repo_name
stringlengths
6
96
path
stringlengths
4
191
copies
stringclasses
322 values
size
stringlengths
4
6
content
stringlengths
762
753k
license
stringclasses
15 values
aestrivex/ielu
ielu/plotting_utils.py
1
6230
import os import numpy as np import nibabel as nib from traits.api import HasTraits, Float, Int, Tuple from traitsui.api import View, Item, CSVListEditor from .geometry import get_vox2rasxfm, apply_affine, get_std_orientation from .utils import get_subjects_dir def force_render( figure=None ): from mayavi import mlab figure.scene.render() mlab.draw(figure=figure) from pyface.api import GUI _gui = GUI() orig_val = _gui.busy _gui.set_busy(busy=True) _gui.process_events() _gui.set_busy(busy=orig_val) _gui.process_events() def coronal_slice(elecs, start=None, end=None, outfile=None, subjects_dir=None, subject=None, reorient2std=True, dpi=150, size=(200,200), title=None): ''' create an image of a coronal slice which serves as a guesstimate of a depth lead inserted laterally and nonvaryingly in the Y axis plot the electrodes from the lead overlaid on the slice in the X and Z directions Paramaters ---------- elecs : List( Electrode ) list of electrode objects forming this depth lead start : Electrode Electrode object at one end of the depth lead end : Electrode Electrode object at the other end of the depth lead outfile : Str Filename to save the image to subjects_dir : Str | None The freesurfer subjects_dir. If this is None, it is assumed to be the $SUBJECTS_DIR environment variable. If this folder is not writable, the program will crash. subject : Str | None The freesurfer subject. If this is None, it is assumed to be the $SUBJECT environment variable. reorient2std : Bool Apply a matrix to rotate orig.mgz to the standard MNI orientation emulating fslreorient2std. Pretty much always true here. dpi : Int Dots per inch of output image size : Tuple Specify a 2-tuple to control the image size, default is (200,200) title : Str Specify a matplotlib title ''' print('creating coronal slice with start electrodes %s' % str(start)) subjdir_subj = get_subjects_dir( subjects_dir=subjects_dir, subject=subject ) orig = os.path.join(subjdir_subj, 'mri', 'orig.mgz') x_size, y_size, z_size = nib.load(orig).shape # vox2ras and ras2vox shouldnt have different procedures for # getting the different dimensions. the matrix showing those # dimensions has the correct dimensions by inversion beforehand # in the complex 3-way case vox2ras = get_vox2rasxfm(orig, stem='vox2ras') ras2vox = np.linalg.inv(vox2ras) ras2vox[0:3,3] = (x_size/2, y_size/2, z_size/2) rd, ad, sd = get_std_orientation(ras2vox) # rd, = np.where(np.abs(ras2vox[:,0]) == np.max(np.abs(ras2vox[:,0]))) # ad, = np.where(np.abs(ras2vox[:,1]) == np.max(np.abs(ras2vox[:,1]))) # sd, = np.where(np.abs(ras2vox[:,2]) == np.max(np.abs(ras2vox[:,2]))) r_size = [x_size, y_size, z_size][rd] a_size = [x_size, y_size, z_size][ad] s_size = [x_size, y_size, z_size][sd] #starty = pd.map_cursor( start.asras(), pd.current_affine, invert=True)[1] #endy = pd.map_cursor( end.asras(), pd.current_affine, invert=True )[1] #midy = (starty+endy)/2 #pd.move_cursor(128, midy, 128) electrodes = np.squeeze([apply_affine([e.asras()], ras2vox) for e in elecs]) #electrodes = np.array([pd.map_cursor(e.asras(), ras2vox, # invert=True) for e in elecs]) vol = np.transpose( nib.load(orig).get_data(), (rd, ad, sd) ) if start is not None and end is not None: start_coord = np.squeeze(apply_affine([start.asras()], ras2vox)) end_coord = np.squeeze(apply_affine([end.asras()], ras2vox)) if start_coord[rd] == end_coord[rd]: raise ValueError('This lead has no variation in the X axis. It shouldnt be displayed coronally') slice = np.zeros((s_size, r_size)) m = (start_coord[ad]-end_coord[ad])/(start_coord[rd]-end_coord[rd]) b = start_coord[ad]-m*start_coord[rd] rnew = np.arange(r_size) anew = m*rnew+b alower = np.floor(anew) afrac = np.mod(anew, 1) try: for rvox in rnew: slice[:, rvox] = (vol[rvox, alower[rvox], :] * (1-afrac[rvox])+vol[rvox, alower[rvox]+1, :] * afrac[rvox]) except IndexError: raise ValueError('This lead has minimal variation in the X axis. It shouldnt be displayed coronally') else: slice_nr = np.mean(electrodes[:,ad]) slice = vol[:, slice_nr, :].T vox2pix = np.zeros((2,4)) vox2pix[0, rd] = 1 vox2pix[1, sd] = 1 ras2pix = np.dot(vox2pix, ras2vox) pix = np.dot(ras2pix, np.transpose([np.append(e.asras(), 1) for e in elecs])) #add data to coronal plane import pylab as pl fig = pl.figure() pl.imshow(slice, cmap='gray') pl.scatter(pix[0,:], pix[1,:], s=10, c='red', edgecolor='yellow', linewidths=0.4) if title is not None: pl.title(title) pl.axis('off') #pl.show() if outfile is not None: pl.savefig(outfile, dpi=dpi) return fig def sequence_3d_images( figure ): from mayavi import mlab views = [lambda:mlab.view( azimuth=0, elevation=90, figure=figure ), lambda:mlab.view( azimuth=180, elevation=90, figure=figure ), lambda:mlab.view( azimuth=0, elevation=0, figure=figure ), lambda:mlab.view( azimuth=90, elevation=90, figure=figure ), lambda:mlab.view( azimuth=270, elevation=90, figure=figure )] for view in views: yield view def save_opaque_clinical_sequence( savefile, mayavi_figure ): import pylab as pl from matplotlib.backends.backend_pdf import PdfPages from mayavi import mlab with PdfPages(savefile) as pdf: for angle in sequence_3d_images( mayavi_figure ): angle() force_render( figure=mayavi_figure ) pixmap = mlab.screenshot( figure=mayavi_figure ) mpl_figure = pl.figure() pl.imshow(pixmap, figure=mpl_figure) pdf.savefig(mpl_figure)
gpl-3.0
albu5/deepGroup
group-detection/vis_kernel_affinity.py
1
6897
""" Visualize and save group detections """ from utils import read_cad_frames, read_cad_annotations, get_interaction_features, add_annotation, custom_interaction_features from matplotlib import pyplot as plt from keras.models import Model from keras.layers import Input, Dense from keras.layers.merge import add from keras.optimizers import adam import keras.backend as kb from keras.models import load_model import numpy as np from scipy import io from utils import get_group_instance from matplotlib import pyplot as plt from keras import losses from sklearn.cluster import AffinityPropagation, DBSCAN import os from numpy import genfromtxt, savetxt def kernel_loss(y_true, y_pred): inclusion_dist = kb.max(y_pred - 1 + y_true) exclusion_dist = kb.max(y_pred - y_true) exclusion_dist2 = kb.mean(y_pred * (1 - y_true) * kb.cast(y_pred > 0, dtype=kb.floatx())) # ex_cost = kb.log(exclusion_dist + kb.epsilon()) * (1 - kb.prod(y_true)) # in_cost = -kb.log(inclusion_dist + kb.epsilon()) * (1 - kb.prod(1 - y_true)) ex_cost = (exclusion_dist2 + kb.epsilon()) * (1 - kb.prod(y_true)) in_cost = -(inclusion_dist + kb.epsilon()) * (1 - kb.prod(1 - y_true)) # return inclusion_dist * kb.sum(y_true) # return - exclusion_dist * (1 - kb.prod(y_true)) return in_cost + ex_cost def simple_loss(y_true, y_pred): res_diff = (y_true - y_pred) * kb.cast(y_pred >= 0, dtype=kb.floatx()) return kb.sum(kb.square(res_diff)) ''' ======================CONSTANTS================================================================================== ''' losses.simple_loss = simple_loss losses.kernel_loss = kernel_loss if not os.path.exists('res'): os.makedirs('res') model_path = './models/cad-kernel-affinity-bottom-max-long-custom-20.h5' n_max = 20 cad_dir = '../ActivityDataset' annotations_dir = cad_dir + '/' + 'csvanno-long-feat' # annotations_dir = cad_dir + '/' + 'csvanno-long-feat' annotations_dir_out = cad_dir + '/' + 'csvanno-long-feat-results' colorstr = ['r', 'g', 'b', 'k', 'w', 'm', 'c', 'y'] n = 11 # specify which sequences are visualized test_seq = [1, 4, 5, 6, 8, 2, 7, 28, 35, 11, 10, 26] kernel_net = load_model(model_path) for n in range(1, 45): try: if n == 39: continue f = 1 pose_vec = genfromtxt('../common/pose/pose%2.2d.txt' % n) pose_meta = genfromtxt('../common/pose/meta%2.2d.txt' % n) action_vec = genfromtxt('../split1/atomic/actions.txt') action_meta = genfromtxt('../split1/atomic/meta.txt') if not os.path.exists('res/scene%d' % n): os.makedirs('res/scene%d' % n) # fig, ax = plt.subplots(1) anno_data = read_cad_annotations(annotations_dir, n) print(anno_data.shape) n_frames = np.max(anno_data[:, 0]) while True: f += 10 if f > n_frames: break im = read_cad_frames(cad_dir, n, f) bx, by, bp, bi = custom_interaction_features(anno_data, f, max_people=20) # print(bx[0].shape, by[0].shape, bp[0].shape) # print(len(bx)) # print(bx[0][:, 18:22]) anno_data_i = anno_data[anno_data[:, 0] == f, :] n_ped = anno_data_i.shape[0] affinity_matrix = [] for j in range(len(bx)): # uncomment this to visualize # plt.clf() # ax.clear() # ax.imshow(im) temp = np.squeeze(kernel_net.predict_on_batch(x=[bx[j], bp[j]])) affinity_matrix.append(temp[0:n_ped].tolist()) # uncomment this to visualize individual features # print() # print(np.round(temp[0:n_ped], 2)) # print(by[j][0:n_ped, 0]) # print() # add_annotation(ax, bi[j, 2:6], 'k', 2) for k in range(n_ped): l = k # uncomment this to visualize individual features # if l is not j: # if np.sum(bi[k, 10:]) > 0: # if temp[l] > 0.5: # add_annotation(ax, bi[k, 2:6], 'b', 2) # ax.arrow(bi[k, 2], bi[k, 3], 64 * bx[k][k, 0], 64 * bx[k][k, 1], fc='b', ec='b', # head_width=5, head_length=10) # else: # add_annotation(ax, bi[k, 2:6], 'r', 2) # ax.arrow(bi[k, 2], bi[k, 3], 64 * bx[k][k, 0], 64 * bx[k][k, 1], fc='r', ec='r', # head_width=5, head_length=10) # uncomment this to visualize individual features # add_annotation(ax, bi[j, 2:6], 'k', 2) # ax.arrow(bi[j, 2], bi[j, 3], 64*bx[j][0, 0], 64*bx[j][0, 1], fc='k', ec='k', # head_width=5, head_length=10) # print(bi[j, 2], bi[j, 3], 64*bx[j][0, 0], 64*bx[j][0, 1]) # plt.pause(1./2) affinity_matrix = np.array(affinity_matrix) affinity_matrix[np.isnan(affinity_matrix)] = 0 # try: # print(affinity_matrix) if n_ped == 0: continue af = DBSCAN(eps=0.55, metric='precomputed', min_samples=0, algorithm='auto', n_jobs=1) af.fit(1-affinity_matrix) # print(af.labels_) af_labels = af.labels_ n_samples = af_labels.shape[0] ipm = np.zeros(shape=(n_samples, n_samples)) for i1 in range(n_samples): for i2 in range(n_samples): ipm[i1, i2] = af_labels[i1] == af_labels[i2] # print(ipm) gt_pm = np.zeros(shape=(n_samples, n_samples)) for i1 in range(n_samples): for i2 in range(n_samples): gt_pm[i1, i2] = by[i1][i2, 0] # print(gt_pm) # ax.clear() # ax.imshow(im) # for j in range(len(bx)): # # plt.clf() # add_annotation(ax, bi[j, 2:6], colorstr[af_labels[j]], 2) # plt.pause(0.01) # plt.savefig('res/scene%d/frame%d.png' % (n, f)) ## except: # print('skipped clustering') for ped_i in range(af_labels.shape[0]): # print(np.sum(np.bitwise_and(anno_data[:, 0] == f, anno_data[:, 1] == ped_i+1))) anno_data[np.bitwise_and(anno_data[:, 0] == f, anno_data[:, 1] == ped_i+1), 8] = af_labels[ped_i] + 1 # save group labels savetxt(annotations_dir_out + '/' + 'data_%2.2d.txt' % n, anno_data, delimiter=',') print(annotations_dir_out + '/' + 'data_%2.2d.txt' % n) except: print('skipped', n)
mit
MohammedWasim/scikit-learn
sklearn/linear_model/tests/test_base.py
101
12205
# Author: Alexandre Gramfort <[email protected]> # Fabian Pedregosa <[email protected]> # # License: BSD 3 clause import numpy as np from scipy import sparse from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.base import center_data, sparse_center_data, _rescale_data from sklearn.utils import check_random_state from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_greater from sklearn.datasets.samples_generator import make_sparse_uncorrelated from sklearn.datasets.samples_generator import make_regression def test_linear_regression(): # Test LinearRegression on a simple dataset. # a simple dataset X = [[1], [2]] Y = [1, 2] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [1]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [1, 2]) # test it also for degenerate input X = [[1]] Y = [0] clf = LinearRegression() clf.fit(X, Y) assert_array_almost_equal(clf.coef_, [0]) assert_array_almost_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.predict(X), [0]) def test_linear_regression_sample_weights(): rng = np.random.RandomState(0) for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1.0 + rng.rand(n_samples) clf = LinearRegression() clf.fit(X, y, sample_weight) coefs1 = clf.coef_ assert_equal(clf.coef_.shape, (X.shape[1], )) assert_greater(clf.score(X, y), 0.9) assert_array_almost_equal(clf.predict(X), y) # Sample weight can be implemented via a simple rescaling # for the square loss. scaled_y = y * np.sqrt(sample_weight) scaled_X = X * np.sqrt(sample_weight)[:, np.newaxis] clf.fit(X, y) coefs2 = clf.coef_ assert_array_almost_equal(coefs1, coefs2) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. clf = LinearRegression() # make sure the "OK" sample weights actually work clf.fit(X, y, sample_weights_OK) clf.fit(X, y, sample_weights_OK_1) clf.fit(X, y, sample_weights_OK_2) def test_fit_intercept(): # Test assertions on betas shape. X2 = np.array([[0.38349978, 0.61650022], [0.58853682, 0.41146318]]) X3 = np.array([[0.27677969, 0.70693172, 0.01628859], [0.08385139, 0.20692515, 0.70922346]]) y = np.array([1, 1]) lr2_without_intercept = LinearRegression(fit_intercept=False).fit(X2, y) lr2_with_intercept = LinearRegression(fit_intercept=True).fit(X2, y) lr3_without_intercept = LinearRegression(fit_intercept=False).fit(X3, y) lr3_with_intercept = LinearRegression(fit_intercept=True).fit(X3, y) assert_equal(lr2_with_intercept.coef_.shape, lr2_without_intercept.coef_.shape) assert_equal(lr3_with_intercept.coef_.shape, lr3_without_intercept.coef_.shape) assert_equal(lr2_without_intercept.coef_.ndim, lr3_without_intercept.coef_.ndim) def test_linear_regression_sparse(random_state=0): "Test that linear regression also works with sparse data" random_state = check_random_state(random_state) for i in range(10): n = 100 X = sparse.eye(n, n) beta = random_state.rand(n) y = X * beta[:, np.newaxis] ols = LinearRegression() ols.fit(X, y.ravel()) assert_array_almost_equal(beta, ols.coef_ + ols.intercept_) assert_array_almost_equal(ols.residues_, 0) def test_linear_regression_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions" X, y = make_regression(random_state=random_state) Y = np.vstack((y, y)).T n_features = X.shape[1] clf = LinearRegression(fit_intercept=True) clf.fit((X), Y) assert_equal(clf.coef_.shape, (2, n_features)) Y_pred = clf.predict(X) clf.fit(X, y) y_pred = clf.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_linear_regression_sparse_multiple_outcome(random_state=0): "Test multiple-outcome linear regressions with sparse data" random_state = check_random_state(random_state) X, y = make_sparse_uncorrelated(random_state=random_state) X = sparse.coo_matrix(X) Y = np.vstack((y, y)).T n_features = X.shape[1] ols = LinearRegression() ols.fit(X, Y) assert_equal(ols.coef_.shape, (2, n_features)) Y_pred = ols.predict(X) ols.fit(X, y.ravel()) y_pred = ols.predict(X) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def test_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) expected_X_mean = np.mean(X, axis=0) # XXX: currently scaled to variance=n_samples expected_X_std = np.std(X, axis=0) * np.sqrt(X.shape[0]) expected_y_mean = np.mean(y, axis=0) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_center_data_multioutput(): n_samples = 200 n_features = 3 n_outputs = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples, n_outputs) expected_y_mean = np.mean(y, axis=0) args = [(center_data, X), (sparse_center_data, sparse.csc_matrix(X))] for center, X in args: _, yt, _, y_mean, _ = center(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(y_mean, np.zeros(n_outputs)) assert_array_almost_equal(yt, y) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) _, yt, _, y_mean, _ = center(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(yt, y - y_mean) def test_center_data_weighted(): n_samples = 200 n_features = 2 rng = check_random_state(0) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) sample_weight = rng.rand(n_samples) expected_X_mean = np.average(X, axis=0, weights=sample_weight) expected_y_mean = np.average(y, axis=0, weights=sample_weight) # XXX: if normalize=True, should we expect a weighted standard deviation? # Currently not weighted, but calculated with respect to weighted mean # XXX: currently scaled to variance=n_samples expected_X_std = (np.sqrt(X.shape[0]) * np.mean((X - expected_X_mean) ** 2, axis=0) ** .5) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=False, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt, X - expected_X_mean) assert_array_almost_equal(yt, y - expected_y_mean) Xt, yt, X_mean, y_mean, X_std = center_data(X, y, fit_intercept=True, normalize=True, sample_weight=sample_weight) assert_array_almost_equal(X_mean, expected_X_mean) assert_array_almost_equal(y_mean, expected_y_mean) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt, (X - expected_X_mean) / expected_X_std) assert_array_almost_equal(yt, y - expected_y_mean) def test_sparse_center_data(): n_samples = 200 n_features = 2 rng = check_random_state(0) # random_state not supported yet in sparse.rand X = sparse.rand(n_samples, n_features, density=.5) # , random_state=rng X = X.tolil() y = rng.rand(n_samples) XA = X.toarray() # XXX: currently scaled to variance=n_samples expected_X_std = np.std(XA, axis=0) * np.sqrt(X.shape[0]) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=False, normalize=False) assert_array_almost_equal(X_mean, np.zeros(n_features)) assert_array_almost_equal(y_mean, 0) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=False) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, np.ones(n_features)) assert_array_almost_equal(Xt.A, XA) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) Xt, yt, X_mean, y_mean, X_std = sparse_center_data(X, y, fit_intercept=True, normalize=True) assert_array_almost_equal(X_mean, np.mean(XA, axis=0)) assert_array_almost_equal(y_mean, np.mean(y, axis=0)) assert_array_almost_equal(X_std, expected_X_std) assert_array_almost_equal(Xt.A, XA / expected_X_std) assert_array_almost_equal(yt, y - np.mean(y, axis=0)) def test_csr_sparse_center_data(): # Test output format of sparse_center_data, when input is csr X, y = make_regression() X[X < 2.5] = 0.0 csr = sparse.csr_matrix(X) csr_, y, _, _, _ = sparse_center_data(csr, y, True) assert_equal(csr_.getformat(), 'csr') def test_rescale_data(): n_samples = 200 n_features = 2 rng = np.random.RandomState(0) sample_weight = 1.0 + rng.rand(n_samples) X = rng.rand(n_samples, n_features) y = rng.rand(n_samples) rescaled_X, rescaled_y = _rescale_data(X, y, sample_weight) rescaled_X2 = X * np.sqrt(sample_weight)[:, np.newaxis] rescaled_y2 = y * np.sqrt(sample_weight) assert_array_almost_equal(rescaled_X, rescaled_X2) assert_array_almost_equal(rescaled_y, rescaled_y2)
bsd-3-clause
ibell/coolprop
wrappers/Python/CoolProp/Plots/PsychChart.py
1
5652
""" This file implements a psychrometric chart for air at 1 atm """ import CoolProp HAProps = CoolProp.HumidAirProp.HAProps InlineLabel = CoolProp.Plots.Plots.InlineLabel import matplotlib, numpy, textwrap import_template=( """ import numpy, matplotlib from CoolProp.HumidAirProp import HAProps from CoolProp.Plots.Plots import InlineLabel p = 101.325 Tdb = numpy.linspace(-10,60,100)+273.15 #Make the figure and the axes fig=matplotlib.pyplot.figure(figsize=(10,8)) ax=fig.add_axes((0.1,0.1,0.85,0.85)) """ ) closure_template=( """ matplotlib.pyplot.show() """ ) Tdb = numpy.linspace(-10,60,100)+273.15 p = 101.325 class PlotFormatting(object): def plot(self,ax): ax.set_xlim(Tdb[0]-273.15,Tdb[-1]-273.15) ax.set_ylim(0,0.03) ax.set_xlabel(r"Dry bulb temperature [$^{\circ}$C]") ax.set_ylabel(r"Humidity ratio ($m_{water}/m_{dry\ air}$) [-]") def __str__(self): return textwrap.dedent(""" ax.set_xlim(Tdb[0]-273.15,Tdb[-1]-273.15) ax.set_ylim(0,0.03) ax.set_xlabel(r"Dry bulb temperature [$^{\circ}$C]") ax.set_ylabel(r"Humidity ratio ($m_{water}/m_{dry\ air}$) [-]") """) class SaturationLine(object): def plot(self,ax): w = [HAProps('W','T',T,'P',p,'R',1.0) for T in Tdb] ax.plot(Tdb-273.15,w,lw=2) def __str__(self): return textwrap.dedent(""" # Saturation line w = [HAProps('W','T',T,'P',p,'R',1.0) for T in Tdb] ax.plot(Tdb-273.15,w,lw=2) """ ) class HumidityLabels(object): def __init__(self,RH_values,h): self.RH_values = RH_values self.h = h def plot(self,ax): xv = Tdb #[K] for RH in self.RH_values: yv = [HAProps('W','T',T,'P',p,'R',RH) for T in Tdb] y = HAProps('W','P',p,'H',self.h,'R',RH) T_K,w,rot = InlineLabel(xv, yv, y=y, axis = ax) string = r'$\phi$='+str(RH*100)+'%' #Make a temporary label to get its bounding box bbox_opts = dict(boxstyle='square,pad=0.0',fc='white',ec='None',alpha = 0.5) ax.text(T_K-273.15,w,string,rotation = rot,ha ='center',va='center',bbox=bbox_opts) def __str__(self): return textwrap.dedent(""" xv = Tdb #[K] for RH in {RHValues:s}: yv = [HAProps('W','T',T,'P',p,'R',RH) for T in Tdb] y = HAProps('W','P',p,'H',{h:f},'R',RH) T_K,w,rot = InlineLabel(xv, yv, y=y, axis = ax) string = r'$\phi$='+str(RH*100)+'%' bbox_opts = dict(boxstyle='square,pad=0.0',fc='white',ec='None',alpha = 0.5) ax.text(T_K-273.15,w,string,rotation = rot,ha ='center',va='center',bbox=bbox_opts) """.format(h=self.h, RHValues=str(self.RH_values)) ) class HumidityLines(object): def __init__(self,RH_values): self.RH_values = RH_values def plot(self,ax): for RH in self.RH_values: w = [HAProps('W','T',T,'P',p,'R',RH) for T in Tdb] ax.plot(Tdb-273.15,w,'r',lw=1) def __str__(self): return textwrap.dedent(""" # Humidity lines RHValues = {RHValues:s} for RH in RHValues: w = [HAProps('W','T',T,'P',p,'R',RH) for T in Tdb] ax.plot(Tdb-273.15,w,'r',lw=1) """.format(RHValues=str(self.RH_values)) ) class EnthalpyLines(object): def __init__(self,H_values): self.H_values = H_values def plot(self,ax): for H in self.H_values: #Line goes from saturation to zero humidity ratio for this enthalpy T1 = HAProps('T','H',H,'P',p,'R',1.0)-273.15 T0 = HAProps('T','H',H,'P',p,'R',0.0)-273.15 w1 = HAProps('W','H',H,'P',p,'R',1.0) w0 = HAProps('W','H',H,'P',p,'R',0.0) ax.plot(numpy.r_[T1,T0],numpy.r_[w1,w0],'r',lw=1) def __str__(self): return textwrap.dedent(""" # Humidity lines for H in {HValues:s}: #Line goes from saturation to zero humidity ratio for this enthalpy T1 = HAProps('T','H',H,'P',p,'R',1.0)-273.15 T0 = HAProps('T','H',H,'P',p,'R',0.0)-273.15 w1 = HAProps('W','H',H,'P',p,'R',1.0) w0 = HAProps('W','H',H,'P',p,'R',0.0) ax.plot(numpy.r_[T1,T0],numpy.r_[w1,w0],'r',lw=1) """.format(HValues=str(self.H_values)) ) if __name__=='__main__': fig=matplotlib.pyplot.figure(figsize=(10,8)) ax=fig.add_axes((0.1,0.1,0.85,0.85)) ax.set_xlim(Tdb[0]-273.15,Tdb[-1]-273.15) ax.set_ylim(0,0.03) ax.set_xlabel(r"Dry bulb temperature [$^{\circ}$C]") ax.set_ylabel(r"Humidity ratio ($m_{water}/m_{dry\ air}$) [-]") SL = SaturationLine() SL.plot(ax) RHL = HumidityLines([0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]) RHL.plot(ax) RHLabels = HumidityLabels([0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9], h=65) RHLabels.plot(ax) HL = EnthalpyLines(range(-20,100,10)) HL.plot(ax) PF = PlotFormatting() PF.plot(ax) matplotlib.pyplot.show() fp = open('PsychScript.py','w') for chunk in [import_template,SL,RHL,HL,PF,RHLabels,closure_template]: fp.write(str(chunk)) fp.close() execfile('PsychScript.py')
mit
ulno/micropython-extra-ulno
examples/plot_log/liveplot2d.py
2
4391
#!/usr/bin/env python3 # tail a file into a plot # # take parameter of filename # # Resources: # - http://stackoverflow.com/questions/11874767/real-time-plotting-in-while-loop-with-matplotlib # - from: https://lethain.com/tailing-in-python/ # # Author: ulno # Create date: 2017-04-30 # import time from optparse import OptionParser import numpy as np import matplotlib.pyplot as plt import numbers SLEEP_INTERVAL = 0.02 minx = None maxx = None miny = None maxy = None interval_start = None average_sum = 0 last_average = None average_count = 0 point_counter = 0 def add_point(x, y, c="blue"): global minx, maxx, miny, maxy, interval_start, average_sum, average_count if minx is None: minx = x maxx = x + 1 # TODO: better init value for max miny = y maxy = y + 1 interval_start = x else: minx = min(minx, x) maxx = max(maxx, x) miny = min(miny, y) maxy = max(maxy, y) plt.axis([minx, maxx, miny, maxy]) plt.scatter(x, y, c=c) def draw(x, y, interval, diff=False, c="blue"): global point_counter, last_average, average_sum, average_count, interval_start if not isinstance(x, numbers.Number) or not isinstance(y, numbers.Number): return # don't draw if one is not a number if interval is not None: if interval_start == None and x is not None: interval_start = x if x > interval_start + interval: current_average = last_average if average_count > 0: current_average = average_sum / average_count point_counter += 1 # print("x", x,"avg", average_sum, "count", average_count, current_average) if current_average is not None: if diff and last_average is not None: add_point(interval_start + interval / 2.0, current_average - last_average, c=c) else: add_point(interval_start + interval / 2.0, current_average, c=c) last_average = current_average average_sum = 0 average_count = 0 interval_start += interval average_sum += y average_count += 1 else: add_point(x, y, c=c) point_counter += 1 def parse_lineas_tuple(l): s = l.strip().split() if len(s) >= 2: retval = [] for i in s: try: conv = float(i) except: conv = None retval.append(conv) return retval else: return None def init(fin, column, interval, diff=False, c="blue"): global point_counter counter = 0 for l in fin: t = parse_lineas_tuple(l) if t is not None and len(t) > column: draw(t[0], t[column], interval, diff=diff, c=c) counter += 1 if counter % 1000 == 0: print("Read", counter, "lines,", point_counter, "valid points.") plt.ion() plt.show() def tail(fin): "Listen for new lines added to file." while True: where = fin.tell() line = fin.readline() if not line: plt.pause(SLEEP_INTERVAL) fin.seek(where) else: yield line def main(): p = OptionParser("usage: liveplot.py file [color [[column] [interval for averaging [differential:diff ]]]]") (options, args) = p.parse_args() if len(args) < 1: p.error("must at least specify a file to watch") with open(args[0], 'r') as fin: column = 1 color = "blue" interval = None if len(args) > 1: color = args[1] if len(args) > 2: column = int(args[2]) if len(args) > 3: interval = float(args[3]) if len(args) > 4: diff = args[4].lower().startswith("diff") else: diff = False init(fin, column, interval, diff=diff, c=color) print("Read", point_counter, "valid points.") print("Reached file end. If valid points are 0,\nno graphics is shown until there are valid points.") for line in tail(fin): p = parse_lineas_tuple(line) if p is not None: draw(p[0], p[column], interval, diff=diff, c=color) plt.pause(SLEEP_INTERVAL) if __name__ == '__main__': main()
mit
henriquemiranda/yambo-py
tutorial/mos2/proj_mos2.py
2
2428
from __future__ import print_function, division # # Author: Henrique Pereira Coutada Miranda # Example script to plot the weigth of the atomic species in the bandstructure # from qepy import * import sys import argparse import matplotlib.pyplot as plt folder = 'bands' npoints = 20 p = Path([ [[0.0, 0.0, 0.0],'G'], [[0.5, 0.0, 0.0],'M'], [[1./3,1./3, 0.0],'K'], [[0.0, 0.0, 0.0],'G']], [int(npoints*2),int(npoints),int(sqrt(5)*npoints)]) #parse options parser = argparse.ArgumentParser(description='Test the yambopy script.') parser.add_argument('-c' ,'--calc', action="store_true", help='Project orbitals') parser.add_argument('-a' ,'--analyse', action="store_true", help='Analyse data') parser.add_argument('-p1' ,'--plot_size', action="store_true", help='Analyse data') parser.add_argument('-p2' ,'--plot_orbital', action="store_true", help='Analyse data') args = parser.parse_args() if len(sys.argv)==1: parser.print_help() sys.exit(1) if args.calc: f = open('proj.in','w') projwfc = ProjwfcIn('mos2') projwfc.write(folder=folder) projwfc.run(folder=folder) if args.analyse: pxml = ProjwfcXML('mos2',path=folder) # obtain the list of orbitals and quantum numbers print(pxml) print("Writting projections") pxml.write_proj() print("done!") if args.plot_size: pxml = ProjwfcXML('mos2',path=folder) print(pxml) # select orbitals to plot # example1 mo, s2 and mos2 mo = list(range(16)) #list containing the indexes of all the orbitals of mo s = list(range(16,48)) #list containing the indexes of all the orbitals of s fig = plt.figure(figsize=(30,10)) for n,(orb,title) in enumerate(zip([mo,s,mo+s],['mo','s','mos2'])): ax = plt.subplot(1,3,n+1) plt.title(title) pxml.plot_eigen(ax,path=p,selected_orbitals=orb,size=40) ax.set_ylim([-7,6]) plt.show() if args.plot_orbital: pxml = ProjwfcXML('mos2',path=folder) print(pxml) # select orbitals to plot # example1 mo, s2 mo = list(range(16)) #list containing the indexes of all the orbitals of mo s = list(range(16,48)) #list containing the indexes of all the orbitals of s fig = plt.figure(figsize=(8,10)) ax = plt.subplot(1,1,1) pxml.plot_eigen(ax,path=p,selected_orbitals=mo,selected_orbitals_2=s,size=40,cmap='RdBu') ax.set_ylim([-7,6]) plt.show()
bsd-3-clause
Ichaelus/Github-Classifier
Application/Models/ClassificationModules/metaonlyrandomforest.py
1
2706
#!/usr/bin/env python # -*- coding: utf-8 -*- from Models.FeatureProcessing import * import sklearn from sklearn.ensemble import RandomForestClassifier import numpy as np import abc from ClassificationModule import ClassificationModule class metaonlyrandomforest(ClassificationModule): """A basic Random Forest Classifier""" def __init__(self, n_estimators=250): ClassificationModule.__init__(self, "Meta Only Random Forest", "Ensemble Learner with 250 Decision-Trees as base-classifier. Uses only our metadata.") self.clf = RandomForestClassifier(n_estimators=n_estimators, class_weight = 'balanced') print "\t-", self.name def resetAllTraining(self): """Reset classification module to status before training""" self.clf = sklearn.base.clone(self.clf) def trainOnSample(self, sample, nb_epoch=10, shuffle=True, verbose=True): """Trainiere (inkrementell) mit Sample. Evtl zusätzlich mit best. Menge alter Daten, damit overfitten auf neue Daten verhindert wird.""" readme_vec = self.formatInputData(sample) label_index = getLabelIndex(sample) return self.clf.fit(readme_vec, np.expand_dims(label_index, axis=0)) def train(self, samples, nb_epoch=10, shuffle=True, verbose=True): """Trainiere mit Liste von Daten. Evtl weitere Paramter nötig (nb_epoch, learning_rate, ...)""" train_samples = [] train_lables = [] for sample in samples: formatted_sample = self.formatInputData(sample)[0].tolist() train_samples.append(formatted_sample) train_lables.append(getLabelIndex(sample)) train_lables = np.asarray(train_lables) train_result = self.clf.fit(train_samples, train_lables) self.isTrained = True return train_result def predictLabel(self, sample): """Gibt zurück, wie der Klassifikator ein gegebenes Sample klassifizieren würde""" if not self.isTrained: return 0 sample = self.formatInputData(sample) return self.clf.predict(sample)[0] def predictLabelAndProbability(self, sample): """Return the probability the module assignes each label""" if not self.isTrained: return [0, 0, 0, 0, 0, 0, 0, 0] sample = self.formatInputData(sample) prediction = self.clf.predict_proba(sample)[0] return [np.argmax(prediction)] + list(prediction) def formatInputData(self, sample): """Extract description and transform to vector""" sd = getMetadataVector(sample) # Returns numpy array which contains 1 array with features return np.expand_dims(sd, axis=0)
mit
NicovincX2/Python-3.5
Analyse (mathématiques)/Analyse numérique/Équations différentielles numériques/Méthode des éléments finis/hpfem2d.py
1
6104
# -*- coding: utf-8 -*- """ Program for generating 2D hp finite element trial functions and their derivatives Copyright (C) 2013 Greg von Winckel This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Created: Tue Sep 24 08:59:11 MDT 2013 Last updated: Sat Oct 5 10:15:09 MDT 2013 """ import os import numpy as np import orthopoly as op from nodes import nodes, vertex_indices, edge_indices, interior_indices from pkdo import pkdo from triquad import triquad from numpy.linalg import inv class hpfem2d(object): def __init__(self, p): """ Form a basis generating object based on the (p+1)(p+2)/2 interpolation nodes """ self.p = p # Construct the interpolation nodes self.x, self.y = nodes(self.p) # Form the PKDO Vandermonde on the nodes V, _, _ = pkdo(self.p, self.x, self.y) # Compute the inverse of the interpolation Vandermonde self.Vi = inv(V) def getInteriorTrial(self, q): """ Evaluate the nodal interpolating functions and their x and y derivatives on a quadrature grid of q^2 points """ # Generate interior quadrature grid xq, yq, wq = triquad(q) # Compute Vandermondes PKDO polynomials and their derivatives on # quadrature grid V, Vx, Vy = pkdo(self.p, xq, yq) # Trial functions L = np.dot(V, self.Vi) # x derivative of trial functions Lx = np.dot(Vx, self.Vi) # y derivative of trial functions Ly = np.dot(Vy, self.Vi) return xq, yq, wq, L, Lx, Ly def getBoundaryTrial(self, q, edge): """ Evaluate the nodal interpolating functions along one of the edges using q Legendre Gauss nodes """ # Gauss quadrature recursion coefficients a, b = op.rec_jacobi(q, 0, 0) # Legendre Gauss nodes and weights t, wt = op.gauss(a, b) # Affine map of [-1,1] to the appropriate triangle edge xdict = {0: t, 1: -t, 2: -np.ones(q)} ydict = {0: -np.ones(q), 1: t, 2: -t} # Evaluate PKDO Vandermonde on the quadrature grid V, _, _ = pkdo(self.p, xdict[edge], ydict[edge]) # Evaluate 2D Lagrange interpolants edge L = np.dot(V, self.Vi) return xdict[edge], ydict[edge], wt, L def manufactured_solution(expression): """ Evaluate a string for the exact symbolic solution and create numerical function handles for all of the terms needed to reconstruct it by solving the BVP """ from sympy import * # Define symbolic variables for manufactured solution x, y = symbols('x,y') # Exact symbolic solution u = eval(expression) # Partial derivatives ux = diff(u, x) uy = diff(u, y) # symbolic forcing function f = -diff(ux, x) - diff(uy, y) # Return list of numerical function handles return [lambdify([x, y], fun, "numpy") for fun in [u, ux, uy, f]] if __name__ == '__main__': """ Solve the Poisson equation with unit forcing on the lower right triangle with Dirichlet (0), Neumann (1), and Robin (2) conditions """ from scipy.linalg import solve import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # Max polynomial order p = 20 # Indices of interior and boundary points idex = interior_indices(p) edex = edge_indices(p) # Instantiate FEM basis generator for this order FEM = hpfem2d(p) # Get function handles for the manufactured solution u, ux, uy, f = manufactured_solution("cos(pi*(x-y)) + sin(pi*(x+y))") # Get interior points and basis functions xq, yq, wq, L, Lx, Ly = FEM.getInteriorTrial(p) # Get boundary quadrature and basis functions x1, y1, w1, L1 = FEM.getBoundaryTrial(p, 1) x2, y2, w2, L2 = FEM.getBoundaryTrial(p, 2) # Inner product over the elemental interior def iprod(A, B): return np.dot(wq * A.T, B) # Interpolation points x, y = FEM.x, FEM.y # Total number of nodes N = len(x) # Evaluate the exact solution on edge 0 - including the vertex nodes # because this side has a Dirichlet condition e0 = [0, 1] + edex[0] a = u(x[e0], y[e0]) # Evaluate the normal derivative on edge 1 b = ux(x1, y1) + uy(x1, y1) # Evaluate the solution plus normal derivative on edge 2 c = u(x2, y2) - ux(x2, y2) # Compute load vector fhat = iprod(L, f(xq, yq)) # Integrate inhomogeneous boundary terms against test functions bhat = np.dot(w1 * L1.T, b) chat = np.dot(w2 * L2.T, c) # Surface matrix for Robin condition on edge 2 S = np.dot(w2 * L2.T, L2) # Stiffness matrix K = iprod(Lx, Lx) + iprod(Ly, Ly) # Left-hand-side LHS = K + S # Computed solution psi = np.zeros(N) # Set Dirichlet data psi[e0] = a # Right-hand-side rhs = fhat + bhat + chat - np.dot(LHS, psi) # Solve for interior points, and points on edges 1 and 2, and vertex 2 dex = idex + edex[1] + edex[2] + [2] psi[dex] = solve(LHS[dex, :][:, dex], rhs[dex]) fig = plt.figure() ax1 = fig.add_subplot(121, projection='3d') ax2 = fig.add_subplot(122, projection='3d') ax1.plot_trisurf(x, y, psi, cmap=plt.cm.CMRmap) ax1.set_title('Computed Solution') ax2.plot_trisurf(x, y, u(x, y), cmap=plt.cm.CMRmap) ax2.set_title('Exact Solution') plt.show() os.system("pause")
gpl-3.0
voxlol/scikit-learn
sklearn/utils/__init__.py
132
14185
""" The :mod:`sklearn.utils` module includes various utilities. """ from collections import Sequence import numpy as np from scipy.sparse import issparse import warnings from .murmurhash import murmurhash3_32 from .validation import (as_float_array, assert_all_finite, check_random_state, column_or_1d, check_array, check_consistent_length, check_X_y, indexable, check_symmetric, DataConversionWarning) from .class_weight import compute_class_weight, compute_sample_weight from ..externals.joblib import cpu_count __all__ = ["murmurhash3_32", "as_float_array", "assert_all_finite", "check_array", "check_random_state", "compute_class_weight", "compute_sample_weight", "column_or_1d", "safe_indexing", "check_consistent_length", "check_X_y", 'indexable', "check_symmetric"] class deprecated(object): """Decorator to mark a function or class as deprecated. Issue a warning when the function is called/the class is instantiated and adds a warning to the docstring. The optional extra argument will be appended to the deprecation message and the docstring. Note: to use this with the default value for extra, put in an empty of parentheses: >>> from sklearn.utils import deprecated >>> deprecated() # doctest: +ELLIPSIS <sklearn.utils.deprecated object at ...> >>> @deprecated() ... def some_function(): pass """ # Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary, # but with many changes. def __init__(self, extra=''): """ Parameters ---------- extra: string to be added to the deprecation messages """ self.extra = extra def __call__(self, obj): if isinstance(obj, type): return self._decorate_class(obj) else: return self._decorate_fun(obj) def _decorate_class(self, cls): msg = "Class %s is deprecated" % cls.__name__ if self.extra: msg += "; %s" % self.extra # FIXME: we should probably reset __new__ for full generality init = cls.__init__ def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return init(*args, **kwargs) cls.__init__ = wrapped wrapped.__name__ = '__init__' wrapped.__doc__ = self._update_doc(init.__doc__) wrapped.deprecated_original = init return cls def _decorate_fun(self, fun): """Decorate function fun""" msg = "Function %s is deprecated" % fun.__name__ if self.extra: msg += "; %s" % self.extra def wrapped(*args, **kwargs): warnings.warn(msg, category=DeprecationWarning) return fun(*args, **kwargs) wrapped.__name__ = fun.__name__ wrapped.__dict__ = fun.__dict__ wrapped.__doc__ = self._update_doc(fun.__doc__) return wrapped def _update_doc(self, olddoc): newdoc = "DEPRECATED" if self.extra: newdoc = "%s: %s" % (newdoc, self.extra) if olddoc: newdoc = "%s\n\n%s" % (newdoc, olddoc) return newdoc def safe_mask(X, mask): """Return a mask which is safe to use on X. Parameters ---------- X : {array-like, sparse matrix} Data on which to apply mask. mask: array Mask to be used on X. Returns ------- mask """ mask = np.asarray(mask) if np.issubdtype(mask.dtype, np.int): return mask if hasattr(X, "toarray"): ind = np.arange(mask.shape[0]) mask = ind[mask] return mask def safe_indexing(X, indices): """Return items or rows from X using indices. Allows simple indexing of lists or arrays. Parameters ---------- X : array-like, sparse-matrix, list. Data from which to sample rows or items. indices : array-like, list Indices according to which X will be subsampled. """ if hasattr(X, "iloc"): # Pandas Dataframes and Series try: return X.iloc[indices] except ValueError: # Cython typed memoryviews internally used in pandas do not support # readonly buffers. warnings.warn("Copying input dataframe for slicing.", DataConversionWarning) return X.copy().iloc[indices] elif hasattr(X, "shape"): if hasattr(X, 'take') and (hasattr(indices, 'dtype') and indices.dtype.kind == 'i'): # This is often substantially faster than X[indices] return X.take(indices, axis=0) else: return X[indices] else: return [X[idx] for idx in indices] def resample(*arrays, **options): """Resample arrays or sparse matrices in a consistent way The default strategy implements one step of the bootstrapping procedure. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. replace : boolean, True by default Implements resampling with replacement. If False, this will implement (sliced) random permutations. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. random_state : int or RandomState instance Control the shuffling for reproducible behavior. Returns ------- resampled_arrays : sequence of indexable data-structures Sequence of resampled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import resample >>> X, X_sparse, y = resample(X, X_sparse, y, random_state=0) >>> X array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 4 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 1., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([0, 1, 0]) >>> resample(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.shuffle` """ random_state = check_random_state(options.pop('random_state', None)) replace = options.pop('replace', True) max_n_samples = options.pop('n_samples', None) if options: raise ValueError("Unexpected kw arguments: %r" % options.keys()) if len(arrays) == 0: return None first = arrays[0] n_samples = first.shape[0] if hasattr(first, 'shape') else len(first) if max_n_samples is None: max_n_samples = n_samples if max_n_samples > n_samples: raise ValueError("Cannot sample %d out of arrays with dim %d" % ( max_n_samples, n_samples)) check_consistent_length(*arrays) if replace: indices = random_state.randint(0, n_samples, size=(max_n_samples,)) else: indices = np.arange(n_samples) random_state.shuffle(indices) indices = indices[:max_n_samples] # convert sparse matrices to CSR for row-based indexing arrays = [a.tocsr() if issparse(a) else a for a in arrays] resampled_arrays = [safe_indexing(a, indices) for a in arrays] if len(resampled_arrays) == 1: # syntactic sugar for the unit argument case return resampled_arrays[0] else: return resampled_arrays def shuffle(*arrays, **options): """Shuffle arrays or sparse matrices in a consistent way This is a convenience alias to ``resample(*arrays, replace=False)`` to do random permutations of the collections. Parameters ---------- *arrays : sequence of indexable data-structures Indexable data-structures can be arrays, lists, dataframes or scipy sparse matrices with consistent first dimension. random_state : int or RandomState instance Control the shuffling for reproducible behavior. n_samples : int, None by default Number of samples to generate. If left to None this is automatically set to the first dimension of the arrays. Returns ------- shuffled_arrays : sequence of indexable data-structures Sequence of shuffled views of the collections. The original arrays are not impacted. Examples -------- It is possible to mix sparse and dense arrays in the same run:: >>> X = np.array([[1., 0.], [2., 1.], [0., 0.]]) >>> y = np.array([0, 1, 2]) >>> from scipy.sparse import coo_matrix >>> X_sparse = coo_matrix(X) >>> from sklearn.utils import shuffle >>> X, X_sparse, y = shuffle(X, X_sparse, y, random_state=0) >>> X array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> X_sparse # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE <3x2 sparse matrix of type '<... 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> X_sparse.toarray() array([[ 0., 0.], [ 2., 1.], [ 1., 0.]]) >>> y array([2, 1, 0]) >>> shuffle(y, n_samples=2, random_state=0) array([0, 1]) See also -------- :func:`sklearn.utils.resample` """ options['replace'] = False return resample(*arrays, **options) def safe_sqr(X, copy=True): """Element wise squaring of array-likes and sparse matrices. Parameters ---------- X : array like, matrix, sparse matrix copy : boolean, optional, default True Whether to create a copy of X and operate on it or to perform inplace computation (default behaviour). Returns ------- X ** 2 : element wise square """ X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) if issparse(X): if copy: X = X.copy() X.data **= 2 else: if copy: X = X ** 2 else: X **= 2 return X def gen_batches(n, batch_size): """Generator to create slices containing batch_size elements, from 0 to n. The last slice may contain less than batch_size elements, when batch_size does not divide n. Examples -------- >>> from sklearn.utils import gen_batches >>> list(gen_batches(7, 3)) [slice(0, 3, None), slice(3, 6, None), slice(6, 7, None)] >>> list(gen_batches(6, 3)) [slice(0, 3, None), slice(3, 6, None)] >>> list(gen_batches(2, 3)) [slice(0, 2, None)] """ start = 0 for _ in range(int(n // batch_size)): end = start + batch_size yield slice(start, end) start = end if start < n: yield slice(start, n) def gen_even_slices(n, n_packs, n_samples=None): """Generator to create n_packs slices going up to n. Pass n_samples when the slices are to be used for sparse matrix indexing; slicing off-the-end raises an exception, while it works for NumPy arrays. Examples -------- >>> from sklearn.utils import gen_even_slices >>> list(gen_even_slices(10, 1)) [slice(0, 10, None)] >>> list(gen_even_slices(10, 10)) #doctest: +ELLIPSIS [slice(0, 1, None), slice(1, 2, None), ..., slice(9, 10, None)] >>> list(gen_even_slices(10, 5)) #doctest: +ELLIPSIS [slice(0, 2, None), slice(2, 4, None), ..., slice(8, 10, None)] >>> list(gen_even_slices(10, 3)) [slice(0, 4, None), slice(4, 7, None), slice(7, 10, None)] """ start = 0 if n_packs < 1: raise ValueError("gen_even_slices got n_packs=%s, must be >=1" % n_packs) for pack_num in range(n_packs): this_n = n // n_packs if pack_num < n % n_packs: this_n += 1 if this_n > 0: end = start + this_n if n_samples is not None: end = min(n_samples, end) yield slice(start, end, None) start = end def _get_n_jobs(n_jobs): """Get number of jobs for the computation. This function reimplements the logic of joblib to determine the actual number of jobs depending on the cpu count. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Parameters ---------- n_jobs : int Number of jobs stated in joblib convention. Returns ------- n_jobs : int The actual number of jobs as positive integer. Examples -------- >>> from sklearn.utils import _get_n_jobs >>> _get_n_jobs(4) 4 >>> jobs = _get_n_jobs(-2) >>> assert jobs == max(cpu_count() - 1, 1) >>> _get_n_jobs(0) Traceback (most recent call last): ... ValueError: Parameter n_jobs == 0 has no meaning. """ if n_jobs < 0: return max(cpu_count() + 1 + n_jobs, 1) elif n_jobs == 0: raise ValueError('Parameter n_jobs == 0 has no meaning.') else: return n_jobs def tosequence(x): """Cast iterable x to a Sequence, avoiding a copy if possible.""" if isinstance(x, np.ndarray): return np.asarray(x) elif isinstance(x, Sequence): return x else: return list(x) class ConvergenceWarning(UserWarning): """Custom warning to capture convergence problems""" class DataDimensionalityWarning(UserWarning): """Custom warning to notify potential issues with data dimensionality"""
bsd-3-clause
tgy/facedetect
script/plot_mblbp.py
1
2423
#!/usr/bin/env python3 '''Visualize randomly chosen mblbp features in a given window''' import random import os import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.animation as animation import matplotlib.image as mpimg from PIL import Image COLORS = ['#1a535c', '#4ecdc4', '#ff6b6b', '#ffe66d', '#ffe66d', '#ff6b6b', '#4ecdc4', '#1a535c'] def plot_animated_mblbp(window_w, window_h): dpi = 96 img = Image.open('gfx/tgy.jpg').convert('LA') fig = plt.figure(figsize=(dpi / 40, dpi / 40), dpi=dpi, frameon=False) ax = plt.axes(xlim=(0, 20), ylim=(0, 20)) ax.imshow(img, interpolation='nearest', cmap=plt.get_cmap('gray'), extent=[0, 20, 20, 0], alpha=0.7) ax.set_ylim(ax.get_ylim()[::-1]) # invert y-axis ax.xaxis.tick_top() # move x-axis to the top ax.xaxis.set_ticks(range(1, 21)) ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticks(range(1, 21)) ax.yaxis.set_ticklabels([]) for tic in ax.xaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False tic.label1On = tic.label2On = False for tic in ax.yaxis.get_major_ticks(): tic.tick1On = tic.tick2On = False tic.label1On = tic.label2On = False ax.grid(True, which='both', linestyle='-') for spine in ax.spines: ax.spines[spine].set_visible(False) features = [] for block_w in range(3, 10, 3): for block_h in range(3, 10, 3): for offset_x in range(window_w - block_w + 1): for offset_y in range(window_h - block_h + 1): feature = { 'block_w': block_w, 'block_h': block_h, 'offset_x': offset_x, 'offset_y': offset_y, } features.append(feature) random.shuffle(features) sample = random.sample(features, 6) for i, feature in enumerate(sample): rectangle = patches.Rectangle( (feature['offset_x'], feature['offset_y']), feature['block_w'], feature['block_h'], facecolor=COLORS[i], linewidth=1, alpha=0.4, ) ax.add_patch(rectangle) plt.savefig('gfx/mblbp.svg', interpolation='nearest') plt.show() def main(): window_w = 20 window_h = 20 plot_animated_mblbp(window_w, window_h) if __name__ == '__main__': main()
mit
cmap/cmapPy
cmapPy/math/tests/test_fast_cov.py
1
17355
import unittest import logging import cmapPy.pandasGEXpress.setup_GCToo_logger as setup_logger import cmapPy.math.fast_cov as fast_cov import numpy import tempfile import os logger = logging.getLogger(setup_logger.LOGGER_NAME) class TestFastCov(unittest.TestCase): @staticmethod def build_standard_x_y(): x = numpy.array([[1,2,3], [5,7,11]], dtype=float) logger.debug("x: {}".format(x)) logger.debug("x.shape: {}".format(x.shape)) y = numpy.array([[13, 17, 19], [23, 29, 31]], dtype=float) logger.debug("y: {}".format(y)) logger.debug("y.shape: {}".format(y.shape)) return x, y @staticmethod def build_nan_containing_x_y(): x = numpy.array([[1,numpy.nan,2], [3,5,7], [11,13,17]], dtype=float) logger.debug("x:\n{}".format(x)) logger.debug("x.shape: {}".format(x.shape)) y = numpy.array([[19, 23, 29], [31, 37, 41], [numpy.nan, 43, 47]], dtype=float) logger.debug("y:\n{}".format(y)) logger.debug("y.shape: {}".format(y.shape)) return x, y def test_validate_inputs(self): shape = (3,2) #happy path just x x = numpy.zeros(shape) fast_cov.validate_inputs(x, None, None) x = numpy.zeros(1) fast_cov.validate_inputs(x, None, None) #unhappy path just x, x does not have shape attribute with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(None, None, None) logger.debug("unhappy path just x, x does not have shape attribute - context.exception: {}".format(context.exception)) self.assertIn("x needs to be numpy array-like", str(context.exception)) #unhappy path x does not have shape attribute, y does not have shape attribute with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(None, 3, None) logger.debug("unhappy path x does not have shape attribute, y does not have shape attribute - context.exception: {}".format(context.exception)) self.assertIn("x needs to be numpy array-like", str(context.exception)) self.assertIn("y needs to be numpy array-like", str(context.exception)) #happy path x and y x = numpy.zeros(shape) y = numpy.zeros(shape) fast_cov.validate_inputs(x, y, None) #happy path y different shape from x y = numpy.zeros((3,1)) fast_cov.validate_inputs(x, y, None) #unhappy path y different shape from x, invalid axis with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(x, y.T, None) logger.debug("unhappy path y different shape from x, invalid axis - context.exception: {}".format(context.exception)) self.assertIn("the number of rows in the x and y matrices must be the same", str(context.exception)) with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(x.T, y, None) logger.debug("unhappy path y different shape from x, invalid axis - context.exception: {}".format(context.exception)) self.assertIn("the number of rows in the x and y matrices must be the same", str(context.exception)) #happy path with x, destination x = numpy.zeros(shape) dest = numpy.zeros((shape[1], shape[1])) fast_cov.validate_inputs(x, None, dest) #unhappy path with x, destination wrong size dest = numpy.zeros((shape[1]+1, shape[1])) with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(x, None, dest) logger.debug("unhappy path incorrrect shape of destination for provided x - context.exception: {}".format(context.exception)) self.assertIn("x and destination provided", str(context.exception)) self.assertIn("destination must have shape matching", str(context.exception)) #happy path with x, y, destination x = numpy.zeros(shape) y = numpy.zeros((shape[0], shape[1]+1)) dest = numpy.zeros((shape[1], shape[1]+1)) fast_cov.validate_inputs(x, y, dest) #unhappy path x, y, destination wrong size dest = numpy.zeros((shape[1], shape[1]+2)) with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.validate_inputs(x, y, dest) logger.debug("unhappy path incorrrect shape of destination for provided x, y - context.exception: {}".format(context.exception)) self.assertIn("x, y, and destination provided", str(context.exception)) self.assertIn("destination must have number of", str(context.exception)) def test_fast_cov_check_validations_run(self): #unhappy path check that input validation checks are run with self.assertRaises(fast_cov.CmapPyMathFastCovInvalidInputXY) as context: fast_cov.fast_cov(None, None) logger.debug("unhappy path check that input validation checks are run - context.exception: {}".format(context.exception)) def test_fast_cov_just_x(self): logger.debug("*************happy path just x") x, _ = TestFastCov.build_standard_x_y() ex = numpy.cov(x, rowvar=False) logger.debug("expected ex: {}".format(ex)) r = fast_cov.fast_cov(x) logger.debug("r: {}".format(r)) self.assertTrue(numpy.allclose(ex, r)) #happy path just x, uses destination dest = numpy.zeros((x.shape[1], x.shape[1])) r = fast_cov.fast_cov(x, destination=dest) logger.debug("happy path just x, uses destination - r: {}".format(r)) self.assertIs(dest, r) self.assertTrue(numpy.allclose(ex, dest)) #happy path just x, uses destination which is a different type dest = dest.astype(numpy.float16) r = fast_cov.fast_cov(x, destination=dest) logger.debug("happy path, just x, uses destination which is a different type - r: {}".format(r)) self.assertIs(dest, r) self.assertTrue(numpy.allclose(ex, dest)) #happy path just x, uses destination that is a numpy.memmap outfile = tempfile.mkstemp() logger.debug("happy path, just x, uses destination which is a numpy.memmap - outfile: {}".format(outfile)) dest = numpy.memmap(outfile[1], dtype="float16", mode="w+", shape=ex.shape) dest_array = numpy.asarray(dest) r = fast_cov.fast_cov(x, destination=dest_array) dest.flush() logger.debug(" - r: {}".format(r)) os.close(outfile[0]) os.remove(outfile[1]) #happy path just x, transposed ex = numpy.cov(x, rowvar=True) logger.debug("happy path just x, transposed, expected ex: {}".format(ex)) r = fast_cov.fast_cov(x.T) logger.debug("r: {}".format(r)) self.assertTrue(numpy.allclose(ex, r)) def test_fast_cov_x_and_y(self): logger.debug("*************happy path x and y") x, y = TestFastCov.build_standard_x_y() combined = numpy.hstack([x, y]) logger.debug("combined: {}".format(combined)) logger.debug("combined.shape: {}".format(combined.shape)) off_diag_ind = int(combined.shape[1] / 2) raw_ex = numpy.cov(combined, rowvar=False) logger.debug("raw expected produced from numpy.cov on full combined - raw_ex: {}".format(raw_ex)) ex = raw_ex[:off_diag_ind, off_diag_ind:] logger.debug("expected ex: {}".format(ex)) r = fast_cov.fast_cov(x, y) logger.debug("r: {}".format(r)) self.assertTrue(numpy.allclose(ex, r)) #happy path x, y, and destination dest = numpy.zeros((x.shape[1], y.shape[1])) r = fast_cov.fast_cov(x, y, dest) logger.debug("happy path x, y, and destination - r: {}".format(r)) self.assertIs(dest, r) self.assertTrue(numpy.allclose(ex, dest)) #happy path x and y, other direction combined = numpy.hstack([x.T, y.T]) off_diag_ind = int(combined.shape[1] / 2) raw_ex = numpy.cov(combined, rowvar=False) logger.debug("happy path x and y, other direction, raw expected produced from numpy.cov on full combined - raw_ex: {}".format(raw_ex)) ex = raw_ex[:off_diag_ind, off_diag_ind:] logger.debug("expected ex: {}".format(ex)) r = fast_cov.fast_cov(x.T, y.T) logger.debug("r: {}".format(r)) self.assertTrue(numpy.allclose(ex, r)) def test_fast_cov_x_and_y_different_shapes(self): logger.debug("*************happy path x and y different shapes") x, _ = TestFastCov.build_standard_x_y() y = numpy.array([[13, 17, 19, 23, 41], [23, 29, 31, 37, 43]]) logger.debug("y.shape: {}".format(y.shape)) logger.debug("y:\n{}".format(y)) combined = numpy.hstack([x, y]) logger.debug("combined: {}".format(combined)) logger.debug("combined.shape: {}".format(combined.shape)) raw_ex = numpy.cov(combined, rowvar=False) logger.debug("raw expected produced from numpy.cov on full combined - raw_ex: {}".format(raw_ex)) logger.debug("raw_ex.shape: {}".format(raw_ex.shape)) ex = raw_ex[:x.shape[1], -y.shape[1]:] logger.debug("expected ex: {}".format(ex)) logger.debug("ex.shape: {}".format(ex.shape)) r = fast_cov.fast_cov(x, y) logger.debug("r: {}".format(r)) self.assertTrue(numpy.allclose(ex, r)) #happy path x and y different shapes, using destination dest = numpy.zeros((x.shape[1], y.shape[1])) r = fast_cov.fast_cov(x, y, dest) logger.debug("happy path x and y different shapes, using destination - r: {}".format(r)) self.assertIs(dest, r) self.assertTrue(numpy.allclose(ex, dest)) def test_fast_cov_1D_arrays(self): logger.debug("*****************happy path test_fast_cov_1D_arrays") x = numpy.array(range(3)) logger.debug("x.shape: {}".format(x.shape)) r = fast_cov.fast_cov(x) logger.debug("r: {}".format(r)) self.assertEqual(1., r[0][0]) y = numpy.array(range(3,6)) logger.debug("y.shape: {}".format(y.shape)) r = fast_cov.fast_cov(x, y) logger.debug("r: {}".format(r)) self.assertEqual(1., r[0][0]) def test_calculate_non_mask_overlaps(self): x = numpy.zeros((3,3)) x[0,1] = numpy.nan x = numpy.ma.array(x, mask=numpy.isnan(x)) logger.debug("happy path x has 1 nan - x:\n{}".format(x)) r = fast_cov.calculate_non_mask_overlaps(x.mask, x.mask) logger.debug("r:\n{}".format(r)) expected = numpy.array([[3,2,3], [2,2,2], [3,2,3]], dtype=int) self.assertTrue(numpy.array_equal(expected, r)) def test_nan_fast_cov_just_x(self): logger.debug("*************happy path just x") x, _ = TestFastCov.build_nan_containing_x_y() ex_with_nan = numpy.cov(x, rowvar=False) logger.debug("expected with nan's - ex_with_nan:\n{}".format(ex_with_nan)) r = fast_cov.nan_fast_cov(x) logger.debug("r:\n{}".format(r)) non_nan_locs = ~numpy.isnan(ex_with_nan) self.assertTrue(numpy.allclose(ex_with_nan[non_nan_locs], r[non_nan_locs])) check_nominal_nans = [] u = x[1:, 1] for i in range(3): t = x[1:, i] c = numpy.cov(t, u, bias=False)[0,1] check_nominal_nans.append(c) logger.debug("calculate entries that would be nan - check_nominal_nans: {}".format(check_nominal_nans)) self.assertTrue(numpy.allclose(check_nominal_nans, r[:, 1])) self.assertTrue(numpy.allclose(check_nominal_nans, r[1, :])) def test_nan_fast_cov_x_and_y(self): logger.debug("*************happy path x and y") x, y = TestFastCov.build_nan_containing_x_y() combined = numpy.hstack([x, y]) logger.debug("combined:\n{}".format(combined)) logger.debug("combined.shape: {}".format(combined.shape)) off_diag_ind = int(combined.shape[1] / 2) raw_ex = numpy.cov(combined, rowvar=False) logger.debug("raw expected produced from numpy.cov on full combined - raw_ex:\n{}".format(raw_ex)) ex = raw_ex[:off_diag_ind, off_diag_ind:] logger.debug("expected ex:\n{}".format(ex)) r = fast_cov.nan_fast_cov(x, y) logger.debug("r:\n{}".format(r)) non_nan_locs = ~numpy.isnan(ex) logger.debug("ex[non_nan_locs]: {}".format(ex[non_nan_locs])) logger.debug("r[non_nan_locs]: {}".format(r[non_nan_locs])) self.assertTrue(numpy.allclose(ex[non_nan_locs], r[non_nan_locs])) check_nominal_nans = [] t = x[1:, 1] for i in [1,2]: u = y[1:, i] c = numpy.cov(t,u) check_nominal_nans.append(c[0,1]) logger.debug("calculate entries that would be nan - check_nominal_nans: {}".format(check_nominal_nans)) logger.debug("r values to compare to - r[1, 1:]: {}".format(r[1, 1:])) self.assertTrue(numpy.allclose(check_nominal_nans, r[1, 1:])) check_nominal_nans = [] u = y[:2, 0] for i in [0, 2]: t = x[:2, i] c = numpy.cov(t,u) check_nominal_nans.append(c[0,1]) logger.debug("calculate entries that would be nan - check_nominal_nans: {}".format(check_nominal_nans)) logger.debug("r values to compare to - r[[0,2], 0]: {}".format(r[[0,2], 0])) self.assertTrue(numpy.allclose(check_nominal_nans, r[[0,2], 0])) self.assertTrue(numpy.isnan(r[1,0]), """expect this entry to be nan b/c for the intersection of x[:,1] and y[:,0] there is only one entry in common, therefore covariance is undefined""") def test_nan_fast_cov_x_and_y_different_shapes(self): logger.debug("*************happy path x and y different shapes") x, t = TestFastCov.build_nan_containing_x_y() y = numpy.zeros((t.shape[0], t.shape[1]+1)) y[:, :t.shape[1]] = t y[:, t.shape[1]] = [53, 59, 61] logger.debug("y.shape: {}".format(y.shape)) logger.debug("y:\n{}".format(y)) combined = numpy.hstack([x, y]) logger.debug("combined:\n{}".format(combined)) logger.debug("combined.shape: {}".format(combined.shape)) raw_ex = numpy.cov(combined, rowvar=False) logger.debug("raw expected produced from numpy.cov on full combined - raw_ex:\n{}".format(raw_ex)) logger.debug("raw_ex.shape: {}".format(raw_ex.shape)) ex = raw_ex[:x.shape[1], -y.shape[1]:] logger.debug("expected ex:\n{}".format(ex)) logger.debug("ex.shape: {}".format(ex.shape)) r = fast_cov.nan_fast_cov(x, y) logger.debug("r:\n{}".format(r)) non_nan_locs = ~numpy.isnan(ex) logger.debug("ex[non_nan_locs]: {}".format(ex[non_nan_locs])) logger.debug("r[non_nan_locs]: {}".format(r[non_nan_locs])) self.assertTrue(numpy.allclose(ex[non_nan_locs], r[non_nan_locs])) check_nominal_nans = [] t = x[1:, 1] for i in [1,2,3]: u = y[1:, i] c = numpy.cov(t,u) check_nominal_nans.append(c[0,1]) logger.debug("calculate entries that would be nan - check_nominal_nans: {}".format(check_nominal_nans)) logger.debug("r values to compare to - r[1, 1:]: {}".format(r[1, 1:])) self.assertTrue(numpy.allclose(check_nominal_nans, r[1, 1:])) check_nominal_nans = [] u = y[:2, 0] for i in [0, 2]: t = x[:2, i] c = numpy.cov(t,u) check_nominal_nans.append(c[0,1]) logger.debug("calculate entries that would be nan - check_nominal_nans: {}".format(check_nominal_nans)) logger.debug("r values to compare to - r[[0,2], 0]: {}".format(r[[0,2], 0])) self.assertTrue(numpy.allclose(check_nominal_nans, r[[0,2], 0])) self.assertTrue(numpy.isnan(r[1,0]), """expect this entry to be nan b/c for the intersection of x[:,1] and y[:,0] there is only one entry in common, therefore covariance is undefined""") def test_nan_fast_cov_all_nan(self): x = numpy.zeros(3) x[:] = numpy.nan x = x[:, numpy.newaxis] logger.debug("x:\n{}".format(x)) r = fast_cov.nan_fast_cov(x) logger.debug("r:\n{}".format(r)) self.assertEqual(0, numpy.sum(numpy.isnan(r))) def test_nan_fast_cov_1D_arrays(self): logger.debug("*****************happy path test_nan_fast_cov_1D_arrays") x = numpy.array(range(3)) logger.debug("x.shape: {}".format(x.shape)) r = fast_cov.nan_fast_cov(x) logger.debug("r: {}".format(r)) self.assertEqual(1., r[0][0]) y = numpy.array(range(3,6)) logger.debug("y.shape: {}".format(y.shape)) r = fast_cov.fast_cov(x, y) logger.debug("r: {}".format(r)) self.assertEqual(1., r[0][0]) if __name__ == "__main__": setup_logger.setup(verbose=True) unittest.main()
bsd-3-clause
drpngx/tensorflow
tensorflow/contrib/learn/python/learn/estimators/dnn_test.py
30
60826
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DNNEstimators.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import dnn from tensorflow.contrib.learn.python.learn.estimators import dnn_linear_combined from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import model_fn from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import input as input_lib from tensorflow.python.training import monitored_session from tensorflow.python.training import server_lib class EmbeddingMultiplierTest(test.TestCase): """dnn_model_fn tests.""" def testRaisesNonEmbeddingColumn(self): one_hot_language = feature_column.one_hot_column( feature_column.sparse_column_with_hash_bucket('language', 10)) params = { 'feature_columns': [one_hot_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { one_hot_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) with self.assertRaisesRegexp(ValueError, 'can only be defined for embedding columns'): dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testMultipliesGradient(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) embedding_wire = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('wire', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language, embedding_wire], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], # Set lr mult to 0. to keep embeddings constant. 'embedding_lr_multipliers': { embedding_language: 0.0 }, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'wire': sparse_tensor.SparseTensor( values=['omar', 'stringer', 'marlo'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) model_ops = dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) with monitored_session.MonitoredSession() as sess: language_var = dnn_linear_combined._get_embedding_variable( embedding_language, 'dnn', 'dnn/input_from_feature_columns') wire_var = dnn_linear_combined._get_embedding_variable( embedding_wire, 'dnn', 'dnn/input_from_feature_columns') for _ in range(2): _, language_value, wire_value = sess.run( [model_ops.train_op, language_var, wire_var]) initial_value = np.full_like(language_value, 0.1) self.assertTrue(np.all(np.isclose(language_value, initial_value))) self.assertFalse(np.all(np.isclose(wire_value, initial_value))) class ActivationFunctionTest(test.TestCase): def _getModelForActivation(self, activation_fn): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) params = { 'feature_columns': [embedding_language], 'head': head_lib.multi_class_head(2), 'hidden_units': [1], 'activation_fn': activation_fn, } features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), } labels = constant_op.constant([[0], [0], [0]], dtype=dtypes.int32) return dnn._dnn_model_fn(features, labels, model_fn.ModeKeys.TRAIN, params) def testValidActivation(self): _ = self._getModelForActivation('relu') def testRaisesOnBadActivationName(self): with self.assertRaisesRegexp(ValueError, 'Activation name should be one of'): self._getModelForActivation('max_pool') class DNNEstimatorTest(test.TestCase): def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNEstimator) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels dnn_estimator = dnn.DNNEstimator( head=head_lib.multi_class_head(2, weight_column_name='w'), feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) dnn_estimator.fit(input_fn=_input_fn_train, steps=5) scores = dnn_estimator.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) class DNNClassifierTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNClassifier( n_classes=3, feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def _assertInRange(self, expected_min, expected_max, actual): self.assertLessEqual(expected_min, actual) self.assertGreaterEqual(expected_max, actual) def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNClassifier) def testEmbeddingMultiplier(self): embedding_language = feature_column.embedding_column( feature_column.sparse_column_with_hash_bucket('language', 10), dimension=1, initializer=init_ops.constant_initializer(0.1)) classifier = dnn.DNNClassifier( feature_columns=[embedding_language], hidden_units=[3, 3], embedding_lr_multipliers={embedding_language: 0.8}) self.assertEqual({ embedding_language: 0.8 }, classifier.params['embedding_lr_multipliers']) def testInputPartitionSize(self): def _input_fn_float_label(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column(language_column, dimension=1), ] # Set num_ps_replica to be 10 and the min slice size to be extremely small, # so as to ensure that there'll be 10 partititions produced. config = run_config.RunConfig(tf_random_seed=1) config._num_ps_replicas = 10 classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], optimizer='Adagrad', config=config, input_layer_min_slice_size=1) # Ensure the param is passed in. self.assertEqual(1, classifier.params['input_layer_min_slice_size']) # Ensure the partition count is 10. classifier.fit(input_fn=_input_fn_float_label, steps=50) partition_count = 0 for name in classifier.get_variable_names(): if 'language_embedding' in name and 'Adagrad' in name: partition_count += 1 self.assertEqual(10, partition_count) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn classifier.fit(input_fn=input_fn, steps=5) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=5) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def _assertBinaryPredictions(self, expected_len, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, (0, 1)) def _assertClassificationPredictions( self, expected_len, n_classes, predictions): self.assertEqual(expected_len, len(predictions)) for prediction in predictions: self.assertIn(prediction, range(n_classes)) def _assertProbabilities(self, expected_batch_size, expected_n_classes, probabilities): self.assertEqual(expected_batch_size, len(probabilities)) for b in range(expected_batch_size): self.assertEqual(expected_n_classes, len(probabilities[b])) for i in range(expected_n_classes): self._assertInRange(0.0, 1.0, probabilities[b][i]) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ fc_core.embedding_column(language_column, dimension=1), fc_core.numeric_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes(input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_TensorData(self): """Tests binary classification using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_FloatLabel(self): """Tests binary classification with float labels.""" def _input_fn_float_label(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[50], [20], [10]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[0.8], [0.], [0.2]], dtype=dtypes.float32) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=2, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_float_label, steps=50) predict_input_fn = functools.partial(_input_fn_float_label, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertBinaryPredictions(3, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predictions_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, 2, predictions_proba) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=200) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but label shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=200) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(x=train_x, y=train_y, steps=200) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[10, 10], label_keys=label_keys, config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1], [0], [0], [0]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels classifier = dnn.DNNClassifier( n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The logistic prediction should be (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', n_classes=2, feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = dnn.DNNClassifier( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn_train, steps=5) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) def testPredict_AsIterableFalse(self): """Tests predict and predict_prob methods with as_iterable=False.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[10, 10], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predicted_classes = classifier.predict_classes( input_fn=_input_fn, as_iterable=False) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = classifier.predict(input_fn=_input_fn, as_iterable=False) self.assertAllEqual(predicted_classes, predictions) probabilities = classifier.predict_proba( input_fn=_input_fn, as_iterable=False) self._assertProbabilities(3, n_classes, probabilities) def testPredict_AsIterable(self): """Tests predict and predict_prob methods with as_iterable=True.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] n_classes = 3 classifier = dnn.DNNClassifier( n_classes=n_classes, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=300) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self._assertClassificationPredictions(3, n_classes, predicted_classes) predictions = list( classifier.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) predicted_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self._assertProbabilities(3, n_classes, predicted_proba) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. labels = math_ops.to_float(labels) predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) labels = math_ops.cast(labels, predictions.dtype) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = dnn.DNNClassifier( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Test the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=5, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] model_dir = tempfile.mkdtemp() classifier = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions1 = classifier.predict_classes(input_fn=predict_input_fn) del classifier classifier2 = dnn.DNNClassifier( model_dir=model_dir, n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = classifier2.predict_classes(input_fn=predict_input_fn) self.assertEqual(list(predictions1), list(predictions2)) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = dnn.DNNClassifier( n_classes=3, feature_columns=feature_columns, hidden_units=[3, 3], config=config) classifier.fit(input_fn=_input_fn, steps=5) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testExport(self): """Tests export model for servo.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column.sparse_column_with_hash_bucket('language', 100) feature_columns = [ feature_column.real_valued_column('age'), feature_column.embedding_column( language, dimension=1) ] classifier = dnn.DNNClassifier( feature_columns=feature_columns, hidden_units=[3, 3]) classifier.fit(input_fn=input_fn, steps=5) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertIn('dnn/multi_class_head/centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] classifier = dnn.DNNClassifier( n_classes=3, feature_columns=cont_features, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_multiclass_fn classifier.fit(input_fn=input_fn, steps=5) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) scores = classifier.evaluate(input_fn=input_fn, steps=1) self._assertInRange(0.0, 1.0, scores['accuracy']) self.assertIn('loss', scores) class DNNRegressorTest(test.TestCase): def testExperimentIntegration(self): exp = experiment.Experiment( estimator=dnn.DNNRegressor( feature_columns=[ feature_column.real_valued_column( 'feature', dimension=4) ], hidden_units=[3, 3]), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, dnn.DNNRegressor) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) input_fn = test_data.iris_input_logistic_fn regressor.fit(input_fn=input_fn, steps=200) scores = regressor.evaluate(input_fn=input_fn, steps=1) self.assertIn('loss', scores) def testRegression_MatrixData_Labels1D(self): """Same as the last test, but label shape is [100] instead of [100, 1].""" def _input_fn(): iris = test_data.prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) cont_features = [feature_column.real_valued_column('feature', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=cont_features, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = test_data.prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column.real_valued_column('', dimension=4)] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(x=train_x, y=train_y, steps=200) scores = regressor.evaluate(x=train_x, y=train_y, steps=1) self.assertIn('loss', scores) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) language_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( language_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) self.assertIn('loss', scores) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = dnn.DNNRegressor( weight_column_name='w', feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=5) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) self.assertIn('loss', scores) def _assertRegressionOutputs( self, predictions, expected_shape): predictions_nparray = np.array(predictions) self.assertAllEqual(expected_shape, predictions_nparray.shape) self.assertTrue(np.issubdtype(predictions_nparray.dtype, np.floating)) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self._assertRegressionOutputs(predicted_scores, [3]) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1., 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=200) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self._assertRegressionOutputs(predicted_scores, [3]) predictions = list( regressor.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': metric_ops.streaming_mean_squared_error, ('my_metric', 'scores'): _my_metric_op }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case that the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testCustomMetricsWithMetricSpec(self): """Tests custom evaluation metrics that use MetricSpec.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs), } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = dnn.DNNRegressor( feature_columns=[feature_column.real_valued_column('x')], hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(regressor.predict_scores( input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = dnn.DNNRegressor( model_dir=model_dir, feature_columns=feature_columns, hidden_units=[3, 3], config=run_config.RunConfig(tf_random_seed=1)) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], config=config) regressor.fit(input_fn=_input_fn, steps=5) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=True, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertIn('dnn/regression_head/centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([1., 0., 0.2], dtype=dtypes.float32) sparse_column = feature_column.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [ feature_column.embedding_column( sparse_column, dimension=1), feature_column.real_valued_column('age') ] regressor = dnn.DNNRegressor( feature_columns=feature_columns, hidden_units=[3, 3], enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=5) self.assertNotIn('centered_bias_weight', regressor.get_variable_names()) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertIn('loss', scores) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = dnn.DNNRegressor(feature_columns=feature_columns, hidden_units=[3, 3]) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
ibayer/fastFM-fork
fastFM/validation.py
1
10668
# Static versions of non-core sklearn.utils functions. # Placed here since they are subject to change. """Utilities for input validation""" # Authors: Olivier Grisel # Gael Varoquaux # Andreas Mueller # Lars Buitinck # Alexandre Gramfort # Nicolas Tresegnie # License: BSD 3 clause import numbers import warnings import numpy as np import scipy.sparse as sparse from functools import wraps def _check_matrix_is_sparse(func): """ Check that input is a scipy sparse matrix and raise warning otherwise. """ @wraps(func) def wrapper(*args, **kwargs): if 'accept_sparse' in kwargs and not sparse.isspmatrix(args[0]): raise TypeError('A dense matrix was passed in, but sparse' 'data is required.') result = func(*args, **kwargs) return result return wrapper def _ensure_sparse_format(spmatrix, accept_sparse, dtype, order, copy, force_all_finite): """Convert a sparse matrix to a given format. Checks the sparse format of spmatrix and converts if necessary. Parameters ---------- spmatrix : scipy sparse matrix Input to validate and convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats ('csc', 'csr', 'coo', 'dok', 'bsr', 'lil', 'dia'). None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default=none) Data type of result. If None, the dtype of the input is preserved. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. Returns ------- spmatrix_converted : scipy sparse matrix. Matrix that is ensured to have an allowed type. """ if accept_sparse is None: raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') sparse_type = spmatrix.format if dtype is None: dtype = spmatrix.dtype if sparse_type in accept_sparse: # correct type if dtype == spmatrix.dtype: # correct dtype if copy: spmatrix = spmatrix.copy() else: # convert dtype spmatrix = spmatrix.astype(dtype) else: # create new spmatrix = spmatrix.asformat(accept_sparse[0]).astype(dtype) if force_all_finite: if not hasattr(spmatrix, "data"): warnings.warn("Can't check %s sparse matrix for nan or inf." % spmatrix.format) else: assert_all_finite(spmatrix.data) if hasattr(spmatrix, "data"): spmatrix.data = np.array(spmatrix.data, copy=False, order=order) return spmatrix def assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" X = np.asanyarray(X) # First try an O(n) time, O(1) space solution for the common case that # everything is finite; fall back to O(n) space np.isfinite to prevent # false positives from overflow in sum method. if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Input contains NaN, infinity" " or a value too large for %r." % X.dtype) @_check_matrix_is_sparse def check_array(array, accept_sparse=None, dtype="numeric", order=None, copy=False, force_all_finite=True, ensure_2d=True, allow_nd=False, ensure_min_samples=1, ensure_min_features=1): """Input validation on an array, list, sparse matrix or similar. By default, the input is converted to an at least 2nd numpy array. If the dtype of the array is object, attempt converting to float, raising on failure. Parameters ---------- array : object Input object to check / convert. accept_sparse : string, list of string or None (default=None) String[s] representing allowed sparse matrix formats, such as 'csc', 'csr', etc. None means that sparse matrix input will raise an error. If the input is sparse but not in the allowed format, it will be converted to the first listed format. dtype : string, type or None (default="numeric") Data type of result. If None, the dtype of the input is preserved. If "numeric", dtype is preserved unless array.dtype is object. order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion. force_all_finite : boolean (default=True) Whether to raise an error on np.inf and np.nan in X. ensure_2d : boolean (default=True) Whether to make X at least 2d. allow_nd : boolean (default=False) Whether to allow X.ndim > 2. ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check. ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check. Returns ------- X_converted : object The converted and validated X. """ if isinstance(accept_sparse, str): accept_sparse = [accept_sparse] # store whether originally we wanted numeric dtype dtype_numeric = dtype == "numeric" if sparse.issparse(array): if dtype_numeric: dtype = None array = _ensure_sparse_format(array, accept_sparse, dtype, order, copy, force_all_finite) else: if ensure_2d: array = np.atleast_2d(array) if dtype_numeric: if hasattr(array, "dtype") and getattr(array.dtype, "kind", None) == "O": # if input is object, convert to float. dtype = np.float64 else: dtype = None array = np.array(array, dtype=dtype, order=order, copy=copy) # make sure we actually converted to numeric: if dtype_numeric and array.dtype.kind == "O": array = array.astype(np.float64) if not allow_nd and array.ndim >= 3: raise ValueError("Found array with dim %d. Expected <= 2" % array.ndim) if force_all_finite: assert_all_finite(array) shape_repr = _shape_repr(array.shape) if ensure_min_samples > 0: n_samples = _num_samples(array) if n_samples < ensure_min_samples: raise ValueError("Found array with %d sample(s) (shape=%s) while a" " minimum of %d is required." % (n_samples, shape_repr, ensure_min_samples)) if ensure_min_features > 0 and array.ndim == 2: n_features = array.shape[1] if n_features < ensure_min_features: raise ValueError("Found array with %d feature(s) (shape=%s) while" " a minimum of %d is required." % (n_features, shape_repr, ensure_min_features)) return array def check_consistent_length(x1, x2): return x1.shape[0] == x2.shape[0] def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed) def _shape_repr(shape): """Return a platform independent reprensentation of an array shape Under Python 2, the `long` type introduces an 'L' suffix when using the default %r format for tuples of integers (typically used to store the shape of an array). Under Windows 64 bit (and Python 2), the `long` type is used by default in numpy shapes even when the integer dimensions are well below 32 bit. The platform specific type causes string messages or doctests to change from one platform to another which is not desirable. Under Python 3, there is no more `long` type so the `L` suffix is never introduced in string representation. >>> _shape_repr((1, 2)) '(1, 2)' >>> one = 2 ** 64 / 2 ** 64 # force an upcast to `long` under Python 2 >>> _shape_repr((one, 2 * one)) '(1, 2)' >>> _shape_repr((1,)) '(1,)' >>> _shape_repr(()) '()' """ if len(shape) == 0: return "()" joined = ", ".join("%d" % e for e in shape) if len(shape) == 1: # special notation for singleton tuples joined += ',' return "(%s)" % joined def _num_samples(x): """Return number of samples in array-like x.""" if hasattr(x, 'fit'): # Don't get num_samples from an ensembles length! raise TypeError('Expected sequence or array-like, got ' 'estimator %s' % x) if not hasattr(x, '__len__') and not hasattr(x, 'shape'): if hasattr(x, '__array__'): x = np.asarray(x) else: raise TypeError("Expected sequence or array-like, got %s" % type(x)) if hasattr(x, 'shape'): if len(x.shape) == 0: raise TypeError("Singleton array %r cannot be considered" " a valid collection." % x) return x.shape[0] else: return len(x)
bsd-3-clause
Akshay0724/scikit-learn
sklearn/utils/testing.py
29
25405
"""Testing utilities.""" # Copyright (c) 2011, 2012 # Authors: Pietro Berkes, # Andreas Muller # Mathieu Blondel # Olivier Grisel # Arnaud Joly # Denis Engemann # Giorgio Patrini # Thierry Guillemot # License: BSD 3 clause import os import inspect import pkgutil import warnings import sys import struct import scipy as sp import scipy.io from functools import wraps from operator import itemgetter try: # Python 2 from urllib2 import urlopen from urllib2 import HTTPError except ImportError: # Python 3+ from urllib.request import urlopen from urllib.error import HTTPError import tempfile import shutil import os.path as op import atexit import unittest # WindowsError only exist on Windows try: WindowsError except NameError: WindowsError = None import sklearn from sklearn.base import BaseEstimator from sklearn.externals import joblib from nose.tools import raises from nose import with_setup from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_less from numpy.testing import assert_approx_equal import numpy as np from sklearn.base import (ClassifierMixin, RegressorMixin, TransformerMixin, ClusterMixin) from sklearn.cluster import DBSCAN __all__ = ["assert_equal", "assert_not_equal", "assert_raises", "assert_raises_regexp", "raises", "with_setup", "assert_true", "assert_false", "assert_almost_equal", "assert_array_equal", "assert_array_almost_equal", "assert_array_less", "assert_less", "assert_less_equal", "assert_greater", "assert_greater_equal", "assert_approx_equal", "SkipTest"] _dummy = unittest.TestCase('__init__') assert_equal = _dummy.assertEqual assert_not_equal = _dummy.assertNotEqual assert_true = _dummy.assertTrue assert_false = _dummy.assertFalse assert_raises = _dummy.assertRaises SkipTest = unittest.case.SkipTest assert_dict_equal = _dummy.assertDictEqual assert_in = _dummy.assertIn assert_not_in = _dummy.assertNotIn assert_less = _dummy.assertLess assert_greater = _dummy.assertGreater assert_less_equal = _dummy.assertLessEqual assert_greater_equal = _dummy.assertGreaterEqual try: assert_raises_regex = _dummy.assertRaisesRegex except AttributeError: # Python 2.7 assert_raises_regex = _dummy.assertRaisesRegexp # assert_raises_regexp is deprecated in Python 3.4 in favor of # assert_raises_regex but lets keep the backward compat in scikit-learn with # the old name for now assert_raises_regexp = assert_raises_regex def assert_warns(warning_class, func, *args, **kw): """Test that a certain warning occurs. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func` Returns ------- result : the return value of `func` """ # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Trigger a warning. result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = any(warning.category is warning_class for warning in w) if not found: raise AssertionError("%s did not give warning: %s( is %s)" % (func.__name__, warning_class, w)) return result def assert_warns_message(warning_class, message, func, *args, **kw): # very important to avoid uncontrolled state propagation """Test that a certain warning occurs and with a certain message. Parameters ---------- warning_class : the warning class The class to test for, e.g. UserWarning. message : str | callable The entire message or a substring to test for. If callable, it takes a string as argument and will trigger an assertion error if it returns `False`. func : callable Calable object to trigger warnings. *args : the positional arguments to `func`. **kw : the keyword arguments to `func`. Returns ------- result : the return value of `func` """ clean_warning_registry() with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") if hasattr(np, 'VisibleDeprecationWarning'): # Let's not catch the numpy internal DeprecationWarnings warnings.simplefilter('ignore', np.VisibleDeprecationWarning) # Trigger a warning. result = func(*args, **kw) # Verify some things if not len(w) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) found = [issubclass(warning.category, warning_class) for warning in w] if not any(found): raise AssertionError("No warning raised for %s with class " "%s" % (func.__name__, warning_class)) message_found = False # Checks the message of all warnings belong to warning_class for index in [i for i, x in enumerate(found) if x]: # substring will match, the entire message with typo won't msg = w[index].message # For Python 3 compatibility msg = str(msg.args[0] if hasattr(msg, 'args') else msg) if callable(message): # add support for certain tests check_in_message = message else: check_in_message = lambda msg: message in msg if check_in_message(msg): message_found = True break if not message_found: raise AssertionError("Did not receive the message you expected " "('%s') for <%s>, got: '%s'" % (message, func.__name__, msg)) return result # To remove when we support numpy 1.7 def assert_no_warnings(func, *args, **kw): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') result = func(*args, **kw) if hasattr(np, 'VisibleDeprecationWarning'): # Filter out numpy-specific warnings in numpy >= 1.9 w = [e for e in w if e.category is not np.VisibleDeprecationWarning] if len(w) > 0: raise AssertionError("Got warnings when calling %s: [%s]" % (func.__name__, ', '.join(str(warning) for warning in w))) return result def ignore_warnings(obj=None, category=Warning): """Context manager and decorator to ignore warnings. Note. Using this (in both variants) will clear all warnings from all python modules loaded. In case you need to test cross-module-warning-logging this is not your tool of choice. Parameters ---------- category : warning class, defaults to Warning. The category to filter. If Warning, all categories will be muted. Examples -------- >>> with ignore_warnings(): ... warnings.warn('buhuhuhu') >>> def nasty_warn(): ... warnings.warn('buhuhuhu') ... print(42) >>> ignore_warnings(nasty_warn)() 42 """ if callable(obj): return _IgnoreWarnings(category=category)(obj) else: return _IgnoreWarnings(category=category) class _IgnoreWarnings(object): """Improved and simplified Python warnings context manager and decorator. This class allows to ignore the warnings raise by a function. Copied from Python 2.7.5 and modified as required. Parameters ---------- category : tuple of warning class, defaut to Warning The category to filter. By default, all the categories will be muted. """ def __init__(self, category): self._record = True self._module = sys.modules['warnings'] self._entered = False self.log = [] self.category = category def __call__(self, fn): """Decorator to catch and hide warnings without visual nesting.""" @wraps(fn) def wrapper(*args, **kwargs): # very important to avoid uncontrolled state propagation clean_warning_registry() with warnings.catch_warnings(): warnings.simplefilter("ignore", self.category) return fn(*args, **kwargs) return wrapper def __repr__(self): args = [] if self._record: args.append("record=True") if self._module is not sys.modules['warnings']: args.append("module=%r" % self._module) name = type(self).__name__ return "%s(%s)" % (name, ", ".join(args)) def __enter__(self): clean_warning_registry() # be safe and not propagate state + chaos warnings.simplefilter("ignore", self.category) if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning def __exit__(self, *exc_info): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning self.log[:] = [] clean_warning_registry() # be safe and not propagate state + chaos assert_less = _dummy.assertLess assert_greater = _dummy.assertGreater def _assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): actual, desired = np.asanyarray(actual), np.asanyarray(desired) if np.allclose(actual, desired, rtol=rtol, atol=atol): return msg = ('Array not equal to tolerance rtol=%g, atol=%g: ' 'actual %s, desired %s') % (rtol, atol, actual, desired) raise AssertionError(msg) if hasattr(np.testing, 'assert_allclose'): assert_allclose = np.testing.assert_allclose else: assert_allclose = _assert_allclose def assert_raise_message(exceptions, message, function, *args, **kwargs): """Helper function to test error messages in exceptions. Parameters ---------- exceptions : exception or tuple of exception Name of the estimator function : callable Calable object to raise error *args : the positional arguments to `function`. **kw : the keyword arguments to `function` """ try: function(*args, **kwargs) except exceptions as e: error_message = str(e) if message not in error_message: raise AssertionError("Error message does not include the expected" " string: %r. Observed error message: %r" % (message, error_message)) else: # concatenate exception names if isinstance(exceptions, tuple): names = " or ".join(e.__name__ for e in exceptions) else: names = exceptions.__name__ raise AssertionError("%s not raised by %s" % (names, function.__name__)) def fake_mldata(columns_dict, dataname, matfile, ordering=None): """Create a fake mldata data set. Parameters ---------- columns_dict : dict, keys=str, values=ndarray Contains data as columns_dict[column_name] = array of data. dataname : string Name of data set. matfile : string or file object The file name string or the file-like object of the output file. ordering : list, default None List of column_names, determines the ordering in the data set. Notes ----- This function transposes all arrays, while fetch_mldata only transposes 'data', keep that into account in the tests. """ datasets = dict(columns_dict) # transpose all variables for name in datasets: datasets[name] = datasets[name].T if ordering is None: ordering = sorted(list(datasets.keys())) # NOTE: setting up this array is tricky, because of the way Matlab # re-packages 1D arrays datasets['mldata_descr_ordering'] = sp.empty((1, len(ordering)), dtype='object') for i, name in enumerate(ordering): datasets['mldata_descr_ordering'][0, i] = name scipy.io.savemat(matfile, datasets, oned_as='column') class mock_mldata_urlopen(object): def __init__(self, mock_datasets): """Object that mocks the urlopen function to fake requests to mldata. `mock_datasets` is a dictionary of {dataset_name: data_dict}, or {dataset_name: (data_dict, ordering). `data_dict` itself is a dictionary of {column_name: data_array}, and `ordering` is a list of column_names to determine the ordering in the data set (see `fake_mldata` for details). When requesting a dataset with a name that is in mock_datasets, this object creates a fake dataset in a StringIO object and returns it. Otherwise, it raises an HTTPError. """ self.mock_datasets = mock_datasets def __call__(self, urlname): dataset_name = urlname.split('/')[-1] if dataset_name in self.mock_datasets: resource_name = '_' + dataset_name from io import BytesIO matfile = BytesIO() dataset = self.mock_datasets[dataset_name] ordering = None if isinstance(dataset, tuple): dataset, ordering = dataset fake_mldata(dataset, resource_name, matfile, ordering) matfile.seek(0) return matfile else: raise HTTPError(urlname, 404, dataset_name + " is not available", [], None) def install_mldata_mock(mock_datasets): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = mock_mldata_urlopen(mock_datasets) def uninstall_mldata_mock(): # Lazy import to avoid mutually recursive imports from sklearn import datasets datasets.mldata.urlopen = urlopen # Meta estimators need another estimator to be instantiated. META_ESTIMATORS = ["OneVsOneClassifier", "MultiOutputEstimator", "MultiOutputRegressor", "MultiOutputClassifier", "OutputCodeClassifier", "OneVsRestClassifier", "RFE", "RFECV", "BaseEnsemble"] # estimators that there is no way to default-construct sensibly OTHER = ["Pipeline", "FeatureUnion", "GridSearchCV", "RandomizedSearchCV", "SelectFromModel"] # some trange ones DONT_TEST = ['SparseCoder', 'EllipticEnvelope', 'DictVectorizer', 'LabelBinarizer', 'LabelEncoder', 'MultiLabelBinarizer', 'TfidfTransformer', 'TfidfVectorizer', 'IsotonicRegression', 'OneHotEncoder', 'RandomTreesEmbedding', 'FeatureHasher', 'DummyClassifier', 'DummyRegressor', 'TruncatedSVD', 'PolynomialFeatures', 'GaussianRandomProjectionHash', 'HashingVectorizer', 'CheckingClassifier', 'PatchExtractor', 'CountVectorizer', # GradientBoosting base estimators, maybe should # exclude them in another way 'ZeroEstimator', 'ScaledLogOddsEstimator', 'QuantileEstimator', 'MeanEstimator', 'LogOddsEstimator', 'PriorProbabilityEstimator', '_SigmoidCalibration', 'VotingClassifier'] def all_estimators(include_meta_estimators=False, include_other=False, type_filter=None, include_dont_test=False): """Get a list of all estimators from sklearn. This function crawls the module and gets all classes that inherit from BaseEstimator. Classes that are defined in test-modules are not included. By default meta_estimators such as GridSearchCV are also not included. Parameters ---------- include_meta_estimators : boolean, default=False Whether to include meta-estimators that can be constructed using an estimator as their first argument. These are currently BaseEnsemble, OneVsOneClassifier, OutputCodeClassifier, OneVsRestClassifier, RFE, RFECV. include_other : boolean, default=False Wether to include meta-estimators that are somehow special and can not be default-constructed sensibly. These are currently Pipeline, FeatureUnion and GridSearchCV include_dont_test : boolean, default=False Whether to include "special" label estimator or test processors. type_filter : string, list of string, or None, default=None Which kind of estimators should be returned. If None, no filter is applied and all estimators are returned. Possible values are 'classifier', 'regressor', 'cluster' and 'transformer' to get estimators only of these specific types, or a list of these to get the estimators that fit at least one of the types. Returns ------- estimators : list of tuples List of (name, class), where ``name`` is the class name as string and ``class`` is the actuall type of the class. """ def is_abstract(c): if not(hasattr(c, '__abstractmethods__')): return False if not len(c.__abstractmethods__): return False return True all_classes = [] # get parent folder path = sklearn.__path__ for importer, modname, ispkg in pkgutil.walk_packages( path=path, prefix='sklearn.', onerror=lambda x: None): if (".tests." in modname): continue module = __import__(modname, fromlist="dummy") classes = inspect.getmembers(module, inspect.isclass) all_classes.extend(classes) all_classes = set(all_classes) estimators = [c for c in all_classes if (issubclass(c[1], BaseEstimator) and c[0] != 'BaseEstimator')] # get rid of abstract base classes estimators = [c for c in estimators if not is_abstract(c[1])] if not include_dont_test: estimators = [c for c in estimators if not c[0] in DONT_TEST] if not include_other: estimators = [c for c in estimators if not c[0] in OTHER] # possibly get rid of meta estimators if not include_meta_estimators: estimators = [c for c in estimators if not c[0] in META_ESTIMATORS] if type_filter is not None: if not isinstance(type_filter, list): type_filter = [type_filter] else: type_filter = list(type_filter) # copy filtered_estimators = [] filters = {'classifier': ClassifierMixin, 'regressor': RegressorMixin, 'transformer': TransformerMixin, 'cluster': ClusterMixin} for name, mixin in filters.items(): if name in type_filter: type_filter.remove(name) filtered_estimators.extend([est for est in estimators if issubclass(est[1], mixin)]) estimators = filtered_estimators if type_filter: raise ValueError("Parameter type_filter must be 'classifier', " "'regressor', 'transformer', 'cluster' or " "None, got" " %s." % repr(type_filter)) # drop duplicates, sort for reproducibility # itemgetter is used to ensure the sort does not extend to the 2nd item of # the tuple return sorted(set(estimators), key=itemgetter(0)) def set_random_state(estimator, random_state=0): """Set random state of an estimator if it has the `random_state` param. Classes for whom random_state is deprecated are ignored. Currently DBSCAN is one such class. """ if isinstance(estimator, DBSCAN): return if "random_state" in estimator.get_params(): estimator.set_params(random_state=random_state) def if_matplotlib(func): """Test decorator that skips test if matplotlib not installed.""" @wraps(func) def run_test(*args, **kwargs): try: import matplotlib matplotlib.use('Agg', warn=False) # this fails if no $DISPLAY specified import matplotlib.pyplot as plt plt.figure() except ImportError: raise SkipTest('Matplotlib not available.') else: return func(*args, **kwargs) return run_test def skip_if_32bit(func): """Test decorator that skips tests on 32bit platforms.""" @wraps(func) def run_test(*args, **kwargs): bits = 8 * struct.calcsize("P") if bits == 32: raise SkipTest('Test skipped on 32bit platforms.') else: return func(*args, **kwargs) return run_test def if_safe_multiprocessing_with_blas(func): """Decorator for tests involving both BLAS calls and multiprocessing. Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction with some implementation of BLAS (or other libraries that manage an internal posix thread pool) can cause a crash or a freeze of the Python process. In practice all known packaged distributions (from Linux distros or Anaconda) of BLAS under Linux seems to be safe. So we this problem seems to only impact OSX users. This wrapper makes it possible to skip tests that can possibly cause this crash under OS X with. Under Python 3.4+ it is possible to use the `forkserver` start method for multiprocessing to avoid this issue. However it can cause pickling errors on interactively defined functions. It therefore not enabled by default. """ @wraps(func) def run_test(*args, **kwargs): if sys.platform == 'darwin': raise SkipTest( "Possible multi-process bug with some BLAS") return func(*args, **kwargs) return run_test def clean_warning_registry(): """Safe way to reset warnings.""" warnings.resetwarnings() reg = "__warningregistry__" for mod_name, mod in list(sys.modules.items()): if 'six.moves' in mod_name: continue if hasattr(mod, reg): getattr(mod, reg).clear() def check_skip_network(): if int(os.environ.get('SKLEARN_SKIP_NETWORK_TESTS', 0)): raise SkipTest("Text tutorial requires large dataset download") def check_skip_travis(): """Skip test if being run on Travis.""" if os.environ.get('TRAVIS') == "true": raise SkipTest("This test needs to be skipped on Travis") def _delete_folder(folder_path, warn=False): """Utility function to cleanup a temporary folder if still existing. Copy from joblib.pool (for independence). """ try: if os.path.exists(folder_path): # This can fail under windows, # but will succeed when called by atexit shutil.rmtree(folder_path) except WindowsError: if warn: warnings.warn("Could not delete temporary folder %s" % folder_path) class TempMemmap(object): def __init__(self, data, mmap_mode='r'): self.temp_folder = tempfile.mkdtemp(prefix='sklearn_testing_') self.mmap_mode = mmap_mode self.data = data def __enter__(self): fpath = op.join(self.temp_folder, 'data.pkl') joblib.dump(self.data, fpath) data_read_only = joblib.load(fpath, mmap_mode=self.mmap_mode) atexit.register(lambda: _delete_folder(self.temp_folder, warn=True)) return data_read_only def __exit__(self, exc_type, exc_val, exc_tb): _delete_folder(self.temp_folder) with_network = with_setup(check_skip_network) with_travis = with_setup(check_skip_travis) class _named_check(object): """Wraps a check to show a useful description Parameters ---------- check : function Must have ``__name__`` and ``__call__`` arg_text : str A summary of arguments to the check """ # Setting the description on the function itself can give incorrect results # in failing tests def __init__(self, check, arg_text): self.check = check self.description = ("{0[1]}.{0[3]}:{1.__name__}({2})".format( inspect.stack()[1], check, arg_text)) def __call__(self, *args, **kwargs): return self.check(*args, **kwargs)
bsd-3-clause
README.md exists but content is empty. Use the Edit dataset card button to edit it.
Downloads last month
35
Edit dataset card