aid
stringlengths 9
15
| mid
stringlengths 7
10
| abstract
stringlengths 78
2.56k
| related_work
stringlengths 92
1.77k
| ref_abstract
dict |
---|---|---|---|---|
math9912167 | 1631980677 | Author(s): Kuperberg, Greg; Thurston, Dylan P. | Abstract: We give a purely topological definition of the perturbative quantum invariants of links and 3-manifolds associated with Chern-Simons field theory. Our definition is as close as possible to one given by Kontsevich. We will also establish some basic properties of these invariants, in particular that they are universally finite type with respect to algebraically split surgery and with respect to Torelli surgery. Torelli surgery is a mutual generalization of blink surgery of Garoufalidis and Levine and clasper surgery of Habiro. | Two other generalizations that can be considered are invariants of graphs in 3-manifolds, and invariants associated to other flat connections @cite_16 . We will analyze these in future work. Among other things, there should be a general relation between flat bundles and links in 3-manifolds on the one hand and finite covers and branched covers on the other hand @cite_26 . | {
"cite_N": [
"@cite_16",
"@cite_26"
],
"mid": [
"2080743555",
"1641082372",
"1990891135",
"2023137590"
],
"abstract": [
"The aim of this paper is to construct new topological invariants of compact oriented 3-manifolds and of framed links in such manifolds. Our invariant of (a link in) a closed oriented 3-manifold is a sequence of complex numbers parametrized by complex roots of 1. For a framed link in S 3 the terms of the sequence are equale to the values of the (suitably parametrized) Jones polynomial of the link in the corresponding roots of 1. In the case of manifolds with boundary our invariant is a (sequence of) finite dimensional complex linear operators. This produces from each root of unity q a 3-dimensional topological quantum field theory",
"Recently, Mullins calculated the Casson-Walker invariant of the 2-fold cyclic branched cover of an oriented link in S^3 in terms of its Jones polynomial and its signature, under the assumption that the 2-fold branched cover is a rational homology 3-sphere. Using elementary principles, we provide a similar calculation for the general case. In addition, we calculate the LMO invariant of the p-fold branched cover of twisted knots in S^3 in terms of the Kontsevich integral of the knot.",
"We describe a correspondence between the Donaldson–Thomas invariants enumerating D0–D6 bound states on a Calabi–Yau 3-fold and certain Gromov–Witten invariants counting rational curves in a family of blowups of weighted projective planes. This is a variation on a correspondence found by Gross–Pandharipande, with D0–D6 bound states replacing representations of generalised Kronecker quivers. We build on a small part of the theories developed by Joyce–Song and Kontsevich–Soibelman for wall-crossing formulae and by Gross–Pandharipande–Siebert for factorisations in the tropical vertex group. Along the way we write down an explicit formula for the BPS state counts which arise up to rank 3 and prove their integrality. We also compare with previous “noncommutative DT invariants” computations in the physics literature.",
"Motivated by S-duality modularity conjectures in string theory, we define new invariants counting a restricted class of two-dimensional torsion sheaves, enumerating pairs (Z H ) in a Calabi–Yau threefold (X ). Here (H ) is a member of a sufficiently positive linear system and (Z ) is a one-dimensional subscheme of it. The associated sheaf is the ideal sheaf of (Z H ), pushed forward to (X ) and considered as a certain Joyce–Song pair in the derived category of (X ). We express these invariants in terms of the MNOP invariants of (X )."
]
} |
cs9910011 | 2168463568 | A statistical model for segmentation and word discovery in child directed speech is presented. An incremental unsupervised learning algorithm to infer word boundaries based on this model is described and results of empirical tests showing that the algorithm is competitive with other models that have been used for similar tasks are also presented. | Model Based Dynamic Programming, hereafter referred to as MBDP-1 @cite_0 , is probably the most recent work that addresses the exact same issue as that considered in this paper. Both the approach presented in this paper and Brent's MBDP-1 are based on explicit probability models. Approaches not based on explicit probability models include those based on information theoretic criteria such as MDL , transitional probability or simple recurrent networks . The maximum likelihood approach due to Olivier:SGL68 is probabilistic in the sense that it is geared towards explicitly calculating the most probable segmentation of each block of input utterances. However, it is not based on a formal statistical model. To avoid needless repetition, we only describe Brent's MBDP-1 below and direct the interested reader at Brent:EPS99 which provides an excellent review of many of the algorithms mentioned above. | {
"cite_N": [
"@cite_0"
],
"mid": [
"2949560198",
"2751901133",
"2109910161",
"2130913800"
],
"abstract": [
"We initiate the probabilistic analysis of linear programming (LP) decoding of low-density parity-check (LDPC) codes. Specifically, we show that for a random LDPC code ensemble, the linear programming decoder of Feldman succeeds in correcting a constant fraction of errors with high probability. The fraction of correctable errors guaranteed by our analysis surpasses previous nonasymptotic results for LDPC codes, and in particular, exceeds the best previous finite-length result on LP decoding by a factor greater than ten. This improvement stems in part from our analysis of probabilistic bit-flipping channels, as opposed to adversarial channels. At the core of our analysis is a novel combinatorial characterization of LP decoding success, based on the notion of a flow on the Tanner graph of the code. An interesting by-product of our analysis is to establish the existence of ldquoprobabilistic expansionrdquo in random bipartite graphs, in which one requires only that almost every (as opposed to every) set of a certain size expands, for sets much larger than in the classical worst case setting.",
"Recent compilers offer a vast number of multilayered optimizations targeting different code segments of an application. Choosing among these optimizations can significantly impact the performance of the code being optimized. The selection of the right set of compiler optimizations for a particular code segment is a very hard problem, but finding the best ordering of these optimizations adds further complexity. Finding the best ordering represents a long standing problem in compilation research, named the phase-ordering problem. The traditional approach of constructing compiler heuristics to solve this problem simply cannot cope with the enormous complexity of choosing the right ordering of optimizations for every code segment in an application. This article proposes an automatic optimization framework we call MiCOMP, which Mi tigates the Com piler P hase-ordering problem. We perform phase ordering of the optimizations in LLVM’s highest optimization level using optimization sub-sequences and machine learning. The idea is to cluster the optimization passes of LLVM’s O3 setting into different clusters to predict the speedup of a complete sequence of all the optimization clusters instead of having to deal with the ordering of more than 60 different individual optimizations. The predictive model uses (1) dynamic features, (2) an encoded version of the compiler sequence, and (3) an exploration heuristic to tackle the problem. Experimental results using the LLVM compiler framework and the Cbench suite show the effectiveness of the proposed clustering and encoding techniques to application-based reordering of passes, while using a number of predictive models. We perform statistical analysis on the results and compare against (1) random iterative compilation, (2) standard optimization levels, and (3) two recent prediction approaches. We show that MiCOMP’s iterative compilation using its sub-sequences can reach an average performance speedup of 1.31 (up to 1.51). Additionally, we demonstrate that MiCOMP’s prediction model outperforms the -O1, -O2, and -O3 optimization levels within using just a few predictions and reduces the prediction error rate down to only 5 . Overall, it achieves 90 of the available speedup by exploring less than 0.001 of the optimization space.",
"Learning, planning, and representing knowledge at multiple levels of temporal ab- straction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforce- ment learning and Markov decision processes (MDPs). We extend the usual notion of action in this framework to include options—closed-loop policies for taking ac- tion over a period of time. Examples of options include picking up an object, going to lunch, and traveling to a distant city, as well as primitive actions such as mus- cle twitches and joint torques. Overall, we show that options enable temporally abstract knowledge and action to be included in the reinforcement learning frame- work in a natural and general way. In particular, we show that options may be used interchangeably with primitive actions in planning methods such as dynamic pro- gramming and in learning methods such as Q-learning. Formally, a set of options defined over an MDP constitutes a semi-Markov decision process (SMDP), and the theory of SMDPs provides the foundation for the theory of options. However, the most interesting issues concern the interplay between the underlying MDP and the SMDP and are thus beyond SMDP theory. We present results for three such cases: 1) we show that the results of planning with options can be used during execution to interrupt options and thereby perform even better than planned, 2) we introduce new intra-option methods that are able to learn about an option from fragments of its execution, and 3) we propose a notion of subgoal that can be used to improve the options themselves. All of these results have precursors in the existing literature; the contribution of this paper is to establish them in a simpler and more general setting with fewer changes to the existing reinforcement learning framework. In particular, we show that these results can be obtained without committing to (or ruling out) any particular approach to state abstraction, hierarchy, function approximation, or the macro-utility problem.",
"We present a data-driven, probabilistic trajectory optimization framework for systems with unknown dynamics, called Probabilistic Differential Dynamic Programming (PDDP). PDDP takes into account uncertainty explicitly for dynamics models using Gaussian processes (GPs). Based on the second-order local approximation of the value function, PDDP performs Dynamic Programming around a nominal trajectory in Gaussian belief spaces. Different from typical gradient-based policy search methods, PDDP does not require a policy parameterization and learns a locally optimal, time-varying control policy. We demonstrate the effectiveness and efficiency of the proposed algorithm using two nontrivial tasks. Compared with the classical DDP and a state-of-the-art GP-based policy search method, PDDP offers a superior combination of data-efficiency, learning speed, and applicability."
]
} |
cs9911003 | 2950670108 | We solve the subgraph isomorphism problem in planar graphs in linear time, for any pattern of constant size. Our results are based on a technique of partitioning the planar graph into pieces of small tree-width, and applying dynamic programming within each piece. The same methods can be used to solve other planar graph problems including connectivity, diameter, girth, induced subgraph isomorphism, and shortest paths. | Recently we were able to characterize the graphs that can occur at most @math times as a subgraph isomorph in an @math -vertex planar graph: they are exactly the 3-connected planar graphs @cite_41 . However our proof does not lead to an efficient algorithm for 3-connected planar subgraph isomorphism. In this paper we use different techniques which do not depend on high-order connectivity. | {
"cite_N": [
"@cite_41"
],
"mid": [
"1799262171",
"1960457407",
"2795050613",
"2074992286"
],
"abstract": [
"Given two graphs @math and @math , the Subgraph Isomorphism problem asks if @math is isomorphic to a subgraph of @math . While NP-hard in general, algorithms exist for various parameterized versions of the problem: for example, the problem can be solved (1) in time @math using the color-coding technique of Alon, Yuster, and Zwick; (2) in time @math using Courcelle's Theorem; (3) in time @math using a result on first-order model checking by Frick and Grohe; or (4) in time @math for connected @math using the algorithm of Matou s ek and Thomas. Already this small sample of results shows that the way an algorithm can depend on the parameters is highly nontrivial and subtle. We develop a framework involving 10 relevant parameters for each of @math and @math (such as treewidth, pathwidth, genus, maximum degree, number of vertices, number of components, etc.), and ask if an algorithm with running time [ f_1(p_1,p_2,..., p_ ) n^ f_2(p_ +1 ,..., p_k) ] exist, where each of @math is one of the 10 parameters depending only on @math or @math . We show that all the questions arising in this framework are answered by a set of 11 maximal positive results (algorithms) and a set of 17 maximal negative results (hardness proofs); some of these results already appear in the literature, while others are new in this paper. On the algorithmic side, our study reveals for example that an unexpected combination of bounded degree, genus, and feedback vertex set number of @math gives rise to a highly nontrivial algorithm for Subgraph Isomorphism. On the hardness side, we present W[1]-hardness proofs under extremely restricted conditions, such as when @math is a bounded-degree tree of constant pathwidth and @math is a planar graph of bounded pathwidth.",
"The complexity of the subgraph isomorphism problem where the pattern graph is of fixed size is well known to depend on the topology of the pattern graph. For instance, the larger the maximum independent set of the pattern graph is the more efficient algorithms are known. The situation seems to be substantially different in the case of induced subgraph isomorphism for pattern graphs of fixed size. We present two results which provide evidence that no topology of an induced subgraph of fixed size can be easier to detect or count than an independent set of related size. We show that: Any fixed pattern graph that has a maximum independent set of size k that is disjoint from other maximum independent sets is not easier to detect as an induced subgraph than an independent set of size k. It follows in particular that an induced path on k vertices is not easier to detect than an independent set on ⌈k 2 ⌉ vertices, and that an induced even cycle on k vertices is not easier to detect than an independent set on k 2 vertices. In view of linear time upper bounds on induced paths of length three and four, our lower bound is tight. Similar corollaries hold for the detection of induced complete bipartite graphs and induced complete split graphs. For an arbitrary pattern graph H on k vertices with no isolated vertices, there is a simple subdivision of H, resulting from splitting each edge into a path of length four and attaching a distinct path of length three at each vertex of degree one, that is not easier to detect or count than an independent set on k vertices, respectively. Finally, we show that the so called diamond, paw and C 4 are not easier to detect as induced subgraphs than an independent set on three vertices.",
"The subgraph isomorphism problem involves deciding whether a copy of a pattern graph occurs inside a larger target graph. The non-induced version allows extra edges in the target, whilst the induced version does not. Although both variants are NP-complete, algorithms inspired by constraint programming can operate comfortably on many real-world problem instances with thousands of vertices. However, they cannot handle arbitrary instances of this size. We show how to generate \" really hard \" random instances for subgraph isomorphism problems, which are computationally challenging with a couple of hundred vertices in the target, and only twenty pattern vertices. For the non-induced version of the problem, these instances lie on a satisfiable unsatisfiable phase transition, whose location we can predict; for the induced variant, much richer behaviour is observed, and constrained-ness gives a better measure of difficulty than does proximity to a phase transition. These results have practical consequences: we explain why the widely researched \" filter verify \" indexing technique used in graph databases is founded upon a misunderstanding of the empirical hardness of NP-complete problems, and cannot be beneficial when paired with any reasonable subgraph isomorphism algorithm.",
"It is well known that any planar graph contains at most O(n) complete subgraphs. We extend this to an exact characterization: G occurs O(n) times as a subgraph of any planar graph, if and only if G is three-connected. We generalize these results to similarly characterize certain other minor-closed families of graphs; in particular, G occurs O(n) times as a subgraph of the Kb,c-free graphs, b ≥ c and c ≤ 4, iff G is c-connected. Our results use a simple Ramsey-theoretic lemma that may be of independent interest. © 1993 John Wiley & Sons, Inc."
]
} |
hep-th9908200 | 2160091034 | Daviau showed the equivalence of matrix Dirac theory, formulated within a spinor bundle (S_x C _x^4 ), to a Clifford algebraic formulation within space Clifford algebra (C ( R ^3 , ) M _ 2 ( C ) P ) Pauli algebra (matrices) ≃ ℍ ⨁ ℍ ≃ biquaternions. We will show, that Daviau's map θ: ( : C ^4 M _ 2 ( C ) ) is an isomorphism. It is shown that Hestenes' and Parra's formulations are equivalent to Daviau's Clifford algebra formulation, which uses outer automorphisms. The connection between different formulations is quite remarkable, since it connects the left and right action on the Pauli algebra itself viewed as a bi-module with the left (resp. right) action of the enveloping algebra (P^ P P^T on P ). The isomorphism established in this article and given by Daviau's map does clearly show that right and left actions are of similar type. This should be compared with attempts of Hestenes, Daviau, and others to interprete the right action as the iso-spin freedom. | A further genuine and important approach to the spinor-tensor transition was developed starting probably with Crawford by P. Lounesto, @cite_6 and references there. He investigated the question, how a spinor field can be reconstructed from known tensor densities. The major characterization is derived, using Fierz-Kofink identities, from elements called Boomerangs --because they are able to come back to the spinorial picture. Lounesto's result is a characterization of spinors based on multi-vector relations which unveils a new unknown type of spinor. | {
"cite_N": [
"@cite_6"
],
"mid": [
"2198155329",
"2022437913",
"2073656615",
"1009009209"
],
"abstract": [
"Patch-based low-rank models have shown effective in exploiting spatial redundancy of natural images especially for the application of image denoising. However, two-dimensional low-rank model can not fully exploit the spatio-temporal correlation in larger data sets such as multispectral images and 3D MRIs. In this work, we propose a novel low-rank tensor approximation framework with Laplacian Scale Mixture (LSM) modeling for multi-frame image denoising. First, similar 3D patches are grouped to form a tensor of d-order and high-order Singular Value Decomposition (HOSVD) is applied to the grouped tensor. Then the task of multiframe image denoising is formulated as a Maximum A Posterior (MAP) estimation problem with the LSM prior for tensor coefficients. Both unknown sparse coefficients and hidden LSM parameters can be efficiently estimated by the method of alternating optimization. Specifically, we have derived closed-form solutions for both subproblems. Experimental results on spectral and dynamic MRI images show that the proposed algorithm can better preserve the sharpness of important image structures and outperform several existing state-of-the-art multiframe denoising methods (e.g., BM4D and tensor dictionary learning).",
"The symmetric tensor spherical harmonics (STSH’s) on the N‐sphere (SN), which are defined as the totally symmetric, traceless, and divergence‐free tensor eigenfunctions of the Laplace–Beltrami (LB) operator on SN, are studied. Specifically, their construction is shown recursively starting from the lower‐dimensional ones. The symmetric traceless tensors induced by STSH’s are introduced. These play a crucial role in the recursive construction of STSH’s. The normalization factors for STSH’s are determined by using their transformation properties under SO(N+1). Then the symmetric, traceless, and divergence‐free tensor eigenfunctions of the LB operator in the N‐dimensional de Sitter space‐time which are obtained by the analytic continuation of the STSH’s on SN are studied. Specifically, the allowed eigenvalues of the LB operator under the restriction of unitarity are determined. Our analysis gives a group‐theoretical explanation of the forbidden mass range observed earlier for the spin‐2 field theory in de Sit...",
"In the present paper we analyze a class of tensor-structured preconditioners for the multidimensional second-order elliptic operators in ℝ d , d≥2. For equations in a bounded domain, the construction is based on the rank-R tensor-product approximation of the elliptic resolvent ℬ R ≈(ℒ−λ I)−1, where ℒ is the sum of univariate elliptic operators. We prove the explicit estimate on the tensor rank R that ensures the spectral equivalence. For equations in an unbounded domain, one can utilize the tensor-structured approximation of Green’s kernel for the shifted Laplacian in ℝ d , which is well developed in the case of nonoscillatory potentials. For the oscillating kernels e −i κ‖x‖ ‖x‖, x∈ℝ d , κ∈ℝ+, we give constructive proof of the rank-O(κ) separable approximation. This leads to the tensor representation for the discretized 3D Helmholtz kernel on an n×n×n grid that requires only O(κ |log e|2 n) reals for storage. Such representations can be applied to both the 3D volume and boundary calculations with sublinear cost O(n 2), even in the case κ=O(n).",
"Abstract After a very brief recollection of how my scientific collaboration with Ugo started, in this talk I will present some recent results obtained with localization: the deformed gauge theory partition function Z ( τ → | q ) and the expectation value of circular Wilson loops W on a squashed four-sphere will be computed. The partition function is deformed by turning on τ J tr Φ J interactions with Φ the N = 2 superfield. For the N = 4 theory SUSY gauge theory exact formulae for Z and W in terms of an underlying U ( N ) interacting matrix model can be derived thus replacing the free Gaussian model describing the undeformed N = 4 theory. These results will be then compared with those obtained with the dual CFT according to the AGT correspondence. The interactions introduced previously are in fact related to the insertions of commuting integrals of motion in the four-point CFT correlator and the chiral correlators are expressed as τ -derivatives of the gauge theory partition function on a finite Ω -background."
]
} |
cs9903014 | 1612660921 | We present an open architecture for just-in-time code generation and dynamic code optimization that is flexible, customizable, and extensible. While previous research has primarily investigated functional aspects of such a system, architectural aspects have so far remained unexplored. In this paper, we argue that these properties are important to generate optimal code for a variety of hardware architectures and different processor generations within processor families. These properties are also important to make system-level code generation useful in practice. | Pioneering research in dynamic runtime optimization was done by Hansen @cite_8 who first described a fully automated system for runtime code optimization. His system was similar in structure to our system---it was composed of a loader, a profiler, and an optimizer---but used profiling data only to decide when to optimize and what to optimize, not how to optimize. Also, his system interpreted code prior to optimization, since load time code generation was too memory and time consuming at the time. | {
"cite_N": [
"@cite_8"
],
"mid": [
"2165006697",
"2171438172",
"2116210226",
"2093922742"
],
"abstract": [
"Optimizing programs at run-time provides opportunities to apply aggressive optimizations to programs based on information that was not available at compile time. At run time, programs can be adapted to better exploit architectural features, optimize the use of dynamic libraries, and simplify code based on run-time constants. Our profiling system provides a framework for collecting information required for performing run-time optimization. We sample the performance hardware registers available on an Itanium processor, and select a set of code that is likely to lead to important performance-events. We gather distribution information about the performance-events we wish to monitor, and test our traces by estimating the ability for dynamic patching of a program to execute run-time generated traces. Our results show that we are able to capture 58 of execution time across various SPEC2000 integer benchmarks using our profile and patching techniques on a relatively small number of frequently executed execution paths. Our profiling and detection system overhead increases execution time by only 2-4 .",
"Traditional query optimizers assume accurate knowledge of run-time parameters such as selectivities and resource availability during plan optimization, i.e., at compile time. In reality, however, this assumption is often not justified. Therefore, the “static” plans produced by traditional optimizers may not be optimal for many of their actual run-time invocations. Instead, we propose a novel optimization model that assigns the bulk of the optimization effort to compile-time and delays carefully selected optimization decisions until run-time. Our previous work defined the run-time primitives, “dynamic plans” using “choose-plan” operators, for executing such delayed decisions, but did not solve the problem of constructing dynamic plans at compile-time. The present paper introduces techniques that solve this problem. Experience with a working prototype optimizer demonstrates (i) that the additional optimization and start-up overhead of dynamic plans compared to static plans is dominated by their advantage at run-time, (ii) that dynamic plans are as robust as the “brute-force” remedy of run-time optimization, i.e., dynamic plans maintain their optimality even if parameters change between compile-time and run-time, and (iii) that the start-up overhead of dynamic plans is significantly less than the time required for complete optimization at run-time. In other words, our proposed techniques are superior to both techniques considered to-date, namely compile-time optimization into a single static plan as well as run-time optimization. Finally, we believe that the concepts and technology described can be transferred to commercial query optimizers in order to improve the performance of embedded queries with host variables in the query predicate and to adapt to run-time system loads unpredictable at compile time.",
"Compile-time optimization is often limited by a lack of target machine and input data set knowledge. Without this information, compilers may be forced to make conservative assumptions to preserve correctness and to avoid performance degradation. In order to cope with this lack of information at compile-time, adaptive and dynamic systems can be used to perform optimization at runtime when complete knowledge of input and machine parameters is available. This paper presents a compiler-supported high-level adaptive optimization system. Users describe, in a domain specific language, optimizations performed by stand-alone optimization tools and backend compiler flags, as well as heuristics for applying these optimizations dynamically at runtime. The ADAPT compiler reads these descriptions and generates application-specific runtime systems to apply the heuristics. To facilitate the usage of existing tools and compilers, overheads are minimized by decoupling optimization from execution. Our system, ADAPT, supports a range of paradigms proposed recently, including dynamic compilation, parameterization and runtime sampling. We demonstrate our system by applying several optimization techniques to a suite of benchmarks on two target machines. ADAPT is shown to consistently outperform statically generated executables, improving performance by as much as 70 .",
"Many profilers based on bytecode instrumentation yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations such as stack allocation and method inlining, or due to the inserted code disrupting such optimizations. To avoid such perturbations, we present a novel technique to make any profiler implemented at the bytecode level aware of optimizations performed by the dynamic compiler. We implement our approach in a state-of-the-art Java virtual machine and demonstrate its significance with concrete profilers. We quantify the impact of escape analysis on allocation profiling, object life-time analysis, and the impact of method inlining on callsite profiling. We illustrate how our approach enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations."
]
} |
cs9903014 | 1612660921 | We present an open architecture for just-in-time code generation and dynamic code optimization that is flexible, customizable, and extensible. While previous research has primarily investigated functional aspects of such a system, architectural aspects have so far remained unexplored. In this paper, we argue that these properties are important to generate optimal code for a variety of hardware architectures and different processor generations within processor families. These properties are also important to make system-level code generation useful in practice. | Hansen's work was followed by several other projects that have investigated the benefits of runtime optimization: the Smalltalk @cite_33 and SELF @cite_0 systems that focused on the benefits of dynamic optimization in an object-oriented environment; Morph'', a project developed at Harvard University @cite_16 ; and the system described by the authors of this paper @cite_4 @cite_30 . Other projects have experimented with optimization at link time rather than at runtime @cite_18 . At link time, many of the problems described in this paper are non-existent. Among them the decision when to optimize, what to optimize, and how to replace code. However, there is also a price to pay, namely that it cannot be performed in the presence of dynamic loading. | {
"cite_N": [
"@cite_30",
"@cite_18",
"@cite_4",
"@cite_33",
"@cite_0",
"@cite_16"
],
"mid": [
"2171438172",
"2788459922",
"2165006697",
"2116210226"
],
"abstract": [
"Traditional query optimizers assume accurate knowledge of run-time parameters such as selectivities and resource availability during plan optimization, i.e., at compile time. In reality, however, this assumption is often not justified. Therefore, the “static” plans produced by traditional optimizers may not be optimal for many of their actual run-time invocations. Instead, we propose a novel optimization model that assigns the bulk of the optimization effort to compile-time and delays carefully selected optimization decisions until run-time. Our previous work defined the run-time primitives, “dynamic plans” using “choose-plan” operators, for executing such delayed decisions, but did not solve the problem of constructing dynamic plans at compile-time. The present paper introduces techniques that solve this problem. Experience with a working prototype optimizer demonstrates (i) that the additional optimization and start-up overhead of dynamic plans compared to static plans is dominated by their advantage at run-time, (ii) that dynamic plans are as robust as the “brute-force” remedy of run-time optimization, i.e., dynamic plans maintain their optimality even if parameters change between compile-time and run-time, and (iii) that the start-up overhead of dynamic plans is significantly less than the time required for complete optimization at run-time. In other words, our proposed techniques are superior to both techniques considered to-date, namely compile-time optimization into a single static plan as well as run-time optimization. Finally, we believe that the concepts and technology described can be transferred to commercial query optimizers in order to improve the performance of embedded queries with host variables in the query predicate and to adapt to run-time system loads unpredictable at compile time.",
"This paper presents the interesting observation that by performing fewer of the optimizations available in a standard compiler optimization level such as -02, while preserving their original ordering, significant savings can be achieved in both execution time and energy consumption. This observation has been validated on two embedded processors, namely the ARM Cortex-M0 and the ARM Cortex-M3, using two different versions of the LLVM compilation framework; v3.8 and v5.0. Experimental evaluation with 71 embedded benchmarks demonstrated performance gains for at least half of the benchmarks for both processors. An average execution time reduction of 2.4 and 5.3 was achieved across all the benchmarks for the Cortex-M0 and Cortex-M3 processors, respectively, with execution time improvements ranging from 1 up to 90 over the -02. The savings that can be achieved are in the same range as what can be achieved by the state-of-the-art compilation approaches that use iterative compilation or machine learning to select flags or to determine phase orderings that result in more efficient code. In contrast to these time consuming and expensive to apply techniques, our approach only needs to test a limited number of optimization configurations, less than 64, to obtain similar or even better savings. Furthermore, our approach can support multi-criteria optimization as it targets execution time, energy consumption and code size at the same time.",
"Optimizing programs at run-time provides opportunities to apply aggressive optimizations to programs based on information that was not available at compile time. At run time, programs can be adapted to better exploit architectural features, optimize the use of dynamic libraries, and simplify code based on run-time constants. Our profiling system provides a framework for collecting information required for performing run-time optimization. We sample the performance hardware registers available on an Itanium processor, and select a set of code that is likely to lead to important performance-events. We gather distribution information about the performance-events we wish to monitor, and test our traces by estimating the ability for dynamic patching of a program to execute run-time generated traces. Our results show that we are able to capture 58 of execution time across various SPEC2000 integer benchmarks using our profile and patching techniques on a relatively small number of frequently executed execution paths. Our profiling and detection system overhead increases execution time by only 2-4 .",
"Compile-time optimization is often limited by a lack of target machine and input data set knowledge. Without this information, compilers may be forced to make conservative assumptions to preserve correctness and to avoid performance degradation. In order to cope with this lack of information at compile-time, adaptive and dynamic systems can be used to perform optimization at runtime when complete knowledge of input and machine parameters is available. This paper presents a compiler-supported high-level adaptive optimization system. Users describe, in a domain specific language, optimizations performed by stand-alone optimization tools and backend compiler flags, as well as heuristics for applying these optimizations dynamically at runtime. The ADAPT compiler reads these descriptions and generates application-specific runtime systems to apply the heuristics. To facilitate the usage of existing tools and compilers, overheads are minimized by decoupling optimization from execution. Our system, ADAPT, supports a range of paradigms proposed recently, including dynamic compilation, parameterization and runtime sampling. We demonstrate our system by applying several optimization techniques to a suite of benchmarks on two target machines. ADAPT is shown to consistently outperform statically generated executables, improving performance by as much as 70 ."
]
} |
cs9903014 | 1612660921 | We present an open architecture for just-in-time code generation and dynamic code optimization that is flexible, customizable, and extensible. While previous research has primarily investigated functional aspects of such a system, architectural aspects have so far remained unexplored. In this paper, we argue that these properties are important to generate optimal code for a variety of hardware architectures and different processor generations within processor families. These properties are also important to make system-level code generation useful in practice. | Common to the above-mentioned work is that the main focus has always been on functional aspects, that is how to profile and which optimizations to perform. Related to this is research on how to boost application performance by combining profiling data and code optimizations at compile time (not at runtime), including work on method dispatch optimizations for object-oriented programming languages @cite_22 @cite_35 , profile-guided intermodular optimizations @cite_3 @cite_26 , code positioning techniques @cite_13 @cite_25 , and profile-guided data cache locality optimizations @cite_29 @cite_10 @cite_12 . | {
"cite_N": [
"@cite_35",
"@cite_26",
"@cite_22",
"@cite_10",
"@cite_29",
"@cite_3",
"@cite_13",
"@cite_25",
"@cite_12"
],
"mid": [
"2165006697",
"2093922742",
"2130570838",
"2115971347"
],
"abstract": [
"Optimizing programs at run-time provides opportunities to apply aggressive optimizations to programs based on information that was not available at compile time. At run time, programs can be adapted to better exploit architectural features, optimize the use of dynamic libraries, and simplify code based on run-time constants. Our profiling system provides a framework for collecting information required for performing run-time optimization. We sample the performance hardware registers available on an Itanium processor, and select a set of code that is likely to lead to important performance-events. We gather distribution information about the performance-events we wish to monitor, and test our traces by estimating the ability for dynamic patching of a program to execute run-time generated traces. Our results show that we are able to capture 58 of execution time across various SPEC2000 integer benchmarks using our profile and patching techniques on a relatively small number of frequently executed execution paths. Our profiling and detection system overhead increases execution time by only 2-4 .",
"Many profilers based on bytecode instrumentation yield wrong results in the presence of an optimizing dynamic compiler, either due to not being aware of optimizations such as stack allocation and method inlining, or due to the inserted code disrupting such optimizations. To avoid such perturbations, we present a novel technique to make any profiler implemented at the bytecode level aware of optimizations performed by the dynamic compiler. We implement our approach in a state-of-the-art Java virtual machine and demonstrate its significance with concrete profilers. We quantify the impact of escape analysis on allocation profiling, object life-time analysis, and the impact of method inlining on callsite profiling. We illustrate how our approach enables new kinds of profilers, such as a profiler for non-inlined callsites, and a testing framework for locating performance bugs in dynamic compiler implementations.",
"Commercial applications such as databases and Web servers constitute the most important market segment for high-performance servers. Among these applications, on-line transaction processing (OLTP) workloads provide a challenging set of requirements for system designs since they often exhibit inefficient executions dominated by a large memory stall component. This behavior arises from large instruction and data footprints and high communication miss rates. A number of recent studies have characterized the behavior of commercial workloads and proposed architectural features to improve their performance. However, there has been little research on the impact of software and compiler-level optimizations for improving the behavior of such workloads. This paper provides a detailed study of profile-driven compiler optimizations to improve the code layout in commercial workloads with large instruction footprints. Our compiler algorithms are implemented in the context of Spike, an executable optimizer for the Alpha architecture. Our experiments use the Oracle commercial database engine running an OLTP workload, with results generated using both full system simulations and actual runs on Alpha multiprocessors. Our results show that code layout optimizations can provide a major improvement in the instruction cache behavior, providing a 55 to 65 reduction in the application misses for 64-128K caches. Our analysis shows that this improvement primarily arises from longer sequences of consecutively executed instructions and more reuse of cache lines before they are replaced. We also show that the majority of application instruction misses are caused by self-interference. However, code layout optimizations significantly reduce the amount of self-interference, thus elevating the relative importance of interference with operating system code. Finally, we show that better code layout can also provide substantial improvements in the behavior of other memory system components such as the instruction TLB and the unified second-level cache. The overall performance impact of our code layout optimizations is an improvement of 1.33 times in the execution time of our workload.",
"Program profiles identify frequently executed portions of a program, which are the places at which optimizations offer programmers and compilers the greatest benefit. Compilers, however, infrequently exploit program profiles, because, profiling a program requires a programmer to instrument and run the program. An attractive alternative is for the complier to statically estimate program profiles. This paper presents several new techniques for static branch prediction and profiling. The first technique combines multiple predictions of a branch's outcome into a prediction of the probability that the branch is taken. Another technique uses these predictions to estimate the relative execution frequency (i.e., profile) of basic blocks and control-flow edges within a procedure. A third algorithm uses local frequency estimates to predict the global frequency of calls, procedure invocations, and basic block and control-flow edge executions. Experiments on the SPEC92 integer benchmarks and Unix applications show that the frequently executed blocks, edges, and functions identified by our techniques closely match those in a dynamic profile."
]
} |
cs9903018 | 1593496962 | Scripting languages are becoming more and more important as a tool for software development, as they provide great flexibility for rapid prototyping and for configuring componentware applications. In this paper we present LuaJava, a scripting tool for Java. LuaJava adopts Lua, a dynamically typed interpreted language, as its script language. Great emphasis is given to the transparency of the integration between the two languages, so that objects from one language can be used inside the other like native objects. The final result of this integration is a tool that allows the construction of configurable Java applications, using off-the-shelf components, in a high abstraction level. | For Tcl @cite_13 two integration solutions exist: the TclBlend binding @cite_11 and the Jacl implementation @cite_14 . TclBlend is a binding between Java and Tcl, which, as LuaJava, allows Java objects to be manipulated by scripts. Some operations, such as access to fields and static method invocations, require specific functions. Calls to instance methods are handled naturally by Tcl commands. | {
"cite_N": [
"@cite_14",
"@cite_13",
"@cite_11"
],
"mid": [
"2162914120",
"2118300983",
"2147650421",
"1984632619"
],
"abstract": [
"This paper describes the motivations and strategies behind our group’s efforts to integrate the Tcl and Java programming languages. From the Java perspective, we wish to create a powerful scripting solution for Java applications and operating environments. From the Tcl perspective, we want to allow for cross-platform Tcl extensions and leverage the useful features and user community Java has to offer. We are specifically focusing on Java tasks like Java Bean manipulation, where a scripting solution is preferable to using straight Java code. Our goal is to create a synergy between Tcl and Java, similar to that of Visual Basic and Visual C++ on the Microsoft desktop, which makes both languages more powerful together than they are individually.",
"We describe JastAdd, a Java-based system for compiler construction. JastAdd is centered around an object-oriented representation of the abstract syntax tree where reference variables can be used to link together different parts of the tree. JastAdd supports the combination of declarative techniques (using Reference Attributed Grammars) and imperative techniques (using ordinary Java code) in implementing the compiler. The behavior can be modularized into different aspects, e.g. name analysis, type checking, code generation, etc., that are woven together into classes using aspect-oriented programming techniques, providing a safer and more powerful alternative to the Visitor pattern. The JastAdd system is independent of the underlying parsing technology and supports any noncircular dependencies between computations, thereby allowing general multi-pass compilation. The attribute evaluator (optimal recursive evaluation) is implemented very conveniently using Java classes, interfaces, and virtual methods.",
"We present the first verification of full functional correctness for a range of linked data structure implementations, including mutable lists, trees, graphs, and hash tables. Specifically, we present the use of the Jahob verification system to verify formal specifications, written in classical higher-order logic, that completely capture the desired behavior of the Java data structure implementations (with the exception of properties involving execution time and or memory consumption). Given that the desired correctness properties include intractable constructs such as quantifiers, transitive closure, and lambda abstraction, it is a challenge to successfully prove the generated verification conditions. Our Jahob verification system uses integrated reasoning to split each verification condition into a conjunction of simpler subformulas, then apply a diverse collection of specialized decision procedures, first-order theorem provers, and, in the worst case, interactive theorem provers to prove each subformula. Techniques such as replacing complex subformulas with stronger but simpler alternatives, exploiting structure inherently present in the verification conditions, and, when necessary, inserting verified lemmas and proof hints into the imperative source code make it possible to seamlessly integrate all of the specialized decision procedures and theorem provers into a single powerful integrated reasoning system. By appropriately applying multiple proof techniques to discharge different subformulas, this reasoning system can effectively prove the complex and challenging verification conditions that arise in this context.",
"The integration of database and programming languages is dif- ficult due to the dierent data models and type systems prevalent in each field. We present a solution where the developer may express queries en- compassing program and database data. The notation used for queries is based on comprehensions, a declarative style that does not impose any specific execution strategy. In our approach, the type safety of language- integrated queries is analyzed at compile-time, followed by a translation that optimizes for database evaluation. We show the translation total and semantics preserving, and introduce a language-independent classifi- cation. According to this classification, our approach compares favorably with Microsoft's LINQ, today's best-known representative. We provide an implementation in terms of Scala compiler plugins, accepting two nota- tions for queries: LINQ and the native Scala syntax for comprehensions. The prototype relies on Ferry, a query language that already supports comprehensions yet targets SQL:1999. The reported techniques pave the way for further progress in bridging the programming and the database worlds."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | The main objective of this chapter was to study the basic @math -branes that one encounters in M-theory, and to treat them in a unified way. The need to unify the treatment is inspired by U-duality @cite_22 @cite_86 @cite_144 , which states that from the effective lower dimensional space-time point of view, all the charges carried by the different branes are on the same footing. While string theory breaks' this U-duality symmetry, choosing the NSNS string to be the fundamental object of the perturbative theory, the supergravity low-energy effective theories realize the U-duality at the classical level. | {
"cite_N": [
"@cite_86",
"@cite_22",
"@cite_144"
],
"mid": [
"1992572456",
"2141847212",
"2152342374",
"2022574854"
],
"abstract": [
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"Abstract The effective action for type II string theory compactified on a six-torus is N = 8 supergravity, which is known to have an E7 duality symmetry. We show that this is broken by quantum effects to a discrete subgroup, E 7 ( Z ) , which contains both the T-duality group O(6, 6; Z ) and the S-duality group SL(2; Z ). We present evidence for the conjecture that E 7 ( Z ) is an exact ‘U-duality’ symmetry of type II string theory. This conjecture requires certain extreme black hole states to be identified with massive modes of the fundamental string. The gauge bosons from the Ramond-Ramond sector couple not to string excitations but to solitons. We discuss similar issues in the context of toroidal string compactifications to other dimensions, compactifications of the type II string on K3 × T2 and compactifications of 11-dimensional supermembrane theory.",
"Abstract We construct non-extremal fractional D-brane solutions of type-II string theory at the Z 2 orbifold point of K3. These solutions generalize known extremal fractional-brane solutions and provide further insights into N =2 supersymmetric gauge theories and dual descriptions thereof. In particular, we find that for these solutions the horizon radius cannot exceed the non-extremal enhancon radius. As a consequence, we conclude that a system of non-extremal fractional branes cannot develop into a black brane. This conclusion is in agreement with known dual descriptions of the system.",
"The recent discovery of an explicit conformal field theory description of Type II p-branes makes it possible to investigate the existence of bound states of such objects. In particular, it is possible with reasonable precision to verify the prediction that the Type IIB superstring in ten dimensions has a family of soliton and bound state strings permuted by SL(2,Z). The space-time coordinates enter tantalizingly in the formalism as non-commuting matrices."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | It should also not be underestimated that the derivation of the intersecting solutions presented in this chapter is a thorough consistency check of all the dualities acting on, and between, the supergravity theories. It is straightforward to check that, starting from one definite configuration, all its dual configurations are also found between the solutions presented here (with the exception of the solutions involving waves and KK monopoles). In this line of thoughts, we presented a recipe for building five and four dimensional extreme supersymmetric black holes. Some of these black holes were used in the literature to perform a microscopic counting of their entropy, as in @cite_191 @cite_61 for the 5-dimensional ones. Actually, the only (5 dimensional) black holes in the U-duality orbit' that were counted were the ones containing only D-branes and KK momentum. It is still an open problem to directly count the microscopic states of the same black hole but in a different M-theoretic formulation. | {
"cite_N": [
"@cite_191",
"@cite_61"
],
"mid": [
"2054280159",
"1992572456",
"2048444779",
"2045285156"
],
"abstract": [
"Abstract We present non-extreme generalisations of intersecting p -brane solutions of eleven-dimensional supergravity which upon toroidal compactification reduce to non-extreme static black holes in dimensions D = 4, D = 5 and 6 ⩽ D ⩽ 9, parameterised by four, three and two charges, respectively. The D = 4 black holes are obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The D = 5 black holes arise from three intersecting two-branes or from a system of an intersecting two-brane and five-brane with a boost along the common string. The five-brane and two-brane with a boost along one direction reduce to black holes in D = 6 and D = 9, respectively, while a D = 7 black hole can be interpreted in terms of a non-extreme configuration of two intersecting two-branes. We discuss the expressions for the corresponding masses and entropies.",
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"We construct the most general supersymmetric configuration of @math -branes and @math -branes on a 6-torus. It contains arbitrary numbers of branes at relative @math angles. The corresponding supergravity solutions are constructed and expressed in a remarkably simple form, using the complex geometry of the compact space. The spacetime supersymmetry of the configuration is verified explicitly, by solution of the Killing spinor equations, and the equations of motion are verified too. Our configurations can be interpreted as a 16-parameter family of regular extremal black holes in four dimensions. Their entropy is interpreted microscopically by counting the degeneracy of bound states of @math -branes. Our result agrees in detail with the prediction for the degeneracy of BPS states in terms of the quartic invariant of the E(7,7) duality group.",
"Abstract Strominger and Vafa have used D-brane technology to identify and precisely count the degenerate quantum states responsible for the entropy of certain extremal, BPS-saturated black holes. Here we give a Type-II D-brane description of a class of extremal and non-extremal five-dimensional Reissner-Nordstrom solutions and identify a corresponding set of degenerate D-brane configurations. We use this information to do a string theory calculation of the entropy, radiation rate and “Hawking” temperature. The results agree perfectly with standard Hawking results for the corresponding nearly extremal Reissner-Nordstrom black holes. Although these calculations suffer from open-string strong coupling problems, we give some reasons to believe that they are nonetheless qualitatively reliable. In this optimistic scenario there would be no “information loss” in black hole quantum evolution."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | Some of the intersection rules intersectionrules point towards an M-theory interpretation in terms of open branes ending on other branes. This idea will be elaborated and made firmer in the next chapter. It suffices to say here that this interpretation is consistent with dualities if we postulate that the open character' of a fundamental string ending on a D-brane is invariant under dualities. S-duality directly implies, for instance, that D-strings can end on NS5-branes @cite_176 . Then T-dualities imply that all the D-branes can end on the NS5-brane. In particular, the fact that the D2-brane can end on the NS5-brane should imply that the M5-brane is a D-brane for the M2-branes @cite_176 @cite_143 @cite_38 (this could also be extrapolated from the fact that a F1-string ends on a D4-brane). In the next chapter we will see how these ideas are further supported by the presence of the Chern-Simons terms in the supergravities, and by the structure of the world-volume effective actions of the branes. | {
"cite_N": [
"@cite_143",
"@cite_38",
"@cite_176"
],
"mid": [
"2086840642",
"1992572456",
"2054280159",
"2152342374"
],
"abstract": [
"Abstract We present a general rule determining how extremal branes can intersect in a configuration with zero binding energy. The rule is derived in a model independent way and in arbitrary spacetime dimensions D by solving the equations of motion of gravity coupled to a dilaton and several different n -form field strengths. The intersection rules are all compatible with supersymmetry, although derived without using it. We then specialize to the branes occurring in type II string theories and in M-theory. We show that the intersection rules are consistent with the picture that open branes can have boundaries on some other branes. In particular, all the D-branes of dimension q , with 1 ≤ q ≤ 6, can have boundaries on the solitonic 5-brane.",
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"Abstract We present non-extreme generalisations of intersecting p -brane solutions of eleven-dimensional supergravity which upon toroidal compactification reduce to non-extreme static black holes in dimensions D = 4, D = 5 and 6 ⩽ D ⩽ 9, parameterised by four, three and two charges, respectively. The D = 4 black holes are obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The D = 5 black holes arise from three intersecting two-branes or from a system of an intersecting two-brane and five-brane with a boost along the common string. The five-brane and two-brane with a boost along one direction reduce to black holes in D = 6 and D = 9, respectively, while a D = 7 black hole can be interpreted in terms of a non-extreme configuration of two intersecting two-branes. We discuss the expressions for the corresponding masses and entropies.",
"Abstract We construct non-extremal fractional D-brane solutions of type-II string theory at the Z 2 orbifold point of K3. These solutions generalize known extremal fractional-brane solutions and provide further insights into N =2 supersymmetric gauge theories and dual descriptions thereof. In particular, we find that for these solutions the horizon radius cannot exceed the non-extremal enhancon radius. As a consequence, we conclude that a system of non-extremal fractional branes cannot develop into a black brane. This conclusion is in agreement with known dual descriptions of the system."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | In this chapter we presented only extremal configurations of intersecting branes. The natural further step to take would be to consider also non-extremal configurations of intersecting branes. There is however a subtlety: there could be a difference between intersections of non-extremal branes, and non-extremal intersections of otherwise extremal branes. If we focus on bound states (and thus not on configurations of well separated branes), it appears that a non-extremal configuration would be characterized for instance by @math charges and by its mass. There is only one additional parameter with respect to the extremal configurations. Physically, we could have hardly expected to have, say, as many non-extremality parameters as the number of branes in the bound state. Indeed, non-extremality can be roughly associated to the branes being in an excited state, and it would have thus been very unlikely that the excitations did not mix between the various branes in the bound state. Non-extremal intersecting brane solutions were found first in @cite_48 , and were derived from the equations of motion following a similar approach as here in @cite_81 @cite_16 . | {
"cite_N": [
"@cite_48",
"@cite_81",
"@cite_16"
],
"mid": [
"2086840642",
"2152342374",
"2054280159",
"1992572456"
],
"abstract": [
"Abstract We present a general rule determining how extremal branes can intersect in a configuration with zero binding energy. The rule is derived in a model independent way and in arbitrary spacetime dimensions D by solving the equations of motion of gravity coupled to a dilaton and several different n -form field strengths. The intersection rules are all compatible with supersymmetry, although derived without using it. We then specialize to the branes occurring in type II string theories and in M-theory. We show that the intersection rules are consistent with the picture that open branes can have boundaries on some other branes. In particular, all the D-branes of dimension q , with 1 ≤ q ≤ 6, can have boundaries on the solitonic 5-brane.",
"Abstract We construct non-extremal fractional D-brane solutions of type-II string theory at the Z 2 orbifold point of K3. These solutions generalize known extremal fractional-brane solutions and provide further insights into N =2 supersymmetric gauge theories and dual descriptions thereof. In particular, we find that for these solutions the horizon radius cannot exceed the non-extremal enhancon radius. As a consequence, we conclude that a system of non-extremal fractional branes cannot develop into a black brane. This conclusion is in agreement with known dual descriptions of the system.",
"Abstract We present non-extreme generalisations of intersecting p -brane solutions of eleven-dimensional supergravity which upon toroidal compactification reduce to non-extreme static black holes in dimensions D = 4, D = 5 and 6 ⩽ D ⩽ 9, parameterised by four, three and two charges, respectively. The D = 4 black holes are obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The D = 5 black holes arise from three intersecting two-branes or from a system of an intersecting two-brane and five-brane with a boost along the common string. The five-brane and two-brane with a boost along one direction reduce to black holes in D = 6 and D = 9, respectively, while a D = 7 black hole can be interpreted in terms of a non-extreme configuration of two intersecting two-branes. We discuss the expressions for the corresponding masses and entropies.",
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | Supergravity solutions corresponding to D-branes at angles were found in @cite_31 @cite_59 @cite_178 . The resulting solutions contain as expected off-diagonal elements in the internal metric, and the derivation from the equations of motion as in @cite_59 is accordingly rather intricated. | {
"cite_N": [
"@cite_31",
"@cite_178",
"@cite_59"
],
"mid": [
"1992572456",
"2048444779",
"2054280159",
"2086840642"
],
"abstract": [
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"We construct the most general supersymmetric configuration of @math -branes and @math -branes on a 6-torus. It contains arbitrary numbers of branes at relative @math angles. The corresponding supergravity solutions are constructed and expressed in a remarkably simple form, using the complex geometry of the compact space. The spacetime supersymmetry of the configuration is verified explicitly, by solution of the Killing spinor equations, and the equations of motion are verified too. Our configurations can be interpreted as a 16-parameter family of regular extremal black holes in four dimensions. Their entropy is interpreted microscopically by counting the degeneracy of bound states of @math -branes. Our result agrees in detail with the prediction for the degeneracy of BPS states in terms of the quartic invariant of the E(7,7) duality group.",
"Abstract We present non-extreme generalisations of intersecting p -brane solutions of eleven-dimensional supergravity which upon toroidal compactification reduce to non-extreme static black holes in dimensions D = 4, D = 5 and 6 ⩽ D ⩽ 9, parameterised by four, three and two charges, respectively. The D = 4 black holes are obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The D = 5 black holes arise from three intersecting two-branes or from a system of an intersecting two-brane and five-brane with a boost along the common string. The five-brane and two-brane with a boost along one direction reduce to black holes in D = 6 and D = 9, respectively, while a D = 7 black hole can be interpreted in terms of a non-extreme configuration of two intersecting two-branes. We discuss the expressions for the corresponding masses and entropies.",
"Abstract We present a general rule determining how extremal branes can intersect in a configuration with zero binding energy. The rule is derived in a model independent way and in arbitrary spacetime dimensions D by solving the equations of motion of gravity coupled to a dilaton and several different n -form field strengths. The intersection rules are all compatible with supersymmetry, although derived without using it. We then specialize to the branes occurring in type II string theories and in M-theory. We show that the intersection rules are consistent with the picture that open branes can have boundaries on some other branes. In particular, all the D-branes of dimension q , with 1 ≤ q ≤ 6, can have boundaries on the solitonic 5-brane."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | Other half-supersymmetric bound states of this class are the @math multiplets of 1- and 5-branes in type IIB theory @cite_95 @cite_0 , or more precisely the configurations F1 @math D1 and NS5 @math D5, also called @math 1- and 5-branes, where @math is the NSNS charge and @math the RR charge of the compound. The classical solutions corresponding to this latter case were actually found more simply performing an @math transformation on the F1 or NS5 solutions. | {
"cite_N": [
"@cite_0",
"@cite_95"
],
"mid": [
"1992572456",
"2048444779",
"2019049541",
"2152342374"
],
"abstract": [
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"We construct the most general supersymmetric configuration of @math -branes and @math -branes on a 6-torus. It contains arbitrary numbers of branes at relative @math angles. The corresponding supergravity solutions are constructed and expressed in a remarkably simple form, using the complex geometry of the compact space. The spacetime supersymmetry of the configuration is verified explicitly, by solution of the Killing spinor equations, and the equations of motion are verified too. Our configurations can be interpreted as a 16-parameter family of regular extremal black holes in four dimensions. Their entropy is interpreted microscopically by counting the degeneracy of bound states of @math -branes. Our result agrees in detail with the prediction for the degeneracy of BPS states in terms of the quartic invariant of the E(7,7) duality group.",
"Abstract By looking at fractional D p -branes of type IIA on T 4 Z 2 as wrapped branes and by using boundary state techniques we construct the effective low-energy action for the fields generated by fractional branes, build their worldvolume action and find the corresponding classical geometry. The explicit form of the classical background is consistent only outside an enhancon sphere of radius r e , which encloses a naked singularity of repulson-type. The perturbative running of the gauge coupling constant, dictated by the NS–NS twisted field that keeps its one-loop expression at any distance, also fails at r e .",
"Abstract We construct non-extremal fractional D-brane solutions of type-II string theory at the Z 2 orbifold point of K3. These solutions generalize known extremal fractional-brane solutions and provide further insights into N =2 supersymmetric gauge theories and dual descriptions thereof. In particular, we find that for these solutions the horizon radius cannot exceed the non-extremal enhancon radius. As a consequence, we conclude that a system of non-extremal fractional branes cannot develop into a black brane. This conclusion is in agreement with known dual descriptions of the system."
]
} |
hep-th9807171 | 1774239421 | The thesis begins with an introduction to M-theory (at a graduate student's level), starting from perturbative string theory and proceeding to dualities, D-branes and finally Matrix theory. The following chapter treats, in a self-contained way, of general classical p-brane solutions. Black and extremal branes are reviewed, along with their semi-classical thermodynamics. We then focus on intersecting extremal branes, the intersection rules being derived both with and without the explicit use of supersymmetry. The last three chapters comprise more advanced aspects of brane physics, such as the dynamics of open branes, the little theories on the world-volume of branes and how the four dimensional Schwarzschild black hole can be mapped to an extremal configuration of branes, thus allowing for a statistical interpretation of its entropy. The original results were already reported in hep-th 9701042, hep-th 9704190, hep-th 9710027 and hep-th 9801053. | In @cite_106 (inspired by @cite_54 ) a solution is presented which corresponds to a M5 @math M5=1 configuration, which follows the harmonic superposition rule, provided however that the harmonic functions depend on the respective relative transverse space (i.e. they are functions of two different spaces). The problem now is that the harmonic functions do not depend on the overall transverse space (which is 1-dimensional in the case above), the configuration thus not being localized there. A method actually inspired by the one presented here to derive the intersecting brane solutions, has been applied in @cite_89 to the intersections of this second kind. Imposing that the functions depend on the relative transverse space(s) (with factorized dependence) and not on the overall one, the authors of @cite_89 arrive at a formula for the intersections very similar to intersectionrules , with @math on the l.h.s. This rule correctly reproduces the M5 @math M5=1 configuration, and moreover also all the configurations of two D-branes with 8 Neumann-Dirichlet directions, which preserve @math supersymmetries but were excluded from the intersecting solutions derived in this chapter (only the configurations with 4 ND directions were found as solutions). One such configuration is e.g. D0 @math D8. | {
"cite_N": [
"@cite_54",
"@cite_106",
"@cite_89"
],
"mid": [
"1992572456",
"2086840642",
"2048444779",
"2054280159"
],
"abstract": [
"We construct new supersymmetric solutions of D = 11 supergravity describing n orthogonally “overlapping” membranes and fivebranes for n = 2,…,8. Overlapping branes arise after separating intersecting branes in a direction transverse to all of the branes. The solutions, which generalize known intersecting brane solutions, preserve at least 2−n of the supersymmetry. Each pairwise overlap involves a membrane overlapping a membrane in a 0-brane, a fivebrane overlapping a fivebrane in a 3-brane or a membrane overlapping a fivebrane in a string. After reducing n overlapping membranes to obtain n overlapping D-2-branes in D = 10, T-duality generates new overlapping D-brane solutions in type IIA and type IIB string theory. Uplifting certain type IIA solutions leads to the D = 11 solutions. Some of the new solutions reduce to dilaton black holes in D = 4. Additionally, we present a D = 10 solution that describes two D-5-branes overlapping in a string. T-duality then generates further D = 10 solutions and uplifting one of the type IIA solutions gives a new D = 11 solution describing two fivebranes overlapping in a string.",
"Abstract We present a general rule determining how extremal branes can intersect in a configuration with zero binding energy. The rule is derived in a model independent way and in arbitrary spacetime dimensions D by solving the equations of motion of gravity coupled to a dilaton and several different n -form field strengths. The intersection rules are all compatible with supersymmetry, although derived without using it. We then specialize to the branes occurring in type II string theories and in M-theory. We show that the intersection rules are consistent with the picture that open branes can have boundaries on some other branes. In particular, all the D-branes of dimension q , with 1 ≤ q ≤ 6, can have boundaries on the solitonic 5-brane.",
"We construct the most general supersymmetric configuration of @math -branes and @math -branes on a 6-torus. It contains arbitrary numbers of branes at relative @math angles. The corresponding supergravity solutions are constructed and expressed in a remarkably simple form, using the complex geometry of the compact space. The spacetime supersymmetry of the configuration is verified explicitly, by solution of the Killing spinor equations, and the equations of motion are verified too. Our configurations can be interpreted as a 16-parameter family of regular extremal black holes in four dimensions. Their entropy is interpreted microscopically by counting the degeneracy of bound states of @math -branes. Our result agrees in detail with the prediction for the degeneracy of BPS states in terms of the quartic invariant of the E(7,7) duality group.",
"Abstract We present non-extreme generalisations of intersecting p -brane solutions of eleven-dimensional supergravity which upon toroidal compactification reduce to non-extreme static black holes in dimensions D = 4, D = 5 and 6 ⩽ D ⩽ 9, parameterised by four, three and two charges, respectively. The D = 4 black holes are obtained either from a non-extreme configuration of three intersecting five-branes with a boost along the common string or from a non-extreme intersecting system of two two-branes and two five-branes. The D = 5 black holes arise from three intersecting two-branes or from a system of an intersecting two-brane and five-brane with a boost along the common string. The five-brane and two-brane with a boost along one direction reduce to black holes in D = 6 and D = 9, respectively, while a D = 7 black hole can be interpreted in terms of a non-extreme configuration of two intersecting two-branes. We discuss the expressions for the corresponding masses and entropies."
]
} |
1903.05435 | 2921710190 | In this work, we are interested in the applications of big data in the telecommunication domain, analysing two weeks of datasets provided by Telecom Italia for Milan and Trento. Our objective is to identify hotspots which are places with very high communication traffic relative to others and measure the interaction between them. We model the hotspots as nodes in a graph and then apply node centrality metrics that quantify the importance of each node. We review five node centrality metrics and show that they can be divided into two families: the first family is composed of closeness and betweenness centrality whereas the second family consists of degree, PageRank and eigenvector centrality. We then proceed with a statistical analysis in order to evaluate the consistency of the results over the two weeks. We find out that the ranking of the hotspots under the various centrality metrics remains practically the same with the time for both Milan and Trento. We further identify that the relative difference of the values of the metrics is smaller for PageRank centrality than for closeness centrality and this holds for both Milan and Trento. Finally, our analysis reveals that the variance of the results is significantly smaller for Trento than for Milan. | Nowadays, telecom companies use widely big data in order to mine the behaviour of their customers, improve the quality of service that they provide and reduce the customers' churn. Towards this direction, demographic statistics, network deployments and call detail records (CDRs) are key factors that need to be carefully integrated in order to make accurate predictions. Though there are various open source data for the first two factors, researchers rarely have access to traffic demand data, since it is a sensitive information for the operators. Therefore, researchers need to rely on synthetic models, which do not always capture accurately large-scale mobile networks @cite_5 . | {
"cite_N": [
"@cite_5"
],
"mid": [
"2556289220",
"1993599520",
"1571751884",
"1994273294"
],
"abstract": [
"In this study, with Singapore as an example, we demonstrate how we can use mobile phone call detail record (CDR) data, which contains millions of anonymous users, to extract individual mobility networks comparable to the activity-based approach. Such an approach is widely used in the transportation planning practice to develop urban micro simulations of individual daily activities and travel; yet it depends highly on detailed travel survey data to capture individual activity-based behavior. We provide an innovative data mining framework that synthesizes the state-of-the-art techniques in extracting mobility patterns from raw mobile phone CDR data, and design a pipeline that can translate the massive and passive mobile phone records to meaningful spatial human mobility patterns readily interpretable for urban and transportation planning purposes. With growing ubiquitous mobile sensing, and shrinking labor and fiscal resources in the public sector globally, the method presented in this research can be used as a low-cost alternative for transportation and planning agencies to understand the human activity patterns in cities, and provide targeted plans for future sustainable development.",
"With billions of handsets in use worldwide, the quantity of mobility data is gigantic. When aggregated they can help understand complex processes, such as the spread viruses, and built better transportation systems, prevent traffic congestion. While the benefits provided by these datasets are indisputable, they unfortunately pose a considerable threat to location privacy. In this paper, we present a new anonymization scheme to release the spatio-temporal density of Paris, in France, i.e., the number of individuals in 989 different areas of the city released every hour over a whole week. The density is computed from a call-data-record (CDR) dataset, provided by the French Telecom operator Orange, containing the CDR of roughly 2 million users over one week. Our scheme is differential private, and hence, provides provable privacy guarantee to each individual in the dataset. Our main goal with this case study is to show that, even with large dimensional sensitive data, differential privacy can provide practical utility with meaningful privacy guarantee, if the anonymization scheme is carefully designed. This work is part of the national project XData (http: xdata.fr) that aims at combining large (anonymized) datasets provided by different service providers (telecom, electricity, water management, postal service, etc.).",
"As technology to connect people across the world is advancing, there should be corresponding advancement in taking advantage of data that is generated out of such connection. To that end, next place prediction is an important problem for mobility data. In this paper we propose several models using dynamic Bayesian network (DBN). Idea behind development of these models come from typical daily mobility patterns a user have. Three features (location, day of the week (DoW), and time of the day (ToD)) and their combinations are used to develop these models. Knowing that not all models work well for all situations, we developed three combined models using least entropy, highest probability and ensemble. Extensive performance study is conducted to compare these models over two different mobility data sets: a CDR data and Nokia mobile data which is based on GPS. Results show that least entropy and highest probability DBNs perform the best.",
"Continuous personal position information has been attracting attention in a variety of service and research areas. In recent years, many studies have applied the telecommunication histories of mobile phones (CDRs: call detail records) to position acquisition. Although large-scale and long-term data are accumulated from CDRs through everyday use of mobile phones, the spatial resolution of CDRs is lower than that of existing positioning technologies. Therefore, interpolating spatiotemporal positions of such sparse CDRs in accordance with human behavior models will facilitate services and researches. In this paper, we propose a new method to compensate for CDR drawbacks in tracking positions. We generate as many candidate routes as possible in the spatiotemporal domain using trip patterns interpolated using road and railway networks and select the most likely route from them. Trip patterns are feasible combinations between stay places that are detected from individual location histories in CDRs. The most likely route could be estimated through comparing candidate routes to observed CDRs during a target day. We also show the assessment of our method using CDRs and GPS logs obtained in the experimental survey."
]
} |
1903.05435 | 2921710190 | In this work, we are interested in the applications of big data in the telecommunication domain, analysing two weeks of datasets provided by Telecom Italia for Milan and Trento. Our objective is to identify hotspots which are places with very high communication traffic relative to others and measure the interaction between them. We model the hotspots as nodes in a graph and then apply node centrality metrics that quantify the importance of each node. We review five node centrality metrics and show that they can be divided into two families: the first family is composed of closeness and betweenness centrality whereas the second family consists of degree, PageRank and eigenvector centrality. We then proceed with a statistical analysis in order to evaluate the consistency of the results over the two weeks. We find out that the ranking of the hotspots under the various centrality metrics remains practically the same with the time for both Milan and Trento. We further identify that the relative difference of the values of the metrics is smaller for PageRank centrality than for closeness centrality and this holds for both Milan and Trento. Finally, our analysis reveals that the variance of the results is significantly smaller for Trento than for Milan. | For example, the authors in @cite_4 analyse an heterogeneous cellular network which consists of different types of nodes, such as macrocells and microcells. Nowadays a popular model is the one from Wyner @cite_0 , but it fails to fully capture a real heterogeneous cellular network because it is simplistic. Another approach is to use the spatial Poisson point process model (SPPP) @cite_9 , which can be derived from the premise that all base stations are uniformly distributed. However, a city can be classified in different areas, which have different population densities. These different areas can be characterised as dense urban, urban and suburban. To be able to classify the heterogeneous networks into these areas, the authors introduce SPPP for homogeneous and inhomogeneous sets. They show that the SPPP-model captures accurately both urban and suburban areas, whereas this is not the case for dense urban areas, because of a considerable population concentrated in small areas. | {
"cite_N": [
"@cite_0",
"@cite_9",
"@cite_4"
],
"mid": [
"2005411736",
"2076773434",
"1994267277",
"1659111644"
],
"abstract": [
"In heterogeneous cellular networks spatial characteristics of base stations (BSs) influence the system performance intensively. Existing models like two-dimensional hexagonal grid model or homogeneous spatial poisson point process (SPPP) are based on the assumption that BSs are ideal or uniformly distributed, but the aggregation behavior of users in hot spots has an important effect on the location of low power nodes (LPNs), so these models fail to characterize the distribution of BSs in the current mobile cellular networks. In this paper, firstly existing spatial models are analyzed. Then, based on real data from a mobile operator in one large city of China, a set of spatial models is proposed in three typical regions: dense urban, urban and suburban. For dense urban area, “Two Tiers Poisson Cluster Superimposed Process” is proposed to model the spatial characteristics of real-world BSs. Specifically, for urban and suburban area, conventional SPPP model still can be used. Finally, the fundamental relationship between user behavior and BS distribution is illustrated and summarized. Numerous results show that SPPP is only appropriate in the urban and suburban regions where users are not gathered together obviously. Principal parameters of these models are provided as reference for the theoretical analysis and computer simulation, which describe the complex spatial configuration more reasonably and reflect the current mobile cellular network performance more precisely.",
"We consider spatial stochastic models of downlink heterogeneous cellular networks (HCNs) with multiple tiers, where the base stations (BSs) of each tier have a particular spatial density, transmission power and path-loss exponent. Prior works on such spatial models of HCNs assume, due to its tractability, that the BSs are deployed according to homogeneous Poisson point processes. This means that the BSs are located independently of each other and their spatial correlation is ignored. In the current paper, we propose two spatial models for the analysis of downlink HCNs, in which the BSs are deployed according to @a-Ginibre point processes. The @a-Ginibre point processes constitute a class of determinantal point processes and account for the repulsion between the BSs. Besides, the degree of repulsion is adjustable according to the value of @[email protected]?(0,1]. In one proposed model, the BSs of different tiers are deployed according to mutually independent @a-Ginibre processes, where the @a can take different values for the different tiers. In the other model, all the BSs are deployed according to an @a-Ginibre point process and they are classified into multiple tiers by mutually independent marks. For these proposed models, we derive computable representations for the coverage probability of a typical user-the probability that the downlink signal-to-interference-plus-noise ratio for the typical user achieves a target threshold. We exhibit the results of some numerical experiments and compare the proposed models and the Poisson based model.",
"The spatial structure of transmitters in wireless networks plays a key role in evaluating the mutual interference and hence the performance. Although the Poisson point process (PPP) has been widely used to model the spatial configuration of wireless networks, it is not suitable for networks with repulsion. The Ginibre point process (GPP) is one of the main examples of determinantal point processes that can be used to model random phenomena where repulsion is observed. Considering the accuracy, tractability and practicability tradeoffs, we introduce and promote the @math -GPP, an intermediate class between the PPP and the GPP, as a model for wireless networks when the nodes exhibit repulsion. To show that the model leads to analytically tractable results in several cases of interest, we derive the mean and variance of the interference using two different approaches: the Palm measure approach and the reduced second moment approach, and then provide approximations of the interference distribution by three known probability density functions. Besides, to show that the model is relevant for cellular systems, we derive the coverage probability of the typical user and also find that the fitted @math -GPP can closely model the deployment of actual base stations in terms of the coverage probability and other statistics.",
"Although the Poisson point process (PPP) has been widely used to model base station (BS) locations in cellular networks, it is an idealized model that neglects the spatial correlation among BSs. This paper proposes the use of the determinantal point process (DPP) to take into account these correlations, in particular the repulsiveness among macro BS locations. DPPs are demonstrated to be analytically tractable by leveraging several unique computational properties. Specifically, we show that the empty space function, the nearest neighbor function, the mean interference, and the signal-to-interference ratio (SIR) distribution have explicit analytical representations and can be numerically evaluated for cellular networks with DPP-configured BSs. In addition, the modeling accuracy of DPPs is investigated by fitting three DPP models to real BS location data sets from two major U.S. cities. Using hypothesis testing for various performance metrics of interest, we show that these fitted DPPs are significantly more accurate than popular choices such as the PPP and the perturbed hexagonal grid model."
]
} |
1903.05355 | 2968491849 | Learning the dynamics of robots from data can help achieve more accurate tracking controllers, or aid their navigation algorithms. However, when the actual dynamics of the robots change due to external conditions, on-line adaptation of their models is required to maintain high fidelity performance. In this work, a framework for on-line learning of robot dynamics is developed to adapt to such changes. The proposed framework employs an incremental support vector regression method to learn the model sequentially from data streams. In combination with the incremental learning, strategies for including and forgetting data are developed to obtain better generalization over the whole state space. The framework is tested in simulation and real experimental scenarios demonstrating its adaptation capabilities to changes in the robot’s dynamics. | In the field of marine robotics, @cite_10 used locally weighted projection regression to compensate the mismatch between the physics based model and the sensors reading of the AUV Nessie. Auto-regressive networks augmented with a genetic algorithm as a gating network were used to identify the model of a simulated AUV with variable mass. In a previous work @cite_16 , an on-line adaptation method was proposed to model the change in the damping forces resulting from a structural change of an AUVs mechanical structure. The algorithm showed good adaptation capability but was only limited to modelling the damping effect of an AUV model. In this work we build upon our the results of @cite_14 @cite_11 to provide a general framework for on-line learning of AUV fully coupled nonlinear dynamics, and validating the proposed approach on simulated data as well as real robot data. | {
"cite_N": [
"@cite_14",
"@cite_16",
"@cite_10",
"@cite_11"
],
"mid": [
"2060977605",
"2106353989",
"1938668859",
"2022798939"
],
"abstract": [
"This paper proposes a pose-based algorithm to solve the full Simultaneous Localization And Mapping (SLAM) problem for an Autonomous Underwater Vehicle (AUV), navigating in an unknown and possibly unstructured environment. A probabilistic scan matching technique using range scans gathered from a Mechanical Scanning Imaging Sonar (MSIS) is used together with the robot dead-reckoning displacements. The proposed method utilizes two Extended Kalman Filters (EKFs). The first, estimates the local path traveled by the robot while forming the scan as well as its uncertainty, providing position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augmented state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. Also, a method of estimating the uncertainty of the scan matching estimation is provided. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach.",
"A full-scale adaptive ocean sampling network was deployed throughout the month-long 2006 Adaptive Sam- pling and Prediction (ASAP) field experiment in Monterey Bay, California. One of the central goals of the field experiment was to test and demonstrate newly developed techniques for coordinated motion control of au- tonomous vehicles carrying environmental sensors to efficiently sample the ocean. We describe the field results for the heterogeneous fleet of autonomous underwater gliders that collected data continuously throughout the month-long experiment. Six of these gliders were coordinated autonomously for 24 days straight using feed- back laws that scale with the number of vehicles. These feedback laws were systematically computed using recently developed methodology to produce desired collective motion patterns, tuned to the spatial and tem- poral scales in the sampled fields for the purpose of reducing statistical uncertainty in field estimates. The implementation was designed to allow for adaptation of coordinated sampling patterns using human-in-the- loop decision making, guided by optimization and prediction tools. The results demonstrate an innovative tool for ocean sampling and provide a proof of concept for an important field robotics endeavor that integrates coordinated motion control with adaptive sampling. C",
"Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle AUV can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect ?closing the loop? on a significant and relevant ecosystem monitoring problem while allowing domain experts marine ecologists to specify the mission at a relatively high level.",
"Navigation is instrumental in the successful deployment of Autonomous Underwater Vehicles (AUVs). Sensor hardware is installed on AUVs to support navigational accuracy. Sensors, however, may fail during deployment, thereby jeopardizing the mission. This work proposes a solution, based on an adaptive dynamic model, to accurately predict the navigation of the AUV. A hydrodynamic model, derived from simple laws of physics, is integrated with a powerful non-parametric regression method. The incremental regression method, namely the Locally Weighted Projection Regression (LWPR), is used to compensate for un-modeled dynamics, as well as for possible changes in the operating conditions of the vehicle. The augmented hydrodynamic model is used within an Extended Kalman Filter, to provide optimal estimations of the AUV’s position and orientation. Experimental results demonstrate an overall improvement in the prediction of the vehicle’s acceleration and velocity."
]
} |
1903.05454 | 2950587559 | In this work, we present a camera geopositioning system based on matching a query image against a database with panoramic images. For matching, our system uses memory vectors aggregated from global image descriptors based on convolutional features to facilitate fast searching in the database. To speed up searching, a clustering algorithm is used to balance geographical positioning and computation time. We refine the obtained position from the query image using a new outlier removal algorithm. The matching of the query image is obtained with a recall@5 larger than 90 for panorama-to-panorama matching. We cluster available panoramas from geographically adjacent locations into a single compact representation and observe computational gains of approximately 50 at the cost of only a small (approximately 3 ) recall loss. Finally, we present a coordinate estimation algorithm that reduces the median geopositioning error by up to 20 . | In recent years, research regarding image matching has been influenced by the developments in other areas of computer vision. Deep learning architectures have been developed both for image matching @cite_10 @cite_1 @cite_17 and geopositioning @cite_13 @cite_5 @cite_18 with attractive results. | {
"cite_N": [
"@cite_13",
"@cite_18",
"@cite_1",
"@cite_5",
"@cite_10",
"@cite_17"
],
"mid": [
"1762798876",
"2607603241",
"2606149788",
"2964213755"
],
"abstract": [
"We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk ( A comparison of affine region detectors, 2005), the MPI-Sintel ( A naturalistic open source movie for optical flow evaluation, 2012) and the Kitti ( Vision meets robotics: The KITTI dataset, 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures. We also apply DeepMatching to the computation of optical flow, called DeepFlow, by integrating it in the large displacement optical flow (LDOF) approach of Brox and Malik (Large displacement optical flow: descriptor matching in variational motion estimation, 2011). Additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation.",
"Finding matching images across large datasets plays a key role in many computer vision applications such as structure-from-motion (SfM), multi-view 3D reconstruction, image retrieval, and image-based localisation. In this paper, we propose finding matching and non-matching pairs of images by representing them with neural network based feature vectors, whose similarity is measured by Euclidean distance. The feature vectors are obtained with convolutional neural networks which are learnt from labeled examples of matching and non-matching image pairs by using a contrastive loss function in a Siamese network architecture. Previously Siamese architecture has been utilised in facial image verification and in matching local image patches, but not yet in generic image retrieval or whole-image matching. Our experimental results show that the proposed features improve matching performance compared to baseline features obtained with networks which are trained for image classification task. The features generalize well and improve matching of images of new landmarks which are not seen at training time. This is despite the fact that the labeling of matching and non-matching pairs is imperfect in our training data. The results are promising considering image retrieval applications, and there is potential for further improvement by utilising more training image pairs with more accurate ground truth labels.",
"Despite significant progress of deep learning in recent years, state-of-the-art semantic matching methods still rely on legacy features such as SIFT or HoG. We argue that the strong invariance properties that are key to the success of recent deep architectures on the classification task make them unfit for dense correspondence tasks, unless a large amount of supervision is used. In this work, we propose a deep network, termed AnchorNet, that produces image representations that are well-suited for semantic matching. It relies on a set of filters whose response is geometrically consistent across different object instances, even in the presence of strong intra-class, scale, or viewpoint variations. Trained only with weak image-level labels, the final representation successfully captures information about the object structure and improves results of state-of-the-art semantic matching methods such as the deformable spatial pyramid or the proposal flow methods. We show positive results on the cross-instance matching task where different instances of the same object category are matched as well as on a new cross-category semantic matching task aligning pairs of instances each from a different object class.",
"Despite significant progress of deep learning in recent years, state-of-the-art semantic matching methods still rely on legacy features such as SIFT or HoG. We argue that the strong invariance properties that are key to the success of recent deep architectures on the classification task make them unfit for dense correspondence tasks, unless a large amount of supervision is used. In this work, we propose a deep network, termed AnchorNet, that produces image representations that are well-suited for semantic matching. It relies on a set of filters whose response is geometrically consistent across different object instances, even in the presence of strong intra-class, scale, or viewpoint variations. Trained only with weak image-level labels, the final representation successfully captures information about the object structure and improves results of state-of-the-art semantic matching methods such as the Deformable Spatial Pyramid or the Proposal Flow methods. We show positive results on the cross-instance matching task where different instances of the same object category are matched as well as on a new cross-category semantic matching task aligning pairs of instances each from a different object class."
]
} |
1903.05454 | 2950587559 | In this work, we present a camera geopositioning system based on matching a query image against a database with panoramic images. For matching, our system uses memory vectors aggregated from global image descriptors based on convolutional features to facilitate fast searching in the database. To speed up searching, a clustering algorithm is used to balance geographical positioning and computation time. We refine the obtained position from the query image using a new outlier removal algorithm. The matching of the query image is obtained with a recall@5 larger than 90 for panorama-to-panorama matching. We cluster available panoramas from geographically adjacent locations into a single compact representation and observe computational gains of approximately 50 at the cost of only a small (approximately 3 ) recall loss. Finally, we present a coordinate estimation algorithm that reduces the median geopositioning error by up to 20 . | Convolutional features extracted from the deep layers of CNNs have shown great utility when addressing image matching and retrieval problems. Babenko @cite_10 employ pre-trained networks to generate descriptors based on high-level convolutional features used for retrieving images of various landmarks. Sunderhauf @cite_2 solve the problem of urban scene recognition, employing salient regions and convolutional features of local objects. This method is extended in @cite_8 , where additional spatial information is used to increase the algorithm performance. | {
"cite_N": [
"@cite_8",
"@cite_10",
"@cite_2"
],
"mid": [
"2289772031",
"2749407104",
"2258484932",
"2161381512"
],
"abstract": [
"Convolutional neural networks (CNNs) have recently achieved remarkable successes in various image classification and understanding tasks. The deep features obtained at the top fully connected layer of the CNN (FC-features) exhibit rich global semantic information and are extremely effective in image classification. On the other hand, the convolutional features in the middle layers of the CNN also contain meaningful local information, but are not fully explored for image representation. In this paper, we propose a novel locally supervised deep hybrid model (LS-DHM) that effectively enhances and explores the convolutional features for scene recognition. First, we notice that the convolutional features capture local objects and fine structures of scene images, which yield important cues for discriminating ambiguous scenes, whereas these features are significantly eliminated in the highly compressed FC representation. Second, we propose a new local convolutional supervision layer to enhance the local structure of the image by directly propagating the label information to the convolutional layers. Third, we propose an efficient Fisher convolutional vector (FCV) that successfully rescues the orderless mid-level semantic information (e.g., objects and textures) of scene image. The FCV encodes the large-sized convolutional maps into a fixed-length mid-level representation, and is demonstrated to be strongly complementary to the high-level FC-features. Finally, both the FCV and FC-features are collaboratively employed in the LS-DHM representation, which achieves outstanding performance in our experiments. It obtains 83.75 and 67.56 accuracies, respectively, on the heavily benchmarked MIT Indoor67 and SUN397 data sets, advancing the state-of-the-art substantially.",
"In this paper, we present a robust method for scene recognition, which leverages Convolutional Neural Networks (CNNs) features and Sparse Coding setting by creating a new representation of indoor scenes. Although CNNs highly benefited the fields of computer vision and pattern recognition, convolutional layers adjust weights on a global-approach, which might lead to losing important local details such as objects and small structures. Our proposed scene representation relies on both: global features that mostly refers to environment’s structure, and local features that are sparsely combined to capture characteristics of common objects of a given scene. This new representation is based on fragments of the scene and leverages features extracted by CNNs. The experimental evaluation shows that the resulting representation outperforms previous scene recognition methods on Scene15 and MIT67 datasets, and performs competitively on SUN397, while being highly robust to perturbations in the input image such as noise and occlusion.",
"Convolutional neural network (CNN) has achieved the state-of-the-art performance in many different visual tasks. Learned from a large-scale training data set, CNN features are much more discriminative and accurate than the handcrafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionary-based features (such as BoW and spatial pyramid matching) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionary-based models for scene recognition and visual domain adaptation (DA). Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely, mid-level local representation (MLR) and convolutional Fisher vector (CFV) representation. In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a class-specific part dictionary. After that, the part dictionary is used to operate with the multiscale image inputs for generating mid-level representation. In CFV, a multiscale and scale-proportional Gaussian mixture model training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV, and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and DA problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary to GoogLeNet and or VGG-11 (trained on Place205) greatly.",
"Convolutional neural networks (CNN) have recently shown outstanding image classification performance in the large- scale visual recognition challenge (ILSVRC2012). The suc- cess of CNNs is attributed to their ability to learn rich mid- level image representations as opposed to hand-designed low-level features used in other image classification meth- ods. Learning CNNs, however, amounts to estimating mil- lions of parameters and requires a very large number of annotated image samples. This property currently prevents application of CNNs to problems with limited training data. In this work we show how image representations learned with CNNs on large-scale annotated datasets can be effi- ciently transferred to other visual recognition tasks with limited amount of training data. We design a method to reuse layers trained on the ImageNet dataset to compute mid-level image representation for images in the PASCAL VOC dataset. We show that despite differences in image statistics and tasks in the two datasets, the transferred rep- resentation leads to significantly improved results for object and action classification, outperforming the current state of the art on Pascal VOC 2007 and 2012 datasets. We also show promising results for object and action localization."
]
} |
1903.05454 | 2950587559 | In this work, we present a camera geopositioning system based on matching a query image against a database with panoramic images. For matching, our system uses memory vectors aggregated from global image descriptors based on convolutional features to facilitate fast searching in the database. To speed up searching, a clustering algorithm is used to balance geographical positioning and computation time. We refine the obtained position from the query image using a new outlier removal algorithm. The matching of the query image is obtained with a recall@5 larger than 90 for panorama-to-panorama matching. We cluster available panoramas from geographically adjacent locations into a single compact representation and observe computational gains of approximately 50 at the cost of only a small (approximately 3 ) recall loss. Finally, we present a coordinate estimation algorithm that reduces the median geopositioning error by up to 20 . | The problem of geopositioning can be seen as a dedicated branch of image retrieval. In this case, the objective is to compute extrinsic parameters (or coordinates) of a camera capturing the query image, based on the matched georeferenced images from a database. There exist many different algorithms and neural network architectures that attempt to identify the geographical location of a street-level query image. Lin @cite_13 learn deep representations for matching aerial and ground images. Workman @cite_18 use spatial features at multiple scales which are fused with street-level features, to solve the problem of geolocalization. @cite_5 , a fully automated processing pipeline matches multi-view stereo (MVS) models to aerial images. This matching algorithm handles the viewpoint variance across aerial and street-level images. | {
"cite_N": [
"@cite_5",
"@cite_18",
"@cite_13"
],
"mid": [
"1946093182",
"2479919622",
"2199890863",
"2949514689"
],
"abstract": [
"The recent availability of geo-tagged images and rich geospatial data has inspired a number of algorithms for image based geolocalization. Most approaches predict the location of a query image by matching to ground-level images with known locations (e.g., street-view data). However, most of the Earth does not have ground-level reference photos available. Fortunately, more complete coverage is provided by oblique aerial or “bird's eye” imagery. In this work, we localize a ground-level query image by matching it to a reference database of aerial imagery. We use publicly available data to build a dataset of 78K aligned crossview image pairs. The primary challenge for this task is that traditional computer vision approaches cannot handle the wide baseline and appearance variation of these cross-view pairs. We use our dataset to learn a feature representation in which matching views are near one another and mismatched views are far apart. Our proposed approach, Where-CNN, is inspired by deep learning success in face verification and achieves significant improvements over traditional hand-crafted features and existing deep features learned from other large-scale databases. We show the effectiveness of Where-CNN in finding matches between street view and aerial view imagery and demonstrate the ability of our learned features to generalize to novel locations.",
"In this paper we aim to determine the location and orientation of a ground-level query image by matching to a reference database of overhead (e.g. satellite) images. For this task we collect a new dataset with one million pairs of street view and overhead images sampled from eleven U.S. cities. We explore several deep CNN architectures for cross-domain matching – Classification, Hybrid, Siamese, and Triplet networks. Classification and Hybrid architectures are accurate but slow since they allow only partial feature precomputation. We propose a new loss function which significantly improves the accuracy of Siamese and Triplet embedding networks while maintaining their applicability to large-scale retrieval tasks like image geolocalization. This image matching task is challenging not just because of the dramatic viewpoint difference between ground-level and overhead imagery but because the orientation (i.e. azimuth) of the street views is unknown making correspondence even more difficult. We examine several mechanisms to match in spite of this – training for rotation invariance, sampling possible rotations at query time, and explicitly predicting relative rotation of ground and overhead images with our deep networks. It turns out that explicit orientation supervision also improves location prediction accuracy. Our best performing architectures are roughly 2.5 times as accurate as the commonly used Siamese network baseline.",
"We propose to use deep convolutional neural networks to address the problem of cross-view image geolocalization, in which the geolocation of a ground-level query image is estimated by matching to georeferenced aerial images. We use state-of-the-art feature representations for ground-level images and introduce a cross-view training approach for learning a joint semantic feature representation for aerial images. We also propose a network architecture that fuses features extracted from aerial images at multiple spatial scales. To support training these networks, we introduce a massive database that contains pairs of aerial and ground-level images from across the United States. Our methods significantly out-perform the state of the art on two benchmark datasets. We also show, qualitatively, that the proposed feature representations are discriminative at both local and continental spatial scales.",
"We propose to use deep convolutional neural networks to address the problem of cross-view image geolocalization, in which the geolocation of a ground-level query image is estimated by matching to georeferenced aerial images. We use state-of-the-art feature representations for ground-level images and introduce a cross-view training approach for learning a joint semantic feature representation for aerial images. We also propose a network architecture that fuses features extracted from aerial images at multiple spatial scales. To support training these networks, we introduce a massive database that contains pairs of aerial and ground-level images from across the United States. Our methods significantly out-perform the state of the art on two benchmark datasets. We also show, qualitatively, that the proposed feature representations are discriminative at both local and continental spatial scales."
]
} |
1903.05454 | 2950587559 | In this work, we present a camera geopositioning system based on matching a query image against a database with panoramic images. For matching, our system uses memory vectors aggregated from global image descriptors based on convolutional features to facilitate fast searching in the database. To speed up searching, a clustering algorithm is used to balance geographical positioning and computation time. We refine the obtained position from the query image using a new outlier removal algorithm. The matching of the query image is obtained with a recall@5 larger than 90 for panorama-to-panorama matching. We cluster available panoramas from geographically adjacent locations into a single compact representation and observe computational gains of approximately 50 at the cost of only a small (approximately 3 ) recall loss. Finally, we present a coordinate estimation algorithm that reduces the median geopositioning error by up to 20 . | A common factor of the above work is that it either requires the combination of aerial and street-level images for geopositioning, or extensive training on specific datasets. Both cases and their solutions cannot be easily generalized. In our approach, we utilize georeferenced, street-level panoramic images only and a pre-trained CNN combined with image matching techniques for coordinate estimation. This avoids lengthy training and labeling procedures and assumes street-level data to be available without requiring aerial images. Furthermore, and unlike @cite_1 , we do not assume that our query and database images originate from the same imaging devices. | {
"cite_N": [
"@cite_1"
],
"mid": [
"1946093182",
"2479919622",
"1984093092",
"2199890863"
],
"abstract": [
"The recent availability of geo-tagged images and rich geospatial data has inspired a number of algorithms for image based geolocalization. Most approaches predict the location of a query image by matching to ground-level images with known locations (e.g., street-view data). However, most of the Earth does not have ground-level reference photos available. Fortunately, more complete coverage is provided by oblique aerial or “bird's eye” imagery. In this work, we localize a ground-level query image by matching it to a reference database of aerial imagery. We use publicly available data to build a dataset of 78K aligned crossview image pairs. The primary challenge for this task is that traditional computer vision approaches cannot handle the wide baseline and appearance variation of these cross-view pairs. We use our dataset to learn a feature representation in which matching views are near one another and mismatched views are far apart. Our proposed approach, Where-CNN, is inspired by deep learning success in face verification and achieves significant improvements over traditional hand-crafted features and existing deep features learned from other large-scale databases. We show the effectiveness of Where-CNN in finding matches between street view and aerial view imagery and demonstrate the ability of our learned features to generalize to novel locations.",
"In this paper we aim to determine the location and orientation of a ground-level query image by matching to a reference database of overhead (e.g. satellite) images. For this task we collect a new dataset with one million pairs of street view and overhead images sampled from eleven U.S. cities. We explore several deep CNN architectures for cross-domain matching – Classification, Hybrid, Siamese, and Triplet networks. Classification and Hybrid architectures are accurate but slow since they allow only partial feature precomputation. We propose a new loss function which significantly improves the accuracy of Siamese and Triplet embedding networks while maintaining their applicability to large-scale retrieval tasks like image geolocalization. This image matching task is challenging not just because of the dramatic viewpoint difference between ground-level and overhead imagery but because the orientation (i.e. azimuth) of the street views is unknown making correspondence even more difficult. We examine several mechanisms to match in spite of this – training for rotation invariance, sampling possible rotations at query time, and explicitly predicting relative rotation of ground and overhead images with our deep networks. It turns out that explicit orientation supervision also improves location prediction accuracy. Our best performing architectures are roughly 2.5 times as accurate as the commonly used Siamese network baseline.",
"We present a new method for the robust detection and matching of multiple planes in pairs of images. Such planes can serve as stable landmarks for vision-based urban navigation. Our approach starts from SIFT matches and generates multiple local homography hypotheses using the recent J-linkage technique by Toldo and Fusiello, a robust randomized multi-model estimation algorithm. These hypotheses are then globally merged, spatially analyzed, robustly fitted, and checked for stability. When tested on more than 30,000 image pairs taken from panoramic views of a college campus, our method yields no false positives and recovers 72 of the matchable building walls identified by a human, despite significant occlusions and viewpoint changes.",
"We propose to use deep convolutional neural networks to address the problem of cross-view image geolocalization, in which the geolocation of a ground-level query image is estimated by matching to georeferenced aerial images. We use state-of-the-art feature representations for ground-level images and introduce a cross-view training approach for learning a joint semantic feature representation for aerial images. We also propose a network architecture that fuses features extracted from aerial images at multiple spatial scales. To support training these networks, we introduce a massive database that contains pairs of aerial and ground-level images from across the United States. Our methods significantly out-perform the state of the art on two benchmark datasets. We also show, qualitatively, that the proposed feature representations are discriminative at both local and continental spatial scales."
]
} |
1903.05524 | 2972959293 | In this paper, we study the relationship between two crucial properties in linear dynamical networks of diffusively coupled agents, that is controllability and robustness to noise and structural changes in the network. In particular, for any given network size and diameter, we identify networks that are maximally robust and then analyze their strong structural controllability. We do so by determining the minimum number of leaders to make such networks completely controllable with arbitrary coupling weights between agents. Similarly, we design networks with the same given parameters that are completely controllable independent of coupling weights through a minimum number of leaders, and then also analyze their robustness. We utilize the notion of Kirchhoff index to measure network robustness to noise and structural changes. Our controllability analysis is based on novel graph-theoretic methods that offer insights on the important connection between network robustness and strong structural controllability in such networks. | Kirchhoff index or equivalently effective graph resistance based measures have been instrumental in quantifying the effect of noise on the expected steady state dispersion in linear dynamical networks, particularly in the ones with the consensus dynamics, for instance see @cite_23 @cite_8 @cite_22 . Furthermore, limits on robustness measures that quantify expected steady-state dispersion due to external stochastic disturbances in linear dynamical networks are also studied in @cite_9 @cite_10 . To maximize robustness in networks by minimizing their Kirchhoff indices, various optimization approaches (e.g., @cite_26 @cite_1 ) including graph-theoretic ones @cite_0 have been proposed. The main objective there is to determine crucial edges that need to be added or maintained to maximize robustness under given constraints @cite_11 . | {
"cite_N": [
"@cite_26",
"@cite_22",
"@cite_8",
"@cite_9",
"@cite_1",
"@cite_0",
"@cite_23",
"@cite_10",
"@cite_11"
],
"mid": [
"2247236687",
"1980652450",
"2206841333",
"2962884567"
],
"abstract": [
"We investigate the (generalized) Walsh decomposition of point-to-point effective resistances on countable random electric networks with i.i.d. resistances. We show that it is concentrated on low levels, and thus point-to-point effective resistances are uniformly stable to noise. For graphs that satisfy some homogeneity property, we show in addition that it is concentrated on sets of small diameter. As a consequence, we compute the right order of the variance and prove a central limit theorem for the effective resistance through the discrete torus of side length n in Zd, when n goes to infinity.",
"This paper considers the inverse problem with observed variables Y = BGX ⊕Z, where BG is the incidence matrix of a graph G, X is the vector of unknown vertex variables with a uniform prior, and Z is a noise vector with Bernoulli(e) i.i.d. entries. All variables and operations are Boolean. This model is motivated by coding, synchronization, and community detection problems. In particular, it corresponds to a stochastic block model or a correlation clustering problem with two communities and censored edges. Without noise, exact recovery of X is possible if and only the graph G is connected, with a sharp threshold at the edge probability log(n) n for Erdős-Renyi random graphs. The first goal of this paper is to determine how the edge probability p needs to scale to allow exact recovery in the presence of noise. Defining the degree (oversampling) rate of the graph by α = np log(n), it is shown that exact recovery is possible if and only if α > 2 (1−2e)+o(1 (1−2e)). In other words, 2 (1−2e) is the information theoretic threshold for exact recovery at lowSNR. In addition, an efficient recovery algorithm based on semidefinite programming is proposed and shown to succeed in the threshold regime up to twice the optimal rate. Full version available in [1].",
"Given a background graph with n vertices, the binary censored block model assumes that vertices are partitioned into two clusters, and every edge is labeled independently at random with labels drawn from Bern(1 − e) if two endpoints are in the same cluster, or from Bern(e) otherwise, where e ∈ [0; 1 2] is a fixed constant. For Erdős-Renyi graphs with edge probability p = a log n n and fixed a, we show that the semidefinite programming relaxation of the maximum likelihood estimator achieves the optimal threshold equation for exactly recovering the partition from the labeled graph with probability tending to one as n → ∞. For random regular graphs with degree scaling as a log n, we show that the semidefinite programming relaxation also achieves the optimal recovery threshold aD(Bern(1 2)∥Bern(e)) > 1, where D denotes the Kullback-Leibler divergence.",
"We study a graph-theoretic property known as robustness, which plays a key role in the behavior of certain classes of dynamics on networks (such as resilient consensus and contagion). This property is much stronger than other graph properties such as connectivity and minimum degree, in that one can construct graphs with high connectivity and minimum degree but low robustness. In this paper, we investigate the robustness of common random graph models for complex networks (Erdős-Renyi, geometric random, and preferential attachment graphs). We show that the notions of connectivity and robustness coincide on these random graph models: the properties share the same threshold function in the Erdős-Renyi model, cannot be very different in the geometric random graph model, and are equivalent in the preferential attachment model. This indicates that a variety of purely local diffusion dynamics will be effective at spreading information in such networks."
]
} |
1903.05524 | 2972959293 | In this paper, we study the relationship between two crucial properties in linear dynamical networks of diffusively coupled agents, that is controllability and robustness to noise and structural changes in the network. In particular, for any given network size and diameter, we identify networks that are maximally robust and then analyze their strong structural controllability. We do so by determining the minimum number of leaders to make such networks completely controllable with arbitrary coupling weights between agents. Similarly, we design networks with the same given parameters that are completely controllable independent of coupling weights through a minimum number of leaders, and then also analyze their robustness. We utilize the notion of Kirchhoff index to measure network robustness to noise and structural changes. Our controllability analysis is based on novel graph-theoretic methods that offer insights on the important connection between network robustness and strong structural controllability in such networks. | To quantify controllability, several approaches have been adapted, including determining the minimum number of inputs (leader nodes) needed to (structurally or strong structurally) control a network, determining the worst-case control energy, metrics based on controllability Gramians, and so on (e.g., see @cite_7 @cite_5 ). Strong structural controllability, due to its independence on coupling weights between nodes, is a generalized notion of controllability with practical implications. There have been recent studies providing graph-theoretic characterizations of this concept @cite_20 @cite_13 @cite_17 . There are numerous other studies regarding leader selection to optimize network performance measures under various constraints, such as to minimize the deviation from consensus in a noisy environment @cite_4 @cite_2 , and to maximize various controllability measures, for instance @cite_15 @cite_18 @cite_25 @cite_14 . Recently, optimization methods are also presented to select leader nodes that exploit submodularity properties of performance measures for network robustness and structural controllability @cite_5 @cite_3 . | {
"cite_N": [
"@cite_18",
"@cite_14",
"@cite_4",
"@cite_7",
"@cite_3",
"@cite_2",
"@cite_5",
"@cite_15",
"@cite_13",
"@cite_25",
"@cite_20",
"@cite_17"
],
"mid": [
"2111725629",
"2315383458",
"2736121037",
"1938602245"
],
"abstract": [
"This paper studies the problem of controlling complex networks, i.e., the joint problem of selecting a set of control nodes and of designing a control input to steer a network to a target state. For this problem, 1) we propose a metric to quantify the difficulty of the control problem as a function of the required control energy, 2) we derive bounds based on the system dynamics (network topology and weights) to characterize the tradeoff between the control energy and the number of control nodes, and 3) we propose an open-loop control strategy with performance guarantees. In our strategy, we select control nodes by relying on network partitioning, and we design the control input by leveraging optimal and distributed control techniques. Our findings show several control limitations and properties. For instance, for Schur stable and symmetric networks: 1) if the number of control nodes is constant, then the control energy increases exponentially with the number of network nodes; 2) if the number of control nodes is a fixed fraction of the network nodes, then certain networks can be controlled with constant energy independently of the network dimension; and 3) clustered networks may be easier to control because, for sufficiently many control nodes, the control energy depends only on the controllability properties of the clusters and on their coupling strength. We validate our results with examples from power networks, social networks and epidemics spreading.",
"In this technical note, we study the controllability of diffusively coupled networks from a graph theoretic perspective. We consider leader-follower networks, where the external control inputs are injected to only some of the agents, namely the leaders. Our main result relates the controllability of such systems to the graph distances between the agents. More specifically, we present a graph topological lower bound on the rank of the controllability matrix. This lower bound is tight, and it is applicable to systems with arbitrary network topologies, coupling weights, and number of leaders. An algorithm for computing the lower bound is also provided. Furthermore, as a prominent application, we present how the proposed bound can be utilized to select a minimal set of leaders for achieving controllability, even when the coupling weights are unknown.",
"This paper investigates the robustness of strong structural controllability for linear time-invariant directed networked systems with respect to structural perturbations, including edge additions and deletions. In this regard, an algorithm is presented that is initiated by endowing each node of a network with a successive set of integers. Using this algorithm, a new notion of perfect graphs associated with a network is introduced, and tight upper bounds on the number of edges that can be added to, or removed from a network, while ensuring strong structural controllability, are derived. Moreover, we obtain a characterization of critical edges with respect to edge additions and deletions; these sets are the maximal sets of edges whose any subset can be respectively added to, or removed from a network, while preserving strong structural controllability.",
"Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power-electronic actuator placement in a model of the European power grid."
]
} |
1903.05524 | 2972959293 | In this paper, we study the relationship between two crucial properties in linear dynamical networks of diffusively coupled agents, that is controllability and robustness to noise and structural changes in the network. In particular, for any given network size and diameter, we identify networks that are maximally robust and then analyze their strong structural controllability. We do so by determining the minimum number of leaders to make such networks completely controllable with arbitrary coupling weights between agents. Similarly, we design networks with the same given parameters that are completely controllable independent of coupling weights through a minimum number of leaders, and then also analyze their robustness. We utilize the notion of Kirchhoff index to measure network robustness to noise and structural changes. Our controllability analysis is based on novel graph-theoretic methods that offer insights on the important connection between network robustness and strong structural controllability in such networks. | Very recently in @cite_21 , trade-off between controllability and fragility in complex networks is investigated. Fragility measures the smallest perturbation in edge weights to make the network unstable. Authors in @cite_21 show that networks that require small control energy, as measured by the eigen values of the controllability Gramian, to drive from one state to another are more fragile and vice versa. In our work, for control performance, we consider minimum leaders for strong structural controllability, which is independent of coupling weights; and for robustness, we utilize the Kirchhoff index which measures robustness to noise as well as to structural changes in the underlying network graph. Moreover, in this work we focus on designing and comparing extremal networks for these properties. The rest of the paper is organized as follows: Section describes preliminaries and network dynamics. Section explains the measures for robustness and controllability, and also outlines the main problems. Section presents maximally robust networks for a given @math and @math , and also analyzes their controllability. Section provides a design of maximally controllable networks and also evaluates their robustness. Finally, Section concludes the paper. | {
"cite_N": [
"@cite_21"
],
"mid": [
"2887109490",
"1938602245",
"2736121037",
"2256710691"
],
"abstract": [
"Mathematical theories and empirical evidence suggest that several complex natural and man-made systems are fragile: as their size increases, arbitrarily small and localized alterations of the system parameters may trigger system-wide failures. Examples are abundant, from perturbation of the population densities leading to extinction of species in ecological networks [1], to structural changes in metabolic networks preventing reactions [2], cascading failures in power networks [3], and the onset of epileptic seizures following alterations of structural connectivity among populations of neurons [4]. While fragility of these systems has long been recognized [5], convincing theories of why natural evolution or technological advance has failed, or avoided, to enhance robustness in complex systems are still lacking. In this paper we propose a mechanistic explanation of this phenomenon. We show that a fundamental tradeoff exists between fragility of a complex network and its controllability degree, that is, the control energy needed to drive the network state to a desirable state. We provide analytical and numerical evidence that easily controllable networks are fragile, suggesting that natural and man-made systems can either be resilient to parameters perturbation or efficient to adapt their state in response to external excitations and controls.",
"Controllability and observability have long been recognized as fundamental structural properties of dynamical systems, but have recently seen renewed interest in the context of large, complex networks of dynamical systems. A basic problem is sensor and actuator placement: choose a subset from a finite set of possible placements to optimize some real-valued controllability and observability metrics of the network. Surprisingly little is known about the structure of such combinatorial optimization problems. In this paper, we show that several important classes of metrics based on the controllability and observability Gramians have a strong structural property that allows for either efficient global optimization or an approximation guarantee by using a simple greedy heuristic for their maximization. In particular, the mapping from possible placements to several scalar functions of the associated Gramian is either a modular or submodular set function. The results are illustrated on randomly generated systems and on a problem of power-electronic actuator placement in a model of the European power grid.",
"This paper investigates the robustness of strong structural controllability for linear time-invariant directed networked systems with respect to structural perturbations, including edge additions and deletions. In this regard, an algorithm is presented that is initiated by endowing each node of a network with a successive set of integers. Using this algorithm, a new notion of perfect graphs associated with a network is introduced, and tight upper bounds on the number of edges that can be added to, or removed from a network, while ensuring strong structural controllability, are derived. Moreover, we obtain a characterization of critical edges with respect to edge additions and deletions; these sets are the maximal sets of edges whose any subset can be respectively added to, or removed from a network, while preserving strong structural controllability.",
"In this paper, we consider a robust network control problem. We consider linear unstable and uncertain discrete time plants with a network between the sensor and controller and the controller and plant. We investigate the effect of data drop out in the form of packet losses. Four distinct control schemes are explored and sufficient conditions to ensure almost sure stability of the closed loop system are derived for each of them in terms of minimum packet arrival rate and the maximum uncertainty. I. INTRODUCTION In the past decade, networked control systems (NCS) have gained much attention from both the control com- munity and the network and communication community. When compared with classical feedback control system, networked control systems have several advantages. For example, they can reduce the system wiring, make the system easy to operate and maintain and later diagnose in case of malfunctioning, and increase system agility (20). Although NCS have advantages, inserting a network in between the plant and the controller introduces many problems as well. For instance, zero-delayed sensing and actuation, perfect information and synchronization are no longer guaranteed in the new system architecture as only finite bandwidth is available and data packet drops and delays may occur due to network traffic conditions. These must be revisited and analyzed before networked control systems become prevalent. Recently, many researchers have spent effort on these issues and some significant results were obtained and many are in progress. Many of the aforementioned issues are studied separately. Tatikonda (19) and Sahai (13) have presented some interesting results in the area of control under communication constraints. Specifically, Tatikonda gave a necessary and sufficient condition on the channel data rate such that a noiseless LTI system in the closed loop is asymptotically stable. He also gave rate results for stabilizing a noisy LTI system over a digital channel. Sahai proposed the notion of anytime capacity to deal with real time estimation and control for a networked control system. In our paper (17), the authors have considered various rate issues under finite bandwidth, packet drops and finite controls. An optimal bit allocation scheme is given in (16) under the networked setting. The effect of pacekt drops on state estimation was studied by Sinopoli, et. al. in (3). It has further been investigated by many researchers including the present authors in (15) and (6)."
]
} |
cmp-lg9408015 | 2952406681 | Effective problem solving among multiple agents requires a better understanding of the role of communication in collaboration. In this paper we show that there are communicative strategies that greatly improve the performance of resource-bounded agents, but that these strategies are highly sensitive to the task requirements, situation parameters and agents' resource limitations. We base our argument on two sources of evidence: (1) an analysis of a corpus of 55 problem solving dialogues, and (2) experimental simulations of collaborative problem solving dialogues in an experimental world, Design-World, where we parameterize task requirements, agents' resources and communicative strategies. | Design-World is also based on the method used in Carletta's JAM simulation for the Edinburgh Map-Task @cite_10 . JAM is based on the Map-Task Dialogue corpus, where the goal of the task is for the planning agent, the instructor, to instruct the reactive agent, the instructee, how to get from one place to another on the map. JAM focuses on efficient strategies for recovery from error and parametrizes agents according to their communicative and error recovery strategies. Given good error recovery strategies, Carletta argues that high risk' strategies are more efficient, where efficiency is a measure of the number of utterances in the dialogue. While the focus here is different, we have shown that that the number of utterances is just one parameter for evaluating performance, and that the task definition determines when strategies are effective. | {
"cite_N": [
"@cite_10"
],
"mid": [
"2949964922",
"2118142207",
"2126810476",
"2062244797"
],
"abstract": [
"Building a dialogue agent to fulfill complex tasks, such as travel planning, is challenging because the agent has to learn to collectively complete multiple subtasks. For example, the agent needs to reserve a hotel and book a flight so that there leaves enough time for commute between arrival and hotel check-in. This paper addresses this challenge by formulating the task in the mathematical framework of options over Markov Decision Processes (MDPs), and proposing a hierarchical deep reinforcement learning approach to learning a dialogue manager that operates at different temporal scales. The dialogue manager consists of: (1) a top-level dialogue policy that selects among subtasks or options, (2) a low-level dialogue policy that selects primitive actions to complete the subtask given by the top-level policy, and (3) a global state tracker that helps ensure all cross-subtask constraints be satisfied. Experiments on a travel planning task with simulated and real users show that our approach leads to significant improvements over three baselines, two based on handcrafted rules and the other based on flat deep reinforcement learning.",
"This paper describes a corpus of unscripted, task-oriented dialogues which has been designed, digitally recorded, and transcribed to support the study of spontaneous speech on many levels. The corpus uses the Map Task (Brown, Anderson, Yule, and Shillcock, 1983) in which speakers must collaborate verbally to reproduce on one participant's map a route printed on the other's. In all, the corpus includes four conversations from each of 64 young adults and manipulates the following variables: familiarity of speakers, eye contact between speakers, matching between landmarks on the participants' maps, opportunities for contrastive stress, and phonological characteristics of landmark names. The motivations for the design are set out and basic corpus statistics are presented.",
"Human-machine dialogue is heavily influenced by speech recognition and understanding errors and it is hence desirable to train and test statistical dialogue system policies under realistic noise conditions. This paper presents a novel approach to error simulation based on statistical models for word-level utterance generation, ASR confusions, and confidence score generation. While the method explicitly models the context-dependent acoustic confusability of words and allows the system specific language model and semantic decoder to be incorporated, it is computationally inexpensive and thus potentially suitable for running thousands of training simulations. Experimental evaluation results with a POMDP-based dialogue system and the Hidden Agenda User Simulator indicate a close match between the statistical properties of real and synthetic errors.",
"This paper describes a novel method by which a spoken dialogue system can learn to choose an optimal dialogue strategy from its experience interacting with human users. The method is based on a combination of reinforcement learning and performance modeling of spoken dialogue systems. The reinforcement learning component applies Q-learning (Watkins, 1989), while the performance modeling component applies the PARADISE evaluation framework (, 1997) to learn the performance function (reward) used in reinforcement learning. We illustrate the method with a spoken dialogue system named elvis (EmaiL Voice Interactive System), that supports access to email over the phone. We conduct a set of experiments for training an optimal dialogue strategy on a corpus of 219 dialogues in which human users interact with elvis over the phone. We then test that strategy on a corpus of 18 dialogues. We show that elvis can learn to optimize its strategy selection for agent initiative, for reading messages, and for summarizing email folders."
]
} |
cs9907027 | 2949190809 | The aim of the Alma project is the design of a strongly typed constraint programming language that combines the advantages of logic and imperative programming. The first stage of the project was the design and implementation of Alma-0, a small programming language that provides a support for declarative programming within the imperative programming framework. It is obtained by extending a subset of Modula-2 by a small number of features inspired by the logic programming paradigm. In this paper we discuss the rationale for the design of Alma-0, the benefits of the resulting hybrid programming framework, and the current work on adding constraint processing capabilities to the language. In particular, we discuss the role of the logical and customary variables, the interaction between the constraint store and the program, and the need for lists. | We concentrate here on the related work involving addition of constraints to imperative languages. For an overview of related work pertaining to the language we refer the reader to @cite_0 . | {
"cite_N": [
"@cite_0"
],
"mid": [
"2034373223",
"2137628566",
"2168617729",
"2067273780"
],
"abstract": [
"We present a new approach to adding state and state-changing commands to a term language. As a formal semantics it can be seen as a generalization of predicate transformer semantics, but beyond that it brings additional opportunities for specifying and verifying programs. It is based on a construct called a phrase, which is a term of the form C r t, where C stands for a command and t stands for a term of any type. If R is boolean, C r R is closely related to the weakest precondition wp(C,R). The new theory draws together functional and imperative programming in a simple way. In particular, imperative procedures and functions are seen to be governed by the same laws as classical functions. We get new techniques for reasoning about programs, including the ability to dispense with logical variables and their attendant complexities. The theory covers both programming and specification languages, and supports unbounded demonic and angelic nondeterminacy in both commands and terms.",
"In joint work with Peter O'Hearn and others, based on early ideas of Burstall, we have developed an extension of Hoare logic that permits reasoning about low-level imperative programs that use shared mutable data structure. The simple imperative programming language is extended with commands (not expressions) for accessing and modifying shared structures, and for explicit allocation and deallocation of storage. Assertions are extended by introducing a \"separating conjunction\" that asserts that its subformulas hold for disjoint parts of the heap, and a closely related \"separating implication\". Coupled with the inductive definition of predicates on abstract data structures, this extension permits the concise and flexible description of structures with controlled sharing. In this paper, we survey the current development of this program logic, including extensions that permit unrestricted address arithmetic, dynamically allocated arrays, and recursive procedures. We also discuss promising future directions.",
"We present a unified environment for running declarative specifications in the context of an imperative object-Oriented programming language. Specifications are Alloy-like, written in first-order relational logic with transitive closure, and the imperative language is Java. By being able to mix imperative code with executable declarative specifications, the user can easily express constraint problems in place, i.e., in terms of the existing data structures and objects on the heap. After a solution is found, the heap is updated to reflect the solution, so the user can continue to manipulate the program heap in the usual imperative way. We show that this approach is not only convenient, but, for certain problems can also outperform a standard imperative implementation. We also present an optimization technique that allowed us to run our tool on heaps with almost 2000 objects.",
"This paper describes the design, implementation, and applications of the constraint logic language cc(FD). cc(FD) is a declarative nondeterministic constraint logic language over finite domains based on the cc framework [33], an extension of the Constraint Logic Programming (CLP) scheme [21]. Its constraint solver includes (nonlinear) arithmetic constraints over natural numbers which are approximated using domain and interval consistency. The main novelty of cc (FD) is the inclusion of a number of general-purpose combinators, in particular cardinality, constructive disjunction, and blocking implication, in conjunction with new constraint operations such as constraint entailment and generalization. These combinators significantly improve the operational expressiveness, extensibility, and flexibility of CLP languages and allow issues such as the definition of nonprimitive constraints and disjunctions to be tackled at the language level. The implementation of cc (FD) (about 40,000 lines of C) includes a WAM-based engine [44], optimal are-consistency algorithms based on AC-5 [40], and incremental implementation of the combinators. Results on numerous problems, including scheduling, resource allocation, sequencing, packing, and hamiltonian paths are reported and indicate that cc(FD) comes close to procedural languages on a number of combinatorial problems. In addition, a small cc(FD) program was able to find the optimal solution and prove optimality to a famous 10 10 disjunctive scheduling problem [29], which was left open for more than 20 years and finally solved in 1986. (C) 1998 Elsevier Science Inc. All rights reserved."
]
} |
cmp-lg9709007 | 1578881253 | Automatic Text Categorization (TC) is a complex and useful task for many natural language applications, and is usually performed through the use of a set of manually classified documents, a training collection. We suggest the utilization of additional resources like lexical databases to increase the amount of information that TC systems make use of, and thus, to improve their performance. Our approach integrates WordNet information with two training approaches through the Vector Space Model. The training approaches we test are the Rocchio (relevance feedback) and the Widrow-Hoff (machine learning) algorithms. Results obtained from evaluation show that the integration of WordNet clearly outperforms training approaches, and that an integrated technique can effectively address the classification of low frequency categories. | To our knowledge, lexical databases have been used only once before in TC, apart from our previous work. Hearst @cite_10 adapted a disambiguation algorithm by Yarowsky using WordNet to recognize category occurrences. Categories are made of WordNet terms, which is not the general case of standard or user-defined categories. It is a hard task to adapt WordNet subsets to pre-existing categories, especially when they are domain dependent. Hearst's approach has shown promising results confirmed by our previous work @cite_23 and present results. | {
"cite_N": [
"@cite_10",
"@cite_23"
],
"mid": [
"2038721957",
"1578881253",
"2144108169",
"2962984063"
],
"abstract": [
"Part 1 The lexical database: nouns in WordNet, George A. Miller modifiers in WordNet, Katherine J. Miller a semantic network of English verbs, Christiane Fellbaum design and implementation of the WordNet lexical database and searching software, Randee I. Tengi. Part 2: automated discovery of WordNet relations, Marti A. Hearst representing verb alterations in WordNet, Karen T. the formalization of WordNet by methods of relational concept analysis, Uta E. Priss. Part 3 Applications of WordNet: building semantic concordances, Shari performance and confidence in a semantic annotation task, Christiane WordNet and class-based probabilities, Philip Resnik combining local context and WordNet similarity for word sense identification, Claudia Leacock and Martin Chodorow using WordNet for text retrieval, Ellen M. Voorhees lexical chains as representations of context for the detection and correction of malapropisms, Graeme Hirst and David St-Onge temporal indexing through lexical chaining, Reem Al-Halimi and Rick Kazman COLOR-X - using knowledge from WordNet for conceptual modelling, J.F.M. Burg and R.P. van de Riet knowledge processing on an extended WordNet, Sanda M. Harabagiu and Dan I Moldovan appendix - obtaining and using WordNet.",
"Automatic Text Categorization (TC) is a complex and useful task for many natural language applications, and is usually performed through the use of a set of manually classified documents, a training collection. We suggest the utilization of additional resources like lexical databases to increase the amount of information that TC systems make use of, and thus, to improve their performance. Our approach integrates WordNet information with two training approaches through the Vector Space Model. The training approaches we test are the Rocchio (relevance feedback) and the Widrow-Hoff (machine learning) algorithms. Results obtained from evaluation show that the integration of WordNet clearly outperforms training approaches, and that an integrated technique can effectively address the classification of low frequency categories.",
"We propose a novel algorithm for inducing semantic taxonomies. Previous algorithms for taxonomy induction have typically focused on independent classifiers for discovering new single relationships based on hand-constructed or automatically discovered textual patterns. By contrast, our algorithm flexibly incorporates evidence from multiple classifiers over heterogenous relationships to optimize the entire structure of the taxonomy, using knowledge of a word's coordinate terms to help in determining its hypernyms, and vice versa. We apply our algorithm on the problem of sense-disambiguated noun hyponym acquisition, where we combine the predictions of hypernym and coordinate term classifiers with the knowledge in a preexisting semantic taxonomy (WordNet 2.1). We add 10,000 novel synsets to WordNet 2.1 at 84 precision, a relative error reduction of 70 over a non-joint algorithm using the same component classifiers. Finally, we show that a taxonomy built using our algorithm shows a 23 relative F-score improvement over WordNet 2.1 on an independent testset of hypernym pairs.",
"Abstract Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (, 2013; , 2014; , 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way. Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (, 2014; , 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10 F -score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https: github.com lluisgomez TextProposals ."
]
} |
cmp-lg9709007 | 1578881253 | Automatic Text Categorization (TC) is a complex and useful task for many natural language applications, and is usually performed through the use of a set of manually classified documents, a training collection. We suggest the utilization of additional resources like lexical databases to increase the amount of information that TC systems make use of, and thus, to improve their performance. Our approach integrates WordNet information with two training approaches through the Vector Space Model. The training approaches we test are the Rocchio (relevance feedback) and the Widrow-Hoff (machine learning) algorithms. Results obtained from evaluation show that the integration of WordNet clearly outperforms training approaches, and that an integrated technique can effectively address the classification of low frequency categories. | Lexical databases have been employed recently in word sense disambiguation. For example, Agirre and Rigau @cite_4 make use of a semantic distance that takes into account structural factors in WordNet for achieving good results for this task. Additionally, Resnik @cite_3 combines the use of WordNet and a text collection for a definition of a distance for disambiguating noun groupings. Although the text collection is not a training collection (in the sense of a collection of manually labeled texts for a pre-defined text processing task), his approach can be regarded as the most similar to ours in the disambiguation setting. Finally, Ng and Lee @cite_11 make use of several sources of information inside a training collection (neighborhood, part of speech, morphological form, etc.) to get good results in disambiguating unrestricted text. | {
"cite_N": [
"@cite_4",
"@cite_3",
"@cite_11"
],
"mid": [
"2165897980",
"1561908597",
"128995279",
"2952637164"
],
"abstract": [
"Words and phrases acquire meaning from the way they are used in society, from their relative semantics to other words and phrases. For computers, the equivalent of \"society\" is \"database,\" and the equivalent of \"use\" is \"a way to search the database\". We present a new theory of similarity between words and phrases based on information distance and Kolmogorov complexity. To fix thoughts, we use the World Wide Web (WWW) as the database, and Google as the search engine. The method is also applicable to other search engines and databases. This theory is then applied to construct a method to automatically extract similarity, the Google similarity distance, of words and phrases from the WWW using Google page counts. The WWW is the largest database on earth, and the context information entered by millions of independent users averages out to provide automatic semantics of useful quality. We give applications in hierarchical clustering, classification, and language translation. We give examples to distinguish between colors and numbers, cluster names of paintings by 17th century Dutch masters and names of books by English novelists, the ability to understand emergencies and primes, and we demonstrate the ability to do a simple automatic English-Spanish translation. Finally, we use the WordNet database as an objective baseline against which to judge the performance of our method. We conduct a massive randomized trial in binary classification using support vector machines to learn categories based on our Google distance, resulting in an a mean agreement of 87 percent with the expert crafted WordNet categories",
"This paper presents an adaptation of Lesk's dictionary-based word sense disambiguation algorithm. Rather than using a standard dictionary as the source of glosses for our approach, the lexical database WordNet is employed. This provides a rich hierarchy of semantic relations that our algorithm can exploit. This method is evaluated using the English lexical sample data from the SENSEVAL-2 word sense disambiguation exercise, and attains an overall accuracy of 32 . This represents a significant improvement over the 16 and 23 accuracy attained by variations of the Lesk algorithm used as benchmarks during the Senseval-2 comparative exercise among word sense disambiguation systems.",
"The WordNet lexical database is now quite large and offers broad coverage of general lexical relations in English. As is evident in this volume, WordNet has been employed as a resource for many applications in natural language processing (NLP) and information retrieval (IR). However, many potentially useful lexical relations are currently missing from WordNet. Some of these relations, while useful for NLP and IR applications, are not necessarily appropriate for a general, domain-independent lexical database. For example, WordNet’s coverage of proper nouns is rather sparse, but proper nouns are often very important in application tasks. The standard way lexicographers find new relations is to look through huge lists of concordance lines. However, culling through long lists of concordance lines can be a rather daunting task (Church and Hanks, 1990), so a method that picks out those lines that are very likely to hold relations of interest should be an improvement over more traditional techniques. This chapter describes a method for the automatic discovery of WordNetstyle lexico-semantic relations by searching for corresponding lexico-syntactic patterns in large text collections. Large text corpora are now widely available, and can be viewed as vast resources from which to mine lexical, syntactic, and semantic information. This idea is reminiscent of what is known as “data mining” in the artificial intelligence literature (Fayyad and Uthurusamy, 1996), however, in this case the ore is raw text rather than tables of numerical data. The Lexico-Syntactic Pattern Extraction (LSPE) method is meant to be useful as an automated or semi-automated aid for lexicographers and builders of domain-dependent knowledge-bases. The LSPE technique is light-weight; it does not require a knowledge base or complex interpretation modules in order to suggest new WordNet relations.",
"Word sense disambiguation algorithms, with few exceptions, have made use of only one lexical knowledge source. We describe a system which performs unrestricted word sense disambiguation (on all content words in free text) by combining different knowledge sources: semantic preferences, dictionary definitions and subject domain codes along with part-of-speech tags. The usefulness of these sources is optimised by means of a learning algorithm. We also describe the creation of a new sense tagged corpus by combining existing resources. Tested accuracy of our approach on this corpus exceeds 92 , demonstrating the viability of all-word disambiguation rather than restricting oneself to a small sample."
]
} |
cmp-lg9706006 | 2953123431 | Learning problems in the text processing domain often map the text to a space whose dimensions are the measured features of the text, e.g., its words. Three characteristic properties of this domain are (a) very high dimensionality, (b) both the learned concepts and the instances reside very sparsely in the feature space, and (c) a high variation in the number of active features in an instance. In this work we study three mistake-driven learning algorithms for a typical task of this nature -- text categorization. We argue that these algorithms -- which categorize documents by learning a linear separator in the feature space -- have a few properties that make them ideal for this domain. We then show that a quantum leap in performance is achieved when we further modify the algorithms to better address some of the specific characteristics of the domain. In particular, we demonstrate (1) how variation in document length can be tolerated by either normalizing feature weights or by using negative weights, (2) the positive effect of applying a threshold range in training, (3) alternatives in considering feature frequency, and (4) the benefits of discarding features while training. Overall, we present an algorithm, a variation of Littlestone's Winnow, which performs significantly better than any other algorithm tested on this task using a similar feature set. | The methods that are most similar to our techniques are the on-line algorithms used in @cite_16 and @cite_10 . In the first, two algorithms, a multiplicative update and additive update algorithms suggested in @cite_5 are evaluated in the domain, and are shown to perform somewhat better than Rocchio's algorithm. While both these works make use of multiplicative update algorithms, as we do, there are two major differences between those studies and the current one. First, there are some important technical differences between the algorithms used. Second, the algorithms we study here are mistake-driven; they update the weight vector only when a mistake is made, and not after every example seen. The Experts algorithm studied in @cite_10 is very similar to a basic version of the algorithm which we study here. The way we treat the negative weights is different, though, and significantly more efficient, especially in sparse domains (see ). Cohen and Singer experiment also, using the same algorithm, with more complex features (sparse n-grams) and show that, as expected, it yields better results. | {
"cite_N": [
"@cite_5",
"@cite_16",
"@cite_10"
],
"mid": [
"2097645432",
"1988790447",
"2069317438",
"2003677307"
],
"abstract": [
"In most kernel based online learning algorithms, when an incoming instance is misclassified, it will be added into the pool of support vectors and assigned with a weight, which often remains unchanged during the rest of the learning process. This is clearly insufficient since when a new support vector is added, we generally expect the weights of the other existing support vectors to be updated in order to reflect the influence of the added support vector. In this paper, we propose a new online learning method, termed Double Updating Online Learning, or DUOL for short, that explicitly addresses this problem. Instead of only assigning a fixed weight to the misclassified example received at the current trial, the proposed online learning algorithm also tries to update the weight for one of the existing support vectors. We show that the mistake bound can be improved by the proposed online learning method. We conduct an extensive set of empirical evaluations for both binary and multi-class online learning tasks. The experimental results show that the proposed technique is considerably more effective than the state-of-the-art online learning algorithms. The source code is available to public at http: www.cais.ntu.edu.sg chhoi DUOL .",
"In the first part of the paper we consider the problem of dynamically apportioning resources among a set of options in a worst-case on-line framework. The model we study can be interpreted as a broad, abstract extension of the well-studied on-line prediction model to a general decision-theoretic setting. We show that the multiplicative weight-update Littlestone?Warmuth rule can be adapted to this model, yielding bounds that are slightly weaker in some cases, but applicable to a considerably more general class of learning problems. We show how the resulting learning algorithm can be applied to a variety of problems, including gambling, multiple-outcome prediction, repeated games, and prediction of points in Rn. In the second part of the paper we apply the multiplicative weight-update technique to derive a new boosting algorithm. This boosting algorithm does not require any prior knowledge about the performance of the weak learning algorithm. We also study generalizations of the new boosting algorithm to the problem of learning functions whose range, rather than being binary, is an arbitrary finite set or a bounded segment of the real line.",
"We consider two algorithm for on-line prediction based on a linear model. The algorithms are the well-known Gradient Descent (GD) algorithm and a new algorithm, which we call EG(+ -). They both maintain a weight vector using simple updates. For the GD algorithm, the update is based on subtracting the gradient of the squared error made on a prediction. The EG(+ -) algorithm uses the components of the gradient in the exponents of factors that are used in updating the weight vector multiplicatively. We present worst-case loss bounds for EG(+ -) and compare them to previously known bounds for the GD algorithm. The bounds suggest that the losses of the algorithms are in general incomparable, but EG(+ -) has a much smaller loss if only a few components of the input are relevant for the predictions. We have performed experiments, which show that our worst-case upper bounds are quite tight already on simple artificial data.",
"We describe and analyze an online algorithm for supervised learning of pseudo-metrics. The algorithm receives pairs of instances and predicts their similarity according to a pseudo-metric. The pseudo-metrics we use are quadratic forms parameterized by positive semi-definite matrices. The core of the algorithm is an update rule that is based on successive projections onto the positive semi-definite cone and onto half-space constraints imposed by the examples. We describe an efficient procedure for performing these projections, derive a worst case mistake bound on the similarity predictions, and discuss a dual version of the algorithm in which it is simple to incorporate kernel operators. The online algorithm also serves as a building block for deriving a large-margin batch algorithm. We demonstrate the merits of the proposed approach by conducting experiments on MNIST dataset and on document filtering."
]
} |
cmp-lg9701003 | 2952751702 | In expert-consultation dialogues, it is inevitable that an agent will at times have insufficient information to determine whether to accept or reject a proposal by the other agent. This results in the need for the agent to initiate an information-sharing subdialogue to form a set of shared beliefs within which the agents can effectively re-evaluate the proposal. This paper presents a computational strategy for initiating such information-sharing subdialogues to resolve the system's uncertainty regarding the acceptance of a user proposal. Our model determines when information-sharing should be pursued, selects a focus of information-sharing among multiple uncertain beliefs, chooses the most effective information-sharing strategy, and utilizes the newly obtained information to re-evaluate the user proposal. Furthermore, our model is capable of handling embedded information-sharing subdialogues. | Grosz, Sidner and Lochbaum @cite_7 @cite_1 developed a SharedPlan approach to modelling collaborative discourse, and Sidner formulated an artificial language for modeling such discourse. Sidner viewed a collaborative planning process as proposal acceptance and proposal rejection sequences. Her artificial language treats an utterance such as Why do X? as a proposal for the hearer to provide support for his proposal to do X. However, Sidner's work is descriptive and does not provide a mechanism for determining when and how such a proposal should be made nor how responses should be formulated in information-sharing subdialogues. | {
"cite_N": [
"@cite_1",
"@cite_7"
],
"mid": [
"2148389694",
"1564910013",
"2962845465",
"2122514299"
],
"abstract": [
"A model of plan recognition in discourse must be based on intended recognition, distinguish each agent's beliefs and intentions from the other's, and avoid assumptions about the correctness or completeness of the agents' beliefs. In this paper, we present an algorithm for plan recognition that is based on the Shared-Plan model of collaboration (Grosz and Sidner, 1990; , 1990) and that satisfies these constraints.",
"This paper addresses the problem of designing a system that accepts a plan structure of the sort generated by AI planning programs and produces natural language text explaining how to execute the plan. We describe a system that generates text from plans produced by the NONLIN planner (Tate 1976).The results of our system are promising, but the texts still lack much of the smoothness of human-generated text. This is partly because, although the domain of plans seems a priori to provide rich structure that a natural language generator can use, in practice a plan that is generated without the production of explanations in mind rarely contains the kinds of information that would yield an interesting natural language account. For instance, the hierarchical organization assigned to a plan is liable to reflect more a programmer's approach to generating a class of plans efficiently than the way that a human would naturally \"chunk\" the relevant actions. Such problems are, of course, similar to those that Swartout (1983) encountered with expert systems. In addition, AI planners have a restricted view of the world that is hard to match up with the normal semantics of natural language expressions. Thus constructs that are primitive to the planner may be only clumsily or misleadingly expressed in natural language, and the range of possible natural language constructs may be artificially limited by the shallowness of the planner's representations.",
"The paper presents a knowledge representation formalism, in the form of a high-level Action Description Language (ADL) for multi-agent systems, where autonomous agents reason and act in a shared environment. Agents are autonomously pursuing individual goals, but are capable of interacting through a shared knowledge repository. In their interactions through shared portions of the world, the agents deal with problems of synchronization and concurrency; the action language allows the description of strategies to ensure a consistent global execution of the agents’ autonomously derived plans. A distributed planning problem is formalized by providing the declarative specications of the portion of the problem pertaining a single agent. Each of these specications is executable by a stand-alone CLP-based planner. The coordination among agents exploits a Linda infrastructure. The proposal is validated in a prototype implementation developed in SICStus Prolog. To appear in Theory and Practice of Logic Programming (TPLP). Research partially funded by GNCS-INdAM projects, MUR-PRIN: Innovative and multidisciplinary approaches for constraint and preference reasoning project; NSF grants IIS-0812267 and HRD-0420407; and grants 2009.010.0336 and 2010.011.0403.",
"Most previous work on trainable language generation has focused on two paradigms: (a) using a generation decisions of an existing generator. Both approaches rely on the existence of a handcrafted generation component, which is likely to limit their scalability to new domains. The first contribution of this article is to present Bagel, a fully data-driven generation method that treats the language generation task as a search for the most likely sequence of semantic concepts and realization phrases, according to Factored Language Models (FLMs). As domain utterances are not readily available for most natural language generation tasks, a large creative effort is required to produce the data necessary to represent human linguistic variation for nontrivial domains. This article is based on the assumption that learning to produce paraphrases can be facilitated by collecting data from a large sample of untrained annotators using crowdsourcing—rather than a few domain experts—by relying on a coarse meaning representation. A second contribution of this article is to use crowdsourced data to show how dialogue naturalness can be improved by learning to vary the output utterances generated for a given semantic input. Two data-driven methods for generating paraphrases in dialogue are presented: (a) by sampling from the n-best list of realizations produced by Bagel's FLM reranker; and (b) by learning a structured perceptron predicting whether candidate realizations are valid paraphrases. We train Bagel on a set of 1,956 utterances produced by 137 annotators, which covers 10 types of dialogue acts and 128 semantic concepts in a tourist information system for Cambridge. An automated evaluation shows that Bagel outperforms utterance class LM baselines on this domain. A human evaluation of 600 resynthesized dialogue extracts shows that Bagel's FLM output produces utterances comparable to a handcrafted baseline, whereas the perceptron classifier performs worse. Interestingly, human judges find the system sampling from the n-best list to be more natural than a system always returning the first-best utterance. The judges are also more willing to interact with the n-best system in the future. These results suggest that capturing the large variation found in human language using data-driven methods is beneficial for dialogue interaction."
]
} |
cmp-lg9701003 | 2952751702 | In expert-consultation dialogues, it is inevitable that an agent will at times have insufficient information to determine whether to accept or reject a proposal by the other agent. This results in the need for the agent to initiate an information-sharing subdialogue to form a set of shared beliefs within which the agents can effectively re-evaluate the proposal. This paper presents a computational strategy for initiating such information-sharing subdialogues to resolve the system's uncertainty regarding the acceptance of a user proposal. Our model determines when information-sharing should be pursued, selects a focus of information-sharing among multiple uncertain beliefs, chooses the most effective information-sharing strategy, and utilizes the newly obtained information to re-evaluate the user proposal. Furthermore, our model is capable of handling embedded information-sharing subdialogues. | Several researchers have studied the role of clarification dialogues in disambiguating user plans @cite_3 @cite_5 and in understanding referring expressions @cite_8 . developed an automated librarian that could revise its beliefs and intentions and could generate responses as an attempt to revise the user's beliefs and intentions. Although their system had rules for asking the user whether he holds a particular belief and for telling the system's attitude toward a belief, the emphasis of their work was on conflict resolution and plan disambiguation. Thus they did not investigate a comprehensive strategy for information-sharing during proposal evaluation. For example, they did not identify situations in which information-sharing is necessary, did not address how to select a focus of information-sharing when there are multiple uncertain beliefs, did not consider requesting the user's justifications for a belief, etc. In addition, they do not provide an overall dialogue planner that takes into account discourse structure and appropriately captures embedded subdialogues. | {
"cite_N": [
"@cite_5",
"@cite_3",
"@cite_8"
],
"mid": [
"2101445408",
"1990671169",
"1733954365",
"1541473376"
],
"abstract": [
"We report evaluation results for real users of a learnt dialogue management policy versus a hand-coded policy in the TALK project's \"Townlnfo\" tourist information system. The learnt policy, for filling and confirming information slots, was derived from COMMUNICATOR (flight-booking) data using reinforcement learning (RL) as described in [2], ported to the tourist information domain (using a general method that we propose here), and tested using 18 human users in 180 dialogues, who also used a state-of-the-art hand- coded dialogue policy embedded in an otherwise identical system. We found that users of the (ported) learned policy had an average gain in perceived task completion of 14.2 (from 67.6 to 81.8 at p < .03), that the hand-coded policy dialogues had on average 3.3 more system turns (p < .01), and that the user satisfaction results were comparable, even though the policy was learned for a different domain. Combining these in a dialogue reward score, we found a 14.4 increase for the learnt policy (a 23.8 relative increase, p < .03). These results are important because they show a) that results for real users are consistent with results for automatic evaluation [2] of learned policies using simulated users [3, 4], b) that a policy learned using linear function approximation over a very large policy space [2] is effective for real users, and c) that policies learned using data for one domain can be used successfully in other domains. We also present a qualitative discussion of the learnt policy.",
"HighlightsWe integrate user appraisals in a POMDP-based dialogue manager procedure.We employ additional socially-inspired rewards in a RL setup to guide the learning.A unified framework for speeding up the policy optimisation and user adaptation.We consider a potential-based reward shaping with a sample efficient RL algorithm.Evaluated using both user simulator (information retrieval) and user trials (HRI). This paper investigates some conditions under which polarized user appraisals gathered throughout the course of a vocal interaction between a machine and a human can be integrated in a reinforcement learning-based dialogue manager. More specifically, we discuss how this information can be cast into socially-inspired rewards for speeding up the policy optimisation for both efficient task completion and user adaptation in an online learning setting. For this purpose a potential-based reward shaping method is combined with a sample efficient reinforcement learning algorithm to offer a principled framework to cope with these potentially noisy interim rewards. The proposed scheme will greatly facilitate the system's development by allowing the designer to teach his system through explicit positive negative feedbacks given as hints about task progress, in the early stage of training. At a later stage, the approach will be used as a way to ease the adaptation of the dialogue policy to specific user profiles. Experiments carried out using a state-of-the-art goal-oriented dialogue management framework, the Hidden Information State (HIS), support our claims in two configurations: firstly, with a user simulator in the tourist information domain (and thus simulated appraisals), and secondly, in the context of man-robot dialogue with real user trials.",
"To participate in a dialogue a system must be capable of reasoning about its own previous utterances. Follow-up questions must be interpreted in the context of the ongoing conversation, and the system's previous contributions form part of this context. Furthermore, if a system is to be able to clarify misunderstood explanations or to elaborate on prior explanations, it must understand what it has conveyed in prior explanations. Previous approaches to generating multisentential texts have relied solely on rhetorical structuring techniques. In this paper, we argue that, to handle explanation dialogues successfully, a discourse model must include information about the intended effect of individual parts of the text on the hearer, as well as how the parts relate to one another rhetorically. We present a text planner that records this information and show how the resulting structure is used to respond appropriately to a follow-up question.",
"This paper presents a computational model of how conversational participants collaborate in order to make a referring action successful. The model is based on the view of language as goal-directed behavior. We propose that the content of a referring expression can be accounted for by the planning paradigm. Not only does this approach allow the processes of building referring expressions and identifying their referents to be captured by plan construction and plan inference, it also allows us to account for how participants clarify a referring expression by using meta-actions that reason about and manipulate the plan derivation that corresponds to the referring expression. To account for how clarification goals arise and how inferred clarification plans affect the agent, we propose that the agents are in a certain state of mind, and that this state includes an intention to achieve the goal of referring and a plan that the agents are currently considering. It is this mental state that sanctions the adoption of goals and the acceptance of inferred plans, and so acts as a link between understanding and generation."
]
} |
cmp-lg9606025 | 2952364737 | This paper presents an analysis conducted on a corpus of software instructions in French in order to establish whether task structure elements (the procedural representation of the users' tasks) are alone sufficient to control the grammatical resources of a text generator. We show that the construct of genre provides a useful additional source of control enabling us to resolve undetermined cases. | The results from our linguistic analysis are consistent with other research on sublanguages in the instructions domain, in both French and English, e.g., @cite_5 @cite_4 . Our analysis goes beyond previous work by identifying within the discourse context the means for exercising explicit control over a text generator. | {
"cite_N": [
"@cite_5",
"@cite_4"
],
"mid": [
"2047374384",
"2016630033",
"2168966090",
"2079442239"
],
"abstract": [
"This paper discusses an approach to planning the content of instructional texts. The research is based on a corpus study of 15 French procedural texts ranging from step-by-step device manuals to general artistic procedures. The approach taken starts from an AI task planner building a task representation, from which semantic carriers are selected. The most appropriate RST relations to communicate these carriers are then chosen according to heuristics developed during the corpus analysis.",
"This paper describes a system and set of algorithms for automatically inducing stand-alone monolingual part-of-speech taggers, base noun-phrase bracketers, named-entity taggers and morphological analyzers for an arbitrary foreign language. Case studies include French, Chinese, Czech and Spanish.Existing text analysis tools for English are applied to bilingual text corpora and their output projected onto the second language via statistically derived word alignments. Simple direct annotation projection is quite noisy, however, even with optimal alignments. Thus this paper presents noise-robust tagger, bracketer and lemmatizer training procedures capable of accurate system bootstrapping from noisy and incomplete initial projections.Performance of the induced stand-alone part-of-speech tagger applied to French achieves 96 core part-of-speech (POS) tag accuracy, and the corresponding induced noun-phrase bracketer exceeds 91 F-measure. The induced morphological analyzer achieves over 99 lemmatization accuracy on the complete French verbal system.This achievement is particularly noteworthy in that it required absolutely no hand-annotated training data in the given language, and virtually no language-specific knowledge or resources beyond raw text. Performance also significantly exceeds that obtained by direct annotation projection.",
"We present translation results on the shared task \"Exploiting Parallel Texts for Statistical Machine Translation\" generated by a chart parsing decoder operating on phrase tables augmented and generalized with target language syntactic categories. We use a target language parser to generate parse trees for each sentence on the target side of the bilingual training corpus, matching them with phrase table lattices built for the corresponding source sentence. Considering phrases that correspond to syntactic categories in the parse trees we develop techniques to augment (declare a syntactically motivated category for a phrase pair) and generalize (form mixed terminal and nonterminal phrases) the phrase table into a synchronous bilingual grammar. We present results on the French-to-English task for this workshop, representing significant improvements over the workshop's baseline system. Our translation system is available open-source under the GNU General Public License.",
"This paper investigates the potential for projecting linguistic annotations including part-of-speech tags and base noun phrase bracketings from one language to another via automatically word-aligned parallel corpora. First, experiments assess the accuracy of unmodified direct transfer of tags and brackets from the source language English to the target languages French and Chinese, both for noisy machine-aligned sentences and for clean hand-aligned sentences. Performance is then substantially boosted over both of these baselines by using training techniques optimized for very noisy data, yielding 94-96 core French part-of-speech tag accuracy and 90 French bracketing F-measure for stand-alone monolingual tools trained without the need for any human-annotated data in the given language."
]
} |
cmp-lg9505006 | 1617827527 | In previous work we studied a new type of DCGs, Datalog grammars, which are inspired on database theory. Their efficiency was shown to be better than that of their DCG counterparts under (terminating) OLDT-resolution. In this article we motivate a variant of Datalog grammars which allows us a meta-grammatical treatment of coordination. This treatment improves in some respects over previous work on coordination in logic grammars, although more research is needed for testing it in other respects. | A notion that is central to recent work on ellipsis, and which has been present in embryonic form, as we have seen, even in the early work on coordination, is that of parallelism as a key element in the determination of implicit meanings. Asher @cite_3 defines parallelism as | {
"cite_N": [
"@cite_3"
],
"mid": [
"2168671000",
"2119997945",
"2316213087",
"2128810992"
],
"abstract": [
"This paper reports on an empirically based system that automatically resolves VP ellipsis in the 644 examples identified in the parsed Penn Treebank. The results reported here represent the first systematic corpus-based study of VP ellipsis resolution, and the performance of the system is comparable to the best existing systems for pronoun resolution. The methodology and utilities described can be applied to other discourse-processing problems, such as other forms of ellipsis and anaphora resolution.The system determines potential antecedents for ellipsis by applying syntactic constraints, and these antecedents are ranked by combining structural and discourse preference factors such as recency, clausal relations, and parallelism. The system is evaluated by comparing its output to the choices of human coders. The system achieves a success rate of 94.8 , where success is defined as sharing of a head between the system choice and the coder choice, while a baseline recency-based scheme achieves a success rate of 75.0 by this measure. Other criteria for success are also examined. When success is defined as an exact, word-for-word match with the coder choice, the system performs with 76.0 accuracy, and the baseline approach achieves only 14.6 accuracy. Analysis of the individual components of the system shows that each of the structural and discourse constraints used are strong predictors of the antecedent of VP ellipsis.",
"We describe an implementation in Carpenter's typed feature formalism, ALE, of a discourse grammar of the kind proposed by Scha, Polanyi, et al We examine their method for resolving parallelism-dependent anaphora and show that there is a coherent feature-structural rendition of this type of grammar which uses the operations of priority union and generalization. We describe an augmentation of the ALE system to encompass these operations and we show that an appropriate choice of definition for priority union gives the desired multiple output for examples of VP-ellipsis which exhibit a strict sloppy ambiguity.",
"We give a relatively simple coinductive proof of confluence, modulo equivalence of root-active terms, of nearly orthogonal infinitary term rewriting systems. Nearly orthogonal systems allow certain root overlaps, but no non-root overlaps. Using a slightly more complicated method we also show confluence modulo equivalence of hypercollapsing terms. The condition we impose on root overlaps is similar to the condition used by Toyama in the context of finitary rewriting.",
"Given a parallel corpus, if two distinct words in language A, a1 and a2, are aligned to the same word b1 in language B, then this might signal that b1 is polysemous, or it might signal a1 and a2 are synonyms. Both assumptions with successful work have been put forward in the literature. We investigate these assumptions, along with other questions of word sense, by looking at sampled parallel sentences containing tokens of the same type in English, asking how often they mean the same thing when they are: 1. aligned to the same foreign type; and 2. aligned to different foreign types. Results for French-English and Chinese-English parallel corpora show similar behavior: Synonymy is only very weakly the more prevalent scenario, where both cases regularly occur."
]
} |
cmp-lg9505006 | 1617827527 | In previous work we studied a new type of DCGs, Datalog grammars, which are inspired on database theory. Their efficiency was shown to be better than that of their DCG counterparts under (terminating) OLDT-resolution. In this article we motivate a variant of Datalog grammars which allows us a meta-grammatical treatment of coordination. This treatment improves in some respects over previous work on coordination in logic grammars, although more research is needed for testing it in other respects. | a) neither method formulates exactly how parallelism is to be determined- it is just postulated as a prerequisite to the resolution of ellipsis (although @cite_6 speculates on possible ways of formulating this, leaving it for future work) | {
"cite_N": [
"@cite_6"
],
"mid": [
"2168671000",
"2139801570",
"2115755647",
"1999281702"
],
"abstract": [
"This paper reports on an empirically based system that automatically resolves VP ellipsis in the 644 examples identified in the parsed Penn Treebank. The results reported here represent the first systematic corpus-based study of VP ellipsis resolution, and the performance of the system is comparable to the best existing systems for pronoun resolution. The methodology and utilities described can be applied to other discourse-processing problems, such as other forms of ellipsis and anaphora resolution.The system determines potential antecedents for ellipsis by applying syntactic constraints, and these antecedents are ranked by combining structural and discourse preference factors such as recency, clausal relations, and parallelism. The system is evaluated by comparing its output to the choices of human coders. The system achieves a success rate of 94.8 , where success is defined as sharing of a head between the system choice and the coder choice, while a baseline recency-based scheme achieves a success rate of 75.0 by this measure. Other criteria for success are also examined. When success is defined as an exact, word-for-word match with the coder choice, the system performs with 76.0 accuracy, and the baseline approach achieves only 14.6 accuracy. Analysis of the individual components of the system shows that each of the structural and discourse constraints used are strong predictors of the antecedent of VP ellipsis.",
"We consider parallel algorithms working in sequential global time, for example, circuits or parallel random access machines (PRAMs). Parallel abstract state machines (parallel ASMs) are such parallel algorithms, and the parallel ASM thesis asserts that every parallel algorithm is behaviorally equivalent to a parallel ASM. In an earlier article, we axiomatized parallel algorithms, proved the ASM thesis, and proved that every parallel ASM satisfies the axioms. It turned out that we were too timid in formulating the axioms; they did not allow a parallel algorithm to create components on the fly. This restriction did not hinder us from proving that the usual parallel models, like circuits or PRAMs or even alternating Turing machines, satisfy the postulates. But it resulted in an error in our attempt to prove that parallel ASMs always satisfy the postulates. To correct the error, we liberalize our axioms and allow on-the-fly creation of new parallel components. We believe that the improved axioms accurately express what parallel algorithms ought to be. We prove the parallel thesis for the new, corrected notion of parallel algorithms, and we check that parallel ASMs satisfy the new axioms.",
"There have been a number of recent papers on aligning parallel texts at the sentence level, e.g., (1991), Gale and Church (to appear), Isabelle (1992), Kay and Rosenschein (to appear), (1992), Warwick-Armstrong and Russell (1990). On clean inputs, such as the Canadian Hansards, these methods have been very successful (at least 96 correct by sentence). Unfortunately, if the input is noisy (due to OCR and or unknown markup conventions), then these methods tend to break down because the noise can make it difficult to find paragraph boundaries, let alone sentences. This paper describes a new program, char_align, that aligns texts at the character level rather than at the sentence paragraph level, based on the cognate approach proposed by",
"Abstract This paper presents some fundamental properties of independent and- parallelism and extends its applicability by enlarging the class of goals eligible for parallel execution. A simple model of (independent) and-parallel execution is proposed and issues of correctness and efficiency are discussed in the light of this model. Two conditions, “strict” and “nonstrict” independence, are defined and then proved sufficient to ensure correctness and efficiency of parallel execution: If goals which meet these conditions are executed in parallel, the solutions obtained are the same as those produced by standard sequential execution. Also, in the absence of failure, the parallel proof procedure does not generate any additional work (with respect to standard SLD resolution), while the actual execution time is reduced. Finally, in case of failure of any of the goals, no slowdown will occur. For strict independence, the results are shown to hold independently of whether the parallel goals execute in the same environment or in separate environments. In addition, a formal basis is given for the automatic compile-time generation of independent and-parallelism: Compiletime conditions to efficiently check goal independence at run time are proposed and proved sufficient. Also, rules are given for constructing simpler conditions if information regarding the binding context of the goals to be executed in parallel is available to the compiler."
]
} |
cmp-lg9505006 | 1617827527 | In previous work we studied a new type of DCGs, Datalog grammars, which are inspired on database theory. Their efficiency was shown to be better than that of their DCG counterparts under (terminating) OLDT-resolution. In this article we motivate a variant of Datalog grammars which allows us a meta-grammatical treatment of coordination. This treatment improves in some respects over previous work on coordination in logic grammars, although more research is needed for testing it in other respects. | By examining ellipsis in the context of coordinated structures, which are parallel by definition, and by using extended DLGs, we provide a method in which parallel structures are detected and resolved through syntactic and semantic criteria, and which can be applied to either grammars using different semantic representations- feature structure, @math -calculus, or other. We exemplify using a logic based semantics along the lines of @cite_8 . | {
"cite_N": [
"@cite_8"
],
"mid": [
"2168671000",
"1568155371",
"2040110103",
"1564002882"
],
"abstract": [
"This paper reports on an empirically based system that automatically resolves VP ellipsis in the 644 examples identified in the parsed Penn Treebank. The results reported here represent the first systematic corpus-based study of VP ellipsis resolution, and the performance of the system is comparable to the best existing systems for pronoun resolution. The methodology and utilities described can be applied to other discourse-processing problems, such as other forms of ellipsis and anaphora resolution.The system determines potential antecedents for ellipsis by applying syntactic constraints, and these antecedents are ranked by combining structural and discourse preference factors such as recency, clausal relations, and parallelism. The system is evaluated by comparing its output to the choices of human coders. The system achieves a success rate of 94.8 , where success is defined as sharing of a head between the system choice and the coder choice, while a baseline recency-based scheme achieves a success rate of 75.0 by this measure. Other criteria for success are also examined. When success is defined as an exact, word-for-word match with the coder choice, the system performs with 76.0 accuracy, and the baseline approach achieves only 14.6 accuracy. Analysis of the individual components of the system shows that each of the structural and discourse constraints used are strong predictors of the antecedent of VP ellipsis.",
"Combinatory Categorial Grammar (CCG) offers a new approach to the theory of natural language grammar. Coordination, relativization, and related prosodic phenomena have been analyzed in CCG in terms of a radically revised notion of surface structure. CCG surface structures do not exhibit traditional notions of syntactic dominance and command, and do not constitute an autonomous level of representation. Instead, they reflect the computations by which a sentence may be realized or analyzed, to synchronously define a predicate-argument structure, or logical form. Surface Structure and Interpretation shows that binding and control can be captured at this level, preserving the advantages of CCG as an account of coordination and unbounded dependency.The core of the book is a detailed treatment of extraction, a focus of syntactic research since the early work of Chomsky and Ross. The topics addressed include the sources of subject-object asymmetries and phenomena attributed to the Empty Category Principle (ECP), asymmetric islands, parasitic gaps, and the relation of coordination and extraction, including their interactions with binding theory. In his conclusion, the author relates CCG to other categorial and type-driven approaches and to proposals for minimalism in linguistic theory.Linguistic Inquiry Monograph No. 30",
"Abstract This paper presents the application of geometric reasoning to the automatic construction of an assembly partial order from an attributed liaison graph representation of an assembly. The construction is based on the principle of assembly by disassembly and on the extraction of preferred subassemblies. On the basis of accessibility and manipulability criteria, the system first decomposes the given assembly into clusters of mutually inseparable parts. An abstract liaison graph is then generated wherein each cluster of mutually inseparable parts is represented as a supernode. A set of subassemblies is then generated by decomposing the abstract liaison graph into subgraphs, verifying the disassemblability of individual subgraphs, and applying the criteria for selecting preferred subassemblies to the disassemblable subgraphs. The recursive application of this process to the selected subassemblies results in a Hierarchical Partial-Order Graph (HPOG). A HPOG not only provides the precedence relations among assembly operations but also presents the temporal and spatial parallelism for implementing distributed and cooperative assembly. The system is organized under the “cooperative problem solving (CPS)” paradigm.",
"We present a novel ensemble of six methods for improving the efficiency of chart realization. The methods are couched in the framework of Combinatory Categorial Grammar (CCG), but we conjecture that they can be adapted to related grammatical frameworks as well. The ensemble includes two new methods introduced here—feature-based licensing and instantiation of edges, and caching of category combinations—in addition to four previously introduced methods—index filtering, LF chunking, edge pruning based on n-gram scores, and anytime search. We compare the relative contributions of each method using two test grammars, and show that the methods work best in combination. Our evaluation also indicates that despite the exponential worst-case complexity of the basic algorithm, the methods together can constrain the realization problem sufficiently to meet the interactive needs of natural language dialogue systems."
]
} |
cmp-lg9505038 | 2952182676 | Augmented reality is a research area that tries to embody an electronic information space within the real world, through computational devices. A crucial issue within this area, is the recognition of real world objects or situations. In natural language processing, it is much easier to determine interpretations of utterances, even if they are ill-formed, when the context or situation is fixed. We therefore introduce robust, natural language processing into a system of augmented reality with situation awareness. Based on this idea, we have developed a portable system, called the Ubiquitous Talker. This consists of an LCD display that reflects the scene at which a user is looking as if it is a transparent glass, a CCD camera for recognizing real world objects with color-bar ID codes, a microphone for recognizing a human voice and a speaker which outputs a synthesized voice. The Ubiquitous Talker provides its user with some information related to a recognized object, by using the display and voice. It also accepts requests or questions as voice inputs. The user feels as if he she is talking with the object itself through the system. | Ubiquitous computing @cite_4 proposes that very small computational devices (i.e., ubiquitous computers) be embedded and integrated into physical environments in such a way that they operate seamlessly and almost transparently. These devices are aware of their physical surroundings. In contrast to ubiquitous computers, our barcode (color-code) system is a low cost and reliable solution to making everything a computer. Suppose that every page in a book has a unique barcode. When the user opens a page, its page ID is detected by the system, so it can supply specific information regarding the page. When the user adds some information to the page, the system stores it with the page ID tagged for later retrieval. This is almost the same as having a computer in every page of the book without the cost. Our ID-aware system is better than ubiquitous computers from the viewpoint of reliability and cost-performance, since it does not require batteries and never breaks down. | {
"cite_N": [
"@cite_4"
],
"mid": [
"1975697571",
"2084069552",
"2126349848",
"2104952406"
],
"abstract": [
"There is increased interest in the use of color barcodes to encode more information per area unit than regular, black-and-white barcodes. For example, Microsoft's HCCB technology uses 4 or 8 colors per patch. Unfortunately, the observed color of a surface depends as much on the illuminant spectrum (and other viewing parameters) as on the surface reflectivity, which complicates the task of decoding the content of the barcode. A popular solution is to append to the barcode a “palette” with the reference colors. In this paper, we propose a new approach to color barcode decoding, one that does not require a reference color palette. Our algorithm decodes groups of color bars at once, exploiting the fact that joint color changes can be represented by a low-dimensional space. Decoding a group of bars (a “barcode element”) is thus equivalent to searching for the nearest subspace in a dataset. We also propose algorithms to select subsets of barcode elements that can be decoded with low error probability. Our experimental results show that our barcode decoding algorithm enables substantial information rate increase with respect to system that display a color palette, at a very low decoding error rate.",
"Ubiquitous computing is the method of enhancing computer use by making many computers available throughout the physical environment, but making them effectively invisible to the user. Since we started this work at Xerox PARC in 1988, a number of researchers around the world have begun to work in the ubiquitous computing framework. This paper explains what is new and different about the computer science in ubiquitous computing. It starts with a brief overview of ubiquitous computing, and then elaborates through a series of examples drawn from various subdisciplines of computer science: hardware components (e.g. chips), network protocols, interaction substrates (e.g. software for screens and pens), applications, privacy, and computational methods. Ubiquitous computing offers a framework for new and exciting research across the spectrum of computer science.",
"The use of colors increases the information storage capacities in barcodes. Increasing the number of colors to encode information makes the decoding a challenging task due to the dependency of the surface color on the illuminant spectrum, viewing parameters, printing device and material, color fading in addition to other nuisance parameters. A popular solution is the use of a color palette of reference colors printed with barcode. The decoding becomes more challenging if a mobile phone as a decoding device is used due to the capture of images from different distances as well as angles. In addition, the barcode images are often blurry because of incorrect focus or camera shake. We present an iterative decoding algorithm that decodes the colors of all barcode patches across the barcode by minimizing the overall observation error. Our method is able to decode colors in presence of blur using a small number of colors yet ensuring high information density.",
"Camera cellphones have become ubiquitous, thus opening a plethora of opportunities for mobile vision applications. For instance, they can enable users to access reviews or price comparisons for a product from a picture of its barcode while still in the store. Barcode reading needs to be robust to challenging conditions such as blur, noise, low resolution, or low-quality camera lenses, all of which are extremely common. Surprisingly, even state-of-the-art barcode reading algorithms fail when some of these factors come into play. One reason resides in the early commitment strategy that virtually all existing algorithms adopt: The image is first binarized and then only the binary data are processed. We propose a new approach to barcode decoding that bypasses binarization. Our technique relies on deformable templates and exploits all of the gray-level information of each pixel. Due to our parameterization of these templates, we can efficiently perform maximum likelihood estimation independently on each digit and enforce spatial coherence in a subsequent step. We show by way of experiments on challenging UPC-A barcode images from five different databases that our approach outperforms competing algorithms. Implemented on a Nokia N95 phone, our algorithm can localize and decode a barcode on a VGA image (640 × 480, JPEG compressed) in an average time of 400-500 ms."
]
} |
math9702221 | 2117609843 | This paper reexamines univariate reduction from a toric geometric point of view. We begin by constructing a binomial variant of the @math -resultant and then retailor the generalized characteristic polynomial to fully exploit sparsity in the monomial structure of any given polynomial system. We thus obtain a fast new algorithm for univariate reduction and a better understanding of the underlying projections. As a corollary, we show that a refinement of Hilbert's Tenth Problem is decidable within single-exponential time. We also show how certain multisymmetric functions of the roots of polynomial systems can be calculated with sparse resultants. | From an applied angle, our observations on degeneracies and handling polynomial systems with infinitely many roots nicely complement the work of Emiris and Canny @cite_43 . In particular, their sparse resultant based algorithms for polynomial system solving can now be made to work even when problem B occurs. Also, an added benefit of working torically (as opposed to the classical approach of working in projective space) is the increased efficiency of the sparse resultant: the resulting matrix calculations (for polynomial system solving) are much smaller and faster. In particular, whereas it was remarked in @cite_41 that Gr "obner basis methods are likely to be faster than the GCP for sparse polynomial systems, the toric GCP appears to be far more competitive in such a comparison. | {
"cite_N": [
"@cite_41",
"@cite_43"
],
"mid": [
"2141454789",
"2150285483",
"2124007994",
"2168002876"
],
"abstract": [
"We consider the problem of recovering polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random samples. In particular, we show that a Legendre s-sparse polynomial of maximal degree N can be recovered from [email protected]?slog^4(N) random samples that are chosen independently according to the Chebyshev probability measure [email protected](x)[email protected]^-^1(1-x^2)^-^1^ ^2dx. As an efficient recovery method, @?\"1-minimization can be used. We establish these results by verifying the restricted isometry property of a preconditioned random Legendre matrix. We then extend these results to a large class of orthogonal polynomial systems, including the Jacobi polynomials, of which the Legendre polynomials are a special case. Finally, we transpose these results into the setting of approximate recovery for functions in certain infinite-dimensional function spaces.",
"We develop a framework for proving approximation limits of polynomial size linear programs (LPs) from lower bounds on the nonnegative ranks of suitably defined matrices. This framework yields unconditional impossibility results that are applicable to any LP as opposed to only programs generated by hierarchies. Using our framework, we prove that O(n1 2-ϵ)-approximations for CLIQUE require LPs of size 2nΩ(ϵ). This lower bound applies to LPs using a certain encoding of CLIQUE as a linear optimization problem. Moreover, we establish a similar result for approximations of semidefinite programs by LPs. Our main technical ingredient is a quantitative improvement of Razborov’s [38] rectangle corruption lemma for the high error regime, which gives strong lower bounds on the nonnegative rank of shifts of the unique disjointness matrix.",
"The massive parallelism of graphics processing units (GPUs) oers tremendous performance in many high-performance computing applications. While dense linear algebra readily maps to such platforms, harnessing this potential for sparse matrix computations presents additional challenges. Given its role in iterative methods for solving sparse linear systems and eigenvalue problems, sparse matrix-vector multiplication (SpMV) is of singular importance in sparse linear algebra. In this paper we discuss data structures and algorithms for SpMV that are eciently implemented on the CUDA platform for the ne-grained parallel architecture of the GPU. Given the memory-bound nature of SpMV, we emphasize memory bandwidth eciency and compact storage formats. We consider a broad spectrum of sparse matrices, from those that are well-structured and regular to highly irregular matrices with large imbalances in the distribution of nonzeros per matrix row. We develop methods to exploit several common forms of matrix structure while oering alternatives which accommodate greater irregularity. On structured, grid-based matrices we achieve performance of 36 GFLOP s in single precision and 16 GFLOP s in double precision on a GeForce GTX 280 GPU. For unstructured nite-element matrices, we observe performance in excess of 15 GFLOP s and 10 GFLOP s in single and double precision respectively. These results compare favorably to prior state-of-the-art studies of SpMV methods on conventional multicore processors. Our double precision SpMV performance is generally two and a half times that of a Cell BE with 8 SPEs and more than ten times greater than that of a quad-core Intel Clovertown system.",
"We give the first representation-independent hardness result for agnostically learning halfspaces with respect to the Gaussian distribution. We reduce from the problem of learning sparse parities with noise with respect to the uniform distribution on the hypercube (sparse LPN), a notoriously hard problem in theoretical computer science and show that any algorithm for agnostically learning halfspaces requires n (log (1 )) time under the assumption that k-sparse LPN requires n ( k) time, ruling out a polynomial time algorithm for the problem. As far as we are aware, this is the first representation-independent hardness result for supervised learning when the underlying distribution is restricted to be a Gaussian. We also show that the problem of agnostically learning sparse polynomials with respect to the Gaussian distribution in polynomial time is as hard as PAC learning DNFs on the uniform distribution in polynomial time. This complements the surprising result of Andoni et. al. [1] who show that sparse polynomials are learnable under random Gaussian noise in polynomial time. Taken together, these results show the inherent diculty of designing supervised learning algorithms in Euclidean space even in the presence of strong distributional assumptions. Our results use a novel embedding of random labeled examples from the uniform distribution on the Boolean hypercube into random labeled examples from the Gaussian distribution that allows us to relate the hardness of learning problems on two dierent domains and distributions. 1998 ACM Subject Classification F.2.0. Analysis of Algorithms and Problem Complexity"
]
} |
cmp-lg9503009 | 2951769629 | This paper presents an algorithm for tagging words whose part-of-speech properties are unknown. Unlike previous work, the algorithm categorizes word tokens in context instead of word types. The algorithm is evaluated on the Brown Corpus. | The simplest part-of-speech taggers are bigram or trigram models @cite_12 @cite_1 . They require a relatively large tagged training text. Transformation-based tagging as introduced by also requires a hand-tagged text for training. No pretagged text is necessary for Hidden Markov Models @cite_7 @cite_13 @cite_2 . Still, a lexicon is needed that specifies the possible parts of speech for every word. have shown that the effort necessary to construct the part-of-speech lexicon can be considerably reduced by combining learning procedures and a partial part-of-speech categorization elicited from an informant. | {
"cite_N": [
"@cite_7",
"@cite_1",
"@cite_2",
"@cite_13",
"@cite_12"
],
"mid": [
"2100796029",
"2112861996",
"2142523187",
"2046224275"
],
"abstract": [
"Abstract A system for part-of-speech tagging is described. It is based on a hidden Markov model which can be trained using a corpus of untagged text. Several techniques are introduced to achieve robustness while maintaining high performance. Word equivalence classes are used to reduce the overall number of parameters in the model, alleviating the problem of obtaining reliable estimates for individual words. The context for category prediction is extended selectively via predefined networks, rather than using a uniformly higher-order conditioning which requires exponentially more parameters with increasing context. The networks are embedded in a first-order model and network structure is developed by analysis of erros, and also via linguistic considerations. To compensate for incomplete dictionary coverage, the categories of unknown words are predicted using both local context and suffix information to aid in disambiguation. An evaluation was performed using the Brown corpus and different dictionary arrangements were investigated. The techniques result in a model that correctly tags approximately 96 of the text. The flexibility of the methods is illustrated by their use in a tagging program for French.",
"In this paper we present some experiments on the use of a probabilistic model to tag English text, i.e. to assign to each word the correct tag (part of speech) in the context of the sentence. The main novelty of these experiments is the use of untagged text in the training of the model. We have used a simple triclass Markov model and are looking for the best way to estimate the parameters of this model, depending on the kind and amount of training data provided. Two approaches in particular are compared and combined:using text that has been tagged by hand and computing relative frequency counts,using text without tags and training the model as a hidden Markov process, according to a Maximum Likelihood principle.Experminents show that the best training is obtained by using as much tagged text as possible. They also show that Maximum Likelihood training, the procedure that is routinely used to estimate hidden Markov models parameters from training data, will not necessarily improve the tagging accuracy. In fact, it will generally degrade this accuracy, except when only a limited amount of hand-tagged text is available.",
"We describe a novel approach for inducing unsupervised part-of-speech taggers for languages that have no labeled training data, but have translated text in a resource-rich language. Our method does not assume any knowledge about the target language (in particular no tagging dictionary is assumed), making it applicable to a wide array of resource-poor languages. We use graph-based label propagation for cross-lingual knowledge transfer and use the projected labels as features in an unsupervised model (Berg-, 2010). Across eight European languages, our approach results in an average absolute improvement of 10.4 over a state-of-the-art baseline, and 16.7 over vanilla hidden Markov models induced with the Expectation Maximization algorithm.",
"We present an implementation of a part-of-speech tagger based on a hidden Markov model. The methodology enables robust and accurate tagging with few resource requirements. Only a lexicon and some unlabeled training text are required. Accuracy exceeds 96 . We describe implementation strategies and optimizations which result in high-speed operation. Three applications for tagging are described: phrase recognition; word sense disambiguation; and grammatical function assignment."
]
} |
cmp-lg9503009 | 2951769629 | This paper presents an algorithm for tagging words whose part-of-speech properties are unknown. Unlike previous work, the algorithm categorizes word tokens in context instead of word types. The algorithm is evaluated on the Brown Corpus. | The present paper is concerned with tagging languages and sublanguages for which no a priori knowledge about grammatical categories is available, a situation that occurs often in practice @cite_4 . | {
"cite_N": [
"@cite_4"
],
"mid": [
"2142523187",
"2140497009",
"2097227294",
"1574126082"
],
"abstract": [
"We describe a novel approach for inducing unsupervised part-of-speech taggers for languages that have no labeled training data, but have translated text in a resource-rich language. Our method does not assume any knowledge about the target language (in particular no tagging dictionary is assumed), making it applicable to a wide array of resource-poor languages. We use graph-based label propagation for cross-lingual knowledge transfer and use the projected labels as features in an unsupervised model (Berg-, 2010). Across eight European languages, our approach results in an average absolute improvement of 10.4 over a state-of-the-art baseline, and 16.7 over vanilla hidden Markov models induced with the Expectation Maximization algorithm.",
"In this paper we address the problem of multilingual part-of-speech tagging for resource-poor languages. We use parallel data to transfer part-of-speech information from resource-rich to resourcepoor languages. Additionally, we use a small amount of annotated data to learn to “correct” errors from projected approach such as tagset mismatch between languages, achieving state-of-the-art performance (91.3 ) across 8 languages. Our approach is based on modest data requirements, and uses minimum divergence classification. For situations where no universal tagset mapping is available, we propose an alternate method, resulting in state-of-the-art 85.6 accuracy on the resource-poor language Malagasy.",
"Language identification is a simple problem that becomes much more difficult when its usual assumptions are broken. In this paper we consider the task of classifying short segments of text in closely-related languages for the Discriminating Similar Languages shared task, which is broken into six subtasks, (A) Bosnian, Croatian, and Serbian, (B) Indonesian and Malay, (C) Czech and Slovak, (D) Brazilian and European Portuguese, (E) Argentinian and Peninsular Spanish, and (F) American and British English. We consider a number of different methods to boost classification performance, such as feature selection and data filtering, but we ultimately find that",
"Despite significant recent work, purely unsupervised techniques for part-of-speech (POS) tagging have not achieved useful accuracies required by many language processing tasks. Use of parallel text between resource-rich and resource-poor languages is one source of weak supervision that significantly improves accuracy. However, parallel text is not always available and techniques for using it require multiple complex algorithmic steps. In this paper we show that we can build POS-taggers exceeding state-of-the-art bilingual methods by using simple hidden Markov models and a freely available and naturally growing resource, the Wiktionary. Across eight languages for which we have labeled data to evaluate results, we achieve accuracy that significantly exceeds best unsupervised and parallel text methods. We achieve highest accuracy reported for several languages and show that our approach yields better out-of-domain taggers than those trained using fully supervised Penn Treebank."
]
} |
cmp-lg9503009 | 2951769629 | This paper presents an algorithm for tagging words whose part-of-speech properties are unknown. Unlike previous work, the algorithm categorizes word tokens in context instead of word types. The algorithm is evaluated on the Brown Corpus. | In a previous paper @cite_15 , we trained a neural network to disambiguate part-of-speech using context; however, no information about the word that is to be categorized was used. This scheme fails for cases like The soldiers rarely come home.'' vs. The soldiers will come home.'' where the context is identical and information about the lexical item in question ( rarely'' vs. will'') is needed in combination with context for correct classification. In this paper, we will compare two tagging algorithms, one based on classifying word types, and one based on classifying words-plus-context. | {
"cite_N": [
"@cite_15"
],
"mid": [
"2100796029",
"2123489126",
"2949482574",
"2308486447"
],
"abstract": [
"Abstract A system for part-of-speech tagging is described. It is based on a hidden Markov model which can be trained using a corpus of untagged text. Several techniques are introduced to achieve robustness while maintaining high performance. Word equivalence classes are used to reduce the overall number of parameters in the model, alleviating the problem of obtaining reliable estimates for individual words. The context for category prediction is extended selectively via predefined networks, rather than using a uniformly higher-order conditioning which requires exponentially more parameters with increasing context. The networks are embedded in a first-order model and network structure is developed by analysis of erros, and also via linguistic considerations. To compensate for incomplete dictionary coverage, the categories of unknown words are predicted using both local context and suffix information to aid in disambiguation. An evaluation was performed using the Brown corpus and different dictionary arrangements were investigated. The techniques result in a model that correctly tags approximately 96 of the text. The flexibility of the methods is illustrated by their use in a tagging program for French.",
"Most previous corpus-based algorithms disambiguate a word with a classifier trained from previous usages of the same word. Separate classifiers have to be trained for different words. We present an algorithm that uses the same knowledge sources to disambiguate different words. The algorithm does not require a sense-tagged corpus and exploits the fact that two different words are likely to have similar meanings if they occur in identical local contexts.",
"This paper describes an experimental comparison of seven different learning algorithms on the problem of learning to disambiguate the meaning of a word from context. The algorithms tested include statistical, neural-network, decision-tree, rule-based, and case-based classification techniques. The specific problem tested involves disambiguating six senses of the word line'' using the words in the current and proceeding sentence as context. The statistical and neural-network methods perform the best on this particular problem and we discuss a potential reason for this observed difference. We also discuss the role of bias in machine learning and its importance in explaining performance differences observed on specific problems.",
"We present a deep hierarchical recurrent neural network for sequence tagging. Given a sequence of words, our model employs deep gated recurrent units on both character and word levels to encode morphology and context information, and applies a conditional random field layer to predict the tags. Our model is task independent, language independent, and feature engineering free. We further extend our model to multi-task and cross-lingual joint training by sharing the architecture and parameters. Our model achieves state-of-the-art results in multiple languages on several benchmark tasks including POS tagging, chunking, and NER. We also demonstrate that multi-task and cross-lingual joint training can improve the performance in various cases."
]
} |
cmp-lg9607020 | 1497662183 | In this paper, we propose a novel strategy which is designed to enhance the accuracy of the parser by simplifying complex sentences before parsing. This approach involves the separate parsing of the constituent sub-sentences within a complex sentence. To achieve that, the divide-and-conquer strategy first disambiguates the roles of the link words in the sentence and segments the sentence based on these roles. The separate parse trees of the segmented sub-sentences and the noun phrases within them are then synthesized to form the final parse. To evaluate the effects of this strategy on parsing, we compare the original performance of a dependency parser with the performance when it is enhanced with the divide-and-conquer strategy. When tested on 600 sentences of the IPSM'95 data sets, the enhanced parser saw a considerable error reduction of 21.2 in its accuracy. | Magerman discussed the poor performance of his parser SPATTER on sentences with conjunctions @cite_9 . As a result, he augmented SPATTER's probabilistic model with an additional conjunction feature. However, he reported that though SPATTER's performance on conjoined sentences improves with the conjunction feature, a significant percentage is still misanalyzed, as the simple conjunction feature model finds it difficult to capture long distance dependencies. | {
"cite_N": [
"@cite_9"
],
"mid": [
"2121127625",
"2111305191",
"2141099517",
"910440858"
],
"abstract": [
"This article considers approaches which rerank the output of an existing probabilistic parser. The base parser produces a set of candidate parses for each input sentence, with associated probabilities that define an initial ranking of these parses. A second model then attempts to improve upon this initial ranking, using additional features of the tree as evidence. The strength of our approach is that it allows a tree to be represented as an arbitrary set of features, without concerns about how these features interact or overlap and without the need to define a derivation or a generative model which takes these features into account. We introduce a new method for the reranking task, based on the boosting approach to ranking problems described in (1998). We apply the boosting method to parsing the Wall Street Journal treebank. The method combined the log-likelihood under a baseline model (that of Collins [1999]) with evidence from an additional 500,000 features over parse trees that were not included in the original model. The new model achieved 89.75 F-measure, a 13 relative decrease in F measure error over the baseline model's score of 88.2 . The article also introduces a new algorithm for the boosting approach which takes advantage of the sparsity of the feature space in the parsing data. Experiments show significant efficiency gains for the new algorithm over the obvious implementation of the boosting approach. We argue that the method is an appealing alternative—in terms of both simplicity and efficiency—to work on feature selection methods within log-linear (maximum-entropy) models. Although the experiments in this article are on natural language parsing (NLP), the approach should be applicable to many other NLP problems which are naturally framed as ranking tasks, for example, speech recognition, machine translation, or natural language generation.",
"In the past several years, a number of different language modeling improvements over simple trigram models have been found, including caching, higher-order n -grams, skipping, interpolated Kneser?Ney smoothing, and clustering. We present explorations of variations on, or of the limits of, each of these techniques, including showing that sentence mixture models may have more potential. While all of these techniques have been studied separately, they have rarely been studied in combination. We compare a combination of all techniques together to a Katz smoothed trigram model with no count cutoffs. We achieve perplexity reductions between 38 and 50 (1 bit of entropy), depending on training data size, as well as a word error rate reduction of 8.9 . Our perplexity reductions are perhaps the highest reported compared to a fair baseline.",
"Models for many natural language tasks benefit from the flexibility to use overlapping, non-independent features. For example, the need for labeled data can be drastically reduced by taking advantage of domain knowledge in the form of word lists, part-of-speech tags, character n-grams, and capitalization patterns. While it is difficult to capture such inter-dependent features with a generative probabilistic model, conditionally-trained models, such as conditional maximum entropy models, handle them well. There has been significant work with such models for greedy sequence modeling in NLP (Ratnaparkhi, 1996; , 1998).",
"The goal of relation extraction is to detect relations between two entities in free text. In a sentence, a relation instance usually comprises a small number of words, which yields a sparse feature representation. To make better use of limited information in a relation instance, parsing trees and combined features are employed widely to capture the local dependencies of relation instances. However, the performance of parsing tree-based systems is often degraded by chunking or parsing errors. Combined features are used widely, but few studies have addressed how features can be combined to achieve optimal performance. Thus, in this study, we propose a feature assembly method for relation extraction. Six types of candidate features (head noun, POS tag, n-gram, omni-word, etc.) are employed as atomic features and six constraint conditions (singleton, position, syntax, etc.) are used to combine these features in different settings. Depending on the utilization of candidate features, different constraint conditions can be explored to achieve the optimal extraction performance. Our method is effective for capturing local dependencies and it reduces the errors caused by inaccurate parsing. We tested the proposed method using the ACE 2005 Chinese and English corpora, and it achieved state-of-the-art performance, where it was significantly superior to existing methods."
]
} |
cmp-lg9607020 | 1497662183 | In this paper, we propose a novel strategy which is designed to enhance the accuracy of the parser by simplifying complex sentences before parsing. This approach involves the separate parsing of the constituent sub-sentences within a complex sentence. To achieve that, the divide-and-conquer strategy first disambiguates the roles of the link words in the sentence and segments the sentence based on these roles. The separate parse trees of the segmented sub-sentences and the noun phrases within them are then synthesized to form the final parse. To evaluate the effects of this strategy on parsing, we compare the original performance of a dependency parser with the performance when it is enhanced with the divide-and-conquer strategy. When tested on 600 sentences of the IPSM'95 data sets, the enhanced parser saw a considerable error reduction of 21.2 in its accuracy. | Jones explored another type of link words, the punctuations @cite_7 . He showed successfully that for longer sentences, a grammar which makes use of punctuation massively outperforms one which does not. Besides improving parsing accuracy, the use of punctuations also significantly reduces the number of possible parses generated. However, as theoretical forays into the syntactic roles of punctuation are limited, the grammar he designed can only cover a subset of all punctuation phenomena. Unexpected constructs thus cause the grammar to fail completely. | {
"cite_N": [
"@cite_7"
],
"mid": [
"2039117335",
"2155558996",
"1527783480",
"2091232155"
],
"abstract": [
"Few, if any, current NLP systems make any significant use of punctuation. Intuitively, a treatment of punctuation seems necessary to the analysis and production of text. Whilst this has been suggested in the fields of discourse structure, it is still unclear whether punctuation can help in the syntactic field. This investigation attempts to answer this question by parsing some corpus-based material with two similar grammars --- one including rules for punctuation, the other ignoring it. The punctuated grammar significantly out-performs the unpunctuated one, and so the conclusion is that punctuation can play a useful role in syntactic processing.",
"We present a novel corpus-driven approach towards grammar approximation for a linguistically deep Head-driven Phrase Structure Grammar. With an unlexicalized probabilistic context-free grammar obtained by Maximum Likelihood Estimate on a large-scale automatically annotated corpus, we are able to achieve parsing accuracy higher than the original HPSG-based model. Different ways of enriching the annotations carried by the approximating PCFG are proposed and compared. Comparison to the state-of-the-art latent-variable PCFG shows that our approach is more suitable for the grammar approximation task where training data can be acquired automatically. The best approximating PCFG achieved ParsEv-al F1 accuracy of 84.13 . The high robustness of the PCFG suggests it is a viable way of achieving full coverage parsing with the hand-written deep linguistic grammars.",
"We present three approaches for unsupervised grammar induction that are sensitive to data complexity and apply them to Klein and Manning's Dependency Model with Valence. The first, Baby Steps, bootstraps itself via iterated learning of increasingly longer sentences and requires no initialization. This method substantially exceeds Klein and Manning's published scores and achieves 39.4 accuracy on Section 23 (all sentences) of the Wall Street Journal corpus. The second, Less is More, uses a low-complexity subset of the available data: sentences up to length 15. Focusing on fewer but simpler examples trades off quantity against ambiguity; it attains 44.1 accuracy, using the standard linguistically-informed prior and batch training, beating state-of-the-art. Leapfrog, our third heuristic, combines Less is More with Baby Steps by mixing their models of shorter sentences, then rapidly ramping up exposure to the full training set, driving up accuracy to 45.0 . These trends generalize to the Brown corpus; awareness of data complexity may improve other parsing models and unsupervised algorithms.",
"Despite the advances made by modern parsing strategies such as PEG, LL(*), GLR, and GLL, parsing is not a solved problem. Existing approaches suffer from a number of weaknesses, including difficulties supporting side-effecting embedded actions, slow and or unpredictable performance, and counter-intuitive matching strategies. This paper introduces the ALL(*) parsing strategy that combines the simplicity, efficiency, and predictability of conventional top-down LL(k) parsers with the power of a GLR-like mechanism to make parsing decisions. The critical innovation is to move grammar analysis to parse-time, which lets ALL(*) handle any non-left-recursive context-free grammar. ALL(*) is O(n4) in theory but consistently performs linearly on grammars used in practice, outperforming general strategies such as GLL and GLR by orders of magnitude. ANTLR 4 generates ALL(*) parsers and supports direct left-recursion through grammar rewriting. Widespread ANTLR 4 use (5000 downloads month in 2013) provides evidence that ALL(*) is effective for a wide variety of applications."
]
} |
1908.11823 | 2970705892 | In this work we investigate to which extent one can recover class probabilities within the empirical risk minimization (ERM) paradigm. The main aim of our paper is to extend existing results and emphasize the tight relations between empirical risk minimization and class probability estimation. Based on existing literature on excess risk bounds and proper scoring rules, we derive a class probability estimator based on empirical risk minimization. We then derive fairly general conditions under which this estimator will converge, in the L1-norm and in probability, to the true class probabilities. Our main contribution is to present a way to derive finite sample L1-convergence rates of this estimator for different surrogate loss functions. We also study in detail which commonly used loss functions are suitable for this estimation problem and finally discuss the setting of model-misspecification as well as a possible extension to asymmetric loss functions. | perform an analysis similar to ours as they also investigate convergence properties of a class probability estimator, their start and end point are very different though. While we start with theory from proper scoring rules, their paper directly starts with the class probability estimator as found in @cite_5 . The problem is that the estimator in @cite_5 only appears as a side remark, and it is unclear to which extent this is the best, only or even the correct choice. This paper contributes to close this gap and answers those questions. They show that the estimator converges to a unique class probability model. In relation to this one can view this paper as an investigation of this unique class probability model and we give necessary and sufficient conditions that lead to convergence to the true class probabilities. Note also that their paper uses convex methods, while our work in comparison draws from the theory of proper scoring rules. | {
"cite_N": [
"@cite_5"
],
"mid": [
"2126022166",
"2141253686",
"2019575783",
"2963185791"
],
"abstract": [
"This paper studies two-class (or binary) classification of elements X in R k that allows for a reject option. Based on n independent copies of the pair of random variables (X,Y ) with X 2 R k and Y 2 0,1 , we consider classifiers f(X) that render three possible outputs: 0, 1 and R. The option R expresses doubt and is to be used for few observations that are hard to classify in an automatic way. Chow (1970) derived the optimal rule minimizing the risk P f(X) 6 Y, f(X) 6 R + dP f(X) = R . This risk function subsumes that the cost of making a wrong decision equals 1 and that of utilizing the reject option is d. We show that the classification problem hinges on the behavior of the regression function (x) = E(Y |X = x) near d and 1 d. (Here d 2 [0,1 2] as the other cases turn out to be trivial.) Classification rules can be categorized into plug-in estimators and empirical risk minimizers. Both types are considered here and we prove that the rates of convergence of the risk of any estimate depends on P | (X) d| + P | (X) (1 d)| and on the quality of the estimate for or an appropriate measure of the size of the class of classifiers, in case of plug-in rules and empirical risk minimizers, respectively. We extend the mathematical framework even further by dierentiating between costs associated with the two possible errors: predicting f(X) = 0 whilst Y = 1 and predicting f(X) = 1 whilst Y = 0. Such situations are common in, for instance, medical studies where misclassifying a sick patient as healthy is worse than the opposite.",
"It sometimes happens (for instance in case control studies) that a classifier is trained on a data set that does not reflect the true a priori probabilities of the target classes on real-world data. This may have a negative effect on the classification accuracy obtained on the real-world data set, especially when the classifier's decisions are based on the a posteriori probabilities of class membership. Indeed, in this case, the trained classifier provides estimates of the a posteriori probabilities that are not valid for this real-world data set (they rely on the a priori probabilities of the training set). Applying the classifier as is (without correcting its outputs with respect to these new conditions) on this new data set may thus be suboptimal. In this note, we present a simple iterative procedure for adjusting the outputs of the trained classifier with respect to these new a priori probabilities without having to refit the model, even when these probabilities are not known in advance. As a by-product, estimates of the new a priori probabilities are also obtained. This iterative algorithm is a straightforward instance of the expectation-maximization (EM) algorithm and is shown to maximize the likelihood of the new data. Thereafter, we discuss a statistical test that can be applied to decide if the a priori class probabilities have changed from the training set to the real-world data. The procedure is illustrated on different classification problems involving a multilayer neural network, and comparisons with a standard procedure for a priori probability estimation are provided. Our original method, based on the EM algorithm, is shown to be superior to the standard one for a priori probability estimation. Experimental results also indicate that the classifier with adjusted outputs always performs better than the original one in terms of classification accuracy, when the a priori probability conditions differ from the training set to the real-world data. The gain in classification accuracy can be significant.",
"We discuss a strategy for polychotomous classification that involves estimating class probabilities for each pair of classes, and then coupling the estimates together. The coupling model is similar to the Bradley-Terry method for paired comparisons. We study the nature of the class probability estimates that arise, and examine the performance of the procedure in real and simulated data sets. Classifiers used include linear discriminants, nearest neighbors, adaptive nonlinear methods and the support vector machine.",
"Multiclass classification problems such as image annotation can involve a large number of classes. In this context, confusion between classes can occur, and single label classification may be misleading. We provide in the present paper a general device that, given an unlabeled dataset and a score function defined as the minimizer of some empirical and convex risk, outputs a set of class labels, instead of a single one. Interestingly, this procedure does not require that the unlabeled dataset explores the whole classes. Even more, the method is calibrated to control the expected size of the output set while minimizing the classification risk. We show the statistical optimality of the procedure and establish rates of convergence under the Tsybakov margin condition. It turns out that these rates are linear on the number of labels. We apply our methodology to convex aggregation of confidence sets based on the V-fold cross validation principle also known as the superlearning principle. We illustrate the numerical performance of the procedure on real data and demonstrate in particular that with moderate expected size, w.r.t. the number of labels, the procedure provides significant improvement of the classification risk."
]
} |
1908.11823 | 2970705892 | In this work we investigate to which extent one can recover class probabilities within the empirical risk minimization (ERM) paradigm. The main aim of our paper is to extend existing results and emphasize the tight relations between empirical risk minimization and class probability estimation. Based on existing literature on excess risk bounds and proper scoring rules, we derive a class probability estimator based on empirical risk minimization. We then derive fairly general conditions under which this estimator will converge, in the L1-norm and in probability, to the true class probabilities. Our main contribution is to present a way to derive finite sample L1-convergence rates of this estimator for different surrogate loss functions. We also study in detail which commonly used loss functions are suitable for this estimation problem and finally discuss the setting of model-misspecification as well as a possible extension to asymmetric loss functions. | The probability estimator we use also appears in @cite_10 where it is used to derive excess risk bounds, referred to as surrogate risk bounds, for bipartite ranking. The methods used are very similar in the sense that these are also based on proper scoring rules. The difference is again the focus, and even more so the conditions used. They introduce the notion of strongly proper scoring rules which directly allows one to bound the @math -norm, and thus the @math -norm, of the estimator in terms of the excess risk. We show that convergence can be achieved already under milder conditions. We then use the concept of modulus of continuity, of which strongly proper scoring rules are a particular case, to analyze the rate of convergence. | {
"cite_N": [
"@cite_10"
],
"mid": [
"2547508527",
"2126022166",
"2141789531",
"2598300585"
],
"abstract": [
"We present an algorithm for the statistical learning setting with a bounded exp-concave loss in @math dimensions that obtains excess risk @math with probability at least @math . The core technique is to boost the confidence of recent in-expectation @math excess risk bounds for empirical risk minimization (ERM), without sacrificing the rate, by leveraging a Bernstein condition which holds due to exp-concavity. We also show that with probability @math the standard ERM method obtains excess risk @math . We further show that a regret bound for any online learner in this setting translates to a high probability excess risk bound for the corresponding online-to-batch conversion of the online learner. Lastly, we present two high probability bounds for the exp-concave model selection aggregation problem that are quantile-adaptive in a certain sense. The first bound is a purely exponential weights type algorithm, obtains a nearly optimal rate, and has no explicit dependence on the Lipschitz continuity of the loss. The second bound requires Lipschitz continuity but obtains the optimal rate.",
"This paper studies two-class (or binary) classification of elements X in R k that allows for a reject option. Based on n independent copies of the pair of random variables (X,Y ) with X 2 R k and Y 2 0,1 , we consider classifiers f(X) that render three possible outputs: 0, 1 and R. The option R expresses doubt and is to be used for few observations that are hard to classify in an automatic way. Chow (1970) derived the optimal rule minimizing the risk P f(X) 6 Y, f(X) 6 R + dP f(X) = R . This risk function subsumes that the cost of making a wrong decision equals 1 and that of utilizing the reject option is d. We show that the classification problem hinges on the behavior of the regression function (x) = E(Y |X = x) near d and 1 d. (Here d 2 [0,1 2] as the other cases turn out to be trivial.) Classification rules can be categorized into plug-in estimators and empirical risk minimizers. Both types are considered here and we prove that the rates of convergence of the risk of any estimate depends on P | (X) d| + P | (X) (1 d)| and on the quality of the estimate for or an appropriate measure of the size of the class of classifiers, in case of plug-in rules and empirical risk minimizers, respectively. We extend the mathematical framework even further by dierentiating between costs associated with the two possible errors: predicting f(X) = 0 whilst Y = 1 and predicting f(X) = 1 whilst Y = 0. Such situations are common in, for instance, medical studies where misclassifying a sick patient as healthy is worse than the opposite.",
"The problem of bipartite ranking, where instances are labeled positive or negative and the goal is to learn a scoring function that minimizes the probability of mis-ranking a pair of positive and negative instances (or equivalently, that maximizes the area under the ROC curve), has been widely studied in recent years. A dominant theoretical and algorithmic framework for the problem has been to reduce bipartite ranking to pairwise classification; in particular, it is well known that the bipartite ranking regret can be formulated as a pairwise classification regret, which in turn can be upper bounded using usual regret bounds for classification problems. Recently, (2011) showed regret bounds for bipartite ranking in terms of the regret associated with balanced versions of the standard (non-pairwise) logistic and exponential losses. In this paper, we show that such (nonpairwise) surrogate regret bounds for bipartite ranking can be obtained in terms of a broad class of proper (composite) losses that we term as strongly proper. Our proof technique is much simpler than that of (2011), and relies on properties of proper (composite) losses as elucidated recently by Reid and Williamson (2010, 2011) and others. Our result yields explicit surrogate bounds (with no hidden balancing terms) in terms of a variety of strongly proper losses, including for example logistic, exponential, squared and squared hinge losses as special cases. An important consequence is that standard algorithms minimizing a (non-pairwise) strongly proper loss, such as logistic regression and boosting algorithms (assuming a universal function class and appropriate regularization), are in fact consistent for bipartite ranking; moreover, our results allow us to quantify the bipartite ranking regret in terms of the corresponding surrogate regret. We also obtain tighter surrogate bounds under certain low-noise conditions via a recent result of Clemencon and Robbiano (2011).",
"The problem of estimating the phases (angles) of a complex unit-modulus vector @math from their noisy pairwise relative measurements @math , where @math is a complex-valued Gaussian random matrix, is known as phase synchronization. The maximum likelihood estimator (MLE) is a solution to a unit--modulus-constrained quadratic programming problem, which is nonconvex. Existing works have proposed polynomial-time algorithms such as a semidefinite programming (SDP) relaxation or the generalized power method (GPM). Numerical experiments suggest that both of these methods succeed with high probability for @math up to @math , yet existing analyses only confirm this observation for @math up to @math . In this paper, we bridge the gap by proving that the SDP relaxation is tight for @math , and GPM converges to the global optimum under the same regime. Moreover, we establish a linear convergence rate for GPM, and derive a tight..."
]
} |
1908.11829 | 2970633507 | We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that @math -respects (cuts two edges of) a spanning tree @math of a graph @math . This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an @math -edge, @math -vertex graph in @math time with high probability. This performance matches that achieved by Karger, thereby matching the current state of the art. | On an unweighted graph, Gabow @cite_13 showed how to compute the minimum cut in @math time, where @math is the capacity of the minimum cut. Karger @cite_29 improved Gabow's algorithm by applying random sampling, achieving runtime @math The @math notation hides @math factors. Las Vegas. The sampling technique developed by Karger @cite_29 , combined with the tree-packing technique devised by Gabow @cite_13 , form the basis of Karger's near-linear time minimum cut algorithm @cite_16 . As previously mentioned, this technique finds the minimum cut in an undirected, weighted graph in @math time with high probability. | {
"cite_N": [
"@cite_29",
"@cite_16",
"@cite_13"
],
"mid": [
"2064493067",
"2963972775",
"1964510837",
"1543491698"
],
"abstract": [
"We present a deterministic near-linear time algorithm that computes the edge-connectivity and finds a minimum cut for a simple undirected unweighted graph G with n vertices and m edges. This is the first o(mn) time deterministic algorithm for the problem. In near-linear time we can also construct the classic cactus representation of all minimum cuts. The previous fastest deterministic algorithm by Gabow from STOC'91 took O(m+λ2 n), where λ is the edge connectivity, but λ could be Ω(n). At STOC'96 Karger presented a randomized near linear time Monte Carlo algorithm for the minimum cut problem. As he points out, there is no better way of certifying the minimality of the returned cut than to use Gabow's slower deterministic algorithm and compare sizes. Our main technical contribution is a near-linear time algorithm that contracts vertex sets of a simple input graph G with minimum degree δ, producing a multigraph G with O(m δ) edges which preserves all minimum cuts of G with at least two vertices on each side. In our deterministic near-linear time algorithm, we will decompose the problem via low-conductance cuts found using PageRank a la Brin and Page (1998), as analyzed by Andersson, Chung, and Lang at FOCS'06. Normally such algorithms for low-conductance cuts are randomized Monte Carlo algorithms, because they rely on guessing a good start vertex. However, in our case, we have so much structure that no guessing is needed.",
"We present a deterministic algorithm that computes the edge-connectivity of a graph in near-linear time. This is for a simple undirected unweighted graph G with n vertices and m edges. This is the first o(mn) time deterministic algorithm for the problem. Our algorithm is easily extended to find a concrete minimum edge-cut. In fact, we can construct the classic cactus representation of all minimum cuts in near-linear time. The previous fastest deterministic algorithm by Gabow from STOC '91 took O(m+λ2 n), where λ is the edge connectivity, but λ can be as big as n−1. Karger presented a randomized near-linear time Monte Carlo algorithm for the minimum cut problem at STOC’96, but the returned cut is only minimum with high probability. Our main technical contribution is a near-linear time algorithm that contracts vertex sets of a simple input graph G with minimum degree Δ, producing a multigraph Ḡ with O(m Δ) edges, which preserves all minimum cuts of G with at least two vertices on each side. In our deterministic near-linear time algorithm, we will decompose the problem via low-conductance cuts found using PageRank a la Brin and Page (1998), as analyzed by Andersson, Chung, and Lang at FOCS’06. Normally, such algorithms for low-conductance cuts are randomized Monte Carlo algorithms, because they rely on guessing a good start vertex. However, in our case, we have so much structure that no guessing is needed.",
"We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a \"semiduality\" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized (Monte Carlo) algorithm that finds a minimum cut in an m -edge, n -vertex graph with high probability in O (m log 3 n ) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O( m log 3 n ) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O ( n 2 log 3 n ). Other applications of the tree-packing approach are new, nearly tight bounds on the number of near-minimum cuts a graph may have and a new data structure for representing them in a space-efficient manner.",
"We describe random sampling techniques for approximately solving problems that involve cuts and flows in graphs. We give a near-linear-time randomized combinatorial construction that transforms any graph on @math vertices into an @math -edge graph on the same vertices whose cuts have approximately the same value as the original graph's. In this new graph, for example, we can run the @math -time maximum flow algorithm of Goldberg and Rao to find an @math - @math minimum cut in @math time. This corresponds to a @math -times minimum @math - @math cut in the original graph. A related approach leads to a randomized divide-and-conquer algorithm producing an approximately maximum flow in @math time. Our algorithm can also be used to improve the running time of sparsest cut approximation algorithms from @math to @math and to accelerate several other recent cut and flow algorithms. Our algorithms are based on a general theorem analyzing the concent..."
]
} |
1908.11829 | 2970633507 | We consider the minimum cut problem in undirected, weighted graphs. We give a simple algorithm to find a minimum cut that @math -respects (cuts two edges of) a spanning tree @math of a graph @math . This procedure can be used in place of the complicated subroutine given in Karger's near-linear time minimum cut algorithm (J. ACM, 2000). We give a self-contained version of Karger's algorithm with the new procedure, which is easy to state and relatively simple to implement. It produces a minimum cut on an @math -edge, @math -vertex graph in @math time with high probability. This performance matches that achieved by Karger, thereby matching the current state of the art. | A recent development uses low-conductance cuts to find the minimum cut in an undirected unweighted graph. This technique was introduced by Kawarabayashi and Thorup @cite_2 , who achieve near-linear deterministic time (estimated to be @math ). This was improved by Henzinger, Rao, and Wang @cite_31 , who achieve deterministic runtime @math . Although the algorithm of is more efficient than Karger's algorithm @cite_16 on unweighted graphs, the procedure, as well as the one it was based on @cite_2 are quite involved, thus making them largely impractical for implementation purposes. | {
"cite_N": [
"@cite_31",
"@cite_16",
"@cite_2"
],
"mid": [
"2963972775",
"2064493067",
"2569104968",
"1564010364"
],
"abstract": [
"We present a deterministic algorithm that computes the edge-connectivity of a graph in near-linear time. This is for a simple undirected unweighted graph G with n vertices and m edges. This is the first o(mn) time deterministic algorithm for the problem. Our algorithm is easily extended to find a concrete minimum edge-cut. In fact, we can construct the classic cactus representation of all minimum cuts in near-linear time. The previous fastest deterministic algorithm by Gabow from STOC '91 took O(m+λ2 n), where λ is the edge connectivity, but λ can be as big as n−1. Karger presented a randomized near-linear time Monte Carlo algorithm for the minimum cut problem at STOC’96, but the returned cut is only minimum with high probability. Our main technical contribution is a near-linear time algorithm that contracts vertex sets of a simple input graph G with minimum degree Δ, producing a multigraph Ḡ with O(m Δ) edges, which preserves all minimum cuts of G with at least two vertices on each side. In our deterministic near-linear time algorithm, we will decompose the problem via low-conductance cuts found using PageRank a la Brin and Page (1998), as analyzed by Andersson, Chung, and Lang at FOCS’06. Normally, such algorithms for low-conductance cuts are randomized Monte Carlo algorithms, because they rely on guessing a good start vertex. However, in our case, we have so much structure that no guessing is needed.",
"We present a deterministic near-linear time algorithm that computes the edge-connectivity and finds a minimum cut for a simple undirected unweighted graph G with n vertices and m edges. This is the first o(mn) time deterministic algorithm for the problem. In near-linear time we can also construct the classic cactus representation of all minimum cuts. The previous fastest deterministic algorithm by Gabow from STOC'91 took O(m+λ2 n), where λ is the edge connectivity, but λ could be Ω(n). At STOC'96 Karger presented a randomized near linear time Monte Carlo algorithm for the minimum cut problem. As he points out, there is no better way of certifying the minimality of the returned cut than to use Gabow's slower deterministic algorithm and compare sizes. Our main technical contribution is a near-linear time algorithm that contracts vertex sets of a simple input graph G with minimum degree δ, producing a multigraph G with O(m δ) edges which preserves all minimum cuts of G with at least two vertices on each side. In our deterministic near-linear time algorithm, we will decompose the problem via low-conductance cuts found using PageRank a la Brin and Page (1998), as analyzed by Andersson, Chung, and Lang at FOCS'06. Normally such algorithms for low-conductance cuts are randomized Monte Carlo algorithms, because they rely on guessing a good start vertex. However, in our case, we have so much structure that no guessing is needed.",
"We study the problem of computing a minimum cut in a simple, undirected graph and give a deterministic O(m log2 n log log2 n) time algorithm. This improves both on the best previously known deterministic running time of O(m log12 n) (Kawarabayashi and Thorup [12]) and the best previously known randomized running time of O(m log3 n) (Karger [11]) for this problem, though Karger's algorithm can be further applied to weighted graphs. Our approach is using the Kawarabayashi and Thorup graph compression technique, which repeatedly finds low-conductance cuts. To find these cuts they use a diffusion-based local algorithm. We use instead a flow-based local algorithm and suitably adjust their framework to work with our flow-based subroutine. Both flow and diffusion based methods have a long history of being applied to finding low conductance cuts. Diffusion algorithms have several variants that are naturally local while it is more complicated to make flow methods local. Some prior work has proven nice properties for local flow based algorithms with respect to improving or cleaning up low conductance cuts. Our flow subroutine, however, is the first that is both local and produces low conductance cuts. Thus, it may be of independent interest.",
"Thorup and Zwick showed that for any integer k≥ 1, it is possible to preprocess any positively weighted undirected graph G=(V,E), with |E|=m and |V|=n, in O(kmn @math ) expected time and construct a data structure (a (2k–1)-approximate distance oracle) of size O(kn @math ) capable of returning in O(k) time an approximation @math of the distance δ(u,v) from u to v in G that satisfies @math , for any two vertices u,v∈ V. They also presented a much slower O(kmn) time deterministic algorithm for constructing approximate distance oracle with the slightly larger size of O(kn @math log n). We present here a deterministic O(kmn @math ) time algorithm for constructing oracles of size O(kn @math ). Our deterministic algorithm is slower than the randomized one by only a logarithmic factor. Using our derandomization technique we also obtain the first deterministic linear time algorithm for constructing optimal spanners of weighted graphs. We do that by derandomizing the O(km) expected time algorithm of Baswana and Sen (ICALP’03) for constructing (2k–1)-spanners of size O(kn @math ) of weighted undirected graphs without incurring any asymptotic loss in the running time or in the size of the spanners produced."
]
} |
1908.11656 | 2971124296 | We propose LU-Net -- for LiDAR U-Net, a new method for the semantic segmentation of a 3D LiDAR point cloud. Instead of applying some global 3D segmentation method such as PointNet, we propose an end-to-end architecture for LiDAR point cloud semantic segmentation that efficiently solves the problem as an image processing problem. We first extract high-level 3D features for each point given its 3D neighbors. Then, these features are projected into a 2D multichannel range-image by considering the topology of the sensor. Thanks to these learned features and this projection, we can finally perform the segmentation using a simple U-Net segmentation network, which performs very well while being very efficient. In this way, we can exploit both the 3D nature of the data and the specificity of the LiDAR sensor. This approach outperforms the state-of-the-art by a large margin on the KITTI dataset, as our experiments show. Moreover, this approach operates at 24fps on a single GPU. This is above the acquisition rate of common LiDAR sensors which makes it suitable for real-time applications. | Semantic segmentation of images has been the subject of many works in the past years. Recently, deep learning methods have largely outperformed previous ones. The method presented in @cite_16 was the first to propose an accurate end-to-end network for semantic segmentation. This method is based on an encoder in which each scale is used to compute the final segmentation. Only a few month later, the U-Net architecture @cite_20 was proposed for the semantic segmentation of medical images. This method is an encoder-decoder able to provide highly precise segmentation. These two methods have largely influenced recent works such as DeeplabV3+ @cite_11 that uses dilated convolutional layers and spatial pyramid pooling modules in an encoder-decoder structure to improve the quality of the prediction. Other approaches explore multi-scale architectures to produce and fuse segmentations performed at different scales @cite_15 @cite_7 . Most of these methods are able to produce very accurate results, on various types of images (medical, outdoor, indoor). The survey @cite_1 of CNNs methods for semantic segmentation provides a deep analysis of some recent techniques. This work demonstrates that a combination of various components would most likely improve segmentation results on wider classes of objects. | {
"cite_N": [
"@cite_7",
"@cite_1",
"@cite_15",
"@cite_16",
"@cite_20",
"@cite_11"
],
"mid": [
"2587989515",
"2950975557",
"2559597482",
"1923115158"
],
"abstract": [
"In this paper we address the problem of semantic labeling of indoor scenes on RGB-D data. With the availability of RGB-D cameras, it is expected that additional depth measurement will improve the accuracy. Here we investigate a solution how to incorporate complementary depth information into a semantic segmentation framework by making use of convolutional neural networks (CNNs). Recently encoder-decoder type fully convolutional CNN architectures have achieved a great success in the field of semantic segmentation. Motivated by this observation we propose an encoder-decoder type network, where the encoder part is composed of two branches of networks that simultaneously extract features from RGB and depth images and fuse depth features into the RGB feature maps as the network goes deeper. Comprehensive experimental evaluations demonstrate that the proposed fusion-based architecture achieves competitive results with the state-of-the-art methods on the challenging SUN RGB-D benchmark obtaining 76.27 global accuracy, 48.30 average class accuracy and 37.29 average intersection-over-union score.",
"State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions. Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train. In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets. Code to reproduce the experiments is available here : this https URL",
"State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.,,,,,, Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.,,,,,, In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.",
"The topic of semantic segmentation has witnessed considerable progress due to the powerful features learned by convolutional neural networks (CNNs) [13]. The current leading approaches for semantic segmentation exploit shape information by extracting CNN features from masked image regions. This strategy introduces artificial boundaries on the images and may impact the quality of the extracted features. Besides, the operations on the raw image domain require to compute thousands of networks on a single image, which is time-consuming. In this paper, we propose to exploit shape information via masking convolutional features. The proposal segments (e.g., super-pixels) are treated as masks on the convolutional feature maps. The CNN features of segments are directly masked out from these maps and used to train classifiers for recognition. We further propose a joint method to handle objects and “stuff” (e.g., grass, sky, water) in the same framework. State-of-the-art results are demonstrated on benchmarks of PASCAL VOC and new PASCAL-CONTEXT, with a compelling computational speed."
]
} |
1908.11656 | 2971124296 | We propose LU-Net -- for LiDAR U-Net, a new method for the semantic segmentation of a 3D LiDAR point cloud. Instead of applying some global 3D segmentation method such as PointNet, we propose an end-to-end architecture for LiDAR point cloud semantic segmentation that efficiently solves the problem as an image processing problem. We first extract high-level 3D features for each point given its 3D neighbors. Then, these features are projected into a 2D multichannel range-image by considering the topology of the sensor. Thanks to these learned features and this projection, we can finally perform the segmentation using a simple U-Net segmentation network, which performs very well while being very efficient. In this way, we can exploit both the 3D nature of the data and the specificity of the LiDAR sensor. This approach outperforms the state-of-the-art by a large margin on the KITTI dataset, as our experiments show. Moreover, this approach operates at 24fps on a single GPU. This is above the acquisition rate of common LiDAR sensors which makes it suitable for real-time applications. | Recently, SqueezeSeg, a novel approach for the semantic segmentation of a LiDAR point cloud represented as a spherical range-image @cite_14 , was proposed. This representation allows to perform the segmentation by using simple 2D convolutions, which lowers the computational cost while keeping good accuracy. The architecture is derived from the SqueezeNet image segmentation method @cite_13 . The intermediate layers are "fire layers", layers made of one squeeze module and one expansion module. Later on, the same authors improved this method in @cite_3 by adding a context aggregation module and by considering focal loss and batch normalization to improve the quality of the segmentation. A similar range-image approach was proposed in @cite_17 , where a Atrous Spatial Pyramid Pooling @cite_4 and squeeze reweighting layer @cite_8 are added. Finally, in @cite_10 , the authors offer to input a range-image directly to the U-Net architecture described in @cite_20 . This method achieves results that are comparable to the state of the art of range-image methods with a much simpler and more intuitive architecture. All these range-image methods succeed in real-time computation. However, their results often lack of accuracy which limits their usage in real scenarios. | {
"cite_N": [
"@cite_14",
"@cite_4",
"@cite_8",
"@cite_10",
"@cite_3",
"@cite_13",
"@cite_20",
"@cite_17"
],
"mid": [
"2962912109",
"2766577666",
"2890441886",
"2946747865"
],
"abstract": [
"We address semantic segmentation of road-objects from 3D LiDAR point clouds. In particular, we wish to detect and categorize instances of interest, such as cars, pedestrians and cyclists. We formulate this problem as a point-wise classification problem, and propose an end-to-end pipeline called SqueezeSeg based on convolutional neural networks (CNN): the CNN takes a transformed LiDAR point cloud as input and directly outputs a point-wise label map, which is then refined by a conditional random field (CRF) implemented as a recurrent layer. Instance-level labels are then obtained by conventional clustering algorithms. Our CNN model is trained on LiDAR point clouds from the KITTI [1] dataset, and our point-wise segmentation labels are derived from 3D bounding boxes from KITTI. To obtain extra training data, we built a LiDAR simulator into Grand Theft Auto @math (GTA-V), a popular video game, to synthesize large amounts of realistic training data. Our experiments show that SqueezeSeg achieves high accuracy with astonishingly fast and stable runtime ( @math ms per frame), highly desirable for autonomous driving. Furthermore, additionally training on synthesized data boosts validation accuracy on real-world data. Our source code is open-source released111https: github.com BichenWuUCB SqueezeSeg. The paper is accompanied by a video222https: youtu.be Xyn5Zd31m6s containing a high level introduction and demonstrations of this work.",
"In this paper, we address semantic segmentation of road-objects from 3D LiDAR point clouds. In particular, we wish to detect and categorize instances of interest, such as cars, pedestrians and cyclists. We formulate this problem as a point- wise classification problem, and propose an end-to-end pipeline called SqueezeSeg based on convolutional neural networks (CNN): the CNN takes a transformed LiDAR point cloud as input and directly outputs a point-wise label map, which is then refined by a conditional random field (CRF) implemented as a recurrent layer. Instance-level labels are then obtained by conventional clustering algorithms. Our CNN model is trained on LiDAR point clouds from the KITTI dataset, and our point-wise segmentation labels are derived from 3D bounding boxes from KITTI. To obtain extra training data, we built a LiDAR simulator into Grand Theft Auto V (GTA-V), a popular video game, to synthesize large amounts of realistic training data. Our experiments show that SqueezeSeg achieves high accuracy with astonishingly fast and stable runtime (8.7 ms per frame), highly desirable for autonomous driving applications. Furthermore, additionally training on synthesized data boosts validation accuracy on real-world data. Our source code and synthesized data will be open-sourced.",
"Earlier work demonstrates the promise of deep-learning-based approaches for point cloud segmentation; however, these approaches need to be improved to be practically useful. To this end, we introduce a new model SqueezeSegV2 that is more robust to dropout noise in LiDAR point clouds. With improved model structure, training loss, batch normalization and additional input channel, SqueezeSegV2 achieves significant accuracy improvement when trained on real data. Training models for point cloud segmentation requires large amounts of labeled point-cloud data, which is expensive to obtain. To sidestep the cost of collection and annotation, simulators such as GTA-V can be used to create unlimited amounts of labeled, synthetic data. However, due to domain shift, models trained on synthetic data often do not generalize well to the real world. We address this problem with a domain-adaptation training pipeline consisting of three major components: 1) learned intensity rendering, 2) geodesic correlation alignment, and 3) progressive domain calibration. When trained on real data, our new model exhibits segmentation accuracy improvements of 6.0-8.6 over the original SqueezeSeg. When training our new model on synthetic data using the proposed domain adaptation pipeline, we nearly double test accuracy on real-world data, from 29.0 to 57.4 . Our source code and synthetic dataset will be open-sourced.",
"This paper proposes RIU-Net (for Range-Image U-Net), the adaptation of a popular semantic segmentation network for the semantic segmentation of a 3D LiDAR point cloud. The point cloud is turned into a 2D range-image by exploiting the topology of the sensor. This image is then used as input to a U-net. This architecture has already proved its efficiency for the task of semantic segmentation of medical images. We demonstrate how it can also be used for the accurate semantic segmentation of a 3D LiDAR point cloud and how it represents a valid bridge between image processing and 3D point cloud processing. Our model is trained on range-images built from KITTI 3D object detection dataset. Experiments show that RIU-Net, despite being very simple, offers results that are comparable to the state-of-the-art of range-image based methods. Finally, we demonstrate that this architecture is able to operate at 90fps on a single GPU, which enables deployment for real-time segmentation."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Several temporal logics have been proposed that make joint use of actions and propositions on states: ACTL* @cite_34 , RLTL @cite_0 , SE-LTL @cite_4 , TLR* @cite_25 . There are also transition structures with mixed ingredients: LKS @cite_4 , L2TS @cite_54 . Although all of them bring actions (or transitions) to the focus, none tries to be utterly egalitarian, as we do. | {
"cite_N": [
"@cite_4",
"@cite_54",
"@cite_0",
"@cite_34",
"@cite_25"
],
"mid": [
"1602925513",
"2167352300",
"2140028191",
"1986424898"
],
"abstract": [
"A temporal logic based on actions rather than on states is presented and interpreted over labelled transition systems. It is proved that it has essentially the same power as CTL*, a temporal logic interpreted over Kripke structures. The relationship between the two logics is established by introducing two mappings from Kripke structures to labelled transition systems and viceversa and two transformation functions between the two logics which preserve truth. A branching time version of the action based logic is also introduced. This new logic for transition systems can play an important role as an intermediate between Hennessy-Milner Logic and the modal μ-calculus. It is sufficiently expressive to describe safety and liveness properties but permits model checking in linear time.",
"Three temporal logics are introduced which induce on labeled transition systems the same identifications as branching bisimulation. The first is an extension of Hennessy-Milner logic with a kind of unit operator. The second is another extension of Hennessy-Milner logic which exploits the power of backward modalities. The third is CTL* with the next-time operator interpreted over all paths, not just over maximal ones. A relevant side effect of the last characterization is that it sets a bridge between the state- and event-based approaches to the semantics of concurrent systems. >",
"A unifying framework for the study of real-time logics is developed. In analogy to the untimed case, the underlying classical theory of timed state sequences is identified, it is shown to be nonelementarily decidable, and its complexity and expressiveness are used as a point of reference. Two orthogonal extensions of PTL (timed propositional temporal logic and metric temporal logic) that inherit its appeal are defined: they capture elementary, yet expressively complete, fragments of the theory of timed state sequences, and thus are excellent candidates for practical real-time specification languages.",
"This paper presents the linear temporal logic of rewriting (LTLR) model checker under localized fairness assumptions for the Maude system. The linear temporal logic of rewriting extends linear temporal logic (LTL) with spatial action patterns that describe patterns of rewriting events. Since LTLR generalizes and extends various state-based and event-based logics, mixed properties involving both state propositions and actions, such as fairness properties, can be naturally expressed in LTLR. However, often the needed fairness assumptions cannot even be expressed as propositional temporal logic formulas because they are parametric, that is, they correspond to universally quantified temporal logic formulas. Such universal quantification is succinctly captured by the notion of localized fairness; for example, fairness is localized to the object name parameter in object fairness conditions. We summarize the foundations, and present the language design and implementation of the Maude Fair LTLR model checker, developed at the C++ level within the Maude system by extending the existing Maude LTL model checker. Our tool provides not only an efficient LTLR model checking algorithm under parameterized fairness assumptions but also suitable specification languages as part of its user interface. The expressiveness and effectiveness of the Maude Fair LTLR model checker are illustrated by five case studies. This is the first tool we are aware of that can model check temporal logic properties under parameterized fairness assumptions. We develop the LTLR model checker under localized fairness assumptions.The linear temporal logic of rewriting (LTLR) extends LTL with action patterns.Localized fairness specifies parameterized fairness over generic system entities.We present the foundations, the language design, and the implementation of our tool.We illustrate the expressiveness and effectiveness of our tool with case studies."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | The best move towards egalitarianism we know of is the temporal logic of rewriting, TLR* (which was an inspiration for the present work). The explanations and examples in @cite_25 are good arguments for an egalitarian view. Consider this formula to express fairness in the execution of a rule with label @math : @math . The proposition @math is on states: it means that the current state of the system admits the rule @math to be applied to it. But @math is on transitions: it means that a transition is being executed according to rule @math . The simplicity of the formula is only possible by being egalitarian. | {
"cite_N": [
"@cite_25"
],
"mid": [
"1986424898",
"1577069963",
"2127508398",
"1599831144"
],
"abstract": [
"This paper presents the linear temporal logic of rewriting (LTLR) model checker under localized fairness assumptions for the Maude system. The linear temporal logic of rewriting extends linear temporal logic (LTL) with spatial action patterns that describe patterns of rewriting events. Since LTLR generalizes and extends various state-based and event-based logics, mixed properties involving both state propositions and actions, such as fairness properties, can be naturally expressed in LTLR. However, often the needed fairness assumptions cannot even be expressed as propositional temporal logic formulas because they are parametric, that is, they correspond to universally quantified temporal logic formulas. Such universal quantification is succinctly captured by the notion of localized fairness; for example, fairness is localized to the object name parameter in object fairness conditions. We summarize the foundations, and present the language design and implementation of the Maude Fair LTLR model checker, developed at the C++ level within the Maude system by extending the existing Maude LTL model checker. Our tool provides not only an efficient LTLR model checking algorithm under parameterized fairness assumptions but also suitable specification languages as part of its user interface. The expressiveness and effectiveness of the Maude Fair LTLR model checker are illustrated by five case studies. This is the first tool we are aware of that can model check temporal logic properties under parameterized fairness assumptions. We develop the LTLR model checker under localized fairness assumptions.The linear temporal logic of rewriting (LTLR) extends LTL with action patterns.Localized fairness specifies parameterized fairness over generic system entities.We present the foundations, the language design, and the implementation of our tool.We illustrate the expressiveness and effectiveness of our tool with case studies.",
"The concept of fair division is as old as civil society itself. Aristotle's \"equal treatment of equals\" was the first step toward a formal definition of distributive fairness. The concept of collective welfare, more than two centuries old, is a pillar of modern economic analysis. Reflecting fifty years of research, this book examines the contribution of modern microeconomic thinking to distributive justice. Taking the modern axiomatic approach, it compares normative arguments of distributive justice and their relation to efficiency and collective welfare. The book begins with the epistemological status of the axiomatic approach and the four classic principles of distributive justice: compensation, reward, exogenous rights, and fitness. It then presents the simple ideas of equal gains, equal losses, and proportional gains and losses. The book discusses three cardinal interpretations of collective welfare: Bentham's \"utilitarian\" proposal to maximize the sum of individual utilities, the Nash product, and the egalitarian leximin ordering. It also discusses the two main ordinal definitions of collective welfare: the majority relation and the Borda scoring method. The Shapley value is the single most important contribution of game theory to distributive justice. A formula to divide jointly produced costs or benefits fairly, it is especially useful when the pattern of externalities renders useless the simple ideas of equality and proportionality. The book ends with two versatile methods for dividing commodities efficiently and fairly when only ordinal preferences matter: competitive equilibrium with equal incomes and egalitarian equivalence. The book contains a wealth of empirical examples and exercises.",
"We consider a task of scheduling with a common deadline on a single machine. Every player reports to a scheduler the length of his job and the scheduler needs to finish as many jobs as possible by the deadline. For this simple problem, there is a truthful mechanism that achieves maximum welfare in dominant strategies. The new aspect of our work is that in our setting players are uncertain about their own job lengths, and hence are incapable of providing truthful reports (in the strict sense of the word). For a probabilistic model for uncertainty we show that even with relatively little uncertainty, no mechanism can guarantee a constant fraction of the maximum welfare. To remedy this situation, we introduce a new measure of economic efficiency, based on a notion of a fair share of a player, and design mechanisms that are Ω(1)-fair. In addition to its intrinsic appeal, our notion of fairness implies good approximation of maximum welfare in several cases of interest. In our mechanisms the machine is sometimes left idle even though there are jobs that want to use it. We show that this unfavorable aspect is unavoidable, unless one gives up other favorable aspects (e.g., give up Ω(1)-fairness). We also consider a qualitative approach to uncertainty as an alternative to the probabilistic quantitative model. In the qualitative approach we break away from solution concepts such as dominant strategies (they are no longer well defined), and instead suggest an axiomatic approach, which amounts to listing desirable properties for mechanisms. We provide a mechanism that satisfies these properties.",
"This paper presents the temporal logic of rewriting @math . Syntactically, @math is a very simple extension of @math which just adds action atoms, in the form of spatial action patterns, to @math . Semantically and pragmatically, however, when used together with rewriting logic as a \"tandem\" of system specification and property specification logics, it has substantially more expressive power than purely state-based logics like @math , or purely action-based logics like A- @math . Furthermore, it avoids the system property mismatch problem experienced in state-based or action-based logics, which makes many useful properties inexpressible in those frameworks without unnatural changes to a system's specification. The advantages in expresiveness of @math are gained without losing the ability to use existing tools and algorithms to model check its properties: a faithful translation of models and formulas is given that allows verifying @math properties with @math model checkers."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Plain TLR*, as described in @cite_25 , stays a step away from our goal, because transitions are given by proof terms, that univocally determine one origin state and one destination state for each transition. TLR* uses proof-term patterns (called ), that are used literally in temporal formulas. The problem is that, in this way, a TLR* formula is tied to a particular algebraic specification (one in which the pattern makes sense). In contrast, an LTL or CTL formula is meaningful by itself and can be used on any system specification by using atomic proposition definitions as interfaces. Notably, propositions on transitions have been added to plain TLR*, in some way or another, in all the implementations of model checkers for (the linear-time subset of) TLR* that we are aware of @cite_36 @cite_51 @cite_14 @cite_9 . None of them, however, tries to allow a same proposition to be defined both in states and in transitions, which we need for flexible synchronization. | {
"cite_N": [
"@cite_14",
"@cite_36",
"@cite_9",
"@cite_51",
"@cite_25"
],
"mid": [
"2109187338",
"2151284417",
"2167672803",
"1986424898"
],
"abstract": [
"Temporal logic is two-valued: formulas are interpreted as either true or false. When applied to the analysis of stochastic systems, or systems with imprecise formal models, temporal logic is therefore fragile: even small changes in the model can lead to opposite truth values for a specification. We present a generalization of the branching-time logic CTL which achieves robustness with respect to model perturbations by giving a quantitative interpretation to predicates and logical operators, and by discounting the importance of events according to how late they occur. In every state, the value of a formula is a real number in the interval [0,1], where 1 corresponds to truth and 0 to falsehood. The boolean operators and and or are replaced by min and max, the path quantifiers ∃ and ¬ determine sup and inf over all paths from a given state, and the temporal operators ♦ and □ specify sup and inf over a given path; a new operator averages all values along a path. Furthermore, all path operators are discounted by a parameter that can be chosen to give more weight to states that are closer to the beginning of the path.We interpret the resulting logic DCTL over transition systems, Markov chains, and Markov decision processes. We present two semantics for DCTL: a path semantics, inspired by the standard interpretation of state and path formulas in CTL, and a fixpoint semantics, inspired by the µ-calculus evaluation of CTL formulas. We show that, while these semantics coincide for CTL, they differ for DCTL, and we provide model-checking algorithms for both semantics.",
"This paper presents a model checker for LTLR, a subset of the temporal logic of rewriting TLR* extending linear temporal logic with spatial action patterns. Both LTLR and TLR* are very expressive logics generalizing well-known state-based and action-based logics. Furthermore, the semantics of TLR* is given in terms of rewrite theories, so that the concurrent systems on which the LTLR properties are model checked can be specified at a very high level with rewrite rules. This paper answers a nontrivial challenge, namely, to be able to build a model checker to model check LTLR formulas on rewrite theories with relatively little effort by reusing [email protected]?s LTL model checker for rewrite theories. For this, the reflective features of both rewriting logic and its Maude implementation have proved extremely useful.",
"We study the problem of model checking software product line (SPL) behaviours against temporal properties. This is more difficult than for single systems because an SPL with n features yields up to 2n individual systems to verify. As each individual verification suffers from state explosion, it is crucial to propose efficient formalisms and heuristics. We recently proposed featured transition systems (FTS), a compact representation for SPL behaviour, and defined algorithms for model checking FTS against linear temporal properties. Although they showed to outperform individual system verifications, they still face a state explosion problem as they enumerate and visit system states one by one. In this paper, we tackle this latter problem by using symbolic representations of the state space. This lead us to consider computation tree logic (CTL) which is supported by the industry-strength symbolic model checker NuSMV. We first lay the foundations for symbolic SPL model checking by defining a feature-oriented version of CTL and its dedicated algorithms. We then describe an implementation that adapts the NuSMV language and tool infrastructure. Finally, we propose theoretical and empirical evaluations of our results. The benchmarks show that for certain properties, our algorithm is over a hundred times faster than model checking each system with the standard algorithm.",
"This paper presents the linear temporal logic of rewriting (LTLR) model checker under localized fairness assumptions for the Maude system. The linear temporal logic of rewriting extends linear temporal logic (LTL) with spatial action patterns that describe patterns of rewriting events. Since LTLR generalizes and extends various state-based and event-based logics, mixed properties involving both state propositions and actions, such as fairness properties, can be naturally expressed in LTLR. However, often the needed fairness assumptions cannot even be expressed as propositional temporal logic formulas because they are parametric, that is, they correspond to universally quantified temporal logic formulas. Such universal quantification is succinctly captured by the notion of localized fairness; for example, fairness is localized to the object name parameter in object fairness conditions. We summarize the foundations, and present the language design and implementation of the Maude Fair LTLR model checker, developed at the C++ level within the Maude system by extending the existing Maude LTL model checker. Our tool provides not only an efficient LTLR model checking algorithm under parameterized fairness assumptions but also suitable specification languages as part of its user interface. The expressiveness and effectiveness of the Maude Fair LTLR model checker are illustrated by five case studies. This is the first tool we are aware of that can model check temporal logic properties under parameterized fairness assumptions. We develop the LTLR model checker under localized fairness assumptions.The linear temporal logic of rewriting (LTLR) extends LTL with action patterns.Localized fairness specifies parameterized fairness over generic system entities.We present the foundations, the language design, and the implementation of our tool.We illustrate the expressiveness and effectiveness of our tool with case studies."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Our paper @cite_5 contains a first definition of the synchronous composition of rewrite systems. There, we proposed to synchronise the execution of rules from different systems based on the coincidence of (atomic) rule labels. This reflects the synchronisation of actions in process algebras and in automata, for example. We also proposed to synchronise states by agreement on the Boolean values of propositions defined on them. We implemented that concept of synchronisation on Maude. That proposal had the advantage that it used standard machinery already existing in Maude: rule labels are basic elements of Maude's syntax, and propositions are customarily defined and used to build LTL formulas to be used with Maude's model checker. Why is the present, much more involved paper needed? We refer the reader to . In short: Boolean-valued propositions are not enough to allow flexible synchronisation and value-passing; we need to give more substance to transitions; we want to be able to synchronise an action at one system with several consecutive ones at the other system. A complex realistic example like the one on the alternating bit protocol in @cite_33 would not be possible in our previous setting. | {
"cite_N": [
"@cite_5",
"@cite_33"
],
"mid": [
"2521108378",
"1986424898",
"1583068981",
"2160106331"
],
"abstract": [
"We present a concept of module composition for rewrite systems that we call synchronous product, and also a corresponding concept for doubly labeled transition systems (as proposed by De Nicola and Vaandrager) used as semantics for the former. In both cases, synchronization happens on states and on transitions, providing in this way more flexibility and more natural specifications. We describe our implementation in Maude, a rewriting logic-based language and system. A series of examples shows their use for modular specification and hints at other possible uses, including modular verification.",
"This paper presents the linear temporal logic of rewriting (LTLR) model checker under localized fairness assumptions for the Maude system. The linear temporal logic of rewriting extends linear temporal logic (LTL) with spatial action patterns that describe patterns of rewriting events. Since LTLR generalizes and extends various state-based and event-based logics, mixed properties involving both state propositions and actions, such as fairness properties, can be naturally expressed in LTLR. However, often the needed fairness assumptions cannot even be expressed as propositional temporal logic formulas because they are parametric, that is, they correspond to universally quantified temporal logic formulas. Such universal quantification is succinctly captured by the notion of localized fairness; for example, fairness is localized to the object name parameter in object fairness conditions. We summarize the foundations, and present the language design and implementation of the Maude Fair LTLR model checker, developed at the C++ level within the Maude system by extending the existing Maude LTL model checker. Our tool provides not only an efficient LTLR model checking algorithm under parameterized fairness assumptions but also suitable specification languages as part of its user interface. The expressiveness and effectiveness of the Maude Fair LTLR model checker are illustrated by five case studies. This is the first tool we are aware of that can model check temporal logic properties under parameterized fairness assumptions. We develop the LTLR model checker under localized fairness assumptions.The linear temporal logic of rewriting (LTLR) extends LTL with action patterns.Localized fairness specifies parameterized fairness over generic system entities.We present the foundations, the language design, and the implementation of our tool.We illustrate the expressiveness and effectiveness of our tool with case studies.",
"This paper presents the foundation, design, and implementation of the Linear Temporal Logic of Rewriting model checker as an extension of the Maude system. The Linear Temporal Logic of Rewriting (LTLR) extends linear temporal logic with spatial action patterns which represent rewriting events. LTLR generalizes and extends various state-based and event-based logics and aims to avoid certain types of mismatches between a system and its temporal logic properties. We have implemented the LTLR model checker at the C++ level within the Maude system by extending the existing Maude LTL model checker. Our LTLR model checker provides very expressive methods to define event-related properties as well as state-related properties, or, more generally, properties involving both events and state predicates. This greater expressiveness is gained without compromising performance, because the LTLR implementation minimizes the extra costs involved in handling the events of systems.",
"Abstract We present an approximation technique, that can render real-time model checking of safety and universal path properties more efficient. It is beneficial, when loops lead to repetition of control situations. Basically we augment a timed automata model with carefully selected extra transitions. This increases the size of the state-space, but potentially decreases the number of symbolic states to be explored by orders of magnitude. We give a formal definition of a timed automata formalism, enriched with basic data types, hand-shake synchronization, urgency, and committed locations. We prove by means of a trace semantics, that if a safety property can be established in the augmented model, it also holds for the original model. We extend our technique to a richer set of properties, that can be decided via a set of traces (universal path properties). In order for universal path properties to carry over to the original model, the semantics of the timed automata formalism is formulated relative to the applied augmentation. Our technique is particularly useful in systems, where a scheduler dictates repetition of control over elapsing time. As a typical example we mention translations of LEGO® RCX™ programs to U ppaal models, where the Round-Robin scheduler is a static entity. We allow scheduler and associated tasks to “park”, until some timing or environmental conditions are met. We apply our technique on a brick-sorter model for a safety property and report run-time data."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | In a different topic, the paper @cite_33 also describes the use of parameterised programming to add encapsulation to our setting. We have already mentioned it in . We outline it roughly refering to the example from , on two controlled trains. First, a so-called theory is used to state that a train is any system that defines a Boolean-valued property called "isMoving". Requirements for reckoners and controllers are similarly stated. These are our interface specifications. The composition is specified in a parameterised module, whose formal parameters are the theories (that is, the interfaces). Thus, the composition can only be specified using the formal names and the properties in the interfaces. The particular implementations of trains and the other components are written and the needed properties are defined. Finally, the parameters of the composition module are instantiated with the component implementations, producing an implementation of the complete system. | {
"cite_N": [
"@cite_33"
],
"mid": [
"2890370072",
"1689232663",
"2956034981",
"2121059325"
],
"abstract": [
"Our overall goal is compositional specification and verification in rewriting logic. In previous work, we described a way to compose system specifications using the operation we call synchronous composition. In this paper, we propose the use of parameterized programming to encapsulate and handle specifications: theories represent interfaces; modules parameterized by such theories instruct on how to assemble the parameter systems using the synchronous composition operation; the implementation of the whole system is then obtained by instantiating the parameters with implementations for the components. We show, and illustrate with examples, how this setting facilitates compositionality.",
"We develop a theory for describing composite objects in physics. These can be static objects, such as tables, or things that happen in spacetime (such as a region of spacetime with fields on it regarded as being composed of smaller such regions joined together). We propose certain fundamental axioms which, it seems, should be satisfied in any theory of composition. A key axiom is the order independence axiom which says we can describe the composition of a composite object in any order. Then we provide a notation for describing composite objects that naturally leads to these axioms being satisfied. In any given physical context we are interested in the value of certain properties for the objects (such as whether the object is possible, what probability it has, how wide it is, and so on). We associate a generalized state with an object. This can be used to calculate the value of those properties we are interested in for for this object. We then propose a certain principle, the composition principle, which says that we can determine the generalized state of a composite object from the generalized states for the components by means of a calculation having the same structure as the description of the generalized state. The composition principle provides a link between description and prediction.",
"Formal verification of a control system can be performed by checking if a model of its dynamical behavior conforms to temporal requirements. Unfortunately, adoption of formal verification in an industrial setting is a formidable challenge as design requirements are often vague, nonmodular, evolving, or sometimes simply unknown. We propose a framework to mine requirements from a closed-loop model of an industrial-scale control system, such as one specified in Simulink. The input to our algorithm is a requirement template expressed in parametric signal temporal logic: a logical formula in which concrete signal or time values are replaced with parameters. Given a set of simulation traces of the model, our method infers values for the template parameters to obtain the strongest candidate requirement satisfied by the traces. It then tries to falsify the candidate requirement using a falsification tool. If a counterexample is found, it is added to the existing set of traces and these steps are repeated; otherwise, it terminates with the synthesized requirement. Requirement mining has several usage scenarios: mined requirements can be used to formally validate future modifications of the model, they can be used to gain better understanding of legacy models or code, and can also help enhancing the process of bug finding through simulations. We demonstrate the scalability and utility of our technique on three complex case studies in the domain of automotive powertrain systems: a simple automatic transmission controller, an air-fuel controller with a mean-value model of the engine dynamics, and an industrial-size prototype airpath controller for a diesel engine. We include results on a bug found in the prototype controller by our method.",
"Component-based software design is a popular and effective approach to designing large systems. While components typically have well-defined interfaces, sequencing information---which calls must come in which order---is often not formally specified.This paper proposes using multiple finite statemachine (FSM) submodels to model the interface of a class. A submodel includes a subset of methods that, for example, implement a Java interface, or access some particular field. Each state-modifying method is represented as a state in the FSM, and transitions of the FSMs represent allow able pairs of consecutive methods. In addition, state-preserving methods are constrained to execute only under certain states.We have designed and implemented a system that includes static analyses to deduce illegal call sequences in a program, dynamic instrumentation techniques to extract models from execution runs, and a dynamic model checker that ensures that the code conforms to the model. Extracted models can serve as documentation; they can serve as constraints to be enforced by a static checker; they can be studied directly by developers to determine if the program is exhibiting unexpected behavior; or they can be used to determine the completeness of a test suite.Our system has been run on several large code bases, including the joeq virtual machine, the basic Java libraries, and the Java 2 Enterprise Edition library code. Our experience suggests that this approach yields useful information."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Process algebras were initially designed as theoretical tools. They focus on actions and synchronisation, and do not provide any means to specify internal computations, or to handle complex data types. However, later developments have taken process algebras as a basis for practical modelling and verification tools. Examples are occam @cite_19 , SCEL @cite_18 , FSP+LTSA @cite_45 , CSP @math B @cite_27 , and LOTOS and the CADP tool @cite_49 . | {
"cite_N": [
"@cite_18",
"@cite_19",
"@cite_27",
"@cite_45",
"@cite_49"
],
"mid": [
"1497640022",
"1919563168",
"2143082793",
"1887504389"
],
"abstract": [
"One obtains in this paper a process algebra RCCS, in the style of CCS, where processes can backtrack. Backtrack, just as plain forward computation, is seen as a synchronization and incurs no additional cost on the communication structure. It is shown that, given a past, a computation step can be taken back if and only if it leads to a causally equivalent past.",
"The idea of analysing real programs by process algebraic methods probably goes back to the Occam language using the CSP process algebra [43]. In [16, 24] followed in that tradition by analysing Mobile Agent Programs written in the Higher Order Functional, Concurrent and Distributed, programming language Facile [47], by equipping Facile with a process algebraic semantics based on true concurrency. This semantics facilitated analysis of programs revealing subtle bugs that would otherwise be very hard to find. Inspired by the idea of translating real programs into process algebraic frameworks, we have in recent years pursued an agenda of translating hard-real-time embedded safety critical programs written in the Safety Critical Java Profile [33] into networks of timed automata [4] and subjecting those to automated analysis using the UPPAAL model checker [10]. Several tools have been built and the tools have been used to analyse a number of systems for properties such as worst case execution time, schedulability and energy optimization [12---14, 19, 34, 36, 38]. In this paper we will elaborate on the theoretical underpinning of the translation from Java programs to timed automata models and briefly summarize some of the results based on this translation. Furthermore, we discuss future work, especially relations to the work in [16, 24] as Java recently has adopted first class higher order functions in the form of lambda abstractions.",
"We develop a model for timed, reactive computation by extending the asynchronous, untimed concurrent constraint programming model in a simple and uniform way. In the spirit of process algebras, we develop some combinators expressible in this model, and reconcile their operational, logical and denotational character. We show how programs may be compiled into finite-state machines with loop-free computations at each state, thus guaranteeing bounded response time. >",
"In a series of papers it has been shown that for many linear algebra operations it is possible to generate families of algorithms by following a systematic procedure. Although powerful, such a methodology involves complex algebraic manipulation, symbolic computations and pattern matching, making the generation a process challenging to be performed by hand. We aim for a fully automated system that from the sole description of a target operation creates multiple algorithms without any human intervention. Our approach consists of three main stages. The first stage yields the core object for the entire process, the Partitioned Matrix Expression (PME), which establishes how the target problem may be decomposed in terms of simpler sub-problems. In the second stage the PME is inspected to identify predicates, the Loop-Invariants, to be used to set up the skeleton of a family of proofs of correctness. In the third and last stage the actual algorithms are constructed so that each of them satisfies its corresponding proof of correctness. In this paper we focus on the first stage of the process, the automatic generation of Partitioned Matrix Expressions. In particular, we discuss the steps leading to a PME and the knowledge necessary for a symbolic system to perform such steps. We also introduce CLICK, a prototype system written in Mathematica that generates PMEs automatically."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Typically, there are two ways to compose Petri nets. One is given by hierarchical nets, that is, nets in which a transition can represent a complete separate net, that is described independently. The second way is to identify, or , either places or transitions from two different nets. For example, the coffee machine and the scientist can be modelled and then composed by fusing transitions like this: Some approaches propose the introduction of interfaces, that allow to see each component net as a black box. That is the case of the recent work described in @cite_29 . | {
"cite_N": [
"@cite_29"
],
"mid": [
"2152988203",
"2091676842",
"2172422010",
"1996109622"
],
"abstract": [
"With their intuitive graphical approach and expressive analysis techniques, Petri nets are suitable for a wide range of applications and teaching scenarios, and they have gained wide acceptance as a modeling technique in areas such as software design and control engineering. The core theoretical principles have been studied for many decades and there is now a comprehensive research literature that complements the extensive implementation experience. In this book the author presents a clear, thorough introduction to the essentials of Petri nets. He explains the core modeling techniques and analysis methods and he illustrates their usefulness with examples and case studies. Part I describes how to use Petri nets for modeling; all concepts are explained with the help of examples, starting with a generic, powerful model which is also intuitive and realistic. Part II covers the essential analysis methods that are specific to Petri nets, introducing techniques used to formulate key properties of system nets and algorithms for proving their validity. Part III presents case studies, each introducing new concepts, properties and analysis techniques required for very different modeling tasks. The author offers different paths among the chapters and sections: the elementary strand for readers who wish to study only elementary nets; the modeling strand for those who wish to study the modeling but not the analysis of systems; and finally the elementary models of the modeling strand for those interested in technically simple, but challenging examples and case studies. The author achieves an excellent balance between consistency, comprehensibility and correctness in a book of distinctive design. Among its characteristics, formal arguments are reduced to a minimum in the main text with many of the theoretical formalisms moved to an appendix, the explanations are supported throughout with fully integrated graphical illustrations, and each chapter ends with exercises and recommendations for further reading. The book is suitable for students of computer science and related subjects such as engineering, and for a broad range of researchers and practitioners.",
"Automata-theoretic representations have proven useful in the automatic and exact analysis of computing systems. We propose a new semantical mapping of π-Calculus processes into place transition Petri nets. Our translation exploits the connections created by restricted names and can yield finite nets even for processes with unbounded name and unbounded process creation. The property of structural stationarity characterises the processes mapped to finite nets. We provide exact conditions for structural stationarity using novel characteristic functions. As application of the theory, we identify a rich syntactic class of structurally stationary processes, called finite handler processes. Our Petri net translation facilitates the automatic verification of a case study modelled in this class.",
"We present a Petri net interpretation of the pi-graphs - a graphical variant of the pi-calculus. Characterizing labelled transition systems, the translation can be used to reason in Petri net terms about open reconfigurable systems. We demonstrate that the pi-graphs and their translated Petri nets agree at the semantic level. In consequence, existing results on pi-graphs naturally extend to the translated Petri nets, most notably a guarantee of finiteness by construction. © 2011 Springer-Verlag.",
"Starts with a brief review of the history and the application areas considered in the literature. The author then proceeds with introductory modeling examples, behavioral and structural properties, three methods of analysis, subclasses of Petri nets and their analysis. In particular, one section is devoted to marked graphs, the concurrent system model most amenable to analysis. Introductory discussions on stochastic nets with their application to performance modeling, and on high-level nets with their application to logic programming, are provided. Also included are recent results on reachability criteria. Suggestions are provided for further reading on many subject areas of Petri nets. >"
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Tile logic was introduced in @cite_28 , and is closely related to rewriting logic. In short, tile logic is rewriting logic with side effects for composition. A tile is written as @math with @math being the condition for, and @math the effect of, rewriting @math to @math . The intuitive meaning of that tile is: the term @math is rewritten to the term @math , producing an effect @math , but the rewrite can only happen if the variables of @math (that represent as yet unspecified subcomponents) are rewritten with a cumulative effect @math .'' Effects are given by terms of any complexity. | {
"cite_N": [
"@cite_28"
],
"mid": [
"1601458080",
"1599831144",
"1488471656",
"2287769028"
],
"abstract": [
"Rewriting logic extends to concurrent systems with state changes the body of theory developed within the algebraic semantics approach. It is both a foundational tool and the kernel language of several implementation efforts (Cafe, ELAN, Maude). Tile logic extends (unconditional) rewriting logic since it takes into account state changes with side effects and synchronization. It is especially useful for defining compositional models of computation of reactive systems, coordination languages, mobile calculi, and causal and located concurrent systems. In this paper, the two logics are defined and compared using a recently developed algebraic specification methodology, membership equational logic. Given a theory T, the rewriting logic of T is the free monoidal 2-category, and the tile logic of T is the free monoidal double category, both generated by T. An extended version of monoidal 2-categories, called 2VH-categories, is also defined, able to include in an appropriate sense the structure of monoidal double categories. We show that 2VH-categories correspond to an extended version of rewriting logic, which is able to embed tile logic, and which can be implemented in the basic version of rewriting logic using suitable internal strategies. These strategies can be significantly simpler when the theory is uniform. A uniform theory is provided in the paper for CCS, and it is conjectured that uniform theories exist for most process algebras.",
"This paper presents the temporal logic of rewriting @math . Syntactically, @math is a very simple extension of @math which just adds action atoms, in the form of spatial action patterns, to @math . Semantically and pragmatically, however, when used together with rewriting logic as a \"tandem\" of system specification and property specification logics, it has substantially more expressive power than purely state-based logics like @math , or purely action-based logics like A- @math . Furthermore, it avoids the system property mismatch problem experienced in state-based or action-based logics, which makes many useful properties inexpressible in those frameworks without unnatural changes to a system's specification. The advantages in expresiveness of @math are gained without losing the ability to use existing tools and algorithms to model check its properties: a faithful translation of models and formulas is given that allows verifying @math properties with @math model checkers.",
"Majumder, Reif and Sahu presented in [7] a model of reversible, error-permitting tile self-assembly, and showed that restricted classes of tile assembly systems achieved equilibrium in (expected) polynomial time. One open question they asked was how the model would change if it permitted multiple nucleation, i.e.,independent groups of tiles growing before attaching to the original seed assembly. This paper provides a partial answer, by proving that no tile assembly model can use multiple nucleation to achieve speedup from polynomial time to constant time without sacrificing computational power: if a tile assembly system @math uses multiple nucleation to tile a surface in constant time (independent of the size of the surface), then @math is unable to solve computational problems that have low complexity in the (single-seeded) Winfree-Rothemund Tile Assembly Model. The proof technique defines a new model of distributed computing that simulates tile assembly, so a tile assembly model can be described as a distributed computing model.",
"Rewriting is a formalism widely used in computer science and mathematical logic. When using rewriting as a programming or modeling paradigm, the rewrite rules describe the transformations one wants to operate and declarative rewriting strategies are used to control their application. The operational semantics of these strategies are generally accepted and approaches for analyzing the termination of specific strategies have been studied. We propose in this paper a generic encoding of classic control and traversal strategies used in rewrite based languages such as Maude, Stratego and Tom into a plain term rewriting system. The encoding is proven sound and complete and, as a direct consequence, established termination methods used for term rewriting systems can be applied to analyze the termination of strategy controlled term rewriting systems. The corresponding implementation in Tom generates term rewriting systems compatible with the syntax of termination tools such as AProVE and TTT2, tools which turned out to be very effective in (dis)proving the termination of the generated term rewriting systems. The approach can also be seen as a generic strategy compiler which can be integrated into languages providing pattern matching primitives; this has been experimented for Tom and performances comparable to the native Tom strategies have been observed. 1998 ACM Subject Classification F.4 Mathematical Logic and Formal Languages"
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Connections between tile logic and rewriting logic have been drawn in @cite_47 and @cite_39 , mainly in the language of category theory. | {
"cite_N": [
"@cite_47",
"@cite_39"
],
"mid": [
"1601458080",
"2026741712",
"1928673936",
"2242425235"
],
"abstract": [
"Rewriting logic extends to concurrent systems with state changes the body of theory developed within the algebraic semantics approach. It is both a foundational tool and the kernel language of several implementation efforts (Cafe, ELAN, Maude). Tile logic extends (unconditional) rewriting logic since it takes into account state changes with side effects and synchronization. It is especially useful for defining compositional models of computation of reactive systems, coordination languages, mobile calculi, and causal and located concurrent systems. In this paper, the two logics are defined and compared using a recently developed algebraic specification methodology, membership equational logic. Given a theory T, the rewriting logic of T is the free monoidal 2-category, and the tile logic of T is the free monoidal double category, both generated by T. An extended version of monoidal 2-categories, called 2VH-categories, is also defined, able to include in an appropriate sense the structure of monoidal double categories. We show that 2VH-categories correspond to an extended version of rewriting logic, which is able to embed tile logic, and which can be implemented in the basic version of rewriting logic using suitable internal strategies. These strategies can be significantly simpler when the theory is uniform. A uniform theory is provided in the paper for CCS, and it is conjectured that uniform theories exist for most process algebras.",
"We propose a modular high-level approach to the specification of transactions in rewriting logic, where the operational and the abstract views are related by suitable adjunctions between categories of tile theories and of rewrite theories.",
"First-order languages based on rewrite rules share many features with functional languages, but one difference is that matching and rewriting can be made much more expressive and powerful by incorporating some built-in equational theories. To provide reasonable programming environments, compilation techniques for such languages based on rewriting have to be designed. This is the topic addressed in this paper. The proposed techniques are independent from the rewriting language, and may be useful to build a compiler for any system using rewriting modulo Associative and Commutative (AC) theories. An algorithm for many-to-one AC matching is presented, that works efficiently for a restricted class of patterns. Other patterns are transformed to fit into this class. A refined data structure, namely compact bipartite graph, allows encoding of all matching problems relative to a set of rewrite rules. A few optimisations concerning the construction of the substitution and of the reduced term are described. We also address the problem of non-determinism related to AC rewriting, and show how to handle it through the concept of strategies. We explain how an analysis of the determinism can be performed at compile time, and we illustrate the benefits of this analysis for the performance of the compiled evaluation process. Then we briefly introduce the ELAN system and its compiler, in order to give some experimental results and comparisons with other languages or rewrite engines.",
"This dissertation perceives a similarity between two activities: that of coordinating the search for simulation traces toward reaching verification closure, and that of coordinating the search for a proof within a theorem prover. The programmatic coordination of simulation is difficult with existing tools for digital circuit verification because stimuli generation, simulation execution, and analysis of simulation results are all decoupled. A new programming language to address this problem, analogous to the mechanism for orchestrating proof search tactics within a theorem prover, is defined wherein device simulation is made a first-class notion. This meta-language for functional verification is first formalized in a parametric way over hardware description languages using rewriting logic, and subsequently a more richly featured software tool for Verilog designs, implemented as an embedded domain-specific language in Haskell, is described and used to demonstrate the novelty of the programming language and to conduct two case studies. Additionally, three hardware description languages are given formal semantics using rewriting logic and we demonstrate the use of executable rewriting logic tools to formally analyze devices implemented in those languages."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | The goal of coordination is to make different components work together. The components may have been coded in different languages, reside in different servers, with different architectures. The paper @cite_20 is a comprehensive reference, though old. | {
"cite_N": [
"@cite_20"
],
"mid": [
"1500859230",
"1697381716",
"2007329840",
"1488037644"
],
"abstract": [
"A new class of models, formalisms and mechanisms has recently evolved for describing concurrent and distributed computations based on the concept of coordination''''. The purpose of a coordination model and associated language is to provide a means of integrating a number of possibly heterogeneous components together, by interfacing with each component in such a way that the collective set forms a single application that can execute on and take advantage of parallel and distributed systems. In this chapter we initially define and present in sufficient detail the fundamental concepts of what constitutes a coordination model or language. We then go on to classify these models and languages as either data-driven'''' or control-driven'''' (also called process-'''' or task-oriented''''). Next, the main existing coordination models and languages are described in sufficient detail to let the reader appreciate their features and put them into perspective with respect to each other. The chapter ends with a discussion comparing the various models and some conclusions.",
"Coordination can be required whenever multiple agents plan to achieve their individual goals independently, but might mutually benefit by coordinating their plans to avoid working at cross purposes or duplicating effort. Although variations of such problems have been studied in the literature, there is as yet no agreement over a general characterization of them. In this paper, we formally define a common coordination problem subclass, which we call the Multiagent Plan Coordination Problem, that is rich enough to represent a wide variety of multiagent coordination problems. We then describe a general framework that extends the partial-order, causal-link plan representation to the multiagent case, and that treats coordination as a form of iterative repair of plan flaws between agents. We show that this algorithmic formulation can scale to the multiagent case better than can a straightforward application of the existing plan coordination techniques, highlighting fundamental differences between our algorithmic framework and these earlier approaches. We then examine whether and how the Multiagent Plan Coordination Problem can be cast as a Distributed Constraint Optimization Problem (DCOP). We do so using ADOPT, a state-of-the-art system that can solve DCOPs in an asynchronous, parallel manner using local communication between individual computational agents. We conclude with a discussion of possible extensions of our work.",
"Coordination is important in software development because it leads to benefits such as cost savings, shorter development cycles, and better-integrated products. Team cognition research suggests that members coordinate through team knowledge, but this perspective has only been investigated in real-time collocated tasks and we know little about which types of team knowledge best help coordination in the most geographically distributed software work. In this field study, we investigate the coordination needs of software teams, how team knowledge affects coordination, and how this effect is influenced by geographic dispersion. Our findings show that software teams have three distinct types of coordination needs-technical, temporal, and process-and that these needs vary with the members' role; geographic distance has a negative effect on coordination, but is mitigated by shared knowledge of the team and presence awareness; and shared task knowledge is more important for coordination among collocated members. We articulate propositions for future research in this area based on our analysis.",
"Several distinct kinds of “coordination technology” have evolved to support effective coordination in cooperative work. This paper reviews some of the major weaknesses with current coordination technology and suggests several technical directions for addressing these weaknesses. These directions include developing semi-structured process representations that explicitly capture cooperative work inter-dependencies, exploiting advanced product and software design technologies for process design, and integrating coordination technologies to synergistically combine their strengths and avoid their individual weaknesses."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | Coordination is a very general term, and some of the proposals we have discussed above can be seen as belonging to it. Let us name a few additional examples. Linda, with all its variants and implementations, is one of the best known coordination languages. See @cite_35 for a relatively recent take. It is based on the idea of a shared repository of data and relies on each component using coordination primitives in appropriate ways. REO is at the other extreme. It enforces separation of concerns and is based on composing basic channels to provide port to port communication between components. Basic channels can be of any imaginable sort (synchronous or not, lossy ) and the means to compose them are very flexible. REO is described in @cite_44 . | {
"cite_N": [
"@cite_44",
"@cite_35"
],
"mid": [
"2139842876",
"28813266",
"1561324106",
"1988680012"
],
"abstract": [
"In this paper, we present Reo, which forms a paradigm for composition of software components based on the notion of mobile channels. Reo is a channel-based exogenous coordination model in which complex coordinators, called connectors, are compositionally built out of simpler ones. The simplest connectors in Reo are a set of channels with well-defined behaviour supplied by users. Reo can be used as a language for coordination of concurrent processes, or as a ‘glue language’ for compositional construction of connectors that orchestrate component instances in a component-based system. The emphasis in Reo is just on connectors and their composition, and not on the entities that connect to, communicate and cooperate through these connectors. Each connector in Reo imposes a specific coordination pattern on the entities (for example, components) that perform I O operations through that connector, without the knowledge of those entities. Channel composition in Reo is a very powerful mechanism for construction of connectors. We demonstrate the expressive power of connector composition in Reo through a number of examples. We show that exogenous coordination patterns that can be expressed as (meta-level) regular expressions over I O operations can be composed in Reo out of a small set of only five primitive channel types.",
"The original Linda model of coordination has always been attractive due primarily to its simplicity, but also due to the model’s other strong features of orthogonality, and the spatialand temporaldecoupling of concurrent processes. Recently there has been a resurgence of interest in the Linda coordination model, particularly in the Java community. We believe that the simplicity of this model still has much to offer, but that there are still challenges in overcoming the performance issues inherent in the Linda approach, and extending the range of applications to which it is suited. Our prior work has focused on mechanisms for generalising the input mechanisms in the Linda model, over a range of different implementation strategies. We believe that similar optimisations may be applicable to other aspects of the model, especially in the context of middleware support for components utilising web-services. The outcome of such improvements would be to provide a simple, but highly effective coordination language, that is applicable to a wide range of different application areas.",
"We present a vision of distributed system coordination as a set of activities affecting the space-time fabric of interaction events. In the tuple space setting that we consider, coordination amounts to control of the spatial and temporal configuration of tuples spread across the network, which in turn drives the behaviour of situated agents. We therefore draw on prior work in spatial computing and distributed systems coordination, to define a new coordination language that adds to the basic Linda primitives a small set of space-time constructs for linking coordination processes with their environment. We show how this framework supports the global-level emergence of adaptive coordination policies, applying it to two example cases: crowd steering in a pervasive computing scenario and a gradient-based implementation of Linda primitives for mobile ad-hoc networks.",
"In this paper we introduce constraint automata and propose them as an operational model for Reo, an exogenous coordination language for compositional construction of component connectors based on a calculus of channels. By providing composition operators for constraint automata and defining notions of equivalence and refinement relations for them, this paper covers the foundations for building tools to address concerns such as the automated construction of the automaton for a given component connector, equivalence checking or containment checking of the behavior of two given connectors, and verification of coordination mechanisms."
]
} |
1908.11769 | 2971290534 | Rewriting logic is naturally concurrent: several subterms of the state term can be rewritten simultaneously. But state terms are global, which makes compositionality difficult to achieve. Compositionality here means being able to decompose a complex system into its functional components and code each as an isolated and encapsulated system. Our goal is to help bringing compositionality to system specification in rewriting logic. The base of our proposal is the operation that we call synchronous composition. We discuss the motivations and implications of our proposal, formalize it for rewriting logic and also for transition structures, to be used as semantics, and show the power of our approach with some examples. This paper is under consideration in Theory and Practice of Logic Programming (TPLP). | BIP stands for , , ---the three of a composed specification, as proposed by the authors. The behaviour of atomic components is specified by automata (of a special kind) some of whose actions are also taken as port names for communication. These automata are a specification of requirements on the component, whose real implementation can be made using any language or tool. Interaction is performed through connectors linking ports in potentially complex ways. Among the interactions that are allowed at any given time, the one with the highest priority is chosen and performed. Interaction and priority together implement control. The paper @cite_17 has a good overview. Several implementations exist that allow to use the BIP framework within programming languages like Java and C++. | {
"cite_N": [
"@cite_17"
],
"mid": [
"2404118354",
"2133038101",
"1964587130",
"2048903680"
],
"abstract": [
"We present a methodology for modeling heterogeneous real-time components. Components are obtained as the superposition of three layers : Behavior, specified as a set of transitions; Interactions between transitions of the behavior; Priorities, used to choose amongst possible interactions. A parameterized binary composition operator is used to compose components layer by layer. We present the BIP language for the description and composition of layered components as well as associated tools for executing and analyzing components on a dedicated platform. The language provides a powerful mechanism for structuring interactions involving rendezvous and broadcast. We show that synchronous and timed systems are particular classes of components. Finally, we provide examples showing the utility of the BIP framework in heterogeneous component modeling.",
"We present a methodology for modeling heterogeneous real-time components. Components are obtained as the superposition of three layers : Behavior, specified as a set of transitions; Interactions between transitions of the behavior; Priorities, used to choose amongst possible interactions. A parameterized binary composition operator is used to compose components layer by layer. We present the BIP language for the description and composition of layered components as well as associated tools for executing and analyzing components on a dedicated platform. The language provides a powerful mechanism for structuring interactions involving rendezvous and broadcast. We show that synchronous and timed systems are particular classes of components. Finally, we provide examples and compare the BIP framework to existing ones for heterogeneous component-based modeling.",
"We present a method for the translation of a discrete-time fragment of Simulink into the synchronous subset of the BIP language. The translation is fully compositional, that is, it preserves completely the original structure and reveals the minimal control coordination structure needed to perform the correct computation within Simulink models. Additionally, this translation can be seen as providing an alternative operational semantics of Simulink models using BIP. The advantages are twofold. It allows for integration of Simulink models within heterogeneous BIP designs. It enables the use of validation and automatic implementation techniques already available for BIP on Simulink models. The translation is currently implemented in the Simulink2BIP tool. We report several experiments, in particular, we show that the executable code generated from BIP models has comparable runtime performances as the code produced by the Real-Time Workshop on several Simulink models.",
"An autonomous robot case study illustrates the use of the behavior, interaction, priority (BIP) component framework as a unifying semantic model to ensure correctness of essential system design properties."
]
} |
1908.11645 | 2971105318 | In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly. This has sparked a surge of research into specialized hardware accelerators. Their performance is typically limited by I O bandwidth, power consumption is dominated by I O transfers to off-chip memory, and on-chip memories occupy a large part of the silicon area. We introduce and evaluate a novel, hardware-friendly and lossless compression scheme for the feature maps present within convolutional neural networks. Its hardware implementation fits into 2.8 kGE and 1.7 kGE of silicon area for the compressor and decompressor, respectively. We show that an average compression ratio of 5.1x for AlexNet, 4x for VGG-16, 2.4x for ResNet-34 and 2.2x for MobileNetV2 can be achieved---a gain of 45--70 over existing methods. Our approach also works effectively for various number formats, has a low frame-to-frame variance on the compression ratio, and achieves compression factors for gradient map compression during training that are even better than for inference. | There are several methods out there describing hardware accelerators which exploit feature map sparsity to reduce computation: Cnvlutin @cite_2 , SCNN @cite_47 , Cambricon-X @cite_46 , NullHop @cite_24 , Eyeriss @cite_12 , EIE @cite_43 . Their focus is on power gating or skipping some of the operations and memory accesses. This entails defining a scheme to feed the data into the system. They all use one of three methods: Zero-RLE (used in SCNN): A simple run-length encoding for the zero values, i.e. a single prefix bit followed by the number of zero-values or the non-zero value. Zero-free neuron array format (ZFNAf) (used in Cnvlutin): Similarly to the widely-used compressed sparse row (CSR) format, non-zero elements are encoded with an offset and their value. Compressed column storage (CCS) format (e.g. used in EIE, and similar to NullHop): Similar to ZFNAf, but the offsets are stored in relative form, thus requiring less bits to store them. Few bits are sufficient, and in case they are all exhausted, a zero-value can be encoded as if it was non-zero. | {
"cite_N": [
"@cite_47",
"@cite_24",
"@cite_43",
"@cite_2",
"@cite_46",
"@cite_12"
],
"mid": [
"2516141709",
"2623629680",
"2899915146",
"2808523546"
],
"abstract": [
"This work observes that a large fraction of the computations performed by Deep Neural Networks (DNNs) are intrinsically ineffectual as they involve a multiplication where one of the inputs is zero. This observation motivates Cnvlutin (CNV), a value-based approach to hardware acceleration that eliminates most of these ineffectual operations, improving performance and energy over a state-of-the-art accelerator with no accuracy loss. CNV uses hierarchical data-parallel units, allowing groups of lanes to proceed mostly independently enabling them to skip over the ineffectual computations. A co-designed data storage format encodes the computation elimination decisions taking them off the critical path while avoiding control divergence in the data parallel units. Combined, the units and the data storage format result in a data-parallel architecture that maintains wide, aligned accesses to its memory hierarchy and that keeps its data lanes busy. By loosening the ineffectual computation identification criterion, CNV enables further performance and energy efficiency improvements, and more so if a loss in accuracy is acceptable. Experimental measurements over a set of state-of-the-art DNNs for image classification show that CNV improves performance over a state-of-the-art accelerator from 1.24× to 1.55× and by 1.37× on average without any loss in accuracy by removing zero-valued operand multiplications alone. While CNV incurs an area overhead of 4.49 , it improves overall EDP (Energy Delay Product) and ED2P (Energy Delay Squared Product) on average by 1.47× and 2.01×, respectively. The average performance improvements increase to 1.52× without any loss in accuracy with a broader ineffectual identification policy. Further improvements are demonstrated with a loss in accuracy.",
"Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp s W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from @math to @math . NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq field-programmable gate array (FPGA) platform and presented the results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Postsynthesis simulations using Mentor Modelsim in a 28-nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp s. By exploiting sparsity, NullHop achieves an efficiency of 368 , maintains over 98 utilization of the multiply–accumulate units, and achieves a power efficiency of over 3 TOp s W in a core area of 6.3 mm2. As further proof of NullHop’s usability, we interfaced its FPGA implementation with a neuromorphic event camera for real-time interactive demonstrations.",
"Building a high-performance EPGA accelerator for Deep Neural Networks (DNNs) often requires RTL programming, hardware verification, and precise resource allocation, all of which can be time-consuming and challenging to perform even for seasoned FPGA developers. To bridge the gap between fast DNN construction in software (e.g., Caffe, TensorFlow) and slow hardware implementation, we propose DNNBuilder for building high-performance DNN hardware accelerators on FPGAs automatically. Novel techniques are developed to meet the throughput and latency requirements for both cloud- and edge-devices. A number of novel techniques including high-quality RTL neural network components, a fine-grained layer-based pipeline architecture, and a column-based cache scheme are developed to boost throughput, reduce latency, and save FPGA on-chip memory. To address the limited resource challenge, we design an automatic design space exploration tool to generate optimized parallelism guidelines by considering external memory access bandwidth, data reuse behaviors, FPGA resource availability, and DNN complexity. DNNBuilder is demonstrated on four DNNs (Alexnet, ZF, VGG16, and YOLO) on two FPGAs (XC7Z045 and KU115) corresponding to the edge- and cloud-computing, respectively. The fine-grained layer-based pipeline architecture and the column-based cache scheme contribute to 7.7x and 43x reduction of the latency and BRAM utilization compared to conventional designs. We achieve the best performance (up to 5.15x faster) and efficiency (up to 5.88x more efficient) compared to published FPGA-based classification-oriented DNN accelerators for both edge and cloud computing cases. We reach 4218 GOPS for running object detection DNN which is the highest throughput reported to the best of our knowledge. DNNBuilder can provide millisecond-scale real-time performance for processing HD video input and deliver higher efficiency (up to 4.35x) than the GPU-based solutions.",
"This paper proposes an effective segmentation-free approach using a hybrid neural network hidden Markov model (NN-HMM) for offline handwritten Chinese text recognition (HCTR). In the general Bayesian framework, the handwritten Chinese text line is sequentially modeled by HMMs with each representing one character class, while the NN-based classifier is adopted to calculate the posterior probability of all HMM states. The key issues in feature extraction, character modeling, and language modeling are comprehensively investigated to show the effectiveness of NN-HMM framework for offline HCTR. First, a conventional deep neural network (DNN) architecture is studied with a well-designed feature extractor. As for the training procedure, the label refinement using forced alignment and the sequence training can yield significant gains on top of the frame-level cross-entropy criterion. Second, a deep convolutional neural network (DCNN) with automatically learned discriminative features demonstrates its superiority to DNN in the HMM framework. Moreover, to solve the challenging problem of distinguishing quite confusing classes due to the large vocabulary of Chinese characters, NN-based classifier should output 19900 HMM states as the classification units via a high-resolution modeling within each character. On the ICDAR 2013 competition task of CASIA-HWDB database, DNN-HMM yields a promising character error rate (CER) of 5.24 by making a good trade-off between the computational complexity and recognition accuracy. To the best of our knowledge, DCNN-HMM can achieve a best published CER of 3.53 ."
]
} |
1908.11645 | 2971105318 | In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly. This has sparked a surge of research into specialized hardware accelerators. Their performance is typically limited by I O bandwidth, power consumption is dominated by I O transfers to off-chip memory, and on-chip memories occupy a large part of the silicon area. We introduce and evaluate a novel, hardware-friendly and lossless compression scheme for the feature maps present within convolutional neural networks. Its hardware implementation fits into 2.8 kGE and 1.7 kGE of silicon area for the compressor and decompressor, respectively. We show that an average compression ratio of 5.1x for AlexNet, 4x for VGG-16, 2.4x for ResNet-34 and 2.2x for MobileNetV2 can be achieved---a gain of 45--70 over existing methods. Our approach also works effectively for various number formats, has a low frame-to-frame variance on the compression ratio, and achieves compression factors for gradient map compression during training that are even better than for inference. | Oher compression methods are focusing on minimizing the model size and are very complex (silicon area) to implement in hardware. One such method, deep compression @cite_48 , combines pruning, trained clustering-based quantization, and Huffman coding. Most of these steps cannot be applied to the intermediate feature maps, which change for every inference as opposed to the weights which are static and can be optimized off-line. Furthermore, applying Huffman coding---while being optimal in terms of compression rate and given a specification of input symbols and their statistics---implies storing a very large dictionary: encoding a 16 ,bit word requires a table with @math k entries, but effectively multiple values would have to be encoded jointly in order to exploit their joint distribution (e.g. the smoothness), immediately increasing the dictionary size to @math G even for just two values. Similar issues arise when using Lempel-Ziv-Welch (LZW) coding @cite_38 @cite_42 as present in e.g. the ZIP compression scheme, where the dictionary is encoded in the compressed data stream. This makes it unsuitable for a lightweight and energy-efficient VLSI implementation @cite_0 @cite_10 . | {
"cite_N": [
"@cite_38",
"@cite_48",
"@cite_42",
"@cite_0",
"@cite_10"
],
"mid": [
"2508647357",
"2162310490",
"2069906566",
"2754084392"
],
"abstract": [
"Spanners, emulators, and approximate distance oracles can be viewed as lossy compression schemes that represent an unweighted graph metric in small space, say O(n1+Δ) bits. There is an inherent tradeoff between the sparsity parameter Δ and the stretch function f of the compression scheme, but the qualitative nature of this tradeoff has remained a persistent open problem. It has been known for some time that when Δ ≥ 1 3 there are schemes with constant additive stretch (distance d is stretched to at most f(d) = d + O(1)), and recent results of Abboud and Bodwin show that when Δ In this paper we show that the lower bound of Abboud and Bodwin is just the first step in a hierarchy of lower bounds that characterize the asymptotic behavior of the optimal stretch function f for sparsity parameter Δ ∈ (0,1 3). Specifically, for any integer k ≥ 2, any compression scheme with size [EQUATION] has a sublinear additive stretch function f: f(d) = d + Ω(d1−1 k). This lower bound matches Thorup and Zwick's (2006) construction of sublinear additive emulators. It also shows that Elkin and Peleg's (1 + ϵ, β)-spanners have an essentially optimal tradeoff between Δ, ϵ, and β, and that the sublinear additive spanners of Pettie (2009) and Chechik (2013) are not too far from optimal. To complement these lower bounds we present a new construction of (1 + ϵ, O(k ϵ)k−1)-spanners with size [EQUATION], where hk Our lower bound technique exhibits several interesting degrees of freedom in the framework of Abboud and Bodwin. By carefully exploiting these freedoms, we are able to obtain lower bounds for several related combinatorial objects. We get lower bounds on the size of (β, ϵ)-hopsets, matching Elkin and Neiman's construction (2016), and lower bounds on shortcutting sets for digraphs that preserve the transitive closure. Our lower bound simplifies Hesse's (2003) refutation of Thorup's conjecture (1992), which stated that adding a linear number of shortcuts suffices to reduce the diameter to polylogarithmic. Finally, we show matching upper and lower bounds for graph compression schemes that work for graph metrics with girth at least 2γ + 1. One consequence is that 's (2010) additive O(γ)-spanners with size [EQUATION] cannot be improved in the exponent.",
"In this paper, we propose a new two-stage hardware architecture that combines the features of both parallel dictionary LZW (PDLZW) and an approximated adaptive Huffman (AH) algorithms. In this architecture, an ordered list instead of the tree-based structure is used in the AH algorithm for speeding up the compression data rate. The resulting architecture shows that it not only outperforms the AH algorithm at the cost of only one-fourth the hardware resource but it is also competitive to the performance of LZW algorithm (compress). In addition, both compression and decompression rates of the proposed architecture are greater than those of the AH algorithm even in the case realized by software",
"Variants of Huffman codes where words are taken as the source symbols are currently the most attractive choices to compress natural language text databases. In particular, Tagged Huffman Code by offers fast direct searching on the compressed text and random access capabilities, in exchange for producing around 11 larger compressed files. This work describes End-Tagged Dense Code and (s, c)-Dense Code, two new semistatic statistical methods for compressing natural language texts. These techniques permit simpler and faster encoding and obtain better compression ratios than Tagged Huffman Code, while maintaining its fast direct search and random access capabilities. We show that Dense Codes improve Tagged Huffman Code compression ratio by about 10 , reaching only 0.6 overhead over the optimal Huffman compression ratio. Being simpler, Dense Codes are generated 45 to 60 faster than Huffman codes. This makes Dense Codes a very attractive alternative to Huffman code variants for various reasons: they are simpler to program, faster to build, of almost optimal size, and as fast and easy to search as the best Huffman variants, which are not so close to the optimal size.",
"Deep compression refers to removing the redundancy of parameters and feature maps for deep learning models. Low-rank approximation and pruning for sparse structures play a vital role in many compression works. However, weight filters tend to be both low-rank and sparse. Neglecting either part of these structure information in previous methods results in iteratively retraining, compromising accuracy, and low compression rates. Here we propose a unified framework integrating the low-rank and sparse decomposition of weight matrices with the feature map reconstructions. Our model includes methods like pruning connections as special cases, and is optimized by a fast SVD-free algorithm. It has been theoretically proven that, with a small sample, due to its generalizability, our model can well reconstruct the feature maps on both training and test data, which results in less compromising accuracy prior to the subsequent retraining. With such a warm start to retrain, the compression method always possesses several merits: (a) higher compression rates, (b) little loss of accuracy, and (c) fewer rounds to compress deep models. The experimental results on several popular models such as AlexNet, VGG-16, and GoogLeNet show that our model can significantly reduce the parameters for both convolutional and fully-connected layers. As a result, our model reduces the size of VGG-16 by 15×, better than other recent compression methods that use a single strategy."
]
} |
1908.11645 | 2971105318 | In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly. This has sparked a surge of research into specialized hardware accelerators. Their performance is typically limited by I O bandwidth, power consumption is dominated by I O transfers to off-chip memory, and on-chip memories occupy a large part of the silicon area. We introduce and evaluate a novel, hardware-friendly and lossless compression scheme for the feature maps present within convolutional neural networks. Its hardware implementation fits into 2.8 kGE and 1.7 kGE of silicon area for the compressor and decompressor, respectively. We show that an average compression ratio of 5.1x for AlexNet, 4x for VGG-16, 2.4x for ResNet-34 and 2.2x for MobileNetV2 can be achieved---a gain of 45--70 over existing methods. Our approach also works effectively for various number formats, has a low frame-to-frame variance on the compression ratio, and achieves compression factors for gradient map compression during training that are even better than for inference. | Few more methods exist by changing the CNN's structure in order to compress the weights @cite_14 @cite_37 or the feature maps @cite_1 @cite_50 @cite_18 . However, they require altering the CNN's model and or retraining, and they introduce some accuracy loss. Furthermore, they can only be used to compress a few feature maps at specific points within the network and introduce additional compute effort, such as applying a Fourier transform to the feature maps. | {
"cite_N": [
"@cite_18",
"@cite_37",
"@cite_14",
"@cite_1",
"@cite_50"
],
"mid": [
"2788715907",
"2515385951",
"2962965870",
"2964209717"
],
"abstract": [
"In recent years considerable research efforts have been devoted to compression techniques of convolutional neural networks (CNNs). Many works so far have focused on CNN connection pruning methods which produce sparse parameter tensors in convolutional or fully-connected layers. It has been demonstrated in several studies that even simple methods can effectively eliminate connections of a CNN. However, since these methods make parameter tensors just sparser but no smaller, the compression may not transfer directly to acceleration without support from specially designed hardware. In this paper, we propose an iterative approach named Auto-balanced Filter Pruning, where we pre-train the network in an innovative auto-balanced way to transfer the representational capacity of its convolutional layers to a fraction of the filters, prune the redundant ones, then re-train it to restore the accuracy. In this way, a smaller version of the original network is learned and the floating-point operations (FLOPs) are reduced. By applying this method on several common CNNs, we show that a large portion of the filters can be discarded without obvious accuracy drop, leading to significant reduction of computational burdens. Concretely, we reduce the inference cost of LeNet-5 on MNIST, VGG-16 and ResNet-56 on CIFAR-10 by 95.1 , 79.7 and 60.9 , respectively. Copyright © 2018, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.",
"The success of CNNs in various applications is accompanied by a significant increase in the computation and parameter storage costs. Recent efforts toward reducing these overheads involve pruning and compressing the weights of various layers without hurting original accuracy. However, magnitude-based pruning of weights reduces a significant number of parameters from the fully connected layers and may not adequately reduce the computation costs in the convolutional layers due to irregular sparsity in the pruned networks. We present an acceleration method for CNNs, where we prune filters from CNNs that are identified as having a small effect on the output accuracy. By removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly. In contrast to pruning weights, this approach does not result in sparse connectivity patterns. Hence, it does not need the support of sparse convolution libraries and can work with existing efficient BLAS libraries for dense matrix multiplications. We show that even simple filter pruning techniques can reduce inference costs for VGG-16 by up to 34 and ResNet-110 by up to 38 on CIFAR10 while regaining close to the original accuracy by retraining the networks.",
"The success of CNNs in various applications is accompanied by a significant increase in the computation and parameter storage costs. Recent efforts toward reducing these overheads involve pruning and compressing the weights of various layers without hurting original accuracy. However, magnitude-based pruning of weights reduces a significant number of parameters from the fully connected layers and may not adequately reduce the computation costs in the convolutional layers due to irregular sparsity in the pruned networks. We present an acceleration method for CNNs, where we prune filters from CNNs that are identified as having a small effect on the output accuracy. By removing whole filters in the network together with their connecting feature maps, the computation costs are reduced significantly. In contrast to pruning weights, this approach does not result in sparse connectivity patterns. Hence, it does not need the support of sparse convolution libraries and can work with existing efficient BLAS libraries for dense matrix multiplications. We show that even simple filter pruning techniques can reduce inference costs for VGG-16 by up to 34 and ResNet-110 by up to 38 on CIFAR10 while regaining close to the original accuracy by retraining the networks.",
"Since convolutional neural network (CNN) lacks an inherent mechanism to handle large scale variations, we always need to compute feature maps multiple times for multiscale object detection, which has the bottleneck of computational cost in practice. To address this, we devise a recurrent scale approximation (RSA) to compute feature map once only, and only through this map can we approximate the rest maps on other levels. At the core of RSA is the recursive rolling out mechanism: given an initial map on a particular scale, it generates the prediction on a smaller scale that is half the size of input. To further increase efficiency and accuracy, we (a): design a scale-forecast network to globally predict potential scales in the image since there is no need to compute maps on all levels of the pyramid. (b): propose a landmark retracing network (LRN) to retrace back locations of the regressed landmarks and generate a confidence score for each landmark; LRN can effectively alleviate false positives due to the accumulated error in RSA. The whole system could be trained end-to-end in a unified CNN framework. Experiments demonstrate that our proposed algorithm is superior against state-of-the-arts on face detection benchmarks and achieves comparable results for generic proposal generation. The source code of our system is available."
]
} |
1908.11645 | 2971105318 | In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly. This has sparked a surge of research into specialized hardware accelerators. Their performance is typically limited by I O bandwidth, power consumption is dominated by I O transfers to off-chip memory, and on-chip memories occupy a large part of the silicon area. We introduce and evaluate a novel, hardware-friendly and lossless compression scheme for the feature maps present within convolutional neural networks. Its hardware implementation fits into 2.8 kGE and 1.7 kGE of silicon area for the compressor and decompressor, respectively. We show that an average compression ratio of 5.1x for AlexNet, 4x for VGG-16, 2.4x for ResNet-34 and 2.2x for MobileNetV2 can be achieved---a gain of 45--70 over existing methods. Our approach also works effectively for various number formats, has a low frame-to-frame variance on the compression ratio, and achieves compression factors for gradient map compression during training that are even better than for inference. | The most directly comparable approach, cDMA @cite_25 , describes a hardware-friendly compression scheme to reduce the data size of intermediate feature maps. Their target application differs in that their main goal is to allow faster temporary offloading of the feature maps from GPU to CPU memory through the PCIe bandwidth bottleneck during training, thereby enabling larger batch sizes and deeper and wider networks without sacrificing performance. They propose to use , which takes a block of 32 activation values, and generates a 32-bit mask where only the bits to the non-zero values are set. The non-zero values are transferred after the mask. This provides the main advantage over Zero-RLE that the resulting data volume is independent of how the values of the feature maps are serialized while also providing small compression ratio advantages. Note that this is a special case of Zero-RLE with a maximum zero burst length of 1. | {
"cite_N": [
"@cite_25"
],
"mid": [
"2059343366",
"2787697768",
"1965106955",
"2951675964"
],
"abstract": [
"Hardware implementation of lossless data compression is important for optimizing the capacity cost power of storage devices in data centers, as well as communication channels in high-speed networks. In this work we use the Open Computing Language (OpenCL) to implement high-speed data compression (Gzip) on a field-programmable gate-arrays (FPGA). We show how we make use of a heavily-pipelined custom hardware implementation to achieve the high throughput of 3 GB s with more than 2x compression ratio over standard compression benchmarks. When compared against a highly-tuned CPU implementation, the performance-per-watt of our OpenCL FPGA implementation is 12x better and compression ratio is on-par. Additionally, we compare our implementation to a hand-coded commercial implementation of Gzip to quantify the gap between a high-level language like OpenCL, and a hardware description language like Verilog. OpenCL performance is 5.3 lower than Verilog, and area is 2 more logic and 25 more of the FPGA's available memory resources but the productivity gains are significant.",
"In this paper, we introduce a method to compress intermediate feature maps of deep neural networks (DNNs) to decrease memory storage and bandwidth requirements during inference. Unlike previous works, the proposed method is based on converting fixed-point activations into vectors over the smallest GF(2) finite field followed by nonlinear dimensionality reduction (NDR) layers embedded into a DNN. Such an end-to-end learned representation finds more compact feature maps by exploiting quantization redundancies within the fixed-point activations along the channel or spatial dimensions. We apply the proposed network architecture to the tasks of ImageNet classification and PASCAL VOC object detection. Compared to prior approaches, the conducted experiments show a factor of 2 decrease in memory requirements with minor degradation in accuracy while adding only bitwise computations.",
"Depth map compression is important for efficient network transmission of 3D visual data in texture-plus-depth format, where the observer can synthesize an image of a freely chosen viewpoint via depth-image-based rendering (DIBR) using received neighboring texture and depth maps as anchors. Unlike texture maps, depth maps exhibit unique characteristics like smooth interior surfaces and sharp edges that can be exploited for coding gain. In this paper, we propose a multi-resolution approach to depth map compression using previously proposed graph-based transform (GBT). The key idea is to treat smooth surfaces and sharp edges of large code blocks separately and encode them in different resolutions: encode edges in original high resolution (HR) to preserve sharpness, and encode smooth surfaces in low-pass-filtered and down-sampled low resolution (LR) to save coding bits. Because GBT does not filter across edges, it produces small or zero high-frequency components when coding smooth-surface depth maps and leads to a compact representation in the transform domain. By encoding down-sampled surface regions in LR GBT, we achieve representation compactness for a large block without the high computation complexity associated with an adaptive large-block GBT. At the decoder, encoded LR surfaces are up-sampled and interpolated while preserving encoded HR edges. Experimental results show that our proposed multi-resolution approach using GBT reduced bitrate by 68 compared to native H.264 intra with DCT encoding original HR depth maps, and by 55 compared to single-resolution GBT encoding small blocks.",
"Lossy image compression is generally formulated as a joint rate-distortion optimization to learn encoder, quantizer, and decoder. However, the quantizer is non-differentiable, and discrete entropy estimation usually is required for rate control. These make it very challenging to develop a convolutional network (CNN)-based image compression system. In this paper, motivated by that the local information content is spatially variant in an image, we suggest that the bit rate of the different parts of the image should be adapted to local content. And the content aware bit rate is allocated under the guidance of a content-weighted importance map. Thus, the sum of the importance map can serve as a continuous alternative of discrete entropy estimation to control compression rate. And binarizer is adopted to quantize the output of encoder due to the binarization scheme is also directly defined by the importance map. Furthermore, a proxy function is introduced for binary operation in backward propagation to make it differentiable. Therefore, the encoder, decoder, binarizer and importance map can be jointly optimized in an end-to-end manner by using a subset of the ImageNet database. In low bit rate image compression, experiments show that our system significantly outperforms JPEG and JPEG 2000 by structural similarity (SSIM) index, and can produce the much better visual result with sharp edges, rich textures, and fewer artifacts."
]
} |
1908.11645 | 2971105318 | In the wake of the success of convolutional neural networks in image classification, object recognition, speech recognition, etc., the demand for deploying these compute-intensive ML models on embedded and mobile systems with tight power and energy constraints at low cost, as well as for boosting throughput in data centers, is growing rapidly. This has sparked a surge of research into specialized hardware accelerators. Their performance is typically limited by I O bandwidth, power consumption is dominated by I O transfers to off-chip memory, and on-chip memories occupy a large part of the silicon area. We introduce and evaluate a novel, hardware-friendly and lossless compression scheme for the feature maps present within convolutional neural networks. Its hardware implementation fits into 2.8 kGE and 1.7 kGE of silicon area for the compressor and decompressor, respectively. We show that an average compression ratio of 5.1x for AlexNet, 4x for VGG-16, 2.4x for ResNet-34 and 2.2x for MobileNetV2 can be achieved---a gain of 45--70 over existing methods. Our approach also works effectively for various number formats, has a low frame-to-frame variance on the compression ratio, and achieves compression factors for gradient map compression during training that are even better than for inference. | For this work, we build on a method known in the area of texture compression for GPUs, @cite_44 , fuse it with sparsity-focused compression methods, and evaluate the resulting compression algorithm on intermediate feature maps and gradient maps to show compression ratios of 5.1 (8 ,bit AlexNet), 4 (VGG-16), 2.4 (ResNet-34), 2.8 (SqueezeNet), and 2.2 (MobileNetV2). | {
"cite_N": [
"@cite_44"
],
"mid": [
"2884180697",
"1965106955",
"2177847924",
"1955069752"
],
"abstract": [
"Weight pruning methods of deep neural networks have been demonstrated to achieve a good model pruning ratio without loss of accuracy, thereby alleviating the significant computation storage requirements of large-scale DNNs. Structured weight pruning methods have been proposed to overcome the limitation of irregular network structure and demonstrated actual GPU acceleration. However, the pruning ratio and GPU acceleration are limited when accuracy needs to be maintained. In this work, we overcome pruning ratio and GPU acceleration limitations by proposing a unified, systematic framework of structured weight pruning for DNNs, named ADAM-ADMM. It is a framework that can be used to induce different types of structured sparsity, such as filter-wise, channel-wise, and shape-wise sparsity, as well non-structured sparsity. The proposed framework incorporates stochastic gradient descent with ADMM, and can be understood as a dynamic regularization method in which the regularization target is analytically updated in each iteration. A significant improvement in structured weight pruning ratio is achieved without loss of accuracy, along with fast convergence rate. With a small sparsity degree of 33.3 on the convolutional layers, we achieve 1.64 accuracy enhancement for the AlexNet model. This is obtained by mitigation of overfitting. Without loss of accuracy on the AlexNet model, we achieve 2.58x and 3.65x average measured speedup on two GPUs, clearly outperforming the prior work. The average speedups reach 2.77x and 7.5x when allowing a moderate accuracy loss of 2 . In this case the model compression for convolutional layers is 13.2x, corresponding to 10.5x CPU speedup. Our experiments on ResNet model and on other datasets like UCF101 and CIFAR-10 demonstrate the consistently higher performance of our framework. Our models and codes are released at this https URL",
"Depth map compression is important for efficient network transmission of 3D visual data in texture-plus-depth format, where the observer can synthesize an image of a freely chosen viewpoint via depth-image-based rendering (DIBR) using received neighboring texture and depth maps as anchors. Unlike texture maps, depth maps exhibit unique characteristics like smooth interior surfaces and sharp edges that can be exploited for coding gain. In this paper, we propose a multi-resolution approach to depth map compression using previously proposed graph-based transform (GBT). The key idea is to treat smooth surfaces and sharp edges of large code blocks separately and encode them in different resolutions: encode edges in original high resolution (HR) to preserve sharpness, and encode smooth surfaces in low-pass-filtered and down-sampled low resolution (LR) to save coding bits. Because GBT does not filter across edges, it produces small or zero high-frequency components when coding smooth-surface depth maps and leads to a compact representation in the transform domain. By encoding down-sampled surface regions in LR GBT, we achieve representation compactness for a large block without the high computation complexity associated with an adaptive large-block GBT. At the decoder, encoded LR surfaces are up-sampled and interpolated while preserving encoded HR edges. Experimental results show that our proposed multi-resolution approach using GBT reduced bitrate by 68 compared to native H.264 intra with DCT encoding original HR depth maps, and by 55 compared to single-resolution GBT encoding small blocks.",
"Although the latest high-end smartphone has powerful CPU and GPU, running deeper convolutional neural networks (CNNs) for complex tasks such as ImageNet classification on mobile devices is challenging. To deploy deep CNNs on mobile devices, we present a simple and effective scheme to compress the entire CNN, which we call one-shot whole network compression. The proposed scheme consists of three steps: (1) rank selection with variational Bayesian matrix factorization, (2) Tucker decomposition on kernel tensor, and (3) fine-tuning to recover accumulated loss of accuracy, and each step can be easily implemented using publicly available tools. We demonstrate the effectiveness of the proposed scheme by testing the performance of various compressed CNNs (AlexNet, VGGS, GoogLeNet, and VGG-16) on the smartphone. Significant reductions in model size, runtime, and energy consumption are obtained, at the cost of small loss in accuracy. In addition, we address the important implementation level issue on 1?1 convolution, which is a key operation of inception module of GoogLeNet as well as CNNs compressed by our proposed scheme.",
"We present a Multi View Stereo approach for huge unstructured image datasets that can deal with large variations in surface sampling rate of single images. Our method reconstructs surface parts always in the best available resolution. It considers scaling not only for large scale differences, but also between arbitrary small ones for a weighted merging of the best partial reconstructions. We create depth maps with our GPU based depth map algorithm, that also performs normal optimization. It matches several images that are found with a heuristic image selection method, to a reference image. We remove outliers by comparing depth maps against each other with a fast but reliable GPU approach. Then, we merge the different reconstructions from depth maps in 3D space by selecting the best points and optimizing them with not selected points. Finally, we create the surface by using a Delaunay graph cut."
]
} |
1908.11787 | 2970281864 | We present a novel approach to answering sequential questions based on structured objects such as knowledge bases or tables without using a logical form as an intermediate representation. We encode tables as graphs using a graph neural network model based on the Transformer architecture. The answers are then selected from the encoded graph using a pointer network. This model is appropriate for processing conversations around structured data, where the attention mechanism that selects the answers to a question can also be used to resolve conversational references. We demonstrate the validity of this approach with competitive results on the Sequential Question Answering (SQA) task (, 2017). | Semantic parsing models can be trained to produce gold logical forms using an encoder-decoder approach @cite_26 or by filling templates @cite_22 @cite_18 @cite_30 . When gold logical forms are not available, they are typically treated as latent variables or hidden states and the answers or denotations are used to search for correct logical forms @cite_31 @cite_29 @cite_34 . In some cases, feedback from query execution is used as a reward signal for updating the model through reinforcement learning @cite_5 @cite_6 @cite_32 @cite_16 or for refining parts of the query @cite_7 . In our work, we do not use logical forms or RL, which can be hard to train, but simplify the training process by directly matching questions to table cells. | {
"cite_N": [
"@cite_30",
"@cite_18",
"@cite_26",
"@cite_22",
"@cite_7",
"@cite_29",
"@cite_32",
"@cite_6",
"@cite_16",
"@cite_5",
"@cite_31",
"@cite_34"
],
"mid": [
"2250225488",
"2444236087",
"2251957808",
"2607617947"
],
"abstract": [
"A central challenge in semantic parsing is handling the myriad ways in which knowledge base predicates can be expressed. Traditionally, semantic parsers are trained primarily from text paired with knowledge base information. Our goal is to exploit the much larger amounts of raw text not tied to any knowledge base. In this paper, we turn semantic parsing on its head. Given an input utterance, we first use a simple method to deterministically generate a set of candidate logical forms with a canonical realization in natural language for each. Then, we use a paraphrase model to choose the realization that best paraphrases the input, and output the corresponding logical form. We present two simple paraphrase models, an association model and a vector space model, and train them jointly from question-answer pairs. Our system PARASEMPRE improves stateof-the-art accuracies on two recently released question-answering datasets.",
"Modeling crisp logical regularities is crucial in semantic parsing, making it difficult for neural models with no task-specific prior knowledge to achieve good results. In this paper, we introduce data recombination, a novel framework for injecting such prior knowledge into a model. From the training data, we induce a high-precision synchronous context-free grammar, which captures important conditional independence properties commonly found in semantic parsing. We then train a sequence-to-sequence recurrent network (RNN) model with a novel attention-based copying mechanism on datapoints sampled from this grammar, thereby teaching the model about these structural properties. Data recombination improves the accuracy of our RNN model on three semantic parsing datasets, leading to new state-of-the-art performance on the standard GeoQuery dataset for models with comparable supervision.",
"How do we build a semantic parser in a new domain starting with zero training examples? We introduce a new methodology for this setting: First, we use a simple grammar to generate logical forms paired with canonical utterances. The logical forms are meant to cover the desired set of compositional operators, and the canonical utterances are meant to capture the meaning of the logical forms (although clumsily). We then use crowdsourcing to paraphrase these canonical utterances into natural utterances. The resulting data is used to train the semantic parser. We further study the role of compositionality in the resulting paraphrases. Finally, we test our methodology on seven domains and show that we can build an adequate semantic parser in just a few hours.",
"Existing studies on semantic parsing mainly focus on the in-domain setting. We formulate cross-domain semantic parsing as a domain adaptation problem: train a semantic parser on some source domains and then adapt it to the target domain. Due to the diversity of logical forms in different domains, this problem presents unique and intriguing challenges. By converting logical forms into canonical utterances in natural language, we reduce semantic parsing to paraphrasing, and develop an attentive sequence-to-sequence paraphrase model that is general and flexible to adapt to different domains. We discover two problems, small micro variance and large macro variance, of pre-trained word embeddings that hinder their direct use in neural networks, and propose standardization techniques as a remedy. On the popular Overnight dataset, which contains eight domains, we show that both cross-domain training and standardized pre-trained word embeddings can bring significant improvement."
]
} |
1908.11598 | 2971001703 | We consider a crowdsourcing data acquisition scenario, such as federated learning, where a Center collects data points from a set of rational Agents, with the aim of training a model. For linear regression models, we show how a payment structure can be designed to incentivize the agents to provide high-quality data as early as possible, based on a characterization of the influence that data points have on the loss function of the model. Our contributions can be summarized as follows: (a) we prove theoretically that this scheme ensures truthful data reporting as a game-theoretic equilibrium and further demonstrate its robustness against mixtures of truthful and heuristic data reports, (b) we design a procedure according to which the influence computation can be efficiently approximated and processed sequentially in batches over time, (c) we develop a theory that allows correcting the difference between the influence and the overall change in loss and (d) we evaluate our approach on real datasets, confirming our theoretical findings. | The topic of learning a model when the input data points are provided by strategic sources has been the focus of a growing literature at the intersection of machine learning and game theory. A significant amount of work has been devoted to the setting in which Agents are interested in the outcome of the estimation process itself, e.g., when they are trying to sway the learned model closer to their own data points @cite_21 @cite_14 @cite_5 @cite_9 @cite_15 . Our setting is concerned with the fundamental question of eliciting accurate data when data acquisition is costly for the agents, or when they are not willing to share their data without some form of monetary compensation. Another line of work considers settings in which the Agents have to be compensated for their loss of privacy @cite_2 @cite_19 . | {
"cite_N": [
"@cite_14",
"@cite_9",
"@cite_21",
"@cite_19",
"@cite_2",
"@cite_5",
"@cite_15"
],
"mid": [
"1983916796",
"2802314446",
"2337798556",
"2549514639"
],
"abstract": [
"We initiate the study of incentives in a general machine learning framework. We focus on a game-theoretic regression learning setting where private information is elicited from multiple agents with different, possibly conflicting, views on how to label the points of an input space. This conflict potentially gives rise to untruthfulness on the part of the agents. In the restricted but important case when every agent cares about a single point, and under mild assumptions, we show that agents are motivated to tell the truth. In a more general setting, we study the power and limitations of mechanisms without payments. We finally establish that, in the general setting, the VCG mechanism goes a long way in guaranteeing truthfulness and economic efficiency.",
"As machine learning (ML) applications become increasingly prevalent, protecting the confidentiality of ML models becomes paramount for two reasons: (a) models may constitute a business advantage to its owner, and (b) an adversary may use a stolen model to find transferable adversarial examples that can be used to evade classification by the original model. One way to protect model confidentiality is to limit access to the model only via well-defined prediction APIs. This is common not only in machine-learning-as-a-service (MLaaS) settings where the model is remote, but also in scenarios like autonomous driving where the model is local but direct access to it is protected, for example, by hardware security mechanisms. Nevertheless, prediction APIs still leak information so that it is possible to mount model extraction attacks by an adversary who repeatedly queries the model via the prediction API. In this paper, we describe a new model extraction attack by combining a novel approach for generating synthetic queries together with recent advances in training deep neural networks. This attack outperforms state-of-the-art model extraction techniques in terms of transferability of targeted adversarial examples generated using the extracted model (+15-30 percentage points, pp), and in prediction accuracy (+15-20 pp) on two datasets. We then propose the first generic approach to effectively detect model extraction attacks: PRADA. It analyzes how the distribution of consecutive queries to the model evolves over time and raises an alarm when there are abrupt deviations. We show that PRADA can detect all known model extraction attacks with a 100 success rate and no false positives. PRADA is particularly suited for detecting extraction attacks against local models.",
"We propose a hybrid model for automatically acquiring a policy for a complex game, which combines online learning with mining knowledge from a corpus of human game play. Our hypothesis is that a player that learns its policies by combining (online) exploration with biases towards human behaviour that's attested in a corpus of humans playing the game will outperform any agent that uses only one of the knowledge sources. During game play, the agent extracts similar moves made by players in the corpus in similar situations, and approximates their utility alongside other possible options by performing simulations from its current state. We implement and assess our model in an agent playing the complex win-lose board game Settlers of Catan, which lacks an implementation that would challenge a human expert. The results from the preliminary set of experiments illustrate the potential of such a joint model.",
"In order for robots to learn from people with no machine learning expertise, robots should learn from natural human instruction. Most machine learning techniques that incorporate explanations require people to use a limited vocabulary and provide state information, even if it is not intuitive. This paper discusses a software agent that learned to play the Mario Bros. game using explanations. Our goals to improve learning from explanations were twofold: 1) to filter explanations into advice and warnings and 2) to learn policies from sentences without state information. We used sentiment analysis to filter explanations into advice of what to do and warnings of what to avoid. We developed object-focused advice to represent what actions the agent should take when dealing with objects. A reinforcement learning agent used object-focused advice to learn policies that maximized its reward. After mitigating false negatives, using sentiment as a filter was approximately 85 accurate. object-focused advice performed better than when no advice was given, the agent learned where to apply the advice, and the agent could recover from adversarial advice. We also found the method of interaction should be designed to ease the cognitive load of the human teacher or the advice may be of poor quality."
]
} |
1908.11598 | 2971001703 | We consider a crowdsourcing data acquisition scenario, such as federated learning, where a Center collects data points from a set of rational Agents, with the aim of training a model. For linear regression models, we show how a payment structure can be designed to incentivize the agents to provide high-quality data as early as possible, based on a characterization of the influence that data points have on the loss function of the model. Our contributions can be summarized as follows: (a) we prove theoretically that this scheme ensures truthful data reporting as a game-theoretic equilibrium and further demonstrate its robustness against mixtures of truthful and heuristic data reports, (b) we design a procedure according to which the influence computation can be efficiently approximated and processed sequentially in batches over time, (c) we develop a theory that allows correcting the difference between the influence and the overall change in loss and (d) we evaluate our approach on real datasets, confirming our theoretical findings. | Our ideas are closely related to the literature of mechanisms @cite_8 and @cite_17 . The idea behind this literature is to extract high-quality information from individuals by comparing their reports against those of randomly chosen peers. This approach has been largely successful in eliciting information. The same principle applies to our case, where the payments are dependent on the improvement of the model and therefore agents are rewarded for providing information. Finally, jia2019towards [ jia2019towards ] recently considered a setting in which the value of the provided data information is determined via the . Their approach is inherently different from ours, but it is worth noting that they consider the influence approximation of @cite_1 for approximating the Shapley value. | {
"cite_N": [
"@cite_1",
"@cite_17",
"@cite_8"
],
"mid": [
"2583393691",
"2082729696",
"2097300420",
"2058053171"
],
"abstract": [
"This paper proposes a novel approach for constructing effective personalized policies when the observed data lacks counter-factual information, is biased and possesses many features. The approach is applicable in a wide variety of settings from healthcare to advertising to education to finance. These settings have in common that the decision maker can observe, for each previous instance, an array of features of the instance, the action taken in that instance, and the reward realized -- but not the rewards of actions that were not taken: the counterfactual information. Learning in such settings is made even more difficult because the observed data is typically biased by the existing policy (that generated the data) and because the array of features that might affect the reward in a particular instance -- and hence should be taken into account in deciding on an action in each particular instance -- is often vast. The approach presented here estimates propensity scores for the observed data, infers counterfactuals, identifies a (relatively small) number of features that are (most) relevant for each possible action and instance, and prescribes a policy to be followed. Comparison of the proposed algorithm against the state-of-art algorithm on actual datasets demonstrates that the proposed algorithm achieves a significant improvement in performance.",
"This paper reports on a novel technique for literature indexing and searching in a mechanized library system. The notion of relevance is taken as the key concept in the theory of information retrieval and a comparative concept of relevance is explicated in terms of the theory of probability. The resulting technique called “Probabilistic Indexing,” allows a computing machine, given a request for information, to make a statistical inference and derive a number (called the “relevance number”) for each document, which is a measure of the probability that the document will satisfy the given request. The result of a search is an ordered list of those documents which satisfy the request ranked according to their probable relevance. The paper goes on to show that whereas in a conventional library system the cross-referencing (“see” and “see also”) is based solely on the “semantical closeness” between index terms, statistical measures of closeness between index terms can be defined and computed. Thus, given an arbitrary request consisting of one (or many) index term(s), a machine can elaborate on it to increase the probability of selecting relevant documents that would not otherwise have been selected. Finally, the paper suggests an interpretation of the whole library problem as one where the request is considered as a clue on the basis of which the library system makes a concatenated statistical inference in order to provide as an output an ordered list of those documents which most probably satisfy the information needs of the user.",
"Motivation: The abundance of biomedical literature has attracted significant interest in novel methods to automatically extract biomedical relations from the literature. Until recently, most research was focused on extracting binary relations such as protein–protein interactions and drug–disease relations. However, these binary relations cannot fully represent the original biomedical data. Therefore, there is a need for methods that can extract fine-grained and complex relations known as biomedical events. Results: In this article we propose a novel method to extract biomedical events from text. Our method consists of two phases. In the first phase, training data are mapped into structured representations. Based on that, templates are used to extract rules automatically. In the second phase, extraction methods are developed to process the obtained rules. When evaluated against the Genia event extraction abstract and full-text test datasets (Task 1), we obtain results with F-scores of 52.34 and 53.34, respectively, which are comparable to the state-of-the-art systems. Furthermore, our system achieves superior performance in terms of computational efficiency. Availability: Our source code is available for academic use at http: dl.dropbox.com u 10256952 BioEvent.zip Contact: [email protected]",
"We propose an approach for information extraction for multi-page printed document understanding. The approach is designed for scenarios in which the set of possible document classes, i.e., documents sharing similar content and layout, is large and may evolve over time. Describing a new class is a very simple task: the operator merely provides a few samples and then, by means of a GUI, clicks on the OCR-generated blocks of a document containing the information to be extracted. Our approach is based on probability: we derived a general form for the probability that a sequence of blocks contains the searched information. We estimate the parameters for a new class by applying the maximum likelihood method to the samples of the class. All these parameters depend only on block properties that can be extracted automatically from the operator actions on the GUI. Processing a document of a given class consists in finding the sequence of blocks, which maximizes the corresponding probability for that class. We evaluated experimentally our proposal using 807 multi-page printed documents of different domains (invoices, patents, data-sheets), obtaining very good results—e.g., a success rate often greater than 90 even for classes with just two samples."
]
} |
1908.11515 | 2970190087 | When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method. | Frequency Oracle One basic mechanism in LDP is to estimate frequencies of values. There have been several mechanisms @cite_34 @cite_30 @cite_2 @cite_31 @cite_5 @cite_0 proposed for this task. Among them, @cite_31 introduces , which achieves low estimation errors and low communication costs. The application of is crucial for the utility of other application such as heavy hitter identification @cite_2 and frequent itemset mining @cite_4 @cite_11 . And one major contribution of this paper is to enable to enjoy the privacy amplification effect. | {
"cite_N": [
"@cite_30",
"@cite_4",
"@cite_0",
"@cite_2",
"@cite_5",
"@cite_31",
"@cite_34",
"@cite_11"
],
"mid": [
"2794674331",
"2930558539",
"2532967691",
"2949560198"
],
"abstract": [
"The notion of Local Differential Privacy (LDP) enables users to respond to sensitive questions while preserving their privacy. The basic LDP frequent oracle (FO) protocol enables an aggregator to estimate the frequency of any value. But when each user has a set of values, one needs an additional padding and sampling step to find the frequent values and estimate their frequencies. In this paper, we formally define such padding and sample based frequency oracles (PSFO). We further identify the privacy amplification property in PSFO. As a result, we propose SVIM, a protocol for finding frequent items in the set-valued LDP setting. Experiments show that under the same privacy guarantee and computational cost, SVIM significantly improves over existing methods. With SVIM to find frequent items, we propose SVSM to effectively find frequent itemsets, which to our knowledge has not been done before in the LDP setting.",
"Local differential privacy (LDP), where each user perturbs her data locally before sending to an untrusted data collector, is a new and promising technique for privacy-preserving distributed data collection. The advantage of LDP is to enable the collector to obtain accurate statistical estimation on sensitive user data (e.g., location and app usage) without accessing them. However, existing work on LDP is limited to simple data types, such as categorical, numerical, and set-valued data. To the best of our knowledge, there is no existing LDP work on key-value data, which is an extremely popular NoSQL data model and the generalized form of set-valued and numerical data. In this paper, we study this problem of frequency and mean estimation on key-value data by first designing a baseline approach PrivKV within the same \"perturbation-calibration\" paradigm as existing LDP techniques. To address the poor estimation accuracy due to the clueless perturbation of users, we then propose two iterative solutions PrivKVM and PrivKVM+ that can gradually improve the estimation results through a series of iterations. An optimization strategy is also presented to reduce network latency and increase estimation accuracy by introducing virtual iterations in the collector side without user involvement. We verify the correctness and effectiveness of these solutions through theoretical analysis and extensive experimental results.",
"In local differential privacy (LDP), each user perturbs her data locally before sending the noisy data to a data collector. The latter then analyzes the data to obtain useful statistics. Unlike the setting of centralized differential privacy, in LDP the data collector never gains access to the exact values of sensitive data, which protects not only the privacy of data contributors but also the collector itself against the risk of potential data leakage. Existing LDP solutions in the literature are mostly limited to the case that each user possesses a tuple of numeric or categorical values, and the data collector computes basic statistics such as counts or mean values. To the best of our knowledge, no existing work tackles more complex data mining tasks such as heavy hitter discovery over set-valued data. In this paper, we present a systematic study of heavy hitter mining under LDP. We first review existing solutions, extend them to the heavy hitter estimation, and explain why their effectiveness is limited. We then propose LDPMiner, a two-phase mechanism for obtaining accurate heavy hitters with LDP. The main idea is to first gather a candidate set of heavy hitters using a portion of the privacy budget, and focus the remaining budget on refining the candidate set in a second phase, which is much more efficient budget-wise than obtaining the heavy hitters directly from the whole dataset. We provide both in-depth theoretical analysis and extensive experiments to compare LDPMiner against adaptations of previous solutions. The results show that LDPMiner significantly improves over existing methods. More importantly, LDPMiner successfully identifies the majority true heavy hitters in practical settings.",
"We initiate the probabilistic analysis of linear programming (LP) decoding of low-density parity-check (LDPC) codes. Specifically, we show that for a random LDPC code ensemble, the linear programming decoder of Feldman succeeds in correcting a constant fraction of errors with high probability. The fraction of correctable errors guaranteed by our analysis surpasses previous nonasymptotic results for LDPC codes, and in particular, exceeds the best previous finite-length result on LP decoding by a factor greater than ten. This improvement stems in part from our analysis of probabilistic bit-flipping channels, as opposed to adversarial channels. At the core of our analysis is a novel combinatorial characterization of LP decoding success, based on the notion of a flow on the Tanner graph of the code. An interesting by-product of our analysis is to establish the existence of ldquoprobabilistic expansionrdquo in random bipartite graphs, in which one requires only that almost every (as opposed to every) set of a certain size expands, for sets much larger than in the classical worst case setting."
]
} |
1908.11515 | 2970190087 | When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method. | There also exist relaxed models that seem incompatible with the shuffler model, i.e., @cite_15 considers the inferring probability as the adversary's power; and @cite_3 utilizes the linkage between each user's sensitive and public attributes. | {
"cite_N": [
"@cite_15",
"@cite_3"
],
"mid": [
"2799694080",
"2514333820",
"2170255835",
"2145801920"
],
"abstract": [
"Users in various web and mobile applications are vulnerable to attribute inference attacks, in which an attacker leverages a machine learning classifier to infer a target user's private attributes (e.g., location, sexual orientation, political view) from its public data (e.g., rating scores, page likes). Existing defenses leverage game theory or heuristics based on correlations between the public data and attributes. These defenses are not practical. Specifically, game-theoretic defenses require solving intractable optimization problems, while correlation-based defenses incur large utility loss of users' public data. In this paper, we present AttriGuard, a practical defense against attribute inference attacks. AttriGuard is computationally tractable and has small utility loss. Our AttriGuard works in two phases. Suppose we aim to protect a user's private attribute. In Phase I, for each value of the attribute, we find a minimum noise such that if we add the noise to the user's public data, then the attacker's classifier is very likely to infer the attribute value for the user. We find the minimum noise via adapting existing evasion attacks in adversarial machine learning. In Phase II, we sample one attribute value according to a certain probability distribution and add the corresponding noise found in Phase I to the user's public data. We formulate finding the probability distribution as solving a constrained convex optimization problem. We extensively evaluate AttriGuard and compare it with existing methods using a real-world dataset. Our results show that AttriGuard substantially outperforms existing methods. Our work is the first one that shows evasion attacks can be used as defensive techniques for privacy protection.",
"Abstract Several competing human behavior models have been proposed to model boundedly rational adversaries in repeated Stackelberg Security Games (SSG). However, these existing models fail to address three main issues which are detrimental to defender performance. First, while they attempt to learn adversary behavior models from adversaries' past actions (“attacks on targets”), they fail to take into account adversaries' future adaptation based on successes or failures of these past actions. Second, existing algorithms fail to learn a reliable model of the adversary unless there exists sufficient data collected by exposing enough of the attack surface – a situation that often arises in initial rounds of the repeated SSG. Third, current leading models have failed to include probability weighting functions, even though it is well known that human beings' weighting of probability is typically nonlinear. To address these limitations of existing models, this article provides three main contributions. Our first contribution is a new human behavior model, SHARP, which mitigates these three limitations as follows: (i) SHARP reasons based on success or failure of the adversary's past actions on exposed portions of the attack surface to model adversary adaptivity; (ii) SHARP reasons about similarity between exposed and unexposed areas of the attack surface, and also incorporates a discounting parameter to mitigate adversary's lack of exposure to enough of the attack surface; and (iii) SHARP integrates a non-linear probability weighting function to capture the adversary's true weighting of probability. Our second contribution is a first “repeated measures study” – at least in the context of SSGs – of competing human behavior models. This study, where each experiment lasted a period of multiple weeks with individual sets of human subjects on the Amazon Mechanical Turk platform, illustrates the strengths and weaknesses of different models and shows the advantages of SHARP. Our third major contribution is to demonstrate SHARP's superiority by conducting real-world human subjects experiments at the Bukit Barisan Seletan National Park in Indonesia against wildlife security experts.",
"This paper explores what kinds of information two parties must communicate in order to correct errors which occur in a shared secret string W. Any bits they communicate must leak a significant amount of information about W --- that is, from the adversary's point of view, the entropy of W will drop significantly. Nevertheless, we construct schemes with which Alice and Bob can prevent an adversary from learning any useful information about W. Specifically, if the entropy of W is sufficiently high, then there is no function f(W) which the adversary can learn from the error-correction information with significant probability.This leads to several new results: (a) the design of noise-tolerant \"perfectly one-way\" hash functions in the sense of [7], which in turn leads to obfuscation of proximity queries for high entropy secrets W; (b) private fuzzy extractors [11], which allow one to extract uniformly random bits from noisy and nonuniform data W, while also insuring that no sensitive information about W is leaked; and (c) noise tolerance and stateless key re-use in the Bounded Storage Model, resolving the main open problem of Ding [10].The heart of our constructions is the design of strong randomness extractors with the property that the source W can be recovered from the extracted randomness and any string W' which is close to W.",
"A shuffle consists of a permutation and re-encryption of a set of input ciphertexts. One application of shuffles is to build mix-nets. We suggest an honest verifier zero-knowledge argument for the correctness of a shuffle of homomorphic encryptions. Our scheme is more efficient than previous schemes both in terms of communication and computation. The honest verifier zero-knowledge argument has a size that is independent of the actual cryptosystem being used and will typically be smaller than the size of the shuffle itself. Moreover, our scheme is well suited for the use of multi-exponentiation and batch-verification techniques. Additionally, we suggest a more efficient honest verifier zero-knowledge argument for a commitment containing a permutation of a set of publicly known messages. We also suggest an honest verifier zero-knowledge argument for the correctness of a combined shuffle-and-decrypt operation that can be used in connection with decrypting mix-nets based on ElGamal encryption. All our honest verifier zero-knowledge arguments can be turned into honest verifier zero-knowledge proofs. We use homomorphic commitments as an essential part of our schemes. When the commitment scheme is statistically hiding we obtain statistical honest verifier zero-knowledge arguments; when the commitment scheme is statistically binding, we obtain computational honest verifier zero-knowledge proofs."
]
} |
1908.11515 | 2970190087 | When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method. | Distributed DP In the distributed setting of DP, each data owner (or proxy) has access to a (disjoint) subset of users. For example, each patient's information is possessed by a hospital. The DP noise is added at the level of the intermediate data owners (e.g., @cite_27 ). A special case (two-party computation) is also considered @cite_18 @cite_10 . @cite_7 studies the limitation of two-party DP. @cite_16 , a distributed noise generation protocol was proposed to prevent some party from adding malicious noise. @cite_37 lays the theoretical foundation of the relationship among several kinds of computational DP definitions. | {
"cite_N": [
"@cite_18",
"@cite_37",
"@cite_7",
"@cite_27",
"@cite_16",
"@cite_10"
],
"mid": [
"2610910029",
"2365029783",
"1518033500",
"2525846285"
],
"abstract": [
"In this work we provide efficient distributed protocols for generating shares of random noise, secure against malicious participants. The purpose of the noise generation is to create a distributed implementation of the privacy-preserving statistical databases described in recent papers [14,4,13]. In these databases, privacy is obtained by perturbing the true answer to a database query by the addition of a small amount of Gaussian or exponentially distributed random noise. The computational power of even a simple form of these databases, when the query is just of the form Σ i f(d i ), that is, the sum over all rows i in the database of a function f applied to the data in row i, has been demonstrated in [4]. A distributed implementation eliminates the need for a trusted database administrator. The results for noise generation are of independent interest. The generation of Gaussian noise introduces a technique for distributing shares of many unbiased coins with fewer executions of verifiable secret sharing than would be needed using previous approaches (reduced by a factor of n). The generation of exponentially distributed noise uses two shallow circuits: one for generating many arbitrarily but identically biased coins at an amortized cost of two unbiased random bits apiece, independent of the bias, and the other to combine bits of appropriate biases to obtain an exponential distribution.",
"Abstract With the proliferation of smart grids, traditional utilities are struggling to handle the increasing amount of metering data. Outsourcing the metering data to heterogeneous distributed systems has the potential to provide efficient data access and processing. In an untrusted heterogeneous distributed system environment, employing data encryption prior to outsourcing can be an effective way to preserve user privacy. However, how to efficiently query encrypted multidimensional metering data stored in an untrusted heterogeneous distributed system environment remains a research challenge. In this paper, we propose a high performance and privacy-preserving query (P2Q) scheme over encrypted multidimensional big metering data to address this challenge. In the proposed scheme, encrypted metering data are stored in the server of an untrusted heterogeneous distributed system environment. A Locality Sensitive Hashing (LSH) based similarity search approach is then used to realize the similarity query. To demonstrate utility of the proposed LSH-based search approach, we implement a prototype using MapReduce for the Hadoop distributed environment. More specifically, for a given query, the proxy server will return K top similar data object identifiers. An enhanced Ciphertext-Policy Attribute-based Encryption (CP-ABE) policy is then used to control access to the search results. Therefore, only the requester with an authorized query attribute can obtain the correct secret keys to retrieve the metering data. We then prove that the P2Q scheme achieves data confidentiality and preserves the data owner’s privacy in a semi-trusted cloud. In addition, our evaluations demonstrate that the P2Q scheme can significantly reduce response time and provide high search efficiency without compromising on search quality (i.e. suitable for multidimensional big data search in heterogeneous distributed system, such as cloud storage system).",
"We study the distributed privacy preserving data collection problem: an untrusted data collector (e.g., a medical research institute) wishes to collect data (e.g., medical records) from a group of respondents (e.g., patients). Each respondent owns a multi-attributed record which contains both non-sensitive (e.g., quasi-identifiers) and sensitive information (e.g., a particular disease), and submits it to the data collector. Assuming T is the table formed by all the respondent data records, we say that the data collection process is privacy preserving if it allows the data collector to obtain a k-anonymized or l-diversified version of T without revealing the original records to the adversary. We propose a distributed data collection protocol that outputs an anonymized table by generalization of quasi-identifier attributes. The protocol employs cryptographic techniques such as homomorphic encryption, private information retrieval and secure multiparty computation to ensure the privacy goal in the process of data collection. Meanwhile, the protocol is designed to leak limited but noncritical information to achieve practicability and efficiency. Experiments show that the utility of the anonymized table derived by our protocol is in par with the utility achieved by traditional anonymization techniques.",
"This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir’s secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant.Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with differential privacy."
]
} |
1908.11515 | 2970190087 | When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method. | DP by Trusted Hardware In this approach, a trusted hardware (e.g., SGX) is utilized to collect data, tally the data, and add the noise within the protected hardware. The result is then sent to the analyst. Google propose Prochlo @cite_29 that uses SGX. Note that the trusted hardware can be run by the server. Thus @cite_38 and @cite_1 designed oblivious DP algorithms to overcome the threat of side information (memory access pattern may be related to the underlying data). These proposals assume the trusted hardware is safe to use. However, using trusted hardware has potential risks (e.g., @cite_23 ). This paper considers the setting without trusted hardware. | {
"cite_N": [
"@cite_38",
"@cite_29",
"@cite_1",
"@cite_23"
],
"mid": [
"2761138375",
"2727025244",
"2607063282",
"2793901360"
],
"abstract": [
"The large-scale monitoring of computer users' software activities has become commonplace, e.g., for application telemetry, error reporting, or demographic profiling. This paper describes a principled systems architecture---Encode, Shuffle, Analyze (ESA)---for performing such monitoring with high utility while also protecting user privacy. The ESA design, and its Prochlo implementation, are informed by our practical experiences with an existing, large deployment of privacy-preserving software monitoring. With ESA, the privacy of monitored users' data is guaranteed by its processing in a three-step pipeline. First, the data is encoded to control scope, granularity, and randomness. Second, the encoded data is collected in batches subject to a randomized threshold, and blindly shuffled, to break linkability and to ensure that individual data items get \"lost in the crowd\" of the batch. Third, the anonymous, shuffled data is analyzed by a specific analysis engine that further prevents statistical inference attacks on analysis results. ESA extends existing best-practice methods for sensitive-data analytics, by using cryptography and statistical techniques to make explicit how data is elided and reduced in precision, how only common-enough, anonymous data is analyzed, and how this is done for only specific, permitted purposes. As a result, ESA remains compatible with the established workflows of traditional database analysis. Strong privacy guarantees, including differential privacy, can be established at each processing step to defend against malice or compromise at one or more of those steps. Prochlo develops new techniques to harden those steps, including the Stash Shuffle, a novel scalable and efficient oblivious-shuffling algorithm based on Intel's SGX, and new applications of cryptographic secret sharing and blinding. We describe ESA and Prochlo, as well as experiments that validate their ability to balance utility and privacy.",
"Intel Software Guard Extensions (SGX) is a hardware-based Trusted Execution Environment (TEE) that is widely seen as a promising solution to traditional security threats. While SGX promises strong protection to bugfree software, decades of experience show that we have to expect vulnerabilities in any non-trivial application. In a traditional environment, such vulnerabilities often allow attackers to take complete control of vulnerable systems. Efforts to evaluate the security of SGX have focused on side-channels. So far, neither a practical attack against a vulnerability in enclave code nor a proof-of-concept attack scenario has been demonstrated. Thus, a fundamental question remains: What are the consequences and dangers of having a memory corruption vulnerability in enclave code? To answer this question, we comprehensively analyze exploitation techniques against vulnerabilities inside enclaves. We demonstrate a practical exploitation technique, called Dark-ROP, which can completely disarm the security guarantees of SGX. Dark-ROP exploits a memory corruption vulnerability in the enclave software through return-oriented programming (ROP). However Dark-ROP differs significantly from traditional ROP attacks because the target code runs under solid hardware protection. We overcome the problem of exploiting SGX-specific properties and obstacles by formulating a novel ROP attack scheme against SGX under practical assumptions. Specifically, we build several oracles that inform the attacker about the status of enclave execution. This enables him to launch the ROP attack while both code and data are hidden. In addition, we exfiltrate the enclave's code and data into a shadow application to fully control the execution environment. This shadow application emulates the enclave under the complete control of the attacker, using the enclave (through ROP calls) only to perform SGX operations such as reading the enclave's SGX crypto keys.",
"Shielded execution based on Intel SGX provides strong security guarantees for legacy applications running on untrusted platforms. However, memory safety attacks such as Heartbleed can render the confidentiality and integrity properties of shielded execution completely ineffective. To prevent these attacks, the state-of-the-art memory-safety approaches can be used in the context of shielded execution. In this work, we first showcase that two prominent software- and hardware-based defenses, AddressSanitizer and Intel MPX respectively, are impractical for shielded execution due to high performance and memory overheads. This motivated our design of SGXBounds---an efficient memory-safety approach for shielded execution exploiting the architectural features of Intel SGX. Our design is based on a simple combination of tagged pointers and compact memory layout. We implemented SGXBounds based on the LLVM compiler framework targeting unmodified multithreaded applications. Our evaluation using Phoenix, PARSEC, and RIPE benchmark suites shows that SGXBounds has performance and memory overheads of 17 and 0.1 respectively, while providing security guarantees similar to AddressSanitizer and Intel MPX. We have obtained similar results with SPEC CPU2006 and four real-world case studies: SQLite, Memcached, Apache, and Nginx.",
"ABSTRACTSmart grid (SG) allows for two-way communication between the utility and its consumers and hence they are considered as an inevitable future of the traditional grid. Since consumers are the key component of SGs, providing security and privacy to their personal data is a critical problem. In this paper, a security protocol, namely TPS3, is based on Temporal Perturbation and Shamir’s Secret Sharing (SSS) schemes that are proposed to ensure the privacy of SG consumer’s data. Temporal perturbation is employed to provide temporal privacy, while the SSS scheme is used to ensure data confidentiality. Temporal perturbation adds random delays to the data collected by smart meters, whereas the SSS scheme fragments these data before transmitting them to the data collection server. Joint employment of both schemes makes it hard for attackers to obtain consumer data collected in the SG. The proposed protocol TPS3 is evaluated in terms of privacy, reliability, and communication cost using two different SG topol..."
]
} |
1908.11515 | 2970190087 | When collecting information, local differential privacy (LDP) alleviates privacy concerns of users, as users' private information is randomized before being sent to the central aggregator. However, LDP results in loss of utility due to the amount of noise that is added. To address this issue, recent work introduced an intermediate server and with the assumption that this intermediate server did not collude with the aggregator. Using this trust model, one can add less noise to achieve the same privacy guarantee; thus improving the utility. In this paper, we investigate this multiple-party setting of LDP. We first analyze the threat model and identify potential adversaries. We then make observations about existing approaches and propose new techniques that achieve a better privacy-utility tradeoff than existing ones. Finally, we perform experiments to compare different methods and demonstrate the benefits of using our proposed method. | Aggregation using Secure Computation Our work shares similar threat models from work on secure aggregation such as the electronic voting @cite_12 and statistic aggregation @cite_25 . In particular, multiple users compute some information collaboratively without leaking information about their own data. Note that the primary goal of secure aggregation is different: the result must be deterministic and correct, while in , a significant amount of noise is necessary. | {
"cite_N": [
"@cite_25",
"@cite_12"
],
"mid": [
"2525846285",
"2154625773",
"1597292924",
"1667014488"
],
"abstract": [
"This paper considers the problem of secure data aggregation (mainly summation) in a distributed setting, while ensuring differential privacy of the result. We study secure multiparty addition protocols using well known security schemes: Shamir’s secret sharing, perturbation-based, and various encryptions. We supplement our study with our new enhanced encryption scheme EFT, which is efficient and fault tolerant.Differential privacy of the final result is achieved by either distributed Laplace or Geometric mechanism (respectively DLPA or DGPA), while approximated differential privacy is achieved by diluted mechanisms. Distributed random noise is generated collectively by all participants, which draw random variables from one of several distributions: Gamma, Gauss, Geometric, or their diluted versions. We introduce a new distributed privacy mechanism with noise drawn from the Laplace distribution, which achieves smaller redundant noise with efficiency. We compare complexity and security characteristics of the protocols with different differential privacy mechanisms and security schemes. More importantly, we implemented all protocols and present an experimental comparison on their performance and scalability in a real distributed environment. Based on the evaluations, we identify our security scheme and Laplace DLPA as the most efficient for secure distributed data aggregation with differential privacy.",
"In-network aggregation is an essential primitive for performing queries on sensor network data. However, most aggregation algorithms assume that all intermediate nodes are trusted. In contrast, the standard threat model in sensor network security assumes that an attacker may control a fraction of the nodes, which may misbehave in an arbitrary (Byzantine) manner.We present the first algorithm for provably secure hierarchical in-network data aggregation. Our algorithm is guaranteed to detect any manipulation of the aggregate by the adversary beyond what is achievable through direct injection of data values at compromised nodes. In other words, the adversary can never gain any advantage from misrepresenting intermediate aggregation computations. Our algorithm incurs only O(Δ log2 n) node congestion, supports arbitrary tree-based aggregator topologies and retains its resistance against aggregation manipulation in the presence of arbitrary numbers of malicious nodes. The main algorithm is based on performing the sum aggregation securely by first forcing the adversary to commit to its choice of intermediate aggregation results, and then having the sensor nodes independently verify that their contributions to the aggregate are correctly incorporated. We show how to reduce secure median , count , and average to this primitive.",
"Combining and analyzing data collected at multiple administrative locations is critical for a wide variety of applications, such as detecting malicious attacks or computing an accurate estimate of the popularity of Web sites. However, legitimate concerns about privacy often inhibit participation in collaborative data aggregation. In this paper, we design, implement, and evaluate a practical solution for privacy-preserving data aggregation (PDA) among a large number of participants. Scalability and efficiency is achieved through a \"semi-centralized\" architecture that divides responsibility between a proxy that obliviously blinds the client inputs and a database that aggregates values by (blinded) keywords and identifies those keywords whose values satisfy some evaluation function. Our solution leverages a novel cryptographic protocol that provably protects the privacy of both the participants and the keywords, provided that proxy and database do not collude, even if both parties may be individually malicious. Our prototype implementation can handle over a million suspect IP addresses per hour when deployed across only two quad-core servers, and its throughput scales linearly with additional computational resources.",
"In information theoretically secure multiparty computation, several mutually distrusting users want to jointly compute a function of their private data such that users do not learn any additional information about other users' data other than what they can infer from their own data and the function value they compute. In this work we consider asymptotically secure computation - where vanishing probability of error and vanishing information leakage are allowed as block lengths become large - in a three user setting, where two users have inputs and third user securely computes the output of a function on these two inputs. We provide generic lower bounds on the amount of communication required among users and the total amount of private randomness needed to compute any function in this three-user model. We also consider some examples where our bounds are tight. Our lower bounds are derived for the honest-but-curious security model and hence also apply for the malicious model."
]
} |
1908.11421 | 2970918254 | Incorporating Item Response Theory (IRT) into NLP tasks can provide valuable information about model performance and behavior. Traditionally, IRT models are learned using human response pattern (RP) data, presenting a significant bottleneck for large data sets like those required for training deep neural networks (DNNs). In this work we propose learning IRT models using RPs generated from artificial crowds of DNN models. We demonstrate the effectiveness of learning IRT models using DNN-generated data through quantitative and qualitative analyses for two NLP tasks. Parameters learned from human and machine RPs for natural language inference and sentiment analysis exhibit medium to large positive correlations. We demonstrate a use-case for latent difficulty item parameters, namely training set filtering, and show that using difficulty to sample training data outperforms baseline methods. Finally, we highlight cases where human expectation about item difficulty does not match difficulty as estimated from the machine RPs. | There have been a number of studies on modeling latent traits of data to identify a correct label, [e.g.][] bruce1999recognizing . There has also been work in modeling individuals to identify poor annotators @cite_35 , but neither jointly model the ability of individuals and data points, nor apply the resulting metrics to interpret DNN models. Other work has modeled the probability a label is correct along with the probability of an annotator to label an item correctly according to the @cite_15 model, but do not consider difficulty or discriminatory ability of the data points @cite_2 . In the above models an annotator's response depends on an item only through its correct label. IRT assumes a more sophisticated response mechanism involving both annotator qualities and item characteristics. The DARE model @cite_30 jointly estimates ability, difficulty and response using probabilistic inference. It was evaluated on an intelligence test of 60 multiple choice questions administered to 120 individuals. | {
"cite_N": [
"@cite_30",
"@cite_35",
"@cite_15",
"@cite_2"
],
"mid": [
"2125327503",
"2251818274",
"1989135160",
"1834987204"
],
"abstract": [
"It is difficult to apply machine learning to new domains because often we lack labeled problem instances. In this paper, we provide a solution to this problem that leverages domain knowledge in the form of affinities between input features and classes. For example, in a baseball vs. hockey text classification problem, even without any labeled data, we know that the presence of the word puck is a strong indicator of hockey. We refer to this type of domain knowledge as a labeled feature. In this paper, we propose a method for training discriminative probabilistic models with labeled features and unlabeled instances. Unlike previous approaches that use labeled features to create labeled pseudo-instances, we use labeled features directly to constrain the model's predictions on unlabeled instances. We express these soft constraints using generalized expectation (GE) criteria --- terms in a parameter estimation objective function that express preferences on values of a model expectation. In this paper we train multinomial logistic regression models using GE criteria, but the method we develop is applicable to other discriminative probabilistic models. The complete objective function also includes a Gaussian prior on parameters, which encourages generalization by spreading parameter weight to unlabeled features. Experimental results on text classification data sets show that this method outperforms heuristic approaches to training classifiers with labeled features. Experiments with human annotators show that it is more beneficial to spend limited annotation time labeling features rather than labeling instances. For example, after only one minute of labeling features, we can achieve 80 accuracy on the ibm vs. mac text classification problem using GE-FL, whereas ten minutes labeling documents results in an accuracy of only 77",
"Non-expert annotation services like Amazon’s Mechanical Turk (AMT) are cheap and fast ways to evaluate systems and provide categorical annotations for training data. Unfortunately, some annotators choose bad labels in order to maximize their pay. Manual identification is tedious, so we experiment with an item-response model. It learns in an unsupervised fashion to a) identify which annotators are trustworthy and b) predict the correct underlying labels. We match performance of more complex state-of-the-art systems and perform well even under adversarial conditions. We show considerable improvements over standard baselines, both for predicted label accuracy and trustworthiness estimates. The latter can be further improved by introducing a prior on model parameters and using Variational Bayes inference. Additionally, we can achieve even higher accuracy by focusing on the instances our model is most confident in (trading in some recall), and by incorporating annotated control instances. Our system, MACE (Multi-Annotator Competence Estimation), is available for download 1 .",
"We consider a crowd-sourcing problem where in the process of labeling massive datasets, multiple labelers with unknown annotation quality must be selected to perform the labeling task for each incoming data sample or task, with the results aggregated using for example simple or weighted majority voting rule. In this paper we approach this labeler selection problem in an online learning framework, whereby the quality of the labeling outcome by a specific set of labelers is estimated so that the learning algorithm over time learns to use the most effective combinations of labelers. This type of online learning in some sense falls under the family of multi-armed bandit (MAB) problems, but with a distinct feature not commonly seen: since the data is unlabeled to begin with and the labelers' quality is unknown, their labeling outcome (or reward in the MAB context) cannot be directly verified; it can only be estimated against the crowd and known probabilistically. We design an efficient online algorithm LS_OL using a simple majority voting rule that can differentiate high- and low-quality labelers over time, and is shown to have a regret (w.r.t. always using the optimal set of labelers) of O(log2 T) uniformly in time under mild assumptions on the collective quality of the crowd, thus regret free in the average sense. We discuss performance improvement by using a more sophisticated majority voting rule, and show how to detect and filter out \"bad\" (dishonest, malicious or very incompetent) labelers to further enhance the quality of crowd-sourcing. Extension to the case when a labeler's quality is task-type dependent is also discussed using techniques from the literature on continuous arms. We present numerical results using both simulation and a real dataset on a set of images labeled by Amazon Mechanic Turks (AMT).",
"Recommending phrases from web pages for advertisers to bid on against search engine queries is an important research problem with direct commercial impact. Most approaches have found it infeasible to determine the relevance of all possible queries to a given ad landing page and have focussed on making recommendations from a small set of phrases extracted (and expanded) from the page using NLP and ranking based techniques. In this paper, we eschew this paradigm, and demonstrate that it is possible to efficiently predict the relevant subset of queries from a large set of monetizable ones by posing the problem as a multi-label learning task with each query being represented by a separate label. We develop Multi-label Random Forests to tackle problems with millions of labels. Our proposed classifier has prediction costs that are logarithmic in the number of labels and can make predictions in a few milliseconds using 10 Gb of RAM. We demonstrate that it is possible to generate training data for our classifier automatically from click logs without any human annotation or intervention. We train our classifier on tens of millions of labels, features and training points in less than two days on a thousand node cluster. We develop a sparse semi-supervised multi-label learning formulation to deal with training set biases and noisy labels harvested automatically from the click logs. This formulation is used to infer a belief in the state of each label for each training ad and the random forest classifier is extended to train on these beliefs rather than the given labels. Experiments reveal significant gains over ranking and NLP based techniques on a large test set of 5 million ads using multiple metrics."
]
} |
1908.11421 | 2970918254 | Incorporating Item Response Theory (IRT) into NLP tasks can provide valuable information about model performance and behavior. Traditionally, IRT models are learned using human response pattern (RP) data, presenting a significant bottleneck for large data sets like those required for training deep neural networks (DNNs). In this work we propose learning IRT models using RPs generated from artificial crowds of DNN models. We demonstrate the effectiveness of learning IRT models using DNN-generated data through quantitative and qualitative analyses for two NLP tasks. Parameters learned from human and machine RPs for natural language inference and sentiment analysis exhibit medium to large positive correlations. We demonstrate a use-case for latent difficulty item parameters, namely training set filtering, and show that using difficulty to sample training data outperforms baseline methods. Finally, we highlight cases where human expectation about item difficulty does not match difficulty as estimated from the machine RPs. | There are several other areas of study regarding how best to use training data that are related to this work. Re-weighting or re-ordering training examples is a well-studied and related area of supervised learning. Often examples are re-weighted according to some notion of difficulty, or model uncertainty @cite_24 . In particular, the internal uncertainty of the model is used as the basis for selecting how training examples are weighted. However, model uncertainty depends upon the original training data the model was trained on, while here we use an external measure of uncertainty. | {
"cite_N": [
"@cite_24"
],
"mid": [
"2609701267",
"2963476860",
"189742998",
"2311233238"
],
"abstract": [
"Self-paced learning and hard example mining re-weight training instances to improve learning accuracy. This paper presents two improved alternatives based on lightweight estimates of sample uncertainty in stochastic gradient descent (SGD): the variance in predicted probability of the correct class across iterations of mini-batch SGD, and the proximity of the correct class probability to the decision threshold. Extensive experimental results on six datasets show that our methods reliably improve accuracy in various network architectures, including additional gains on top of other popular training techniques, such as residual learning, momentum, ADAM, batch normalization, dropout, and distillation.",
"Self-paced learning and hard example mining re-weight training instances to improve learning accuracy. This paper presents two improved alternatives based on lightweight estimates of sample uncertainty in stochastic gradient descent (SGD): the variance in predicted probability of the correct class across iterations of mini-batch SGD, and the proximity of the correct class probability to the decision threshold. Extensive experimental results on six datasets show that our methods reliably improve accuracy in various network architectures, including additional gains on top of other popular training techniques, such as residual learning, momentum, ADAM, batch normalization, dropout, and distillation.",
"A common assumption in supervised learning is that the input points in the training set follow the same probability distribution as the input points that will be given in the future test phase. However, this assumption is not satisfied, for example, when the outside of the training region is extrapolated. The situation where the training input points and test input points follow different distributions while the conditional distribution of output values given input points is unchanged is called the covariate shift. Under the covariate shift, standard model selection techniques such as cross validation do not work as desired since its unbiasedness is no longer maintained. In this paper, we propose a new method called importance weighted cross validation (IWCV), for which we prove its unbiasedness even under the covariate shift. The IWCV procedure is the only one that can be applied for unbiased classification under covariate shift, whereas alternatives to IWCV exist for regression. The usefulness of our proposed method is illustrated by simulations, and furthermore demonstrated in the brain-computer interface, where strong non-stationarity effects can be seen between training and test sessions.",
"In supervised learning, it is typically assumed that the labeled training data comes from the same distribution as the test data to which the system will be applied. In recent years, machine-learning researchers have investigated methods to handle mismatch between the training and test domains, with the goal of building a classifier using the labeled data in the old domain that will perform well on the test data in the new domain. This problem is called domain adaptation or transfer learning, and it is a common scenario in speech processing applications. Labeled training data are often produced by an expensive hand-annotation process, and may consist of only one or two annotated corpora which are used to train virtually all systems regardless of the target domain. Often little or no labeled data is available for the new domain. In this work, we review the statistical machine learning literature dealing with the problem of “domain adaptation” or “transfer learning”. We focus on unsupervised domain adaptation methods, as opposed to model adaptation or supervised adaptation in which some labeled data is available from the test distribution. We consider four main classes of approaches in the literature: instance weighting for covariate shift; selflabeling methods; changes in feature representation; and cluster-based learning. Covariate shift methods re-weight training samples in the old domain to try to match the new domain, putting more weight on samples in populous regions in the new domain. Self-labeling methods incorporate unlabeled target domain examples into the training algorithm by making an initial guess about their labels and then iteratively refining the guesses or labeling more examples. Feature representation approaches try to find a new feature representation of the data, either to make the new and old distributions look similar, or to find an abstracted representation for domain-specific features. Cluster-based methods rely on the assumption that samples connected by high-density paths are likely to have the same label. Domain adaptation is a large area of research, with related work under several frameworks (and several names). A limited review from March 2008 can be found in [1], and one from Oct 2010 can be found in [2]. A recent book [3] investigates train test distribution mismatch in machine learning (particularly focused on covariate shift.) Some of the organization here roughly follows that in [1]."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | For the deterministic setting a lot of effort has been dedicated to the study of the feasibility of rendezvous, and to the time required to achieve this task, when feasible. For instance, deterministic rendezvous with agents equipped with tokens used to mark nodes was considered, e.g., in @cite_28 . Deterministic rendezvous of two agents that cannot mark nodes but have unique labels was discussed in @cite_17 @cite_9 . These papers are concerned with the time of rendezvous in arbitrary graphs. In @cite_17 the authors show a rendezvous algorithm polynomial in the size of the graph, in the length of the shorter label and in the delay between the starting time of the agents. In @cite_9 rendezvous time is polynomial in the first two of these parameters and independent of the delay. | {
"cite_N": [
"@cite_28",
"@cite_9",
"@cite_17"
],
"mid": [
"1972775782",
"2081055073",
"2131588774",
"1582826078"
],
"abstract": [
"Two identical (anonymous) mobile agents start from arbitrary nodes in an a priori unknown graph and move synchronously from node to node with the goal of meeting. This rendezvous problem has been thoroughly studied, both for anonymous and for labeled agents, along with another basic task, that of exploring graphs by mobile agents. The rendezvous problem is known to be not easier than graph exploration. A well-known recent result on exploration, due to Reingold, states that deterministic exploration of arbitrary graphs can be performed in log-space, i.e., using an agent equipped with O(log n) bits of memory, where n is the size of the graph. In this paper we study the size of memory of mobile agents that permits us to solve the rendezvous problem deterministically. Our main result establishes the minimum size of the memory of anonymous agents that guarantees deterministic rendezvous when it is feasible. We show that this minimum size is Θ(log n), where n is the size of the graph, regardless of the delay between the starting times of the agents. More precisely, we construct identical agents equipped with Θ(log n) memory bits that solve the rendezvous problem in all graphs with at most n nodes, if they start with any delay τ, and we prove a matching lower bound Ω(log n) on the number of memory bits needed to accomplish rendezvous, even for simultaneous start. In fact, this lower bound is achieved already on the class of rings. This shows a significant contrast between rendezvous and exploration: e.g., while exploration of rings (without stopping) can be done using constant memory, rendezvous, even with simultaneous start, requires logarithmic memory. As a by-product of our techniques introduced to obtain log-space rendezvous we get the first algorithm to find a quotient graph of a given unlabeled graph in polynomial time, by means of a mobile agent moving around the graph.",
"The aim of rendezvous in a graph is meeting of two mobile agents at some node of an unknown anonymous connected graph. In this article, we focus on rendezvous in trees, and, analogously to the efforts that have been made for solving the exploration problem with compact automata, we study the size of memory of mobile agents that permits to solve the rendezvous problem deterministically. We assume that the agents are identical, and move in synchronous rounds. We first show that if the delay between the starting times of the agents is arbitrary, then the lower bound on memory required for rendezvous is Ω(log n) bits, even for the line of length n. This lower bound meets a previously known upper bound of O(log n) bits for rendezvous in arbitrary graphs of size at most n. Our main result is a proof that the amount of memory needed for rendezvous with simultaneous start depends essentially on the number e of leaves of the tree, and is exponentially less impacted by the number n of nodes. Indeed, we present two identical agents with O(log e + log log n) bits of memory that solve the rendezvous problem in all trees with at most n nodes and at most e leaves. Hence, for the class of trees with polylogarithmically many leaves, there is an exponential gap in minimum memory size needed for rendezvous between the scenario with arbitrary delay and the scenario with delay zero. Moreover, we show that our upper bound is optimal by proving that Ω(log e + log log n) bits of memory are required for rendezvous, even in the class of trees with degrees bounded by 3.",
"Two mobile agents starting at different nodes of an unknown network have to meet. This task is known in the literature as rendezvous. Each agent has a different label which is a positive integer known to it, but unknown to the other agent. Agents move in an asynchronous way: the speed of agents may vary and is controlled by an adversary. The cost of a rendezvous algorithm is the total number of edge traversals by both agents until their meeting. The only previous deterministic algorithm solving this problem has cost exponential in the size of the graph and in the larger label. In this paper we present a deterministic rendezvous algorithm with cost polynomial in the size of the graph and in the length of the smaller label. Hence we decrease the cost exponentially in the size of the graph and doubly exponentially in the labels of agents. As an application of our rendezvous algorithm we solve several fundamental problems involving teams of unknown size larger than 1 of labeled agents moving asynchronously in unknown networks. Among them are the following problems: team size, in which every agent has to find the total number of agents, leader election, in which all agents have to output the label of a single agent, perfect renaming in which all agents have to adopt new different labels from the set 1,...,k , where k is the number of agents, and gossiping, in which each agent has initially a piece of information (value) and all agents have to output all the values. Using our rendezvous algorithm we solve all these problems at cost polynomial in the size of the graph and in the smallest length of all labels of participating agents.",
"Two mobile agents starting at different nodes of an unknown network have to meet. This task is known in the literature as rendezvous. Each agent has a different label which is a positive integer known to it but unknown to the other agent. Agents move in an asynchronous way: the speed of agents may vary and is controlled by an adversary. The cost of a rendezvous algorithm is the total number of edge traversals by both agents until their meeting. The only previous deterministic algorithm solving this problem has cost exponential in the size of the graph and in the larger label. In this paper we present a deterministic rendezvous algorithm with cost polynomial in the size of the graph and in the length of the smaller label. Hence, we decrease the cost exponentially in the size of the graph and doubly exponentially in the labels of agents. As an application of our rendezvous algorithm we solve several fundamental problems involving teams of unknown size larger than 1 of labeled agents moving asynchronously in..."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | Memory required by two anonymous agents to achieve deterministic rendezvous has been studied in @cite_22 for trees and in @cite_0 for general graphs. Memory needed for randomized rendezvous in the ring is discussed, e.g., in @cite_25 . | {
"cite_N": [
"@cite_0",
"@cite_25",
"@cite_22"
],
"mid": [
"1972775782",
"2081055073",
"2086702855",
"1526420573"
],
"abstract": [
"Two identical (anonymous) mobile agents start from arbitrary nodes in an a priori unknown graph and move synchronously from node to node with the goal of meeting. This rendezvous problem has been thoroughly studied, both for anonymous and for labeled agents, along with another basic task, that of exploring graphs by mobile agents. The rendezvous problem is known to be not easier than graph exploration. A well-known recent result on exploration, due to Reingold, states that deterministic exploration of arbitrary graphs can be performed in log-space, i.e., using an agent equipped with O(log n) bits of memory, where n is the size of the graph. In this paper we study the size of memory of mobile agents that permits us to solve the rendezvous problem deterministically. Our main result establishes the minimum size of the memory of anonymous agents that guarantees deterministic rendezvous when it is feasible. We show that this minimum size is Θ(log n), where n is the size of the graph, regardless of the delay between the starting times of the agents. More precisely, we construct identical agents equipped with Θ(log n) memory bits that solve the rendezvous problem in all graphs with at most n nodes, if they start with any delay τ, and we prove a matching lower bound Ω(log n) on the number of memory bits needed to accomplish rendezvous, even for simultaneous start. In fact, this lower bound is achieved already on the class of rings. This shows a significant contrast between rendezvous and exploration: e.g., while exploration of rings (without stopping) can be done using constant memory, rendezvous, even with simultaneous start, requires logarithmic memory. As a by-product of our techniques introduced to obtain log-space rendezvous we get the first algorithm to find a quotient graph of a given unlabeled graph in polynomial time, by means of a mobile agent moving around the graph.",
"The aim of rendezvous in a graph is meeting of two mobile agents at some node of an unknown anonymous connected graph. In this article, we focus on rendezvous in trees, and, analogously to the efforts that have been made for solving the exploration problem with compact automata, we study the size of memory of mobile agents that permits to solve the rendezvous problem deterministically. We assume that the agents are identical, and move in synchronous rounds. We first show that if the delay between the starting times of the agents is arbitrary, then the lower bound on memory required for rendezvous is Ω(log n) bits, even for the line of length n. This lower bound meets a previously known upper bound of O(log n) bits for rendezvous in arbitrary graphs of size at most n. Our main result is a proof that the amount of memory needed for rendezvous with simultaneous start depends essentially on the number e of leaves of the tree, and is exponentially less impacted by the number n of nodes. Indeed, we present two identical agents with O(log e + log log n) bits of memory that solve the rendezvous problem in all trees with at most n nodes and at most e leaves. Hence, for the class of trees with polylogarithmically many leaves, there is an exponential gap in minimum memory size needed for rendezvous between the scenario with arbitrary delay and the scenario with delay zero. Moreover, we show that our upper bound is optimal by proving that Ω(log e + log log n) bits of memory are required for rendezvous, even in the class of trees with degrees bounded by 3.",
"We present a trade-off between the expected time for two identical agents to rendezvous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show there exists a 2t state agent which can achieve rendezvous on an n-node ring in expected time O(n2 2t + 2t) and that any t 2 state agent requires expected time Ω(n2 2t). As a corollary we observe that Θ(log log n) bits of memory are necessary and sufficient to achieve rendezvous in linear time.",
"We study the size of memory of mobile agents that permits to solve deterministically the rendezvous problem, i.e., the task of meeting at some node, for two identical agents moving from node to node along the edges of an unknown anonymous connected graph. The rendezvous problem is unsolvable in the class of arbitrary connected graphs, as witnessed by the example of the cycle. Hence we restrict attention to rendezvous in trees, where rendezvous is feasible if and only if the initial positions of the agents are not symmetric. We prove that the minimum memory size guaranteeing rendezvous in all trees of size at most nis i¾?(logn) bits. The upper bound is provided by an algorithm for abstract state machines accomplishing rendezvous in all trees, and using O(logn) bits of memory in trees of size at most n. The lower bound is a consequence of the need to distinguish between up to ni¾? 1 links incident to a node. Thus, in the second part of the paper, we focus on the potential existence of pairs of finiteagents (i.e., finite automata) capable of accomplishing rendezvous in all bounded degreetrees. We show that, as opposed to what has been proved for the graph exploration problem, there are no finite agents capable of accomplishing rendezvous in all bounded degree trees."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | Apart from the synchronous model used in this paper, several authors have investigated asynchronous gathering in the plane @cite_34 @cite_35 and in network environments @cite_19 @cite_1 @cite_30 @cite_13 . In the latter scenario the agent chooses the edge which it decides to traverse but the adversary controls the speed of the agent. Under this assumption rendezvous in a node cannot be guaranteed even in very simple graphs and hence the rendezvous requirement is relaxed to permit the agents to meet inside an edge. | {
"cite_N": [
"@cite_30",
"@cite_35",
"@cite_1",
"@cite_19",
"@cite_34",
"@cite_13"
],
"mid": [
"1498202041",
"25030497",
"2100580556",
"1582826078"
],
"abstract": [
"We study rendezvous of two anonymous agents, where each agent knows its own initial position in the environment. Their task is to meet each other as quickly as possible. The time of the rendezvous is measured by the number of synchronous rounds that agents need to use in the worst case in order to meet. In each round, an agent may make a simple move or it may stay motionless. We consider two types of environments, finite or infinite graphs and Euclidean spaces. A simple move traverses a single edge (in a graph) or at most a unit distance (in Euclidean space). The rendezvous consists in visiting by both agents the same point of the environment simultaneously (in the same round). In this paper, we propose several asymptotically optimal rendezvous algorithms. In particular, we show that in the line and trees as well as in multidimensional Euclidean spaces and grids the agents can rendezvous in time O(d), where d is the distance between the initial positions of the agents. The problem of location-aware rendezvous was studied before in the asynchronous model for Euclidean spaces and multi-dimensional grids, where the emphasis was on the length of the adopted rendezvous trajectory. We point out that, contrary to the asynchronous case, where the cost of rendezvous is dominated by the size of potentially large neighborhoods, the agents are able to meet in all graphs of at most n nodes in time almost linear in d, namely, O(d log2 n). We also determine an infinite family of graphs in which synchronized rendezvous takes time Ω(d).",
"Two identical (anonymous) mobile agents have to meet in an arbitrary, possibly infinite, unknown connected graph. Agents are modeled as points, they start at nodes of the graph chosen by the adversary and the route of each of them only depends on the already traversed portion of the graph and, in the case of randomized rendezvous, on the result of coin tossing. The actual walk of each agent also depends on an asynchronous adversary that may arbitrarily vary the speed of the agent, stop it, or even move it back and forth, as long as the walk of the agent in each segment of its route is continuous, does not leave it and covers all of it. Meeting means that both agents must be at the same time in some node or in some point inside an edge of the graph. In the deterministic scenario we characterize the initial positions of the agents for which rendezvous is feasible and we provide an algorithm guaranteeing asynchronous rendezvous from all such positions in an arbitrary connected graph. In the randomized scenario we show an algorithm that achieves asynchronous rendezvous with probability 1, for arbitrary initial positions in an arbitrary connected graph. In both cases the graph may be finite or (countably) infinite.",
"Two mobile agents (robots) with distinct labels have to meet in an arbitrary, possibly infinite, unknown connected graph or in an unknown connected terrain in the plane. Agents are modeled as points, and the route of each of them only depends on its label and on the unknown environment. The actual walk of each agent also depends on an asynchronous adversary that may arbitrarily vary the speed of the agent, stop it, or even move it back and forth, as long as the walk of the agent in each segment of its route is continuous, does not leave it and covers all of it. Meeting in a graph means that both agents must be at the same time in some node or in some point inside an edge of the graph, while meeting in a terrain means that both agents must be at the same time in some point of the terrain. Does there exist a deterministic algorithm that allows any two agents to meet in any unknown environment in spite of this very powerful adversary? We give deterministic rendezvous algorithms for agents starting at arbitrary nodes of any anonymous connected graph (finite or infinite) and for agents starting at any interior points with rational coordinates in any closed region of the plane with path-connected interior. While our algorithms work in a very general setting - agents can, indeed, meet almost everywhere - we show that none of the above few limitations imposed on the environment can be removed. On the other hand, our algorithm also guarantees the following approximate rendezvous for agents starting at arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small positive distance from each other.",
"Two mobile agents starting at different nodes of an unknown network have to meet. This task is known in the literature as rendezvous. Each agent has a different label which is a positive integer known to it but unknown to the other agent. Agents move in an asynchronous way: the speed of agents may vary and is controlled by an adversary. The cost of a rendezvous algorithm is the total number of edge traversals by both agents until their meeting. The only previous deterministic algorithm solving this problem has cost exponential in the size of the graph and in the larger label. In this paper we present a deterministic rendezvous algorithm with cost polynomial in the size of the graph and in the length of the smaller label. Hence, we decrease the cost exponentially in the size of the graph and doubly exponentially in the labels of agents. As an application of our rendezvous algorithm we solve several fundamental problems involving teams of unknown size larger than 1 of labeled agents moving asynchronously in..."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | A different asynchronous model for gathering in ring networks was considered in @cite_36 @cite_20 . In this model, agents were memoryless but they could perform look operations which gave them a snapshot of the entire network with the positions of all agents in it. | {
"cite_N": [
"@cite_36",
"@cite_20"
],
"mid": [
"2179376195",
"1969099455",
"2086702855",
"1535538796"
],
"abstract": [
"We consider the problem of gathering identical, memoryless, mobile agents in one node of an anonymous graph. Agents start from different nodes of the graph. They operate in Look-Compute-Move cycles and have to end up in the same node. In one cycle, an agent takes a snapshot of its immediate neighborhood (Look), makes a decision to stay idle or to move to one of its adjacent nodes (Compute), and in the latter case makes an instantaneous move to this neighbor (Move). Cycles are performed asynchronously for each agent. The novelty of our model with respect to the existing literature on gathering asynchronous oblivious agents in graphs is that the agents have very restricted perception capabilities: they can only see their immediate neighborhood. An initial configuration of agents is called gatherable if there exists an algorithm that gathers all the agents of the configuration in one node and keeps them idle from then on, regardless of the actions of the asynchronous adversary. (The algorithm can be even tailored to gather this specific configuration.) The gathering problem is to determine which configurations are gatherable and find a (universal) algorithm which gathers all gatherable configurations. We give a complete solution of the gathering problem for regular bipartite graphs. Our main contribution is the proof that the class of gatherable initial configurations is very small: it consists only of ''stars'' (an agent A with all other agents adjacent to it) of size at least 3. On the positive side we give an algorithm accomplishing gathering for every gatherable configuration.",
"We consider two variants of the task of spreading a swarm of agents uniformly on a ring graph. Ant-like oblivious agents having limited capabilities are considered. The agents are assumed to have little memory, they all execute the same algorithm and no direct communication is allowed between them. Furthermore, the agents do not possess any global information. In particular, the size of the ring (n) and the number of agents in the swarm (k) are unknown to them. The agents are assumed to operate on an unweighted ring graph. Every agent can measure the distance to his two neighbors on the ring, up to a limited range of V edges. The first task considered, is dynamical (i.e. in motion) uniform deployment on the ring. We show that if either the ring is unoriented, or the visibility range is less than @?n [email protected]?, this is an impossible mission for the agents. Then, for an oriented ring and V>[email protected]?n [email protected]?, we propose an algorithm which achieves the deployment task in optimal time. The second task discussed, called quiescent spread, requires the agents to spread uniformly over the ring and stop moving. We prove that under our model, in which every agent can measure the distance only to his two neighbors, this task is impossible. Subsequently, we propose an algorithm which achieves quiescent but only almost uniform spread. The algorithms we present are scalable and robust. In case the environment (the size of the ring) or the number of agents changes during the run, the swarm adapts and re-deploys without requiring any outside interference.",
"We present a trade-off between the expected time for two identical agents to rendezvous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show there exists a 2t state agent which can achieve rendezvous on an n-node ring in expected time O(n2 2t + 2t) and that any t 2 state agent requires expected time Ω(n2 2t). As a corollary we observe that Θ(log log n) bits of memory are necessary and sufficient to achieve rendezvous in linear time.",
"We present a tradeoff between the expected time for two identical agents to rendez-vous on a synchronous, anonymous, oriented ring and the memory requirements of the agents. In particular, we show that there exists a 2t state agent, which can achieve rendez-vous on an n node ring in expected time O(n2 2t + 2t) and that any t 2 state agent requires expected time Ω(n2 2t). As a corollary we observe that Θ(log log n) bits of memory are necessary and sufficient to achieve rendezvous in linear time."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | In @cite_32 , the authors considered the problem of network exploration by many agents that could not communicate between them. However, the information available to an agent in each round was much different than in the present paper. Indeed, in @cite_32 , agents were getting local traffic reports consisting of answers to three questions: Am I alone in the node?'', Did any agent enter this node in this round?'', Did any agent leave this node in this round?''. To see that this feedback cannot be derived from our present assumption of knowing the number of agents co-located with an agent in a given round, consider the situation when an agent @math stays at a node, and in a given round one other agent leaves the node and another agent enters it. In our present model, agent @math does not notice any change, while in the model from @cite_32 it gets reports about somebody leaving the node and somebody entering it. | {
"cite_N": [
"@cite_32"
],
"mid": [
"2089187143",
"2100580556",
"2068322213",
"2128634904"
],
"abstract": [
"A team consisting of an unknown number of mobile agents starting from different nodes of an unknown network, possibly at different times, have to explore the network: Every node must be visited by at least one agent, and all agents must eventually stop. Agents are anonymous (identical), execute the same deterministic algorithm, and move in synchronous rounds along links of the network. They are silent: They cannot send any messages to other agents or mark visited nodes in any way. In the absence of any additional information, exploration with termination of an arbitrary network in this model, devoid of any means of communication between agents, is impossible. Our aim is to solve the exploration problem by giving to agents very restricted local traffic reports. Specifically, an agent that is at a node v in a given round is provided with three bits of information answering the following questions: Am I alone at vq Did any agent enter v in this roundq Did any agent exit v in this roundq We show that this small amount of information permits us to solve the exploration problem in arbitrary networks. More precisely, we give a deterministic terminating exploration algorithm working in arbitrary networks for all initial configurations that are not perfectly symmetric; that is, in which there are agents with different views of the network. The algorithm works in polynomial time in the (unknown) size of the network. A deterministic terminating exploration algorithm working for all initial configurations in arbitrary networks does not exist.",
"Two mobile agents (robots) with distinct labels have to meet in an arbitrary, possibly infinite, unknown connected graph or in an unknown connected terrain in the plane. Agents are modeled as points, and the route of each of them only depends on its label and on the unknown environment. The actual walk of each agent also depends on an asynchronous adversary that may arbitrarily vary the speed of the agent, stop it, or even move it back and forth, as long as the walk of the agent in each segment of its route is continuous, does not leave it and covers all of it. Meeting in a graph means that both agents must be at the same time in some node or in some point inside an edge of the graph, while meeting in a terrain means that both agents must be at the same time in some point of the terrain. Does there exist a deterministic algorithm that allows any two agents to meet in any unknown environment in spite of this very powerful adversary? We give deterministic rendezvous algorithms for agents starting at arbitrary nodes of any anonymous connected graph (finite or infinite) and for agents starting at any interior points with rational coordinates in any closed region of the plane with path-connected interior. While our algorithms work in a very general setting - agents can, indeed, meet almost everywhere - we show that none of the above few limitations imposed on the environment can be removed. On the other hand, our algorithm also guarantees the following approximate rendezvous for agents starting at arbitrary interior points of a terrain as above: agents will eventually get at an arbitrarily small positive distance from each other.",
"In this paper, we study the question of how efficiently a collection of interconnected nodes can perform a global computation in the GOSSIP model of communication. In this model, nodes do not know the global topology of the network, and they may only initiate contact with a single neighbor in each round. This model contrasts with the much less restrictive LOCAL model, where a node may simultaneously communicate with all of its neighbors in a single round. A basic question in this setting is how many rounds of communication are required for the information dissemination problem, in which each node has some piece of information and is required to collect all others. In the LOCAL model, this is quite simple: each node broadcasts all of its information in each round, and the number of rounds required will be equal to the diameter of the underlying communication graph. In the GOSSIP model, each node must independently choose a single neighbor to contact, and the lack of global information makes it difficult to make any sort of principled choice. As such, researchers have focused on the uniform gossip algorithm, in which each node independently selects a neighbor uniformly at random. When the graph is well-connected, this works quite well. In a string of beautiful papers, researchers proved a sequence of successively stronger bounds on the number of rounds required in terms of the conductance φ and graph size n, culminating in a bound of O(φ-1 log n). In this paper, we show that a fairly simple modification of the protocol gives an algorithm that solves the information dissemination problem in at most O(D + polylog (n)) rounds in a network of diameter D, with no dependence on the conductance. This is at most an additive polylogarithmic factor from the trivial lower bound of D, which applies even in the LOCAL model. In fact, we prove that something stronger is true: any algorithm that requires T rounds in the LOCAL model can be simulated in O(T + polylog(n)) rounds in the GOSSIP model. We thus prove that these two models of distributed computation are essentially equivalent.",
"A team consisting of an unknown number of mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds. Each agent has a different label. Up to f of the agents are Byzantine. We consider two levels of Byzantine behavior. A strongly Byzantine agent can choose an arbitrary port when it moves and it can convey arbitrary information to other agents, while a weakly Byzantine agent can do the same, except changing its label. What is the minimum number of good agents that guarantees deterministic gathering of all of them, with terminationq We solve exactly this Byzantine gathering problem in arbitrary networks for weakly Byzantine agents and give approximate solutions for strongly Byzantine agents, both when the size of the network is known and when it is unknown. It turns out that both the strength versus the weakness of Byzantine behavior and the knowledge of network size significantly impact the results. For weakly Byzantine agents, we show that any number of good agents permits solving the problem for networks of known size. If the size is unknown, then this minimum number is fp2. More precisely, we show a deterministic polynomial algorithm that gathers all good agents in an arbitrary network, provided that there are at least fp2 of them. We also provide a matching lower bound: we prove that if the number of good agents is at most fp1, then they are not able to gather deterministically with termination in some networks. For strongly Byzantine agents, we give a lower bound of fp1, even when the graph is known: we show that f good agents cannot gather deterministically in the presence of f Byzantine agents even in a ring of known size. On the positive side, we give deterministic gathering algorithms for at least 2fp1 good agents when the size of the network is known and for at least 4fp2 good agents when it is unknown."
]
} |
1908.11402 | 2970866601 | A team of mobile agents, starting from different nodes of an unknown network, possibly at different times, have to meet at the same node and declare that they have all met. Agents have different labels and move in synchronous rounds along links of the network. The above task is known as gathering and was traditionally considered under the assumption that when some agents are at the same node then they can talk. In this paper we ask the question of whether this ability of talking is needed for gathering. The answer turns out to be no. Our main contribution are two deterministic algorithms that always accomplish gathering in a much weaker model. We only assume that at any time an agent knows how many agents are at the node that it currently occupies but agents do not see the labels of other co-located agents and cannot exchange any information with them. They also do not see other nodes than the current one. Our first algorithm works under the assumption that agents know a priori some upper bound N on the network size, and it works in time polynomial in N and in the length l of the smallest label. Our second algorithm does not assume any a priori knowledge about the network but its complexity is exponential in the network size and in the labels of agents. Its purpose is to show feasibility of gathering under this harsher scenario. As a by-product of our techniques we obtain, in the same weak model, the solution of the fundamental problem of leader election among agents. As an application of our result we also solve, in the same model, the well-known gossiping problem: if each agent has a message at the beginning, we show how to make all messages known to all agents, even without any a priori knowledge about the network. If agents know an upper bound N on the network size then our gossiping algorithm works in time polynomial in N, in l and in the length of the largest message. | In @cite_5 , the problem of conveying bits of information using movements of robots was considered in a context much different from ours. Mobile robots were moving in the plane and they could periodically get snapshots of the entire configuration of robots. | {
"cite_N": [
"@cite_5"
],
"mid": [
"2010017329",
"2782960731",
"1995782858",
"1965243636"
],
"abstract": [
"In this paper we study the problem of gathering a collection of identical oblivious mobile robots in the same location of the plane. Previous investigations have focused mostly on the unlimited visibility setting, where each robot can always see all the others regardless of their distance.In the more difficult and realistic setting where the robots have limited visibility, the existing algorithmic results are only for convergence (towards a common point, without ever reaching it) and only for semi-synchronous environments, where robots' movements are assumed to be performed instantaneously.In contrast, we study this problem in a totally asynchronous setting, where robots' actions, computations, and movements require a finite but otherwise unpredictable amount of time. We present a protocol that allows anonymous oblivious robots with limited visibility to gather in the same location in finite time, provided they have orientation (i.e., agreement on a coordinate system).Our result indicates that, with respect to gathering, orientation is at least as powerful as instantaneous movements.",
"Swarms of mobile robots recently attracted the focus of the Distributed Computing community. One of the fundamental problems in this context is that of exploration: the robots must coordinate to visit all locations that are reachable from their initial positions. Despite its apparent simplicity, this problem proved quite hard to characterise fully, due to many model variants, leading to informal error-prone reasoning. Over the past few years, a significant effort permitted to set up a formal framework, relying on the Coq proof assistant, which was used to provide certified results when robots evolve in a continuous bi-dimensional Euclidean space. However, the most challenging issues with exploration arise in the discrete setting (a.k.a. graph), where locations are modeled as vertices and where edges between vertices denote the ability for a robot to move from one location to the next. We present a formal model to tackle problems and reason about robot algorithms arising in the discrete setting. Our approach extends and generalises previous research efforts focusing on the continuous model. As case studies, we consider fundamental impossibility results for exploration with stop in the discrete model. To our knowledge, those are the first certified results in this context. This framework paves the way for a general certification workflow dedicated to mobile robots on graphs.",
"When humans and mobile robots share the same space, one of their challenges is to navigate around each other and manage their mutual navigational intents. While humans have developed excellent skills in inferring their counterpart's intentions via a number of implicit and non-verbal cues, making navigation also in crowds an ease, this kind of effective and efficient communication often falls short in human-robot encounters. In this paper, two alternative approaches to convey navigational intent of a mobile robot to humans in a shared environment are proposed and analysed. The first is utilising anthropomorphic features of the mobile robot to realise an implicit joint attention using gaze to represent the direction of navigational intent. In the second approach, a more technical design adopting the semantics of car's turn indicators, has been implemented. The paper compares both approaches with each other and against a control behaviour without any communication of intent. Both approaches show statistically significant differences in comparison to the control behaviour. However, the second approach using indicators has shown as being more effective in conveying the intent and also has a higher positive impact on the comfort of the humans encountering the robot.",
"This paper presents a distributed algorithm whereby a group of mobile robots self-organize and position themselves into forming a circle in a loosely synchronized environment. In spite of its apparent simplicity, the difficulty of the problem comes from the weak assumptions made on the system. In particular, robots are anonymous, oblivious (i.e., stateless), unable to communicate directly, and disoriented in the sense that they share no knowledge of a common coordinate system. Furthermore, robots' activations are not synchronized. More specifically, the proposed algorithm ensures that robots deterministically form a non-uniform circle in a finite number of steps and converges to a situation in which all robots are located evenly on the boundary of the circle."
]
} |
1908.11526 | 2970961333 | The success of existing deep-learning based multi-view stereo (MVS) approaches greatly depends on the availability of large-scale supervision in the form of dense depth maps. Such supervision, while not always possible, tends to hinder the generalization ability of the learned models in never-seen-before scenarios. In this paper, we propose the first unsupervised learning based MVS network, which learns the multi-view depth maps from the input multi-view images and does not need ground-truth 3D training data. Our network is symmetric in predicting depth maps for all views simultaneously, where we enforce cross-view consistency of multi-view depth maps during both training and testing stages. Thus, the learned multi-view depth maps naturally comply with the underlying 3D scene geometry. Besides, our network also learns the multi-view occlusion maps, which further improves the robustness of our network in handling real-world occlusions. Experimental results on multiple benchmarking datasets demonstrate the effectiveness of our network and the excellent generalization ability. | Traditional MVS methods focus on designing neighbor selection and photometric error measures for efficient and accurate reconstruction @cite_26 @cite_34 @cite_9 . Furukawa al @cite_22 adopted geometric structures to reconstruct textured regions and applied Markov random fields to recover per-view depth maps. Langguth al @cite_15 used the shading-aware mechanism to improve the robustness of view selection. Wu al @cite_29 utilized the lighting and shadows information to enhance the performance of the ill-posed region. Michael al @cite_18 chose images to match (both at a per-view and per-pixel level) for addressing the dramatic changes in lighting, scale, clutter, and other effects. Schonberger al @cite_11 proposed the COLMAP framework, which applied photometric and geometric priors to optimize the view selection and used geometric consistency to refine the depth map. | {
"cite_N": [
"@cite_18",
"@cite_26",
"@cite_22",
"@cite_9",
"@cite_29",
"@cite_15",
"@cite_34",
"@cite_11"
],
"mid": [
"832925222",
"1539230104",
"2338968644",
"2106505277"
],
"abstract": [
"Accurate recovery of 3D geometrical surfaces from calibrated 2D multi-view images is a fundamental yet active research area in computer vision. Despite the steady progress in multi-view stereo (MVS) reconstruction, many existing methods are still limited in recovering fine-scale details and sharp features while suppressing noises, and may fail in reconstructing regions with less textures. To address these limitations, this paper presents a detail-preserving and content-aware variational (DCV) MVS method, which reconstructs the 3D surface by alternating between reprojection error minimization and mesh denoising. In reprojection error minimization, we propose a novel inter-image similarity measure, which is effective to preserve fine-scale details of the reconstructed surface and builds a connection between guided image filtering and image registration. In mesh denoising, we propose a content-aware @math -minimization algorithm by adaptively estimating the @math value and regularization parameters. Compared with conventional isotropic mesh smoothing approaches, the proposed method is much more promising in suppressing noise while preserving sharp features. Experimental results on benchmark data sets demonstrate that our DCV method is capable of recovering more surface details, and obtains cleaner and more accurate reconstructions than the state-of-the-art methods. In particular, our method achieves the best results among all published methods on the Middlebury dino ring and dino sparse data sets in terms of both completeness and accuracy.",
"We propose an algorithm to improve the quality of depth-maps used for Multi-View Stereo (MVS). Many existing MVS techniques make use of a two stage approach which estimates depth-maps from neighbouring images and then merges them to extract a final surface. Often the depth-maps used for the merging stage will contain outliers due to errors in the matching process. Traditional systems exploit redundancy in the image sequence (the surface is seen in many views), in order to make the final surface estimate robust to these outliers. In the case of sparse data sets there is often insufficient redundancy and thus performance degrades as the number of images decreases. In order to improve performance in these circumstances it is necessary to remove the outliers from the depth-maps. We identify the two main sources of outliers in a top performing algorithm: (1) spurious matches due to repeated texture and (2) matching failure due to occlusion, distortion and lack of texture. We propose two contributions to tackle these failure modes. Firstly, we store multiple depth hypotheses and use a spatial consistency constraint to extract the true depth. Secondly, we allow the algorithm to return an unknownstate when the a true depth estimate cannot be found. By combining these in a discrete label MRF optimisation we are able to obtain high accuracy depth-maps with low numbers of outliers. We evaluate our algorithm in a multi-view stereo framework and find it to confer state-of-the-art performance with the leading techniques, in particular on the standard evaluation sparse data sets.",
"The seminal multiple-view stereo benchmark evaluations from Middlebury and by have played a major role in propelling the development of multi-view stereopsis (MVS) methodology. The somewhat small size and variability of these data sets, however, limit their scope and the conclusions that can be derived from them. To facilitate further development within MVS, we here present a new and varied data set consisting of 80 scenes, seen from 49 or 64 accurate camera positions. This is accompanied by accurate structured light scans for reference and evaluation. In addition all images are taken under seven different lighting conditions. As a benchmark and to validate the use of our data set for obtaining reasonable and statistically significant findings about MVS, we have applied the three state-of-the-art MVS algorithms by , , and to the data set. To do this we have extended the evaluation protocol from the Middlebury evaluation, necessitated by the more complex geometry of some of our scenes. The data set and accompanying evaluation framework are made freely available online. Based on this evaluation, we are able to observe several characteristics of state-of-the-art MVS, e.g. that there is a tradeoff between the quality of the reconstructed 3D points (accuracy) and how much of an object's surface is captured (completeness). Also, several issues that we hypothesized would challenge MVS, such as specularities and changing lighting conditions did not pose serious problems. Our study finds that the two most pressing issues for MVS are lack of texture and meshing (forming 3D points into closed triangulated surfaces).",
"This paper presents a new efficient method for recovering reliable local sets of dense correspondences between two images with some shared content. Our method is designed for pairs of images depicting similar regions acquired by different cameras and lenses, under non-rigid transformations, under different lighting, and over different backgrounds. We utilize a new coarse-to-fine scheme in which nearest-neighbor field computations using Generalized PatchMatch [ 2010] are interleaved with fitting a global non-linear parametric color model and aggregating consistent matching regions using locally adaptive constraints. Compared to previous correspondence approaches, our method combines the best of two worlds: It is dense, like optical flow and stereo reconstruction methods, and it is also robust to geometric and photometric variations, like sparse feature matching. We demonstrate the usefulness of our method using three applications for automatic example-based photograph enhancement: adjusting the tonal characteristics of a source image to match a reference, transferring a known mask to a new image, and kernel estimation for image deblurring."
]
} |
1908.11526 | 2970961333 | The success of existing deep-learning based multi-view stereo (MVS) approaches greatly depends on the availability of large-scale supervision in the form of dense depth maps. Such supervision, while not always possible, tends to hinder the generalization ability of the learned models in never-seen-before scenarios. In this paper, we propose the first unsupervised learning based MVS network, which learns the multi-view depth maps from the input multi-view images and does not need ground-truth 3D training data. Our network is symmetric in predicting depth maps for all views simultaneously, where we enforce cross-view consistency of multi-view depth maps during both training and testing stages. Thus, the learned multi-view depth maps naturally comply with the underlying 3D scene geometry. Besides, our network also learns the multi-view occlusion maps, which further improves the robustness of our network in handling real-world occlusions. Experimental results on multiple benchmarking datasets demonstrate the effectiveness of our network and the excellent generalization ability. | Different from the above geometry-based methods, learning-based approaches adopt convolution operation which has powerful feature learning capability for better pair-wise patch matching @cite_32 @cite_7 @cite_10 . Ji al @cite_24 pre-warped the multi-view images to 3D space, then used CNNs to regularize the cost volume. Huang al @cite_37 proposed DeepMVS, which aggregates information through a set of unordered images. Abhishek al @cite_31 directly leveraged camera parameters as the projection operation to form the cost volume, and achieved an end-to-end network. Yao al @cite_17 adopted a variance-based cost metric to aggregate the cost volume, then applied 3D convolutions to regularize and regress the depth map. Im al @cite_35 applied a plane sweeping approach to build a cost volume from deep features, then regularized the cost volume via a context-aware aggregation to improve depth regression. Very recently, Yao al @cite_4 introduced a scalable MVS framework based on the recurrent neural network to reduce the memory-consuming. | {
"cite_N": [
"@cite_35",
"@cite_37",
"@cite_4",
"@cite_7",
"@cite_32",
"@cite_24",
"@cite_31",
"@cite_10",
"@cite_17"
],
"mid": [
"2798365843",
"1772650917",
"2963502507",
"2574952845"
],
"abstract": [
"Compared to earlier multistage frameworks using CNN features, recent end-to-end deep approaches for fine-grained recognition essentially enhance the mid-level learning capability of CNNs. Previous approaches achieve this by introducing an auxiliary network to infuse localization information into the main classification network, or a sophisticated feature encoding method to capture higher order feature statistics. We show that mid-level representation learning can be enhanced within the CNN framework, by learning a bank of convolutional filters that capture class-specific discriminative patches without extra part or bounding box annotations. Such a filter bank is well structured, properly initialized and discriminatively learned through a novel asymmetric multi-stream architecture with convolutional filter supervision and a non-random layer initialization. Experimental results show that our approach achieves state-of-the-art on three publicly available fine-grained recognition datasets (CUB-200-2011, Stanford Cars and FGVC-Aircraft). Ablation studies and visualizations are provided to understand our approach.",
"We present a method for extracting depth information from a rectified image pair. Our approach focuses on the first stage of many stereo algorithms: the matching cost computation. We approach the problem by learning a similarity measure on small image patches using a convolutional neural network. Training is carried out in a supervised manner by constructing a binary classification data set with examples of similar and dissimilar pairs of patches. We examine two network architectures for this task: one tuned for speed, the other for accuracy. The output of the convolutional neural network is used to initialize the stereo matching cost. A series of post-processing steps follow: cross-based cost aggregation, semiglobal matching, a left-right consistency check, subpixel enhancement, a median filter, and a bilateral filter. We evaluate our method on the KITTI 2012, KITTI 2015, and Middlebury stereo data sets and show that it outperforms other approaches on all three data sets.",
"We present a method for extracting depth information from a rectified image pair. Our approach focuses on the first stage of many stereo algorithms: the matching cost computation. We approach the problem by learning a similarity measure on small image patches using a convolutional neural network. Training is carried out in a supervised manner by constructing a binary classification data set with examples of similar and dissimilar pairs of patches. We examine two network architectures for this task: one tuned for speed, the other for accuracy. The output of the convolutional neural network is used to initialize the stereo matching cost. A series of post-processing steps follow: cross-based cost aggregation, semiglobal matching, a left-right consistency check, subpixel enhancement, a median filter, and a bilateral filter. We evaluate our method on the KITTI 2012, KITTI 2015, and Middlebury stereo data sets and show that it outperforms other approaches on all three data sets.",
"In this paper, we propose a novel deep convolutional neural network (CNN)-based algorithm for solving ill-posed inverse problems. Regularized iterative algorithms have emerged as the standard approach to ill-posed inverse problems in the past few decades. These methods produce excellent results, but can be challenging to deploy in practice due to factors including the high computational cost of the forward and adjoint operators and the difficulty of hyperparameter selection. The starting point of this paper is the observation that unrolled iterative methods have the form of a CNN (filtering followed by pointwise non-linearity) when the normal operator ( @math , where @math is the adjoint of the forward imaging operator, @math ) of the forward model is a convolution. Based on this observation, we propose using direct inversion followed by a CNN to solve normal-convolutional inverse problems. The direct inversion encapsulates the physical model of the system, but leads to artifacts when the problem is ill posed; the CNN combines multiresolution decomposition and residual learning in order to learn to remove these artifacts while preserving image structure. We demonstrate the performance of the proposed network in sparse-view reconstruction (down to 50 views) on parallel beam X-ray computed tomography in synthetic phantoms as well as in real experimental sinograms. The proposed network outperforms total variation-regularized iterative reconstruction for the more realistic phantoms and requires less than a second to reconstruct a @math image on the GPU."
]
} |
1908.11526 | 2970961333 | The success of existing deep-learning based multi-view stereo (MVS) approaches greatly depends on the availability of large-scale supervision in the form of dense depth maps. Such supervision, while not always possible, tends to hinder the generalization ability of the learned models in never-seen-before scenarios. In this paper, we propose the first unsupervised learning based MVS network, which learns the multi-view depth maps from the input multi-view images and does not need ground-truth 3D training data. Our network is symmetric in predicting depth maps for all views simultaneously, where we enforce cross-view consistency of multi-view depth maps during both training and testing stages. Thus, the learned multi-view depth maps naturally comply with the underlying 3D scene geometry. Besides, our network also learns the multi-view occlusion maps, which further improves the robustness of our network in handling real-world occlusions. Experimental results on multiple benchmarking datasets demonstrate the effectiveness of our network and the excellent generalization ability. | Unsupervised learning has been developed in monocular depth estimation and binocular stereo matching by exploiting the photometric consistency and regularization. Xie al @cite_25 proposed Deep3D to automatically convert 2D videos and images to stereoscopic 3D format. Zhou al @cite_30 proposed an unsupervised monocular depth prediction method by minimizing the image reconstruction error. Mahjourian al @cite_23 explicitly considered the inferred 3D geometry of the whole scene, where consistency of the estimated 3D point clouds and ego-motion across consecutive frames are enforced. Zhong al @cite_13 @cite_14 used the image warping error as the loss function to derive the learning process for estimating the disparity map. | {
"cite_N": [
"@cite_30",
"@cite_14",
"@cite_23",
"@cite_13",
"@cite_25"
],
"mid": [
"2785512290",
"2963906250",
"2887848798",
"2892197942"
],
"abstract": [
"We present a novel approach for unsupervised learning of depth and ego-motion from monocular video. Unsupervised learning removes the need for separate supervisory signals (depth or ego-motion ground truth, or multi-view video). Prior work in unsupervised depth learning uses pixel-wise or gradient-based losses, which only consider pixels in small local neighborhoods. Our main contribution is to explicitly consider the inferred 3D geometry of the scene, enforcing consistency of the estimated 3D point clouds and ego-motion across consecutive frames. This is a challenging task and is solved by a novel (approximate) backpropagation algorithm for aligning 3D structures. We combine this novel 3D-based loss with 2D losses based on photometric quality of frame reconstructions using estimated depth and ego-motion from adjacent frames. We also incorporate validity masks to avoid penalizing areas in which no useful information exists. We test our algorithm on the KITTI dataset and on a video dataset captured on an uncalibrated mobile phone camera. Our proposed approach consistently improves depth estimates on both datasets, and outperforms the state-of-the-art for both depth and ego-motion. Because we only require a simple video, learning depth and ego-motion on large and varied datasets becomes possible. We demonstrate this by training on the low quality uncalibrated video dataset and evaluating on KITTI, ranking among top performing prior methods which are trained on KITTI itself.",
"We present a novel approach for unsupervised learning of depth and ego-motion from monocular video. Unsupervised learning removes the need for separate supervisory signals (depth or ego-motion ground truth, or multi-view video). Prior work in unsupervised depth learning uses pixel-wise or gradient-based losses, which only consider pixels in small local neighborhoods. Our main contribution is to explicitly consider the inferred 3D geometry of the whole scene, and enforce consistency of the estimated 3D point clouds and ego-motion across consecutive frames. This is a challenging task and is solved by a novel (approximate) backpropagation algorithm for aligning 3D structures. We combine this novel 3D-based loss with 2D losses based on photometric quality of frame reconstructions using estimated depth and ego-motion from adjacent frames. We also incorporate validity masks to avoid penalizing areas in which no useful information exists. We test our algorithm on the KITTI dataset and on a video dataset captured on an uncalibrated mobile phone camera. Our proposed approach consistently improves depth estimates on both datasets, and outperforms the state-of-the-art for both depth and ego-motion. Because we only require a simple video, learning depth and ego-motion on large and varied datasets becomes possible. We demonstrate this by training on the low quality uncalibrated video dataset and evaluating on KITTI, ranking among top performing prior methods which are trained on KITTI itself.1",
"Obtaining accurate depth measurements out of a single image represents a fascinating solution to 3D sensing. CNNs led to considerable improvements in this field, and recent trends replaced the need for ground-truth labels with geometry-guided image reconstruction signals enabling unsupervised training. Currently, for this purpose, state-of-the-art techniques rely on images acquired with a binocular stereo rig to predict inverse depth (i.e., disparity) according to the aforementioned supervision principle. However, these methods suffer from well-known problems near occlusions, left image border, etc inherited from the stereo setup. Therefore, in this paper, we tackle these issues by moving to a trinocular domain for training. Assuming the central image as the reference, we train a CNN to infer disparity representations pairing such image with frames on its left and right side. This strategy allows obtaining depth maps not affected by typical stereo artifacts. Moreover, being trinocular datasets seldom available, we introduce a novel interleaved training procedure enabling to enforce the trinocular assumption outlined from current binocular datasets. Exhaustive experimental results on the KITTI dataset confirm that our proposal outperforms state-of-the-art methods for unsupervised monocular depth estimation trained on binocular stereo pairs as well as any known methods relying on other cues.",
"This paper presents an unsupervised deep learning framework called UnDEMoN for estimating dense depth map and 6-DoF camera pose information directly from monocular images. The proposed network is trained using unlabeled monocular stereo image pairs and is shown to provide superior performance in depth and ego-motion estimation compared to the existing state-of-the-art. These improvements are achieved by introducing a new objective function that aims to minimize spatial as well as temporal reconstruction losses simultaneously. These losses are defined using bi-linear sampling kernel and penalized using the Charbonnier penalty function. The objective function, thus created, provides robustness to image gradient noises thereby improving the overall estimation accuracy without resorting to any coarse to fine strategies which are currently prevalent in the literature. Another novelty lies in the fact that we combine a disparity-based depth estimation network with a pose estimation network to obtain absolute scale-aware 6 DOF Camera pose and superior depth map. The effectiveness of the proposed approach is demonstrated through performance comparison with the existing supervised and unsupervised methods on the KITTI driving dataset."
]
} |
1908.11399 | 2971293878 | Understanding the morphological changes of primary neuronal cells induced by chemical compounds is essential for drug discovery. Using the data from a single high-throughput imaging assay, a classification model for predicting the biological activity of candidate compounds was introduced. The image recognition model which is based on deep convolutional neural network (CNN) architecture with residual connections achieved accuracy of 99.6 @math on a binary classification task of distinguishing untreated and treated rodent primary neuronal cells with Amyloid- @math . | Recent years have seen an explosion of applications of the deep learning methods to medical imaging, including computer-aided diagnosis (CAD) in radiology and medical image analysis @cite_37 @cite_23 @cite_27 . The efficiency of deep learning models for cytometry @cite_2 has been widely recognised and applied to cell imaging @cite_30 , virtual staining with generative adversarial networks (GAN) @cite_19 @cite_26 , fluorescence microscopy @cite_9 and reconstructing cell cycles and disease progression @cite_42 . However, despite the wide popularity and maturity of the deep learning approach, very little has been done to estimate the effect of biological activity of neuronal cells induced by compounds and searching for drugs that may protect against neurodegeneration and Alzheimer's disease. Simm in @cite_22 suggested to re-purpose high-throughput images assay to predict biological activity in drug discovery, however this approach depends on the features extracted from CellProfiler @cite_4 and lacks the flexibility of the CNN models @cite_7 which learn features directly from raw pixels of images. | {
"cite_N": [
"@cite_30",
"@cite_37",
"@cite_26",
"@cite_4",
"@cite_22",
"@cite_7",
"@cite_9",
"@cite_42",
"@cite_19",
"@cite_27",
"@cite_23",
"@cite_2"
],
"mid": [
"2794022343",
"2731899572",
"2950489286",
"2253429366"
],
"abstract": [
"Abstract Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the medical domain remains a challenge. In this paper, we present methods for generating synthetic medical images using recently presented deep learning Generative Adversarial Networks (GANs). Furthermore, we show that generated medical images can be used for synthetic data augmentation, and improve the performance of CNN for medical image classification. Our novel method is demonstrated on a limited dataset of computed tomography (CT) images of 182 liver lesions (53 cysts, 64 metastases and 65 hemangiomas). We first exploit GAN architectures for synthesizing high quality liver lesion ROIs. Then we present a novel scheme for liver lesion classification using CNN. Finally, we train the CNN using classic data augmentation and our synthetic data augmentation and compare performance. In addition, we explore the quality of our synthesized examples using visualization and expert assessment. The classification performance using only classic data augmentation yielded 78.6 sensitivity and 88.4 specificity. By adding the synthetic data augmentation the results increased to 85.7 sensitivity and 92.4 specificity. We believe that this approach to synthetic data augmentation can generalize to other medical classification applications and thus support radiologists’ efforts to improve diagnosis.",
"The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. “Deep learning”, or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.",
"Despite the recent advances in automatically describing image contents, their applications have been mostly limited to image caption datasets containing natural images (e.g., Flickr 30k, MSCOCO). In this paper, we present a deep learning model to efficiently detect a disease from an image and annotate its contexts (e.g., location, severity and the affected organs). We employ a publicly available radiology dataset of chest x-rays and their reports, and use its image annotations to mine disease names to train convolutional neural networks (CNNs). In doing so, we adopt various regularization techniques to circumvent the large normal-vs-diseased cases bias. Recurrent neural networks (RNNs) are then trained to describe the contexts of a detected disease, based on the deep CNN features. Moreover, we introduce a novel approach to use the weights of the already trained pair of CNN RNN on the domain-specific image text dataset, to infer the joint image text contexts for composite image labeling. Significantly improved image annotation results are demonstrated using the recurrent neural cascade model by taking the joint image text contexts into account.",
"Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | There has been growing interest in first-order algorithms for non-convex minimization problems with no constraints or simple constraints in both stochastic and deterministic settings. Initially, the research in this direction mainly focuses on problems with smooth objective functions @cite_31 @cite_55 @cite_0 @cite_8 @cite_52 @cite_57 @cite_9 @cite_66 @cite_42 @cite_67 . Recently, algorithms and theories have been developed for non-convex problems with non-smooth (but weakly convex) objective functions @cite_89 @cite_88 @cite_102 @cite_50 @cite_26 @cite_79 . These works tackle the non-smoothness by introducing the Moreau envelope of the objective function. However, for with sophisticated functional constraints, these methods are not applicable. | {
"cite_N": [
"@cite_67",
"@cite_26",
"@cite_8",
"@cite_55",
"@cite_9",
"@cite_42",
"@cite_52",
"@cite_102",
"@cite_89",
"@cite_0",
"@cite_57",
"@cite_79",
"@cite_50",
"@cite_88",
"@cite_31",
"@cite_66"
],
"mid": [
"2962851402",
"2766153148",
"2301983558",
"2655474054"
],
"abstract": [
"We consider the fundamental problem in nonconvex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order nonconvex optimization remain to be full gradient descent that converges in O(1 e) iterations for smooth objectives, and stochastic gradient descent that converges in O(1 e2) iterations for objectives that are sum of smooth functions. We provide the first improvement in this line of research. Our result is based on the variance reduction trick recently introduced to convex optimization, as well as a brand new analysis of variance reduction that is suitable for non-convex optimization. For objectives that are sum of smooth functions, our first-order minibatch stochastic method converges with an O(1 e) rate, and is faster than full gradient descent by Ω(n1 3). We demonstrate the effectiveness of our methods on empirical risk minimizations with nonconvex loss functions and training neural nets.",
"The usual approach to developing and analyzing first-order methods for non-smooth (stochastic or deterministic) convex optimization assumes that the objective function is uniformly Lipschitz continuous with parameter @math . However, in many settings the non-differentiable convex function @math is not uniformly Lipschitz continuous -- for example (i) the classical support vector machine (SVM) problem, (ii) the problem of minimizing the maximum of convex quadratic functions, and even (iii) the univariate setting with @math . Herein we develop a notion of \"relative continuity\" that is determined relative to a user-specified \"reference function\" @math (that should be computationally tractable for algorithms), and we show that many non-differentiable convex functions are relatively continuous with respect to a correspondingly fairly-simple reference function @math . We also similarly develop a notion of \"relative stochastic continuity\" for the stochastic setting. We analysis two standard algorithms -- the (deterministic) mirror descent algorithm and the stochastic mirror descent algorithm -- for solving optimization problems in these two new settings, and we develop for the first time computational guarantees for instances where the objective function is not uniformly Lipschitz continuous. This paper is a companion paper for non-differentiable convex optimization to the recent paper by Lu, Freund, and Nesterov, which developed similar sorts of results for differentiable convex optimization.",
"We consider the fundamental problem in non-convex optimization of efficiently reaching a stationary point. In contrast to the convex case, in the long history of this basic problem, the only known theoretical results on first-order non-convex optimization remain to be full gradient descent that converges in @math iterations for smooth objectives, and stochastic gradient descent that converges in @math iterations for objectives that are sum of smooth functions. We provide the first improvement in this line of research. Our result is based on the variance reduction trick recently introduced to convex optimization, as well as a brand new analysis of variance reduction that is suitable for non-convex optimization. For objectives that are sum of smooth functions, our first-order minibatch stochastic method converges with an @math rate, and is faster than full gradient descent by @math . We demonstrate the effectiveness of our methods on empirical risk minimizations with non-convex loss functions and training neural nets.",
"We focus on nonconvex and nonsmooth minimization problems with a composite objective, where the differentiable part of the objective is freed from the usual and restrictive global Lipschitz gradient continuity assumption. This longstanding smoothness restriction is pervasive in first order methods (FOM), and was recently circumvent for convex composite optimization by Bauschke, Bolte and Teboulle, through a simple and elegant framework which captures, all at once, the geometry of the function and of the feasible set. Building on this work, we tackle genuine nonconvex problems. We first complement and extend their approach to derive a full extended descent lemma by introducing the notion of smooth adaptable functions. We then consider a Bregman-based proximal gradient methods for the nonconvex composite model with smooth adaptable functions, which is proven to globally converge to a critical point under natural assumptions on the problem's data. To illustrate the power and potential of our general framework and results, we consider a broad class of quadratic inverse problems with sparsity constraints which arises in many fundamental applications, and we apply our approach to derive new globally convergent schemes for this class."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | When all constraint functions in are affine, a primal-dual Frank-Wolfe method is proposed in @cite_72 , and it finds an @math -stationary point with a complexity of @math in general and @math when there exists a strictly feasible solution. Compared to @cite_72 , this paper uses a different notion of @math -stationary point and our constraint functions can be nonlinear and non-convex. | {
"cite_N": [
"@cite_72"
],
"mid": [
"2157959686",
"2460087882",
"905619",
"1877183374"
],
"abstract": [
"In this paper we develop a new affine-invariant primal–dual subgradient method for nonsmooth convex optimization problems. This scheme is based on a self-concordant barrier for the basic feasible set. It is suitable for finding approximate solutions with certain relative accuracy. We discuss some applications of this technique including fractional covering problem, maximal concurrent flow problem, semidefinite relaxations and nonlinear online optimization. For all these problems, the rate of convergence of our method does not depend on the problem’s data.",
"We give a simple proof that the Frank-Wolfe algorithm obtains a stationary point at a rate of @math on non-convex objectives with a Lipschitz continuous gradient. Our analysis is affine invariant and is the first, to the best of our knowledge, giving a similar rate to what was already proven for projected gradient methods (though on slightly different measures of stationarity).",
"We provide stronger and more general primal-dual convergence results for Frank-Wolfe-type algorithms (a.k.a. conditional gradient) for constrained convex optimization, enabled by a simple framework of duality gap certificates. Our analysis also holds if the linear subproblems are only solved approximately (as well as if the gradients are inexact), and is proven to be worst-case optimal in the sparsity of the obtained solutions. On the application side, this allows us to unify a large variety of existing sparse greedy methods, in particular for optimization over convex hulls of an atomic set, even if those sets can only be approximated, including sparse (or structured sparse) vectors or matrices, low-rank matrices, permutation matrices, or max-norm bounded matrices. We present a new general framework for convex optimization over matrix factorizations, where every Frank-Wolfe iteration will consist of a low-rank update, and discuss the broad application areas of this approach.",
"We propose a randomized block-coordinate variant of the classic Frank-Wolfe algorithm for convex optimization with block-separable constraints. Despite its lower iteration cost, we show that it achieves a similar convergence rate in duality gap as the full Frank-Wolfe algorithm. We also show that, when applied to the dual structural support vector machine (SVM) objective, this yields an online algorithm that has the same low iteration complexity as primal stochastic subgradient methods. However, unlike stochastic subgradient methods, the block-coordinate Frank-Wolfe algorithm allows us to compute the optimal step-size and yields a computable duality gap guarantee. Our experiments indicate that this simple algorithm outperforms competing structural SVM solvers."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | As a classical approach for solving constrained optimization , a penalty method finds an approximate solution by solving a sequence of unconstrained subproblems, where the violation of constraints is penalized by the positively weighted penalty terms in the objective function of the subproblems. Unconstrained optimization techniques are then applied to the subproblems along with an updating scheme for the weighting parameters. The computational complexity of penalty methods for convex problems has been well established @cite_17 @cite_53 @cite_7 . For non-convex problems, most existing studies of penalty methods focus on the asymptotic convergence to a stationary point @cite_70 @cite_97 @cite_27 @cite_99 @cite_100 @cite_90 @cite_10 @cite_91 @cite_69 @cite_33 @cite_34 @cite_78 @cite_23 @cite_60 . On the contrary, we analyze the finite complexity of penalty methods for finding a near-stationary point. | {
"cite_N": [
"@cite_99",
"@cite_69",
"@cite_91",
"@cite_7",
"@cite_33",
"@cite_70",
"@cite_97",
"@cite_53",
"@cite_90",
"@cite_78",
"@cite_60",
"@cite_27",
"@cite_23",
"@cite_100",
"@cite_34",
"@cite_10",
"@cite_17"
],
"mid": [
"2893640118",
"2787445655",
"2074292837",
"2144603975"
],
"abstract": [
"We develop two new proximal alternating penalty algorithms to solve a wide range class of constrained convex optimization problems. Our approach mainly relies on a novel combination of the classical quadratic penalty, alternating minimization, Nesterov’s acceleration, adaptive strategy for parameters. The first algorithm is designed to solve generic and possibly nonsmooth constrained convex problems without requiring any Lipschitz gradient continuity or strong convexity, while achieving the best-known ( O ( 1 k ) )-convergence rate in a non-ergodic sense, where k is the iteration counter. The second algorithm is also designed to solve non-strongly convex, but semi-strongly convex problems. This algorithm can achieve the best-known ( O ( 1 k^2 ) )-convergence rate on the primal constrained problem. Such a rate is obtained in two cases: (1) averaging only on the iterate sequence of the strongly convex term, or (2) using two proximal operators of this term without averaging. In both algorithms, we allow one to linearize the second subproblem to use the proximal operator of the corresponding objective term. Then, we customize our methods to solve different convex problems, and lead to new variants. As a byproduct, these algorithms preserve the same convergence guarantees as in our main algorithms. We verify our theoretical development via different numerical examples and compare our methods with some existing state-of-the-art algorithms.",
"This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form @math where @math is a differentiable function whose gradient is Lipschitz continuous and @math is a closed convex function with bounded domain. The method, basically, consists of applying an accelerated inexact proximal point method for solving approximately a sequence of quadratic penalized subproblems associated to the linearly constrained problem. Each subproblem of the proximal point method is in turn approximately solved by an accelerated composite gradient method. It is shown that the proposed scheme generates a @math -approximate stationary point in at most @math . Finally, numerical results showing the efficiency of the proposed method are also given.",
"In this paper we propose and analyze a class of combined primal–dual and penalty methods for constrained minimization which generalizes the method of multipliers. We provide a convergence and rate of convergence analysis for these methods for the case of a convex programming problem. We prove global convergence in the presence of both exact and inexact unconstrained minimization, and we show that the rate of convergence may be linear or superlinear with arbitrary Q-order of convergence depending on the problem at hand and the form of the penalty function employed.",
"This paper considers a special but broad class of convex programming problems whose feasible region is a simple compact convex set intersected with the inverse image of a closed convex cone under an affine transformation. It studies the computational complexity of quadratic penalty based methods for solving the above class of problems. An iteration of these methods, which is simply an iteration of Nesterov’s optimal method (or one of its variants) for approximately solving a smooth penalization subproblem, consists of one or two projections onto the simple convex set. Iteration-complexity bounds expressed in terms of the latter type of iterations are derived for two quadratic penalty based variants, namely: one which applies the quadratic penalty method directly to the original problem and another one which applies the latter method to a perturbation of the original problem obtained by adding a small quadratic term to its objective function."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | On solving a problem with a non-convex objective and linear constraint, @cite_25 has developed a quadratic-penalty accelerated inexact proximal point method. That method can generate an @math -stationary point in the sense of with a complexity of @math . Our method is similar to that in @cite_25 by utilizing the techniques from both the proximal point method and the quadratic penalty method. Although we make a little stronger assumption than @cite_25 by requiring the boundedness of @math , our method and analysis apply to the problems with non-convex objectives and convex non-convex nonlinear constraint functions. When the constraints are convex (but possibly nonlinear), our method can find a nearly @math -stationary point with a complexity of @math that is a nearly @math improvement over the complexity in @cite_25 . | {
"cite_N": [
"@cite_25"
],
"mid": [
"2787445655",
"2893640118",
"2962721705",
"2070740567"
],
"abstract": [
"This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form @math where @math is a differentiable function whose gradient is Lipschitz continuous and @math is a closed convex function with bounded domain. The method, basically, consists of applying an accelerated inexact proximal point method for solving approximately a sequence of quadratic penalized subproblems associated to the linearly constrained problem. Each subproblem of the proximal point method is in turn approximately solved by an accelerated composite gradient method. It is shown that the proposed scheme generates a @math -approximate stationary point in at most @math . Finally, numerical results showing the efficiency of the proposed method are also given.",
"We develop two new proximal alternating penalty algorithms to solve a wide range class of constrained convex optimization problems. Our approach mainly relies on a novel combination of the classical quadratic penalty, alternating minimization, Nesterov’s acceleration, adaptive strategy for parameters. The first algorithm is designed to solve generic and possibly nonsmooth constrained convex problems without requiring any Lipschitz gradient continuity or strong convexity, while achieving the best-known ( O ( 1 k ) )-convergence rate in a non-ergodic sense, where k is the iteration counter. The second algorithm is also designed to solve non-strongly convex, but semi-strongly convex problems. This algorithm can achieve the best-known ( O ( 1 k^2 ) )-convergence rate on the primal constrained problem. Such a rate is obtained in two cases: (1) averaging only on the iterate sequence of the strongly convex term, or (2) using two proximal operators of this term without averaging. In both algorithms, we allow one to linearize the second subproblem to use the proximal operator of the corresponding objective term. Then, we customize our methods to solve different convex problems, and lead to new variants. As a byproduct, these algorithms preserve the same convergence guarantees as in our main algorithms. We verify our theoretical development via different numerical examples and compare our methods with some existing state-of-the-art algorithms.",
"Successive quadratic approximations, or second-order proximal methods, are useful for minimizing functions that are a sum of a smooth part and a convex, possibly nonsmooth part that promotes regularization. Most analyses of iteration complexity focus on the special case of proximal gradient method, or accelerated variants thereof. There have been only a few studies of methods that use a second-order approximation to the smooth part, due in part to the difficulty of obtaining closed-form solutions to the subproblems at each iteration. In fact, iterative algorithms may need to be used to find inexact solutions to these subproblems. In this work, we present global analysis of the iteration complexity of inexact successive quadratic approximation methods, showing that an inexact solution of the subproblem that is within a fixed multiplicative precision of optimality suffices to guarantee the same order of convergence rate as the exact version, with complexity related in an intuitive way to the measure of inexactness. Our result allows flexible choices of the second-order term, including Newton and quasi-Newton choices, and does not necessarily require increasing precision of the subproblem solution on later iterations. For problems exhibiting a property related to strong convexity, the algorithms converge at global linear rates. For general convex problems, the convergence rate is linear in early stages, while the overall rate is O(1 k). For nonconvex problems, a first-order optimality criterion converges to zero at a rate of (O(1 k ) ).",
"The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying manner by Tseng, has proven to be highly efficient in solving some classes of large scale structured convex optimization (possibly nonsmooth) problems, including nuclear norm minimization problems in matrix completion and @math minimization problems in compressed sensing. The method has superior worst-case iteration complexity over the classical projected gradient method and usually has good practical performance on problems with appropriate structures. In this paper, we extend the APG method to the inexact setting, where the subproblem in each iteration is solved only approximately, and show that it enjoys the same worst-case iteration complexity as the exact counterpart if the subproblems are progressively solved to sufficient accuracy. We apply our inexact APG method to solve large scale ..."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | Barrier methods @cite_54 @cite_83 @cite_56 @cite_74 @cite_16 @cite_11 @cite_3 @cite_36 @cite_13 are another traditional class of algorithms for constrained optimization. Similar to the penalty methods, they also solve a sequence of unconstrained subproblems with barrier functions added to objective function. The barrier functions will increase to infinity as the iterates approach the boundary of the feasible set, and thus enforce the iterates to stay in the interior of the feasible set. However, the convergence rate of barrier methods is only shown when the problem is convex @cite_3 @cite_36 @cite_13 @cite_5 , and only asymptotic convergence analysis is available for non-convex problems. | {
"cite_N": [
"@cite_36",
"@cite_54",
"@cite_3",
"@cite_56",
"@cite_83",
"@cite_74",
"@cite_5",
"@cite_16",
"@cite_13",
"@cite_11"
],
"mid": [
"2962853966",
"2893640118",
"2011430287",
"1986891697"
],
"abstract": [
"In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ( (x_0, ,x_p,y) ), subject to coupled linear equality constraints. Our ADMM updates each of the primal variables (x_0, ,x_p,y ), followed by updating the dual variable. We separate the variable y from (x_i )’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ( _q ) quasi-norm, Schatten-q quasi-norm ( (0<q<1 )), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the (x_0 )-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter ( ). Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios.",
"We develop two new proximal alternating penalty algorithms to solve a wide range class of constrained convex optimization problems. Our approach mainly relies on a novel combination of the classical quadratic penalty, alternating minimization, Nesterov’s acceleration, adaptive strategy for parameters. The first algorithm is designed to solve generic and possibly nonsmooth constrained convex problems without requiring any Lipschitz gradient continuity or strong convexity, while achieving the best-known ( O ( 1 k ) )-convergence rate in a non-ergodic sense, where k is the iteration counter. The second algorithm is also designed to solve non-strongly convex, but semi-strongly convex problems. This algorithm can achieve the best-known ( O ( 1 k^2 ) )-convergence rate on the primal constrained problem. Such a rate is obtained in two cases: (1) averaging only on the iterate sequence of the strongly convex term, or (2) using two proximal operators of this term without averaging. In both algorithms, we allow one to linearize the second subproblem to use the proximal operator of the corresponding objective term. Then, we customize our methods to solve different convex problems, and lead to new variants. As a byproduct, these algorithms preserve the same convergence guarantees as in our main algorithms. We verify our theoretical development via different numerical examples and compare our methods with some existing state-of-the-art algorithms.",
"Many scientific and engineering applications feature nonsmooth convex minimization problems over convex sets. In this paper, we address an important instance of this broad class where we assume that the nonsmooth objective is equipped with a tractable proximity operator and that the convex constraint set affords a self-concordant barrier. We provide a new joint treatment of proximal and self-concordant barrier concepts and illustrate that such problems can be efficiently solved, without the need of lifting the problem dimensions, as in disciplined convex optimization approach. We propose an inexact path-following algorithmic framework and theoretically characterize the worst-case analytical complexity of this framework when the proximal subproblems are solved inexactly. To show the merits of our framework, we apply its instances to both synthetic and real-world applications, where it shows advantages over standard interior point methods. As a byproduct, we describe how our framework can obtain points on t...",
"Interior gradient (subgradient) and proximal methods for convex constrained minimization have been much studied, in particular for optimization problems over the nonnegative octant. These methods are using non-Euclidean projections and proximal distance functions to exploit the geometry of the constraints. In this paper, we identify a simple mechanism that allows us to derive global convergence results of the produced iterates as well as improved global rates of convergence estimates for a wide class of such methods, and with more general convex constraints. Our results are illustrated with many applications and examples, including some new explicit and simple algorithms for conic optimization problems. In particular, we derive a class of interior gradient algorithms which exhibits an @math global convergence rate estimate."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | The augmented Lagrange method (ALM) @cite_32 @cite_20 @cite_18 @cite_35 is another common choice for constrained problems. Different from the exact or quadratic penalty method, ALM estimates the primal solution together with the dual solution. At each iteration, it updates the primal variable by minimizing the augmented Lagrange function and then performs a dual gradient ascent step to update the dual variable. The iteration complexity of ALM has been established for convex problems @cite_17 @cite_49 @cite_38 @cite_2 @cite_53 . For non-convex problems, most of the existing studies on ALM only show its asymptotic convergence or local convergence rate @cite_41 @cite_61 @cite_19 @cite_30 @cite_64 @cite_82 . The computational complexities of ALM for finding an @math -stationary point (under various notions of stationarity) are obtained only for linearly constrained problems @cite_39 @cite_12 @cite_63 @cite_4 . One exception is @cite_29 where they essentially assume that the smallest singular value of the Jacobian matrix of the constraint functions is uniformly bounded away from zero at all feasible points. In this paper, we do not require that assumption but, instead, need an initial nearly feasible solution when the constraints are non-convex while @cite_29 does not need. | {
"cite_N": [
"@cite_30",
"@cite_35",
"@cite_64",
"@cite_41",
"@cite_29",
"@cite_2",
"@cite_20",
"@cite_38",
"@cite_18",
"@cite_4",
"@cite_39",
"@cite_49",
"@cite_17",
"@cite_32",
"@cite_19",
"@cite_12",
"@cite_82",
"@cite_61",
"@cite_53",
"@cite_63"
],
"mid": [
"2969771825",
"2962853966",
"2768546550",
"2035233604"
],
"abstract": [
"Augmented Lagrangian method (ALM) has been popularly used for solving constrained optimization problems. Practically, subproblems for updating primal variables in the framework of ALM usually can only be solved inexactly. The convergence and local convergence speed of ALM have been extensively studied. However, the global convergence rate of the inexact ALM is still open for problems with nonlinear inequality constraints. In this paper, we work on general convex programs with both equality and inequality constraints. For these problems, we establish the global convergence rate of the inexact ALM and estimate its iteration complexity in terms of the number of gradient evaluations to produce a primal and or primal-dual solution with a specified accuracy. We first establish an ergodic convergence rate result of the inexact ALM that uses constant penalty parameters or geometrically increasing penalty parameters. Based on the convergence rate result, we then apply Nesterov’s optimal first-order method on each primal subproblem and estimate the iteration complexity of the inexact ALM. We show that if the objective is convex, then (O( ^ -1 ) ) gradient evaluations are sufficient to guarantee a primal ( )-solution in terms of both primal objective and feasibility violation. If the objective is strongly convex, the result can be improved to (O( ^ - 1 2 | |) ). To produce a primal-dual ( )-solution, more gradient evaluations are needed for convex case, and the number is (O( ^ - 4 3 ) ), while for strongly convex case, the number is still (O( ^ - 1 2 | |) ). Finally, we establish a nonergodic convergence rate result of the inexact ALM that uses geometrically increasing penalty parameters. This result is established only for the primal problem. We show that the nonergodic iteration complexity result is in the same order as that for the ergodic result. Numerical experiments on quadratically constrained quadratic programming are conducted to compare the performance of the inexact ALM with different settings.",
"In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ( (x_0, ,x_p,y) ), subject to coupled linear equality constraints. Our ADMM updates each of the primal variables (x_0, ,x_p,y ), followed by updating the dual variable. We separate the variable y from (x_i )’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ( _q ) quasi-norm, Schatten-q quasi-norm ( (0<q<1 )), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the (x_0 )-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter ( ). Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios.",
"First-order methods have been popularly used for solving large-scale problems. However, many existing works only consider unconstrained problems or those with simple constraint. In this paper, we develop two first-order methods for constrained convex programs, for which the constraint set is represented by affine equations and smooth nonlinear inequalities. Both methods are based on the classic augmented Lagrangian function. They update the multipliers in the same way as the augmented Lagrangian method (ALM) but employ different primal variable updates. The first method, at each iteration, performs a single proximal gradient step to the primal variable, and the second method is a block update version of the first one. For the first method, we establish its global iterate convergence as well as global sublinear and local linear convergence, and for the second method, we show a global sublinear convergence result in expectation. Numerical experiments are carried out on the basis pursuit denoising and a convex quadratically constrained quadratic program to show the empirical performance of the proposed methods. Their numerical behaviors closely match the established theoretical results.",
"In this paper, we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the diagonal quadratic approximation method DQAM of Mulvey and Ruszczynski [A diagonal quadratic approximation method for large scale linear programs, Oper. Res. Lett. 12 1992, pp. 205–215] and the parallel coordinate descent method PCDM of Richtarik and Takac [Parallel coordinate descent methods for big data optimization. Technical report, November 2012. arXiv:1212.0873]. We show that the two methods are equivalent for feasibility problems up to the selection of a step-size parameter. Furthermore, we prove an improved complexity bound for PCDM under strong convexity, and show that this bound is at least 8L′ Lω−12 times better than the best known bound for DQAM, where ω is the degree of partial separability and L’ and L are the maximum and average of the block Lipschitz constants of the gradient of the quadratic penalty appearing in the augmented Lagrangian."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | While preparing this paper, we notice two recently posted papers @cite_86 @cite_76 on the problems with non-convex constraints. The algorithms in both works are based on the proximal point method. Different from our approach, they solve subproblems with strongly convex objective and also strongly convex constraints by adding proximal terms to the objective and constraints. Their analysis requires the uniform boundedness of the dual solutions of all subproblems and, to ensure this requirement is satisfied, @cite_48 assume that a uniform Slater's condition holds while @cite_86 assume that the Mangasarian-Fromovitz constraint qualification holds at the limiting points of the generated iterates. However, neither assumptions can be easily verified. As pointed out in @cite_86 , their assumptions can be implied by a sufficient feasibility assumption, which is an even stronger assumption. On the contrary, our analysis in the non-convex constrained case does not depend on the boundness of the dual variables, and thus does not need the aforementioned assumptions by @cite_86 @cite_76 . | {
"cite_N": [
"@cite_86",
"@cite_76",
"@cite_48"
],
"mid": [
"2964772384",
"2011430287",
"2964271484",
"2962853966"
],
"abstract": [
"Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slater's condition, we establish the computation complexities of our methods for finding a nearly stationary point.",
"Many scientific and engineering applications feature nonsmooth convex minimization problems over convex sets. In this paper, we address an important instance of this broad class where we assume that the nonsmooth objective is equipped with a tractable proximity operator and that the convex constraint set affords a self-concordant barrier. We provide a new joint treatment of proximal and self-concordant barrier concepts and illustrate that such problems can be efficiently solved, without the need of lifting the problem dimensions, as in disciplined convex optimization approach. We propose an inexact path-following algorithmic framework and theoretically characterize the worst-case analytical complexity of this framework when the proximal subproblems are solved inexactly. To show the merits of our framework, we apply its instances to both synthetic and real-world applications, where it shows advantages over standard interior point methods. As a byproduct, we describe how our framework can obtain points on t...",
"Nonconvex and nonsmooth optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology in the sense of scalability. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its convex counterpart. This paper aims to take one step in the direction of disciplined nonconvex and nonsmooth optimization. In particular, we consider in this paper some constrained nonconvex optimization models in block decision variables, with or without coupled affine constraints. In the absence of coupled constraints, we show a sublinear rate of convergence to an ( )-stationary solution in the form of variational inequality for a generalized conditional gradient method, where the convergence rate is dependent on the Holderian continuity of the gradient of the smooth part of the objective. For the model with coupled affine constraints, we introduce corresponding ( )-stationarity conditions, and apply two proximal-type variants of the ADMM to solve such a model, assuming the proximal ADMM updates can be implemented for all the block variables except for the last block, for which either a gradient step or a majorization–minimization step is implemented. We show an iteration complexity bound of (O(1 ^2) ) to reach an ( )-stationary solution for both algorithms. Moreover, we show that the same iteration complexity of a proximal BCD method follows immediately. Numerical results are provided to illustrate the efficacy of the proposed algorithms for tensor robust PCA and tensor sparse PCA problems.",
"In this paper, we analyze the convergence of the alternating direction method of multipliers (ADMM) for minimizing a nonconvex and possibly nonsmooth objective function, ( (x_0, ,x_p,y) ), subject to coupled linear equality constraints. Our ADMM updates each of the primal variables (x_0, ,x_p,y ), followed by updating the dual variable. We separate the variable y from (x_i )’s as it has a special role in our analysis. The developed convergence guarantee covers a variety of nonconvex functions such as piecewise linear functions, ( _q ) quasi-norm, Schatten-q quasi-norm ( (0<q<1 )), minimax concave penalty (MCP), and smoothly clipped absolute deviation penalty. It also allows nonconvex constraints such as compact manifolds (e.g., spherical, Stiefel, and Grassman manifolds) and linear complementarity constraints. Also, the (x_0 )-block can be almost any lower semi-continuous function. By applying our analysis, we show, for the first time, that several ADMM algorithms applied to solve nonconvex models in statistical learning, optimization on manifold, and matrix decomposition are guaranteed to converge. Our results provide sufficient conditions for ADMM to converge on (convex or nonconvex) monotropic programs with three or more blocks, as they are special cases of our model. ADMM has been regarded as a variant to the augmented Lagrangian method (ALM). We present a simple example to illustrate how ADMM converges but ALM diverges with bounded penalty parameter ( ). Indicated by this example and other analysis in this paper, ADMM might be a better choice than ALM for some nonconvex nonsmooth problems, because ADMM is not only easier to implement, it is also more likely to converge for the concerned scenarios."
]
} |
1908.11518 | 2971189344 | Non-convex optimization problems arise from various areas in science and engineering. Although many numerical methods and theories have been developed for unconstrained non-convex problems, the parallel development for constrained non-convex problems remains limited. That restricts the practices of mathematical modeling and quantitative decision making in many disciplines. In this paper, an inexact proximal-point penalty method is proposed for constrained optimization problems where both the objective function and the constraint can be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-type method. The theoretical property of the proposed method is analyzed in two different cases. In the first case, the objective function is non-convex but the constraint functions are assumed to be convex, while in the second case, both the objective function and the constraint are non-convex. For both cases, we give the complexity results in terms of the number of function value and gradient evaluations to produce near-stationary points. Due to the different structures, different definitions of near-stationary points are given for the two cases. The complexity for producing a nearly @math -stationary point is @math for the first case while it becomes @math for the second case. | In addition to the methods above, algorithms that utilize Hessian information have been developed to find the second-order @math -stationary point of linearly constrained smooth non-convex optimization @cite_87 @cite_71 @cite_15 . Different from these works, we focus on finding an approximate first-order stationary point for nonlinear constrained non-convex optimization using only gradient information. | {
"cite_N": [
"@cite_15",
"@cite_71",
"@cite_87"
],
"mid": [
"2895571900",
"2963349772",
"2767752488",
"2769394111"
],
"abstract": [
"We consider the problem of finding an approximate second-order stationary point of a constrained non-convex optimization problem. We first show that, unlike the unconstrained scenario, the vanilla projected gradient descent algorithm may converge to a strict saddle point even when there is only a single linear constraint. We then provide a hardness result by showing that checking ( , )-second order stationarity is NP-hard even in the presence of linear constraints. Despite our hardness result, we identify instances of the problem for which checking second order stationarity can be done efficiently. For such instances, we propose a dynamic second order Frank--Wolfe algorithm which converges to ( , )-second order stationary points in O ( ^ -2 , ^ -3 ) iterations. The proposed algorithm can be used in general constrained non-convex optimization as long as the constrained quadratic sub-problem can be solved efficiently.",
"(This is a theory paper) In this paper, we consider first-order methods for solving stochastic non-convex optimization problems. The key building block of the proposed algorithms is first-order procedures to extract negative curvature from the Hessian matrix through a principled sequence starting from noise, which are referred to NEgative-curvature-Originated-from-Noise or NEON and are of independent interest. Based on this building block, we design purely first-order stochastic algorithms for escaping from non-degenerate saddle points with a much better time complexity (almost linear time in the problem's dimensionality). In particular, we develop a general framework of first-order stochastic algorithms with a second-order convergence guarantee based on our new technique and existing algorithms that may only converge to a first-order stationary point. For finding a nearly second-order stationary point such that ‖∇F( )‖≤ϵ and ∇2F( )≥− √ ϵ I (in high probability), the best time complexity of the presented algorithms is ˜ O (d ϵ3.5), where F(⋅) denotes the objective function and d is the dimensionality of the problem. To the best of our knowledge, this is the first theoretical result of first-order stochastic algorithms with an almost linear time in terms of problem's dimensionality for finding second-order stationary points, which is even competitive with existing stochastic algorithms hinging on the second-order information.",
"Two classes of methods have been proposed for escaping from saddle points with one using the second-order information carried by the Hessian and the other adding the noise into the first-order information. The existing analysis for algorithms using noise in the first-order information is quite involved and hides the essence of added noise, which hinder further improvements of these algorithms. In this paper, we present a novel perspective of noise-adding technique, i.e., adding the noise into the first-order information can help extract the negative curvature from the Hessian matrix, and provide a formal reasoning of this perspective by analyzing a simple first-order procedure. More importantly, the proposed procedure enables one to design purely first-order stochastic algorithms for escaping from non-degenerate saddle points with a much better time complexity (almost linear time in terms of the problem's dimensionality). In particular, we develop a first-order stochastic algorithm based on our new technique and an existing algorithm that only converges to a first-order stationary point to enjoy a time complexity of @math for finding a nearly second-order stationary point @math such that @math and @math (in high probability), where @math denotes the objective function and @math is the dimensionality of the problem. To the best of our knowledge, this is the best theoretical result of first-order algorithms for stochastic non-convex optimization, which is even competitive with if not better than existing stochastic algorithms hinging on the second-order information.",
"Nesterov's accelerated gradient descent (AGD), an instance of the general family of \"momentum methods\", provably achieves faster convergence rate than gradient descent (GD) in the convex setting. However, whether these methods are superior to GD in the nonconvex setting remains open. This paper studies a simple variant of AGD, and shows that it escapes saddle points and finds a second-order stationary point in @math iterations, faster than the @math iterations required by GD. To the best of our knowledge, this is the first Hessian-free algorithm to find a second-order stationary point faster than GD, and also the first single-loop algorithm with a faster rate than GD even in the setting of finding a first-order stationary point. Our analysis is based on two key ideas: (1) the use of a simple Hamiltonian function, inspired by a continuous-time perspective, which AGD monotonically decreases per step even for nonconvex functions, and (2) a novel framework called improve or localize, which is useful for tracking the long-term behavior of gradient-based optimization algorithms. We believe that these techniques may deepen our understanding of both acceleration algorithms and nonconvex optimization."
]
} |
1908.11053 | 2970409889 | Formal query generation aims to generate correct executable queries for question answering over knowledge bases (KBs), given entity and relation linking results. Current approaches build universal paraphrasing or ranking models for the whole questions, which are likely to fail in generating queries for complex, long-tail questions. In this paper, we propose SubQG, a new query generation approach based on frequent query substructures, which helps rank the existing (but nonsignificant) query structures or build new query structures. Our experiments on two benchmark datasets show that our approach significantly outperforms the existing ones, especially for complex questions. Also, it achieves promising performance with limited training data and noisy entity relation linking results. | Semantic parsing-based approaches translate questions into formal queries using bottom up parsing @cite_5 or staged query graph generation @cite_12 . gAnswer @cite_15 @cite_1 builds up semantic query graph for question analysis and utilize subgraph matching for disambiguation. Recent studies combine parsing based approaches with neural networks, to enhance the ability for structure disambiguation. ConstraintQG ( ConstraintQG ), CQAEMNLP ( CQAEMNLP ) and SQG ( SQG ) build query graphs by staged query generation, and follow an encode-and-compare framework to rank candidate queries with neural networks. These approaches try to learn entire representations for questions with different query structures by using a single network. Thus, they may suffer from the lack of training data, especially for questions with rarely appeared structures. By contrast, our approach utilizes multiple networks to learn predictors for different query substructures, which can gain a stable performance with limited training data. Also, our approach does not require manually-written rules, and performs stably with noisy linking results. | {
"cite_N": [
"@cite_5",
"@cite_15",
"@cite_1",
"@cite_12"
],
"mid": [
"2251079237",
"2192410469",
"2444318157",
"2251143283"
],
"abstract": [
"We propose a novel semantic parsing framework for question answering using a knowledge base. We define a query graph that resembles subgraphs of the knowledge base and can be directly mapped to a logical form. Semantic parsing is reduced to query graph generation, formulated as a staged search problem. Unlike traditional approaches, our method leverages the knowledge base in an early stage to prune the search space and thus simplifies the semantic matching problem. By applying an advanced entity linking system and a deep convolutional neural network model that matches questions and predicate sequences, our system outperforms previous methods substantially, and achieves an F1 measure of 52.5 on the WEBQUESTIONS dataset.",
"Learning the semantic representation using neural network architecture.The neural network is trained via pre-training and fine-tuning phase.The learned semantic level feature is incorporated into a LTR framework. In community question answering (cQA), users pose queries (or questions) on portals like Yahoo! Answers which can then be answered by other users who are often knowledgeable on the subject. cQA is increasingly popular on the Web, due to its convenience and effectiveness in connecting users with queries and those with answers. In this article, we study the problem of finding previous queries (e.g., posed by other users) which may be similar to new queries, and adapting their answers as the answers to the new queries. A key challenge here is to the bridge the lexical gap between new queries and old answers. For example, \"company\" in the queries may correspond to \"firm\" in the answers. To address this challenge, past research has proposed techniques similar to machine translation that \"translate\" old answers to ones using the words in the new queries. However, a key limitation of these works is that they assume queries and answers are parallel texts, which is hardly true in reality. As a result, the translated or rephrased answers may not look intuitive.In this article, we propose a novel approach to learn the semantic representation of queries and answers by using a neural network architecture. The learned semantic level features are finally incorporated into a learning to rank framework. We have evaluated our approach using a large-scale data set. Results show that the approach can significantly outperform existing approaches.",
"Existing knowledge-based question answering systems often rely on small annotated training data. While shallow methods like relation extraction are robust to data scarcity, they are less expressive than the deep meaning representation methods like semantic parsing, thereby failing at answering questions involving multiple constraints. Here we alleviate this problem by empowering a relation extraction method with additional evidence from Wikipedia. We first present a neural network based relation extractor to retrieve the candidate answers from Freebase, and then infer over Wikipedia to validate these answers. Experiments on the WebQuestions question answering dataset show that our method achieves an F_1 of 53.3 , a substantial improvement over the state-of-the-art.",
"We develop a semantic parsing framework based on semantic similarity for open domain question answering (QA). We focus on single-relation questions and decompose each question into an entity mention and a relation pattern. Using convolutional neural network models, we measure the similarity of entity mentions with entities in the knowledge base (KB) and the similarity of relation patterns and relations in the KB. We score relational triples in the KB using these measures and select the top scoring relational triple to answer the question. When evaluated on an open-domain QA task, our method achieves higher precision across different recall points compared to the previous approach, and can improve F1 by 7 points."
]
} |
1908.11056 | 2971248932 | In the face of growing needs for water and energy, a fundamental understanding of the environmental impacts of human activities becomes critical for managing water and energy resources, remedying water pollution, and making regulatory policy wisely. Among activities that impact the environment, oil and gas production, wastewater transport, and urbanization are included. In addition to the occurrence of anthropogenic contamination, the presence of some contaminants (e.g., methane, salt, and sulfate) of natural origin is not uncommon. Therefore, scientists sometimes find it difficult to identify the sources of contaminants in the coupled natural and human systems. In this paper, we propose a technique to simultaneously conduct source detection and prediction, which outperforms other approaches in the interdisciplinary case study of the identification of potential groundwater contamination within a region of high-density shale gas development. | Dictionary learning has been widely used in computer vision to obtain basic components and sparse representations of images @cite_7 . Recently, in order to optimize the learned dictionary for a specific task, people proposed supervised dictionary learning @cite_1 . Some methods learn discriminative dictionaries for different classes @cite_8 @cite_14 , or use label information to prune the learned dictionary by unsupervised dictionary learning @cite_5 . They actually separate the dictionary learning from the supervised learning part and may lead to inferior results. Another group of methods combine dictionary learning and supervised learning @cite_1 @cite_11 , but fail to consider the spatial temporal property for specific problems. Hence, we propose to do dictionary learning and supervised learning iteratively, and spatial and temporal regularization are added to improve the interpretation of results. | {
"cite_N": [
"@cite_14",
"@cite_7",
"@cite_8",
"@cite_1",
"@cite_5",
"@cite_11"
],
"mid": [
"1982405594",
"2529138057",
"2142940228",
"1784617778"
],
"abstract": [
"The employed dictionary plays an important role in sparse representation or sparse coding based image reconstruction and classification, while learning dictionaries from the training data has led to state-of-the-art results in image classification tasks. However, many dictionary learning models exploit only the discriminative information in either the representation coefficients or the representation residual, which limits their performance. In this paper we present a novel dictionary learning method based on the Fisher discrimination criterion. A structured dictionary, whose atoms have correspondences to the subject class labels, is learned, with which not only the representation residual can be used to distinguish different classes, but also the representation coefficients have small within-class scatter and big between-class scatter. The classification scheme associated with the proposed Fisher discrimination dictionary learning (FDDL) model is consequently presented by exploiting the discriminative information in both the representation residual and the representation coefficients. The proposed FDDL model is extensively evaluated on various image datasets, and it shows superior performance to many state-of-the-art dictionary learning methods in a variety of classification tasks.",
"It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.",
"Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals). This is a generalization of vector quantization in that one is interested in a description involving a few dictionary entries (the proverbial \"25 words or less\"), but not necessarily as succinct as one entry. To learn an environmentally adapted dictionary capable of concise expression of signals generated by the environment, we develop algorithms that iterate between a representative set of sparse representations found by variants of FOCUSS and an update of the dictionary using these sparse representations.Experiments were performed using synthetic data and natural images. For complete dictionaries, we demonstrate that our algorithms have improved performance over other independent component analysis (ICA) methods, measured in terms of signal-to-noise ratios of separated sources. In the overcomplete case, we show that the true underlying dictionary and sparse sources can be accurately recovered. In tests with natural images, learned overcomplete dictionaries are shown to have higher coding efficiency than complete dictionaries; that is, images encoded with an overcomplete dictionary have both higher compression (fewer bits per pixel) and higher accuracy (lower mean square error).",
"Many recent efforts have shown the effectiveness of dictionary learning methods in solving several computer vision problems. However, when designing dictionaries, training and testing domains may be different, due to different view points and illumination conditions. In this paper, we present a function learning framework for the task of transforming a dictionary learned from one visual domain to the other, while maintaining a domain-invariant sparse representation of a signal. Domain dictionaries are modeled by a linear or non-linear parametric function. The dictionary function parameters and domain-invariant sparse codes are then jointly learned by solving an optimization problem. Experiments on real datasets demonstrate the effectiveness of our approach for applications such as face recognition, pose alignment and pose estimation."
]
} |
1908.11044 | 2971299764 | We present a general paradigm for dynamic 3D reconstruction from multiple independent and uncontrolled image sources having arbitrary temporal sampling density and distribution. Our graph-theoretic formulation models the Spatio-temporal relationships among our observations in terms of the joint estimation of their 3D geometry and its discrete Laplace operator. Towards this end, we define a tri-convex optimization framework that leverages the geometric properties and dependencies found among a Euclideanshape-space and the discrete Laplace operator describing its local and global topology. We present a reconstructability analysis, experiments on motion capture data and multi-view image datasets, as well as explore applications to geometry-based event segmentation and data association. | Temporal alignment is a necessary pre-processing step for most dynamic 3D reconstruction methods. Current video synchronization or image sequencing @cite_42 @cite_44 @cite_27 @cite_18 @cite_29 @cite_19 rely on the image 2D features, foregoing the recovery of the 3D structure. Feature-based sequencing methods like @cite_42 @cite_27 @cite_16 make different assumptions on the underlying imaging geometry. For example, while @cite_42 favors an approximately static imaging geometry, @cite_27 prefers viewing configurations with large baselines. @cite_44 overcomes the limitation of static cameras and improves accuracy by leveraging the temporal info of frames in individual cameras. @cite_18 determines spatio-temporal alignment among a partially order set of observation by framing the problem as mapping of @math observations into a single line in @math , which explicitly imposes a total ordering. Unlike previous methods, @cite_20 propose a synchronization algorithm without tracking corresponding feature between video sequences. Instead, they synchronize two videos by the relative motion between two rigid objects. @cite_25 determined sequencing based on the approximate 3D intersections of viewing rays under an affine reference frame. @cite_30 jointly synchronize a pair of video sequences and reconstruct their commonly observed dense 3D structure by maximizing the spatio-temporal consistency of two-view pixel correspondences across video sequences. | {
"cite_N": [
"@cite_30",
"@cite_18",
"@cite_29",
"@cite_42",
"@cite_44",
"@cite_19",
"@cite_27",
"@cite_16",
"@cite_25",
"@cite_20"
],
"mid": [
"2167747244",
"2101092098",
"2468215248",
"2030351687"
],
"abstract": [
"In this paper, we consider the problem of estimating the spatiotemporal alignment between N unsynchronized video sequences of the same dynamic 3D scene, captured from distinct viewpoints. Unlike most existing methods, which work for N = 2 and rely on a computationally intensive search in the space of temporal alignments, we present a novel approach that reduces the problem for general N to the robust estimation of a single line in RN. This line captures all temporal relations between the sequences and can be computed without any prior knowledge of these relations. Considering that the spatial alignment is captured by the parameters of fundamental matrices, an iterative algorithm is used to refine simultaneously the parameters representing the temporal and spatial relations between the sequences. Experimental results with real-world and synthetic sequences show that our method can accurately align the videos even when they have large misalignments (e.g., hundreds of frames), when the problem is seemingly ambiguous (e.g., scenes with roughly periodic motion), and when accurate manual alignment is difficult (e.g., due to slow-moving objects).",
"We present an approach for 3D reconstruction from multiple video streams taken by static, synchronized and calibrated cameras that is capable of enforcing temporal consistency on the reconstruction of successive frames. Our goal is to improve the quality of the reconstruction by finding corresponding pixels in subsequent frames of the same camera using optical flow, and also to at least maintain the quality of the single time-frame reconstruction when these correspondences are wrong or cannot be found. This allows us to process scenes with fast motion, occlusions and self- occlusions where optical flow fails for large numbers of pixels. To this end, we modify the belief propagation algorithm to operate on a 3D graph that includes both spatial and temporal neighbors and to be able to discard messages from outlying neighbors. We also propose methods for introducing a bias and for suppressing noise typically observed in uniform regions. The bias encapsulates information about the background and aids in achieving a temporally consistent reconstruction and in the mitigation of occlusion related errors. We present results on publicly available real video sequences. We also present quantitative comparisons with results obtained by other researchers.",
"Bundle adjustment jointly optimizes camera intrinsics and extrinsics and 3D point triangulation to reconstruct a static scene. The triangulation constraint however is invalid for moving points captured in multiple unsynchronized videos and bundle adjustment is not purposed to estimate the temporal alignment between cameras. In this paper, we present a spatiotemporal bundle adjustment approach that jointly optimizes four coupled sub-problems: estimating camera intrinsics and extrinsics, triangulating 3D static points, as well as subframe temporal alignment between cameras and estimating 3D trajectories of dynamic points. Key to our joint optimization is the careful integration of physics-based motion priors within the reconstruction pipeline, validated on a large motion capture corpus. We present an end-to-end pipeline that takes multiple uncalibrated and unsynchronized video streams and produces a dynamic reconstruction of the event. Because the videos are aligned with sub-frame precision, we reconstruct 3D trajectories of unconstrained outdoor activities at much higher temporal resolution than the input videos.",
"In dynamic computed tomography (CT) reconstruction, the data acquisition speed limits the spatio-temporal resolution. Recently, compressed sensing theory has been instrumental in improving CT reconstruction from far few-view projections. In this paper, we present an adaptive method to train a tensor-based spatio-temporal dictionary for sparse representation of an image sequence during the reconstruction process. The correlations among atoms and across phases are considered to capture the characteristics of an object. The reconstruction problem is solved by the alternating direction method of multipliers. To recover fine or sharp structures such as edges, the nonlocal total variation is incorporated into the algorithmic framework. Preclinical examples including a sheep lung perfusion study and a dynamic mouse cardiac imaging demonstrate that the proposed approach outperforms the vectorized dictionary-based CT reconstruction in the case of few-view reconstruction."
]
} |
1908.11315 | 2970031230 | Due to its hereditary nature, genomic data is not only linked to its owner but to that of close relatives as well. As a result, its sensitivity does not really degrade over time; in fact, the relevance of a genomic sequence is likely to be longer than the security provided by encryption. This prompts the need for specialized techniques providing long-term security for genomic data, yet the only available tool for this purpose is GenoGuard (, 2015). By relying on Honey Encryption, GenoGuard is secure against an adversary that can brute force all possible keys; i.e., whenever an attacker tries to decrypt using an incorrect password, she will obtain an incorrect but plausible looking decoy sequence. In this paper, we set to analyze the real-world security guarantees provided by GenoGuard; specifically, assess how much more information does access to a ciphertext encrypted using GenoGuard yield, compared to one that was not. Overall, we find that, if the adversary has access to side information in the form of partial information from the target sequence, the use of GenoGuard does appreciably increase her power in determining the rest of the sequence. We show that, in the case of a sequence encrypted using an easily guessable (low-entropy) password, the adversary is able to rule out most decoy sequences, and obtain the target sequence with just 2.5 of it available as side information. In the case of a harder-to-guess (high-entropy) password, we show that the adversary still obtains, on average, better accuracy in guessing the rest of the target sequences than using state-of-the-art genomic sequence inference methods, obtaining up to 15 improvement in accuracy. | Membership inference. @cite_33 present a membership inference attack in which they infer the presence of an individual's genotype within a complex genomic DNA mixture. @cite_2 improve on the attack using correlation statistics of just a few hundreds SNPs, while @cite_16 rely on regression coefficients. Shringarpure and Bustamante @cite_30 perform membership inference against the Beacon network. Beacons are web servers that answer questions e.g. does your dataset include a genome that has a specific nucleotide at a specific genomic coordinate?'' to which the Beacon responds yes or no, without referring to a specific individual; see: https: github.com ga4gh-beacon specification . They use a likelihood-ratio test to predict whether an individual is present in the Beacon, detecting membership within a Beacon with 1,000 individuals using 5,000 queries. Also, Von @cite_9 reduce the number of queries to less than 0.5 best performing attack uses a high-order Markov chain to model the SNP correlations, as described in @cite_11 . Note that, as part of the attacks described in this paper, we use inference methods from @cite_11 as our baseline inference methods. | {
"cite_N": [
"@cite_30",
"@cite_33",
"@cite_9",
"@cite_2",
"@cite_16",
"@cite_11"
],
"mid": [
"2952306472",
"1838635991",
"2532520288",
"2040228409"
],
"abstract": [
"Genomic datasets are often associated with sensitive phenotypes. Therefore, the leak of membership information is a major privacy risk. Genomic beacons aim to provide a secure, easy to implement, and standardized interface for data sharing by only allowing yes no queries on the presence of specific alleles in the dataset. Previously deemed secure against re-identification attacks, beacons were shown to be vulnerable despite their stringent policy. Recent studies have demonstrated that it is possible to determine whether the victim is in the dataset, by repeatedly querying the beacon for his her single nucleotide polymorphisms (SNPs). In this work, we propose a novel re-identification attack and show that the privacy risk is more serious than previously thought. Using the proposed attack, even if the victim systematically hides informative SNPs (i.e., SNPs with very low minor allele frequency -MAF-), it is possible to infer the alleles at positions of interest as well as the beacon query results with very high confidence. Our method is based on the fact that alleles at different loci are not necessarily independent. We use the linkage disequilibrium and a high-order Markov chain-based algorithm for the inference. We show that in a simulated beacon with 65 individuals from the CEU population, we can infer membership of individuals with 95 confidence with only 5 queries, even when SNPs with MAF less than 0.05 are hidden. This means, we need less than 0.5 of the number of queries that existing works require, to determine beacon membership under the same conditions. We further show that countermeasures such as hiding certain parts of the genome or setting a query budget for the user would fail to protect the privacy of the participants under our adversary model.",
"The human genetics community needs robust protocols that enable secure sharing of genomic data from participants in genetic research. Beacons are web servers that answer allele-presence queries—such as “Do you have a genome that has a specific nucleotide (e.g., A) at a specific genomic position (e.g., position 11,272 on chromosome 1)?”—with either “yes” or “no.” Here, we show that individuals in a beacon are susceptible to re-identification even if the only data shared include presence or absence information about alleles in a beacon. Specifically, we propose a likelihood-ratio test of whether a given individual is present in a given genetic beacon. Our test is not dependent on allele frequencies and is the most powerful test for a specified false-positive rate. Through simulations, we showed that in a beacon with 1,000 individuals, re-identification is possible with just 5,000 queries. Relatives can also be identified in the beacon. Re-identification is possible even in the presence of sequencing errors and variant-calling differences. In a beacon constructed with 65 European individuals from the 1000 Genomes Project, we demonstrated that it is possible to detect membership in the beacon with just 250 SNPs. With just 1,000 SNP queries, we were able to detect the presence of an individual genome from the Personal Genome Project in an existing beacon. Our results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori. We discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes.",
"The continuous decrease in cost of molecular profiling tests is revolutionizing medical research and practice, but it also raises new privacy concerns. One of the first attacks against privacy of biological data, proposed by in 2008, showed that, by knowing parts of the genome of a given individual and summary statistics of a genome-based study, it is possible to detect if this individual participated in the study. Since then, a lot of work has been carried out to further study the theoretical limits and to counter the genome-based membership inference attack. However, genomic data are by no means the only or the most influential biological data threatening personal privacy. For instance, whereas the genome informs us about the risk of developing some diseases in the future, epigenetic biomarkers, such as microRNAs, are directly and deterministically affected by our health condition including most common severe diseases. In this paper, we show that the membership inference attack also threatens the privacy of individuals contributing their microRNA expressions to scientific studies. Our results on real and public microRNA expression data demonstrate that disease-specific datasets are especially prone to membership detection, offering a true-positive rate of up to 77 at a false-negative rate of less than 1 . We present two attacks: one relying on the L_1 distance and the other based on the likelihood-ratio test. We show that the likelihood-ratio test provides the highest adversarial success and we derive a theoretical limit on this success. In order to mitigate the membership inference, we propose and evaluate both a differentially private mechanism and a hiding mechanism. We also consider two types of adversarial prior knowledge for the differentially private mechanism and show that, for relatively large datasets, this mechanism can protect the privacy of participants in miRNA-based studies against strong adversaries without degrading the data utility too much. Based on our findings and given the current number of miRNAs, we recommend to only release summary statistics of datasets containing at least a couple of hundred individuals.",
"We use high-density single nucleotide polymorphism (SNP) genotyping microarrays to demonstrate the ability to accurately and robustly determine whether individuals are in a complex genomic DNA mixture. We first develop a theoretical framework for detecting an individual's presence within a mixture, then show, through simulations, the limits associated with our method, and finally demonstrate experimentally the identification of the presence of genomic DNA of specific individuals within a series of highly complex genomic mixtures, including mixtures where an individual contributes less than 0.1 of the total genomic DNA. These findings shift the perceived utility of SNPs for identifying individual trace contributors within a forensics mixture, and suggest future research efforts into assessing the viability of previously sub-optimal DNA sources due to sample contamination. These findings also suggest that composite statistics across cohorts, such as allele frequency or genotype counts, do not mask identity within genome-wide association studies. The implications of these findings are discussed."
]
} |
1908.11315 | 2970031230 | Due to its hereditary nature, genomic data is not only linked to its owner but to that of close relatives as well. As a result, its sensitivity does not really degrade over time; in fact, the relevance of a genomic sequence is likely to be longer than the security provided by encryption. This prompts the need for specialized techniques providing long-term security for genomic data, yet the only available tool for this purpose is GenoGuard (, 2015). By relying on Honey Encryption, GenoGuard is secure against an adversary that can brute force all possible keys; i.e., whenever an attacker tries to decrypt using an incorrect password, she will obtain an incorrect but plausible looking decoy sequence. In this paper, we set to analyze the real-world security guarantees provided by GenoGuard; specifically, assess how much more information does access to a ciphertext encrypted using GenoGuard yield, compared to one that was not. Overall, we find that, if the adversary has access to side information in the form of partial information from the target sequence, the use of GenoGuard does appreciably increase her power in determining the rest of the sequence. We show that, in the case of a sequence encrypted using an easily guessable (low-entropy) password, the adversary is able to rule out most decoy sequences, and obtain the target sequence with just 2.5 of it available as side information. In the case of a harder-to-guess (high-entropy) password, we show that the adversary still obtains, on average, better accuracy in guessing the rest of the target sequences than using state-of-the-art genomic sequence inference methods, obtaining up to 15 improvement in accuracy. | Data sharing. Progress in genomics research is dependent on collaboration and data sharing among different institutions. Given the sensitive nature of the data, as well as regulatory and ethics constraints, this often proves to be a challenging task. @cite_4 propose the use of secret sharing to distribute data among several entities and, using secure multi-party computations, support privacy-friendly computations across multiple entities. @cite_3 present GENSETS, a genome-wide, privacy-preserving similar patients querying system using genomic edit distance approximation and private set difference protocols. Then, @cite_21 use Software Guard Extensions (SGX) to build a privacy-preserving international collaboration tool; this enables secure and distributed computations over encrypted data, thus supporting the analysis of rare disease genetic data across different continents. Finally, Oprisanu and De Cristofaro @cite_14 present a framework ( AnoniMME'') geared supporting anonymous queries within the Matchmaker Exchange platform, which allows researchers to perform queries for rare genetic disease discovery over multiple federated databases. | {
"cite_N": [
"@cite_14",
"@cite_21",
"@cite_4",
"@cite_3"
],
"mid": [
"2951951981",
"2952306472",
"2124398102",
"1990147405"
],
"abstract": [
"Motivation: Advances in genome sequencing and genomics research are bringing us closer to a new era of personalized medicine, where healthcare can be tailored to the individual’s genetic makeup, and to more effective diagnosis and treatment of rare genetic diseases. Much of this progress depends on collaborations and access to genomes, and thus a number of initiatives have been introduced to support seamless data sharing. Among these, the Global Alliance for Genomics and Health runs a popular platform, called Matchmaker Exchange, which allows researchers to perform queries for rare genetic disease discovery over multiple federated databases. Queries include gene variations which are linked to rare diseases, and the ability to find other researchers that have seen or have interest in those variations is extremely valuable. Nonetheless, in some cases, researchers may be reluctant to use the platform since the queries they make (thus, what they are working on) are revealed to other researchers, and this creates concerns with privacy and competitive advantage. Contributions: We present AnoniMME, a novel framework geared to enable anonymous queries within the Matchmaker Exchange platform. The framework, building on a cryptographic primitive called Reverse Private Information Retrieval (PIR), let researchers anonymously query the federated platform, in a multi-server setting. Specifically, they write their query, along with a public encryption key, anonymously in a public database. Responses are also supported, so that other researchers can respond to queries by providing their encrypted contact details. Availability and Implementation: https: github.com bristena-op AnoniMME.",
"Genomic datasets are often associated with sensitive phenotypes. Therefore, the leak of membership information is a major privacy risk. Genomic beacons aim to provide a secure, easy to implement, and standardized interface for data sharing by only allowing yes no queries on the presence of specific alleles in the dataset. Previously deemed secure against re-identification attacks, beacons were shown to be vulnerable despite their stringent policy. Recent studies have demonstrated that it is possible to determine whether the victim is in the dataset, by repeatedly querying the beacon for his her single nucleotide polymorphisms (SNPs). In this work, we propose a novel re-identification attack and show that the privacy risk is more serious than previously thought. Using the proposed attack, even if the victim systematically hides informative SNPs (i.e., SNPs with very low minor allele frequency -MAF-), it is possible to infer the alleles at positions of interest as well as the beacon query results with very high confidence. Our method is based on the fact that alleles at different loci are not necessarily independent. We use the linkage disequilibrium and a high-order Markov chain-based algorithm for the inference. We show that in a simulated beacon with 65 individuals from the CEU population, we can infer membership of individuals with 95 confidence with only 5 queries, even when SNPs with MAF less than 0.05 are hidden. This means, we need less than 0.5 of the number of queries that existing works require, to determine beacon membership under the same conditions. We further show that countermeasures such as hiding certain parts of the genome or setting a query budget for the user would fail to protect the privacy of the participants under our adversary model.",
"To support large-scale biomedical research projects, organizations need to share person-specific genomic sequences without violating the privacy of their data subjects. In the past, organizations protected subjects' identities by removing identifiers, such as name and social security number; however, recent investigations illustrate that deidentified genomic data can be ldquoreidentifiedrdquo to named individuals using simple automated methods. In this paper, we present a novel cryptographic framework that enables organizations to support genomic data mining without disclosing the raw genomic sequences. Organizations contribute encrypted genomic sequence records into a centralized repository, where the administrator can perform queries, such as frequency counts, without decrypting the data. We evaluate the efficiency of our framework with existing databases of single nucleotide polymorphism (SNP) sequences and demonstrate that the time needed to complete count queries is feasible for real world applications. For example, our experiments indicate that a count query over 40 SNPs in a database of 5000 records can be completed in approximately 30 min with off-the-shelf technology. We further show that approximation strategies can be applied to significantly speed up query execution times with minimal loss in accuracy. The framework can be implemented on top of existing information and network technologies in biomedical environments.",
"Purpose: Sharing study data within the research community generates tension between two important goods: promoting scientific goals and protecting the privacy interests of study participants. This study was designed to explore the perceptions, beliefs, and attitudes of research participants and possible future participants regarding genome-wide association studies and repository-based research. Methods: Focus group sessions with (1) current research participants, (2) surrogate decision-makers, and (3) three age-defined cohorts (18‐34 years, 35‐ 50, 50). Results: Participants expressed a variety of opinions about the acceptability of wide sharing of genetic and phenotypic information for research purposes through large, publicly accessible data repositories. Most believed that making de-identified study data available to the research community is a social good that should be pursued. Privacy and confidentiality concerns were common, although they would not necessarily preclude participation. Many participants voiced reservations about sharing data with for-profit organizations. Conclusions: Trust is central in participants’ views regarding data sharing. Further research is needed to develop governance models that enact the values of stewardship. Genet Med 2010:12(8):486–495."
]
} |
1908.11315 | 2970031230 | Due to its hereditary nature, genomic data is not only linked to its owner but to that of close relatives as well. As a result, its sensitivity does not really degrade over time; in fact, the relevance of a genomic sequence is likely to be longer than the security provided by encryption. This prompts the need for specialized techniques providing long-term security for genomic data, yet the only available tool for this purpose is GenoGuard (, 2015). By relying on Honey Encryption, GenoGuard is secure against an adversary that can brute force all possible keys; i.e., whenever an attacker tries to decrypt using an incorrect password, she will obtain an incorrect but plausible looking decoy sequence. In this paper, we set to analyze the real-world security guarantees provided by GenoGuard; specifically, assess how much more information does access to a ciphertext encrypted using GenoGuard yield, compared to one that was not. Overall, we find that, if the adversary has access to side information in the form of partial information from the target sequence, the use of GenoGuard does appreciably increase her power in determining the rest of the sequence. We show that, in the case of a sequence encrypted using an easily guessable (low-entropy) password, the adversary is able to rule out most decoy sequences, and obtain the target sequence with just 2.5 of it available as side information. In the case of a harder-to-guess (high-entropy) password, we show that the adversary still obtains, on average, better accuracy in guessing the rest of the target sequences than using state-of-the-art genomic sequence inference methods, obtaining up to 15 improvement in accuracy. | Privacy-friendly testing. Another line of work focuses on protecting privacy in the context of personal genomic testing, i.e., computational tests run on sequenced genomes to assess, e.g., genetic susceptibility to diseases, determining the best course of treatment, etc. @cite_31 assume that each individual keeps a copy of their data and consents to tests done in such a way that only the outcome is disclosed. They present a few cryptographic protocols allowing researchers to privately search mutations in specific genes. @cite_34 rely on a semi-trusted party to store an encrypted copy of the individual's genomic data: using additively homomorphic encryption and proxy re-encryption, they allow a Medical Center to privately perform disease susceptibility tests on patients' SNPs. @cite_6 introduce a new cryptographic primitive called Controlled Functional Encryption (CFE), which allows users to learn only certain functions of the (encrypted) data, using keys obtained from an authority; however, the client is required to send a fresh key request to the authority every time they want to evaluate a function on a ciphertext. Overall, for an overview of privacy-enhancing technologies applied to genetic testing, we refer the reader to @cite_13 . | {
"cite_N": [
"@cite_31",
"@cite_34",
"@cite_13",
"@cite_6"
],
"mid": [
"2133711597",
"2952306472",
"2124398102",
"1838635991"
],
"abstract": [
"In this paper, we propose privacy-enhancing technologies for medical tests and personalized medicine methods that use patients' genomic data. Focusing on genetic disease-susceptibility tests, we develop a new architecture (between the patient and the medical unit) and propose a \"privacy-preserving disease susceptibility test\" (PDS) by using homomorphic encryption and proxy re-encryption. Assuming the whole genome sequencing to be done by a certified institution, we propose to store patients' genomic data encrypted by their public keys at a \"storage and processing unit\" (SPU). Our proposed solution lets the medical unit retrieve the encrypted genomic data from the SPU and process it for medical tests and personalized medicine methods, while preserving the privacy of patients' genomic data. We also quantify the genomic privacy of a patient (from the medical unit's point of view) and show how a patient's genomic privacy decreases with the genetic tests he undergoes due to (i) the nature of the genetic test, and (ii) the characteristics of the genomic data. Furthermore, we show how basic policies and obfuscation methods help to keep the genomic privacy of a patient at a high level. We also implement and show, via a complexity analysis, the practicality of PDS.",
"Genomic datasets are often associated with sensitive phenotypes. Therefore, the leak of membership information is a major privacy risk. Genomic beacons aim to provide a secure, easy to implement, and standardized interface for data sharing by only allowing yes no queries on the presence of specific alleles in the dataset. Previously deemed secure against re-identification attacks, beacons were shown to be vulnerable despite their stringent policy. Recent studies have demonstrated that it is possible to determine whether the victim is in the dataset, by repeatedly querying the beacon for his her single nucleotide polymorphisms (SNPs). In this work, we propose a novel re-identification attack and show that the privacy risk is more serious than previously thought. Using the proposed attack, even if the victim systematically hides informative SNPs (i.e., SNPs with very low minor allele frequency -MAF-), it is possible to infer the alleles at positions of interest as well as the beacon query results with very high confidence. Our method is based on the fact that alleles at different loci are not necessarily independent. We use the linkage disequilibrium and a high-order Markov chain-based algorithm for the inference. We show that in a simulated beacon with 65 individuals from the CEU population, we can infer membership of individuals with 95 confidence with only 5 queries, even when SNPs with MAF less than 0.05 are hidden. This means, we need less than 0.5 of the number of queries that existing works require, to determine beacon membership under the same conditions. We further show that countermeasures such as hiding certain parts of the genome or setting a query budget for the user would fail to protect the privacy of the participants under our adversary model.",
"To support large-scale biomedical research projects, organizations need to share person-specific genomic sequences without violating the privacy of their data subjects. In the past, organizations protected subjects' identities by removing identifiers, such as name and social security number; however, recent investigations illustrate that deidentified genomic data can be ldquoreidentifiedrdquo to named individuals using simple automated methods. In this paper, we present a novel cryptographic framework that enables organizations to support genomic data mining without disclosing the raw genomic sequences. Organizations contribute encrypted genomic sequence records into a centralized repository, where the administrator can perform queries, such as frequency counts, without decrypting the data. We evaluate the efficiency of our framework with existing databases of single nucleotide polymorphism (SNP) sequences and demonstrate that the time needed to complete count queries is feasible for real world applications. For example, our experiments indicate that a count query over 40 SNPs in a database of 5000 records can be completed in approximately 30 min with off-the-shelf technology. We further show that approximation strategies can be applied to significantly speed up query execution times with minimal loss in accuracy. The framework can be implemented on top of existing information and network technologies in biomedical environments.",
"The human genetics community needs robust protocols that enable secure sharing of genomic data from participants in genetic research. Beacons are web servers that answer allele-presence queries—such as “Do you have a genome that has a specific nucleotide (e.g., A) at a specific genomic position (e.g., position 11,272 on chromosome 1)?”—with either “yes” or “no.” Here, we show that individuals in a beacon are susceptible to re-identification even if the only data shared include presence or absence information about alleles in a beacon. Specifically, we propose a likelihood-ratio test of whether a given individual is present in a given genetic beacon. Our test is not dependent on allele frequencies and is the most powerful test for a specified false-positive rate. Through simulations, we showed that in a beacon with 1,000 individuals, re-identification is possible with just 5,000 queries. Relatives can also be identified in the beacon. Re-identification is possible even in the presence of sequencing errors and variant-calling differences. In a beacon constructed with 65 European individuals from the 1000 Genomes Project, we demonstrated that it is possible to detect membership in the beacon with just 250 SNPs. With just 1,000 SNP queries, we were able to detect the presence of an individual genome from the Personal Genome Project in an existing beacon. Our results show that beacons can disclose membership and implied phenotypic information about participants and do not protect privacy a priori. We discuss risk mitigation through policies and standards such as not allowing anonymous pings of genetic beacons and requiring minimum beacon sizes."
]
} |