." ]
2024-07-26T08:27:41
2024-07-27T05:48:02
2024-07-26T09:16:13
MEMBER
null
null
null
See: https://github.com/huggingface/datasets/actions/runs/10095313567/job/27915185756 ``` FAILED tests/test_hub.py::test_convert_to_parquet - huggingface_hub.utils._errors.RevisionNotFoundError: 404 Client Error. (Request ID: Root=1-66a25839-31ce7b475e70e7db1e4d44c2;b0c8870f-d5ef-4bf2-a6ff-0191f3df0f64) Revision Not Found for url: https://hub-ci.huggingface.co/api/datasets/__DUMMY_TRANSFORMERS_USER__/test-dataset-5188a8-17219154347516/preupload/refs%2Fpr%2F1. Invalid rev id: refs/pr/1 ``` ``` /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/hub.py:86: in convert_to_parquet dataset.push_to_hub( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/dataset_dict.py:1722: in push_to_hub split_additions, uploaded_size, dataset_nbytes = self[split]._push_parquet_shards_to_hub( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/datasets/arrow_dataset.py:5511: in _push_parquet_shards_to_hub api.preupload_lfs_files( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/hf_api.py:4231: in preupload_lfs_files _fetch_upload_modes( /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py:118: in _inner_fn return fn(*args, **kwargs) /opt/hostedtoolcache/Python/3.8.18/x64/lib/python3.8/site-packages/huggingface_hub/_commit_api.py:507: in _fetch_upload_modes hf_raise_for_status(resp) ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7073/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7073/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7072
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7072/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7072/comments
https://api.github.com/repos/huggingface/datasets/issues/7072/events
https://github.com/huggingface/datasets/issues/7072
2,430,577,916
I_kwDODunzps6Q36z8
7,072
nm
{ "avatar_url": "https://avatars.githubusercontent.com/u/26392883?v=4", "events_url": "https://api.github.com/users/brettdavies/events{/privacy}", "followers_url": "https://api.github.com/users/brettdavies/followers", "following_url": "https://api.github.com/users/brettdavies/following{/other_user}", "gists_url": "https://api.github.com/users/brettdavies/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/brettdavies", "id": 26392883, "login": "brettdavies", "node_id": "MDQ6VXNlcjI2MzkyODgz", "organizations_url": "https://api.github.com/users/brettdavies/orgs", "received_events_url": "https://api.github.com/users/brettdavies/received_events", "repos_url": "https://api.github.com/users/brettdavies/repos", "site_admin": false, "starred_url": "https://api.github.com/users/brettdavies/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/brettdavies/subscriptions", "type": "User", "url": "https://api.github.com/users/brettdavies" }
[]
closed
false
null
[]
null
[]
2024-07-25T17:03:24
2024-07-25T20:36:11
2024-07-25T20:36:11
NONE
null
null
null
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7072/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7072/timeline
null
not_planned
false
https://api.github.com/repos/huggingface/datasets/issues/7071
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7071/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7071/comments
https://api.github.com/repos/huggingface/datasets/issues/7071/events
https://github.com/huggingface/datasets/issues/7071
2,430,313,011
I_kwDODunzps6Q26Iz
7,071
Filter hangs
{ "avatar_url": "https://avatars.githubusercontent.com/u/61711045?v=4", "events_url": "https://api.github.com/users/lucienwalewski/events{/privacy}", "followers_url": "https://api.github.com/users/lucienwalewski/followers", "following_url": "https://api.github.com/users/lucienwalewski/following{/other_user}", "gists_url": "https://api.github.com/users/lucienwalewski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucienwalewski", "id": 61711045, "login": "lucienwalewski", "node_id": "MDQ6VXNlcjYxNzExMDQ1", "organizations_url": "https://api.github.com/users/lucienwalewski/orgs", "received_events_url": "https://api.github.com/users/lucienwalewski/received_events", "repos_url": "https://api.github.com/users/lucienwalewski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucienwalewski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucienwalewski/subscriptions", "type": "User", "url": "https://api.github.com/users/lucienwalewski" }
[]
open
false
null
[]
null
[]
2024-07-25T15:29:05
2024-07-25T15:36:59
null
NONE
null
null
null
### Describe the bug When trying to filter my custom dataset, the process hangs, regardless of the lambda function used. It appears to be an issue with the way the Images are being handled. The dataset in question is a preprocessed version of https://huggingface.co/datasets/danaaubakirova/patfig where notably, I have converted the data to the Parquet format. ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset('lcolonn/patfig', split='test') ds_filtered = ds.filter(lambda row: row['cpc_class'] != 'Y') ``` Eventually I ctrl+C and I obtain this stack trace: ``` >>> ds_filtered = ds.filter(lambda row: row['cpc_class'] != 'Y') Filter: 0%| | 0/998 [00:00<?, ? examples/s]Filter: 0%| | 0/998 [00:35<?, ? examples/s] Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 567, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/fingerprint.py", line 482, in wrapper out = func(dataset, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3714, in filter indices = self.map( ^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 602, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 567, in wrapper out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3161, in map for rank, done, content in Dataset._map_single(**dataset_kwargs): File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3552, in _map_single batch = apply_function_on_filtered_inputs( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 3421, in apply_function_on_filtered_inputs processed_inputs = function(*fn_args, *additional_args, **fn_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/arrow_dataset.py", line 6478, in get_indices_from_mask_function num_examples = len(batch[next(iter(batch.keys()))]) ~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 273, in __getitem__ value = self.format(key) ^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 376, in format return self.formatter.format_column(self.pa_table.select([key])) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 443, in format_column column = self.python_features_decoder.decode_column(column, pa_table.column_names[0]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/formatting/formatting.py", line 219, in decode_column return self.features.decode_column(column, column_name) if self.features else column ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/features/features.py", line 2008, in decode_column [decode_nested_example(self[column_name], value) if value is not None else None for value in column] File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/features/features.py", line 2008, in <listcomp> [decode_nested_example(self[column_name], value) if value is not None else None for value in column] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/features/features.py", line 1351, in decode_nested_example return schema.decode_example(obj, token_per_repo_id=token_per_repo_id) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/datasets/features/image.py", line 188, in decode_example image.load() # to avoid "Too many open files" errors ^^^^^^^^^^^^ File "/home/l-walewski/miniconda3/envs/patentqa/lib/python3.11/site-packages/PIL/ImageFile.py", line 293, in load n, err_code = decoder.decode(b) ^^^^^^^^^^^^^^^^^ KeyboardInterrupt ``` Warning! This can even seem to cause some computers to crash. ### Expected behavior Should return the filtered dataset ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.11.9 - `huggingface_hub` version: 0.24.0 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7071/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7071/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7070
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7070/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7070/comments
https://api.github.com/repos/huggingface/datasets/issues/7070/events
https://github.com/huggingface/datasets/issues/7070
2,430,285,235
I_kwDODunzps6Q2zWz
7,070
how set_transform affects batch size?
{ "avatar_url": "https://avatars.githubusercontent.com/u/103993288?v=4", "events_url": "https://api.github.com/users/VafaKnm/events{/privacy}", "followers_url": "https://api.github.com/users/VafaKnm/followers", "following_url": "https://api.github.com/users/VafaKnm/following{/other_user}", "gists_url": "https://api.github.com/users/VafaKnm/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/VafaKnm", "id": 103993288, "login": "VafaKnm", "node_id": "U_kgDOBjLPyA", "organizations_url": "https://api.github.com/users/VafaKnm/orgs", "received_events_url": "https://api.github.com/users/VafaKnm/received_events", "repos_url": "https://api.github.com/users/VafaKnm/repos", "site_admin": false, "starred_url": "https://api.github.com/users/VafaKnm/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/VafaKnm/subscriptions", "type": "User", "url": "https://api.github.com/users/VafaKnm" }
[]
open
false
null
[]
null
[]
2024-07-25T15:19:34
2024-07-25T15:19:34
null
NONE
null
null
null
### Describe the bug I am trying to fine-tune w2v-bert for ASR task. Since my dataset is so big, I preferred to use the on-the-fly method with set_transform. So i change the preprocessing function to this: ``` def prepare_dataset(batch): input_features = processor(batch["audio"], sampling_rate=16000).input_features[0] input_length = len(input_features) labels = processor.tokenizer(batch["text"], padding=False).input_ids batch = { "input_features": [input_features], "input_length": [input_length], "labels": [labels] } return batch train_ds.set_transform(prepare_dataset) val_ds.set_transform(prepare_dataset) ``` After this, I also had to change the DataCollatorCTCWithPadding class like this: ``` @dataclass class DataCollatorCTCWithPadding: processor: Wav2Vec2BertProcessor padding: Union[bool, str] = True def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # Separate input_features and labels input_features = [{"input_features": feature["input_features"][0]} for feature in features] labels = [feature["labels"][0] for feature in features] # Pad input features batch = self.processor.pad( input_features, padding=self.padding, return_tensors="pt", ) # Pad and process labels label_features = self.processor.tokenizer.pad( {"input_ids": labels}, padding=self.padding, return_tensors="pt", ) labels = label_features["input_ids"] attention_mask = label_features["attention_mask"] # Replace padding with -100 to ignore these tokens during loss calculation labels = labels.masked_fill(attention_mask.ne(1), -100) batch["labels"] = labels return batch ``` But now a strange thing is happening, no matter how much I increase the batch size, the amount of V-RAM GPU usage does not change, while the number of total steps in the progress-bar (logging) changes. Is this normal or have I made a mistake? ### Steps to reproduce the bug i can share my code if needed ### Expected behavior Equal to the batch size value, the set_transform function is applied to the dataset and given to the model as a batch. ### Environment info all updated versions
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7070/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7070/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7069
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7069/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7069/comments
https://api.github.com/repos/huggingface/datasets/issues/7069/events
https://github.com/huggingface/datasets/pull/7069
2,429,281,339
PR_kwDODunzps52betB
7,069
Fix push_to_hub by not calling create_branch if PR branch
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7069). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "cc @Wauplin maybe it's a `huggingface_hub` bug ?\r\n\r\nEDIT: ah actually the issue is opened at https://github.com/huggingface/huggingface_hub/issues/2419", "I think we need to make this fix anyway, ~~unless we pin the lower version of huggingface-hub (once they release the patch)~~.\r\n- Calling create_branch with a PR ref raises an error", "Comment by @Wauplin: https://github.com/huggingface/huggingface_hub/pull/2426#issuecomment-2257657543\r\n> I think this should be something to fix in datasets directly. Having a 400 Bad request when trying to create the branch refs/pr/1 seems normal to me since it's not a branch.", "does this mean we should use `create_pull_request()` in that case ?", "> does this mean we should use create_pull_request() in that case ?\r\n\r\nIf user wants to push some data to a new PR, they can already pass `create_pr=True` which will automatically do the job for you (without using `revision`). If user is passing `revision=\"refs/pr/1\"` explicitly, you should assume the PR already exists.", "ah yes we do pass create_pr in `preupload_lfs_files()` ! sounds good then", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005806 / 0.011353 (-0.005547) | 0.004082 / 0.011008 (-0.006927) | 0.064277 / 0.038508 (0.025769) | 0.032289 / 0.023109 (0.009180) | 0.242066 / 0.275898 (-0.033832) | 0.272574 / 0.323480 (-0.050906) | 0.003281 / 0.007986 (-0.004705) | 0.002957 / 0.004328 (-0.001371) | 0.049930 / 0.004250 (0.045679) | 0.047306 / 0.037052 (0.010253) | 0.252216 / 0.258489 (-0.006273) | 0.286678 / 0.293841 (-0.007163) | 0.030182 / 0.128546 (-0.098364) | 0.012967 / 0.075646 (-0.062680) | 0.204949 / 0.419271 (-0.214323) | 0.036999 / 0.043533 (-0.006534) | 0.243577 / 0.255139 (-0.011562) | 0.265044 / 0.283200 (-0.018156) | 0.021149 / 0.141683 (-0.120534) | 1.112293 / 1.452155 (-0.339862) | 1.186483 / 1.492716 (-0.306233) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093239 / 0.018006 (0.075233) | 0.286372 / 0.000490 (0.285883) | 0.000224 / 0.000200 (0.000024) | 0.000062 / 0.000054 (0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019042 / 0.037411 (-0.018369) | 0.063690 / 0.014526 (0.049164) | 0.075034 / 0.176557 (-0.101523) | 0.123053 / 0.737135 (-0.614083) | 0.076843 / 0.296338 (-0.219495) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.276554 / 0.215209 (0.061345) | 2.749338 / 2.077655 (0.671683) | 1.442764 / 1.504120 (-0.061356) | 1.327860 / 1.541195 (-0.213335) | 1.369885 / 1.468490 (-0.098606) | 0.722645 / 4.584777 (-3.862132) | 2.430707 / 3.745712 (-1.315005) | 3.105293 / 5.269862 (-2.164568) | 1.961617 / 4.565676 (-2.604060) | 0.077728 / 0.424275 (-0.346547) | 0.005189 / 0.007607 (-0.002418) | 0.335511 / 0.226044 (0.109467) | 3.315618 / 2.268929 (1.046690) | 1.858254 / 55.444624 (-53.586371) | 1.552173 / 6.876477 (-5.324304) | 1.627086 / 2.142072 (-0.514987) | 0.790871 / 4.805227 (-4.014356) | 0.136958 / 6.500664 (-6.363706) | 0.043207 / 0.075469 (-0.032262) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969314 / 1.841788 (-0.872473) | 12.145318 / 8.074308 (4.071010) | 9.834839 / 10.191392 (-0.356553) | 0.141896 / 0.680424 (-0.538528) | 0.014304 / 0.534201 (-0.519897) | 0.306091 / 0.579283 (-0.273192) | 0.260994 / 0.434364 (-0.173369) | 0.348096 / 0.540337 (-0.192242) | 0.441458 / 1.386936 (-0.945478) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005989 / 0.011353 (-0.005363) | 0.003907 / 0.011008 (-0.007102) | 0.050819 / 0.038508 (0.012310) | 0.033178 / 0.023109 (0.010069) | 0.279059 / 0.275898 (0.003161) | 0.300161 / 0.323480 (-0.023319) | 0.004383 / 0.007986 (-0.003603) | 0.002834 / 0.004328 (-0.001495) | 0.048779 / 0.004250 (0.044528) | 0.040502 / 0.037052 (0.003450) | 0.291786 / 0.258489 (0.033297) | 0.323827 / 0.293841 (0.029986) | 0.032175 / 0.128546 (-0.096371) | 0.012157 / 0.075646 (-0.063489) | 0.060796 / 0.419271 (-0.358476) | 0.033924 / 0.043533 (-0.009609) | 0.278047 / 0.255139 (0.022908) | 0.297878 / 0.283200 (0.014678) | 0.019137 / 0.141683 (-0.122546) | 1.138996 / 1.452155 (-0.313158) | 1.172731 / 1.492716 (-0.319985) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.110148 / 0.018006 (0.092142) | 0.307232 / 0.000490 (0.306742) | 0.000209 / 0.000200 (0.000009) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023082 / 0.037411 (-0.014330) | 0.076590 / 0.014526 (0.062065) | 0.088444 / 0.176557 (-0.088113) | 0.129293 / 0.737135 (-0.607842) | 0.090470 / 0.296338 (-0.205868) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305016 / 0.215209 (0.089807) | 2.931671 / 2.077655 (0.854016) | 1.586055 / 1.504120 (0.081935) | 1.463517 / 1.541195 (-0.077678) | 1.479654 / 1.468490 (0.011164) | 0.726194 / 4.584777 (-3.858583) | 0.970512 / 3.745712 (-2.775200) | 2.850496 / 5.269862 (-2.419365) | 1.920112 / 4.565676 (-2.645564) | 0.079921 / 0.424275 (-0.344354) | 0.005367 / 0.007607 (-0.002240) | 0.347022 / 0.226044 (0.120978) | 3.472425 / 2.268929 (1.203497) | 1.965400 / 55.444624 (-53.479225) | 1.669116 / 6.876477 (-5.207361) | 1.859504 / 2.142072 (-0.282568) | 0.802703 / 4.805227 (-4.002525) | 0.134776 / 6.500664 (-6.365888) | 0.041800 / 0.075469 (-0.033669) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.039665 / 1.841788 (-0.802122) | 12.024071 / 8.074308 (3.949763) | 10.338743 / 10.191392 (0.147351) | 0.139495 / 0.680424 (-0.540929) | 0.015249 / 0.534201 (-0.518952) | 0.298580 / 0.579283 (-0.280703) | 0.124625 / 0.434364 (-0.309739) | 0.341868 / 0.540337 (-0.198470) | 0.431396 / 1.386936 (-0.955540) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#65b9499348fa4c6e5bfa977ee9b5e8574bf64eea \"CML watermark\")\n" ]
2024-07-25T07:50:04
2024-07-31T07:10:07
2024-07-30T10:51:01
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7069.diff", "html_url": "https://github.com/huggingface/datasets/pull/7069", "merged_at": "2024-07-30T10:51:01Z", "patch_url": "https://github.com/huggingface/datasets/pull/7069.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7069" }
Fix push_to_hub by not calling create_branch if PR branch (e.g. `refs/pr/1`). Note that currently create_branch raises a 400 Bad Request error if the user passes a PR branch (e.g. `refs/pr/1`). EDIT: ~~Fix push_to_hub by not calling create_branch if branch exists.~~ Note that currently create_branch raises a 403 Forbidden error even if all these conditions are met: - exist_ok is passed - the branch already exists - the user does not have WRITE permission Fix #7067. Related issue: - https://github.com/huggingface/huggingface_hub/issues/2419
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7069/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7069/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7068
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7068/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7068/comments
https://api.github.com/repos/huggingface/datasets/issues/7068/events
https://github.com/huggingface/datasets/pull/7068
2,426,657,434
PR_kwDODunzps52SwXS
7,068
Fix prepare_single_hop_path_and_storage_options
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7068). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005725 / 0.011353 (-0.005628) | 0.004149 / 0.011008 (-0.006859) | 0.065051 / 0.038508 (0.026543) | 0.030220 / 0.023109 (0.007111) | 0.256768 / 0.275898 (-0.019130) | 0.269767 / 0.323480 (-0.053713) | 0.003256 / 0.007986 (-0.004730) | 0.003378 / 0.004328 (-0.000951) | 0.049407 / 0.004250 (0.045156) | 0.046041 / 0.037052 (0.008988) | 0.270977 / 0.258489 (0.012488) | 0.288771 / 0.293841 (-0.005070) | 0.030401 / 0.128546 (-0.098145) | 0.012203 / 0.075646 (-0.063443) | 0.227365 / 0.419271 (-0.191906) | 0.036356 / 0.043533 (-0.007176) | 0.262763 / 0.255139 (0.007624) | 0.268172 / 0.283200 (-0.015028) | 0.020698 / 0.141683 (-0.120984) | 1.171679 / 1.452155 (-0.280476) | 1.155353 / 1.492716 (-0.337363) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.138740 / 0.018006 (0.120733) | 0.300962 / 0.000490 (0.300473) | 0.000240 / 0.000200 (0.000040) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019056 / 0.037411 (-0.018355) | 0.062922 / 0.014526 (0.048396) | 0.075339 / 0.176557 (-0.101218) | 0.122587 / 0.737135 (-0.614548) | 0.078622 / 0.296338 (-0.217716) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.273878 / 0.215209 (0.058669) | 2.753188 / 2.077655 (0.675533) | 1.446877 / 1.504120 (-0.057243) | 1.325034 / 1.541195 (-0.216160) | 1.332849 / 1.468490 (-0.135641) | 0.721042 / 4.584777 (-3.863735) | 2.457241 / 3.745712 (-1.288471) | 3.008013 / 5.269862 (-2.261848) | 1.925773 / 4.565676 (-2.639903) | 0.077725 / 0.424275 (-0.346550) | 0.005232 / 0.007607 (-0.002375) | 0.331398 / 0.226044 (0.105354) | 3.273689 / 2.268929 (1.004761) | 1.818291 / 55.444624 (-53.626334) | 1.532233 / 6.876477 (-5.344244) | 1.545236 / 2.142072 (-0.596837) | 0.809853 / 4.805227 (-3.995374) | 0.137571 / 6.500664 (-6.363093) | 0.042829 / 0.075469 (-0.032640) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962599 / 1.841788 (-0.879189) | 11.593394 / 8.074308 (3.519086) | 9.564848 / 10.191392 (-0.626544) | 0.131547 / 0.680424 (-0.548876) | 0.014724 / 0.534201 (-0.519477) | 0.309343 / 0.579283 (-0.269940) | 0.263476 / 0.434364 (-0.170888) | 0.350755 / 0.540337 (-0.189582) | 0.445279 / 1.386936 (-0.941657) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005818 / 0.011353 (-0.005534) | 0.004028 / 0.011008 (-0.006980) | 0.050337 / 0.038508 (0.011829) | 0.033234 / 0.023109 (0.010125) | 0.273498 / 0.275898 (-0.002400) | 0.299130 / 0.323480 (-0.024350) | 0.004391 / 0.007986 (-0.003595) | 0.002854 / 0.004328 (-0.001474) | 0.048616 / 0.004250 (0.044365) | 0.040354 / 0.037052 (0.003302) | 0.287980 / 0.258489 (0.029491) | 0.323940 / 0.293841 (0.030099) | 0.033031 / 0.128546 (-0.095515) | 0.012539 / 0.075646 (-0.063108) | 0.061129 / 0.419271 (-0.358143) | 0.034410 / 0.043533 (-0.009123) | 0.276367 / 0.255139 (0.021228) | 0.295266 / 0.283200 (0.012066) | 0.018558 / 0.141683 (-0.123125) | 1.149051 / 1.452155 (-0.303104) | 1.207995 / 1.492716 (-0.284721) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095732 / 0.018006 (0.077726) | 0.305774 / 0.000490 (0.305284) | 0.000222 / 0.000200 (0.000022) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023680 / 0.037411 (-0.013731) | 0.077147 / 0.014526 (0.062621) | 0.088850 / 0.176557 (-0.087706) | 0.130219 / 0.737135 (-0.606917) | 0.090582 / 0.296338 (-0.205756) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.306099 / 0.215209 (0.090890) | 2.952515 / 2.077655 (0.874861) | 1.593090 / 1.504120 (0.088970) | 1.471887 / 1.541195 (-0.069308) | 1.484277 / 1.468490 (0.015787) | 0.741158 / 4.584777 (-3.843619) | 0.976520 / 3.745712 (-2.769192) | 2.904631 / 5.269862 (-2.365231) | 1.940287 / 4.565676 (-2.625389) | 0.079828 / 0.424275 (-0.344447) | 0.005482 / 0.007607 (-0.002125) | 0.353376 / 0.226044 (0.127332) | 3.502412 / 2.268929 (1.233483) | 1.976571 / 55.444624 (-53.468053) | 1.675141 / 6.876477 (-5.201336) | 1.821075 / 2.142072 (-0.320998) | 0.814290 / 4.805227 (-3.990937) | 0.135227 / 6.500664 (-6.365437) | 0.041631 / 0.075469 (-0.033838) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.041495 / 1.841788 (-0.800293) | 12.275647 / 8.074308 (4.201339) | 10.569540 / 10.191392 (0.378148) | 0.143136 / 0.680424 (-0.537288) | 0.015010 / 0.534201 (-0.519191) | 0.302177 / 0.579283 (-0.277106) | 0.125924 / 0.434364 (-0.308440) | 0.340977 / 0.540337 (-0.199360) | 0.438467 / 1.386936 (-0.948469) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#baea190799dfa22493621fe06584b006b57f16ce \"CML watermark\")\n" ]
2024-07-24T05:52:34
2024-07-29T07:02:07
2024-07-29T06:56:15
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7068.diff", "html_url": "https://github.com/huggingface/datasets/pull/7068", "merged_at": "2024-07-29T06:56:15Z", "patch_url": "https://github.com/huggingface/datasets/pull/7068.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7068" }
Fix `_prepare_single_hop_path_and_storage_options`: - Do not pass HF authentication headers and HF user-agent to non-HF HTTP URLs - Do not overwrite passed `storage_options` nested values: - Before, when passed ```DownloadConfig(storage_options={"https": {"client_kwargs": {"raise_for_status": True}}})```, it was overwritten to ```{"https": {"client_kwargs": {"trust_env": True}}}``` - Now, the result combines both: ```{"https": {"client_kwargs": {"trust_env": True, "raise_for_status": True}}}```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7068/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7068/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7067
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7067/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7067/comments
https://api.github.com/repos/huggingface/datasets/issues/7067/events
https://github.com/huggingface/datasets/issues/7067
2,425,460,168
I_kwDODunzps6QkZXI
7,067
Convert_to_parquet fails for datasets with multiple configs
{ "avatar_url": "https://avatars.githubusercontent.com/u/97585031?v=4", "events_url": "https://api.github.com/users/HuangZhen02/events{/privacy}", "followers_url": "https://api.github.com/users/HuangZhen02/followers", "following_url": "https://api.github.com/users/HuangZhen02/following{/other_user}", "gists_url": "https://api.github.com/users/HuangZhen02/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HuangZhen02", "id": 97585031, "login": "HuangZhen02", "node_id": "U_kgDOBdEHhw", "organizations_url": "https://api.github.com/users/HuangZhen02/orgs", "received_events_url": "https://api.github.com/users/HuangZhen02/received_events", "repos_url": "https://api.github.com/users/HuangZhen02/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HuangZhen02/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HuangZhen02/subscriptions", "type": "User", "url": "https://api.github.com/users/HuangZhen02" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Many users have encountered the same issue, which has caused inconvenience.\r\n\r\nhttps://discuss.huggingface.co/t/convert-to-parquet-fails-for-datasets-with-multiple-configs/86733\r\n", "Thanks for reporting.\r\n\r\nI will make the code more robust.", "I have opened an issue in the huggingface-hub repo:\r\n- https://github.com/huggingface/huggingface_hub/issues/2419\r\n\r\nI am opening a PR to avoid calling `create_branch` if the branch already exists." ]
2024-07-23T15:09:33
2024-07-30T10:51:02
2024-07-30T10:51:02
NONE
null
null
null
If the dataset has multiple configs, when using the `datasets-cli convert_to_parquet` command to avoid issues with the data viewer caused by loading scripts, the conversion process only successfully converts the data corresponding to the first config. When it starts converting the second config, it throws an error: ``` Traceback (most recent call last): File "/opt/anaconda3/envs/dl/bin/datasets-cli", line 8, in <module> sys.exit(main()) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/commands/datasets_cli.py", line 41, in main service.run() File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py", line 83, in run dataset.push_to_hub( File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/datasets/dataset_dict.py", line 1713, in push_to_hub api.create_branch(repo_id, branch=revision, token=token, repo_type="dataset", exist_ok=True) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 5503, in create_branch hf_raise_for_status(response) File "/opt/anaconda3/envs/dl/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 358, in hf_raise_for_status raise BadRequestError(message, response=response) from e huggingface_hub.utils._errors.BadRequestError: (Request ID: Root=1-669fc665-7c2e80d75f4337496ee95402;731fcdc7-0950-4eec-99cf-ce047b8d003f) Bad request: Invalid reference for a branch: refs/pr/1 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7067/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7067/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7066
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7066/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7066/comments
https://api.github.com/repos/huggingface/datasets/issues/7066/events
https://github.com/huggingface/datasets/issues/7066
2,425,125,160
I_kwDODunzps6QjHko
7,066
One subset per file in repo ?
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
open
false
null
[]
null
[]
2024-07-23T12:43:59
2024-07-23T12:43:59
null
MEMBER
null
null
null
Right now we consider all the files of a dataset to be the same data, e.g. ``` single_subset_dataset/ ├── train0.jsonl ├── train1.jsonl └── train2.jsonl ``` but in cases like this, each file is actually a different subset of the dataset and should be loaded separately ``` many_subsets_dataset/ ├── animals.jsonl ├── trees.jsonl └── metadata.jsonl ``` It would be nice to detect those subsets automatically using a simple heuristic. For example we can group files together if their paths names are the same except some digits ?
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/7066/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7066/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7065
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7065/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7065/comments
https://api.github.com/repos/huggingface/datasets/issues/7065/events
https://github.com/huggingface/datasets/issues/7065
2,424,734,953
I_kwDODunzps6QhoTp
7,065
Cannot get item after loading from disk and then converting to iterable.
{ "avatar_url": "https://avatars.githubusercontent.com/u/21305646?v=4", "events_url": "https://api.github.com/users/happyTonakai/events{/privacy}", "followers_url": "https://api.github.com/users/happyTonakai/followers", "following_url": "https://api.github.com/users/happyTonakai/following{/other_user}", "gists_url": "https://api.github.com/users/happyTonakai/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/happyTonakai", "id": 21305646, "login": "happyTonakai", "node_id": "MDQ6VXNlcjIxMzA1NjQ2", "organizations_url": "https://api.github.com/users/happyTonakai/orgs", "received_events_url": "https://api.github.com/users/happyTonakai/received_events", "repos_url": "https://api.github.com/users/happyTonakai/repos", "site_admin": false, "starred_url": "https://api.github.com/users/happyTonakai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/happyTonakai/subscriptions", "type": "User", "url": "https://api.github.com/users/happyTonakai" }
[]
open
false
null
[]
null
[]
2024-07-23T09:37:56
2024-07-23T09:37:56
null
NONE
null
null
null
### Describe the bug The dataset generated from local file works fine. ```py root = "/home/data/train" file_list1 = glob(os.path.join(root, "*part1.flac")) file_list2 = glob(os.path.join(root, "*part2.flac")) ds = ( Dataset.from_dict({"part1": file_list1, "part2": file_list2}) .cast_column("part1", Audio(sampling_rate=None, mono=False)) .cast_column("part2", Audio(sampling_rate=None, mono=False)) ) ids = ds.to_iterable_dataset(128) ids = ids.shuffle(buffer_size=10000, seed=42) dataloader = DataLoader(ids, num_workers=4, batch_size=8, persistent_workers=True) for batch in dataloader: break ``` But after saving it to disk and then loading it from disk, I cannot get data as expected. ```py root = "/home/data/train" file_list1 = glob(os.path.join(root, "*part1.flac")) file_list2 = glob(os.path.join(root, "*part2.flac")) ds = ( Dataset.from_dict({"part1": file_list1, "part2": file_list2}) .cast_column("part1", Audio(sampling_rate=None, mono=False)) .cast_column("part2", Audio(sampling_rate=None, mono=False)) ) ds.save_to_disk("./train") ds = datasets.load_from_disk("./train") ids = ds.to_iterable_dataset(128) ids = ids.shuffle(buffer_size=10000, seed=42) dataloader = DataLoader(ids, num_workers=4, batch_size=8, persistent_workers=True) for batch in dataloader: break ``` After a long time waiting, an error occurs: ``` Loading dataset from disk: 100%|█████████████████████████████████████████████████████████████████████████| 165/165 [00:00<00:00, 6422.18it/s] Traceback (most recent call last): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1133, in _try_get_data data = self._data_queue.get(timeout=timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/queues.py", line 113, in get if not self._poll(timeout): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 257, in poll return self._poll(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 424, in _poll r = wait([self], timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/multiprocessing/connection.py", line 931, in wait ready = selector.select(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/selectors.py", line 416, in select fd_event_list = self._selector.poll(timeout) File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/_utils/signal_handling.py", line 66, in handler _error_if_any_worker_fails() RuntimeError: DataLoader worker (pid 3490529) is killed by signal: Killed. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/hanzerui/.conda/envs/mss/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/home/hanzerui/.conda/envs/mss/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/__main__.py", line 39, in <module> cli.main() File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 430, in main run() File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/adapter/../../debugpy/launcher/../../debugpy/../debugpy/server/cli.py", line 284, in run_file runpy.run_path(target, run_name="__main__") File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 321, in run_path return _run_module_code(code, init_globals, run_name, File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 135, in _run_module_code _run_code(code, mod_globals, init_globals, File "/home/hanzerui/.vscode-server/extensions/ms-python.debugpy-2024.9.12011011/bundled/libs/debugpy/_vendored/pydevd/_pydevd_bundle/pydevd_runpy.py", line 124, in _run_code exec(code, run_globals) File "/home/hanzerui/workspace/NetEase/test/test_datasets.py", line 60, in <module> for batch in dataloader: File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 631, in __next__ data = self._next_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1329, in _next_data idx, data = self._get_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1295, in _get_data success, data = self._try_get_data() File "/home/hanzerui/.conda/envs/mss/lib/python3.10/site-packages/torch/utils/data/dataloader.py", line 1146, in _try_get_data raise RuntimeError(f'DataLoader worker (pid(s) {pids_str}) exited unexpectedly') from e RuntimeError: DataLoader worker (pid(s) 3490529) exited unexpectedly ``` It seems that streaming is not supported by `laod_from_disk`, so does that mean I cannot convert it to iterable? ### Steps to reproduce the bug 1. Create a `Dataset` from local files with `from_dict` 2. Save it to disk with `save_to_disk` 3. Load it from disk with `load_from_disk` 4. Convert to iterable with `to_iterable_dataset` 5. Loop the dataset ### Expected behavior Get items faster than the original dataset generated from dict. ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-6.5.0-41-generic-x86_64-with-glibc2.35 - Python version: 3.10.14 - `huggingface_hub` version: 0.23.2 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7065/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7065/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7064
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7064/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7064/comments
https://api.github.com/repos/huggingface/datasets/issues/7064/events
https://github.com/huggingface/datasets/pull/7064
2,424,613,104
PR_kwDODunzps52Lz2-
7,064
Add `batch` method to `Dataset` class
{ "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lappemic", "id": 61876623, "login": "lappemic", "node_id": "MDQ6VXNlcjYxODc2NjIz", "organizations_url": "https://api.github.com/users/lappemic/orgs", "received_events_url": "https://api.github.com/users/lappemic/received_events", "repos_url": "https://api.github.com/users/lappemic/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "type": "User", "url": "https://api.github.com/users/lappemic" }
[]
closed
false
null
[]
null
[ "Looks good to me ! :)\r\n\r\nyou might want to add the `map` num_proc argument as well, for people who want to make it run faster", "Thanks for the feedback @lhoestq! The last commits include:\r\n- Adding the `num_proc` parameter to `batch`\r\n- Adding tests similar to the one done for `IterableDataset.batch()`\r\n- Updated the documentation -> I think they are actually misplaced in the `Stream` page. But could not find a better place atm. Where would you put this documentation?\r\n\r\nWDYT?", "You can put the documentation in process.mdx :)", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7064). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "I reset the head to the commit before I added the `Dataset.batch()` documentation to `stream.mdx` and instead added the documentation to `process.mdx`. ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005736 / 0.011353 (-0.005617) | 0.003959 / 0.011008 (-0.007049) | 0.063259 / 0.038508 (0.024751) | 0.030705 / 0.023109 (0.007596) | 0.245706 / 0.275898 (-0.030192) | 0.278766 / 0.323480 (-0.044714) | 0.003354 / 0.007986 (-0.004632) | 0.004246 / 0.004328 (-0.000082) | 0.049346 / 0.004250 (0.045095) | 0.046439 / 0.037052 (0.009386) | 0.257930 / 0.258489 (-0.000559) | 0.295562 / 0.293841 (0.001722) | 0.030529 / 0.128546 (-0.098017) | 0.012465 / 0.075646 (-0.063182) | 0.205595 / 0.419271 (-0.213677) | 0.036319 / 0.043533 (-0.007214) | 0.243872 / 0.255139 (-0.011267) | 0.275834 / 0.283200 (-0.007366) | 0.020330 / 0.141683 (-0.121353) | 1.108337 / 1.452155 (-0.343817) | 1.150406 / 1.492716 (-0.342310) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.113498 / 0.018006 (0.095491) | 0.306654 / 0.000490 (0.306164) | 0.000238 / 0.000200 (0.000038) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019092 / 0.037411 (-0.018319) | 0.063180 / 0.014526 (0.048654) | 0.078244 / 0.176557 (-0.098313) | 0.126106 / 0.737135 (-0.611030) | 0.078651 / 0.296338 (-0.217687) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284132 / 0.215209 (0.068923) | 2.781250 / 2.077655 (0.703595) | 1.471864 / 1.504120 (-0.032256) | 1.354661 / 1.541195 (-0.186534) | 1.362839 / 1.468490 (-0.105651) | 0.719126 / 4.584777 (-3.865651) | 2.396969 / 3.745712 (-1.348743) | 2.987924 / 5.269862 (-2.281938) | 1.910555 / 4.565676 (-2.655121) | 0.078612 / 0.424275 (-0.345663) | 0.005170 / 0.007607 (-0.002437) | 0.333876 / 0.226044 (0.107832) | 3.298340 / 2.268929 (1.029412) | 1.853332 / 55.444624 (-53.591292) | 1.551919 / 6.876477 (-5.324557) | 1.585677 / 2.142072 (-0.556395) | 0.802487 / 4.805227 (-4.002741) | 0.134828 / 6.500664 (-6.365837) | 0.041966 / 0.075469 (-0.033503) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.992277 / 1.841788 (-0.849511) | 11.626887 / 8.074308 (3.552578) | 9.715623 / 10.191392 (-0.475769) | 0.140306 / 0.680424 (-0.540117) | 0.014528 / 0.534201 (-0.519673) | 0.306247 / 0.579283 (-0.273036) | 0.263067 / 0.434364 (-0.171297) | 0.342325 / 0.540337 (-0.198013) | 0.432299 / 1.386936 (-0.954637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006004 / 0.011353 (-0.005349) | 0.003890 / 0.011008 (-0.007118) | 0.050408 / 0.038508 (0.011900) | 0.031880 / 0.023109 (0.008771) | 0.273114 / 0.275898 (-0.002784) | 0.296653 / 0.323480 (-0.026826) | 0.004569 / 0.007986 (-0.003416) | 0.002831 / 0.004328 (-0.001497) | 0.050032 / 0.004250 (0.045782) | 0.040468 / 0.037052 (0.003415) | 0.284718 / 0.258489 (0.026229) | 0.321754 / 0.293841 (0.027913) | 0.033863 / 0.128546 (-0.094684) | 0.012183 / 0.075646 (-0.063463) | 0.060805 / 0.419271 (-0.358466) | 0.034919 / 0.043533 (-0.008614) | 0.274354 / 0.255139 (0.019215) | 0.293477 / 0.283200 (0.010277) | 0.019418 / 0.141683 (-0.122265) | 1.151571 / 1.452155 (-0.300584) | 1.217174 / 1.492716 (-0.275542) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097326 / 0.018006 (0.079320) | 0.316277 / 0.000490 (0.315787) | 0.000225 / 0.000200 (0.000025) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022932 / 0.037411 (-0.014479) | 0.077455 / 0.014526 (0.062929) | 0.088949 / 0.176557 (-0.087608) | 0.129447 / 0.737135 (-0.607688) | 0.093705 / 0.296338 (-0.202634) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.303918 / 0.215209 (0.088709) | 2.973866 / 2.077655 (0.896211) | 1.593165 / 1.504120 (0.089045) | 1.465312 / 1.541195 (-0.075883) | 1.484503 / 1.468490 (0.016013) | 0.731849 / 4.584777 (-3.852928) | 0.953337 / 3.745712 (-2.792375) | 2.887815 / 5.269862 (-2.382047) | 1.923618 / 4.565676 (-2.642058) | 0.080073 / 0.424275 (-0.344202) | 0.005460 / 0.007607 (-0.002148) | 0.359876 / 0.226044 (0.133832) | 3.532251 / 2.268929 (1.263323) | 1.987778 / 55.444624 (-53.456846) | 1.685572 / 6.876477 (-5.190905) | 1.827141 / 2.142072 (-0.314932) | 0.815953 / 4.805227 (-3.989274) | 0.136698 / 6.500664 (-6.363967) | 0.042185 / 0.075469 (-0.033285) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.032508 / 1.841788 (-0.809280) | 12.526918 / 8.074308 (4.452610) | 10.202942 / 10.191392 (0.011550) | 0.145920 / 0.680424 (-0.534504) | 0.015643 / 0.534201 (-0.518558) | 0.300465 / 0.579283 (-0.278818) | 0.126786 / 0.434364 (-0.307578) | 0.342885 / 0.540337 (-0.197453) | 0.438139 / 1.386936 (-0.948797) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9c98e069b47d40a219b6f27e62ed85a5bb17449e \"CML watermark\")\n" ]
2024-07-23T08:40:43
2024-07-25T13:51:25
2024-07-25T13:45:20
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7064.diff", "html_url": "https://github.com/huggingface/datasets/pull/7064", "merged_at": "2024-07-25T13:45:20Z", "patch_url": "https://github.com/huggingface/datasets/pull/7064.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7064" }
This PR introduces a new `batch` method to the `Dataset` class, aligning its functionality with the `IterableDataset.batch()` method (implemented in #7054). The implementation uses as well the existing `map` method for efficient batching of examples. Key changes: - Add `batch` method to `Dataset` class in `arrow_dataset.py` - Utilize `map` method for batching Closes #7063 Once the approach is approved, i will create the tests and update the documentation.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7064/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7064/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7063
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7063/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7063/comments
https://api.github.com/repos/huggingface/datasets/issues/7063/events
https://github.com/huggingface/datasets/issues/7063
2,424,488,648
I_kwDODunzps6QgsLI
7,063
Add `batch` method to `Dataset`
{ "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lappemic", "id": 61876623, "login": "lappemic", "node_id": "MDQ6VXNlcjYxODc2NjIz", "organizations_url": "https://api.github.com/users/lappemic/orgs", "received_events_url": "https://api.github.com/users/lappemic/received_events", "repos_url": "https://api.github.com/users/lappemic/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "type": "User", "url": "https://api.github.com/users/lappemic" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
null
[]
null
[]
2024-07-23T07:36:59
2024-07-25T13:45:21
2024-07-25T13:45:21
CONTRIBUTOR
null
null
null
### Feature request Add a `batch` method to the Dataset class, similar to the one recently implemented for `IterableDataset` in PR #7054. ### Motivation A batched iteration speeds up data loading significantly (see e.g. #6279) ### Your contribution I plan to open a PR to implement this.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7063/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7063/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7062
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7062/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7062/comments
https://api.github.com/repos/huggingface/datasets/issues/7062/events
https://github.com/huggingface/datasets/pull/7062
2,424,467,484
PR_kwDODunzps52LUPR
7,062
Avoid calling http_head for non-HTTP URLs
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7062). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005591 / 0.011353 (-0.005761) | 0.003992 / 0.011008 (-0.007016) | 0.063932 / 0.038508 (0.025424) | 0.034572 / 0.023109 (0.011463) | 0.252532 / 0.275898 (-0.023366) | 0.271233 / 0.323480 (-0.052247) | 0.005146 / 0.007986 (-0.002840) | 0.002844 / 0.004328 (-0.001484) | 0.049555 / 0.004250 (0.045305) | 0.044111 / 0.037052 (0.007059) | 0.270131 / 0.258489 (0.011642) | 0.318109 / 0.293841 (0.024269) | 0.030247 / 0.128546 (-0.098300) | 0.012438 / 0.075646 (-0.063209) | 0.205160 / 0.419271 (-0.214112) | 0.036228 / 0.043533 (-0.007305) | 0.250664 / 0.255139 (-0.004475) | 0.263884 / 0.283200 (-0.019315) | 0.018141 / 0.141683 (-0.123541) | 1.128504 / 1.452155 (-0.323650) | 1.182543 / 1.492716 (-0.310173) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094576 / 0.018006 (0.076570) | 0.301153 / 0.000490 (0.300664) | 0.000246 / 0.000200 (0.000046) | 0.000065 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019143 / 0.037411 (-0.018268) | 0.062788 / 0.014526 (0.048262) | 0.074688 / 0.176557 (-0.101869) | 0.121799 / 0.737135 (-0.615336) | 0.076200 / 0.296338 (-0.220138) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277002 / 0.215209 (0.061793) | 2.735738 / 2.077655 (0.658083) | 1.430408 / 1.504120 (-0.073712) | 1.309795 / 1.541195 (-0.231400) | 1.339083 / 1.468490 (-0.129407) | 0.702540 / 4.584777 (-3.882237) | 2.352468 / 3.745712 (-1.393244) | 2.913698 / 5.269862 (-2.356164) | 1.871739 / 4.565676 (-2.693938) | 0.077054 / 0.424275 (-0.347221) | 0.005055 / 0.007607 (-0.002552) | 0.330550 / 0.226044 (0.104505) | 3.272556 / 2.268929 (1.003627) | 1.805268 / 55.444624 (-53.639356) | 1.504791 / 6.876477 (-5.371686) | 1.511361 / 2.142072 (-0.630712) | 0.784451 / 4.805227 (-4.020776) | 0.132182 / 6.500664 (-6.368482) | 0.042516 / 0.075469 (-0.032954) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.946939 / 1.841788 (-0.894849) | 11.369607 / 8.074308 (3.295299) | 9.667350 / 10.191392 (-0.524042) | 0.138689 / 0.680424 (-0.541735) | 0.014416 / 0.534201 (-0.519785) | 0.300685 / 0.579283 (-0.278598) | 0.259709 / 0.434364 (-0.174655) | 0.341271 / 0.540337 (-0.199066) | 0.435609 / 1.386936 (-0.951327) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005726 / 0.011353 (-0.005627) | 0.004071 / 0.011008 (-0.006937) | 0.050837 / 0.038508 (0.012329) | 0.047000 / 0.023109 (0.023890) | 0.278543 / 0.275898 (0.002645) | 0.300526 / 0.323480 (-0.022954) | 0.004483 / 0.007986 (-0.003503) | 0.002835 / 0.004328 (-0.001494) | 0.050925 / 0.004250 (0.046675) | 0.041834 / 0.037052 (0.004782) | 0.285059 / 0.258489 (0.026570) | 0.324557 / 0.293841 (0.030716) | 0.038949 / 0.128546 (-0.089597) | 0.012145 / 0.075646 (-0.063501) | 0.061791 / 0.419271 (-0.357481) | 0.034493 / 0.043533 (-0.009040) | 0.274034 / 0.255139 (0.018895) | 0.295886 / 0.283200 (0.012686) | 0.018524 / 0.141683 (-0.123159) | 1.148766 / 1.452155 (-0.303388) | 1.207966 / 1.492716 (-0.284750) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094078 / 0.018006 (0.076071) | 0.307850 / 0.000490 (0.307361) | 0.000224 / 0.000200 (0.000024) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023502 / 0.037411 (-0.013910) | 0.077321 / 0.014526 (0.062795) | 0.091147 / 0.176557 (-0.085410) | 0.131111 / 0.737135 (-0.606025) | 0.090906 / 0.296338 (-0.205432) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290700 / 0.215209 (0.075491) | 2.833655 / 2.077655 (0.756001) | 1.546371 / 1.504120 (0.042251) | 1.415337 / 1.541195 (-0.125858) | 1.445752 / 1.468490 (-0.022738) | 0.737880 / 4.584777 (-3.846897) | 0.961549 / 3.745712 (-2.784164) | 2.844021 / 5.269862 (-2.425841) | 2.023547 / 4.565676 (-2.542130) | 0.079791 / 0.424275 (-0.344484) | 0.005449 / 0.007607 (-0.002158) | 0.356381 / 0.226044 (0.130337) | 3.515555 / 2.268929 (1.246627) | 1.920407 / 55.444624 (-53.524217) | 1.628637 / 6.876477 (-5.247839) | 1.752995 / 2.142072 (-0.389077) | 0.807264 / 4.805227 (-3.997963) | 0.133627 / 6.500664 (-6.367037) | 0.041861 / 0.075469 (-0.033609) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.035643 / 1.841788 (-0.806144) | 12.114792 / 8.074308 (4.040484) | 10.185844 / 10.191392 (-0.005548) | 0.142354 / 0.680424 (-0.538070) | 0.015466 / 0.534201 (-0.518734) | 0.304681 / 0.579283 (-0.274603) | 0.124297 / 0.434364 (-0.310067) | 0.339907 / 0.540337 (-0.200430) | 0.436266 / 1.386936 (-0.950670) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#856eb84569006ab9389ddbcce8b7141befeab9cc \"CML watermark\")\n" ]
2024-07-23T07:25:09
2024-07-23T14:28:27
2024-07-23T14:21:08
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7062.diff", "html_url": "https://github.com/huggingface/datasets/pull/7062", "merged_at": "2024-07-23T14:21:08Z", "patch_url": "https://github.com/huggingface/datasets/pull/7062.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7062" }
Avoid calling `http_head` for non-HTTP URLs, by adding and `else` statement. Currently, it makes an unnecessary HTTP call (which adds latency) for non-HTTP protocols, like FTP, S3,... I discovered this while working in an unrelated issue.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7062/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7062/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7061
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7061/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7061/comments
https://api.github.com/repos/huggingface/datasets/issues/7061/events
https://github.com/huggingface/datasets/issues/7061
2,423,786,881
I_kwDODunzps6QeA2B
7,061
Custom Dataset | Still Raise Error while handling errors in _generate_examples
{ "avatar_url": "https://avatars.githubusercontent.com/u/68266028?v=4", "events_url": "https://api.github.com/users/hahmad2008/events{/privacy}", "followers_url": "https://api.github.com/users/hahmad2008/followers", "following_url": "https://api.github.com/users/hahmad2008/following{/other_user}", "gists_url": "https://api.github.com/users/hahmad2008/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hahmad2008", "id": 68266028, "login": "hahmad2008", "node_id": "MDQ6VXNlcjY4MjY2MDI4", "organizations_url": "https://api.github.com/users/hahmad2008/orgs", "received_events_url": "https://api.github.com/users/hahmad2008/received_events", "repos_url": "https://api.github.com/users/hahmad2008/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hahmad2008/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hahmad2008/subscriptions", "type": "User", "url": "https://api.github.com/users/hahmad2008" }
[]
open
false
null
[]
null
[]
2024-07-22T21:18:12
2024-07-22T21:18:12
null
NONE
null
null
null
### Describe the bug I follow this [example](https://discuss.huggingface.co/t/error-handling-in-iterabledataset/72827/3) to handle errors in custom dataset. I am writing a dataset script which read jsonl files and i need to handle errors and continue reading files without raising exception and exit the execution. ``` def _generate_examples(self, filepaths): errors=[] id_ = 0 for filepath in filepaths: try: with open(filepath, 'r') as f: for line in f: json_obj = json.loads(line) yield id_, json_obj id_ += 1 except Exception as exc: logger.error(f"error occur at filepath: {filepath}") errors.append(error) ``` seems the logger.error is printed but still exception is raised the the run is exit. ``` Downloading and preparing dataset custom_dataset/default to /home/myuser/.cache/huggingface/datasets/custom_dataset/default-a14cdd566afee0a6/1.0.0/acfcc9fb9c57034b580c4252841 ERROR: datasets_modules.datasets.custom_dataset.acfcc9fb9c57034b580c4252841bb890a5617cbd28678dd4be5e52b81188ad02.custom_dataset: 2024-07-22 10:47:42,167: error occur at filepath: '/home/myuser/ds/corrupted-file.jsonl Traceback (most recent call last): File "/home/myuser/.cache/huggingface/modules/datasets_modules/datasets/custom_dataset/ac..2/custom_dataset.py", line 48, in _generate_examples json_obj = json.loads(line) File "myenv/lib/python3.8/json/__init__.py", line 357, in loads return _default_decoder.decode(s) File "myenv/lib/python3.8/json/decoder.py", line 337, in decode obj, end = self.raw_decode(s, idx=_w(s, 0).end()) File "myenv/lib/python3.8/json/decoder.py", line 353, in raw_decode obj, end = self.scan_once(s, idx) json.decoder.JSONDecodeError: Invalid control character at: line 1 column 4 (char 3) Generating train split: 0 examples [00:06, ? examples/s]> RemoteTraceback: """ Traceback (most recent call last): File "myenv/lib/python3.8/site-packages/datasets/builder.py", line 1637, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "myenv/lib/python3.8/site-packages/datasets/arrow_writer.py", line 594, in finalize raise SchemaInferenceError("Please pass `features` or at least one example when writing data") datasets.arrow_writer.SchemaInferenceError: Please pass `features` or at least one example when writing data The above exception was the direct cause of the following exception: Traceback (most recent call last): File "myenv/lib/python3.8/site-packages/multiprocess/pool.py", line 125, in worker result = (True, func(*args, **kwds)) File "myenv/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 1353, in _write_generator_to_queue for i, result in enumerate(func(**kwargs)): File "myenv/lib/python3.8/site-packages/datasets/builder.py", line 1646, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset """ The above exception was the direct cause of the following exception: │ │ │ myenv/lib/python3.8/site-packages/datasets/utils/py_utils. │ │ py:1377 in <listcomp> │ │ │ │ 1374 │ │ │ │ if all(async_result.ready() for async_result in async_results) and queue │ │ 1375 │ │ │ │ │ break │ │ 1376 │ │ # we get the result in case there's an error to raise │ │ ❱ 1377 │ │ [async_result.get() for async_result in async_results] │ │ 1378 │ │ │ │ ╭──────────────────────────────── locals ─────────────────────────────────╮ │ │ │ .0 = <list_iterator object at 0x7f2cc1f0ce20> │ │ │ │ async_result = <multiprocess.pool.ApplyResult object at 0x7f2cc1f79c10> │ │ │ ╰─────────────────────────────────────────────────────────────────────────╯ │ │ │ │ myenv/lib/python3.8/site-packages/multiprocess/pool.py:771 │ │ in get │ │ │ │ 768 │ │ if self._success: │ │ 769 │ │ │ return self._value │ │ 770 │ │ else: │ │ ❱ 771 │ │ │ raise self._value │ │ 772 │ │ │ 773 │ def _set(self, i, obj): │ │ 774 │ │ self._success, self._value = obj │ │ │ │ ╭────────────────────────────── locals ──────────────────────────────╮ │ │ │ self = <multiprocess.pool.ApplyResult object at 0x7f2cc1f79c10> │ │ │ │ timeout = None │ │ │ ╰────────────────────────────────────────────────────────────────────╯ │ DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug same as above ### Expected behavior should handle error and continue reading remaining files ### Environment info python 3.9
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7061/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7061/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7060
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7060/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7060/comments
https://api.github.com/repos/huggingface/datasets/issues/7060/events
https://github.com/huggingface/datasets/pull/7060
2,423,188,419
PR_kwDODunzps52G71g
7,060
WebDataset BuilderConfig
{ "avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4", "events_url": "https://api.github.com/users/hlky/events{/privacy}", "followers_url": "https://api.github.com/users/hlky/followers", "following_url": "https://api.github.com/users/hlky/following{/other_user}", "gists_url": "https://api.github.com/users/hlky/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hlky", "id": 106811348, "login": "hlky", "node_id": "U_kgDOBl3P1A", "organizations_url": "https://api.github.com/users/hlky/orgs", "received_events_url": "https://api.github.com/users/hlky/received_events", "repos_url": "https://api.github.com/users/hlky/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hlky/subscriptions", "type": "User", "url": "https://api.github.com/users/hlky" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7060). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
2024-07-22T15:41:07
2024-07-23T13:28:44
2024-07-23T13:28:44
NONE
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7060.diff", "html_url": "https://github.com/huggingface/datasets/pull/7060", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7060.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7060" }
This PR adds `WebDatasetConfig`. Closes #7055
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7060/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7060/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7059
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7059/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7059/comments
https://api.github.com/repos/huggingface/datasets/issues/7059/events
https://github.com/huggingface/datasets/issues/7059
2,422,827,892
I_kwDODunzps6QaWt0
7,059
None values are skipped when reading jsonl in subobjects
{ "avatar_url": "https://avatars.githubusercontent.com/u/1929830?v=4", "events_url": "https://api.github.com/users/PonteIneptique/events{/privacy}", "followers_url": "https://api.github.com/users/PonteIneptique/followers", "following_url": "https://api.github.com/users/PonteIneptique/following{/other_user}", "gists_url": "https://api.github.com/users/PonteIneptique/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/PonteIneptique", "id": 1929830, "login": "PonteIneptique", "node_id": "MDQ6VXNlcjE5Mjk4MzA=", "organizations_url": "https://api.github.com/users/PonteIneptique/orgs", "received_events_url": "https://api.github.com/users/PonteIneptique/received_events", "repos_url": "https://api.github.com/users/PonteIneptique/repos", "site_admin": false, "starred_url": "https://api.github.com/users/PonteIneptique/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/PonteIneptique/subscriptions", "type": "User", "url": "https://api.github.com/users/PonteIneptique" }
[]
open
false
null
[]
null
[]
2024-07-22T13:02:42
2024-07-22T13:02:53
null
NONE
null
null
null
### Describe the bug I have been fighting against my machine since this morning only to find out this is some kind of a bug. When loading a dataset composed of `metadata.jsonl`, if you have nullable values (Optional[str]), they can be ignored by the parser, shifting things around. E.g., let's take this example Here are two version of a same dataset: [not-buggy.tar.gz](https://github.com/user-attachments/files/16333532/not-buggy.tar.gz) [buggy.tar.gz](https://github.com/user-attachments/files/16333553/buggy.tar.gz) ### Steps to reproduce the bug 1. Load the `buggy.tar.gz` dataset 2. Print baseline of `dts = load_dataset("./data")["train"][0]["baselines]` 3. Load the `not-buggy.tar.gz` dataset 4. Print baseline of `dts = load_dataset("./data")["train"][0]["baselines]` ### Expected behavior Both should have 4 baseline entries: 1. Buggy should have None followed by three lists 2. Non-Buggy should have four lists, and the first one should be an empty list. One does not work, 2 works. Despite accepting None in another position than the first one. ### Environment info - `datasets` version: 2.19.1 - Platform: Linux-6.5.0-44-generic-x86_64-with-glibc2.35 - Python version: 3.10.12 - `huggingface_hub` version: 0.23.0 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.3.1
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7059/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7059/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7058
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7058/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7058/comments
https://api.github.com/repos/huggingface/datasets/issues/7058/events
https://github.com/huggingface/datasets/issues/7058
2,422,560,355
I_kwDODunzps6QZVZj
7,058
New feature type: Document
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
open
false
null
[]
null
[]
2024-07-22T10:49:20
2024-07-22T10:49:20
null
CONTRIBUTOR
null
null
null
It would be useful for PDF. https://github.com/huggingface/dataset-viewer/issues/2991#issuecomment-2242656069
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7058/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7058/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7057
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7057/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7057/comments
https://api.github.com/repos/huggingface/datasets/issues/7057/events
https://github.com/huggingface/datasets/pull/7057
2,422,498,520
PR_kwDODunzps52EjGC
7,057
Update load_hub.mdx
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7057). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005617 / 0.011353 (-0.005736) | 0.003994 / 0.011008 (-0.007014) | 0.064188 / 0.038508 (0.025680) | 0.030939 / 0.023109 (0.007829) | 0.248712 / 0.275898 (-0.027186) | 0.273417 / 0.323480 (-0.050063) | 0.003340 / 0.007986 (-0.004646) | 0.002823 / 0.004328 (-0.001506) | 0.049985 / 0.004250 (0.045734) | 0.046872 / 0.037052 (0.009820) | 0.254554 / 0.258489 (-0.003935) | 0.288142 / 0.293841 (-0.005699) | 0.030540 / 0.128546 (-0.098006) | 0.012295 / 0.075646 (-0.063352) | 0.204589 / 0.419271 (-0.214683) | 0.036383 / 0.043533 (-0.007150) | 0.254277 / 0.255139 (-0.000862) | 0.267962 / 0.283200 (-0.015237) | 0.021173 / 0.141683 (-0.120510) | 1.126933 / 1.452155 (-0.325221) | 1.190841 / 1.492716 (-0.301875) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093622 / 0.018006 (0.075616) | 0.297967 / 0.000490 (0.297477) | 0.000241 / 0.000200 (0.000041) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018623 / 0.037411 (-0.018789) | 0.062210 / 0.014526 (0.047684) | 0.074369 / 0.176557 (-0.102187) | 0.120585 / 0.737135 (-0.616550) | 0.075966 / 0.296338 (-0.220372) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285440 / 0.215209 (0.070231) | 2.804275 / 2.077655 (0.726620) | 1.484539 / 1.504120 (-0.019580) | 1.366587 / 1.541195 (-0.174607) | 1.355269 / 1.468490 (-0.113221) | 0.722289 / 4.584777 (-3.862488) | 2.344567 / 3.745712 (-1.401145) | 2.831779 / 5.269862 (-2.438083) | 1.899800 / 4.565676 (-2.665876) | 0.078657 / 0.424275 (-0.345619) | 0.005188 / 0.007607 (-0.002420) | 0.340150 / 0.226044 (0.114106) | 3.390915 / 2.268929 (1.121986) | 1.836473 / 55.444624 (-53.608152) | 1.520718 / 6.876477 (-5.355759) | 1.723448 / 2.142072 (-0.418624) | 0.810281 / 4.805227 (-3.994946) | 0.136008 / 6.500664 (-6.364657) | 0.044005 / 0.075469 (-0.031465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.989982 / 1.841788 (-0.851806) | 11.671075 / 8.074308 (3.596767) | 9.805471 / 10.191392 (-0.385921) | 0.141637 / 0.680424 (-0.538787) | 0.014551 / 0.534201 (-0.519650) | 0.310077 / 0.579283 (-0.269206) | 0.266838 / 0.434364 (-0.167526) | 0.348894 / 0.540337 (-0.191444) | 0.451530 / 1.386936 (-0.935406) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005639 / 0.011353 (-0.005713) | 0.003935 / 0.011008 (-0.007074) | 0.050147 / 0.038508 (0.011639) | 0.031023 / 0.023109 (0.007914) | 0.268361 / 0.275898 (-0.007537) | 0.295774 / 0.323480 (-0.027706) | 0.005029 / 0.007986 (-0.002956) | 0.002832 / 0.004328 (-0.001496) | 0.049806 / 0.004250 (0.045556) | 0.040515 / 0.037052 (0.003463) | 0.283298 / 0.258489 (0.024809) | 0.321946 / 0.293841 (0.028105) | 0.031833 / 0.128546 (-0.096714) | 0.012137 / 0.075646 (-0.063510) | 0.060510 / 0.419271 (-0.358761) | 0.033754 / 0.043533 (-0.009779) | 0.268079 / 0.255139 (0.012940) | 0.292468 / 0.283200 (0.009268) | 0.017268 / 0.141683 (-0.124414) | 1.159922 / 1.452155 (-0.292233) | 1.188961 / 1.492716 (-0.303755) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096930 / 0.018006 (0.078923) | 0.306921 / 0.000490 (0.306431) | 0.000226 / 0.000200 (0.000026) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022811 / 0.037411 (-0.014600) | 0.077298 / 0.014526 (0.062772) | 0.088949 / 0.176557 (-0.087608) | 0.130763 / 0.737135 (-0.606372) | 0.090429 / 0.296338 (-0.205909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300866 / 0.215209 (0.085657) | 2.963375 / 2.077655 (0.885720) | 1.595753 / 1.504120 (0.091633) | 1.463091 / 1.541195 (-0.078104) | 1.481182 / 1.468490 (0.012692) | 0.712939 / 4.584777 (-3.871838) | 0.956694 / 3.745712 (-2.789018) | 2.802890 / 5.269862 (-2.466971) | 1.891092 / 4.565676 (-2.674585) | 0.077570 / 0.424275 (-0.346706) | 0.005536 / 0.007607 (-0.002072) | 0.351958 / 0.226044 (0.125914) | 3.459114 / 2.268929 (1.190185) | 1.989488 / 55.444624 (-53.455137) | 1.676271 / 6.876477 (-5.200205) | 1.808073 / 2.142072 (-0.334000) | 0.786920 / 4.805227 (-4.018307) | 0.132220 / 6.500664 (-6.368444) | 0.041602 / 0.075469 (-0.033867) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031759 / 1.841788 (-0.810029) | 12.007776 / 8.074308 (3.933467) | 10.568254 / 10.191392 (0.376862) | 0.143176 / 0.680424 (-0.537248) | 0.015556 / 0.534201 (-0.518645) | 0.304484 / 0.579283 (-0.274799) | 0.125508 / 0.434364 (-0.308855) | 0.340017 / 0.540337 (-0.200320) | 0.434285 / 1.386936 (-0.952651) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#16fa4421f44b22bbbc607f379a93f45af468d1fc \"CML watermark\")\n" ]
2024-07-22T10:17:46
2024-07-22T10:34:14
2024-07-22T10:28:10
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7057.diff", "html_url": "https://github.com/huggingface/datasets/pull/7057", "merged_at": "2024-07-22T10:28:10Z", "patch_url": "https://github.com/huggingface/datasets/pull/7057.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7057" }
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7057/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7057/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7056
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7056/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7056/comments
https://api.github.com/repos/huggingface/datasets/issues/7056/events
https://github.com/huggingface/datasets/pull/7056
2,422,192,257
PR_kwDODunzps52DgOu
7,056
Make `BufferShuffledExamplesIterable` resumable
{ "avatar_url": "https://avatars.githubusercontent.com/u/18402347?v=4", "events_url": "https://api.github.com/users/yzhangcs/events{/privacy}", "followers_url": "https://api.github.com/users/yzhangcs/followers", "following_url": "https://api.github.com/users/yzhangcs/following{/other_user}", "gists_url": "https://api.github.com/users/yzhangcs/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yzhangcs", "id": 18402347, "login": "yzhangcs", "node_id": "MDQ6VXNlcjE4NDAyMzQ3", "organizations_url": "https://api.github.com/users/yzhangcs/orgs", "received_events_url": "https://api.github.com/users/yzhangcs/received_events", "repos_url": "https://api.github.com/users/yzhangcs/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yzhangcs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yzhangcs/subscriptions", "type": "User", "url": "https://api.github.com/users/yzhangcs" }
[]
open
false
null
[]
null
[ "Oh cool !\r\n\r\nThe time it takes to resume depends on the expected maximum distance in this case right ? Do you know its relationship with $B$ ?\r\n\r\nIn your test it already as high as 15k for $B=1024$, which is ok for text datasets but is maybe not ideal for datasets with heavy samples like audio/image/video ? Though for heavy samples datasets the buffer size is generally much smaller to avoid memory issues.\r\n\r\nMaybe we could just add a warning message on resuming to tell the user that it might take some time to recover the shuffle buffer (with a progress bar maybe ?), and have the option to stop + re-run with an env variable to disable shuffle buffer recovering ? WDYT ?", "> The time it takes to resume depends on the expected maximum distance in this case right ? Do you know its relationship with $B$\r\n\r\nHi, I created a histogram to visualize the distances in the simulation exp.\r\n![](https://github.com/user-attachments/assets/464f7a86-051c-412f-b48a-461f7e7c9f20)\r\nI think there is no guarantee as to when the oldest example will be yielded. It could stay in the buffer until the entire shard is consumed. However, this can be rare, and in most cases, the pushed examples will be yielded very quickly. In the figure above, most examples are yielded within $2B$ steps. Things will improve if the dataset is split into enough shards and each shard is not too large.\r\n\r\nI agree that we may need to add some warnings or provide some options to allow users to make their own choices.", "Maybe there's a middle ground between rebuilding the buffer from scratch and storing the entire buffer, but the logic is a bit complicated and takes time to implement. At least for now, we have a way to make shuffled `IterableDataset` resumable :)", "@lhoestq I'm not sure if it's ok to use progress bar when having multiple workers. \r\nHow about passing an arg `resumable=True` to `IterableDataset.shuffle` to allow for controling of the behaviors?", "I feel like the default behavior should ideally be fast and perfect resuming.\r\n\r\nLoading from disk is a good option for this (although it's not always possible to serialize the content of the buffer, in that case the buffer would restart empty and we can show a warning). \r\n\r\nThe state_dict() would be part of the training state_dict that is saved to disk along with the model and optimizer anyway. Cc @muellerzr from that worked on storing training state_dicts for the `accelerate` lib, in case you have an opinion.\r\n\r\nI also feel like it is simpler and more intuitive to users. It doesn't require to explain why we need to stream a lot of data just to recover a buffer.\r\n\r\n> Maybe there's a middle ground between rebuilding the buffer from scratch and storing the entire buffer, but the logic is a bit complicated and takes time to implement.\r\n\r\ndefinitely, and it would also make things even harder to understand to users", "@lhoestq \r\n> Loading from disk is a good option for this (although it's not always possible to serialize the content of the buffer, in that case the buffer would restart empty and we can show a warning).\r\nThe state_dict() would be part of the training state_dict that is saved to disk along with the model and optimizer anyway. Cc @muellerzr from that worked on storing training state_dicts for the accelerate lib, in case you have an opinion.\r\nI also feel like it is simpler and more intuitive to users. It doesn't require to explain why we need to stream a lot of data just to recover a buffer.\r\n\r\nYea, agree with you. But here's the thing: saving buffers as state dict can get pretty tricky. When it comes to tokenized text data, working with multi-worker shuffle can take around x hundreds GB of memories in my case. That's just not feasible for most machine envs out there, and can be more severe for audio/video data.\r\n\r\nAlso, serializing the buffer does take a major toll on performance, and in my experience, I've had to lean heavily on numpy/torch tensor operations to manage those tokenized text data efficiently, which isn't easily transferable to other scenarios—it's kind of a custom fix that works for now, but it's not a one-size-fits-all solution. So, for me it's not that ideal to directly serialize the buffer content with those limitations.\r\n\r\n", "> When it comes to tokenized text data, working with multi-worker shuffle can taken around x hundreds GB memories in my case.\r\n\r\nit's kinda close to the size of a model + optimizer no ?\r\n\r\nAnyway that makes sense and adding the feature to recover a buffer shuffle (at least as an opt-in for now, we can decide on the default later based on users feedback and experience).\r\n\r\nAre you ok with adding `buffer_resuming_mode=` to `.shuffle()` to enable buffer recovering using your method with `buffer_resuming_mode=\"recover_from_source\"` ? (feel free to suggest other names for the parameter and value)", "@lhoestq \r\n> Are you ok with adding buffer_resuming_mode= to .shuffle() to enable buffer recovering using your method with buffer_resuming_mode=\"recover_from_source\" ? (feel free to suggest other names for the parameter and value)\r\n\r\nOf course, appreciate your feedbacks." ]
2024-07-22T07:50:02
2024-07-22T15:37:01
null
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7056.diff", "html_url": "https://github.com/huggingface/datasets/pull/7056", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7056.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7056" }
This PR aims to implement a resumable `BufferShuffledExamplesIterable`. Instead of saving the entire buffer content, which is very memory-intensive, the newly implemented `BufferShuffledExamplesIterable` saves only the minimal state necessary for recovery, e.g., the random generator states and the state of the first example in the buffer dict. The idea is that since the buffer size is limited, even if the entire buffer is discarded, we can rebuild it as long as the state of the oldest example is recorded. For buffer size $B$, the expected distance between when an example is pushed and when it is yielded is $d = \sum_{k=1}^{\infty} k\frac{1}{B} (1 - \frac{1}{B} )^{k-1} =B$. Simulation experiments support these claims: ```py from random import randint BUFFER_SIZE = 1024 dists = [] buffer = [] for i in range(10000000): if i < BUFFER_SIZE: buffer.append(i) else: index = randint(0, BUFFER_SIZE - 1) dists.append(i - buffer[index]) buffer[index] = i print(f"MIN DIST: {min(dists)}\nMAX DIST: {max(dists)}\nAVG DIST: {sum(dists) / len(dists):.2f}\n") ``` which produces the following output: ```py MIN DIST: 1 MAX DIST: 15136 AVG DIST: 1023.95 ``` The overall time for reconstructing the buffer and recovery should not be too long. The following code mimics the cases of resuming online tokenization by `datasets` and `StatefulDataLoader` under distributed scenarios, ```py import pickle import time from itertools import chain from typing import Any, Dict, List import torch from datasets import load_dataset from torchdata.stateful_dataloader import StatefulDataLoader from tqdm import tqdm from transformers import AutoTokenizer, DataCollatorForLanguageModeling tokenizer = AutoTokenizer.from_pretrained('fla-hub/gla-1.3B-100B') tokenizer.pad_token = tokenizer.eos_token data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) torch.manual_seed(42) def tokenize(examples: Dict[str, List[Any]]) -> Dict[str, List[List[int]]]: input_ids = tokenizer(examples['text'])['input_ids'] input_ids = list(chain(*input_ids)) total_length = len(input_ids) chunk_size = 2048 total_length = (total_length // chunk_size) * chunk_size # the last chunk smaller than chunk_size will be discarded return {'input_ids': [input_ids[i: i+chunk_size] for i in range(0, total_length, chunk_size)]} batch_size = 16 num_workers = 5 context_length = 2048 rank = 1 world_size = 32 prefetch_factor = 2 steps = 2048 path = 'fla-hub/slimpajama-test' dataset = load_dataset( path=path, split='train', streaming=True, trust_remote_code=True ) dataset = dataset.map(tokenize, batched=True, remove_columns=next(iter(dataset)).keys()) dataset = dataset.shuffle(seed=42) loader = StatefulDataLoader(dataset=dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=num_workers, persistent_workers=False, prefetch_factor=prefetch_factor) start = time.time() for i, batch in tqdm(enumerate(loader)): if i == 0: print(f'{i}\n{batch["input_ids"]}') if i == steps - 1: print(f'{i}\n{batch["input_ids"]}') state_dict = loader.state_dict() if i == steps: print(f'{i}\n{batch["input_ids"]}') break print(f"{time.time() - start:.2f}s elapsed") print(f"{len(pickle.dumps(state_dict)) / 1024**2:.2f}MB states in total") for worker in state_dict['_snapshot']['_worker_snapshots'].keys(): print(f"{worker} {len(pickle.dumps(state_dict['_snapshot']['_worker_snapshots'][worker])) / 1024**2:.2f}MB") print(state_dict['_snapshot']['_worker_snapshots']['worker_0']['dataset_state']) loader = StatefulDataLoader(dataset=dataset, batch_size=batch_size, collate_fn=data_collator, num_workers=num_workers, persistent_workers=False, prefetch_factor=prefetch_factor) print("Loading state dict") loader.load_state_dict(state_dict) start = time.time() for batch in loader: print(batch['input_ids']) break print(f"{time.time() - start:.2f}s elapsed") ``` and the outputs are ```py 0 tensor([[ 909, 395, 19082, ..., 13088, 16232, 395], [ 601, 28705, 28770, ..., 28733, 923, 288], [21753, 15071, 13977, ..., 9369, 28723, 415], ..., [21763, 28751, 20300, ..., 28781, 28734, 4775], [ 354, 396, 10214, ..., 298, 429, 28770], [ 333, 6149, 28768, ..., 2773, 340, 351]]) 2047 tensor([[28723, 415, 3889, ..., 272, 3065, 2609], [ 403, 3214, 3629, ..., 403, 21163, 16434], [28723, 13, 28749, ..., 28705, 28750, 28734], ..., [ 2778, 2251, 28723, ..., 354, 684, 429], [ 5659, 298, 1038, ..., 5290, 297, 22153], [ 938, 28723, 1537, ..., 9123, 28733, 12154]]) 2048 tensor([[ 769, 278, 12531, ..., 28721, 19309, 28739], [ 415, 23347, 622, ..., 3937, 2426, 28725], [28745, 4345, 28723, ..., 338, 28725, 583], ..., [ 1670, 28709, 5809, ..., 28734, 28760, 393], [ 340, 1277, 624, ..., 325, 28790, 1329], [ 523, 1144, 3409, ..., 359, 359, 17422]]) 65.97s elapsed 0.00MB states in total worker_0 0.00MB worker_1 0.00MB worker_2 0.00MB worker_3 0.00MB worker_4 0.00MB {'ex_iterable': {'ex_iterable': {'shard_idx': 0, 'shard_example_idx': 14000}, 'num_examples_since_previous_state': 166, 'previous_state_example_idx': 7394, 'previous_state': {'shard_idx': 0, 'shard_example_idx': 13000}}, 'num_taken': 6560, 'global_example_idx': 7560, 'buffer_state_dict': {'num_taken': 6560, 'global_example_idx': 356, 'index_offset': 0, 'first_state': {'ex_iterable': {'shard_idx': 0, 'shard_example_idx': 1000}, 'num_examples_since_previous_state': 356, 'previous_state_example_idx': 0, 'previous_state': {'shard_idx': 0, 'shard_example_idx': 0}}, 'bit_generator_state': {'state': {'state': 274674114334540486603088602300644985544, 'inc': 332724090758049132448979897138935081983}, 'bit_generator': 'PCG64', 'has_uint32': 0, 'uinteger': 0}}} Loading state dict tensor([[ 769, 278, 12531, ..., 28721, 19309, 28739], [ 415, 23347, 622, ..., 3937, 2426, 28725], [28745, 4345, 28723, ..., 338, 28725, 583], ..., [ 1670, 28709, 5809, ..., 28734, 28760, 393], [ 340, 1277, 624, ..., 325, 28790, 1329], [ 523, 1144, 3409, ..., 359, 359, 17422]]) 24.60s elapsed ``` Not sure if this PR complies with the `datasets` code style. Looking for your help @lhoestq, also very willing to further improve the code if any suggestions are given.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7056/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7056/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7055
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7055/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7055/comments
https://api.github.com/repos/huggingface/datasets/issues/7055/events
https://github.com/huggingface/datasets/issues/7055
2,421,708,891
I_kwDODunzps6QWFhb
7,055
WebDataset with different prefixes are unsupported
{ "avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4", "events_url": "https://api.github.com/users/hlky/events{/privacy}", "followers_url": "https://api.github.com/users/hlky/followers", "following_url": "https://api.github.com/users/hlky/following{/other_user}", "gists_url": "https://api.github.com/users/hlky/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hlky", "id": 106811348, "login": "hlky", "node_id": "U_kgDOBl3P1A", "organizations_url": "https://api.github.com/users/hlky/orgs", "received_events_url": "https://api.github.com/users/hlky/received_events", "repos_url": "https://api.github.com/users/hlky/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hlky/subscriptions", "type": "User", "url": "https://api.github.com/users/hlky" }
[]
closed
false
null
[]
null
[ "Since `datasets` uses is built on Arrow to store the data, it requires each sample to have the same columns.\r\n\r\nThis can be fixed by specifyign in advance the name of all the possible columns in the `dataset_info` in YAML, and missing values will be `None`", "Thanks. This currently doesn't work for WebDataset because there's no `BuilderConfig` with `features` and in turn `_info` is missing `features=self.config.features`. I'll prepare a PR to fix this.\r\n\r\nNote it may be useful to add the [expected format of `features`](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [`Builder Parameters`](https://huggingface.co/docs/datasets/repository_structure#builder-parameters).\r\n", "Oh good catch ! thanks\r\n\r\n> Note it may be useful to add the [expected format of features](https://github.com/huggingface/datasets/blob/16fa4421f44b22bbbc607f379a93f45af468d1fc/src/datasets/features/features.py#L1757) to the documentation for [Buil](https://huggingface.co/docs/datasets/repository_structure#builder-parameters)\r\n\r\nGood idea, let me open a PR", "#7060 ", "Actually I just tried with `datasets` on the `main` branch and having `features` defined in `dataset_info` worked for me\r\n\r\n```python\r\n>>> list(load_dataset(\"/Users/quentinlhoest/tmp\", streaming=True, split=\"train\"))\r\n[{'txt': 'hello there\\n', 'other': None}]\r\n```\r\nwhere `tmp` contains data.tar with \"hello there\\n\" in a text file and the README.md:\r\n```\r\n---\r\ndataset_info:\r\n features:\r\n - name: txt\r\n dtype: string\r\n - name: other\r\n dtype: string\r\n---\r\n\r\nThis is a dataset card\r\n```\r\n\r\nWhat error did you get when you tried to specify the columns in `dataset_info` ?", "If you review the changes in #7060 you'll note that `features` are not passed to `DatasetInfo`.\r\n\r\nIn your case the features are being extracted by [this code](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L72-L98).\r\n\r\nTry with the `Steps to reproduce the bug`. It's the same error mentioned in `Describe the bug` because `features` are not passed to `DatasetInfo`.\r\n\r\n`features` are [not used](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L365-L366) when the `BuilderConfig` has no `features` attribute. `WebDataset` uses the default [`BuilderConfig`](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/builder.py#L101-L124).\r\n\r\nThere is a [warning](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/load.py#L640-L648) that `features` are ignored.\r\n\r\nNote that as mentioned in `Describe the bug` this could also be resolved by removing the check [here](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) because Arrow actually handles this itself, Arrow sets any missing fields to `None`, at least in my case.", "Note for anyone else who encounters this issue, every dataset type except folder-based types supported features in the [documented](https://huggingface.co/docs/datasets/repository_structure#builder-parameters) manner; [Arrow](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/arrow/arrow.py#L15-L21), [csv](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/csv/csv.py#L25-L68), [generator](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/generator/generator.py#L8-L19), [json](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/json/json.py#L42-L52), [pandas](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/pandas/pandas.py#L14-L20), [parquet](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/parquet/parquet.py#L16-L24), [spark](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/spark/spark.py#L31-L37), [sql](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/sql/sql.py#L24-L35) and [text](https://github.com/huggingface/datasets/blob/e83d6fa574710fcb44e341087239d2687183f62b/src/datasets/packaged_modules/text/text.py#L18-L27). `WebDataset` is different and requires [`dataset_info` which is vaguely documented](https://huggingface.co/docs/datasets/dataset_script#optional-generate-dataset-metadata) under dataset loading scripts.", "Thanks for explaining. I see the Dataset Viewer is still failing - I'll update `datasets` in the Viewer to fix this" ]
2024-07-22T01:14:19
2024-07-24T13:26:30
2024-07-23T13:28:46
NONE
null
null
null
### Describe the bug Consider a WebDataset with multiple images for each item where the number of images may vary: [example](https://huggingface.co/datasets/bigdata-pw/fashion-150k) Due to this [code](https://github.com/huggingface/datasets/blob/87f4c2088854ff33e817e724e75179e9975c1b02/src/datasets/packaged_modules/webdataset/webdataset.py#L76-L80) an error is given. ``` The TAR archives of the dataset should be in WebDataset format, but the files in the archive don't share the same prefix or the same types. ``` The purpose of this check is unclear because PyArrow supports different keys. Removing the check allows the dataset to be loaded and there's no issue when iterating through the dataset. ``` >>> from datasets import load_dataset >>> path = "shards/*.tar" >>> dataset = load_dataset("webdataset", data_files={"train": path}, split="train", streaming=True) Resolving data files: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 152/152 [00:00<00:00, 56458.93it/s] >>> dataset IterableDataset({ features: ['__key__', '__url__', '1.jpg', '2.jpg', '3.jpg', '4.jpg', 'json'], n_shards: 152 }) ``` ### Steps to reproduce the bug ```python from datasets import load_dataset load_dataset("bigdata-pw/fashion-150k") ``` ### Expected behavior Dataset loads without error ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.14.0-467.el9.x86_64-x86_64-with-glibc2.34 - Python version: 3.9.19 - `huggingface_hub` version: 0.23.4 - PyArrow version: 17.0.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7055/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7055/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7054
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7054/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7054/comments
https://api.github.com/repos/huggingface/datasets/issues/7054/events
https://github.com/huggingface/datasets/pull/7054
2,418,548,995
PR_kwDODunzps514T1f
7,054
Add batching to `IterableDataset`
{ "avatar_url": "https://avatars.githubusercontent.com/u/61876623?v=4", "events_url": "https://api.github.com/users/lappemic/events{/privacy}", "followers_url": "https://api.github.com/users/lappemic/followers", "following_url": "https://api.github.com/users/lappemic/following{/other_user}", "gists_url": "https://api.github.com/users/lappemic/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lappemic", "id": 61876623, "login": "lappemic", "node_id": "MDQ6VXNlcjYxODc2NjIz", "organizations_url": "https://api.github.com/users/lappemic/orgs", "received_events_url": "https://api.github.com/users/lappemic/received_events", "repos_url": "https://api.github.com/users/lappemic/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lappemic/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lappemic/subscriptions", "type": "User", "url": "https://api.github.com/users/lappemic" }
[]
closed
false
null
[]
null
[ "Cool ! Thanks for diving into it :)\r\n\r\nYour implementation is great and indeed supports shuffling and batching, you just need to additionally account for state_dict (for dataset [checkpointing+resuming](https://huggingface.co/docs/datasets/main/en/use_with_pytorch#checkpoint-and-resume))\r\n\r\nThat being said, I believe the implementation can be made simpler by relying on `IterableDataset.map()` which already implements all this. Maybe something like\r\n\r\n```python\r\n\r\ndef batch(self, batch_size: int, drop_last_batch: bool = False) -> \"IterableDataset\":\r\n def batch(unbatched: dict[str, list]) -> dict[str, list]:\r\n return {k: [v] for k, v in unbatched}\r\n\r\n return self.map(batch, batched=True, batch_size=batch_size, drop_last_batch=drop_last_batch)\r\n```\r\n\r\nAnd this way no need to reimplement everything !\r\n\r\n(my only small concern is that it's not an Arrow-optimized function so it requires the examples to be manipulated as python objects even if the original data is in Arrow format (e.g. when streaming Parquet files) but it's not a big deal and we can see later if we need to optimize this)", "Thanks a lot for the feedback @lhoestq! I definitely could have saved some time looking into it properly first. 😅 \r\n\r\nImplemented the `.batch()` method, added a proper docsrtring for documentation, and added tests.\r\n\r\nLet me know what you think and if this needs some update.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7054). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "Thanks for the feedbak @lhoestq!\r\n\r\nApplied it and referenced the `batched=True` option in the `map` function and highlighted the difference. Hope i got this right.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005181 / 0.011353 (-0.006172) | 0.003714 / 0.011008 (-0.007294) | 0.063060 / 0.038508 (0.024552) | 0.030885 / 0.023109 (0.007776) | 0.239060 / 0.275898 (-0.036838) | 0.262480 / 0.323480 (-0.061000) | 0.004103 / 0.007986 (-0.003883) | 0.002696 / 0.004328 (-0.001632) | 0.048706 / 0.004250 (0.044456) | 0.042577 / 0.037052 (0.005525) | 0.249928 / 0.258489 (-0.008561) | 0.283252 / 0.293841 (-0.010589) | 0.029304 / 0.128546 (-0.099242) | 0.012001 / 0.075646 (-0.063646) | 0.204467 / 0.419271 (-0.214804) | 0.035639 / 0.043533 (-0.007894) | 0.243850 / 0.255139 (-0.011289) | 0.261609 / 0.283200 (-0.021590) | 0.018302 / 0.141683 (-0.123381) | 1.096040 / 1.452155 (-0.356115) | 1.135917 / 1.492716 (-0.356800) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091976 / 0.018006 (0.073970) | 0.296396 / 0.000490 (0.295906) | 0.000203 / 0.000200 (0.000003) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018405 / 0.037411 (-0.019007) | 0.062470 / 0.014526 (0.047944) | 0.073340 / 0.176557 (-0.103216) | 0.119474 / 0.737135 (-0.617661) | 0.075750 / 0.296338 (-0.220588) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279586 / 0.215209 (0.064377) | 2.768542 / 2.077655 (0.690887) | 1.449158 / 1.504120 (-0.054962) | 1.328760 / 1.541195 (-0.212435) | 1.336338 / 1.468490 (-0.132152) | 0.732582 / 4.584777 (-3.852195) | 2.325558 / 3.745712 (-1.420154) | 2.898077 / 5.269862 (-2.371784) | 1.893107 / 4.565676 (-2.672569) | 0.078788 / 0.424275 (-0.345487) | 0.005273 / 0.007607 (-0.002335) | 0.334887 / 0.226044 (0.108842) | 3.304173 / 2.268929 (1.035244) | 1.834743 / 55.444624 (-53.609882) | 1.527463 / 6.876477 (-5.349014) | 1.538824 / 2.142072 (-0.603249) | 0.785646 / 4.805227 (-4.019581) | 0.134876 / 6.500664 (-6.365788) | 0.042894 / 0.075469 (-0.032575) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976635 / 1.841788 (-0.865152) | 11.217156 / 8.074308 (3.142848) | 9.616971 / 10.191392 (-0.574421) | 0.127276 / 0.680424 (-0.553148) | 0.014344 / 0.534201 (-0.519857) | 0.301896 / 0.579283 (-0.277387) | 0.259615 / 0.434364 (-0.174749) | 0.340693 / 0.540337 (-0.199645) | 0.429145 / 1.386936 (-0.957791) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005534 / 0.011353 (-0.005819) | 0.003795 / 0.011008 (-0.007213) | 0.049761 / 0.038508 (0.011253) | 0.031311 / 0.023109 (0.008202) | 0.276032 / 0.275898 (0.000134) | 0.297316 / 0.323480 (-0.026164) | 0.004396 / 0.007986 (-0.003590) | 0.002693 / 0.004328 (-0.001635) | 0.049025 / 0.004250 (0.044775) | 0.039707 / 0.037052 (0.002654) | 0.284264 / 0.258489 (0.025775) | 0.319962 / 0.293841 (0.026121) | 0.031842 / 0.128546 (-0.096705) | 0.012192 / 0.075646 (-0.063454) | 0.059895 / 0.419271 (-0.359376) | 0.033676 / 0.043533 (-0.009856) | 0.275917 / 0.255139 (0.020778) | 0.292637 / 0.283200 (0.009437) | 0.017992 / 0.141683 (-0.123691) | 1.199329 / 1.452155 (-0.252826) | 1.259083 / 1.492716 (-0.233633) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092770 / 0.018006 (0.074764) | 0.313363 / 0.000490 (0.312873) | 0.000212 / 0.000200 (0.000013) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022977 / 0.037411 (-0.014434) | 0.076839 / 0.014526 (0.062314) | 0.088289 / 0.176557 (-0.088267) | 0.128625 / 0.737135 (-0.608510) | 0.089348 / 0.296338 (-0.206990) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300881 / 0.215209 (0.085672) | 2.946499 / 2.077655 (0.868845) | 1.599686 / 1.504120 (0.095566) | 1.479332 / 1.541195 (-0.061862) | 1.476910 / 1.468490 (0.008420) | 0.720536 / 4.584777 (-3.864241) | 0.944822 / 3.745712 (-2.800890) | 2.771864 / 5.269862 (-2.497998) | 1.886573 / 4.565676 (-2.679103) | 0.078462 / 0.424275 (-0.345813) | 0.005392 / 0.007607 (-0.002215) | 0.354984 / 0.226044 (0.128939) | 3.516449 / 2.268929 (1.247520) | 1.977033 / 55.444624 (-53.467592) | 1.671922 / 6.876477 (-5.204555) | 1.785755 / 2.142072 (-0.356318) | 0.795330 / 4.805227 (-4.009897) | 0.132895 / 6.500664 (-6.367769) | 0.041178 / 0.075469 (-0.034291) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.031780 / 1.841788 (-0.810008) | 11.855600 / 8.074308 (3.781292) | 10.245599 / 10.191392 (0.054207) | 0.140649 / 0.680424 (-0.539775) | 0.015332 / 0.534201 (-0.518869) | 0.299402 / 0.579283 (-0.279881) | 0.120007 / 0.434364 (-0.314357) | 0.337770 / 0.540337 (-0.202568) | 0.433679 / 1.386936 (-0.953257) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e83d6fa574710fcb44e341087239d2687183f62b \"CML watermark\")\n" ]
2024-07-19T10:11:47
2024-07-23T13:25:13
2024-07-23T10:34:28
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7054.diff", "html_url": "https://github.com/huggingface/datasets/pull/7054", "merged_at": "2024-07-23T10:34:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/7054.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7054" }
I've taken a try at implementing a batched `IterableDataset` as requested in issue #6279. This PR adds a new `BatchedExamplesIterable` class and a `.batch()` method to the `IterableDataset` class. The main changes are: 1. A new `BatchedExamplesIterable` that groups examples into batches. 2. A `.batch()` method for `IterableDataset` to easily create batched versions. 3. Support for shuffling and sharding to work with PyTorch DataLoader and multiple workers. I'm not sure if this is exactly what you had in mind and also have not fully tested it atm, so I'd really appreciate your feedback. Does this seem like it's heading in the right direction? I'm happy to make any changes or explore different approaches if needed. Pinging @lhoestq
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7054/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7054/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7053
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7053/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7053/comments
https://api.github.com/repos/huggingface/datasets/issues/7053/events
https://github.com/huggingface/datasets/issues/7053
2,416,423,791
I_kwDODunzps6QB7Nv
7,053
Datasets.datafiles resolve_pattern `TypeError: can only concatenate tuple (not "str") to tuple`
{ "avatar_url": "https://avatars.githubusercontent.com/u/48289218?v=4", "events_url": "https://api.github.com/users/MatthewYZhang/events{/privacy}", "followers_url": "https://api.github.com/users/MatthewYZhang/followers", "following_url": "https://api.github.com/users/MatthewYZhang/following{/other_user}", "gists_url": "https://api.github.com/users/MatthewYZhang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/MatthewYZhang", "id": 48289218, "login": "MatthewYZhang", "node_id": "MDQ6VXNlcjQ4Mjg5MjE4", "organizations_url": "https://api.github.com/users/MatthewYZhang/orgs", "received_events_url": "https://api.github.com/users/MatthewYZhang/received_events", "repos_url": "https://api.github.com/users/MatthewYZhang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/MatthewYZhang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/MatthewYZhang/subscriptions", "type": "User", "url": "https://api.github.com/users/MatthewYZhang" }
[]
closed
false
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[ { "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" } ]
null
[ "Hi,\r\n\r\nThis issue was fixed in `datasets` 2.15.0:\r\n- #6105\r\n\r\nYou will need to update your `datasets`:\r\n```\r\npip install -U datasets\r\n```", "Duplicate of:\r\n- #6100" ]
2024-07-18T13:42:35
2024-07-18T15:17:42
2024-07-18T15:16:18
NONE
null
null
null
### Describe the bug in data_files.py, line 332, `fs, _, _ = get_fs_token_paths(pattern, storage_options=storage_options)` If we run the code on AWS, as fs.protocol will be a tuple like: `('file', 'local')` So, `isinstance(fs.protocol, str) == False` and `protocol_prefix = fs.protocol + "://" if fs.protocol != "file" else ""` will raise `TypeError: can only concatenate tuple (not "str") to tuple`. ### Steps to reproduce the bug Steps to reproduce: 1. Run on a cloud server like AWS, 2. `import datasets.data_files as datafile` 3. datafile.resolve_pattern('path/to/dataset', '.') 4. `TypeError: can only concatenate tuple (not "str") to tuple` ### Expected behavior Should return path of the dataset, with fs.protocol at the beginning ### Environment info - `datasets` version: 2.14.0 - Platform: Linux-3.10.0-1160.119.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.8.19 - Huggingface_hub version: 0.23.5 - PyArrow version: 16.1.0 - Pandas version: 1.1.5
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7053/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7053/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7052
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7052/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7052/comments
https://api.github.com/repos/huggingface/datasets/issues/7052/events
https://github.com/huggingface/datasets/pull/7052
2,411,682,730
PR_kwDODunzps51iuop
7,052
Adding `Music` feature for symbolic music modality (MIDI, abc)
{ "avatar_url": "https://avatars.githubusercontent.com/u/56734983?v=4", "events_url": "https://api.github.com/users/Natooz/events{/privacy}", "followers_url": "https://api.github.com/users/Natooz/followers", "following_url": "https://api.github.com/users/Natooz/following{/other_user}", "gists_url": "https://api.github.com/users/Natooz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Natooz", "id": 56734983, "login": "Natooz", "node_id": "MDQ6VXNlcjU2NzM0OTgz", "organizations_url": "https://api.github.com/users/Natooz/orgs", "received_events_url": "https://api.github.com/users/Natooz/received_events", "repos_url": "https://api.github.com/users/Natooz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Natooz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Natooz/subscriptions", "type": "User", "url": "https://api.github.com/users/Natooz" }
[]
closed
false
null
[]
null
[]
2024-07-16T17:26:04
2024-07-29T06:47:55
2024-07-29T06:47:55
NONE
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/7052.diff", "html_url": "https://github.com/huggingface/datasets/pull/7052", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7052.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7052" }
⚠️ (WIP) ⚠️ ### What this PR does This PR adds a `Music` feature for the symbolic music modality, in particular [MIDI](https://en.wikipedia.org/wiki/Musical_Instrument_Digital_Interface) and [abc](https://en.wikipedia.org/wiki/ABC_notation) files. ### Motivations These two file formats are widely used in the [Music Information Retrieval (MIR)](https://en.wikipedia.org/wiki/Music_information_retrieval) for tasks such as music generation, music transcription, music synthesis or music transcription. Having a dedicated feature in the datasets library would allow to both encourage researchers to share datasets of this modality as well as making them more easily usable for end users, benefitting from the perks of the library. These file formats are supported by [symusic](https://github.com/Yikai-Liao/symusic), a lightweight Python library with C bindings (using nanobind) allowing to efficiently read, write and manipulate them. The library is actively developed, and can in the future also implement other file formats such as [musicXML](https://en.wikipedia.org/wiki/MusicXML). As such, this PR relies on it. The music data can then easily be tokenized with appropriate tokenizers such as [MidiTok](https://github.com/Natooz/MidiTok) or converted to pianorolls matrices by symusic. **Jul 16th 2024:** * the tests for the `Music` feature are currently failing due to non-supported access to the LazyBatch in `test_dataset_with_music_feature_map` and `test_dataset_with_music_feature_map_resample_music` (see TODOs). I am a beginner with pyArrow, I'll take any advice to make this work; * additional tests including the `Music` feature with parquet and WebDataset should be implemented. As of right now, I am waiting for your feedback before taking further steps; * a `MusicFolder` should also be implemented to comply with the usages of the `Image` and `Audio` features, waiting for your feedback too. CCing @lhoestq and @albertvillanova
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7052/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7052/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7051
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7051/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7051/comments
https://api.github.com/repos/huggingface/datasets/issues/7051/events
https://github.com/huggingface/datasets/issues/7051
2,409,353,929
I_kwDODunzps6Pm9LJ
7,051
How to set_epoch with interleave_datasets?
{ "avatar_url": "https://avatars.githubusercontent.com/u/511073?v=4", "events_url": "https://api.github.com/users/jonathanasdf/events{/privacy}", "followers_url": "https://api.github.com/users/jonathanasdf/followers", "following_url": "https://api.github.com/users/jonathanasdf/following{/other_user}", "gists_url": "https://api.github.com/users/jonathanasdf/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jonathanasdf", "id": 511073, "login": "jonathanasdf", "node_id": "MDQ6VXNlcjUxMTA3Mw==", "organizations_url": "https://api.github.com/users/jonathanasdf/orgs", "received_events_url": "https://api.github.com/users/jonathanasdf/received_events", "repos_url": "https://api.github.com/users/jonathanasdf/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jonathanasdf/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jonathanasdf/subscriptions", "type": "User", "url": "https://api.github.com/users/jonathanasdf" }
[]
closed
false
null
[]
null
[ "This is not possible right now afaik :/\r\n\r\nMaybe we could have something like this ? wdyt ?\r\n\r\n```python\r\nds = interleave_datasets(\r\n [shuffled_dataset_a, dataset_b],\r\n probabilities=probabilities,\r\n stopping_strategy='all_exhausted',\r\n reshuffle_each_iteration=True,\r\n)", "That would be helpful for this case! \r\n\r\nIf there was some way for from_generator to iterate over just a single shard of some dataset that would probably be more ideal. Maybe something like\r\n\r\n```\r\ndef from_dataset_generator(dataset, generator_fn, gen_kwargs):\r\n # calls generator_fn(dataset=dataset_shard, **gen_kwargs)\r\n```\r\n\r\nAnother transform I was trying to implement is an input bucketing transform. Essentially you need to iterate through a dataset and reorder the examples in them, which is not really possible with a `map()` call. But using `from_generator()` causes the final dataset to be a single shard and loses speed gains from multiple dataloader workers", "I see, there are some internal functions to get a single shard already but the public `.shard()` method hasn't been implemented yet for `IterableDataset` :/\r\n\r\n(see the use of `ex_iterable.shard_data_sources` in `IterableDataset._prepare_ex_iterable_for_iteration` for example)", "Would that be something planned on the roadmap for the near future, or do you suggest hacking through with internal APIs for now?", "Ok this turned out to be not too difficult. Are there any obvious issues with my implementation?\r\n\r\n```\r\nclass ShuffleEveryEpochIterable(iterable_dataset._BaseExamplesIterable):\r\n \"\"\"ExamplesIterable that reshuffles the dataset every epoch.\"\"\"\r\n\r\n def __init__(\r\n self,\r\n ex_iterable: iterable_dataset._BaseExamplesIterable,\r\n generator: np.random.Generator,\r\n ):\r\n \"\"\"Constructor.\"\"\"\r\n super().__init__()\r\n self.ex_iterable = ex_iterable\r\n self.generator = generator\r\n\r\n def _init_state_dict(self) -> dict:\r\n self._state_dict = {\r\n 'ex_iterable': self.ex_iterable._init_state_dict(),\r\n 'epoch': 0,\r\n }\r\n return self._state_dict\r\n\r\n @typing.override\r\n def __iter__(self):\r\n epoch = self._state_dict['epoch'] if self._state_dict else 0\r\n for i in itertools.count(epoch):\r\n # Create effective seed using i (subtract in order to avoir overflow in long_scalars)\r\n effective_seed = copy.deepcopy(self.generator).integers(0, 1 << 63) - i\r\n effective_seed = (1 << 63) + effective_seed if effective_seed < 0 else effective_seed\r\n generator = np.random.default_rng(effective_seed)\r\n self.ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\r\n if self._state_dict:\r\n self._state_dict['epoch'] = i\r\n self._state_dict['ex_iterable'] = self.ex_iterable._init_state_dict()\r\n it = iter(self.ex_iterable)\r\n yield from it\r\n\r\n @typing.override\r\n def shuffle_data_sources(self, generator):\r\n ex_iterable = self.ex_iterable.shuffle_data_sources(generator)\r\n return ShuffleEveryEpochIterable(ex_iterable, generator=generator)\r\n\r\n @typing.override\r\n def shard_data_sources(self, worker_id: int, num_workers: int):\r\n ex_iterable = self.ex_iterable.shard_data_sources(worker_id, num_workers)\r\n return ShuffleEveryEpochIterable(ex_iterable, generator=self.generator)\r\n\r\n @typing.override\r\n @property\r\n def n_shards(self) -> int:\r\n return self.ex_iterable.n_shards\r\n \r\ngenerator = np.random.default_rng(seed)\r\nshuffling = iterable_dataset.ShufflingConfig(generator=generator, _original_seed=seed)\r\nex_iterable = iterable_dataset.BufferShuffledExamplesIterable(\r\n dataset._ex_iterable, buffer_size=buffer_size, generator=generator\r\n)\r\nex_iterable = ShuffleEveryEpochIterable(ex_iterable, generator=generator)\r\ndataset = datasets.IterableDataset(\r\n ex_iterable=ex_iterable,\r\n info=dataset._info.copy(),\r\n split=dataset._split,\r\n formatting=dataset._formatting,\r\n shuffling=shuffling,\r\n distributed=copy.deepcopy(dataset._distributed),\r\n token_per_repo_id=dataset._token_per_repo_id,\r\n)\r\n```\r\n", "Nice ! This iterable is infinite though no ? How would `interleave_dataset` know when to stop ?\r\n\r\nMaybe the re-shuffling can be implemented directly in `RandomlyCyclingMultiSourcesExamplesIterable` (which is the iterable used by `interleave_dataset`) ?", "Infinite is fine for my usecases fortunately." ]
2024-07-15T18:24:52
2024-08-05T20:58:04
2024-08-05T20:58:04
NONE
null
null
null
Let's say I have dataset A which has 100k examples, and dataset B which has 100m examples. I want to train on an interleaved dataset of A+B, with stopping_strategy='all_exhausted' so dataset B doesn't repeat any examples. But every time A is exhausted I want it to be reshuffled (eg. calling set_epoch) Of course I want to interleave as IterableDatasets / streaming mode so B doesn't have to get tokenized completely at the start. How could I achieve this? I was thinking something like, if I wrap dataset A in some new IterableDataset with from_generator() and manually call set_epoch before interleaving it? But I'm not sure how to keep the number of shards in that dataset... Something like ``` dataset_a = load_dataset(...) dataset_b = load_dataset(...) def epoch_shuffled_dataset(ds): # How to make this maintain the number of shards in ds?? for epoch in itertools.count(): ds.set_epoch(epoch) yield from iter(ds) shuffled_dataset_a = IterableDataset.from_generator(epoch_shuffled_dataset, gen_kwargs={'ds': dataset_a}) interleaved = interleave_datasets([shuffled_dataset_a, dataset_b], probs, stopping_strategy='all_exhausted') ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 2, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/7051/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7051/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7050
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7050/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7050/comments
https://api.github.com/repos/huggingface/datasets/issues/7050/events
https://github.com/huggingface/datasets/pull/7050
2,409,048,733
PR_kwDODunzps51Z1Yp
7,050
add checkpoint and resume title in docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7050). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005707 / 0.011353 (-0.005646) | 0.004381 / 0.011008 (-0.006627) | 0.063711 / 0.038508 (0.025202) | 0.031882 / 0.023109 (0.008772) | 0.250056 / 0.275898 (-0.025842) | 0.287616 / 0.323480 (-0.035863) | 0.003327 / 0.007986 (-0.004658) | 0.003717 / 0.004328 (-0.000611) | 0.049103 / 0.004250 (0.044853) | 0.048821 / 0.037052 (0.011769) | 0.259688 / 0.258489 (0.001199) | 0.311469 / 0.293841 (0.017628) | 0.030667 / 0.128546 (-0.097879) | 0.013091 / 0.075646 (-0.062555) | 0.204737 / 0.419271 (-0.214534) | 0.038312 / 0.043533 (-0.005221) | 0.250055 / 0.255139 (-0.005084) | 0.272199 / 0.283200 (-0.011001) | 0.021161 / 0.141683 (-0.120522) | 1.116095 / 1.452155 (-0.336060) | 1.153588 / 1.492716 (-0.339129) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.107828 / 0.018006 (0.089822) | 0.315898 / 0.000490 (0.315408) | 0.000228 / 0.000200 (0.000028) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018873 / 0.037411 (-0.018539) | 0.063374 / 0.014526 (0.048848) | 0.076424 / 0.176557 (-0.100133) | 0.123468 / 0.737135 (-0.613667) | 0.077432 / 0.296338 (-0.218906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.288931 / 0.215209 (0.073722) | 2.828745 / 2.077655 (0.751091) | 1.471061 / 1.504120 (-0.033059) | 1.332289 / 1.541195 (-0.208906) | 1.379797 / 1.468490 (-0.088693) | 0.708053 / 4.584777 (-3.876724) | 2.382431 / 3.745712 (-1.363281) | 2.952672 / 5.269862 (-2.317190) | 1.957517 / 4.565676 (-2.608160) | 0.078730 / 0.424275 (-0.345546) | 0.005093 / 0.007607 (-0.002514) | 0.338147 / 0.226044 (0.112102) | 3.340841 / 2.268929 (1.071912) | 1.857083 / 55.444624 (-53.587541) | 1.533659 / 6.876477 (-5.342818) | 1.750549 / 2.142072 (-0.391523) | 0.804125 / 4.805227 (-4.001103) | 0.134618 / 6.500664 (-6.366046) | 0.042517 / 0.075469 (-0.032952) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.968608 / 1.841788 (-0.873180) | 12.326994 / 8.074308 (4.252686) | 9.464889 / 10.191392 (-0.726503) | 0.143979 / 0.680424 (-0.536445) | 0.014577 / 0.534201 (-0.519624) | 0.303205 / 0.579283 (-0.276078) | 0.269866 / 0.434364 (-0.164498) | 0.344846 / 0.540337 (-0.195491) | 0.443794 / 1.386936 (-0.943142) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006452 / 0.011353 (-0.004900) | 0.004264 / 0.011008 (-0.006745) | 0.051355 / 0.038508 (0.012847) | 0.035188 / 0.023109 (0.012079) | 0.267697 / 0.275898 (-0.008201) | 0.295853 / 0.323480 (-0.027627) | 0.004611 / 0.007986 (-0.003374) | 0.005395 / 0.004328 (0.001066) | 0.049903 / 0.004250 (0.045652) | 0.044582 / 0.037052 (0.007530) | 0.284706 / 0.258489 (0.026217) | 0.321623 / 0.293841 (0.027782) | 0.033228 / 0.128546 (-0.095318) | 0.013077 / 0.075646 (-0.062569) | 0.061867 / 0.419271 (-0.357405) | 0.034625 / 0.043533 (-0.008908) | 0.269088 / 0.255139 (0.013949) | 0.284899 / 0.283200 (0.001699) | 0.019972 / 0.141683 (-0.121710) | 1.157976 / 1.452155 (-0.294178) | 1.181658 / 1.492716 (-0.311058) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.111072 / 0.018006 (0.093066) | 0.333310 / 0.000490 (0.332820) | 0.000251 / 0.000200 (0.000051) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023760 / 0.037411 (-0.013652) | 0.080746 / 0.014526 (0.066221) | 0.090231 / 0.176557 (-0.086326) | 0.132200 / 0.737135 (-0.604936) | 0.095679 / 0.296338 (-0.200660) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297404 / 0.215209 (0.082195) | 2.919779 / 2.077655 (0.842124) | 1.577470 / 1.504120 (0.073350) | 1.452924 / 1.541195 (-0.088271) | 1.523683 / 1.468490 (0.055193) | 0.743801 / 4.584777 (-3.840976) | 1.006944 / 3.745712 (-2.738768) | 3.218161 / 5.269862 (-2.051701) | 2.069762 / 4.565676 (-2.495914) | 0.082900 / 0.424275 (-0.341375) | 0.005239 / 0.007607 (-0.002368) | 0.360124 / 0.226044 (0.134080) | 3.505349 / 2.268929 (1.236420) | 1.959324 / 55.444624 (-53.485300) | 1.663782 / 6.876477 (-5.212694) | 1.725745 / 2.142072 (-0.416327) | 0.825268 / 4.805227 (-3.979959) | 0.138577 / 6.500664 (-6.362087) | 0.042716 / 0.075469 (-0.032753) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021138 / 1.841788 (-0.820650) | 13.907954 / 8.074308 (5.833646) | 11.023796 / 10.191392 (0.832404) | 0.135224 / 0.680424 (-0.545200) | 0.016232 / 0.534201 (-0.517969) | 0.330389 / 0.579283 (-0.248894) | 0.131702 / 0.434364 (-0.302662) | 0.372499 / 0.540337 (-0.167838) | 0.472702 / 1.386936 (-0.914234) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87f4c2088854ff33e817e724e75179e9975c1b02 \"CML watermark\")\n" ]
2024-07-15T15:38:04
2024-07-15T16:06:15
2024-07-15T15:59:56
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7050.diff", "html_url": "https://github.com/huggingface/datasets/pull/7050", "merged_at": "2024-07-15T15:59:56Z", "patch_url": "https://github.com/huggingface/datasets/pull/7050.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7050" }
(minor) just to make it more prominent in the docs page for the soon-to-be-released new torchdata
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7050/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7050/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7049
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7049/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7049/comments
https://api.github.com/repos/huggingface/datasets/issues/7049/events
https://github.com/huggingface/datasets/issues/7049
2,408,514,366
I_kwDODunzps6PjwM-
7,049
Save nparray as list
{ "avatar_url": "https://avatars.githubusercontent.com/u/48399040?v=4", "events_url": "https://api.github.com/users/Sakurakdx/events{/privacy}", "followers_url": "https://api.github.com/users/Sakurakdx/followers", "following_url": "https://api.github.com/users/Sakurakdx/following{/other_user}", "gists_url": "https://api.github.com/users/Sakurakdx/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Sakurakdx", "id": 48399040, "login": "Sakurakdx", "node_id": "MDQ6VXNlcjQ4Mzk5MDQw", "organizations_url": "https://api.github.com/users/Sakurakdx/orgs", "received_events_url": "https://api.github.com/users/Sakurakdx/received_events", "repos_url": "https://api.github.com/users/Sakurakdx/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Sakurakdx/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Sakurakdx/subscriptions", "type": "User", "url": "https://api.github.com/users/Sakurakdx" }
[]
closed
false
null
[]
null
[ "In addition, when I use `set_format ` and index the ds, the following error occurs:\r\nthe code\r\n```python\r\nds.set_format(type=\"np\", colums=\"pixel_values\")\r\n```\r\nerror\r\n<img width=\"918\" alt=\"image\" src=\"https://github.com/user-attachments/assets/b28bbff2-20ea-4d28-ab62-b4ed2d944996\">\r\n", "> Some people use the set_format function to convert the column back, but doesn't this lose precision?\r\n\r\nUnder the hood the data is saved in Arrow format using the same precision as your numpy arrays?\r\nBy default the Arrow data is read as python lists, but you can indeed read them back as numpy arrays with the same precision", "(you can fix your second issue by fixing the typo `colums` -> `columns`)", "> (you can fix your second issue by fixing the typo `colums` -> `columns`)\r\n\r\nYou are right, I was careless. Thank you.", "> > Some people use the set_format function to convert the column back, but doesn't this lose precision?\r\n> \r\n> Under the hood the data is saved in Arrow format using the same precision as your numpy arrays? By default the Arrow data is read as python lists, but you can indeed read them back as numpy arrays with the same precision\r\n\r\nYes, after testing I found that there was no loss of precision. Thanks again for your answer." ]
2024-07-15T11:36:11
2024-07-18T11:33:34
2024-07-18T11:33:34
NONE
null
null
null
### Describe the bug When I use the `map` function to convert images into features, datasets saves nparray as a list. Some people use the `set_format` function to convert the column back, but doesn't this lose precision? ### Steps to reproduce the bug the map function ```python def convert_image_to_features(inst, processor, image_dir): image_file = inst["image_url"] file = image_file.split("/")[-1] image_path = os.path.join(image_dir, file) image = Image.open(image_path) image = image.convert("RGBA") inst["pixel_values"] = processor(images=image, return_tensors="np")["pixel_values"] return inst ``` main function ```python map_fun = partial( convert_image_to_features, processor=processor, image_dir=image_dir ) ds = ds.map(map_fun, batched=False, num_proc=20) print(type(ds[0]["pixel_values"]) ``` ### Expected behavior (type < list>) ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-4.19.91-009.ali4000.alios7.x86_64-x86_64-with-glibc2.35 - Python version: 3.11.5 - `huggingface_hub` version: 0.23.4 - PyArrow version: 14.0.2 - Pandas version: 2.1.4 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7049/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7049/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7048
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7048/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7048/comments
https://api.github.com/repos/huggingface/datasets/issues/7048/events
https://github.com/huggingface/datasets/issues/7048
2,408,487,547
I_kwDODunzps6Pjpp7
7,048
ImportError: numpy.core.multiarray when using `filter`
{ "avatar_url": "https://avatars.githubusercontent.com/u/45195979?v=4", "events_url": "https://api.github.com/users/kamilakesbi/events{/privacy}", "followers_url": "https://api.github.com/users/kamilakesbi/followers", "following_url": "https://api.github.com/users/kamilakesbi/following{/other_user}", "gists_url": "https://api.github.com/users/kamilakesbi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kamilakesbi", "id": 45195979, "login": "kamilakesbi", "node_id": "MDQ6VXNlcjQ1MTk1OTc5", "organizations_url": "https://api.github.com/users/kamilakesbi/orgs", "received_events_url": "https://api.github.com/users/kamilakesbi/received_events", "repos_url": "https://api.github.com/users/kamilakesbi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kamilakesbi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kamilakesbi/subscriptions", "type": "User", "url": "https://api.github.com/users/kamilakesbi" }
[]
closed
false
null
[]
null
[ "Could you please check your `numpy` version?", "I got this issue while using numpy version 2.0. \r\n\r\nI solved it by switching back to numpy 1.26.0 :) ", "We recently added support for numpy 2.0, but it is not released yet.", "Ok I see, thanks! I think we can close this issue for now as switching back to version 1.26.0 solves the problem :) " ]
2024-07-15T11:21:04
2024-07-16T10:11:25
2024-07-16T10:11:25
NONE
null
null
null
### Describe the bug I can't apply the filter method on my dataset. ### Steps to reproduce the bug The following snippet generates a bug: ```python from datasets import load_dataset ami = load_dataset('kamilakesbi/ami', 'ihm') ami['train'].filter( lambda example: example["file_name"] == 'EN2001a' ) ``` I get the following error: `ImportError: numpy.core.multiarray failed to import (auto-generated because you didn't call 'numpy.import_array()' after cimporting numpy; use '<void>numpy._import_array' to disable if you are certain you don't need it).` ### Expected behavior It should work properly! ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-5.15.0-67-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2024.5.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7048/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7048/timeline
null
completed
false
https://api.github.com/repos/huggingface/datasets/issues/7047
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7047/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7047/comments
https://api.github.com/repos/huggingface/datasets/issues/7047/events
https://github.com/huggingface/datasets/issues/7047
2,406,495,084
I_kwDODunzps6PcDNs
7,047
Save Dataset as Sharded Parquet
{ "avatar_url": "https://avatars.githubusercontent.com/u/43631024?v=4", "events_url": "https://api.github.com/users/tom-p-reichel/events{/privacy}", "followers_url": "https://api.github.com/users/tom-p-reichel/followers", "following_url": "https://api.github.com/users/tom-p-reichel/following{/other_user}", "gists_url": "https://api.github.com/users/tom-p-reichel/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/tom-p-reichel", "id": 43631024, "login": "tom-p-reichel", "node_id": "MDQ6VXNlcjQzNjMxMDI0", "organizations_url": "https://api.github.com/users/tom-p-reichel/orgs", "received_events_url": "https://api.github.com/users/tom-p-reichel/received_events", "repos_url": "https://api.github.com/users/tom-p-reichel/repos", "site_admin": false, "starred_url": "https://api.github.com/users/tom-p-reichel/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/tom-p-reichel/subscriptions", "type": "User", "url": "https://api.github.com/users/tom-p-reichel" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "To anyone else who finds themselves in this predicament, it's possible to read the parquet file in the same way that datasets writes it, and then manually break it into pieces. Although, you need a couple of magic options (`thrift_*`) to deal with the huge metadata, otherwise pyarrow immediately crashes.\r\n```python\r\nimport pyarrow.parquet as pq\r\nimport pyarrow as pa\r\n\r\nr = pq.ParquetReader()\r\n\r\nr.open(\"./outrageous-file.parquet\",thrift_string_size_limit=2**31-1, thrift_container_size_limit=2**31-1)\r\n\r\nfrom more_itertools import chunked\r\nimport tqdm\r\n\r\nfor i,chunk in tqdm.tqdm(enumerate(chunked(range(r.num_row_groups),10000))):\r\n w = pq.ParquetWriter(f\"./chunks.parquet/chunk{i}.parquet\",schema=r.schema_arrow)\r\n for idx in chunk:\r\n w.write_table(r.read_row_group(idx))\r\n w.close()\r\n```", "You can also use `.shard()` and call `to_parquet()` on each shard in the meantime:\r\n\r\n```python\r\nnum_shards = 128\r\noutput_path_template = \"output_dir/{index:05d}.parquet\"\r\nfor index in range(num_shards):\r\n shard = ds.shard(index=index, num_shards=num_shards, contiguous=True)\r\n shard.to_parquet(output_path_template.format(index=index))\r\n```" ]
2024-07-12T23:47:51
2024-07-17T12:07:08
null
NONE
null
null
null
### Feature request `to_parquet` currently saves the dataset as one massive, monolithic parquet file, rather than as several small parquet files. It should shard large datasets automatically. ### Motivation This default behavior makes me very sad because a program I ran for 6 hours saved its results using `to_parquet`, putting the entire billion+ row dataset into a 171 GB *single shard parquet file* which pyarrow, apache spark, etc. all cannot work with without completely exhausting the memory of my system. I was previously able to work with larger-than-memory parquet files, but not this one. I *assume* the reason why this is happening is because it is a single shard. Making sharding the default behavior puts datasets in parity with other frameworks, such as spark, which automatically shard when a large dataset is saved as parquet. ### Your contribution I could change the logic here https://github.com/huggingface/datasets/blob/bf6f41e94d9b2f1c620cf937a2e85e5754a8b960/src/datasets/io/parquet.py#L109-L158 to use `pyarrow.dataset.write_dataset`, which seems to support sharding, or periodically open new files. We would only shard if the user passed in a path rather than file handle.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7047/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7047/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7046
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7046/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7046/comments
https://api.github.com/repos/huggingface/datasets/issues/7046/events
https://github.com/huggingface/datasets/pull/7046
2,405,485,582
PR_kwDODunzps51N05n
7,046
Support librosa and numpy 2.0 for Python 3.10
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7046). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005897 / 0.011353 (-0.005456) | 0.003958 / 0.011008 (-0.007050) | 0.063684 / 0.038508 (0.025176) | 0.031743 / 0.023109 (0.008634) | 0.246725 / 0.275898 (-0.029173) | 0.275519 / 0.323480 (-0.047961) | 0.003347 / 0.007986 (-0.004639) | 0.004089 / 0.004328 (-0.000240) | 0.049591 / 0.004250 (0.045341) | 0.049386 / 0.037052 (0.012333) | 0.264929 / 0.258489 (0.006440) | 0.317157 / 0.293841 (0.023316) | 0.029929 / 0.128546 (-0.098617) | 0.012264 / 0.075646 (-0.063382) | 0.209208 / 0.419271 (-0.210064) | 0.037073 / 0.043533 (-0.006460) | 0.247999 / 0.255139 (-0.007140) | 0.273457 / 0.283200 (-0.009742) | 0.020354 / 0.141683 (-0.121328) | 1.109874 / 1.452155 (-0.342281) | 1.180085 / 1.492716 (-0.312631) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099935 / 0.018006 (0.081929) | 0.305607 / 0.000490 (0.305118) | 0.000214 / 0.000200 (0.000014) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.020019 / 0.037411 (-0.017392) | 0.066608 / 0.014526 (0.052083) | 0.079354 / 0.176557 (-0.097202) | 0.123416 / 0.737135 (-0.613719) | 0.078171 / 0.296338 (-0.218167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281627 / 0.215209 (0.066418) | 2.809807 / 2.077655 (0.732152) | 1.467007 / 1.504120 (-0.037112) | 1.351367 / 1.541195 (-0.189828) | 1.396782 / 1.468490 (-0.071708) | 0.735605 / 4.584777 (-3.849172) | 2.378455 / 3.745712 (-1.367257) | 2.971739 / 5.269862 (-2.298122) | 2.004970 / 4.565676 (-2.560707) | 0.078156 / 0.424275 (-0.346119) | 0.005276 / 0.007607 (-0.002331) | 0.340370 / 0.226044 (0.114325) | 3.347552 / 2.268929 (1.078624) | 1.851098 / 55.444624 (-53.593527) | 1.518079 / 6.876477 (-5.358398) | 1.703145 / 2.142072 (-0.438927) | 0.799574 / 4.805227 (-4.005654) | 0.133591 / 6.500664 (-6.367074) | 0.043329 / 0.075469 (-0.032141) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977268 / 1.841788 (-0.864520) | 12.720209 / 8.074308 (4.645901) | 9.798126 / 10.191392 (-0.393266) | 0.132106 / 0.680424 (-0.548318) | 0.014456 / 0.534201 (-0.519745) | 0.312965 / 0.579283 (-0.266318) | 0.271348 / 0.434364 (-0.163016) | 0.343951 / 0.540337 (-0.196386) | 0.449814 / 1.386936 (-0.937122) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005944 / 0.011353 (-0.005409) | 0.004054 / 0.011008 (-0.006954) | 0.050573 / 0.038508 (0.012065) | 0.034580 / 0.023109 (0.011470) | 0.261439 / 0.275898 (-0.014459) | 0.286057 / 0.323480 (-0.037423) | 0.004463 / 0.007986 (-0.003523) | 0.002891 / 0.004328 (-0.001437) | 0.049169 / 0.004250 (0.044919) | 0.041622 / 0.037052 (0.004570) | 0.275216 / 0.258489 (0.016727) | 0.305847 / 0.293841 (0.012006) | 0.032615 / 0.128546 (-0.095932) | 0.012304 / 0.075646 (-0.063343) | 0.062890 / 0.419271 (-0.356382) | 0.033846 / 0.043533 (-0.009687) | 0.262758 / 0.255139 (0.007619) | 0.279451 / 0.283200 (-0.003748) | 0.018953 / 0.141683 (-0.122730) | 1.149158 / 1.452155 (-0.302997) | 1.173981 / 1.492716 (-0.318735) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100462 / 0.018006 (0.082456) | 0.308390 / 0.000490 (0.307900) | 0.000207 / 0.000200 (0.000007) | 0.000052 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023089 / 0.037411 (-0.014322) | 0.078610 / 0.014526 (0.064084) | 0.090348 / 0.176557 (-0.086208) | 0.130784 / 0.737135 (-0.606351) | 0.092538 / 0.296338 (-0.203801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296255 / 0.215209 (0.081046) | 2.899159 / 2.077655 (0.821504) | 1.603524 / 1.504120 (0.099404) | 1.418002 / 1.541195 (-0.123192) | 1.470221 / 1.468490 (0.001731) | 0.722129 / 4.584777 (-3.862648) | 0.956146 / 3.745712 (-2.789566) | 3.011640 / 5.269862 (-2.258222) | 1.910966 / 4.565676 (-2.654711) | 0.078771 / 0.424275 (-0.345504) | 0.005154 / 0.007607 (-0.002453) | 0.354001 / 0.226044 (0.127956) | 3.484224 / 2.268929 (1.215296) | 1.913612 / 55.444624 (-53.531012) | 1.634492 / 6.876477 (-5.241985) | 1.693292 / 2.142072 (-0.448780) | 0.816837 / 4.805227 (-3.988390) | 0.136631 / 6.500664 (-6.364033) | 0.042291 / 0.075469 (-0.033178) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.994887 / 1.841788 (-0.846901) | 13.144865 / 8.074308 (5.070557) | 10.820098 / 10.191392 (0.628706) | 0.132557 / 0.680424 (-0.547867) | 0.015467 / 0.534201 (-0.518734) | 0.302026 / 0.579283 (-0.277257) | 0.128763 / 0.434364 (-0.305601) | 0.347908 / 0.540337 (-0.192430) | 0.444829 / 1.386936 (-0.942107) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bf6f41e94d9b2f1c620cf937a2e85e5754a8b960 \"CML watermark\")\n" ]
2024-07-12T12:42:47
2024-07-12T13:04:40
2024-07-12T12:58:17
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7046.diff", "html_url": "https://github.com/huggingface/datasets/pull/7046", "merged_at": "2024-07-12T12:58:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/7046.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7046" }
Support librosa and numpy 2.0 for Python 3.10 by installing soxr 0.4.0b1 pre-release: - https://github.com/dofuuz/python-soxr/releases/tag/v0.4.0b1 - https://github.com/dofuuz/python-soxr/issues/28
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7046/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7046/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7045
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7045/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7045/comments
https://api.github.com/repos/huggingface/datasets/issues/7045/events
https://github.com/huggingface/datasets/pull/7045
2,405,447,858
PR_kwDODunzps51Nsie
7,045
Fix tensorflow min version depending on Python version
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7045). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005426 / 0.011353 (-0.005927) | 0.003896 / 0.011008 (-0.007112) | 0.063492 / 0.038508 (0.024984) | 0.030199 / 0.023109 (0.007090) | 0.249892 / 0.275898 (-0.026006) | 0.291311 / 0.323480 (-0.032168) | 0.004389 / 0.007986 (-0.003597) | 0.002829 / 0.004328 (-0.001500) | 0.049685 / 0.004250 (0.045435) | 0.043351 / 0.037052 (0.006299) | 0.264265 / 0.258489 (0.005776) | 0.290463 / 0.293841 (-0.003378) | 0.030007 / 0.128546 (-0.098539) | 0.012146 / 0.075646 (-0.063500) | 0.203841 / 0.419271 (-0.215430) | 0.037159 / 0.043533 (-0.006373) | 0.253377 / 0.255139 (-0.001762) | 0.275990 / 0.283200 (-0.007209) | 0.018334 / 0.141683 (-0.123349) | 1.112616 / 1.452155 (-0.339539) | 1.157507 / 1.492716 (-0.335209) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097781 / 0.018006 (0.079775) | 0.314381 / 0.000490 (0.313891) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018704 / 0.037411 (-0.018708) | 0.062293 / 0.014526 (0.047767) | 0.073997 / 0.176557 (-0.102559) | 0.120309 / 0.737135 (-0.616826) | 0.075592 / 0.296338 (-0.220747) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283178 / 0.215209 (0.067969) | 2.798027 / 2.077655 (0.720372) | 1.431320 / 1.504120 (-0.072800) | 1.316135 / 1.541195 (-0.225060) | 1.345528 / 1.468490 (-0.122962) | 0.717300 / 4.584777 (-3.867477) | 2.401019 / 3.745712 (-1.344693) | 2.866411 / 5.269862 (-2.403451) | 1.933198 / 4.565676 (-2.632479) | 0.079505 / 0.424275 (-0.344771) | 0.005089 / 0.007607 (-0.002519) | 0.333614 / 0.226044 (0.107569) | 3.315449 / 2.268929 (1.046520) | 1.807667 / 55.444624 (-53.636957) | 1.490537 / 6.876477 (-5.385939) | 1.633305 / 2.142072 (-0.508767) | 0.807732 / 4.805227 (-3.997495) | 0.133825 / 6.500664 (-6.366839) | 0.041696 / 0.075469 (-0.033774) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969063 / 1.841788 (-0.872724) | 11.825985 / 8.074308 (3.751677) | 9.808041 / 10.191392 (-0.383351) | 0.143338 / 0.680424 (-0.537085) | 0.014714 / 0.534201 (-0.519487) | 0.304360 / 0.579283 (-0.274923) | 0.266863 / 0.434364 (-0.167501) | 0.342374 / 0.540337 (-0.197963) | 0.442120 / 1.386936 (-0.944816) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005574 / 0.011353 (-0.005778) | 0.003735 / 0.011008 (-0.007273) | 0.051021 / 0.038508 (0.012513) | 0.032825 / 0.023109 (0.009716) | 0.267775 / 0.275898 (-0.008123) | 0.286015 / 0.323480 (-0.037464) | 0.004332 / 0.007986 (-0.003653) | 0.002796 / 0.004328 (-0.001532) | 0.050183 / 0.004250 (0.045933) | 0.040191 / 0.037052 (0.003138) | 0.279777 / 0.258489 (0.021288) | 0.312161 / 0.293841 (0.018320) | 0.031993 / 0.128546 (-0.096553) | 0.012168 / 0.075646 (-0.063478) | 0.061622 / 0.419271 (-0.357650) | 0.033577 / 0.043533 (-0.009956) | 0.267300 / 0.255139 (0.012161) | 0.284595 / 0.283200 (0.001396) | 0.018476 / 0.141683 (-0.123207) | 1.135917 / 1.452155 (-0.316237) | 1.164516 / 1.492716 (-0.328200) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.108194 / 0.018006 (0.090188) | 0.309514 / 0.000490 (0.309025) | 0.000211 / 0.000200 (0.000011) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022998 / 0.037411 (-0.014413) | 0.077126 / 0.014526 (0.062600) | 0.088779 / 0.176557 (-0.087778) | 0.128646 / 0.737135 (-0.608489) | 0.089895 / 0.296338 (-0.206443) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295131 / 0.215209 (0.079922) | 2.887380 / 2.077655 (0.809726) | 1.586450 / 1.504120 (0.082330) | 1.449831 / 1.541195 (-0.091363) | 1.468805 / 1.468490 (0.000315) | 0.721578 / 4.584777 (-3.863199) | 0.970499 / 3.745712 (-2.775214) | 2.975604 / 5.269862 (-2.294258) | 1.935809 / 4.565676 (-2.629867) | 0.078504 / 0.424275 (-0.345771) | 0.005219 / 0.007607 (-0.002388) | 0.347168 / 0.226044 (0.121124) | 3.417040 / 2.268929 (1.148111) | 1.928707 / 55.444624 (-53.515917) | 1.629398 / 6.876477 (-5.247078) | 1.653014 / 2.142072 (-0.489058) | 0.796097 / 4.805227 (-4.009130) | 0.133956 / 6.500664 (-6.366708) | 0.041567 / 0.075469 (-0.033902) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.995511 / 1.841788 (-0.846277) | 12.577211 / 8.074308 (4.502903) | 10.562561 / 10.191392 (0.371169) | 0.144288 / 0.680424 (-0.536136) | 0.016345 / 0.534201 (-0.517856) | 0.304364 / 0.579283 (-0.274920) | 0.134630 / 0.434364 (-0.299734) | 0.341494 / 0.540337 (-0.198843) | 0.436238 / 1.386936 (-0.950698) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b708bb6611a88c3f00f58ec3c63fe0da2c2b1e1 \"CML watermark\")\n" ]
2024-07-12T12:20:23
2024-07-12T12:38:53
2024-07-12T12:33:00
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7045.diff", "html_url": "https://github.com/huggingface/datasets/pull/7045", "merged_at": "2024-07-12T12:33:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/7045.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7045" }
Fix tensorflow min version depending on Python version. Related to: - #6991
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7045/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7045/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7044
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7044/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7044/comments
https://api.github.com/repos/huggingface/datasets/issues/7044/events
https://github.com/huggingface/datasets/pull/7044
2,405,002,987
PR_kwDODunzps51MLbh
7,044
Mark tests that require librosa
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7044). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005797 / 0.011353 (-0.005556) | 0.004017 / 0.011008 (-0.006991) | 0.063829 / 0.038508 (0.025321) | 0.031329 / 0.023109 (0.008220) | 0.249388 / 0.275898 (-0.026510) | 0.273129 / 0.323480 (-0.050351) | 0.004250 / 0.007986 (-0.003736) | 0.002821 / 0.004328 (-0.001507) | 0.049250 / 0.004250 (0.044999) | 0.046175 / 0.037052 (0.009123) | 0.252040 / 0.258489 (-0.006449) | 0.296537 / 0.293841 (0.002696) | 0.030579 / 0.128546 (-0.097967) | 0.012436 / 0.075646 (-0.063210) | 0.205829 / 0.419271 (-0.213443) | 0.036979 / 0.043533 (-0.006554) | 0.251354 / 0.255139 (-0.003785) | 0.272262 / 0.283200 (-0.010938) | 0.019047 / 0.141683 (-0.122636) | 1.112410 / 1.452155 (-0.339745) | 1.137445 / 1.492716 (-0.355271) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.097270 / 0.018006 (0.079264) | 0.309329 / 0.000490 (0.308839) | 0.000221 / 0.000200 (0.000021) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019021 / 0.037411 (-0.018390) | 0.066801 / 0.014526 (0.052276) | 0.075280 / 0.176557 (-0.101276) | 0.122499 / 0.737135 (-0.614637) | 0.077424 / 0.296338 (-0.218914) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279469 / 0.215209 (0.064259) | 2.787511 / 2.077655 (0.709856) | 1.411389 / 1.504120 (-0.092731) | 1.285796 / 1.541195 (-0.255399) | 1.354252 / 1.468490 (-0.114238) | 0.735341 / 4.584777 (-3.849436) | 2.418557 / 3.745712 (-1.327155) | 2.983406 / 5.269862 (-2.286455) | 2.005853 / 4.565676 (-2.559823) | 0.080440 / 0.424275 (-0.343835) | 0.005242 / 0.007607 (-0.002365) | 0.343557 / 0.226044 (0.117513) | 3.358984 / 2.268929 (1.090055) | 1.816709 / 55.444624 (-53.627915) | 1.500225 / 6.876477 (-5.376252) | 1.715405 / 2.142072 (-0.426667) | 0.829054 / 4.805227 (-3.976174) | 0.138352 / 6.500664 (-6.362312) | 0.043709 / 0.075469 (-0.031760) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.969135 / 1.841788 (-0.872652) | 12.510750 / 8.074308 (4.436442) | 10.140368 / 10.191392 (-0.051024) | 0.133117 / 0.680424 (-0.547307) | 0.015775 / 0.534201 (-0.518426) | 0.302203 / 0.579283 (-0.277080) | 0.268214 / 0.434364 (-0.166150) | 0.347041 / 0.540337 (-0.193296) | 0.456095 / 1.386936 (-0.930841) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006255 / 0.011353 (-0.005098) | 0.004453 / 0.011008 (-0.006555) | 0.052298 / 0.038508 (0.013790) | 0.034808 / 0.023109 (0.011699) | 0.274723 / 0.275898 (-0.001175) | 0.297199 / 0.323480 (-0.026281) | 0.004499 / 0.007986 (-0.003486) | 0.003086 / 0.004328 (-0.001242) | 0.051315 / 0.004250 (0.047065) | 0.042764 / 0.037052 (0.005712) | 0.285636 / 0.258489 (0.027147) | 0.321819 / 0.293841 (0.027978) | 0.033350 / 0.128546 (-0.095196) | 0.013457 / 0.075646 (-0.062189) | 0.063930 / 0.419271 (-0.355342) | 0.034537 / 0.043533 (-0.008996) | 0.272630 / 0.255139 (0.017491) | 0.289245 / 0.283200 (0.006045) | 0.018910 / 0.141683 (-0.122773) | 1.153064 / 1.452155 (-0.299091) | 1.207065 / 1.492716 (-0.285651) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093008 / 0.018006 (0.075002) | 0.301313 / 0.000490 (0.300823) | 0.000214 / 0.000200 (0.000014) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023168 / 0.037411 (-0.014244) | 0.080837 / 0.014526 (0.066312) | 0.089667 / 0.176557 (-0.086889) | 0.135849 / 0.737135 (-0.601286) | 0.092082 / 0.296338 (-0.204257) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298933 / 0.215209 (0.083723) | 2.847736 / 2.077655 (0.770082) | 1.550268 / 1.504120 (0.046148) | 1.425675 / 1.541195 (-0.115520) | 1.469251 / 1.468490 (0.000761) | 0.720446 / 4.584777 (-3.864331) | 0.976149 / 3.745712 (-2.769563) | 3.081804 / 5.269862 (-2.188057) | 1.982797 / 4.565676 (-2.582880) | 0.078598 / 0.424275 (-0.345677) | 0.005229 / 0.007607 (-0.002379) | 0.345475 / 0.226044 (0.119430) | 3.421312 / 2.268929 (1.152384) | 1.929034 / 55.444624 (-53.515590) | 1.631523 / 6.876477 (-5.244953) | 1.671996 / 2.142072 (-0.470077) | 0.776916 / 4.805227 (-4.028311) | 0.133966 / 6.500664 (-6.366699) | 0.042183 / 0.075469 (-0.033286) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.993023 / 1.841788 (-0.848764) | 12.981642 / 8.074308 (4.907334) | 10.610457 / 10.191392 (0.419065) | 0.146748 / 0.680424 (-0.533676) | 0.016556 / 0.534201 (-0.517645) | 0.303613 / 0.579283 (-0.275670) | 0.132671 / 0.434364 (-0.301693) | 0.344786 / 0.540337 (-0.195552) | 0.443049 / 1.386936 (-0.943887) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8419c40a085d67eb5832cecebf3ef8213112857d \"CML watermark\")\n" ]
2024-07-12T08:06:59
2024-07-12T09:06:32
2024-07-12T09:00:09
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7044.diff", "html_url": "https://github.com/huggingface/datasets/pull/7044", "merged_at": "2024-07-12T09:00:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/7044.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7044" }
Mark tests that require `librosa`. Note that `librosa` is an optional dependency (installed with `audio` option) and we should be able to test environments without that library installed. This is the case if we want to test Numpy 2.0, which is currently incompatible with `librosa` due to its dependency on `soxr`: - https://github.com/dofuuz/python-soxr/issues/28
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7044/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7044/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7043
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7043/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7043/comments
https://api.github.com/repos/huggingface/datasets/issues/7043/events
https://github.com/huggingface/datasets/pull/7043
2,404,951,714
PR_kwDODunzps51MAN0
7,043
Add decorator as explicit test dependency
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7043). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005147 / 0.011353 (-0.006205) | 0.003403 / 0.011008 (-0.007605) | 0.061367 / 0.038508 (0.022859) | 0.030295 / 0.023109 (0.007186) | 0.233503 / 0.275898 (-0.042395) | 0.252644 / 0.323480 (-0.070836) | 0.004072 / 0.007986 (-0.003913) | 0.002678 / 0.004328 (-0.001650) | 0.049099 / 0.004250 (0.044848) | 0.043032 / 0.037052 (0.005979) | 0.248823 / 0.258489 (-0.009666) | 0.274895 / 0.293841 (-0.018946) | 0.029307 / 0.128546 (-0.099239) | 0.011186 / 0.075646 (-0.064460) | 0.197142 / 0.419271 (-0.222129) | 0.035924 / 0.043533 (-0.007609) | 0.234728 / 0.255139 (-0.020411) | 0.252990 / 0.283200 (-0.030209) | 0.017589 / 0.141683 (-0.124094) | 1.108252 / 1.452155 (-0.343903) | 1.135949 / 1.492716 (-0.356767) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093096 / 0.018006 (0.075090) | 0.289284 / 0.000490 (0.288794) | 0.000208 / 0.000200 (0.000008) | 0.000038 / 0.000054 (-0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017633 / 0.037411 (-0.019778) | 0.060621 / 0.014526 (0.046095) | 0.073194 / 0.176557 (-0.103363) | 0.120176 / 0.737135 (-0.616959) | 0.073575 / 0.296338 (-0.222764) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.277168 / 0.215209 (0.061959) | 2.689714 / 2.077655 (0.612060) | 1.427558 / 1.504120 (-0.076562) | 1.331350 / 1.541195 (-0.209844) | 1.353069 / 1.468490 (-0.115421) | 0.716657 / 4.584777 (-3.868120) | 2.321145 / 3.745712 (-1.424567) | 2.757986 / 5.269862 (-2.511876) | 1.851604 / 4.565676 (-2.714072) | 0.089530 / 0.424275 (-0.334745) | 0.004884 / 0.007607 (-0.002723) | 0.327859 / 0.226044 (0.101814) | 3.290749 / 2.268929 (1.021821) | 1.831090 / 55.444624 (-53.613535) | 1.509247 / 6.876477 (-5.367229) | 1.616545 / 2.142072 (-0.525527) | 0.775228 / 4.805227 (-4.029999) | 0.133794 / 6.500664 (-6.366870) | 0.040644 / 0.075469 (-0.034825) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.950816 / 1.841788 (-0.890972) | 11.109938 / 8.074308 (3.035630) | 9.560673 / 10.191392 (-0.630719) | 0.130685 / 0.680424 (-0.549738) | 0.014096 / 0.534201 (-0.520105) | 0.297222 / 0.579283 (-0.282061) | 0.262777 / 0.434364 (-0.171587) | 0.340983 / 0.540337 (-0.199355) | 0.426107 / 1.386936 (-0.960829) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005547 / 0.011353 (-0.005806) | 0.003425 / 0.011008 (-0.007584) | 0.049791 / 0.038508 (0.011283) | 0.032660 / 0.023109 (0.009550) | 0.257640 / 0.275898 (-0.018258) | 0.283483 / 0.323480 (-0.039997) | 0.004330 / 0.007986 (-0.003655) | 0.002297 / 0.004328 (-0.002032) | 0.047999 / 0.004250 (0.043748) | 0.039875 / 0.037052 (0.002822) | 0.273300 / 0.258489 (0.014811) | 0.303384 / 0.293841 (0.009543) | 0.031696 / 0.128546 (-0.096851) | 0.011913 / 0.075646 (-0.063733) | 0.060330 / 0.419271 (-0.358942) | 0.033253 / 0.043533 (-0.010280) | 0.255378 / 0.255139 (0.000240) | 0.271647 / 0.283200 (-0.011553) | 0.018772 / 0.141683 (-0.122910) | 1.116079 / 1.452155 (-0.336075) | 1.165133 / 1.492716 (-0.327583) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094325 / 0.018006 (0.076319) | 0.297523 / 0.000490 (0.297034) | 0.000210 / 0.000200 (0.000011) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022485 / 0.037411 (-0.014926) | 0.073731 / 0.014526 (0.059205) | 0.089039 / 0.176557 (-0.087518) | 0.124035 / 0.737135 (-0.613101) | 0.088053 / 0.296338 (-0.208286) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.286676 / 0.215209 (0.071467) | 2.794678 / 2.077655 (0.717024) | 1.541401 / 1.504120 (0.037281) | 1.432928 / 1.541195 (-0.108267) | 1.454940 / 1.468490 (-0.013550) | 0.721779 / 4.584777 (-3.862998) | 0.956514 / 3.745712 (-2.789198) | 2.889533 / 5.269862 (-2.380329) | 1.863980 / 4.565676 (-2.701696) | 0.078366 / 0.424275 (-0.345909) | 0.005137 / 0.007607 (-0.002470) | 0.338835 / 0.226044 (0.112791) | 3.320921 / 2.268929 (1.051993) | 1.903654 / 55.444624 (-53.540970) | 1.615294 / 6.876477 (-5.261182) | 1.624777 / 2.142072 (-0.517295) | 0.792417 / 4.805227 (-4.012810) | 0.133321 / 6.500664 (-6.367343) | 0.040127 / 0.075469 (-0.035342) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982357 / 1.841788 (-0.859430) | 11.585106 / 8.074308 (3.510798) | 9.991577 / 10.191392 (-0.199815) | 0.149292 / 0.680424 (-0.531131) | 0.015693 / 0.534201 (-0.518508) | 0.297416 / 0.579283 (-0.281867) | 0.118565 / 0.434364 (-0.315799) | 0.335640 / 0.540337 (-0.204697) | 0.429484 / 1.386936 (-0.957452) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3091d7608f20e182f21bb7d0b68be66c0798509a \"CML watermark\")\n" ]
2024-07-12T07:35:23
2024-07-12T08:12:55
2024-07-12T08:07:10
MEMBER
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7043.diff", "html_url": "https://github.com/huggingface/datasets/pull/7043", "merged_at": "2024-07-12T08:07:10Z", "patch_url": "https://github.com/huggingface/datasets/pull/7043.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7043" }
Add decorator as explicit test dependency. We use `decorator` library in our CI test since PR: - #4845 However we did not add it as an explicit test requirement, and we depended on it indirectly through other libraries' dependencies. I discovered this while testing Numpy 2.0 and removing incompatible libraries.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7043/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7043/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7042
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7042/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7042/comments
https://api.github.com/repos/huggingface/datasets/issues/7042/events
https://github.com/huggingface/datasets/pull/7042
2,404,605,836
PR_kwDODunzps51K8CM
7,042
Improved the tutorial by adding a link for loading datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/41874659?v=4", "events_url": "https://api.github.com/users/AmboThom/events{/privacy}", "followers_url": "https://api.github.com/users/AmboThom/followers", "following_url": "https://api.github.com/users/AmboThom/following{/other_user}", "gists_url": "https://api.github.com/users/AmboThom/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/AmboThom", "id": 41874659, "login": "AmboThom", "node_id": "MDQ6VXNlcjQxODc0NjU5", "organizations_url": "https://api.github.com/users/AmboThom/orgs", "received_events_url": "https://api.github.com/users/AmboThom/received_events", "repos_url": "https://api.github.com/users/AmboThom/repos", "site_admin": false, "starred_url": "https://api.github.com/users/AmboThom/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/AmboThom/subscriptions", "type": "User", "url": "https://api.github.com/users/AmboThom" }
[]
closed
false
null
[]
null
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005135 / 0.011353 (-0.006218) | 0.003389 / 0.011008 (-0.007619) | 0.063053 / 0.038508 (0.024545) | 0.031597 / 0.023109 (0.008487) | 0.237519 / 0.275898 (-0.038379) | 0.263101 / 0.323480 (-0.060379) | 0.003109 / 0.007986 (-0.004877) | 0.002699 / 0.004328 (-0.001630) | 0.048611 / 0.004250 (0.044361) | 0.042937 / 0.037052 (0.005884) | 0.253760 / 0.258489 (-0.004729) | 0.275444 / 0.293841 (-0.018397) | 0.028952 / 0.128546 (-0.099594) | 0.011837 / 0.075646 (-0.063809) | 0.207620 / 0.419271 (-0.211651) | 0.035727 / 0.043533 (-0.007806) | 0.241770 / 0.255139 (-0.013369) | 0.270509 / 0.283200 (-0.012691) | 0.020709 / 0.141683 (-0.120974) | 1.135722 / 1.452155 (-0.316432) | 1.200355 / 1.492716 (-0.292361) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092555 / 0.018006 (0.074549) | 0.284719 / 0.000490 (0.284229) | 0.000210 / 0.000200 (0.000010) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018431 / 0.037411 (-0.018980) | 0.063618 / 0.014526 (0.049092) | 0.075371 / 0.176557 (-0.101185) | 0.120982 / 0.737135 (-0.616153) | 0.075718 / 0.296338 (-0.220620) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.279439 / 0.215209 (0.064230) | 2.722274 / 2.077655 (0.644619) | 1.442314 / 1.504120 (-0.061806) | 1.323166 / 1.541195 (-0.218029) | 1.339642 / 1.468490 (-0.128848) | 0.723451 / 4.584777 (-3.861326) | 2.334879 / 3.745712 (-1.410833) | 2.938745 / 5.269862 (-2.331116) | 1.867278 / 4.565676 (-2.698398) | 0.078704 / 0.424275 (-0.345571) | 0.005128 / 0.007607 (-0.002479) | 0.338634 / 0.226044 (0.112589) | 3.266239 / 2.268929 (0.997311) | 1.815276 / 55.444624 (-53.629349) | 1.487158 / 6.876477 (-5.389319) | 1.547550 / 2.142072 (-0.594522) | 0.804458 / 4.805227 (-4.000769) | 0.139186 / 6.500664 (-6.361479) | 0.042935 / 0.075469 (-0.032534) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.978223 / 1.841788 (-0.863564) | 11.350997 / 8.074308 (3.276689) | 10.082980 / 10.191392 (-0.108412) | 0.145067 / 0.680424 (-0.535357) | 0.014132 / 0.534201 (-0.520069) | 0.302162 / 0.579283 (-0.277121) | 0.264603 / 0.434364 (-0.169761) | 0.338466 / 0.540337 (-0.201871) | 0.427891 / 1.386936 (-0.959045) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006078 / 0.011353 (-0.005275) | 0.004030 / 0.011008 (-0.006978) | 0.051646 / 0.038508 (0.013138) | 0.031263 / 0.023109 (0.008154) | 0.279437 / 0.275898 (0.003539) | 0.304489 / 0.323480 (-0.018991) | 0.004553 / 0.007986 (-0.003433) | 0.002869 / 0.004328 (-0.001459) | 0.050638 / 0.004250 (0.046387) | 0.041091 / 0.037052 (0.004038) | 0.290681 / 0.258489 (0.032192) | 0.332059 / 0.293841 (0.038218) | 0.033353 / 0.128546 (-0.095193) | 0.012506 / 0.075646 (-0.063141) | 0.061788 / 0.419271 (-0.357484) | 0.034150 / 0.043533 (-0.009382) | 0.278258 / 0.255139 (0.023119) | 0.298084 / 0.283200 (0.014885) | 0.019106 / 0.141683 (-0.122577) | 1.164475 / 1.452155 (-0.287679) | 1.204804 / 1.492716 (-0.287912) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100053 / 0.018006 (0.082047) | 0.301255 / 0.000490 (0.300765) | 0.000220 / 0.000200 (0.000020) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023536 / 0.037411 (-0.013876) | 0.078513 / 0.014526 (0.063987) | 0.090281 / 0.176557 (-0.086276) | 0.129607 / 0.737135 (-0.607528) | 0.090742 / 0.296338 (-0.205596) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.304082 / 0.215209 (0.088873) | 2.909401 / 2.077655 (0.831747) | 1.587210 / 1.504120 (0.083090) | 1.458713 / 1.541195 (-0.082482) | 1.472579 / 1.468490 (0.004089) | 0.716542 / 4.584777 (-3.868235) | 0.947557 / 3.745712 (-2.798155) | 2.908044 / 5.269862 (-2.361817) | 1.886382 / 4.565676 (-2.679294) | 0.078105 / 0.424275 (-0.346170) | 0.005802 / 0.007607 (-0.001805) | 0.357883 / 0.226044 (0.131839) | 3.490958 / 2.268929 (1.222029) | 1.946574 / 55.444624 (-53.498050) | 1.645167 / 6.876477 (-5.231310) | 1.649242 / 2.142072 (-0.492830) | 0.796864 / 4.805227 (-4.008363) | 0.134206 / 6.500664 (-6.366458) | 0.041439 / 0.075469 (-0.034030) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.012311 / 1.841788 (-0.829477) | 12.396967 / 8.074308 (4.322659) | 10.382494 / 10.191392 (0.191102) | 0.157395 / 0.680424 (-0.523029) | 0.015154 / 0.534201 (-0.519047) | 0.302209 / 0.579283 (-0.277074) | 0.127430 / 0.434364 (-0.306934) | 0.348933 / 0.540337 (-0.191404) | 0.442930 / 1.386936 (-0.944006) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#69d9f455c3c51625e6c9ffcade122313e9098f3c \"CML watermark\")\n" ]
2024-07-12T03:49:54
2024-08-15T10:07:44
2024-08-15T10:01:59
CONTRIBUTOR
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/7042.diff", "html_url": "https://github.com/huggingface/datasets/pull/7042", "merged_at": "2024-08-15T10:01:59Z", "patch_url": "https://github.com/huggingface/datasets/pull/7042.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7042" }
Improved the tutorial by letting readers know about loading datasets with common files and including a link. I left the local files section alone because the methods were already listed with code snippets.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7042/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7042/timeline
null
null
true
https://api.github.com/repos/huggingface/datasets/issues/7041
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7041/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7041/comments
https://api.github.com/repos/huggingface/datasets/issues/7041/events
https://github.com/huggingface/datasets/issues/7041
2,404,576,038
I_kwDODunzps6PUusm
7,041
`sort` after `filter` unreasonably slow
{ "avatar_url": "https://avatars.githubusercontent.com/u/56711045?v=4", "events_url": "https://api.github.com/users/Tobin-rgb/events{/privacy}", "followers_url": "https://api.github.com/users/Tobin-rgb/followers", "following_url": "https://api.github.com/users/Tobin-rgb/following{/other_user}", "gists_url": "https://api.github.com/users/Tobin-rgb/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Tobin-rgb", "id": 56711045, "login": "Tobin-rgb", "node_id": "MDQ6VXNlcjU2NzExMDQ1", "organizations_url": "https://api.github.com/users/Tobin-rgb/orgs", "received_events_url": "https://api.github.com/users/Tobin-rgb/received_events", "repos_url": "https://api.github.com/users/Tobin-rgb/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Tobin-rgb/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tobin-rgb/subscriptions", "type": "User", "url": "https://api.github.com/users/Tobin-rgb" }
[]
open
false
null
[]
null
[ "`filter` add an indices mapping on top of the dataset, so `sort` has to gather all the rows that are kept to form a new Arrow table and sort the table. Gathering all the rows can take some time, but is a necessary step. You can try calling `ds = ds.flatten_indices()` before sorting to remove the indices mapping." ]
2024-07-12T03:29:27
2024-07-22T13:55:17
null
NONE
null
null
null
### Describe the bug as the tittle says ... ### Steps to reproduce the bug `sort` seems to be normal. ```python from datasets import Dataset import random nums = [{"k":random.choice(range(0,1000))} for _ in range(100000)] ds = Dataset.from_list(nums) print("start sort") ds = ds.sort("k") print("finish sort") ``` but `sort` after `filter` is extremely slow. ```python from datasets import Dataset import random nums = [{"k":random.choice(range(0,1000))} for _ in range(100000)] ds = Dataset.from_list(nums) ds = ds.filter(lambda x:x > 100, input_columns="k") print("start sort") ds = ds.sort("k") print("finish sort") ``` ### Expected behavior Is this a bug, or is it a misuse of the `sort` function? ### Environment info - `datasets` version: 2.20.0 - Platform: Linux-3.10.0-1127.19.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.10.13 - `huggingface_hub` version: 0.23.4 - PyArrow version: 16.1.0 - Pandas version: 2.2.2 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7041/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7041/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7040
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7040/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7040/comments
https://api.github.com/repos/huggingface/datasets/issues/7040/events
https://github.com/huggingface/datasets/issues/7040
2,402,918,335
I_kwDODunzps6POZ-_
7,040
load `streaming=True` dataset with downloaded cache
{ "avatar_url": "https://avatars.githubusercontent.com/u/39429965?v=4", "events_url": "https://api.github.com/users/wanghaoyucn/events{/privacy}", "followers_url": "https://api.github.com/users/wanghaoyucn/followers", "following_url": "https://api.github.com/users/wanghaoyucn/following{/other_user}", "gists_url": "https://api.github.com/users/wanghaoyucn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wanghaoyucn", "id": 39429965, "login": "wanghaoyucn", "node_id": "MDQ6VXNlcjM5NDI5OTY1", "organizations_url": "https://api.github.com/users/wanghaoyucn/orgs", "received_events_url": "https://api.github.com/users/wanghaoyucn/received_events", "repos_url": "https://api.github.com/users/wanghaoyucn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wanghaoyucn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wanghaoyucn/subscriptions", "type": "User", "url": "https://api.github.com/users/wanghaoyucn" }
[]
open
false
null
[]
null
[ "When you pass `streaming=True`, the cache is ignored. The remote data URL is used instead and the data is streamed from the remote server.", "Thanks for your reply! So is there any solution to get my expected behavior besides clone the whole repo ? Or could I adjust my script to load the downloaded arrow files and generate the dataset streamingly?" ]
2024-07-11T11:14:13
2024-07-11T14:11:56
null
NONE
null
null
null
### Describe the bug We build a dataset which contains several hdf5 files and write a script using `h5py` to generate the dataset. The hdf5 files are large and the processed dataset cache takes more disk space. So we hope to try streaming iterable dataset. Unfortunately, `h5py` can't convert a remote URL into a hdf5 file descriptor. So we use `fsspec` as an interface like below: ```python def _generate_examples(self, filepath, split): for file in filepath: with fsspec.open(file, "rb") as fs: with h5py.File(fs, "r") as fp: # for event_id in sorted(list(fp.keys())): event_ids = list(fp.keys()) ...... ``` ### Steps to reproduce the bug The `fsspec` works, but it takes 10+ min to print the first 10 examples, which is even longer than the downloading time. I'm not sure if it just caches the whole hdf5 file and generates the examples. ### Expected behavior So does the following make sense so far? 1. download the files ```python dataset = datasets.load('path/to/myscripts', split="train", name="event", trust_remote_code=True) ``` 2. load the iterable dataset faster (using the raw file cache at path `.cache/huggingface/datasets/downloads`) ```python dataset = datasets.load('path/to/myscripts', split="train", name="event", trust_remote_code=True, streaming=true) ``` I made some tests, but the code above can't get the expected result. I'm not sure if this is supported. I also find the issue #6327 . It seemed similar to mine, but I couldn't find a solution. ### Environment info - `datasets` = 2.18.0 - `h5py` = 3.10.0 - `fsspec` = 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7040/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7040/timeline
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/7039
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/7039/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/7039/comments
https://api.github.com/repos/huggingface/datasets/issues/7039/events
https://github.com/huggingface/datasets/pull/7039
2,402,403,390
PR_kwDODunzps51DgCY
7,039
Fix export to JSON when dataset larger than batch size
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7039). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "The test before confirms the bug.\r\n\r\nThere are different possible solutions to this issue:\r\n- the easiest would be to write multiple JSON files, one for each batch; this solution can be done in parallel if `num_proc` is passed\r\n- alternatively, we could tweak the writing and remove the extra `[` and `]` characters; this solution will only be valid if `orient=\"records\"`\r\n- others?" ]
2024-07-11T06:52:22
2024-07-11T07:27:58
null
MEMBER
null
1
{ "diff_url": "https://github.com/huggingface/datasets/pull/7039.diff", "html_url": "https://github.com/huggingface/datasets/pull/7039", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/7039.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/7039" }
Fix export to JSON (`files=False`) when dataset larger than batch size. Fix #7037.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/7039/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/7039/timeline
null
null
true