Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:

Error Downloading ARC-Easy and ARC-Challenge: NonMatchingSplitsSizesError

#6
by ryantwolf - opened

I am trying to download the test splits for both ARC-Easy and ARC-Challenge using the load_dataset method. However, I am running into the following error:

datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=349760, num_examples=1119, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=968760, num_examples=3370, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='test', num_bytes=375511, num_examples=1172, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='test', num_bytes=1033025, num_examples=3548, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='validation', num_bytes=96660, num_examples=299, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='validation', num_bytes=254054, num_examples=869, shard_lengths=None, dataset_name='parquet')}]

This was working fine earlier this month, so I suspect the most recent change introduced this error. Let me know if I can be of any more help.

Hi @Bigwolfden.

I cannot reproduce your issue:

ds = load_dataset("ai2_arc", "ARC-Challenge")
ds
DatasetDict({
    train: Dataset({
        features: ['id', 'question', 'choices', 'answerKey'],
        num_rows: 1119
    })
    test: Dataset({
        features: ['id', 'question', 'choices', 'answerKey'],
        num_rows: 1172
    })
    validation: Dataset({
        features: ['id', 'question', 'choices', 'answerKey'],
        num_rows: 299
    })
})

Maybe you could try to refresh your cache by passing:

ds = load_dataset("ai2_arc", "ARC-Challenge", download_mode="force_redownload")
albertvillanova changed discussion title from Error Downloading ARC-Easy and ARC-Challenge to Error Downloading ARC-Easy and ARC-Challenge: NonMatchingSplitsSizesError

@albertvillanova , I am also seeing the same error. It seems like it is due to the difference in expected and recorded splits

datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=349760, num_examples=1119, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=968760, num_examples=3370, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='test', num_bytes=375511, num_examples=1172, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='test', num_bytes=1033025, num_examples=3548, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='validation', num_bytes=96660, num_examples=299, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='validation', num_bytes=254054, num_examples=869, shard_lengths=None, dataset_name='parquet')}]

I am using datasets version 2.11.0 and I am able to reproduce it even with "force_redownload" option
Is there a way to fall back to pick the older dataset?

same issue, dataset version 2.12.0

@albertvillanova , I am also seeing the same error. It seems like it is due to the difference in expected and recorded splits

datasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=349760, num_examples=1119, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=968760, num_examples=3370, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='test', num_bytes=375511, num_examples=1172, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='test', num_bytes=1033025, num_examples=3548, shard_lengths=None, dataset_name='parquet')}, {'expected': SplitInfo(name='validation', num_bytes=96660, num_examples=299, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='validation', num_bytes=254054, num_examples=869, shard_lengths=None, dataset_name='parquet')}]

I am using datasets version 2.11.0 and I am able to reproduce it even with "force_redownload" option
Is there a way to fall back to pick the older dataset?

Hi @gokulr-cb and @zihengg .

You need to update your datasets library:

pip install -U datasets

Due to security reasons, we are disabling all the datasets containing a Python script.

Sign up or log in to comment