|
--- |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- expert-generated |
|
language: |
|
- en |
|
license: |
|
- apache-2.0 |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- extended|other-MS^2 |
|
- extended|other-Cochrane |
|
task_categories: |
|
- summarization |
|
- text2text-generation |
|
paperswithcode_id: multi-document-summarization |
|
pretty_name: MSLR Shared Task |
|
--- |
|
|
|
This is a copy of the [MS^2](https://huggingface.co/datasets/allenai/mslr2022) dataset, except the input source documents of its `validation` split have been replaced by a __dense__ retriever. The retrieval pipeline used: |
|
|
|
- __query__: The `background` field of each example |
|
- __corpus__: The union of all documents in the `train`, `validation` and `test` splits. A document is the concatenation of the `title` and `abstract`. |
|
- __retriever__: [`facebook/contriever-msmarco`](https://huggingface.co/facebook/contriever-msmarco) via [PyTerrier](https://pyterrier.readthedocs.io/en/latest/) with default settings |
|
- __top-k strategy__: `"max"`, i.e. the number of documents retrieved, `k`, is set as the maximum number of documents seen across examples in this dataset, in this case `k==25` |
|
|
|
Retrieval results on the `train` set: |
|
|
|
| Recall@100 | Rprec | Precision@k | Recall@k | |
|
| ----------- | ----------- | ----------- | ----------- | |
|
| 0.4764 | 0.2395 | 0.1932 | 0.2895 | |
|
|
|
Retrieval results on the `validation` set: |
|
|
|
| Recall@100 | Rprec | Precision@k | Recall@k | |
|
| ----------- | ----------- | ----------- | ----------- | |
|
| 0.4364 | 0.2125 | 0.1823 | 0.2524 | |
|
|
|
Retrieval results on the `test` set: |
|
|
|
| Recall@100 | Rprec | Precision@k | Recall@k | |
|
| ----------- | ----------- | ----------- | ----------- | |
|
| 0.4481 | 0.2224 | 0.1943 | 0.2567 | |