Convert dataset to Parquet
#3
by
albertvillanova
HF staff
- opened
- README.md +87 -54
- dataset_infos.json +0 -1
- dgem_format/test-00000-of-00001.parquet +3 -0
- dgem_format/train-00000-of-00001.parquet +3 -0
- dgem_format/validation-00000-of-00001.parquet +3 -0
- predictor_format/test-00000-of-00001.parquet +3 -0
- predictor_format/train-00000-of-00001.parquet +3 -0
- predictor_format/validation-00000-of-00001.parquet +3 -0
- scitail.py +0 -298
- snli_format/test-00000-of-00001.parquet +3 -0
- snli_format/train-00000-of-00001.parquet +3 -0
- snli_format/validation-00000-of-00001.parquet +3 -0
- tsv_format/test-00000-of-00001.parquet +3 -0
- tsv_format/train-00000-of-00001.parquet +3 -0
- tsv_format/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -4,102 +4,135 @@ language:
|
|
4 |
paperswithcode_id: scitail
|
5 |
pretty_name: SciTail
|
6 |
dataset_info:
|
7 |
-
- config_name:
|
8 |
features:
|
9 |
-
- name:
|
10 |
-
dtype: string
|
11 |
-
- name: sentence1_parse
|
12 |
-
dtype: string
|
13 |
-
- name: sentence1
|
14 |
dtype: string
|
15 |
-
- name:
|
16 |
dtype: string
|
17 |
-
- name:
|
18 |
dtype: string
|
19 |
-
- name:
|
20 |
-
sequence: string
|
21 |
-
- name: gold_label
|
22 |
dtype: string
|
23 |
splits:
|
24 |
- name: train
|
25 |
-
num_bytes:
|
26 |
-
num_examples:
|
27 |
- name: test
|
28 |
-
num_bytes:
|
29 |
num_examples: 2126
|
30 |
- name: validation
|
31 |
-
num_bytes:
|
32 |
num_examples: 1304
|
33 |
-
download_size:
|
34 |
-
dataset_size:
|
35 |
-
- config_name:
|
36 |
features:
|
37 |
-
- name:
|
38 |
dtype: string
|
39 |
-
- name:
|
40 |
dtype: string
|
41 |
-
- name:
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
dtype: string
|
43 |
splits:
|
44 |
- name: train
|
45 |
-
num_bytes:
|
46 |
-
num_examples:
|
47 |
- name: test
|
48 |
-
num_bytes:
|
49 |
num_examples: 2126
|
50 |
- name: validation
|
51 |
-
num_bytes:
|
52 |
num_examples: 1304
|
53 |
-
download_size:
|
54 |
-
dataset_size:
|
55 |
-
- config_name:
|
56 |
features:
|
57 |
-
- name:
|
58 |
dtype: string
|
59 |
-
- name:
|
60 |
dtype: string
|
61 |
-
- name:
|
62 |
dtype: string
|
63 |
-
- name:
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
dtype: string
|
65 |
splits:
|
66 |
- name: train
|
67 |
-
num_bytes:
|
68 |
-
num_examples:
|
69 |
- name: test
|
70 |
-
num_bytes:
|
71 |
num_examples: 2126
|
72 |
- name: validation
|
73 |
-
num_bytes:
|
74 |
num_examples: 1304
|
75 |
-
download_size:
|
76 |
-
dataset_size:
|
77 |
-
- config_name:
|
78 |
features:
|
79 |
-
- name:
|
80 |
-
dtype: string
|
81 |
-
- name: sentence2_structure
|
82 |
-
dtype: string
|
83 |
-
- name: sentence1
|
84 |
-
dtype: string
|
85 |
-
- name: sentence2
|
86 |
dtype: string
|
87 |
-
- name:
|
88 |
dtype: string
|
89 |
-
- name:
|
90 |
dtype: string
|
91 |
splits:
|
92 |
- name: train
|
93 |
-
num_bytes:
|
94 |
-
num_examples:
|
95 |
- name: test
|
96 |
-
num_bytes:
|
97 |
num_examples: 2126
|
98 |
- name: validation
|
99 |
-
num_bytes:
|
100 |
num_examples: 1304
|
101 |
-
download_size:
|
102 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
---
|
104 |
|
105 |
# Dataset Card for "scitail"
|
|
|
4 |
paperswithcode_id: scitail
|
5 |
pretty_name: SciTail
|
6 |
dataset_info:
|
7 |
+
- config_name: dgem_format
|
8 |
features:
|
9 |
+
- name: premise
|
|
|
|
|
|
|
|
|
10 |
dtype: string
|
11 |
+
- name: hypothesis
|
12 |
dtype: string
|
13 |
+
- name: label
|
14 |
dtype: string
|
15 |
+
- name: hypothesis_graph_structure
|
|
|
|
|
16 |
dtype: string
|
17 |
splits:
|
18 |
- name: train
|
19 |
+
num_bytes: 6817626
|
20 |
+
num_examples: 23088
|
21 |
- name: test
|
22 |
+
num_bytes: 606867
|
23 |
num_examples: 2126
|
24 |
- name: validation
|
25 |
+
num_bytes: 393209
|
26 |
num_examples: 1304
|
27 |
+
download_size: 2007018
|
28 |
+
dataset_size: 7817702
|
29 |
+
- config_name: predictor_format
|
30 |
features:
|
31 |
+
- name: answer
|
32 |
dtype: string
|
33 |
+
- name: sentence2_structure
|
34 |
dtype: string
|
35 |
+
- name: sentence1
|
36 |
+
dtype: string
|
37 |
+
- name: sentence2
|
38 |
+
dtype: string
|
39 |
+
- name: gold_label
|
40 |
+
dtype: string
|
41 |
+
- name: question
|
42 |
dtype: string
|
43 |
splits:
|
44 |
- name: train
|
45 |
+
num_bytes: 8864108
|
46 |
+
num_examples: 23587
|
47 |
- name: test
|
48 |
+
num_bytes: 795275
|
49 |
num_examples: 2126
|
50 |
- name: validation
|
51 |
+
num_bytes: 510140
|
52 |
num_examples: 1304
|
53 |
+
download_size: 2169238
|
54 |
+
dataset_size: 10169523
|
55 |
+
- config_name: snli_format
|
56 |
features:
|
57 |
+
- name: sentence1_binary_parse
|
58 |
dtype: string
|
59 |
+
- name: sentence1_parse
|
60 |
dtype: string
|
61 |
+
- name: sentence1
|
62 |
dtype: string
|
63 |
+
- name: sentence2_parse
|
64 |
+
dtype: string
|
65 |
+
- name: sentence2
|
66 |
+
dtype: string
|
67 |
+
- name: annotator_labels
|
68 |
+
sequence: string
|
69 |
+
- name: gold_label
|
70 |
dtype: string
|
71 |
splits:
|
72 |
- name: train
|
73 |
+
num_bytes: 22457379
|
74 |
+
num_examples: 23596
|
75 |
- name: test
|
76 |
+
num_bytes: 2005142
|
77 |
num_examples: 2126
|
78 |
- name: validation
|
79 |
+
num_bytes: 1264378
|
80 |
num_examples: 1304
|
81 |
+
download_size: 7476483
|
82 |
+
dataset_size: 25726899
|
83 |
+
- config_name: tsv_format
|
84 |
features:
|
85 |
+
- name: premise
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
dtype: string
|
87 |
+
- name: hypothesis
|
88 |
dtype: string
|
89 |
+
- name: label
|
90 |
dtype: string
|
91 |
splits:
|
92 |
- name: train
|
93 |
+
num_bytes: 4606527
|
94 |
+
num_examples: 23097
|
95 |
- name: test
|
96 |
+
num_bytes: 410267
|
97 |
num_examples: 2126
|
98 |
- name: validation
|
99 |
+
num_bytes: 260422
|
100 |
num_examples: 1304
|
101 |
+
download_size: 1836546
|
102 |
+
dataset_size: 5277216
|
103 |
+
configs:
|
104 |
+
- config_name: dgem_format
|
105 |
+
data_files:
|
106 |
+
- split: train
|
107 |
+
path: dgem_format/train-*
|
108 |
+
- split: test
|
109 |
+
path: dgem_format/test-*
|
110 |
+
- split: validation
|
111 |
+
path: dgem_format/validation-*
|
112 |
+
- config_name: predictor_format
|
113 |
+
data_files:
|
114 |
+
- split: train
|
115 |
+
path: predictor_format/train-*
|
116 |
+
- split: test
|
117 |
+
path: predictor_format/test-*
|
118 |
+
- split: validation
|
119 |
+
path: predictor_format/validation-*
|
120 |
+
- config_name: snli_format
|
121 |
+
data_files:
|
122 |
+
- split: train
|
123 |
+
path: snli_format/train-*
|
124 |
+
- split: test
|
125 |
+
path: snli_format/test-*
|
126 |
+
- split: validation
|
127 |
+
path: snli_format/validation-*
|
128 |
+
- config_name: tsv_format
|
129 |
+
data_files:
|
130 |
+
- split: train
|
131 |
+
path: tsv_format/train-*
|
132 |
+
- split: test
|
133 |
+
path: tsv_format/test-*
|
134 |
+
- split: validation
|
135 |
+
path: tsv_format/validation-*
|
136 |
---
|
137 |
|
138 |
# Dataset Card for "scitail"
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"snli_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"sentence1_binary_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "annotator_labels": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "snli_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 22495833, "num_examples": 23596, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 2008631, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 1266529, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 25770993, "size_in_bytes": 39945614}, "tsv_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "tsv_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4618115, "num_examples": 23097, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 411343, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 261086, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 5290544, "size_in_bytes": 19465165}, "dgem_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis_graph_structure": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "dgem_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6832104, "num_examples": 23088, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 608213, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 394040, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 7834357, "size_in_bytes": 22008978}, "predictor_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"answer": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2_structure": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "predictor_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8884823, "num_examples": 23587, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 797161, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 511305, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 10193289, "size_in_bytes": 24367910}}
|
|
|
|
dgem_format/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56dbd29881d108dc3d2ccb4c5cce523c92c6f170261318e47731f654962974ad
|
3 |
+
size 185039
|
dgem_format/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d2a8a30dbc74e45e09d6d51c5193c83285a94546db26a88d3193487ab4bcc1e
|
3 |
+
size 1709686
|
dgem_format/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de818ba1a5eedea8861a974031697fac1d33df7bf9b79d70f58b173be32ef710
|
3 |
+
size 112293
|
predictor_format/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e9a9018642c215666fa0d257a3f4b583223e3b54c0266ad7e5d95ae306bb125
|
3 |
+
size 210214
|
predictor_format/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f50f8d853224ea674854538ce84a38091d392a813845df9693494815d931251b
|
3 |
+
size 1833842
|
predictor_format/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e101a3ddfb134d8cd9b185b1c660f777aaff8dabcb8f068b4285b4e4368353b
|
3 |
+
size 125182
|
scitail.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
"""TODO(sciTail): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import csv
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
import textwrap
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
|
12 |
-
# TODO(sciTail): BibTeX citation
|
13 |
-
_CITATION = """\
|
14 |
-
inproceedings{scitail,
|
15 |
-
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
|
16 |
-
Booktitle = {AAAI},
|
17 |
-
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},
|
18 |
-
Year = {2018}
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
# TODO(sciTail):
|
23 |
-
_DESCRIPTION = """\
|
24 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question
|
25 |
-
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information
|
26 |
-
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We
|
27 |
-
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create
|
28 |
-
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples
|
29 |
-
with neutral label
|
30 |
-
"""
|
31 |
-
|
32 |
-
_URL = "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip"
|
33 |
-
|
34 |
-
|
35 |
-
class ScitailConfig(datasets.BuilderConfig):
|
36 |
-
|
37 |
-
"""BuilderConfig for Xquad"""
|
38 |
-
|
39 |
-
def __init__(self, **kwargs):
|
40 |
-
"""
|
41 |
-
|
42 |
-
Args:
|
43 |
-
**kwargs: keyword arguments forwarded to super.
|
44 |
-
"""
|
45 |
-
super(ScitailConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
|
46 |
-
|
47 |
-
|
48 |
-
class Scitail(datasets.GeneratorBasedBuilder):
|
49 |
-
"""TODO(sciTail): Short description of my dataset."""
|
50 |
-
|
51 |
-
# TODO(sciTail): Set up version.
|
52 |
-
VERSION = datasets.Version("1.1.0")
|
53 |
-
BUILDER_CONFIGS = [
|
54 |
-
ScitailConfig(
|
55 |
-
name="snli_format",
|
56 |
-
description="JSONL format used by SNLI with a JSON object corresponding to each entailment example in each line.",
|
57 |
-
),
|
58 |
-
ScitailConfig(
|
59 |
-
name="tsv_format", description="Tab-separated format with three columns: premise hypothesis label"
|
60 |
-
),
|
61 |
-
ScitailConfig(
|
62 |
-
name="dgem_format",
|
63 |
-
description="Tab-separated format used by the DGEM model: premise hypothesis label hypothesis graph structure",
|
64 |
-
),
|
65 |
-
ScitailConfig(
|
66 |
-
name="predictor_format",
|
67 |
-
description=textwrap.dedent(
|
68 |
-
"""\
|
69 |
-
AllenNLP predictors work only with JSONL format. This folder contains the SciTail train/dev/test in JSONL format
|
70 |
-
so that it can be loaded into the predictors. Each line is a JSON object with the following keys:
|
71 |
-
gold_label : the example label from {entails, neutral}
|
72 |
-
sentence1: the premise
|
73 |
-
sentence2: the hypothesis
|
74 |
-
sentence2_structure: structure from the hypothesis """
|
75 |
-
),
|
76 |
-
),
|
77 |
-
]
|
78 |
-
|
79 |
-
def _info(self):
|
80 |
-
# TODO(sciTail): Specifies the datasets.DatasetInfo object
|
81 |
-
if self.config.name == "snli_format":
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
# This is the description that will appear on the datasets page.
|
84 |
-
description=_DESCRIPTION,
|
85 |
-
# datasets.features.FeatureConnectors
|
86 |
-
features=datasets.Features(
|
87 |
-
{
|
88 |
-
"sentence1_binary_parse": datasets.Value("string"),
|
89 |
-
"sentence1_parse": datasets.Value("string"),
|
90 |
-
"sentence1": datasets.Value("string"),
|
91 |
-
"sentence2_parse": datasets.Value("string"),
|
92 |
-
"sentence2": datasets.Value("string"),
|
93 |
-
"annotator_labels": datasets.features.Sequence(datasets.Value("string")),
|
94 |
-
"gold_label": datasets.Value("string")
|
95 |
-
# These are the features of your dataset like images, labels ...
|
96 |
-
}
|
97 |
-
),
|
98 |
-
# If there's a common (input, target) tuple from the features,
|
99 |
-
# specify them here. They'll be used if as_supervised=True in
|
100 |
-
# builder.as_dataset.
|
101 |
-
supervised_keys=None,
|
102 |
-
# Homepage of the dataset for documentation
|
103 |
-
homepage="https://allenai.org/data/scitail",
|
104 |
-
citation=_CITATION,
|
105 |
-
)
|
106 |
-
elif self.config.name == "tsv_format":
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
# This is the description that will appear on the datasets page.
|
109 |
-
description=_DESCRIPTION,
|
110 |
-
# datasets.features.FeatureConnectors
|
111 |
-
features=datasets.Features(
|
112 |
-
{
|
113 |
-
"premise": datasets.Value("string"),
|
114 |
-
"hypothesis": datasets.Value("string"),
|
115 |
-
"label": datasets.Value("string")
|
116 |
-
# These are the features of your dataset like images, labels ...
|
117 |
-
}
|
118 |
-
),
|
119 |
-
# If there's a common (input, target) tuple from the features,
|
120 |
-
# specify them here. They'll be used if as_supervised=True in
|
121 |
-
# builder.as_dataset.
|
122 |
-
supervised_keys=None,
|
123 |
-
# Homepage of the dataset for documentation
|
124 |
-
homepage="https://allenai.org/data/scitail",
|
125 |
-
citation=_CITATION,
|
126 |
-
)
|
127 |
-
elif self.config.name == "predictor_format":
|
128 |
-
return datasets.DatasetInfo(
|
129 |
-
# This is the description that will appear on the datasets page.
|
130 |
-
description=_DESCRIPTION,
|
131 |
-
# datasets.features.FeatureConnectors
|
132 |
-
features=datasets.Features(
|
133 |
-
{
|
134 |
-
"answer": datasets.Value("string"),
|
135 |
-
"sentence2_structure": datasets.Value("string"),
|
136 |
-
"sentence1": datasets.Value("string"),
|
137 |
-
"sentence2": datasets.Value("string"),
|
138 |
-
"gold_label": datasets.Value("string"),
|
139 |
-
"question": datasets.Value("string")
|
140 |
-
# These are the features of your dataset like images, labels ...
|
141 |
-
}
|
142 |
-
),
|
143 |
-
# If there's a common (input, target) tuple from the features,
|
144 |
-
# specify them here. They'll be used if as_supervised=True in
|
145 |
-
# builder.as_dataset.
|
146 |
-
supervised_keys=None,
|
147 |
-
# Homepage of the dataset for documentation
|
148 |
-
homepage="https://allenai.org/data/scitail",
|
149 |
-
citation=_CITATION,
|
150 |
-
)
|
151 |
-
elif self.config.name == "dgem_format":
|
152 |
-
return datasets.DatasetInfo(
|
153 |
-
# This is the description that will appear on the datasets page.
|
154 |
-
description=_DESCRIPTION,
|
155 |
-
# datasets.features.FeatureConnectors
|
156 |
-
features=datasets.Features(
|
157 |
-
{
|
158 |
-
"premise": datasets.Value("string"),
|
159 |
-
"hypothesis": datasets.Value("string"),
|
160 |
-
"label": datasets.Value("string"),
|
161 |
-
"hypothesis_graph_structure": datasets.Value("string")
|
162 |
-
# These are the features of your dataset like images, labels ...
|
163 |
-
}
|
164 |
-
),
|
165 |
-
# If there's a common (input, target) tuple from the features,
|
166 |
-
# specify them here. They'll be used if as_supervised=True in
|
167 |
-
# builder.as_dataset.
|
168 |
-
supervised_keys=None,
|
169 |
-
# Homepage of the dataset for documentation
|
170 |
-
homepage="https://allenai.org/data/scitail",
|
171 |
-
citation=_CITATION,
|
172 |
-
)
|
173 |
-
|
174 |
-
def _split_generators(self, dl_manager):
|
175 |
-
"""Returns SplitGenerators."""
|
176 |
-
# TODO(sciTail): Downloads the data and defines the splits
|
177 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
178 |
-
# download and extract URLs
|
179 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
180 |
-
data_dir = os.path.join(dl_dir, "SciTailV1.1")
|
181 |
-
snli = os.path.join(data_dir, "snli_format")
|
182 |
-
dgem = os.path.join(data_dir, "dgem_format")
|
183 |
-
tsv = os.path.join(data_dir, "tsv_format")
|
184 |
-
predictor = os.path.join(data_dir, "predictor_format")
|
185 |
-
if self.config.name == "snli_format":
|
186 |
-
return [
|
187 |
-
datasets.SplitGenerator(
|
188 |
-
name=datasets.Split.TRAIN,
|
189 |
-
# These kwargs will be passed to _generate_examples
|
190 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_train.txt")},
|
191 |
-
),
|
192 |
-
datasets.SplitGenerator(
|
193 |
-
name=datasets.Split.TEST,
|
194 |
-
# These kwargs will be passed to _generate_examples
|
195 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_test.txt")},
|
196 |
-
),
|
197 |
-
datasets.SplitGenerator(
|
198 |
-
name=datasets.Split.VALIDATION,
|
199 |
-
# These kwargs will be passed to _generate_examples
|
200 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_dev.txt")},
|
201 |
-
),
|
202 |
-
]
|
203 |
-
elif self.config.name == "tsv_format":
|
204 |
-
return [
|
205 |
-
datasets.SplitGenerator(
|
206 |
-
name=datasets.Split.TRAIN,
|
207 |
-
# These kwargs will be passed to _generate_examples
|
208 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_train.tsv")},
|
209 |
-
),
|
210 |
-
datasets.SplitGenerator(
|
211 |
-
name=datasets.Split.TEST,
|
212 |
-
# These kwargs will be passed to _generate_examples
|
213 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_test.tsv")},
|
214 |
-
),
|
215 |
-
datasets.SplitGenerator(
|
216 |
-
name=datasets.Split.VALIDATION,
|
217 |
-
# These kwargs will be passed to _generate_examples
|
218 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_dev.tsv")},
|
219 |
-
),
|
220 |
-
]
|
221 |
-
elif self.config.name == "predictor_format":
|
222 |
-
return [
|
223 |
-
datasets.SplitGenerator(
|
224 |
-
name=datasets.Split.TRAIN,
|
225 |
-
# These kwargs will be passed to _generate_examples
|
226 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_train.jsonl")},
|
227 |
-
),
|
228 |
-
datasets.SplitGenerator(
|
229 |
-
name=datasets.Split.TEST,
|
230 |
-
# These kwargs will be passed to _generate_examples
|
231 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_test.jsonl")},
|
232 |
-
),
|
233 |
-
datasets.SplitGenerator(
|
234 |
-
name=datasets.Split.VALIDATION,
|
235 |
-
# These kwargs will be passed to _generate_examples
|
236 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_dev.jsonl")},
|
237 |
-
),
|
238 |
-
]
|
239 |
-
elif self.config.name == "dgem_format":
|
240 |
-
return [
|
241 |
-
datasets.SplitGenerator(
|
242 |
-
name=datasets.Split.TRAIN,
|
243 |
-
# These kwargs will be passed to _generate_examples
|
244 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_train.tsv")},
|
245 |
-
),
|
246 |
-
datasets.SplitGenerator(
|
247 |
-
name=datasets.Split.TEST,
|
248 |
-
# These kwargs will be passed to _generate_examples
|
249 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_test.tsv")},
|
250 |
-
),
|
251 |
-
datasets.SplitGenerator(
|
252 |
-
name=datasets.Split.VALIDATION,
|
253 |
-
# These kwargs will be passed to _generate_examples
|
254 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_dev.tsv")},
|
255 |
-
),
|
256 |
-
]
|
257 |
-
|
258 |
-
def _generate_examples(self, filepath):
|
259 |
-
"""Yields examples."""
|
260 |
-
# TODO(sciTail): Yields (key, example) tuples from the dataset
|
261 |
-
with open(filepath, encoding="utf-8") as f:
|
262 |
-
if self.config.name == "snli_format":
|
263 |
-
for id_, row in enumerate(f):
|
264 |
-
data = json.loads(row)
|
265 |
-
|
266 |
-
yield id_, {
|
267 |
-
"sentence1_binary_parse": data["sentence1_binary_parse"],
|
268 |
-
"sentence1_parse": data["sentence1_parse"],
|
269 |
-
"sentence1": data["sentence1"],
|
270 |
-
"sentence2_parse": data["sentence2_parse"],
|
271 |
-
"sentence2": data["sentence2"],
|
272 |
-
"annotator_labels": data["annotator_labels"],
|
273 |
-
"gold_label": data["gold_label"],
|
274 |
-
}
|
275 |
-
elif self.config.name == "tsv_format":
|
276 |
-
data = csv.reader(f, delimiter="\t")
|
277 |
-
for id_, row in enumerate(data):
|
278 |
-
yield id_, {"premise": row[0], "hypothesis": row[1], "label": row[2]}
|
279 |
-
elif self.config.name == "dgem_format":
|
280 |
-
data = csv.reader(f, delimiter="\t")
|
281 |
-
for id_, row in enumerate(data):
|
282 |
-
yield id_, {
|
283 |
-
"premise": row[0],
|
284 |
-
"hypothesis": row[1],
|
285 |
-
"label": row[2],
|
286 |
-
"hypothesis_graph_structure": row[3],
|
287 |
-
}
|
288 |
-
elif self.config.name == "predictor_format":
|
289 |
-
for id_, row in enumerate(f):
|
290 |
-
data = json.loads(row)
|
291 |
-
yield id_, {
|
292 |
-
"answer": data["answer"],
|
293 |
-
"sentence2_structure": data["sentence2_structure"],
|
294 |
-
"sentence1": data["sentence1"],
|
295 |
-
"sentence2": data["sentence2"],
|
296 |
-
"gold_label": data["gold_label"],
|
297 |
-
"question": data["question"],
|
298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
snli_format/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9814bcb18de316ee02bb533626bee2ed8db03bed7b0bd6d0deb9d66536ded627
|
3 |
+
size 653112
|
snli_format/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4c77597d52d3ef45e2f9c804b127562395b1d096a6a5ef5da1dc15d7760d394
|
3 |
+
size 6423089
|
snli_format/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfcbb30a8c3781f5ca346244b96ea4b5c0f5e813638b71f7d0a382595cbaa337
|
3 |
+
size 400282
|
tsv_format/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2b4b8b5e258a30fe7d1f7861ad7154f1ebaf8f085f5e051db5e22352cf7ca96
|
3 |
+
size 162166
|
tsv_format/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:35ffcef823e42135a4fcee1b5ecb7c951e99f97b6f51c9363a23b537d41fb5d3
|
3 |
+
size 1574550
|
tsv_format/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7342d7d9c3f0c90b904b5fcfa37b909ed77fc3f9f0c4b87618d7718469f55b56
|
3 |
+
size 99830
|