File size: 2,707 Bytes
fff2423 4b01d0b f3cd12b 4b01d0b f3cd12b 4b01d0b fff2423 882edd3 fff2423 049559c fff2423 c13f51a f3cd12b fff2423 4cf87cc fff2423 5d66ba4 4cf87cc fff2423 4cf87cc fff2423 52706f7 8e87b6a e54d51d c13f51a da1d304 0747b14 c13f51a 8e87b6a 0747b14 da1d304 fff2423 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
import os
import datasets
datasets.logging.set_verbosity_debug()
#datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
A segmentation dataset for [TODO: complete...]
"""
_HOMEPAGE = "https://huggingface.co/datasets/alkzar90/cell_benchmark"
_EXTENSION = [".jpg", ".png"]
_URL_BASE = "https://huggingface.co/datasets/alkzar90/cell_benchmark/resolve/main/data/"
_SPLIT_URLS = {
"train": _URL_BASE + "train.zip",
"val": _URL_BASE + "val.zip",
"test": _URL_BASE + "test.zip",
"masks": _URL_BASE + "masks.zip",
}
class Cellsegmentation(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features({
"image": datasets.Image(),
"masks": datasets.Image(),
"path" : datasets.Value("string"),
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
supervised_keys=("image", "masks"),
homepage=_HOMEPAGE,
citation="",
)
def _split_generators(self, dl_manager):
data_files = dl_manager.download_and_extract(_SPLIT_URLS)
#masks_dir = [os.path.dirname(path) for i, path in enumerate(dl_manager.iter_files([data_files["masks"]])) if i < 1][0]
masks_dir = dl_manager.iter_files([data_files["masks"]])
splits = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"files" : dl_manager.iter_files([data_files["train"]]),
"masks_dir": masks_dir,
"split": "training",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"files" : dl_manager.iter_files([data_files["val"]]),
"masks_dir": masks_dir,
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"files" : dl_manager.iter_files([data_files["test"]]),
"masks_dir": masks_dir,
"split": "test",
}
)
]
return splits
def _generate_examples(self, files, masks_dir, split):
masks_dir = [os.path.dirname(path) for i, path in enumerate(masks_dir) if i < 1][0]
for i, path in enumerate(files):
file_name = "/mask_" + os.path.basename(path).replace("jpg", "png")
yield i, {
"image": path,
#"masks": masks_dir + "/mask_" + file_name.replace("jpg", "png"),
"masks": masks_dir + file_name,
"path": path,
}
|