id
stringlengths
9
10
text
stringlengths
1
3.07M
source
stringclasses
1 value
added
stringlengths
26
26
created
stringlengths
8
19
metadata
dict
PMC3051724
Related literature {#sec1} ================== For background to quinolines and their microbial activity, see: El-Subbagh *et al.* (2000[@bb6]); Atwell *et al.* (1989[@bb2]); Kuo *et al.* (1993[@bb7]); Xia *et al.* (1998[@bb13]). For the biological activity of Schiff base hydrazones, see: Colins & Lyne (1970[@bb4]); Ochiai (1977[@bb10]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For related structures, see: Loh *et al.* (2011**a*[@bb8],b* [@bb9]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~21~H~20~ClN~5~·H~2~O*M* *~r~* = 395.89Monoclinic,*a* = 10.4117 (3) Å*b* = 18.2365 (6) Å*c* = 11.9019 (3) Åβ = 117.809 (2)°*V* = 1998.85 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 0.21 mm^−1^*T* = 100 K0.49 × 0.45 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.904, *T* ~max~ = 0.96339468 measured reflections10411 independent reflections8351 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.135*S* = 1.0410411 reflections260 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 1.19 e Å^−3^Δρ~min~ = −0.47 e Å^−3^ {#d5e536} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb12]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001577/is2658sup1.cif](http://dx.doi.org/10.1107/S1600536811001577/is2658sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001577/is2658Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001577/is2658Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2658&file=is2658sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2658sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2658&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2658](http://scripts.iucr.org/cgi-bin/sendsup?is2658)). HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. Comment ======= Quinolines and their derivatives are important constituents of pharmacologically active synthetic compounds as these systems have been associated with a wide spectrum of biological properties (El-Subbagh *et al.*, 2000) such as DNA binding capability (Atwell *et al.*, 1989) and antitumor activities (Kuo *et al.*, 1993; Xia *et al.*, 1998). The study of Schiff base hydrazones has been growing because of their antimicrobial, anti-tuberculosis and anti-tumour activities (Colins & Lyne, 1970; Ochiai, 1977). The asymmetric unit of the title compound, (Fig. 1), consists of one 4-chlorobenzaldehyde(1-isobutyl-1*H*-imidazo\[4,5-*c*\]quinolin-4-yl) hydrazone molecule and one water molecule. One of the H atoms attached to the water molecule is disordered over two positions with the site occupancy ratio of 0.80 (4):0.20 (4). The 1*H*-imidazo\[4,5-*c*\]quinoline ring (C1--C6/N1/C7/C8/N3/C10/N2/C9) is approximately planar with a maximum deviation of 0.0795 (7) Å at atom C2 and it forms a dihedral angle of 7.65 (3)° with the chlorophenyl ring (Cl1/C11--C16) with maximum deviation of 0.0286 (3) Å at atom Cl1. Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to the related structures (Loh *et al.*, 2011**a*,b*). In the crystal packing (Fig. 2), the molecules are linked into chains along the *a* axis by the water molecules *via* intermolecular N4---H1N4···O1W, O1W---H1W1···N1, C10---H10A···O1W and C18---H18B···O1W hydrogen bonds (Table 1). Experimental {#experimental} ============ A mixture of 4-hydrazino-1-isobutyl-1*H*-imidazo\[4,5-*c*\]quinoline (2.5 g, 0.0098 mole) and 4-chlorobenzaldehyde (1.38 g, 0.0098 mole) in absolute ethanol was refluxed for 4 h in the presence of acetic acid (1 ml). The product, 4-chlorobenzaldehyde (1-isobutyl-1*H*-imidazo\[4,5-*c*\]quinolin-4-yl)hydrazone, was obtained after cooling and it was crystallized from absolute ethanol. Yield: 3.4 g (80%). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation. Refinement {#refinement} ========== O- and N-bound H atoms were located from a difference Fourier map. O-bound H atoms were then fixed at their found positions (O---H = 0.8330 to 0.8554 Å), with *U*~iso~(H) = 1.5*U*~eq~(O), whereas N-bound H atoms was refined freely \[N---H = 0.875 (18) Å\]. The remaining H atoms were positioned geometrically with the bond lengths of C---H = 0.93 to 0.98 Å and were refined using a riding model, with *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). A rotating group model was applied to the methyl groups. The heighest residual electron density peak is located 1.01 Å from atom O1W. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The open bond indicates the minor component. ::: ![](e-67-0o407-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, showing the chains along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. Only major component is shown. ::: ![](e-67-0o407-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e177 .table-wrap} ------------------------- --------------------------------------- C~21~H~20~ClN~5~·H~2~O *F*(000) = 832 *M~r~* = 395.89 *D*~x~ = 1.316 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 9978 reflections *a* = 10.4117 (3) Å θ = 4.0--37.5° *b* = 18.2365 (6) Å µ = 0.21 mm^−1^ *c* = 11.9019 (3) Å *T* = 100 K β = 117.809 (2)° Plate, yellow *V* = 1998.85 (10) Å^3^ 0.49 × 0.45 × 0.18 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e308 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII DUO CCD area-detector diffractometer 10411 independent reflections Radiation source: fine-focus sealed tube 8351 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 φ and ω scans θ~max~ = 37.6°, θ~min~ = 4.0° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −17→17 *T*~min~ = 0.904, *T*~max~ = 0.963 *k* = −31→30 39468 measured reflections *l* = −20→20 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e425 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.135 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0715*P*)^2^ + 0.4845*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 10411 reflections (Δ/σ)~max~ = 0.001 260 parameters Δρ~max~ = 1.19 e Å^−3^ 0 restraints Δρ~min~ = −0.47 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e582 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e687 .table-wrap} ------ --------------- ---------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Cl1 −0.37283 (3) −0.053039 (16) 0.46655 (3) 0.03357 (7) N1 0.00417 (7) 0.13498 (4) 0.01185 (6) 0.01373 (11) N2 0.33923 (7) 0.14996 (4) −0.08204 (7) 0.01514 (11) N3 0.35384 (7) 0.06015 (4) 0.05254 (7) 0.01630 (12) N4 0.13161 (8) 0.03567 (4) 0.13737 (7) 0.01564 (11) N5 0.02778 (7) 0.02713 (4) 0.17545 (6) 0.01482 (11) C1 0.09304 (8) 0.20371 (4) −0.11917 (7) 0.01242 (11) C2 0.06369 (8) 0.25958 (4) −0.21028 (7) 0.01464 (12) H2A 0.1260 0.2664 −0.2455 0.018\* C3 −0.05646 (8) 0.30406 (4) −0.24743 (7) 0.01589 (12) H3A −0.0749 0.3407 −0.3075 0.019\* C4 −0.15108 (8) 0.29408 (4) −0.19448 (8) 0.01637 (13) H4A −0.2297 0.3255 −0.2171 0.020\* C5 −0.12834 (8) 0.23813 (4) −0.10935 (8) 0.01560 (12) H5A −0.1932 0.2314 −0.0768 0.019\* C6 −0.00740 (8) 0.19089 (4) −0.07104 (7) 0.01287 (11) C7 0.11700 (8) 0.09093 (4) 0.05390 (7) 0.01293 (11) C8 0.22740 (8) 0.09992 (4) 0.01609 (7) 0.01314 (11) C9 0.21572 (8) 0.15557 (4) −0.06761 (7) 0.01280 (11) C10 0.41677 (9) 0.09246 (4) −0.00837 (8) 0.01736 (13) H10A 0.5054 0.0774 −0.0017 0.021\* C11 0.04705 (9) −0.02385 (4) 0.25628 (7) 0.01614 (13) H11A 0.1279 −0.0543 0.2850 0.019\* C12 −0.05978 (9) −0.03357 (4) 0.30283 (7) 0.01541 (12) C13 −0.18721 (9) 0.00855 (4) 0.25432 (7) 0.01694 (13) H13A −0.2067 0.0415 0.1887 0.020\* C14 −0.28457 (10) 0.00168 (5) 0.30303 (8) 0.01947 (14) H14A −0.3690 0.0296 0.2704 0.023\* C15 −0.25383 (10) −0.04775 (5) 0.40152 (8) 0.02080 (15) C16 −0.13059 (11) −0.09132 (5) 0.44958 (8) 0.02182 (15) H16A −0.1126 −0.1248 0.5142 0.026\* C17 −0.03391 (10) −0.08415 (5) 0.39943 (8) 0.01941 (14) H17A 0.0488 −0.1134 0.4306 0.023\* C18 0.38977 (9) 0.19795 (4) −0.15243 (8) 0.01655 (13) H18A 0.3124 0.2040 −0.2385 0.020\* H18B 0.4711 0.1749 −0.1570 0.020\* C19 0.43656 (8) 0.27358 (4) −0.09030 (8) 0.01657 (13) H19A 0.3546 0.2959 −0.0839 0.020\* C20 0.56378 (11) 0.26719 (6) 0.04269 (9) 0.02498 (17) H20A 0.5932 0.3153 0.0784 0.037\* H20B 0.6435 0.2433 0.0383 0.037\* H20C 0.5349 0.2390 0.0952 0.037\* C21 0.47505 (11) 0.32187 (6) −0.17470 (10) 0.02624 (18) H21A 0.5008 0.3700 −0.1382 0.039\* H21B 0.3929 0.3253 −0.2576 0.039\* H21C 0.5556 0.3008 −0.1815 0.039\* H1N4 0.2039 (19) 0.0049 (9) 0.1601 (16) 0.035 (4)\* O1W 0.70320 (9) 0.09494 (4) 0.93489 (12) 0.0421 (3) H1W1 0.7912 0.1025 0.9595 0.063\* H2WA 0.6633 0.0764 0.8603 0.063\* 0.80 (4) H2WB 0.6915 0.0492 0.9405 0.063\* 0.20 (4) ------ --------------- ---------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1440 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.03921 (14) 0.03795 (14) 0.03987 (14) −0.00160 (10) 0.03211 (12) 0.00615 (10) N1 0.0138 (2) 0.0145 (2) 0.0160 (2) 0.00128 (19) 0.0096 (2) 0.0020 (2) N2 0.0138 (2) 0.0149 (3) 0.0216 (3) 0.0012 (2) 0.0124 (2) 0.0016 (2) N3 0.0137 (3) 0.0151 (3) 0.0227 (3) 0.0020 (2) 0.0107 (2) 0.0021 (2) N4 0.0154 (3) 0.0166 (3) 0.0188 (3) 0.0029 (2) 0.0112 (2) 0.0044 (2) N5 0.0165 (3) 0.0153 (3) 0.0161 (3) −0.0005 (2) 0.0104 (2) 0.0009 (2) C1 0.0114 (3) 0.0139 (3) 0.0136 (3) 0.0000 (2) 0.0072 (2) 0.0001 (2) C2 0.0139 (3) 0.0168 (3) 0.0152 (3) 0.0000 (2) 0.0085 (2) 0.0017 (2) C3 0.0142 (3) 0.0177 (3) 0.0162 (3) 0.0010 (2) 0.0074 (2) 0.0034 (2) C4 0.0134 (3) 0.0168 (3) 0.0196 (3) 0.0019 (2) 0.0083 (2) 0.0032 (2) C5 0.0134 (3) 0.0169 (3) 0.0197 (3) 0.0020 (2) 0.0103 (2) 0.0029 (2) C6 0.0122 (3) 0.0142 (3) 0.0147 (3) 0.0002 (2) 0.0084 (2) 0.0004 (2) C7 0.0132 (3) 0.0136 (3) 0.0141 (3) −0.0003 (2) 0.0081 (2) −0.0001 (2) C8 0.0121 (3) 0.0132 (3) 0.0163 (3) 0.0004 (2) 0.0084 (2) 0.0003 (2) C9 0.0120 (3) 0.0138 (3) 0.0154 (3) −0.0003 (2) 0.0087 (2) −0.0003 (2) C10 0.0149 (3) 0.0157 (3) 0.0258 (3) 0.0025 (2) 0.0132 (3) 0.0025 (3) C11 0.0175 (3) 0.0161 (3) 0.0162 (3) 0.0004 (2) 0.0090 (2) 0.0025 (2) C12 0.0187 (3) 0.0150 (3) 0.0142 (3) −0.0020 (2) 0.0091 (2) 0.0007 (2) C13 0.0193 (3) 0.0173 (3) 0.0167 (3) −0.0005 (2) 0.0105 (3) 0.0020 (2) C14 0.0211 (3) 0.0198 (3) 0.0218 (3) −0.0012 (3) 0.0136 (3) 0.0011 (3) C15 0.0261 (4) 0.0216 (3) 0.0209 (3) −0.0049 (3) 0.0162 (3) −0.0001 (3) C16 0.0277 (4) 0.0224 (4) 0.0189 (3) −0.0022 (3) 0.0138 (3) 0.0045 (3) C17 0.0228 (4) 0.0192 (3) 0.0175 (3) 0.0001 (3) 0.0104 (3) 0.0043 (3) C18 0.0162 (3) 0.0188 (3) 0.0200 (3) 0.0003 (2) 0.0130 (3) 0.0017 (2) C19 0.0139 (3) 0.0177 (3) 0.0198 (3) 0.0002 (2) 0.0094 (3) 0.0031 (2) C20 0.0216 (4) 0.0287 (4) 0.0210 (4) −0.0013 (3) 0.0070 (3) 0.0022 (3) C21 0.0255 (4) 0.0260 (4) 0.0297 (4) −0.0023 (3) 0.0150 (4) 0.0094 (3) O1W 0.0217 (3) 0.0222 (3) 0.0865 (8) 0.0064 (3) 0.0287 (4) 0.0188 (4) ----- -------------- -------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1935 .table-wrap} -------------------- ------------- ----------------------- ------------- Cl1---C15 1.7430 (9) C11---H11A 0.9300 N1---C7 1.3143 (10) C12---C17 1.3985 (11) N1---C6 1.3842 (9) C12---C13 1.4032 (12) N2---C10 1.3638 (10) C13---C14 1.3884 (11) N2---C9 1.3782 (9) C13---H13A 0.9300 N2---C18 1.4684 (10) C14---C15 1.3924 (12) N3---C10 1.3210 (10) C14---H14A 0.9300 N3---C8 1.3836 (10) C15---C16 1.3857 (14) N4---N5 1.3622 (9) C16---C17 1.3955 (12) N4---C7 1.3728 (10) C16---H16A 0.9300 N4---H1N4 0.875 (18) C17---H17A 0.9300 N5---C11 1.2845 (10) C18---C19 1.5330 (12) C1---C2 1.4135 (10) C18---H18A 0.9700 C1---C6 1.4267 (10) C18---H18B 0.9700 C1---C9 1.4308 (10) C19---C20 1.5222 (12) C2---C3 1.3793 (11) C19---C21 1.5233 (12) C2---H2A 0.9300 C19---H19A 0.9800 C3---C4 1.4072 (11) C20---H20A 0.9600 C3---H3A 0.9300 C20---H20B 0.9600 C4---C5 1.3783 (11) C20---H20C 0.9600 C4---H4A 0.9300 C21---H21A 0.9600 C5---C6 1.4142 (10) C21---H21B 0.9600 C5---H5A 0.9300 C21---H21C 0.9600 C7---C8 1.4259 (10) O1W---H1W1 0.8330 C8---C9 1.3872 (10) O1W---H2WA 0.8554 C10---H10A 0.9300 O1W---H2WB 0.8508 C11---C12 1.4665 (11) C7---N1---C6 119.13 (6) C17---C12---C11 120.07 (7) C10---N2---C9 106.49 (6) C13---C12---C11 121.10 (7) C10---N2---C18 124.26 (6) C14---C13---C12 120.87 (7) C9---N2---C18 129.08 (6) C14---C13---H13A 119.6 C10---N3---C8 103.72 (6) C12---C13---H13A 119.6 N5---N4---C7 119.18 (6) C13---C14---C15 118.96 (8) N5---N4---H1N4 121.7 (12) C13---C14---H14A 120.5 C7---N4---H1N4 119.0 (12) C15---C14---H14A 120.5 C11---N5---N4 117.46 (7) C16---C15---C14 121.57 (8) C2---C1---C6 119.31 (6) C16---C15---Cl1 119.88 (6) C2---C1---C9 126.97 (6) C14---C15---Cl1 118.54 (7) C6---C1---C9 113.71 (6) C15---C16---C17 118.91 (8) C3---C2---C1 120.60 (7) C15---C16---H16A 120.5 C3---C2---H2A 119.7 C17---C16---H16A 120.5 C1---C2---H2A 119.7 C16---C17---C12 120.84 (8) C2---C3---C4 120.01 (7) C16---C17---H17A 119.6 C2---C3---H3A 120.0 C12---C17---H17A 119.6 C4---C3---H3A 120.0 N2---C18---C19 112.26 (6) C5---C4---C3 120.59 (7) N2---C18---H18A 109.2 C5---C4---H4A 119.7 C19---C18---H18A 109.2 C3---C4---H4A 119.7 N2---C18---H18B 109.2 C4---C5---C6 120.65 (7) C19---C18---H18B 109.2 C4---C5---H5A 119.7 H18A---C18---H18B 107.9 C6---C5---H5A 119.7 C20---C19---C21 111.16 (7) N1---C6---C5 116.55 (6) C20---C19---C18 111.05 (7) N1---C6---C1 124.78 (6) C21---C19---C18 108.91 (7) C5---C6---C1 118.67 (6) C20---C19---H19A 108.5 N1---C7---N4 120.12 (6) C21---C19---H19A 108.5 N1---C7---C8 121.23 (7) C18---C19---H19A 108.5 N4---C7---C8 118.64 (6) C19---C20---H20A 109.5 N3---C8---C9 111.13 (6) C19---C20---H20B 109.5 N3---C8---C7 129.05 (7) H20A---C20---H20B 109.5 C9---C8---C7 119.81 (6) C19---C20---H20C 109.5 N2---C9---C8 105.12 (6) H20A---C20---H20C 109.5 N2---C9---C1 133.65 (7) H20B---C20---H20C 109.5 C8---C9---C1 121.23 (6) C19---C21---H21A 109.5 N3---C10---N2 113.54 (7) C19---C21---H21B 109.5 N3---C10---H10A 123.2 H21A---C21---H21B 109.5 N2---C10---H10A 123.2 C19---C21---H21C 109.5 N5---C11---C12 119.30 (7) H21A---C21---H21C 109.5 N5---C11---H11A 120.3 H21B---C21---H21C 109.5 C12---C11---H11A 120.3 H1W1---O1W---H2WA 110.7 C17---C12---C13 118.81 (7) H1W1---O1W---H2WB 107.9 C7---N4---N5---C11 −178.12 (7) N3---C8---C9---N2 −0.42 (9) C6---C1---C2---C3 3.55 (11) C7---C8---C9---N2 178.87 (7) C9---C1---C2---C3 −177.20 (7) N3---C8---C9---C1 179.51 (7) C1---C2---C3---C4 0.05 (12) C7---C8---C9---C1 −1.21 (11) C2---C3---C4---C5 −2.71 (12) C2---C1---C9---N2 3.78 (14) C3---C4---C5---C6 1.68 (12) C6---C1---C9---N2 −176.94 (8) C7---N1---C6---C5 −177.76 (7) C2---C1---C9---C8 −176.12 (7) C7---N1---C6---C1 2.14 (11) C6---C1---C9---C8 3.17 (10) C4---C5---C6---N1 −178.17 (7) C8---N3---C10---N2 −0.36 (9) C4---C5---C6---C1 1.94 (11) C9---N2---C10---N3 0.12 (10) C2---C1---C6---N1 175.61 (7) C18---N2---C10---N3 175.72 (7) C9---C1---C6---N1 −3.74 (10) N4---N5---C11---C12 178.17 (7) C2---C1---C6---C5 −4.50 (11) N5---C11---C12---C17 −174.05 (8) C9---C1---C6---C5 176.15 (7) N5---C11---C12---C13 4.30 (12) C6---N1---C7---N4 179.21 (7) C17---C12---C13---C14 1.54 (12) C6---N1---C7---C8 0.24 (11) C11---C12---C13---C14 −176.82 (8) N5---N4---C7---N1 0.18 (11) C12---C13---C14---C15 0.15 (13) N5---N4---C7---C8 179.17 (7) C13---C14---C15---C16 −1.62 (13) C10---N3---C8---C9 0.48 (9) C13---C14---C15---Cl1 177.25 (7) C10---N3---C8---C7 −178.72 (8) C14---C15---C16---C17 1.32 (14) N1---C7---C8---N3 178.48 (7) Cl1---C15---C16---C17 −177.53 (7) N4---C7---C8---N3 −0.50 (12) C15---C16---C17---C12 0.44 (13) N1---C7---C8---C9 −0.66 (11) C13---C12---C17---C16 −1.84 (12) N4---C7---C8---C9 −179.64 (7) C11---C12---C17---C16 176.54 (8) C10---N2---C9---C8 0.18 (8) C10---N2---C18---C19 −105.84 (9) C18---N2---C9---C8 −175.14 (7) C9---N2---C18---C19 68.72 (10) C10---N2---C9---C1 −179.73 (8) N2---C18---C19---C20 62.01 (9) C18---N2---C9---C1 4.95 (14) N2---C18---C19---C21 −175.26 (7) -------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2900 .table-wrap} ----------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N4---H1N4···O1W^i^ 0.874 (19) 2.559 (18) 3.2789 (13) 140.2 (14) O1W---H1W1···N1^ii^ 0.83 2.09 2.9178 (14) 173 C10---H10A···O1W^iii^ 0.93 2.52 3.3513 (16) 149 C18---H18B···O1W^iii^ 0.97 2.59 3.4776 (14) 153 ----------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+1; (ii) *x*+1, *y*, *z*+1; (iii) *x*, *y*, *z*−1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- ------------ ------------ ------------- ------------- N4---H1*N*4⋯O1*W*^i^ 0.874 (19) 2.559 (18) 3.2789 (13) 140.2 (14) O1*W*---H1*W*1⋯N1^ii^ 0.83 2.09 2.9178 (14) 173 C10---H10*A*⋯O1*W*^iii^ 0.93 2.52 3.3513 (16) 149 C18---H18*B*⋯O1*W*^iii^ 0.97 2.59 3.4776 (14) 153 Symmetry codes: (i) ; (ii) ; (iii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: C-7581-2009. [^2]: § Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:16.588432
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051724/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o407-o408", "authors": [ { "first": "Wan-Sin", "last": "Loh" }, { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Reshma", "last": "Kayarmar" }, { "first": "S.", "last": "Viveka" }, { "first": "G. K.", "last": "Nagaraja" } ] }
PMC3051725
Related literature {#sec1} ================== For the biological and pharmacological properties of pyridine-3-carboxamide derivatives, see: Balzarini *et al.* (2009[@bb3]); Baumbach *et al.* (1995[@bb4]); Girgis *et al.* (2006[@bb7]); Guzel & Salman (2009[@bb8]); Kuramochi *et al.* (2005[@bb9]); Moëll *et al.* (2009[@bb10]); Slominska *et al.* (2008[@bb12]); Ur *et al.* (2004[@bb14]); Vigorita *et al.* (1992[@bb15]). For bond-length data, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~14~N~4~O~4~S·H~2~O*M* *~r~* = 376.40Triclinic,*a* = 8.1399 (4) Å*b* = 8.4106 (4) Å*c* = 15.0274 (7) Åα = 92.957 (4)°β = 104.176 (4)°γ = 116.792 (4)°*V* = 874.66 (8) Å^3^*Z* = 2Mo *K*α radiationμ = 0.22 mm^−1^*T* = 296 K0.62 × 0.55 × 0.49 mm ### Data collection {#sec2.1.2} Stoe IPDS 2 diffractometerAbsorption correction: integration (*X-RED32*; Stoe & Cie, 2002[@bb13]) *T* ~min~ = 0.875, *T* ~max~ = 0.89911714 measured reflections3963 independent reflections3192 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.038 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.043*wR*(*F* ^2^) = 0.121*S* = 1.043963 reflections285 parameters15 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.27 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e544} Data collection: *X-AREA* (Stoe & Cie, 2002[@bb13]); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002[@bb13]); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb2]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000481/im2255sup1.cif](http://dx.doi.org/10.1107/S1600536811000481/im2255sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000481/im2255Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000481/im2255Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?im2255&file=im2255sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?im2255sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?im2255&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IM2255](http://scripts.iucr.org/cgi-bin/sendsup?im2255)). The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HD and SO acknowledge the Scientific Research Projects Coordination Unit of Istanbul University (Project number T-3691). Comment ======= Pyridine-3-carboxamide derivatives have gained attention because of their cytoprotective (Slominska *et al.*, 2008), sodium-calcium exchanger (NCX) inhibitory (Kuramochi *et al.*, 2005), vasodilatory (Baumbach *et al.*, 1995), and cytotoxic (Girgis *et al.*, 2006) properties. An inhibitory effect of pyridine-3-carboxamide on enterovirus replication and chemokine secretion has also been recently reported (Moëll *et al.*, 2009). Here, we combine the pyridine-3-carboxamide moiety with a thiazolidinone moiety, which has shown antimycobacterial (Guzel *et al.*, 2009), antimicrobial (Ur *et al.*, 2004), anticancer (Vigorita *et al.*, 1992) and antiviral (Balzarini *et al.*, 2009) activities. Design and synthesis of bioactive molecules bearing both 4-thiazolidinone and pyridine-3-carboxamide groups take advantage of the diverse biological activities of the two scaffolds. In the title compound (I), (Fig. 1), the bond lengths and bond angles are within normal range (Allen *et al.*, 1987). The benzene (C1--C6) and pyridine (N4/C12--C16) rings in (I) make a dihedral angle of 85.8 (1)° with each other. Both enantiomers of the chiral title compound are statistically disordered over the same position in the unit cell. The methyl and carbonyl group attached to the stereogenic center (C~(5)~ of the thiazolidine ring) were therefore refined with common site occupation factors of 0.531 (9) and 0.469 (9), respectively, for each stereoisomer. Atoms C8A and C8B show strange thermal parameters due to the observed disorder. The molecular packing (Fig. 2), is stabilized by the intermolecular N---H···O, O---H···O and O---H···N hydrogen bonds connecting the molecules to form a three-dimensional supramolecular network (Table 1). Additionally, a π-π stacking interaction in the structure was observed between the pyridine rings of the two adjacent molecules \[*Cg*3···*Cg*3*^iv^* = 3.5063 (13) Å, symmetry code (*iv*) 3 - *x*, 2 - *y*, 2 - *z*; *Cg*3 is a centroid of the pyridine ring (N4/C12---C16)\]. Experimental {#experimental} ============ 0.01 mol of *N*\'-(2-nitrobenzylidine)pyridine-3-carbohydrazide was reacted with 0.028 mol of 2-mercaptopropanoic acid in anhydrous benzene for 18 h using a Dean-Stark trap. Excess benzene was removed under reduced pressure. The residue was triturated with saturated sodium bicarbonate solution. The separated solid was filtered, washed with water and crystallized from methanol to obtain a white crystalline solid. Yield: 70.11%; m.p.: 378.2--382.1 K. UV (EtOH) λ max: 212.2, 220.0, 255.4 nm. IR (KBr) υ: 1681 (amide C=O), 1707 (thia C=O) cm^-1^; ^1^H-NMR (DMSO-d~6~, 500 MHz): 1.48, 1.52 (3*H*, 2 d, J=7.3 Hz, 6.8 Hz, CH~3~-thia.), 4.10 (1*H*, q, J= 7.0 Hz, H5-thia.), 4.21 (1*H*, dq, J= 6.8, 1.96 Hz, H5-thia.), 6.22 (1*H*, d, J=2 Hz, H2-thia), 7.51 (1*H*, dd, J=4.8 Hz, 4.4 Hz, H5-pyridine), 7.61--7.65 (1*H*, m, 2-C~6~H~4~---H4-thia.), 7.85--7.90 (2*H*, m, 2-C~6~H~4~-(H5,6)-thia.), 8.04--8.11 (2*H*, m, 2-C~6~H~4~---H3-thia. ve H4-pyridine), 8.73 (1*H*, dd, J=8.3 Hz, 2.0 Hz, H6-pyridine), 8.71, 8.79 (1*H*, 2 d, J=2.4 Hz, 2.4 Hz, H2-pyridine), 11.04, 11.05 (1*H*, 2 s, CONH) p.p.m.; ESI-- (m/*z*, relative abundance): 358.13 (\[M---H+1\]^-^, 17.77), 357.13 (\[M---H\]^-^, 100). Analysis calculated for C~16~H~14~N~4~O~4~S.H~2~O: C 51.06, H 4.28, N 14.89%. Found: C 51.21, H 3.73, N 14.83%. Refinement {#refinement} ========== H atoms of the water molecule were found from a difference Fourier map and were refined with distance restraints of O--H = 0.82 Å, H···H = 1.23 Å, and with *U*~iso~(H) = 1.5 *U*~eq~(O). The N-bound H atom was located from the Fourier synthesis and was refined with a distance restraint of N--H = 0.86 Å, and with *U*~iso~(H) = 1.2 *U*~eq~(N). C-bound H atoms were placed geometrically (C---H = 0.93--0.98 Å) and refined as riding with *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the S-enantiomer is shown. ::: ![](e-67-0o293-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of (I) viewed down the a-axis and showing the hydrogen bonding pattern. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. Only the S-enantiomers are shown. ::: ![](e-67-0o293-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e308 .table-wrap} --------------------------- ---------------------------------------- C~16~H~14~N~4~O~4~S·H~2~O *Z* = 2 *M~r~* = 376.40 *F*(000) = 392 Triclinic, *P*1 *D*~x~ = 1.429 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.1399 (4) Å Cell parameters from 15771 reflections *b* = 8.4106 (4) Å θ = 2.8--28.0° *c* = 15.0274 (7) Å µ = 0.22 mm^−1^ α = 92.957 (4)° *T* = 296 K β = 104.176 (4)° Block, colourless γ = 116.792 (4)° 0.62 × 0.55 × 0.49 mm *V* = 874.66 (8) Å^3^ --------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e448 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Stoe IPDS 2 diffractometer 3963 independent reflections Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 3192 reflections with *I* \> 2σ(*I*) plane graphite *R*~int~ = 0.038 Detector resolution: 6.67 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.8° ω scans *h* = −10→10 Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) *k* = −10→10 *T*~min~ = 0.875, *T*~max~ = 0.899 *l* = −19→18 11714 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e568 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.043 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.121 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.057*P*)^2^ + 0.1358*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3963 reflections (Δ/σ)~max~ = 0.001 285 parameters Δρ~max~ = 0.27 e Å^−3^ 15 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e725 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement on *F*^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The observed criterion of *F*^2^ \> σ(*F*^2^) is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e827 .table-wrap} ------ -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) S1 0.56133 (7) 0.45061 (8) 0.61403 (3) 0.0699 (2) O1 0.7192 (5) 0.2528 (4) 0.38302 (13) 0.1562 (12) O2 0.7900 (2) 0.4795 (3) 0.48092 (11) 0.0856 (6) O3A 0.7493 (19) 0.5809 (14) 0.8800 (8) 0.091 (3) 0.531 (9) O4 1.1251 (2) 0.84381 (17) 0.77262 (11) 0.0811 (5) N1 0.7598 (3) 0.3251 (3) 0.46237 (12) 0.0771 (6) N2 0.84041 (19) 0.50765 (19) 0.76035 (9) 0.0551 (4) N3 1.0289 (2) 0.56998 (19) 0.81531 (10) 0.0563 (4) N4 1.6987 (2) 0.9892 (2) 0.90983 (13) 0.0741 (6) C1 0.7803 (3) 0.2246 (3) 0.53763 (13) 0.0645 (6) C2 0.7799 (4) 0.0637 (3) 0.5129 (2) 0.0927 (9) C3 0.7969 (4) −0.0385 (4) 0.5785 (3) 0.1087 (13) C4 0.8097 (4) 0.0165 (3) 0.6687 (2) 0.0947 (10) C5 0.8058 (3) 0.1748 (3) 0.69268 (15) 0.0707 (7) C6 0.7942 (2) 0.2861 (2) 0.62885 (12) 0.0539 (5) C7 0.7962 (2) 0.4616 (2) 0.65973 (11) 0.0527 (5) C8A 0.5297 (5) 0.4937 (9) 0.7236 (2) 0.0587 (13) 0.531 (9) C9A 0.7153 (13) 0.5370 (11) 0.7958 (6) 0.0610 (19) 0.531 (9) C10A 0.3540 (12) 0.3317 (16) 0.7341 (6) 0.126 (4) 0.531 (9) C11 1.1625 (3) 0.7433 (2) 0.81826 (12) 0.0567 (5) C12 1.3603 (2) 0.7956 (2) 0.87999 (12) 0.0529 (5) C13 1.3975 (3) 0.7257 (3) 0.95825 (13) 0.0648 (6) C14 1.5852 (3) 0.7867 (3) 1.01129 (15) 0.0738 (7) C15 1.7293 (3) 0.9187 (3) 0.98500 (15) 0.0681 (6) C16 1.5163 (3) 0.9272 (2) 0.85835 (14) 0.0679 (6) C8B 0.5041 (6) 0.3820 (10) 0.7244 (3) 0.0592 (16) 0.469 (9) C9B 0.7003 (12) 0.4774 (11) 0.7995 (6) 0.0513 (16) 0.469 (9) C10B 0.3623 (15) 0.4314 (15) 0.7441 (7) 0.093 (3) 0.469 (9) O3B 0.7218 (17) 0.5168 (14) 0.8810 (8) 0.076 (2) 0.469 (9) OW1 0.0315 (2) 0.3195 (2) 0.93103 (12) 0.0931 (6) H4 0.82100 −0.05310 0.71360 0.1130\* H7 0.89160 0.56040 0.63860 0.0630\* H8A 0.50960 0.60000 0.72670 0.0710\* 0.531 (9) H5 0.81110 0.20840 0.75370 0.0850\* H10B 0.33860 0.35480 0.79400 0.1890\* 0.531 (9) H10C 0.37100 0.22610 0.72940 0.1890\* 0.531 (9) H13 1.29640 0.63760 0.97530 0.0780\* H14 1.61340 0.73910 1.06390 0.0890\* H15 1.85600 0.96150 1.02190 0.0820\* H16 1.49240 0.97470 0.80510 0.0810\* H10A 0.24130 0.31160 0.68570 0.1890\* 0.531 (9) HN1 1.048 (3) 0.499 (2) 0.8508 (13) 0.062 (5)\* H2 0.76800 0.02530 0.45140 0.1110\* H3 0.79980 −0.14520 0.56220 0.1300\* H8B 0.45250 0.25050 0.71860 0.0710\* 0.469 (9) H10D 0.24250 0.36760 0.69470 0.1400\* 0.469 (9) H10E 0.41040 0.55960 0.74800 0.1400\* 0.469 (9) H10F 0.34190 0.39900 0.80230 0.1400\* 0.469 (9) HW1 0.078 (4) 0.355 (4) 0.9872 (13) 0.120 (11)\* HW2 −0.068 (3) 0.230 (3) 0.924 (2) 0.126 (11)\* ------ -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1492 .table-wrap} ------ ------------- ------------- ------------- ------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0665 (3) 0.1068 (4) 0.0450 (2) 0.0532 (3) 0.0084 (2) 0.0109 (2) O1 0.245 (3) 0.159 (2) 0.0532 (10) 0.088 (2) 0.0453 (15) 0.0094 (12) O2 0.0975 (11) 0.1172 (13) 0.0581 (8) 0.0619 (10) 0.0255 (8) 0.0329 (9) O3A 0.103 (6) 0.130 (7) 0.046 (3) 0.069 (5) 0.009 (3) −0.007 (4) O4 0.0813 (9) 0.0583 (7) 0.0893 (10) 0.0317 (7) 0.0032 (8) 0.0239 (7) N1 0.0713 (10) 0.1071 (14) 0.0478 (9) 0.0377 (10) 0.0208 (8) 0.0090 (9) N2 0.0463 (7) 0.0679 (8) 0.0414 (7) 0.0231 (6) 0.0062 (5) 0.0082 (6) N3 0.0466 (7) 0.0540 (7) 0.0549 (8) 0.0182 (6) 0.0038 (6) 0.0145 (6) N4 0.0560 (9) 0.0652 (9) 0.0838 (12) 0.0139 (7) 0.0225 (8) 0.0155 (8) C1 0.0540 (9) 0.0745 (11) 0.0580 (10) 0.0266 (8) 0.0150 (8) 0.0051 (8) C2 0.0887 (16) 0.0873 (15) 0.0903 (17) 0.0380 (13) 0.0218 (13) −0.0130 (13) C3 0.114 (2) 0.0742 (15) 0.131 (3) 0.0498 (15) 0.0206 (19) −0.0047 (16) C4 0.0990 (18) 0.0634 (12) 0.107 (2) 0.0358 (12) 0.0121 (15) 0.0204 (12) C5 0.0716 (12) 0.0611 (10) 0.0665 (12) 0.0247 (9) 0.0125 (9) 0.0166 (9) C6 0.0446 (8) 0.0596 (9) 0.0512 (9) 0.0209 (7) 0.0117 (7) 0.0111 (7) C7 0.0508 (8) 0.0626 (9) 0.0425 (8) 0.0253 (7) 0.0131 (6) 0.0155 (7) C8A 0.061 (2) 0.071 (3) 0.0513 (18) 0.038 (2) 0.0153 (15) 0.0157 (17) C9A 0.070 (3) 0.069 (4) 0.051 (3) 0.041 (3) 0.014 (2) 0.012 (3) C10A 0.066 (4) 0.190 (9) 0.077 (5) 0.021 (5) 0.019 (3) 0.056 (6) C11 0.0582 (9) 0.0502 (8) 0.0557 (9) 0.0233 (7) 0.0124 (8) 0.0097 (7) C12 0.0519 (8) 0.0440 (7) 0.0542 (9) 0.0174 (6) 0.0135 (7) 0.0069 (6) C13 0.0504 (9) 0.0669 (10) 0.0607 (10) 0.0152 (8) 0.0138 (8) 0.0192 (8) C14 0.0571 (10) 0.0843 (13) 0.0658 (11) 0.0242 (9) 0.0118 (9) 0.0250 (10) C15 0.0485 (9) 0.0713 (11) 0.0739 (12) 0.0220 (8) 0.0151 (9) 0.0082 (9) C16 0.0628 (11) 0.0543 (9) 0.0709 (12) 0.0160 (8) 0.0168 (9) 0.0182 (8) C8B 0.051 (2) 0.071 (4) 0.053 (2) 0.027 (2) 0.0144 (16) 0.017 (2) C9B 0.050 (2) 0.065 (4) 0.039 (2) 0.027 (3) 0.0129 (16) 0.018 (3) C10B 0.080 (5) 0.150 (8) 0.073 (3) 0.071 (6) 0.031 (3) 0.021 (5) O3B 0.060 (2) 0.113 (6) 0.043 (3) 0.031 (4) 0.0160 (18) 0.015 (4) OW1 0.0800 (10) 0.0681 (9) 0.0728 (10) 0.0017 (8) −0.0099 (8) 0.0323 (8) ------ ------------- ------------- ------------- ------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1997 .table-wrap} ---------------------- -------------- ------------------------ -------------- S1---C7 1.8238 (19) C8A---C9A 1.501 (11) S1---C8A 1.772 (4) C8A---C10A 1.518 (14) S1---C8B 1.880 (5) C8B---C10B 1.476 (15) O1---N1 1.205 (3) C8B---C9B 1.529 (11) O2---N1 1.211 (3) C11---C12 1.495 (3) O3A---C9A 1.226 (14) C12---C16 1.384 (3) O3B---C9B 1.201 (15) C12---C13 1.370 (3) O4---C11 1.211 (2) C13---C14 1.374 (4) OW1---HW1 0.813 (19) C14---C15 1.365 (3) OW1---HW2 0.80 (2) C2---H2 0.9300 N1---C1 1.468 (3) C3---H3 0.9300 N2---N3 1.386 (2) C4---H4 0.9300 N2---C7 1.454 (2) C5---H5 0.9300 N2---C9A 1.364 (11) C7---H7 0.9800 N2---C9B 1.339 (10) C8A---H8A 0.9800 N3---C11 1.360 (2) C8B---H8B 0.9800 N4---C16 1.331 (3) C10A---H10B 0.9600 N4---C15 1.324 (3) C10A---H10C 0.9600 N3---HN1 0.861 (18) C10A---H10A 0.9600 C1---C6 1.399 (3) C10B---H10F 0.9600 C1---C2 1.383 (4) C10B---H10E 0.9600 C2---C3 1.363 (5) C10B---H10D 0.9600 C3---C4 1.373 (5) C13---H13 0.9300 C4---C5 1.378 (4) C14---H14 0.9300 C5---C6 1.390 (3) C15---H15 0.9300 C6---C7 1.516 (2) C16---H16 0.9300 S1···O2 2.999 (2) C12···C15^ix^ 3.496 (3) S1···N1 3.466 (2) C13···O3B^vi^ 3.288 (11) S1···S1^i^ 3.5774 (7) C13···OW1^vii^ 3.286 (3) S1···O2^i^ 3.188 (2) C14···C12^ix^ 3.586 (3) O1···O4^ii^ 3.150 (4) C14···C16^ix^ 3.523 (3) O1···C11^ii^ 3.389 (3) C14···O3A^vii^ 3.420 (15) OW1···C13^iii^ 3.286 (3) C15···C12^ix^ 3.496 (3) OW1···N4^iv^ 2.803 (2) C15···O3A^vii^ 3.266 (13) OW1···O3A^v^ 2.806 (12) C16···C14^ix^ 3.523 (3) OW1···N3^iii^ 2.804 (2) C5···HN1 3.026 (17) OW1···O3B^v^ 2.870 (12) C9B···H5 2.9000 O2···C7 2.688 (2) C10A···H14^vi^ 3.0900 O2···S1^i^ 3.188 (2) C11···H7 2.8500 O2···N1^ii^ 3.123 (3) C12···H10E^vii^ 2.9600 O2···S1 2.999 (2) C13···HN1 2.62 (2) O2···O2^ii^ 3.177 (3) C15···H15^x^ 3.0900 O2···C1^ii^ 3.348 (3) C15···HW2^viii^ 2.74 (2) O3A···C15^iii^ 3.266 (13) C16···H10E^vii^ 3.0700 O3A···C11 3.400 (16) C16···HW2^viii^ 3.04 (3) O3A···C14^iii^ 3.420 (15) HN1···OW1^vii^ 1.958 (17) O3A···OW1^v^ 2.806 (12) HN1···C5 3.026 (17) O3A···N3 2.720 (16) HN1···H5 2.4100 O3B···OW1^v^ 2.870 (12) HN1···HW1^vii^ 2.45 (3) O3B···C13^vi^ 3.288 (11) HN1···HW2^vii^ 2.46 (3) O3B···N3 2.769 (15) HN1···O3B 2.87 (3) O4···C7 3.136 (2) HN1···H13 2.1800 O4···C9A 3.288 (10) HN1···C13 2.62 (2) O4···O1^ii^ 3.150 (4) H2···O1 2.3600 O4···N2 2.689 (2) HW1···H13^iii^ 2.2900 O1···H10E^i^ 2.8800 HW1···O3B^v^ 2.09 (2) O1···H8A^i^ 2.9200 HW1···O3A^v^ 2.02 (2) O1···H2 2.3600 HW1···HN1^iii^ 2.45 (3) OW1···H5^iii^ 2.6600 HW2···C16^iv^ 3.04 (3) OW1···H13^iii^ 2.4800 HW2···N4^iv^ 2.01 (2) OW1···HN1^iii^ 1.958 (17) HW2···C15^iv^ 2.74 (2) O2···H7 2.2600 HW2···H5^iii^ 2.4700 O3A···H10B 2.8900 HW2···HN1^iii^ 2.46 (3) O3A···H13^vi^ 2.9000 H5···HN1 2.4100 O3A···HW1^v^ 2.02 (2) H5···HW2^vii^ 2.4700 O3B···H10F 2.7000 H5···OW1^vii^ 2.6600 O3B···HN1 2.87 (3) H5···N2 2.4100 O3B···H13^vi^ 2.5800 H5···C9B 2.9000 O3B···HW1^v^ 2.09 (3) H5···N3 2.7000 O4···H7 2.6300 H7···O2 2.2600 O4···H16 2.5800 H7···O4 2.6300 N1···S1 3.466 (2) H7···C11 2.8500 N1···O2^ii^ 3.123 (3) H7···N1 2.8700 N2···O4 2.689 (2) H8A···O1^i^ 2.9200 N3···O3B 2.769 (15) H10B···O3A 2.8900 N3···OW1^vii^ 2.804 (2) H10B···H14^vi^ 2.3200 N3···O3A 2.720 (16) H10E···C12^iii^ 2.9600 N3···C5 3.167 (3) H10E···O1^i^ 2.8800 N4···OW1^viii^ 2.803 (2) H10E···C16^iii^ 3.0700 N1···H7 2.8700 H10F···H14^vi^ 2.4100 N2···H5 2.4100 H10F···O3B 2.7000 N3···H13 2.6500 H13···OW1^vii^ 2.4800 N3···H5 2.7000 H13···N3 2.6500 N4···HW2^viii^ 2.01 (2) H13···HN1 2.1800 C1···O2^ii^ 3.348 (3) H13···HW1^vii^ 2.2900 C5···C9B 3.466 (10) H13···O3A^vi^ 2.9000 C5···N3 3.167 (3) H13···O3B^vi^ 2.5800 C7···O2 2.688 (2) H14···C10A^vi^ 3.0900 C7···O4 3.136 (2) H14···H10B^vi^ 2.3200 C9A···O4 3.288 (10) H14···H10F^vi^ 2.4100 C9B···C5 3.466 (10) H15···C15^x^ 3.0900 C11···O3A 3.400 (16) H15···H15^x^ 2.4000 C11···O1^ii^ 3.389 (3) H16···O4 2.5800 C12···C14^ix^ 3.586 (3) C7---S1---C8A 96.72 (17) C13---C12---C16 117.71 (19) C7---S1---C8B 89.56 (19) C11---C12---C13 124.34 (17) HW1---OW1---HW2 105 (3) C12---C13---C14 119.5 (2) O1---N1---C1 118.6 (2) C13---C14---C15 118.5 (2) O2---N1---C1 120.00 (17) N4---C15---C14 123.6 (2) O1---N1---O2 121.4 (2) N4---C16---C12 123.38 (17) N3---N2---C9A 119.9 (4) C3---C2---H2 120.00 N3---N2---C9B 120.7 (4) C1---C2---H2 120.00 N3---N2---C7 118.23 (15) C2---C3---H3 120.00 C7---N2---C9B 120.9 (4) C4---C3---H3 120.00 C7---N2---C9A 119.4 (4) C3---C4---H4 120.00 N2---N3---C11 118.67 (16) C5---C4---H4 120.00 C15---N4---C16 117.28 (18) C6---C5---H5 119.00 C11---N3---HN1 124.9 (14) C4---C5---H5 119.00 N2---N3---HN1 115.9 (14) N2---C7---H7 109.00 N1---C1---C2 116.4 (2) C6---C7---H7 109.00 N1---C1---C6 121.7 (2) S1---C7---H7 109.00 C2---C1---C6 121.9 (2) S1---C8A---H8A 109.00 C1---C2---C3 120.1 (3) C10A---C8A---H8A 109.00 C2---C3---C4 119.8 (3) C9A---C8A---H8A 109.00 C3---C4---C5 120.0 (3) C9B---C8B---H8B 109.00 C4---C5---C6 122.3 (2) C10B---C8B---H8B 109.00 C5---C6---C7 120.07 (16) S1---C8B---H8B 109.00 C1---C6---C7 124.04 (16) H10A---C10A---H10B 109.00 C1---C6---C5 115.89 (18) C8A---C10A---H10C 109.00 N2---C7---C6 113.13 (13) C8A---C10A---H10B 110.00 S1---C7---N2 103.61 (12) H10A---C10A---H10C 109.00 S1---C7---C6 112.56 (12) H10B---C10A---H10C 109.00 C9A---C8A---C10A 114.1 (6) C8A---C10A---H10A 110.00 S1---C8A---C9A 106.0 (5) C8B---C10B---H10D 109.00 S1---C8A---C10A 109.8 (5) C8B---C10B---H10E 109.00 C9B---C8B---C10B 113.3 (7) H10D---C10B---H10F 110.00 S1---C8B---C10B 112.3 (5) H10D---C10B---H10E 109.00 S1---C8B---C9B 104.0 (5) H10E---C10B---H10F 110.00 N2---C9A---C8A 113.7 (6) C8B---C10B---H10F 109.00 O3A---C9A---C8A 124.5 (12) C14---C13---H13 120.00 O3A---C9A---N2 121.6 (11) C12---C13---H13 120.00 O3B---C9B---C8B 124.1 (11) C13---C14---H14 121.00 N2---C9B---C8B 109.7 (6) C15---C14---H14 121.00 O3B---C9B---N2 126.2 (11) N4---C15---H15 118.00 O4---C11---N3 122.8 (2) C14---C15---H15 118.00 N3---C11---C12 113.92 (16) N4---C16---H16 118.00 O4---C11---C12 123.26 (16) C12---C16---H16 118.00 C11---C12---C16 117.92 (16) C8A---S1---C7---C6 120.0 (2) N1---C1---C2---C3 −179.5 (3) C7---S1---C8A---C10A −117.5 (5) C2---C1---C6---C7 179.7 (2) C7---S1---C8A---C9A 6.1 (5) C1---C2---C3---C4 1.6 (5) C8A---S1---C7---N2 −2.6 (2) C2---C3---C4---C5 −0.2 (5) O1---N1---C1---C6 −168.9 (3) C3---C4---C5---C6 −1.7 (5) O1---N1---C1---C2 9.5 (4) C4---C5---C6---C1 2.0 (4) O2---N1---C1---C2 −168.0 (3) C4---C5---C6---C7 −178.2 (2) O2---N1---C1---C6 13.7 (4) C5---C6---C7---N2 8.9 (3) C9A---N2---N3---C11 −86.1 (5) C1---C6---C7---S1 71.6 (2) N3---N2---C7---S1 −164.40 (12) C5---C6---C7---S1 −108.16 (19) C7---N2---N3---C11 75.9 (2) C1---C6---C7---N2 −171.39 (19) C9A---N2---C7---C6 −124.5 (4) C10A---C8A---C9A---N2 112.4 (7) C9A---N2---C7---S1 −2.3 (4) S1---C8A---C9A---N2 −8.5 (7) N3---N2---C7---C6 73.41 (19) C10A---C8A---C9A---O3A −62.0 (12) C7---N2---C9A---C8A 7.4 (8) S1---C8A---C9A---O3A 177.1 (9) N3---N2---C9A---O3A −16.3 (11) N3---C11---C12---C13 −30.2 (3) C7---N2---C9A---O3A −178.0 (8) O4---C11---C12---C13 152.0 (2) N3---N2---C9A---C8A 169.1 (4) O4---C11---C12---C16 −26.0 (3) N2---N3---C11---C12 179.78 (15) N3---C11---C12---C16 151.82 (18) N2---N3---C11---O4 −2.4 (3) C16---C12---C13---C14 −0.4 (3) C16---N4---C15---C14 0.6 (3) C11---C12---C16---N4 177.67 (18) C15---N4---C16---C12 0.4 (3) C11---C12---C13---C14 −178.5 (2) N1---C1---C6---C5 177.7 (2) C13---C12---C16---N4 −0.5 (3) N1---C1---C6---C7 −2.1 (3) C12---C13---C14---C15 1.3 (3) C6---C1---C2---C3 −1.2 (5) C13---C14---C15---N4 −1.4 (4) C2---C1---C6---C5 −0.6 (4) ---------------------- -------------- ------------------------ -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*+2, −*y*+1, −*z*+1; (iii) *x*−1, *y*, *z*; (iv) *x*−2, *y*−1, *z*; (v) −*x*+1, −*y*+1, −*z*+2; (vi) −*x*+2, −*y*+1, −*z*+2; (vii) *x*+1, *y*, *z*; (viii) *x*+2, *y*+1, *z*; (ix) −*x*+3, −*y*+2, −*z*+2; (x) −*x*+4, −*y*+2, −*z*+2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3826 .table-wrap} ---------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---HN1···OW1^vii^ 0.86 (2) 1.96 (2) 2.804 (2) 167 (2) OW1---HW1···O3A^v^ 0.81 (2) 2.02 (2) 2.806 (1) 163 (4) OW1---HW2···N4^iv^ 0.80 (2) 2.01 (2) 2.803 (2) 173 (3) C5---H5···N2 0.93 2.41 2.794 (3) 104. C7---H7···O2 0.98 2.26 2.688 (2) 105. C13---H13···OW1^vii^ 0.93 2.48 3.286 (3) 145. ---------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (vii) *x*+1, *y*, *z*; (v) −*x*+1, −*y*+1, −*z*+2; (iv) *x*−2, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- ---------- ---------- ----------- ------------- N3---H*N*1⋯O*W*1^i^ 0.86 (2) 1.96 (2) 2.804 (2) 167 (2) O*W*1---H*W*1⋯O3*A*^ii^ 0.81 (2) 2.02 (2) 2.806 (1) 163 (4) O*W*1---H*W*2⋯N4^iii^ 0.80 (2) 2.01 (2) 2.803 (2) 173 (3) Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.595293
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051725/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o293-o294", "authors": [ { "first": "Mehmet", "last": "Akkurt" }, { "first": "Ísmail", "last": "Çelik" }, { "first": "Hale", "last": "Demir" }, { "first": "Sumru", "last": "Özkırımlı" }, { "first": "Orhan", "last": "Büyükgüngör" } ] }
PMC3051726
Related literature {#sec1} ================== For applications of Betti-type reactions, see: Zhao *et al.* (2004[@bb7]); Lu *et al.* (2002[@bb2]); Xu *et al.* (2004[@bb6]); Wang *et al.* (2005[@bb5]) Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~21~H~23~NO*M* *~r~* = 305.40Orthorhombic,*a* = 10.842 (7) Å*b* = 16.651 (7) Å*c* = 9.787 (6) Å*V* = 1766.9 (17) Å^3^*Z* = 4Mo *K*α radiationμ = 0.07 mm^−1^*T* = 293 K0.30 × 0.25 × 0.15 mm ### Data collection {#sec2.1.2} Rigaku Mercury2 diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb3]) *T* ~min~ = 0.856, *T* ~max~ = 1.00014129 measured reflections3121 independent reflections1998 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.078 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.087*wR*(*F* ^2^) = 0.134*S* = 1.023121 reflections211 parameters2 restraintsH-atom parameters constrainedΔρ~max~ = 0.25 e Å^−3^Δρ~min~ = −0.13 e Å^−3^ {#d5e372} Data collection: *CrystalClear* (Rigaku, 2005[@bb3]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000067/gw2088sup1.cif](http://dx.doi.org/10.1107/S1600536811000067/gw2088sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000067/gw2088Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000067/gw2088Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?gw2088&file=gw2088sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?gw2088sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?gw2088&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [GW2088](http://scripts.iucr.org/cgi-bin/sendsup?gw2088)). This work was supported by a start-up grant to the author. Comment ======= Over one hundred years ago, Betti developed a straightforward synthesis involving the condensation of 2-naphthol, ammonia and equivalents of benzaldehyde, followed by the addition of HCl and KOH to yield 1-(a-aminobenzyl)-2-naphthol. This product which possesses an asymmetric carbon center is known as a Betti base (Zhao & Li *et al.* 2004). Betti-type reaction is an important method to synthesize chiral ligands and by this method many unnatural homochiral amino-phenol compounds have been obtained (Lu *et al.* 2002; Xu *et al.* 2004; Wang *et al.* 2005). Here we report the synthesis and crystal structure of the title compound (Fig. 1), obtained by a three-component condensation reaction of 2-naphthol, benzaldehyde and butan-1-amine under solvent-free condition. Molecules of the title compound have normal geometric parameters. The bond lengths and angles are within their normal ranges. The rings A (C1--C10) and B (C12--C17) are, of course, planar and the dihedral angle between them is A/B = 78.27 (5). As can be seen from the packing diagram (Fig. 2), the intramolecular O---H···N hydrogen bond seems to be effective in the stabilization of the crystal structure. Dipole--dipole and van der Waals interactions are effective in the molecular packing. Experimental {#experimental} ============ benzaldehyde (1.59 g, 0.015 mol) and butan-1-amine (1.095 g, 0.015 mol) was added to 2-naphthol (2.16 g, 0.015 mol) without solvent under nitrogen. The temperature was raised to 120°C in one hour gradually and the mixture was stirred at this temperature for 10 h. The system was treated with 20 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The title compound was isolated using column chromatography (Petroleum ether: ethyl acetate-2:1). Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of ethyl acetate solution. Refinement {#refinement} ========== H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O---H = 0.82 Å, and with *U*~iso~(H) = 1.368Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C---H = 0.93--0.98 Å and *U*~iso~(H) = 1.3--1.6*U*~eq~(C). The structure does not contain a strong anomalous scatterer, therefore MERG 3 have been applied. 1459 Friedel pairs were merged. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o322-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound viewed along the c axis showing the two-dimensionnal hydrogen bondings network. ::: ![](e-67-0o322-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e127 .table-wrap} ------------------------- --------------------------------------- C~21~H~23~NO *F*(000) = 656 *M~r~* = 305.40 *D*~x~ = 1.148 Mg m^−3^ Orthorhombic, *Pna*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2n Cell parameters from 2229 reflections *a* = 10.842 (7) Å θ = 2.4--27.4° *b* = 16.651 (7) Å µ = 0.07 mm^−1^ *c* = 9.787 (6) Å *T* = 293 K *V* = 1766.9 (17) Å^3^ Prism, colorless *Z* = 4 0.30 × 0.25 × 0.15 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e247 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku Mercury2 diffractometer 3121 independent reflections Radiation source: fine-focus sealed tube 1998 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.078 Detector resolution: 13.6612 pixels mm^-1^ θ~max~ = 25.0°, θ~min~ = 2.4° CCD\_Profile\_fitting scans *h* = −12→12 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *k* = −19→19 *T*~min~ = 0.856, *T*~max~ = 1.000 *l* = −11→11 14129 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e365 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.087 H-atom parameters constrained *wR*(*F*^2^) = 0.134 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0007*P*)^2^ + 1.9999*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.02 (Δ/σ)~max~ \< 0.001 3121 reflections Δρ~max~ = 0.25 e Å^−3^ 211 parameters Δρ~min~ = −0.13 e Å^−3^ 2 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0043 (9) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e546 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e645 .table-wrap} ------ ------------- ------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.2175 (3) 0.0230 (2) 0.4209 (4) 0.0825 (11) H1A 0.2786 0.0483 0.3966 0.124\* N1 0.4017 (4) 0.1176 (2) 0.4649 (5) 0.0718 (12) H1D 0.4572 0.1535 0.4201 0.086\* C1 0.1998 (4) 0.1346 (3) 0.5773 (5) 0.0551 (12) C2 0.1594 (4) 0.0636 (3) 0.5250 (5) 0.0657 (14) C3 0.0511 (5) 0.0240 (3) 0.5748 (5) 0.0717 (16) H3A 0.0260 −0.0245 0.5368 0.086\* C4 −0.0136 (5) 0.0574 (4) 0.6767 (6) 0.0748 (16) H4A −0.0832 0.0311 0.7097 0.090\* C5 −0.0463 (5) 0.1666 (4) 0.8420 (6) 0.0822 (18) H5A −0.1145 0.1397 0.8769 0.099\* C6 −0.0147 (6) 0.2386 (5) 0.8958 (6) 0.093 (2) H6A −0.0610 0.2609 0.9662 0.111\* C7 0.0874 (6) 0.2788 (4) 0.8448 (6) 0.0899 (19) H7A 0.1090 0.3282 0.8822 0.108\* C8 0.1585 (5) 0.2473 (4) 0.7391 (5) 0.0739 (16) H8A 0.2257 0.2758 0.7055 0.089\* C9 0.1277 (4) 0.1714 (3) 0.6832 (5) 0.0601 (13) C10 0.0212 (4) 0.1313 (3) 0.7350 (5) 0.0646 (14) C11 0.3145 (4) 0.1767 (3) 0.5238 (5) 0.0566 (12) H11A 0.3552 0.2032 0.6009 0.068\* C12 0.2873 (4) 0.2400 (3) 0.4156 (5) 0.0603 (12) C13 0.1947 (6) 0.2301 (4) 0.3193 (6) 0.094 (2) H13A 0.1443 0.1849 0.3231 0.113\* C14 0.1761 (6) 0.2872 (5) 0.2161 (7) 0.113 (2) H14A 0.1128 0.2807 0.1530 0.136\* C15 0.2523 (6) 0.3530 (4) 0.2093 (7) 0.098 (2) H15A 0.2425 0.3901 0.1390 0.118\* C16 0.3415 (6) 0.3644 (4) 0.3043 (6) 0.097 (2) H16A 0.3908 0.4100 0.3015 0.116\* C17 0.3588 (5) 0.3071 (3) 0.4058 (6) 0.0789 (16) H17A 0.4215 0.3148 0.4694 0.095\* C18 0.4708 (5) 0.0719 (4) 0.5698 (7) 0.0921 (19) H18A 0.4145 0.0401 0.6248 0.111\* H18B 0.5153 0.1083 0.6294 0.111\* C19 0.5652 (6) 0.0146 (5) 0.4899 (8) 0.127 (3) H19A 0.5187 −0.0218 0.4321 0.152\* H19B 0.6169 0.0472 0.4312 0.152\* C20 0.6390 (7) −0.0296 (5) 0.5756 (10) 0.162 (4) H20A 0.5881 −0.0654 0.6297 0.194\* H20B 0.6816 0.0064 0.6377 0.194\* C21 0.7336 (6) −0.0788 (5) 0.4962 (9) 0.153 (4) H21A 0.7833 −0.1090 0.5589 0.230\* H21B 0.7854 −0.0434 0.4441 0.230\* H21C 0.6916 −0.1149 0.4355 0.230\* ------ ------------- ------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1265 .table-wrap} ----- ----------- ------------ ------------ ------------ ------------ ------------ *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.079 (2) 0.084 (2) 0.085 (3) −0.017 (2) 0.006 (2) −0.019 (2) N1 0.053 (2) 0.076 (3) 0.086 (3) −0.001 (2) 0.009 (2) −0.003 (3) C1 0.045 (3) 0.070 (3) 0.050 (3) −0.004 (2) −0.003 (2) 0.003 (3) C2 0.057 (3) 0.075 (4) 0.065 (4) −0.001 (3) −0.002 (3) −0.001 (3) C3 0.060 (3) 0.075 (4) 0.080 (4) −0.010 (3) −0.002 (3) 0.009 (3) C4 0.053 (3) 0.091 (4) 0.080 (4) −0.007 (3) 0.000 (3) 0.028 (3) C5 0.065 (4) 0.110 (5) 0.072 (4) 0.021 (4) −0.002 (3) 0.022 (4) C6 0.075 (4) 0.128 (6) 0.075 (5) 0.031 (4) 0.010 (4) −0.002 (4) C7 0.100 (5) 0.095 (5) 0.074 (4) 0.024 (4) −0.016 (4) −0.013 (4) C8 0.073 (4) 0.090 (4) 0.058 (4) 0.008 (3) −0.014 (3) −0.002 (3) C9 0.050 (3) 0.074 (4) 0.057 (3) 0.001 (3) −0.014 (2) 0.013 (3) C10 0.053 (3) 0.087 (4) 0.054 (3) 0.016 (3) −0.004 (3) 0.006 (3) C11 0.047 (3) 0.064 (3) 0.059 (3) −0.003 (2) −0.004 (2) −0.010 (3) C12 0.059 (3) 0.067 (3) 0.055 (3) −0.008 (3) −0.002 (3) −0.013 (3) C13 0.108 (5) 0.103 (5) 0.072 (4) −0.042 (4) −0.023 (4) 0.017 (4) C14 0.109 (5) 0.146 (7) 0.085 (5) −0.022 (5) −0.038 (4) 0.034 (5) C15 0.125 (6) 0.104 (5) 0.066 (4) −0.002 (5) 0.003 (4) 0.028 (4) C16 0.119 (6) 0.084 (5) 0.088 (5) −0.025 (4) 0.000 (4) 0.008 (4) C17 0.080 (4) 0.075 (4) 0.082 (4) −0.021 (3) −0.012 (3) 0.010 (4) C18 0.076 (4) 0.086 (4) 0.115 (5) 0.009 (3) −0.012 (4) −0.005 (4) C19 0.077 (5) 0.151 (7) 0.152 (8) 0.026 (4) −0.008 (5) 0.026 (6) C20 0.136 (8) 0.188 (10) 0.161 (9) 0.033 (7) −0.001 (7) −0.012 (8) C21 0.105 (6) 0.109 (6) 0.245 (11) 0.032 (5) 0.032 (6) −0.047 (6) ----- ----------- ------------ ------------ ------------ ------------ ------------ ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1737 .table-wrap} ------------------ ----------- ------------------- ----------- O1---C2 1.375 (6) C11---H11A 0.9800 O1---H1A 0.8200 C12---C17 1.363 (6) N1---C18 1.481 (6) C12---C13 1.387 (6) N1---C11 1.483 (5) C13---C14 1.402 (8) N1---H1D 0.9548 C13---H13A 0.9300 C1---C2 1.362 (6) C14---C15 1.374 (8) C1---C9 1.435 (7) C14---H14A 0.9300 C1---C11 1.520 (6) C15---C16 1.355 (8) C2---C3 1.431 (6) C15---H15A 0.9300 C3---C4 1.340 (7) C16---C17 1.390 (8) C3---H3A 0.9300 C16---H16A 0.9300 C4---C10 1.409 (7) C17---H17A 0.9300 C4---H4A 0.9300 C18---C19 1.603 (8) C5---C6 1.353 (8) C18---H18A 0.9700 C5---C10 1.406 (8) C18---H18B 0.9700 C5---H5A 0.9300 C19---C20 1.373 (9) C6---C7 1.386 (8) C19---H19A 0.9700 C6---H6A 0.9300 C19---H19B 0.9700 C7---C8 1.393 (7) C20---C21 1.526 (9) C7---H7A 0.9300 C20---H20A 0.9700 C8---C9 1.417 (7) C20---H20B 0.9700 C8---H8A 0.9300 C21---H21A 0.9600 C9---C10 1.427 (6) C21---H21B 0.9600 C11---C12 1.523 (6) C21---H21C 0.9600 C2---O1---H1A 109.5 C17---C12---C11 120.4 (5) C18---N1---C11 113.2 (4) C13---C12---C11 122.0 (5) C18---N1---H1D 108.8 C12---C13---C14 120.8 (6) C11---N1---H1D 99.4 C12---C13---H13A 119.6 C2---C1---C9 117.8 (5) C14---C13---H13A 119.6 C2---C1---C11 122.3 (4) C15---C14---C13 119.4 (6) C9---C1---C11 119.8 (4) C15---C14---H14A 120.3 C1---C2---O1 123.9 (5) C13---C14---H14A 120.3 C1---C2---C3 122.4 (5) C16---C15---C14 120.4 (6) O1---C2---C3 113.7 (5) C16---C15---H15A 119.8 C4---C3---C2 119.5 (5) C14---C15---H15A 119.8 C4---C3---H3A 120.2 C15---C16---C17 119.4 (6) C2---C3---H3A 120.2 C15---C16---H16A 120.3 C3---C4---C10 121.6 (5) C17---C16---H16A 120.3 C3---C4---H4A 119.2 C12---C17---C16 122.3 (6) C10---C4---H4A 119.2 C12---C17---H17A 118.8 C6---C5---C10 121.9 (6) C16---C17---H17A 118.8 C6---C5---H5A 119.1 N1---C18---C19 106.9 (5) C10---C5---H5A 119.1 N1---C18---H18A 110.3 C5---C6---C7 119.3 (6) C19---C18---H18A 110.3 C5---C6---H6A 120.3 N1---C18---H18B 110.3 C7---C6---H6A 120.3 C19---C18---H18B 110.3 C6---C7---C8 121.8 (6) H18A---C18---H18B 108.6 C6---C7---H7A 119.1 C20---C19---C18 113.2 (7) C8---C7---H7A 119.1 C20---C19---H19A 108.9 C7---C8---C9 119.5 (6) C18---C19---H19A 108.9 C7---C8---H8A 120.2 C20---C19---H19B 108.9 C9---C8---H8A 120.2 C18---C19---H19B 108.9 C8---C9---C10 118.0 (5) H19A---C19---H19B 107.8 C8---C9---C1 122.1 (5) C19---C20---C21 111.6 (8) C10---C9---C1 119.9 (5) C19---C20---H20A 109.3 C5---C10---C4 121.9 (6) C21---C20---H20A 109.3 C5---C10---C9 119.4 (6) C19---C20---H20B 109.3 C4---C10---C9 118.8 (5) C21---C20---H20B 109.3 N1---C11---C1 110.4 (4) H20A---C20---H20B 108.0 N1---C11---C12 108.2 (4) C20---C21---H21A 109.5 C1---C11---C12 113.6 (4) C20---C21---H21B 109.5 N1---C11---H11A 108.1 H21A---C21---H21B 109.5 C1---C11---H11A 108.1 C20---C21---H21C 109.5 C12---C11---H11A 108.1 H21A---C21---H21C 109.5 C17---C12---C13 117.5 (5) H21B---C21---H21C 109.5 ------------------ ----------- ------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2349 .table-wrap} --------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1A···N1 0.82 1.89 2.580 (5) 142 --------------- --------- --------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ----------- ------------- O1---H1*A*⋯N1 0.82 1.89 2.580 (5) 142 :::
PubMed Central
2024-06-05T04:04:16.602605
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051726/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o322", "authors": [ { "first": "Hen-Mei", "last": "Ni" } ] }
PMC3051727
Related literature {#sec1} ================== For reference structural data, see: Bruno *et al.* (2004[@bb4]). For related benzoxazole structures, see: Dreher *et al.* (1982[@bb5]); Mrozek *et al.* (1999[@bb6]); Qu *et al.* (2008[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~16~NO~3~P*M* *~r~* = 349.31Orthorhombic,*a* = 9.4239 (4) Å*b* = 15.7574 (6) Å*c* = 23.5398 (8) Å*V* = 3495.6 (2) Å^3^*Z* = 8Mo *K*α radiationμ = 0.18 mm^−1^*T* = 294 K0.39 × 0.28 × 0.19 mm ### Data collection {#sec2.1.2} Bruker APEX CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.934, *T* ~max~ = 0.96817406 measured reflections4323 independent reflections2395 reflections with *I* \> 2s*I*)*R* ~int~ = 0.048 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.047*wR*(*F* ^2^) = 0.119*S* = 1.014323 reflections229 parametersH-atom parameters constrainedΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.26 e Å^−3^ {#d5e387} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]; Atwood & Barbour, 2003[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000420/bh2332sup1.cif](http://dx.doi.org/10.1107/S1600536811000420/bh2332sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000420/bh2332Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000420/bh2332Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bh2332&file=bh2332sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bh2332sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bh2332&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BH2332](http://scripts.iucr.org/cgi-bin/sendsup?bh2332)). The author thanks Dr JA Gertenbach at the Central Analytical Facility (CAF) of the University of Stellenbosch for the data collection. He would also like to thank SASOL and the University of Stellenbosch for financial assistance. Comment ======= In an attempt to synthesize phosphinite derivatives of benzoxazole ligands the title compound, 2-methyl-1,3-benzoxazol-4-yl diphenylphosphinate, was formed as the major product (Fig. 1). All bond lengths are within normal values (Bruno *et al.*, 2004) and compare well with related benzoxazole structures (Dreher *et al.*, 1982; Mrozek *et al.*, 1999; Qu *et al.*, 2008). In the molecular structure, the planar benzoxazole moiety is attached to the slightly distorted tetrahedral P12 atom \[O25---P12---O11 115.37 (8)°, O25---P12---C13 113.91 (9)°, O11---P12---C19 104.76 (8)°\] through O11. No significant intermolecular interactions are observed in the orthorhombic crystal structure (Fig. 2). Experimental {#experimental} ============ To a flask containing 2-methyl-1,3-benzoxazol-4-ol (50 mg, 0.34 mmol), was added dry tetrahydrofuran (6 ml) and the mixture was cooled to 233 K (-40 °C). To this solution was added triethylamine (0.071 ml, 0.51 mmol) and the reaction mixture was left stirring for 15 min. Diphenylphosphine chloride (0.070 ml, 0.37 mmol) in dry tetrahydrofuran (1 ml) was added dropwise to the reaction solution and on completion of addition was left to stir for a further 10 min. at -40 °C. The reaction mixture was warmed to room temperature and left to stir overnight. The mixture was filtered through Celite and the solvent removed under vacuum to leave a whitish oil. Column chromatography (SiO~2~, eluting with 1:3 ethyl acetate/petroleum ether followed by 1:1 ethyl acetate/petroleum ether) furnished the title compound as a white solid (71 mg, 60% yield). X-ray quality crystals were formed by slow diffusion of petroleum ether into a dichloromethane solution of the title compound. Refinement {#refinement} ========== Structure solution and refinement were performed using the *SHELX97* suite of programs (Sheldrick, 2008). All H atoms were placed in calculated positions, using a riding model (C---H \[aromatic\] = 0.93, C---H \[methyl\] = 0.96 Å), with fixed isotropic displacement parameters. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 50% probability ellipsoids. ::: ![](e-67-0o339-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Molecular packing of the title compound (viewed along the a axis). ::: ![](e-67-0o339-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e118 .table-wrap} ------------------------- --------------------------------------- C~20~H~16~NO~3~P *F*(000) = 1456 *M~r~* = 349.31 *D*~x~ = 1.327 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 2232 reflections *a* = 9.4239 (4) Å θ = 2.6--21.4° *b* = 15.7574 (6) Å µ = 0.18 mm^−1^ *c* = 23.5398 (8) Å *T* = 294 K *V* = 3495.6 (2) Å^3^ Shard, colourless *Z* = 8 0.39 × 0.28 × 0.19 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e240 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEX CCD area-detector diffractometer 4323 independent reflections Radiation source: fine-focus sealed tube 2395 reflections with *I* \> 2s˘*I*) graphite *R*~int~ = 0.048 ω scans θ~max~ = 28.3°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −9→12 *T*~min~ = 0.934, *T*~max~ = 0.968 *k* = −20→20 17406 measured reflections *l* = −31→27 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e351 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.047 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.119 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0424*P*)^2^ + 0.590*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4323 reflections (Δ/σ)~max~ = 0.001 229 parameters Δρ~max~ = 0.17 e Å^−3^ 0 restraints Δρ~min~ = −0.26 e Å^−3^ 0 constraints ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e514 .table-wrap} ----- -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 1.0692 (3) 0.38155 (17) 0.26208 (12) 0.0919 (9) H1A 1.0661 0.4112 0.2977 0.138\* H1B 1.0397 0.4190 0.2321 0.138\* H1C 1.1643 0.3625 0.2549 0.138\* C2 0.9726 (2) 0.30737 (14) 0.26439 (10) 0.0637 (6) O3 0.95849 (15) 0.26057 (10) 0.21540 (6) 0.0675 (5) C4 0.8664 (2) 0.19615 (14) 0.22996 (9) 0.0542 (5) C5 0.8185 (2) 0.13016 (16) 0.19692 (9) 0.0648 (6) H5 0.8464 0.1232 0.1593 0.078\* C6 0.7269 (2) 0.07556 (15) 0.22317 (10) 0.0665 (6) H6 0.6905 0.0301 0.2026 0.080\* C7 0.6858 (2) 0.08550 (14) 0.28007 (9) 0.0599 (6) H7 0.6227 0.0472 0.2964 0.072\* C8 0.7383 (2) 0.15153 (13) 0.31183 (8) 0.0505 (5) C9 0.8305 (2) 0.20841 (12) 0.28635 (8) 0.0477 (5) N10 0.89952 (18) 0.28056 (11) 0.30715 (7) 0.0575 (5) O11 0.70042 (15) 0.16648 (8) 0.36812 (5) 0.0582 (4) P12 0.66708 (6) 0.09284 (4) 0.41346 (2) 0.0517 (2) C13 0.6671 (2) 0.15461 (13) 0.47700 (8) 0.0502 (5) C14 0.5843 (2) 0.12659 (15) 0.52184 (9) 0.0617 (6) H14 0.5311 0.0772 0.5180 0.074\* C15 0.5800 (2) 0.17110 (17) 0.57194 (9) 0.0698 (7) H15 0.5233 0.1519 0.6016 0.084\* C16 0.6584 (2) 0.24348 (16) 0.57858 (10) 0.0678 (7) H16 0.6545 0.2735 0.6126 0.081\* C17 0.7424 (3) 0.27171 (15) 0.53511 (11) 0.0726 (7) H17 0.7968 0.3205 0.5398 0.087\* C18 0.7468 (3) 0.22806 (13) 0.48430 (9) 0.0639 (6) H18 0.8035 0.2479 0.4548 0.077\* C19 0.8204 (2) 0.02618 (12) 0.41212 (8) 0.0505 (5) C20 0.8072 (3) −0.05892 (14) 0.39910 (10) 0.0702 (7) H20 0.7181 −0.0814 0.3913 0.084\* C21 0.9249 (3) −0.11072 (16) 0.39760 (12) 0.0866 (8) H21 0.9150 −0.1678 0.3885 0.104\* C22 1.0558 (3) −0.07849 (18) 0.40944 (11) 0.0839 (8) H22 1.1348 −0.1139 0.4088 0.101\* C23 1.0718 (3) 0.00536 (19) 0.42221 (11) 0.0834 (8) H23 1.1616 0.0272 0.4297 0.100\* C24 0.9548 (3) 0.05755 (15) 0.42402 (10) 0.0709 (7) H24 0.9659 0.1145 0.4333 0.085\* O25 0.53499 (15) 0.04578 (9) 0.40384 (6) 0.0670 (5) ----- -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1057 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0868 (19) 0.0779 (18) 0.111 (2) −0.0161 (15) 0.0206 (16) 0.0018 (16) C2 0.0600 (13) 0.0646 (14) 0.0665 (16) 0.0027 (12) 0.0041 (12) 0.0027 (13) O3 0.0706 (10) 0.0740 (11) 0.0577 (10) 0.0022 (8) 0.0158 (8) 0.0062 (8) C4 0.0541 (12) 0.0603 (13) 0.0482 (12) 0.0089 (10) 0.0040 (10) 0.0085 (11) C5 0.0728 (15) 0.0778 (16) 0.0439 (12) 0.0118 (13) 0.0024 (11) −0.0043 (12) C6 0.0727 (15) 0.0687 (15) 0.0582 (14) 0.0022 (12) −0.0032 (12) −0.0118 (12) C7 0.0651 (14) 0.0592 (14) 0.0555 (13) −0.0002 (11) 0.0025 (10) 0.0012 (11) C8 0.0595 (12) 0.0517 (12) 0.0403 (11) 0.0081 (10) 0.0028 (9) 0.0025 (10) C9 0.0501 (11) 0.0517 (12) 0.0413 (11) 0.0090 (9) −0.0010 (9) 0.0041 (9) N10 0.0582 (11) 0.0588 (11) 0.0555 (11) 0.0024 (9) 0.0006 (9) 0.0028 (9) O11 0.0817 (10) 0.0508 (8) 0.0422 (8) 0.0052 (7) 0.0118 (7) 0.0046 (6) P12 0.0586 (4) 0.0516 (4) 0.0449 (4) −0.0010 (3) 0.0046 (2) 0.0041 (2) C13 0.0532 (11) 0.0504 (12) 0.0470 (12) 0.0049 (10) 0.0059 (9) 0.0031 (10) C14 0.0590 (13) 0.0721 (15) 0.0538 (14) −0.0065 (11) 0.0063 (10) −0.0019 (12) C15 0.0622 (14) 0.0961 (19) 0.0512 (14) 0.0002 (13) 0.0122 (11) −0.0042 (13) C16 0.0688 (15) 0.0790 (17) 0.0555 (14) 0.0165 (13) 0.0034 (11) −0.0161 (12) C17 0.0850 (17) 0.0587 (14) 0.0740 (17) −0.0007 (13) 0.0058 (14) −0.0115 (13) C18 0.0788 (15) 0.0540 (13) 0.0589 (14) −0.0003 (12) 0.0163 (11) 0.0014 (11) C19 0.0635 (13) 0.0450 (11) 0.0432 (11) −0.0031 (10) 0.0061 (9) 0.0025 (9) C20 0.0791 (16) 0.0538 (14) 0.0777 (16) −0.0058 (12) 0.0103 (12) −0.0039 (12) C21 0.109 (2) 0.0509 (15) 0.100 (2) 0.0125 (15) 0.0238 (17) −0.0060 (14) C22 0.091 (2) 0.080 (2) 0.0803 (18) 0.0298 (16) 0.0098 (15) 0.0116 (15) C23 0.0668 (16) 0.088 (2) 0.095 (2) 0.0125 (15) −0.0068 (14) −0.0001 (16) C24 0.0698 (15) 0.0566 (14) 0.0864 (18) 0.0029 (12) −0.0041 (13) −0.0074 (13) O25 0.0622 (9) 0.0766 (11) 0.0620 (10) −0.0109 (8) −0.0011 (7) 0.0023 (8) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1526 .table-wrap} ----------------------- -------------- ----------------------- -------------- P12---C13 1.785 (2) C5---C6 1.366 (3) P12---C19 1.786 (2) C5---H5 0.9300 P12---O11 1.6075 (14) C24---C23 1.377 (3) P12---O25 1.4665 (15) C24---H24 0.9300 C19---C20 1.381 (3) C18---C17 1.380 (3) C19---C24 1.388 (3) C18---H18 0.9300 O11---C8 1.392 (2) C15---C14 1.373 (3) C13---C14 1.385 (3) C15---H15 0.9300 C13---C18 1.390 (3) C14---H14 0.9300 C9---C4 1.383 (3) C20---C21 1.378 (3) C9---C8 1.385 (3) C20---H20 0.9300 C9---N10 1.398 (2) C6---H6 0.9300 O3---C2 1.375 (3) C2---C1 1.483 (3) O3---C4 1.379 (2) C17---H17 0.9300 N10---C2 1.291 (3) C21---C22 1.363 (4) C8---C7 1.373 (3) C21---H21 0.9300 C7---C6 1.403 (3) C22---C23 1.363 (4) C7---H7 0.9300 C22---H22 0.9300 C4---C5 1.375 (3) C23---H23 0.9300 C16---C15 1.368 (3) C1---H1A 0.9600 C16---C17 1.368 (3) C1---H1B 0.9600 C16---H16 0.9300 C1---H1C 0.9600 C13---P12---C19 109.59 (9) C17---C18---C13 120.4 (2) O11---P12---C13 99.36 (8) C17---C18---H18 119.8 O25---P12---C13 113.91 (9) C13---C18---H18 119.8 O11---P12---C19 104.76 (8) C16---C15---C14 120.6 (2) O25---P12---C19 112.73 (9) C16---C15---H15 119.7 O25---P12---O11 115.37 (8) C14---C15---H15 119.7 C20---C19---C24 118.2 (2) C15---C14---C13 120.5 (2) C20---C19---P12 120.14 (17) C15---C14---H14 119.7 C24---C19---P12 121.66 (16) C13---C14---H14 119.7 C8---O11---P12 124.04 (13) C21---C20---C19 120.6 (2) C14---C13---C18 118.41 (19) C21---C20---H20 119.7 C14---C13---P12 117.69 (16) C19---C20---H20 119.7 C18---C13---P12 123.90 (15) C5---C6---C7 122.4 (2) C4---C9---C8 118.61 (19) C5---C6---H6 118.8 C4---C9---N10 109.61 (18) C7---C6---H6 118.8 C8---C9---N10 131.78 (18) N10---C2---O3 115.3 (2) C2---O3---C4 104.30 (16) N10---C2---C1 127.9 (2) C2---N10---C9 103.96 (18) O3---C2---C1 116.8 (2) C7---C8---C9 118.71 (18) C16---C17---C18 120.2 (2) C7---C8---O11 123.65 (19) C16---C17---H17 119.9 C9---C8---O11 117.61 (18) C18---C17---H17 119.9 C8---C7---C6 120.3 (2) C22---C21---C20 120.2 (2) C8---C7---H7 119.8 C22---C21---H21 119.9 C6---C7---H7 119.8 C20---C21---H21 119.9 C5---C4---O3 128.53 (19) C21---C22---C23 120.4 (3) C5---C4---C9 124.6 (2) C21---C22---H22 119.8 O3---C4---C9 106.86 (19) C23---C22---H22 119.8 C15---C16---C17 119.9 (2) C22---C23---C24 119.8 (3) C15---C16---H16 120.1 C22---C23---H23 120.1 C17---C16---H16 120.1 C24---C23---H23 120.1 C6---C5---C4 115.3 (2) C2---C1---H1A 109.5 C6---C5---H5 122.3 C2---C1---H1B 109.5 C4---C5---H5 122.3 H1A---C1---H1B 109.5 C23---C24---C19 120.8 (2) C2---C1---H1C 109.5 C23---C24---H24 119.6 H1A---C1---H1C 109.5 C19---C24---H24 119.6 H1B---C1---H1C 109.5 O25---P12---C19---C20 4.2 (2) N10---C9---C4---C5 179.05 (19) O11---P12---C19---C20 −122.00 (18) C8---C9---C4---O3 −179.84 (16) C13---P12---C19---C20 132.20 (18) N10---C9---C4---O3 0.2 (2) O25---P12---C19---C24 −175.71 (17) O3---C4---C5---C6 −179.98 (19) O11---P12---C19---C24 58.08 (19) C9---C4---C5---C6 1.4 (3) C13---P12---C19---C24 −47.7 (2) C20---C19---C24---C23 0.7 (3) O25---P12---O11---C8 −70.10 (17) P12---C19---C24---C23 −179.33 (18) C13---P12---O11---C8 167.71 (15) C14---C13---C18---C17 −0.2 (3) C19---P12---O11---C8 54.45 (17) P12---C13---C18---C17 −179.16 (17) O25---P12---C13---C14 28.64 (19) C17---C16---C15---C14 −0.3 (4) O11---P12---C13---C14 151.88 (16) C16---C15---C14---C13 −0.5 (3) C19---P12---C13---C14 −98.69 (17) C18---C13---C14---C15 0.8 (3) O25---P12---C13---C18 −152.41 (17) P12---C13---C14---C15 179.80 (17) O11---P12---C13---C18 −29.17 (19) C24---C19---C20---C21 −0.5 (3) C19---P12---C13---C18 80.26 (19) P12---C19---C20---C21 179.57 (19) C4---C9---N10---C2 −0.6 (2) C4---C5---C6---C7 −0.7 (3) C8---C9---N10---C2 179.4 (2) C8---C7---C6---C5 −0.4 (3) C4---C9---C8---C7 −0.2 (3) C9---N10---C2---O3 0.9 (2) N10---C9---C8---C7 179.73 (19) C9---N10---C2---C1 −178.8 (2) C4---C9---C8---O11 −178.21 (17) C4---O3---C2---N10 −0.8 (2) N10---C9---C8---O11 1.8 (3) C4---O3---C2---C1 178.93 (19) P12---O11---C8---C7 34.9 (3) C15---C16---C17---C18 0.9 (4) P12---O11---C8---C9 −147.28 (15) C13---C18---C17---C16 −0.6 (3) C9---C8---C7---C6 0.9 (3) C19---C20---C21---C22 0.5 (4) O11---C8---C7---C6 178.74 (19) C20---C21---C22---C23 −0.8 (4) C2---O3---C4---C5 −178.5 (2) C21---C22---C23---C24 1.0 (4) C2---O3---C4---C9 0.3 (2) C19---C24---C23---C22 −1.0 (4) C8---C9---C4---C5 −1.0 (3) ----------------------- -------------- ----------------------- -------------- ::: Table 1 ::: {.caption} ###### Selected geometric parameters (Å, °) ::: ::: {#d32e461 .table-wrap} ----------- ------------- P12---C13 1.785 (2) P12---C19 1.786 (2) P12---O11 1.6075 (14) P12---O25 1.4665 (15) ----------- ------------- ::: ::: {#d32e484 .table-wrap} ----------------- ------------ C13---P12---C19 109.59 (9) O11---P12---C13 99.36 (8) O25---P12---C13 113.91 (9) O11---P12---C19 104.76 (8) O25---P12---C19 112.73 (9) O25---P12---O11 115.37 (8) ----------------- ------------ :::
PubMed Central
2024-06-05T04:04:16.608576
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051727/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o339", "authors": [ { "first": "Dewald J.", "last": "Kleinhans" } ] }
PMC3051728
Related literature {#sec1} ================== For arelated structure, see: Ge *et al.* (2007[@bb2]). For applications of nitro­gen-containing heterocyclic compounds in agrochemicals and pharmaceuticals, see: Ge *et al.* (2009*a* [@bb3],*b* [@bb5], 2011[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~20~N~2~O~2~*M* *~r~* = 320.38Triclinic,*a* = 7.666 (4) Å*b* = 10.160 (6) Å*c* = 11.381 (7) Åα = 83.991 (9)°β = 87.466 (9)°γ = 85.47 (1)°*V* = 878.2 (9) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 298 K0.21 × 0.16 × 0.12 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1997[@bb1]) *T* ~min~ = 0.984, *T* ~max~ = 0.9914489 measured reflections3045 independent reflections2182 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.066*wR*(*F* ^2^) = 0.220*S* = 1.063045 reflections217 parametersH-atom parameters constrainedΔρ~max~ = 0.34 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e349} Data collection: *SMART* (Bruker, 1997[@bb1]); cell refinement: *SAINT* (Bruker, 1997[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002339/jh2257sup1.cif](http://dx.doi.org/10.1107/S1600536811002339/jh2257sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002339/jh2257Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002339/jh2257Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2257&file=jh2257sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2257sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2257&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2257](http://scripts.iucr.org/cgi-bin/sendsup?jh2257)). Comment ======= Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge *et al.*; 2011, 2009*a*, 2009*b*). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable efforts have been devoted to the development of novel pyrazole compounds. We report here the crystal structure of the title compound, (I) (Fig. 1) Experimental {#experimental} ============ A mixture of ethyl 3-*p*-tolyl-1*H*-pyrazole-5-carboxylate (0.02 mol), benzyl chloride (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 10 h. The solvent was removed under reduced pressure and an product was isolated by column chromatography on silica gel (yield 82%). Crystals of (I) suitable for X-ray diffraction were obtained by slow cooling of the refluxed solution of the product in ethyl acetate at room temperature for 2 d. Refinement {#refinement} ========== All H atoms were placed in geometrically calculated positions and refined using a riding model with C---H = 0.97 Å (for CH~2~ groups) and 0.96 Å (for CH~3~ groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH~3~ groups) the equivalent displacement parameter of their parent atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level. ::: ![](e-67-0o468-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e112 .table-wrap} ---------------------- --------------------------------------- C~20~H~20~N~2~O~2~ *Z* = 2 *M~r~* = 320.38 *F*(000) = 340 Triclinic, *P*1 *D*~x~ = 1.212 Mg m^−3^ *a* = 7.666 (4) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 10.160 (6) Å Cell parameters from 1778 reflections *c* = 11.381 (7) Å θ = 2.6--24.2° α = 83.991 (9)° µ = 0.08 mm^−1^ β = 87.466 (9)° *T* = 298 K γ = 85.47 (1)° BLOCK, white *V* = 878.2 (9) Å^3^ 0.21 × 0.16 × 0.12 mm ---------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e243 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 3045 independent reflections Radiation source: fine-focus sealed tube 2182 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 phi and ω scans θ~max~ = 25.1°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Bruker, 1997) *h* = −9→8 *T*~min~ = 0.984, *T*~max~ = 0.991 *k* = −12→9 4489 measured reflections *l* = −13→13 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e358 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.066 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.220 H-atom parameters constrained *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1348*P*)^2^ + 0.1525*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3045 reflections (Δ/σ)~max~ \< 0.001 217 parameters Δρ~max~ = 0.34 e Å^−3^ 0 restraints Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e515 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e614 .table-wrap} ------ ------------ ------------ -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.3059 (3) 0.5585 (2) 0.70282 (17) 0.0826 (7) O2 0.2483 (3) 0.6693 (2) 0.86211 (17) 0.0703 (6) N1 0.3539 (3) 0.3185 (2) 0.86746 (18) 0.0548 (6) N2 0.3537 (3) 0.2290 (2) 0.96361 (19) 0.0569 (6) C1 0.1960 (6) 0.9004 (4) 0.8654 (3) 0.0955 (11) H1A 0.1004 0.8824 0.9206 0.143\* H1B 0.1698 0.9836 0.8191 0.143\* H1C 0.3006 0.9049 0.9077 0.143\* C2 0.2227 (5) 0.7932 (3) 0.7865 (3) 0.0764 (9) H2A 0.1213 0.7919 0.7387 0.092\* H2B 0.3246 0.8065 0.7342 0.092\* C3 0.2870 (3) 0.5601 (3) 0.8081 (2) 0.0597 (7) C4 0.3021 (3) 0.4439 (3) 0.8954 (2) 0.0528 (6) C5 0.2658 (3) 0.4323 (3) 1.0152 (2) 0.0551 (7) H5 0.2268 0.5002 1.0609 0.066\* C6 0.2990 (3) 0.2986 (3) 1.0543 (2) 0.0517 (6) C7 0.2828 (3) 0.2321 (3) 1.1751 (2) 0.0523 (6) C8 0.2692 (4) 0.3059 (3) 1.2712 (2) 0.0625 (7) H8 0.2707 0.3978 1.2586 0.075\* C9 0.2535 (4) 0.2459 (3) 1.3851 (2) 0.0669 (8) H9 0.2442 0.2982 1.4478 0.080\* C10 0.2512 (4) 0.1096 (3) 1.4083 (2) 0.0616 (7) C11 0.2643 (4) 0.0367 (3) 1.3121 (3) 0.0717 (8) H11 0.2620 −0.0551 1.3247 0.086\* C12 0.2806 (4) 0.0958 (3) 1.1980 (2) 0.0648 (8) H12 0.2903 0.0433 1.1355 0.078\* C13 0.2361 (5) 0.0423 (4) 1.5327 (3) 0.0880 (10) H13A 0.2140 −0.0490 1.5301 0.132\* H13B 0.1414 0.0861 1.5752 0.132\* H13C 0.3434 0.0471 1.5719 0.132\* C14 0.4189 (3) 0.2742 (3) 0.7545 (2) 0.0608 (7) H14A 0.3443 0.3163 0.6925 0.073\* H14B 0.4110 0.1791 0.7574 0.073\* C15 0.6048 (3) 0.3050 (2) 0.7234 (2) 0.0485 (6) C16 0.6535 (4) 0.3469 (3) 0.6073 (2) 0.0596 (7) H16 0.5692 0.3606 0.5501 0.071\* C17 0.8246 (4) 0.3682 (3) 0.5762 (3) 0.0730 (9) H17 0.8563 0.3945 0.4979 0.088\* C18 0.9483 (4) 0.3509 (4) 0.6601 (3) 0.0766 (9) H18 1.0637 0.3675 0.6390 0.092\* C19 0.9039 (4) 0.3090 (3) 0.7758 (3) 0.0692 (8) H19 0.9892 0.2966 0.8324 0.083\* C20 0.7326 (3) 0.2855 (3) 0.8074 (2) 0.0555 (7) H20 0.7025 0.2566 0.8853 0.067\* ------ ------------ ------------ -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1186 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.1089 (17) 0.0879 (17) 0.0500 (12) −0.0083 (13) −0.0052 (10) −0.0005 (11) O2 0.0972 (15) 0.0575 (12) 0.0542 (11) −0.0067 (10) −0.0058 (9) 0.0058 (9) N1 0.0577 (12) 0.0589 (14) 0.0494 (12) −0.0112 (10) 0.0018 (9) −0.0093 (10) N2 0.0608 (13) 0.0548 (13) 0.0561 (13) −0.0100 (10) 0.0022 (10) −0.0083 (10) C1 0.131 (3) 0.061 (2) 0.091 (2) −0.0049 (19) −0.015 (2) 0.0112 (18) C2 0.091 (2) 0.065 (2) 0.0695 (19) −0.0083 (16) −0.0136 (16) 0.0169 (16) C3 0.0604 (16) 0.0674 (18) 0.0520 (16) −0.0112 (13) −0.0059 (11) −0.0031 (13) C4 0.0542 (14) 0.0551 (16) 0.0501 (14) −0.0110 (11) −0.0027 (11) −0.0037 (12) C5 0.0643 (16) 0.0517 (15) 0.0500 (14) −0.0065 (12) 0.0008 (11) −0.0082 (11) C6 0.0545 (14) 0.0512 (15) 0.0509 (14) −0.0089 (11) 0.0025 (11) −0.0098 (11) C7 0.0545 (14) 0.0491 (15) 0.0531 (14) −0.0051 (11) 0.0026 (11) −0.0056 (11) C8 0.0851 (19) 0.0470 (15) 0.0561 (16) −0.0106 (13) 0.0011 (13) −0.0061 (12) C9 0.089 (2) 0.0595 (18) 0.0530 (16) −0.0082 (15) 0.0023 (14) −0.0104 (13) C10 0.0716 (17) 0.0582 (17) 0.0534 (15) −0.0028 (13) 0.0007 (12) −0.0007 (12) C11 0.103 (2) 0.0443 (16) 0.0660 (18) −0.0029 (14) 0.0045 (16) −0.0023 (13) C12 0.091 (2) 0.0462 (15) 0.0567 (16) −0.0007 (13) 0.0029 (14) −0.0081 (12) C13 0.123 (3) 0.079 (2) 0.0594 (19) −0.008 (2) −0.0044 (18) 0.0073 (16) C14 0.0632 (16) 0.0726 (19) 0.0512 (14) −0.0156 (13) −0.0016 (12) −0.0198 (13) C15 0.0543 (14) 0.0459 (14) 0.0472 (13) −0.0054 (10) −0.0033 (10) −0.0120 (10) C16 0.0669 (17) 0.0637 (17) 0.0481 (14) −0.0030 (13) −0.0076 (12) −0.0048 (12) C17 0.0712 (19) 0.087 (2) 0.0594 (17) −0.0095 (16) 0.0107 (14) −0.0026 (15) C18 0.0563 (17) 0.092 (2) 0.081 (2) −0.0046 (15) 0.0081 (15) −0.0122 (18) C19 0.0549 (16) 0.084 (2) 0.0699 (18) 0.0027 (14) −0.0142 (13) −0.0154 (16) C20 0.0669 (16) 0.0551 (15) 0.0456 (13) −0.0038 (12) −0.0063 (11) −0.0096 (11) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1703 .table-wrap} -------------------- ------------ ----------------------- ------------- O1---C3 1.202 (3) C9---H9 0.9300 O2---C3 1.332 (3) C10---C11 1.381 (4) O2---C2 1.453 (3) C10---C13 1.510 (4) N1---N2 1.348 (3) C11---C12 1.376 (4) N1---C4 1.369 (3) C11---H11 0.9300 N1---C14 1.461 (3) C12---H12 0.9300 N2---C6 1.345 (3) C13---H13A 0.9600 C1---C2 1.480 (5) C13---H13B 0.9600 C1---H1A 0.9600 C13---H13C 0.9600 C1---H1B 0.9600 C14---C15 1.502 (3) C1---H1C 0.9600 C14---H14A 0.9700 C2---H2A 0.9700 C14---H14B 0.9700 C2---H2B 0.9700 C15---C20 1.388 (4) C3---C4 1.463 (4) C15---C16 1.389 (4) C4---C5 1.374 (3) C16---C17 1.372 (4) C5---C6 1.392 (4) C16---H16 0.9300 C5---H5 0.9300 C17---C18 1.364 (4) C6---C7 1.471 (4) C17---H17 0.9300 C7---C12 1.384 (4) C18---C19 1.377 (4) C7---C8 1.386 (4) C18---H18 0.9300 C8---C9 1.378 (4) C19---C20 1.379 (4) C8---H8 0.9300 C19---H19 0.9300 C9---C10 1.384 (4) C20---H20 0.9300 C3---O2---C2 116.6 (2) C11---C10---C13 121.0 (3) N2---N1---C4 111.8 (2) C9---C10---C13 122.1 (3) N2---N1---C14 118.5 (2) C12---C11---C10 122.0 (3) C4---N1---C14 129.5 (2) C12---C11---H11 119.0 C6---N2---N1 105.3 (2) C10---C11---H11 119.0 C2---C1---H1A 109.5 C11---C12---C7 121.0 (3) C2---C1---H1B 109.5 C11---C12---H12 119.5 H1A---C1---H1B 109.5 C7---C12---H12 119.5 C2---C1---H1C 109.5 C10---C13---H13A 109.5 H1A---C1---H1C 109.5 C10---C13---H13B 109.5 H1B---C1---H1C 109.5 H13A---C13---H13B 109.5 O2---C2---C1 106.8 (3) C10---C13---H13C 109.5 O2---C2---H2A 110.4 H13A---C13---H13C 109.5 C1---C2---H2A 110.4 H13B---C13---H13C 109.5 O2---C2---H2B 110.4 N1---C14---C15 113.41 (19) C1---C2---H2B 110.4 N1---C14---H14A 108.9 H2A---C2---H2B 108.6 C15---C14---H14A 108.9 O1---C3---O2 124.5 (3) N1---C14---H14B 108.9 O1---C3---C4 125.5 (3) C15---C14---H14B 108.9 O2---C3---C4 110.0 (2) H14A---C14---H14B 107.7 N1---C4---C5 106.1 (2) C20---C15---C16 118.7 (2) N1---C4---C3 123.6 (2) C20---C15---C14 121.2 (2) C5---C4---C3 130.3 (3) C16---C15---C14 119.9 (2) C4---C5---C6 106.2 (2) C17---C16---C15 120.7 (2) C4---C5---H5 126.9 C17---C16---H16 119.7 C6---C5---H5 126.9 C15---C16---H16 119.7 N2---C6---C5 110.6 (2) C18---C17---C16 119.9 (3) N2---C6---C7 120.6 (2) C18---C17---H17 120.0 C5---C6---C7 128.8 (2) C16---C17---H17 120.0 C12---C7---C8 117.3 (2) C17---C18---C19 120.6 (3) C12---C7---C6 122.4 (2) C17---C18---H18 119.7 C8---C7---C6 120.2 (2) C19---C18---H18 119.7 C9---C8---C7 121.3 (3) C18---C19---C20 119.7 (3) C9---C8---H8 119.4 C18---C19---H19 120.1 C7---C8---H8 119.4 C20---C19---H19 120.1 C8---C9---C10 121.5 (3) C19---C20---C15 120.3 (2) C8---C9---H9 119.3 C19---C20---H20 119.9 C10---C9---H9 119.3 C15---C20---H20 119.9 C11---C10---C9 116.9 (3) C4---N1---N2---C6 0.6 (3) C12---C7---C8---C9 −0.2 (4) C14---N1---N2---C6 176.1 (2) C6---C7---C8---C9 179.8 (2) C3---O2---C2---C1 −175.4 (3) C7---C8---C9---C10 0.2 (5) C2---O2---C3---O1 1.8 (4) C8---C9---C10---C11 −0.4 (5) C2---O2---C3---C4 −177.9 (2) C8---C9---C10---C13 179.3 (3) N2---N1---C4---C5 −0.6 (3) C9---C10---C11---C12 0.6 (5) C14---N1---C4---C5 −175.4 (2) C13---C10---C11---C12 −179.1 (3) N2---N1---C4---C3 −178.8 (2) C10---C11---C12---C7 −0.7 (5) C14---N1---C4---C3 6.4 (4) C8---C7---C12---C11 0.4 (4) O1---C3---C4---N1 5.4 (4) C6---C7---C12---C11 −179.6 (3) O2---C3---C4---N1 −174.9 (2) N2---N1---C14---C15 −99.0 (3) O1---C3---C4---C5 −172.3 (3) C4---N1---C14---C15 75.5 (3) O2---C3---C4---C5 7.4 (4) N1---C14---C15---C20 42.9 (4) N1---C4---C5---C6 0.4 (3) N1---C14---C15---C16 −140.7 (3) C3---C4---C5---C6 178.4 (2) C20---C15---C16---C17 0.2 (4) N1---N2---C6---C5 −0.4 (3) C14---C15---C16---C17 −176.3 (3) N1---N2---C6---C7 −179.9 (2) C15---C16---C17---C18 −1.3 (5) C4---C5---C6---N2 0.0 (3) C16---C17---C18---C19 1.5 (5) C4---C5---C6---C7 179.5 (2) C17---C18---C19---C20 −0.6 (5) N2---C6---C7---C12 −16.0 (4) C18---C19---C20---C15 −0.5 (4) C5---C6---C7---C12 164.6 (3) C16---C15---C20---C19 0.7 (4) N2---C6---C7---C8 164.0 (2) C14---C15---C20---C19 177.2 (2) C5---C6---C7---C8 −15.4 (4) -------------------- ------------ ----------------------- ------------- :::
PubMed Central
2024-06-05T04:04:16.613730
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051728/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o468", "authors": [ { "first": "Yu-Qin", "last": "Li" }, { "first": "Bao-Xiu", "last": "Jia" }, { "first": "Yu-Liang", "last": "Xiao" }, { "first": "Feng-Guang", "last": "Guo" } ] }
PMC3051729
Related literature {#sec1} ================== For related structures, see: Israilov *et al.* (1980[@bb4]); Blanchfield *et al.* (2003[@bb1]). For the chemistry, pharmacology and traditional uses of the title compound, see; Montririttigri *et al.* (2008[@bb5]) and Semwal *et al.* (2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~21~NO~4~*M* *~r~* = 339.38Orthorhombic,*a* = 4.4029 (3) Å*b* = 20.5847 (15) Å*c* = 39.612 (3) Å*V* = 3590.2 (4) Å^3^*Z* = 8Mo *K*α radiationμ = 0.09 mm^−1^*T* = 298 K0.22 × 0.16 × 0.12 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometer31211 measured reflections5054 independent reflections3592 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.071 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.105*wR*(*F* ^2^) = 0.249*S* = 1.25054 reflections453 parametersH-atom parameters constrainedΔρ~max~ = 0.55 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e341} Data collection: *SMART* (Bruker, 2002[@bb2]); cell refinement: *SAINT* (Bruker, 2002[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008)[@bb7]; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008)[@bb7]; molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *SHELXL97* [@bb7]. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001231/hg2768sup1.cif](http://dx.doi.org/10.1107/S1600536811001231/hg2768sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001231/hg2768Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001231/hg2768Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2768&file=hg2768sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2768sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2768&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2768](http://scripts.iucr.org/cgi-bin/sendsup?hg2768)). The authors thank Dr Narongsuk Chaichit, Department of Physics, Faculty of Science, Thammasart University, for the data collection and the Department of Chemistry, Faculty of Science, Kasetsart University, for financial support. Comment ======= Crebanine is an aporphine alkaloid (Israilov *et al.*, 1980; Blanchfield *et al.*, 2003). It was isolated from the crude hexane extract of the dried tuber of Stephania venosa, which is native to Thailand and commonly used for treatment of variety of aliments under the local name \"sabulead\" (Montririttigri *et al.*, 2008; Semwal *et al.*,2010). *S. venosa* tuber and leaves were collected from Prachuabkirikhan province in the southern part of Thailand. The asymmetric unit of the title compound \[systematic name: 9,10-dimethoxy-7-methyl-6,7,7a,8-tetrahydro-5*H*-\[1,3\]dioxolo\[4\',5\':4,5\]benzo\[1,2,3-de\]benzo\[*g*\]quinoline\], C~20~H~21~NO~4~, contains two independent molecules. There is very little difference between the bond lengths and angles of these molecules. The molecules are nearly planar (r.m.s deviation = 0.2894Å and 0.2413 Å). The molecule consists of four fused-rings (A, B, C and D). The six membered-rings B and C are both in distorted half-chair conformations. The porous crystal packing exhibits voids of 131 Å^3^. The structure is devoid of any classical hydrogen bonds. Experimental {#experimental} ============ Crebanine was isolated from the crude hexane extract of the dried tuber of *Stephania venosa*. After purification by classical liquid chromatography on silica gel and recrystallization from hexane-dichloromethane, crebanine was obtained as colorless needles, m.p. 115--116.5°C. Refinement {#refinement} ========== All H atoms were geometrically positioned and treated as riding atoms with distances C---H = 0.96 Å (CH~3~), 0.97 Å (CH~2~), 0.93 Å (CH), and *U*~iso~(H) = 1.20 *U*~eq~(C) for methylene and aromatic, 1.50 *U*~eq~(C) for methyl. The absolute structure could not be determined from the X-ray analysis, but it was known from earlier work on related compounds (Israilov *et al.*, 1980; Blanchfield *et al.*, 2003). 3,504 Friedel pairs were merged before the final refinement. The crystal structure contained solvent accessible voids of 131 Å^3^and showed no electrons in the voids. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of molecule 1 of crebanine showing 50% displacement ellipsoids. ::: ![](e-67-0o402-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The structure of molecule 2 of crebanine showing 50% displacement ellipsoids. ::: ![](e-67-0o402-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e165 .table-wrap} ------------------------------- -------------------------------------- C~20~H~21~NO~4~ *F*(000) = 1440 *M~r~* = 339.38 *D*~x~ = 1.256 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 254 reflections *a* = 4.4029 (3) Å θ = 25--35° *b* = 20.5847 (15) Å µ = 0.09 mm^−1^ *c* = 39.612 (3) Å *T* = 298 K *V* = 3590.2 (4) Å^3^ Needle, colorless *Z* = 8 0.22 × 0.16 × 0.12 mm ------------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e289 .table-wrap} ----------------------------------------------- -------------------------------------- Bruker SMART CCD area-detector diffractometer 3592 reflections with *I* \> 2σ(*I*) Radiation source: Mo Kα *R*~int~ = 0.071 graphite θ~max~ = 28.3°, θ~min~ = 1.4° φ and ω scans *h* = −5→5 31211 measured reflections *k* = −26→26 5054 independent reflections *l* = −51→52 ----------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e389 .table-wrap} ------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ H-atom parameters constrained Least-squares matrix: full *w* = 1/\[σ^2^(*F*~o~^2^) + (0.102*P*)^2^ + 1.8904*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.105 (Δ/σ)~max~ \< 0.001 *wR*(*F*^2^) = 0.249 Δρ~max~ = 0.55 e Å^−3^ *S* = 1.2 Δρ~min~ = −0.25 e Å^−3^ 5054 reflections Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ 453 parameters Extinction coefficient: 0.0011 (10) 0 restraints ------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e564 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e584 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 −0.0157 (14) −0.29778 (18) 0.91783 (10) 0.0651 (14) O2 0.2100 (12) −0.22350 (17) 0.88249 (9) 0.0559 (12) O3 0.4781 (12) 0.06920 (18) 0.82737 (10) 0.0585 (12) O4 0.1040 (10) 0.09746 (18) 0.87877 (11) 0.0541 (11) O5 0.6133 (16) 1.07654 (18) 0.71607 (10) 0.0742 (17) O6 0.4220 (18) 1.14827 (19) 0.67722 (12) 0.089 (2) O7 0.9437 (13) 0.78611 (19) 0.77372 (10) 0.0602 (13) O8 0.5931 (10) 0.75386 (17) 0.72165 (10) 0.0479 (10) N1 −0.2107 (12) −0.0207 (2) 0.98698 (12) 0.0476 (12) N2 0.2578 (11) 0.8658 (2) 0.61320 (11) 0.0434 (11) C1 0.1036 (14) −0.1925 (2) 0.91134 (12) 0.0401 (13) C2 −0.0304 (15) −0.2372 (2) 0.93191 (14) 0.0451 (14) C3 −0.1577 (16) −0.2198 (3) 0.96193 (15) 0.0521 (16) H3A −0.2482 −0.2506 0.9758 0.062\* C4 −0.1484 (14) −0.1539 (3) 0.97130 (14) 0.0448 (14) C5 −0.2810 (18) −0.1329 (3) 1.00402 (14) 0.0589 (17) H5A −0.225 −0.1638 1.0214 0.071\* H5B −0.5008 −0.1327 1.0022 0.071\* C6 −0.1727 (17) −0.0660 (3) 1.01402 (15) 0.065 (2) H6A −0.2863 −0.0512 1.0335 0.078\* H6B 0.0402 −0.068 1.0203 0.078\* C7 −0.0060 (13) −0.0364 (3) 0.95844 (12) 0.0386 (12) H7A 0.2024 −0.0261 0.9653 0.046\* C8 −0.0189 (12) −0.1080 (2) 0.94904 (13) 0.0364 (12) C9 0.1075 (13) −0.1262 (2) 0.91788 (12) 0.0349 (12) C10 0.173 (2) −0.2903 (3) 0.88925 (18) 0.082 (3) H10A 0.3693 −0.3101 0.8935 0.098\* H10B 0.0819 −0.3117 0.8699 0.098\* C11 −0.0825 (13) 0.0045 (2) 0.92741 (13) 0.0407 (13) H11A −0.292 −0.0029 0.9209 0.049\* H11B −0.0597 0.0503 0.9328 0.049\* C12 0.1226 (12) −0.0127 (2) 0.89867 (13) 0.0353 (12) C13 0.2230 (12) −0.0770 (2) 0.89452 (12) 0.0320 (11) C14 0.4221 (14) −0.0913 (3) 0.86779 (13) 0.0398 (13) H14A 0.4952 −0.1333 0.8652 0.048\* C15 0.5107 (15) −0.0432 (3) 0.84522 (13) 0.0444 (14) H15A 0.6409 −0.0535 0.8275 0.053\* C16 0.4091 (14) 0.0190 (2) 0.84870 (13) 0.0387 (13) C17 0.2161 (13) 0.0345 (2) 0.87532 (14) 0.0389 (12) C18 −0.158 (2) 0.0464 (3) 0.99844 (17) 0.077 (2) H18A −0.2857 0.0555 1.0175 0.115\* H18B −0.2052 0.076 0.9805 0.115\* H18C 0.0509 0.0514 1.0048 0.115\* C19 0.674 (2) 0.0563 (3) 0.80014 (17) 0.070 (2) H19A 0.7034 0.0953 0.7872 0.105\* H19B 0.5868 0.0234 0.786 0.105\* H19C 0.8666 0.0415 0.8086 0.105\* C20 0.319 (2) 0.1428 (3) 0.8904 (2) 0.083 (2) H20A 0.226 0.1849 0.8921 0.124\* H20B 0.4864 0.1448 0.8749 0.124\* H20C 0.3915 0.1298 0.9123 0.124\* C21 0.5342 (18) 1.0426 (3) 0.68717 (13) 0.0518 (16) C22 0.413 (2) 1.0858 (3) 0.66409 (16) 0.064 (2) C23 0.3093 (19) 1.0661 (3) 0.63356 (16) 0.0607 (19) H23A 0.2322 1.0957 0.618 0.073\* C24 0.3227 (15) 0.9997 (3) 0.62627 (14) 0.0482 (15) C25 0.2002 (17) 0.9756 (3) 0.59241 (15) 0.0595 (18) H25A −0.02 0.976 0.593 0.071\* H25B 0.2653 1.005 0.5747 0.071\* C26 0.3056 (17) 0.9090 (3) 0.58427 (13) 0.0528 (16) H26A 0.1947 0.8926 0.5649 0.063\* H26B 0.5197 0.91 0.5785 0.063\* C27 0.4581 (12) 0.8834 (2) 0.64149 (12) 0.0350 (12) H27A 0.6677 0.8731 0.6351 0.042\* C28 0.4386 (13) 0.9565 (2) 0.64921 (12) 0.0382 (13) C29 0.5500 (14) 0.9766 (2) 0.68092 (13) 0.0400 (13) C30 0.525 (4) 1.1408 (3) 0.7099 (2) 0.126 (5) H30A 0.366 1.153 0.7255 0.152\* H30B 0.6971 1.1694 0.7136 0.152\* C31 0.3784 (14) 0.8450 (2) 0.67290 (12) 0.0396 (13) H31A 0.1685 0.8532 0.679 0.048\* H31B 0.4002 0.7989 0.6683 0.048\* C32 0.5819 (13) 0.8637 (2) 0.70186 (12) 0.0357 (12) C33 0.6691 (13) 0.9292 (2) 0.70569 (12) 0.0367 (12) C34 0.8646 (16) 0.9456 (3) 0.73220 (13) 0.0463 (15) H34A 0.9318 0.9883 0.7343 0.056\* C35 0.9600 (16) 0.8996 (3) 0.75542 (14) 0.0502 (15) H35A 1.0848 0.9116 0.7733 0.06\* C36 0.8682 (15) 0.8351 (3) 0.75186 (13) 0.0440 (14) C37 0.6859 (14) 0.8179 (2) 0.72494 (13) 0.0382 (13) C38 0.310 (2) 0.7977 (3) 0.60256 (18) 0.075 (2) H38A 0.1769 0.7873 0.5841 0.112\* H38B 0.2695 0.7691 0.6212 0.112\* H38C 0.5171 0.7926 0.5955 0.112\* C39 1.115 (2) 0.8034 (4) 0.80296 (16) 0.082 (3) H39A 1.1537 0.7652 0.8162 0.123\* H39B 1.0024 0.8342 0.8162 0.123\* H39C 1.3046 0.8224 0.7962 0.123\* C40 0.8261 (19) 0.7140 (3) 0.7071 (2) 0.070 (2) H40A 0.7537 0.6701 0.7051 0.105\* H40B 1.0026 0.7148 0.7213 0.105\* H40C 0.8778 0.7303 0.6851 0.105\* ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1828 .table-wrap} ----- ------------ ------------- ----------- -------------- ------------ -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.103 (4) 0.039 (2) 0.053 (2) −0.013 (3) 0.001 (3) 0.0042 (18) O2 0.095 (4) 0.0325 (19) 0.040 (2) −0.010 (2) 0.005 (2) −0.0030 (16) O3 0.075 (3) 0.043 (2) 0.057 (2) −0.002 (2) 0.012 (3) 0.0129 (19) O4 0.054 (3) 0.035 (2) 0.073 (3) 0.007 (2) 0.002 (2) 0.0077 (19) O5 0.136 (5) 0.036 (2) 0.051 (2) 0.011 (3) 0.000 (3) −0.0004 (19) O6 0.167 (6) 0.036 (2) 0.064 (3) 0.024 (3) −0.002 (4) 0.006 (2) O7 0.089 (4) 0.046 (2) 0.045 (2) 0.012 (3) −0.012 (3) 0.0082 (18) O8 0.049 (2) 0.036 (2) 0.059 (2) −0.0048 (19) 0.004 (2) 0.0129 (17) N1 0.045 (3) 0.053 (3) 0.045 (3) 0.009 (2) 0.001 (2) −0.010 (2) N2 0.042 (3) 0.044 (2) 0.044 (3) −0.002 (2) −0.003 (2) 0.002 (2) C1 0.050 (3) 0.038 (3) 0.032 (3) −0.011 (3) −0.008 (3) 0.001 (2) C2 0.059 (4) 0.035 (3) 0.042 (3) −0.005 (3) −0.009 (3) 0.003 (2) C3 0.057 (4) 0.051 (3) 0.048 (3) −0.003 (3) −0.004 (3) 0.023 (3) C4 0.041 (3) 0.046 (3) 0.047 (3) 0.000 (3) −0.005 (3) 0.008 (2) C5 0.065 (4) 0.068 (4) 0.044 (3) 0.005 (4) 0.010 (3) 0.008 (3) C6 0.057 (4) 0.099 (5) 0.038 (3) 0.017 (4) 0.008 (3) −0.003 (3) C7 0.029 (3) 0.049 (3) 0.038 (3) 0.005 (3) −0.004 (2) −0.006 (2) C8 0.030 (3) 0.039 (3) 0.040 (3) −0.001 (2) −0.010 (2) 0.000 (2) C9 0.039 (3) 0.036 (3) 0.030 (2) −0.003 (2) −0.008 (2) 0.001 (2) C10 0.139 (8) 0.034 (3) 0.072 (5) −0.025 (5) 0.013 (6) −0.007 (3) C11 0.036 (3) 0.037 (3) 0.048 (3) 0.005 (2) 0.003 (3) 0.001 (2) C12 0.031 (3) 0.036 (3) 0.039 (3) −0.003 (2) −0.007 (2) −0.001 (2) C13 0.033 (3) 0.030 (2) 0.033 (2) −0.009 (2) −0.006 (2) 0.000 (2) C14 0.045 (3) 0.034 (3) 0.040 (3) −0.004 (3) −0.002 (3) −0.001 (2) C15 0.052 (4) 0.048 (3) 0.033 (3) −0.004 (3) 0.002 (3) 0.000 (2) C16 0.053 (3) 0.028 (2) 0.035 (3) −0.004 (3) −0.007 (3) 0.004 (2) C17 0.039 (3) 0.030 (3) 0.047 (3) 0.001 (2) −0.009 (3) 0.002 (2) C18 0.094 (6) 0.076 (5) 0.061 (4) 0.008 (5) 0.016 (4) −0.029 (4) C19 0.085 (5) 0.064 (4) 0.061 (4) 0.001 (4) 0.019 (4) 0.022 (3) C20 0.081 (6) 0.044 (4) 0.123 (7) −0.002 (4) 0.005 (6) −0.018 (4) C21 0.079 (5) 0.041 (3) 0.035 (3) 0.008 (3) 0.011 (3) 0.006 (2) C22 0.097 (6) 0.038 (3) 0.057 (4) 0.018 (4) 0.014 (4) 0.010 (3) C23 0.083 (5) 0.048 (4) 0.051 (4) 0.020 (4) 0.002 (4) 0.023 (3) C24 0.057 (4) 0.047 (3) 0.040 (3) 0.003 (3) 0.005 (3) 0.008 (3) C25 0.061 (4) 0.065 (4) 0.053 (4) 0.000 (4) −0.008 (3) 0.020 (3) C26 0.061 (4) 0.061 (4) 0.037 (3) 0.003 (3) −0.006 (3) 0.005 (3) C27 0.029 (3) 0.038 (3) 0.038 (3) 0.006 (2) 0.000 (2) 0.001 (2) C28 0.044 (3) 0.038 (3) 0.033 (3) 0.002 (3) 0.012 (3) 0.012 (2) C29 0.044 (3) 0.033 (3) 0.043 (3) 0.005 (3) 0.010 (3) 0.007 (2) C30 0.262 (16) 0.037 (4) 0.079 (5) 0.022 (7) −0.040 (9) −0.004 (4) C31 0.042 (3) 0.037 (3) 0.040 (3) 0.001 (3) 0.001 (3) 0.007 (2) C32 0.036 (3) 0.035 (3) 0.036 (3) 0.002 (2) 0.009 (2) 0.000 (2) C33 0.045 (3) 0.035 (3) 0.030 (3) 0.006 (3) 0.010 (2) 0.004 (2) C34 0.062 (4) 0.036 (3) 0.041 (3) 0.001 (3) 0.000 (3) −0.002 (2) C35 0.058 (4) 0.052 (3) 0.041 (3) 0.006 (3) −0.006 (3) −0.005 (3) C36 0.056 (4) 0.041 (3) 0.035 (3) 0.010 (3) 0.003 (3) 0.004 (2) C37 0.049 (3) 0.030 (3) 0.036 (3) 0.001 (2) 0.012 (3) 0.006 (2) C38 0.094 (6) 0.065 (4) 0.067 (4) −0.005 (5) −0.020 (5) −0.012 (3) C39 0.119 (7) 0.074 (5) 0.052 (4) 0.034 (5) −0.026 (5) 0.004 (3) C40 0.071 (5) 0.043 (3) 0.095 (5) 0.000 (4) 0.004 (5) −0.001 (3) ----- ------------ ------------- ----------- -------------- ------------ -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2735 .table-wrap} ----------------------- ------------ ----------------------- ------------ O1---C2 1.367 (6) C15---H15A 0.93 O1---C10 1.413 (9) C16---C17 1.391 (8) O2---C1 1.390 (7) C18---H18A 0.96 O2---C10 1.411 (7) C18---H18B 0.96 O3---C16 1.370 (6) C18---H18C 0.96 O3---C19 1.407 (8) C19---H19A 0.96 O4---C17 1.393 (6) C19---H19B 0.96 O4---C20 1.408 (8) C19---H19C 0.96 O5---C21 1.386 (7) C20---H20A 0.96 O5---C30 1.400 (8) C20---H20B 0.96 O6---C22 1.389 (7) C20---H20C 0.96 O6---C30 1.380 (9) C21---C29 1.382 (7) O7---C36 1.371 (6) C21---C22 1.383 (9) O7---C39 1.428 (8) C22---C23 1.354 (9) O8---C37 1.385 (6) C23---C24 1.399 (8) O8---C40 1.435 (8) C23---H23A 0.93 N1---C6 1.430 (8) C24---C28 1.370 (7) N1---C18 1.472 (8) C24---C25 1.529 (8) N1---C7 1.481 (7) C25---C26 1.482 (8) N2---C26 1.466 (7) C25---H25A 0.97 N2---C27 1.472 (7) C25---H25B 0.97 N2---C38 1.481 (8) C26---H26A 0.97 C1---C2 1.364 (7) C26---H26B 0.97 C1---C9 1.390 (7) C27---C31 1.515 (7) C2---C3 1.362 (8) C27---C28 1.538 (7) C3---C4 1.406 (8) C27---H27A 0.98 C3---H3A 0.93 C28---C29 1.410 (8) C4---C8 1.412 (7) C29---C33 1.480 (7) C4---C5 1.486 (8) C30---H30A 0.97 C5---C6 1.511 (9) C30---H30B 0.97 C5---H5A 0.97 C31---C32 1.506 (7) C5---H5B 0.97 C31---H31A 0.97 C6---H6A 0.97 C31---H31B 0.97 C6---H6B 0.97 C32---C37 1.391 (7) C7---C8 1.523 (7) C32---C33 1.409 (7) C7---C11 1.528 (7) C33---C34 1.400 (8) C7---H7A 0.98 C34---C35 1.386 (8) C8---C9 1.405 (7) C34---H34A 0.93 C9---C13 1.464 (7) C35---C36 1.394 (8) C10---H10A 0.97 C35---H35A 0.93 C10---H10B 0.97 C36---C37 1.381 (8) C11---C12 1.496 (7) C38---H38A 0.96 C11---H11A 0.97 C38---H38B 0.96 C11---H11B 0.97 C38---H38C 0.96 C12---C17 1.403 (7) C39---H39A 0.96 C12---C13 1.404 (7) C39---H39B 0.96 C13---C14 1.406 (7) C39---H39C 0.96 C14---C15 1.390 (7) C40---H40A 0.96 C14---H14A 0.93 C40---H40B 0.96 C15---C16 1.362 (7) C40---H40C 0.96 C2---O1---C10 104.8 (4) H19B---C19---H19C 109.5 C1---O2---C10 104.6 (5) O4---C20---H20A 109.5 C16---O3---C19 117.8 (5) O4---C20---H20B 109.5 C17---O4---C20 114.3 (5) H20A---C20---H20B 109.5 C21---O5---C30 105.2 (5) O4---C20---H20C 109.5 C22---O6---C30 104.9 (5) H20A---C20---H20C 109.5 C36---O7---C39 117.2 (5) H20B---C20---H20C 109.5 C37---O8---C40 111.8 (5) C29---C21---O5 129.1 (5) C6---N1---C18 111.2 (5) C29---C21---C22 122.2 (6) C6---N1---C7 111.0 (5) O5---C21---C22 108.6 (5) C18---N1---C7 110.1 (5) C23---C22---C21 121.9 (6) C26---N2---C27 111.1 (4) C23---C22---O6 128.4 (6) C26---N2---C38 109.2 (5) C21---C22---O6 109.7 (6) C27---N2---C38 110.9 (5) C22---C23---C24 117.5 (5) C2---C1---C9 123.8 (5) C22---C23---H23A 121.3 C2---C1---O2 109.1 (4) C24---C23---H23A 121.3 C9---C1---O2 126.9 (5) C28---C24---C23 120.9 (6) C3---C2---O1 128.0 (5) C28---C24---C25 120.2 (5) C3---C2---C1 121.5 (5) C23---C24---C25 118.9 (5) O1---C2---C1 110.5 (5) C26---C25---C24 112.4 (5) C2---C3---C4 118.2 (5) C26---C25---H25A 109.1 C2---C3---H3A 120.9 C24---C25---H25A 109.1 C4---C3---H3A 120.9 C26---C25---H25B 109.1 C3---C4---C8 119.4 (5) C24---C25---H25B 109.1 C3---C4---C5 120.0 (5) H25A---C25---H25B 107.9 C8---C4---C5 120.6 (5) N2---C26---C25 110.3 (5) C4---C5---C6 111.7 (5) N2---C26---H26A 109.6 C4---C5---H5A 109.3 C25---C26---H26A 109.6 C6---C5---H5A 109.3 N2---C26---H26B 109.6 C4---C5---H5B 109.3 C25---C26---H26B 109.6 C6---C5---H5B 109.3 H26A---C26---H26B 108.1 H5A---C5---H5B 107.9 N2---C27---C31 111.0 (4) N1---C6---C5 111.1 (5) N2---C27---C28 111.1 (4) N1---C6---H6A 109.4 C31---C27---C28 109.5 (4) C5---C6---H6A 109.4 N2---C27---H27A 108.4 N1---C6---H6B 109.4 C31---C27---H27A 108.4 C5---C6---H6B 109.4 C28---C27---H27A 108.4 H6A---C6---H6B 108 C24---C28---C29 122.0 (5) N1---C7---C8 112.0 (5) C24---C28---C27 121.6 (5) N1---C7---C11 111.1 (4) C29---C28---C27 116.4 (4) C8---C7---C11 109.2 (4) C21---C29---C28 115.5 (5) N1---C7---H7A 108.1 C21---C29---C33 123.2 (5) C8---C7---H7A 108.1 C28---C29---C33 121.3 (4) C11---C7---H7A 108.1 O6---C30---O5 111.1 (5) C9---C8---C4 122.1 (5) O6---C30---H30A 109.4 C9---C8---C7 117.3 (5) O5---C30---H30A 109.4 C4---C8---C7 120.7 (5) O6---C30---H30B 109.4 C1---C9---C8 114.9 (5) O5---C30---H30B 109.4 C1---C9---C13 124.5 (5) H30A---C30---H30B 108 C8---C9---C13 120.6 (4) C32---C31---C27 110.8 (4) O2---C10---O1 109.0 (5) C32---C31---H31A 109.5 O2---C10---H10A 109.9 C27---C31---H31A 109.5 O1---C10---H10A 109.9 C32---C31---H31B 109.5 O2---C10---H10B 109.9 C27---C31---H31B 109.5 O1---C10---H10B 109.9 H31A---C31---H31B 108.1 H10A---C10---H10B 108.3 C37---C32---C33 119.2 (5) C12---C11---C7 110.4 (4) C37---C32---C31 121.5 (5) C12---C11---H11A 109.6 C33---C32---C31 119.3 (5) C7---C11---H11A 109.6 C34---C33---C32 118.7 (5) C12---C11---H11B 109.6 C34---C33---C29 123.7 (5) C7---C11---H11B 109.6 C32---C33---C29 117.6 (5) H11A---C11---H11B 108.1 C35---C34---C33 121.3 (5) C17---C12---C13 118.9 (5) C35---C34---H34A 119.4 C17---C12---C11 121.0 (5) C33---C34---H34A 119.4 C13---C12---C11 120.2 (5) C34---C35---C36 119.7 (6) C14---C13---C12 118.8 (5) C34---C35---H35A 120.1 C14---C13---C9 123.2 (5) C36---C35---H35A 120.1 C12---C13---C9 118.0 (5) O7---C36---C37 116.0 (5) C15---C14---C13 120.7 (5) O7---C36---C35 124.5 (5) C15---C14---H14A 119.7 C37---C36---C35 119.5 (5) C13---C14---H14A 119.7 C36---C37---O8 119.3 (5) C16---C15---C14 120.8 (5) C36---C37---C32 121.6 (5) C16---C15---H15A 119.6 O8---C37---C32 119.1 (5) C14---C15---H15A 119.6 N2---C38---H38A 109.5 C15---C16---O3 125.0 (5) N2---C38---H38B 109.5 C15---C16---C17 119.6 (5) H38A---C38---H38B 109.5 O3---C16---C17 115.4 (5) N2---C38---H38C 109.5 O4---C17---C16 120.3 (5) H38A---C38---H38C 109.5 O4---C17---C12 118.4 (5) H38B---C38---H38C 109.5 C16---C17---C12 121.3 (5) O7---C39---H39A 109.5 N1---C18---H18A 109.5 O7---C39---H39B 109.5 N1---C18---H18B 109.5 H39A---C39---H39B 109.5 H18A---C18---H18B 109.5 O7---C39---H39C 109.5 N1---C18---H18C 109.5 H39A---C39---H39C 109.5 H18A---C18---H18C 109.5 H39B---C39---H39C 109.5 H18B---C18---H18C 109.5 O8---C40---H40A 109.5 O3---C19---H19A 109.5 O8---C40---H40B 109.5 O3---C19---H19B 109.5 H40A---C40---H40B 109.5 H19A---C19---H19B 109.5 O8---C40---H40C 109.5 O3---C19---H19C 109.5 H40A---C40---H40C 109.5 H19A---C19---H19C 109.5 H40B---C40---H40C 109.5 C10---O2---C1---C2 −8.6 (8) C30---O5---C21---C29 −174.6 (9) C10---O2---C1---C9 176.2 (7) C30---O5---C21---C22 2.0 (11) C10---O1---C2---C3 −172.4 (7) C29---C21---C22---C23 −1.8 (13) C10---O1---C2---C1 7.9 (8) O5---C21---C22---C23 −178.7 (8) C9---C1---C2---C3 −3.8 (10) C29---C21---C22---O6 179.1 (7) O2---C1---C2---C3 −179.3 (6) O5---C21---C22---O6 2.2 (10) C9---C1---C2---O1 175.9 (6) C30---O6---C22---C23 175.5 (11) O2---C1---C2---O1 0.4 (7) C30---O6---C22---C21 −5.4 (11) O1---C2---C3---C4 −179.5 (6) C21---C22---C23---C24 1.5 (13) C1---C2---C3---C4 0.2 (10) O6---C22---C23---C24 −179.6 (8) C2---C3---C4---C8 2.3 (9) C22---C23---C24---C28 −0.5 (11) C2---C3---C4---C5 −179.2 (6) C22---C23---C24---C25 178.4 (7) C3---C4---C5---C6 163.8 (6) C28---C24---C25---C26 −17.2 (9) C8---C4---C5---C6 −17.8 (8) C23---C24---C25---C26 163.9 (6) C18---N1---C6---C5 169.7 (6) C27---N2---C26---C25 −67.8 (7) C7---N1---C6---C5 −67.3 (7) C38---N2---C26---C25 169.5 (6) C4---C5---C6---N1 50.5 (8) C24---C25---C26---N2 48.9 (8) C6---N1---C7---C8 48.1 (6) C26---N2---C27---C31 172.1 (5) C18---N1---C7---C8 171.7 (5) C38---N2---C27---C31 −66.2 (6) C6---N1---C7---C11 170.5 (5) C26---N2---C27---C28 50.0 (6) C18---N1---C7---C11 −65.9 (6) C38---N2---C27---C28 171.7 (5) C3---C4---C8---C9 −1.3 (9) C23---C24---C28---C29 −0.3 (9) C5---C4---C8---C9 −179.8 (6) C25---C24---C28---C29 −179.1 (6) C3---C4---C8---C7 179.9 (5) C23---C24---C28---C27 −179.4 (6) C5---C4---C8---C7 1.4 (8) C25---C24---C28---C27 1.8 (9) N1---C7---C8---C9 165.5 (5) N2---C27---C28---C24 −17.9 (7) C11---C7---C8---C9 42.0 (7) C31---C27---C28---C24 −140.8 (5) N1---C7---C8---C4 −15.6 (7) N2---C27---C28---C29 163.0 (5) C11---C7---C8---C4 −139.1 (5) C31---C27---C28---C29 40.0 (7) C2---C1---C9---C8 4.6 (9) O5---C21---C29---C28 177.2 (7) O2---C1---C9---C8 179.2 (5) C22---C21---C29---C28 1.0 (10) C2---C1---C9---C13 −173.5 (5) O5---C21---C29---C33 −1.6 (12) O2---C1---C9---C13 1.1 (10) C22---C21---C29---C33 −177.8 (7) C4---C8---C9---C1 −2.0 (8) C24---C28---C29---C21 0.0 (9) C7---C8---C9---C1 176.8 (5) C27---C28---C29---C21 179.2 (6) C4---C8---C9---C13 176.2 (5) C24---C28---C29---C33 178.8 (6) C7---C8---C9---C13 −4.9 (7) C27---C28---C29---C33 −2.0 (8) C1---O2---C10---O1 13.5 (8) C22---O6---C30---O5 6.8 (14) C2---O1---C10---O2 −13.3 (8) C21---O5---C30---O6 −5.5 (14) N1---C7---C11---C12 −179.0 (4) N2---C27---C31---C32 −179.4 (4) C8---C7---C11---C12 −55.0 (6) C28---C27---C31---C32 −56.4 (6) C7---C11---C12---C17 −146.2 (5) C27---C31---C32---C37 −142.4 (5) C7---C11---C12---C13 34.3 (7) C27---C31---C32---C33 37.6 (7) C17---C12---C13---C14 2.2 (7) C37---C32---C33---C34 1.6 (8) C11---C12---C13---C14 −178.3 (5) C31---C32---C33---C34 −178.4 (5) C17---C12---C13---C9 −176.2 (5) C37---C32---C33---C29 −179.1 (5) C11---C12---C13---C9 3.3 (7) C31---C32---C33---C29 0.9 (7) C1---C9---C13---C14 −19.7 (8) C21---C29---C33---C34 −22.0 (9) C8---C9---C13---C14 162.3 (5) C28---C29---C33---C34 159.3 (6) C1---C9---C13---C12 158.6 (6) C21---C29---C33---C32 158.8 (6) C8---C9---C13---C12 −19.4 (7) C28---C29---C33---C32 −19.9 (8) C12---C13---C14---C15 −2.0 (8) C32---C33---C34---C35 −3.3 (9) C9---C13---C14---C15 176.3 (5) C29---C33---C34---C35 177.6 (6) C13---C14---C15---C16 0.6 (9) C33---C34---C35---C36 2.1 (10) C14---C15---C16---O3 −178.5 (5) C39---O7---C36---C37 −176.0 (6) C14---C15---C16---C17 0.5 (9) C39---O7---C36---C35 3.4 (10) C19---O3---C16---C15 −1.5 (9) C34---C35---C36---O7 −178.5 (6) C19---O3---C16---C17 179.5 (6) C34---C35---C36---C37 0.8 (10) C20---O4---C17---C16 −74.0 (7) O7---C36---C37---O8 −0.1 (8) C20---O4---C17---C12 107.8 (6) C35---C36---C37---O8 −179.5 (6) C15---C16---C17---O4 −178.4 (5) O7---C36---C37---C32 177.0 (5) O3---C16---C17---O4 0.6 (8) C35---C36---C37---C32 −2.4 (9) C15---C16---C17---C12 −0.3 (8) C40---O8---C37---C36 −80.1 (7) O3---C16---C17---C12 178.8 (5) C40---O8---C37---C32 102.8 (6) C13---C12---C17---O4 177.1 (5) C33---C32---C37---C36 1.2 (8) C11---C12---C17---O4 −2.4 (8) C31---C32---C37---C36 −178.8 (5) C13---C12---C17---C16 −1.1 (8) C33---C32---C37---O8 178.2 (5) C11---C12---C17---C16 179.4 (5) C31---C32---C37---O8 −1.8 (8) ----------------------- ------------ ----------------------- ------------ :::
PubMed Central
2024-06-05T04:04:16.619170
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051729/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o402", "authors": [ { "first": "Tanwawan", "last": "Duangthongyou" }, { "first": "Arthit", "last": "Makarasen" }, { "first": "Supanna", "last": "Techasakul" }, { "first": "Nitirat", "last": "Chimnoi" }, { "first": "Sutatip", "last": "Siripaisarnpipat" } ] }
PMC3051730
Related literature {#sec1} ================== For the synthesis of the title compound and background to the biological properties of β-lactam compounds, see: Jarrahpour & Zarei (2010[@bb6]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~23~H~21~NO~3~*M* *~r~* = 359.41Triclinic,*a* = 6.0764 (3) Å*b* = 9.9545 (5) Å*c* = 16.4519 (10) Åα = 104.360 (4)°β = 91.261 (5)°γ = 97.724 (4)°*V* = 953.71 (9) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 296 K0.60 × 0.37 × 0.12 mm ### Data collection {#sec2.1.2} Stoe IPDS 2 diffractometerAbsorption correction: integration (*X-RED32*; Stoe & Cie, 2002[@bb8]) *T* ~min~ = 0.964, *T* ~max~ = 0.99013748 measured reflections3961 independent reflections2608 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.055 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.048*wR*(*F* ^2^) = 0.119*S* = 1.033961 reflections246 parametersH-atom parameters constrainedΔρ~max~ = 0.13 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e501} Data collection: *X-AREA* (Stoe & Cie, 2002[@bb8]); cell refinement: *X-AREA*; data reduction: *X-RED32* (Stoe & Cie, 2002[@bb8]); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb2]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb4]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000663/hb5783sup1.cif](http://dx.doi.org/10.1107/S1600536811000663/hb5783sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000663/hb5783Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000663/hb5783Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hb5783&file=hb5783sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hb5783sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hb5783&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HB5783](http://scripts.iucr.org/cgi-bin/sendsup?hb5783)). The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). AJ and MR thank the Shiraz University Research Council for financial support (grant 88-GR---SC-23). Comment ======= The title compound, (I), is a β-lactam derivative with potential biological properties (Jarrahpour & Zarei, 2010); we now describe its crystal structure. In the title compound (I), (Fig. 1), the β-lactam ring (N1/C7--C9) is nearly planar \[r.m.s. deviation = 0.032Å\]. The dihedral angles between the planes of the rings in (I) are given in Table 2. The molecular dimensions are normal and lie within expected values for corresponding bond distances and angles (Allen *et al.*, 1987). The molecular structure is stabilized by intramolecular C---H···O hydrogen bonds, forming an S(6) graph-set motif (Bernstein *et al.*, 1995) (Table 1). In the crystal structure, molecules are linked *via* intermolecular C---H···O hydrogen bonds (Table 1, Fig. 2), forming layers parallel to the *bc* plane. In addition, C---H···π interactions and two π-π stacking interactions \[*Cg*1···*Cg*3(*x*, *y*, *z*) = 3.6744 (12) Å and *Cg*4···*Cg*4(1 - *x*, 2 - *y*, 1 - *z*) = 3.6799 (11) Å, where *Cg*1, *Cg*3 and *Cg*4 are the centroids of the N1/C7--C9 β-lactam, the C10--C15 and C17--C22 benzene rings, respectively\] contribute to the stabilization of the structure. Experimental {#experimental} ============ The title compound was prepared as described by Jarrahpour & Zarei (2010) and colourless prisms of (I) were recrystallized from ethyl acetate. Refinement {#refinement} ========== All H atoms were placed at calculated positions and were treated as riding on their parent atoms with C---H = 0.93 (aromatic), 0.96(methyl) and 0.98 Å (methine), and with *U*~iso~(H) = 1.5*U*~eq~(C) for methyl and *U*~iso~(H) = 1.2*U*~eq~(C) for aromatic, methine. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The title compound with displacement ellipsoids for non-H atoms drawn at the 30% probability level. ::: ![](e-67-0o326-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### View of the packing of (I) down the a axis. All H atoms are omitted for clarity. ::: ![](e-67-0o326-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e193 .table-wrap} ----------------------- ---------------------------------------- C~23~H~21~NO~3~ *Z* = 2 *M~r~* = 359.41 *F*(000) = 380 Triclinic, *P*1 *D*~x~ = 1.252 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.0764 (3) Å Cell parameters from 19074 reflections *b* = 9.9545 (5) Å θ = 2.1--27.6° *c* = 16.4519 (10) Å µ = 0.08 mm^−1^ α = 104.360 (4)° *T* = 296 K β = 91.261 (5)° Prism, colourless γ = 97.724 (4)° 0.60 × 0.37 × 0.12 mm *V* = 953.71 (9) Å^3^ ----------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e326 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Stoe IPDS 2 diffractometer 3961 independent reflections Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 2608 reflections with *I* \> 2σ(*I*) plane graphite *R*~int~ = 0.055 Detector resolution: 6.67 pixels mm^-1^ θ~max~ = 26.5°, θ~min~ = 2.1° ω scans *h* = −7→7 Absorption correction: integration (*X-RED32*; Stoe & Cie, 2002) *k* = −12→12 *T*~min~ = 0.964, *T*~max~ = 0.990 *l* = −20→20 13748 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e446 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.048 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.119 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0548*P*)^2^ + 0.0685*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3961 reflections (Δ/σ)~max~ \< 0.001 246 parameters Δρ~max~ = 0.13 e Å^−3^ 0 restraints Δρ~min~ = −0.17 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e603 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement on *F*^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The observed criterion of *F*^2^ \> σ(*F*^2^) is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e705 .table-wrap} ------ ------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.1189 (2) 0.46929 (12) 0.24918 (8) 0.0593 (4) O2 −0.0121 (2) 0.69814 (13) 0.39817 (9) 0.0661 (5) O3 0.5557 (2) 1.34079 (13) 0.45143 (10) 0.0691 (5) N1 0.3435 (2) 0.76262 (13) 0.35417 (9) 0.0449 (4) C1 0.0980 (3) 0.32558 (17) 0.22621 (11) 0.0466 (5) C2 −0.0981 (3) 0.2579 (2) 0.18159 (14) 0.0659 (7) C3 −0.1326 (4) 0.1146 (2) 0.15480 (17) 0.0855 (9) C4 0.0243 (5) 0.0375 (2) 0.17266 (18) 0.0906 (10) C5 0.2170 (5) 0.1043 (2) 0.21619 (16) 0.0841 (10) C6 0.2565 (3) 0.2490 (2) 0.24332 (13) 0.0626 (7) C7 0.2563 (3) 0.54632 (17) 0.32009 (11) 0.0493 (6) C8 0.1608 (3) 0.67635 (17) 0.36523 (11) 0.0481 (6) C9 0.4601 (3) 0.65118 (17) 0.30514 (11) 0.0456 (5) C10 0.5040 (3) 0.66017 (17) 0.21748 (11) 0.0461 (5) C11 0.3614 (3) 0.7126 (2) 0.17006 (12) 0.0590 (7) C12 0.4120 (4) 0.7251 (2) 0.09059 (14) 0.0725 (8) C13 0.6024 (4) 0.6850 (2) 0.05514 (13) 0.0711 (8) C14 0.7428 (3) 0.6312 (2) 0.10147 (15) 0.0733 (8) C15 0.6962 (3) 0.6196 (2) 0.18176 (13) 0.0603 (7) C16 0.6603 (5) 0.7014 (3) −0.03125 (17) 0.1131 (13) C17 0.4029 (2) 0.90918 (16) 0.37839 (10) 0.0417 (5) C18 0.2574 (3) 0.99309 (17) 0.42190 (11) 0.0489 (6) C19 0.3149 (3) 1.13583 (18) 0.44533 (12) 0.0523 (6) C20 0.5185 (3) 1.19731 (17) 0.42538 (11) 0.0494 (6) C21 0.6635 (3) 1.11455 (18) 0.38189 (12) 0.0514 (6) C22 0.6062 (3) 0.97064 (18) 0.35878 (11) 0.0488 (6) C23 0.7547 (3) 1.4105 (2) 0.42925 (15) 0.0691 (7) H2 −0.20600 0.30950 0.16980 0.0790\* H3 −0.26370 0.06920 0.12420 0.1030\* H4 −0.00100 −0.05980 0.15510 0.1090\* H5 0.32400 0.05210 0.22790 0.1010\* H6 0.38930 0.29390 0.27290 0.0750\* H7 0.29430 0.48910 0.35750 0.0590\* H9 0.59590 0.64290 0.33570 0.0550\* H11 0.23000 0.73970 0.19210 0.0710\* H12 0.31430 0.76160 0.06040 0.0870\* H14 0.87190 0.60190 0.07840 0.0880\* H15 0.79530 0.58410 0.21190 0.0720\* H16A 0.77970 0.77730 −0.02580 0.1360\* H16B 0.53250 0.72090 −0.05910 0.1360\* H16C 0.70560 0.61630 −0.06360 0.1360\* H18 0.12050 0.95250 0.43520 0.0590\* H19 0.21710 1.19170 0.47470 0.0630\* H21 0.79960 1.15550 0.36810 0.0620\* H22 0.70480 0.91470 0.32990 0.0590\* H23A 0.75830 1.38950 0.36910 0.0830\* H23B 0.87980 1.37960 0.45200 0.0830\* H23C 0.76110 1.50980 0.45150 0.0830\* ------ ------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1343 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0676 (7) 0.0352 (7) 0.0707 (9) −0.0008 (5) −0.0211 (6) 0.0116 (6) O2 0.0539 (7) 0.0533 (8) 0.0853 (10) −0.0075 (6) 0.0196 (7) 0.0132 (7) O3 0.0758 (8) 0.0372 (7) 0.0866 (10) −0.0080 (6) 0.0139 (7) 0.0091 (6) N1 0.0449 (7) 0.0359 (7) 0.0502 (9) −0.0019 (6) 0.0055 (6) 0.0079 (6) C1 0.0499 (9) 0.0379 (9) 0.0504 (10) 0.0010 (7) 0.0033 (7) 0.0112 (8) C2 0.0555 (10) 0.0520 (12) 0.0820 (15) 0.0035 (9) −0.0070 (10) 0.0048 (10) C3 0.0791 (14) 0.0564 (14) 0.102 (2) −0.0123 (11) −0.0153 (13) −0.0020 (12) C4 0.125 (2) 0.0410 (12) 0.096 (2) 0.0026 (13) −0.0111 (16) 0.0054 (12) C5 0.1158 (19) 0.0507 (13) 0.0853 (17) 0.0252 (12) −0.0183 (14) 0.0114 (12) C6 0.0673 (11) 0.0499 (11) 0.0688 (13) 0.0097 (9) −0.0111 (10) 0.0125 (10) C7 0.0540 (9) 0.0372 (9) 0.0547 (11) −0.0006 (7) −0.0069 (8) 0.0125 (8) C8 0.0474 (9) 0.0409 (9) 0.0536 (11) −0.0043 (7) 0.0018 (8) 0.0135 (8) C9 0.0438 (8) 0.0399 (9) 0.0516 (10) 0.0048 (7) −0.0029 (7) 0.0099 (8) C10 0.0442 (8) 0.0394 (9) 0.0514 (11) 0.0043 (7) 0.0003 (7) 0.0064 (8) C11 0.0564 (10) 0.0684 (13) 0.0573 (12) 0.0190 (9) 0.0046 (9) 0.0198 (10) C12 0.0798 (14) 0.0818 (16) 0.0598 (13) 0.0099 (11) −0.0018 (11) 0.0267 (11) C13 0.0748 (13) 0.0746 (15) 0.0527 (13) −0.0134 (11) 0.0052 (10) 0.0081 (11) C14 0.0585 (11) 0.0793 (15) 0.0693 (15) 0.0020 (10) 0.0201 (11) −0.0022 (12) C15 0.0498 (9) 0.0588 (12) 0.0684 (14) 0.0119 (8) 0.0036 (9) 0.0067 (10) C16 0.127 (2) 0.132 (3) 0.0654 (17) −0.0295 (19) 0.0188 (15) 0.0213 (16) C17 0.0442 (8) 0.0363 (9) 0.0422 (9) −0.0027 (6) 0.0009 (7) 0.0099 (7) C18 0.0446 (8) 0.0454 (10) 0.0540 (11) −0.0025 (7) 0.0118 (7) 0.0116 (8) C19 0.0547 (9) 0.0424 (10) 0.0568 (11) 0.0033 (8) 0.0126 (8) 0.0080 (8) C20 0.0562 (9) 0.0366 (9) 0.0517 (11) −0.0049 (7) 0.0019 (8) 0.0103 (8) C21 0.0437 (8) 0.0464 (10) 0.0613 (12) −0.0075 (7) 0.0066 (8) 0.0157 (8) C22 0.0427 (8) 0.0457 (10) 0.0552 (11) 0.0008 (7) 0.0075 (7) 0.0103 (8) C23 0.0711 (12) 0.0471 (11) 0.0829 (15) −0.0178 (9) −0.0034 (10) 0.0198 (10) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1847 .table-wrap} ---------------------- -------------- ----------------------- -------------- O1---C1 1.373 (2) C18---C19 1.371 (3) O1---C7 1.410 (2) C19---C20 1.388 (3) O2---C8 1.214 (2) C20---C21 1.378 (3) O3---C20 1.371 (2) C21---C22 1.381 (3) O3---C23 1.413 (2) C2---H2 0.9300 N1---C8 1.354 (2) C3---H3 0.9300 N1---C9 1.475 (2) C4---H4 0.9300 N1---C17 1.408 (2) C5---H5 0.9300 C1---C2 1.383 (3) C6---H6 0.9300 C1---C6 1.371 (3) C7---H7 0.9800 C2---C3 1.370 (3) C9---H9 0.9800 C3---C4 1.371 (4) C11---H11 0.9300 C4---C5 1.358 (4) C12---H12 0.9300 C5---C6 1.384 (3) C14---H14 0.9300 C7---C8 1.519 (3) C15---H15 0.9300 C7---C9 1.574 (3) C16---H16A 0.9600 C9---C10 1.495 (2) C16---H16B 0.9600 C10---C11 1.388 (3) C16---H16C 0.9600 C10---C15 1.383 (3) C18---H18 0.9300 C11---C12 1.381 (3) C19---H19 0.9300 C12---C13 1.370 (3) C21---H21 0.9300 C13---C14 1.376 (3) C22---H22 0.9300 C13---C16 1.514 (3) C23---H23A 0.9600 C14---C15 1.386 (3) C23---H23B 0.9600 C17---C18 1.386 (2) C23---H23C 0.9600 C17---C22 1.385 (2) C1---O1---C7 120.21 (14) C3---C2---H2 120.00 C20---O3---C23 117.71 (15) C2---C3---H3 120.00 C8---N1---C9 96.00 (13) C4---C3---H3 120.00 C8---N1---C17 132.78 (13) C3---C4---H4 120.00 C9---N1---C17 131.20 (13) C5---C4---H4 120.00 O1---C1---C2 115.45 (16) C4---C5---H5 120.00 O1---C1---C6 124.67 (17) C6---C5---H5 120.00 C2---C1---C6 119.87 (17) C1---C6---H6 120.00 C1---C2---C3 119.70 (19) C5---C6---H6 120.00 C2---C3---C4 120.6 (2) O1---C7---H7 113.00 C3---C4---C5 119.5 (2) C8---C7---H7 113.00 C4---C5---C6 120.9 (2) C9---C7---H7 113.00 C1---C6---C5 119.4 (2) N1---C9---H9 112.00 O1---C7---C8 111.20 (14) C7---C9---H9 112.00 O1---C7---C9 117.37 (14) C10---C9---H9 111.00 C8---C7---C9 85.70 (13) C10---C11---H11 120.00 O2---C8---N1 132.64 (17) C12---C11---H11 120.00 O2---C8---C7 134.97 (17) C11---C12---H12 119.00 N1---C8---C7 92.39 (14) C13---C12---H12 119.00 N1---C9---C7 85.80 (12) C13---C14---H14 119.00 N1---C9---C10 115.03 (14) C15---C14---H14 119.00 C7---C9---C10 119.15 (15) C10---C15---H15 120.00 C9---C10---C11 122.47 (16) C14---C15---H15 120.00 C9---C10---C15 119.98 (17) C13---C16---H16A 109.00 C11---C10---C15 117.52 (17) C13---C16---H16B 109.00 C10---C11---C12 120.93 (18) C13---C16---H16C 109.00 C11---C12---C13 121.6 (2) H16A---C16---H16B 110.00 C12---C13---C14 117.7 (2) H16A---C16---H16C 109.00 C12---C13---C16 121.6 (2) H16B---C16---H16C 109.00 C14---C13---C16 120.7 (2) C17---C18---H18 120.00 C13---C14---C15 121.53 (19) C19---C18---H18 120.00 C10---C15---C14 120.74 (18) C18---C19---H19 120.00 N1---C17---C18 120.09 (13) C20---C19---H19 120.00 N1---C17---C22 120.40 (14) C20---C21---H21 120.00 C18---C17---C22 119.52 (16) C22---C21---H21 120.00 C17---C18---C19 120.12 (16) C17---C22---H22 120.00 C18---C19---C20 120.29 (17) C21---C22---H22 120.00 O3---C20---C19 114.80 (16) O3---C23---H23A 109.00 O3---C20---C21 125.32 (16) O3---C23---H23B 109.00 C19---C20---C21 119.88 (17) O3---C23---H23C 109.00 C20---C21---C22 119.83 (17) H23A---C23---H23B 109.00 C17---C22---C21 120.36 (16) H23A---C23---H23C 109.00 C1---C2---H2 120.00 H23B---C23---H23C 109.00 C7---O1---C1---C2 154.15 (17) O1---C7---C8---N1 −120.21 (15) C7---O1---C1---C6 −26.9 (3) C9---C7---C8---O2 176.8 (2) C1---O1---C7---C8 −145.56 (15) O1---C7---C9---C10 −2.5 (2) C1---O1---C7---C9 118.10 (17) C8---C7---C9---N1 2.27 (12) C23---O3---C20---C21 2.6 (3) O1---C7---C8---O2 59.0 (3) C23---O3---C20---C19 −176.70 (17) N1---C9---C10---C11 −32.4 (2) C8---N1---C9---C7 −2.55 (13) N1---C9---C10---C15 145.45 (17) C17---N1---C8---O2 1.7 (3) C7---C9---C10---C11 67.2 (2) C9---N1---C8---O2 −176.6 (2) C7---C9---C10---C15 −114.9 (2) C9---N1---C8---C7 2.64 (14) C9---C10---C15---C14 −178.05 (18) C17---N1---C8---C7 −179.03 (17) C15---C10---C11---C12 −0.8 (3) C17---N1---C9---C7 179.07 (16) C9---C10---C11---C12 177.14 (18) C9---N1---C17---C18 177.01 (16) C11---C10---C15---C14 −0.1 (3) C8---N1---C17---C22 179.43 (17) C10---C11---C12---C13 0.8 (3) C9---N1---C17---C22 −2.8 (3) C11---C12---C13---C14 0.1 (3) C8---N1---C17---C18 −0.8 (3) C11---C12---C13---C16 −178.7 (2) C8---N1---C9---C10 117.76 (16) C12---C13---C14---C15 −1.0 (3) C17---N1---C9---C10 −60.6 (2) C16---C13---C14---C15 177.9 (2) O1---C1---C6---C5 −179.42 (19) C13---C14---C15---C10 1.0 (3) O1---C1---C2---C3 178.99 (19) N1---C17---C22---C21 179.40 (16) C6---C1---C2---C3 0.0 (3) C18---C17---C22---C21 −0.4 (3) C2---C1---C6---C5 −0.6 (3) N1---C17---C18---C19 −179.84 (16) C1---C2---C3---C4 0.8 (4) C22---C17---C18---C19 −0.1 (3) C2---C3---C4---C5 −1.0 (4) C17---C18---C19---C20 0.3 (3) C3---C4---C5---C6 0.5 (4) C18---C19---C20---C21 0.0 (3) C4---C5---C6---C1 0.3 (4) C18---C19---C20---O3 179.34 (17) O1---C7---C9---N1 113.95 (15) O3---C20---C21---C22 −179.72 (17) C8---C7---C9---C10 −114.14 (17) C19---C20---C21---C22 −0.4 (3) C9---C7---C8---N1 −2.47 (13) C20---C21---C22---C17 0.6 (3) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2818 .table-wrap} --------------------------------------------------- Cg4 is the centroid of the C17--C22 benzene ring. --------------------------------------------------- ::: ::: {#d1e2822 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C18---H18···O2 0.93 2.47 3.093 (2) 125 C9---H9···O2^i^ 0.98 2.51 3.446 (2) 160 C15---H15···O1^i^ 0.93 2.54 3.435 (2) 162 C19---H19···O2^ii^ 0.93 2.54 3.415 (2) 156 C23---H23C···O2^iii^ 0.96 2.52 3.184 (2) 126 C5---H5···Cg4^iv^ 0.93 2.96 3.544 (3) 122 ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1, *y*, *z*; (ii) −*x*, −*y*+2, −*z*+1; (iii) *x*+1, *y*+1, *z*; (iv) *x*, *y*−1, *z*. Table 2 The dihedral angles between the mean planes of the rings in (I) (°) {#d1e2982} =========================================================================== ::: {#d1e2994 .table-wrap} -------- ------------ ------------ ------------ Ring-2 Ring-3 Ring-4 Ring-1 51.95 (12) 75.73 (12) 1.87 (11) Ring-2 86.93 (11) 50.10 (10) Ring-3 76.54 (9) -------- ------------ ------------ ------------ ::: Ring-1 : N1/C7--C9 β-lactam ring, Ring-2 : C1--C6 phenyl ring, Ring-3 : C10--C15 benzene ring, Ring-4 : C17--C22 benzene ring. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*4 is the centroid of the C17--C22 benzene ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- --------- ------- ----------- ------------- C18---H18⋯O2 0.93 2.47 3.093 (2) 125 C9---H9⋯O2^i^ 0.98 2.51 3.446 (2) 160 C15---H15⋯O1^i^ 0.93 2.54 3.435 (2) 162 C19---H19⋯O2^ii^ 0.93 2.54 3.415 (2) 156 C23---H23*C*⋯O2^iii^ 0.96 2.52 3.184 (2) 126 C5---H5⋯*Cg*4^iv^ 0.93 2.96 3.544 (3) 122 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:16.631310
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051730/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o326-o327", "authors": [ { "first": "Mehmet", "last": "Akkurt" }, { "first": "Yılmaz", "last": "Dağdemir" }, { "first": "Aliasghar", "last": "Jarrahpour" }, { "first": "Maryam", "last": "Rostami" }, { "first": "Orhan", "last": "Büyükgüngör" } ] }
PMC3051731
Related literature {#sec1} ================== For details of hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb3]) and for ring conformations, see: Cremer & Pople (1975[@bb7]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For background to Verbenaceae plants and the bioactivity of icetexane, see: Bunluepuech & Tewtrakul (2009[@bb5]); Hymavathi *et al.* (2009[@bb8]); Simmons & Sarpong (2009[@bb11]). For related structures, see: Asik *et al.* (2010[@bb2]); Razak *et al.* (2010[@bb9]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~24~O~3~*M* *~r~* = 312.39Monoclinic,*a* = 25.1090 (9) Å*b* = 9.4317 (3) Å*c* = 14.9609 (4) Åβ = 108.683 (2)°*V* = 3356.35 (19) Å^3^*Z* = 8Mo *K*α radiationμ = 0.08 mm^−1^*T* = 100 K0.60 × 0.32 × 0.28 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb4]) *T* ~min~ = 0.953, *T* ~max~ = 0.97760861 measured reflections7404 independent reflections6198 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.029 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.125*S* = 1.037404 reflections304 parametersAll H-atom parameters refinedΔρ~max~ = 0.48 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e592} Data collection: *APEX2* (Bruker, 2005[@bb4]); cell refinement: *SAINT* (Bruker, 2005[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb12]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810053754/ng5091sup1.cif](http://dx.doi.org/10.1107/S1600536810053754/ng5091sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053754/ng5091Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053754/ng5091Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5091&file=ng5091sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5091sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5091&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5091](http://scripts.iucr.org/cgi-bin/sendsup?ng5091)). SC and AWS thank the Prince of Songkla University for financial support. The authors thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811151. Comment ======= The extracts of Verbenaceae plants have been found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009). *Premna obtusifolia* (Verbenaceae), a small tree found in the mangrove forests, is one of the Verbenaceae plants. As part of our research on bioactive compounds from medicinal plants, we previouly reported the crystal structures of diterpenoids from the roots of *Premna obtusifolia* (Verbenaceae) which was collected from Satun province in the southern of Thailand (Asik *et al.*, 2010; Razak *et al.*, 2010). The title icetexane diterpenoid (I), also named as Obtusin N, is a new compound which was isolated from the same plant. The icetexane diterpenoids encompass a variety of bioactive and structurally interesting compounds (Hymavathi *et al.*, 2009; Simmons & Sarpong, 2009). We herein report the crystal structure of (I). The molecule of (I) has a tricyclic skeleton (Fig. 1). The cyclohexene ring (C1--C5/C10) is in an envelope conformation with the puckering C3 atom having a deviation of 0.3373 (9) Å and puckering parameters Q = 0.4877 (9) Å, θ = 65.14 (19)° and φ = 113.04 (11)° (Cremer & Pople, 1975) whereas the central cycloheptene ring (C5--C10/C20) is in twisted-boat conformation with the most puckering atom C20 having deviation of 0.5665 (8) Å and puckering parameter Q = 0.8294 (8) Å. The benzene ring (C8--C9/C11--C14) is slightly twisted with the maximum deviation of -0.0575 (7) and 0.0388 (7) Å for atoms C9 and C11, respectively. The two hydroxy groups are co-planar with the attached benzene ring with *r.m.s.* deviation of 0.026 (7) Å. The orientation of the propanyl group is described by the torsion angles C14--C13--C15--C16 = 81.62 (9)° and C14--C13--C15--C17 = -42.19 (10)°. Intramolecular O3---H1O3···O2 and O2---H1O2···O1 hydrogen bonds (Table 1) generate S(5) and S(8) ring motifs, respectively (Fig. 1) (Bernstein *et al.*, 1995). The bond distances in (I) are within normal ranges (Allen *et al.*, 1987) and comparable to the related structures (Asik *et al.*, 2010; Razak *et al.*, 2010). The crystal packing of (I) is stabilized by intermolecular O---H···O hydrogen bonds, C---H···O and C---H···π weak interactions (Fig. 2 and Table 1). The molecules are linked into dimers through O3---H1O3···O1 hydrogen bonds (Table 1 and Fig. 2). These dimers are arranged into sheets parallel to the *ac* plane. C---H···π weak interactions were presented (Table 1). Experimental {#experimental} ============ The air-dried roots of *premna obtusifolia* (4.5 kg) were extracted with hexane (2 *x* 20 *L*) at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark yellow extract (40.0 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 7 fractions (F1---F7). Fraction F6 was further purified by quick column chromatography (QCC) using n-hexane-ETOAc (9:1), yielding the title compound (87.3 mg). Yellow needle-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystallized from n-hexane after several days. Refinement {#refinement} ========== All H atoms were located in a difference maps and isotropically refined. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.64 Å from C8 and the deepest hole is located at 1.04 Å from C10. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular O---H···O hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o256-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I) viewed along the b axis, showing sheets parallel to the ac plane. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o256-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e163 .table-wrap} ------------------------- --------------------------------------- C~20~H~24~O~3~ *F*(000) = 1344 *M~r~* = 312.39 *D*~x~ = 1.236 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 7404 reflections *a* = 25.1090 (9) Å θ = 2.3--35.0° *b* = 9.4317 (3) Å µ = 0.08 mm^−1^ *c* = 14.9609 (4) Å *T* = 100 K β = 108.683 (2)° Needle, yellow *V* = 3356.35 (19) Å^3^ 0.60 × 0.32 × 0.28 mm *Z* = 8 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e287 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 7404 independent reflections Radiation source: sealed tube 6198 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.029 φ and ω scans θ~max~ = 35.0°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −38→40 *T*~min~ = 0.953, *T*~max~ = 0.977 *k* = −14→15 60861 measured reflections *l* = −24→24 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e404 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.125 All H-atom parameters refined *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0755*P*)^2^ + 1.0087*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7404 reflections (Δ/σ)~max~ = 0.001 304 parameters Δρ~max~ = 0.48 e Å^−3^ 0 restraints Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e561 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e612 .table-wrap} ------ ------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.34135 (2) 0.18997 (7) 0.45441 (4) 0.02727 (13) O2 0.22121 (2) 0.14713 (6) 0.42998 (3) 0.02042 (11) H1O2 0.2573 (7) 0.1602 (17) 0.4448 (11) 0.048 (4)\* O3 0.11523 (2) 0.24175 (6) 0.35038 (3) 0.01917 (10) H1O3 0.1377 (6) 0.2421 (15) 0.4088 (10) 0.041 (4)\* C1 0.35660 (3) 0.18067 (8) 0.38355 (5) 0.02009 (13) C2 0.40308 (3) 0.27126 (10) 0.37203 (6) 0.02604 (15) H2A 0.4322 (6) 0.2867 (15) 0.4357 (10) 0.038 (3)\* H2B 0.3867 (6) 0.3655 (16) 0.3534 (10) 0.040 (3)\* C3 0.42779 (3) 0.20818 (9) 0.30042 (6) 0.02461 (14) H3A 0.4475 (5) 0.1170 (14) 0.3235 (9) 0.031 (3)\* H3B 0.4575 (6) 0.2728 (14) 0.2903 (9) 0.035 (3)\* C4 0.38338 (3) 0.17810 (8) 0.20403 (5) 0.01959 (12) C5 0.33387 (3) 0.09795 (7) 0.21853 (5) 0.01718 (11) C6 0.29158 (3) 0.04077 (8) 0.13478 (5) 0.02060 (13) H6A 0.3058 (5) 0.0138 (14) 0.0831 (9) 0.030 (3)\* C7 0.23475 (3) 0.03856 (8) 0.11708 (5) 0.02164 (13) H7A 0.2123 (5) 0.0114 (13) 0.0533 (8) 0.027 (3)\* C8 0.20317 (3) 0.08458 (7) 0.17837 (4) 0.01703 (11) C9 0.22671 (3) 0.07722 (7) 0.27714 (4) 0.01548 (11) C10 0.32690 (3) 0.08736 (7) 0.30526 (4) 0.01682 (11) C11 0.19897 (3) 0.14125 (7) 0.33345 (4) 0.01495 (11) C12 0.14429 (3) 0.19365 (7) 0.29375 (4) 0.01505 (11) C13 0.11813 (3) 0.19232 (7) 0.19542 (4) 0.01734 (11) C14 0.14864 (3) 0.14018 (8) 0.13931 (5) 0.01940 (12) H14A 0.1327 (5) 0.1435 (13) 0.0691 (8) 0.029 (3)\* C15 0.05752 (3) 0.24151 (8) 0.15458 (5) 0.02181 (13) H15A 0.0487 (6) 0.3020 (16) 0.2035 (10) 0.043 (4)\* C16 0.01786 (3) 0.11352 (11) 0.13660 (7) 0.03109 (18) H16A 0.0246 (6) 0.0563 (16) 0.0858 (10) 0.041 (3)\* H16B −0.0208 (6) 0.1452 (14) 0.1209 (10) 0.038 (3)\* H16C 0.0246 (6) 0.0539 (16) 0.1939 (10) 0.043 (4)\* C17 0.04657 (4) 0.32889 (10) 0.06447 (7) 0.03084 (17) H17A 0.0749 (7) 0.4078 (17) 0.0732 (11) 0.051 (4)\* H17B 0.0075 (6) 0.3743 (15) 0.0475 (10) 0.040 (3)\* H17C 0.0477 (6) 0.2691 (16) 0.0078 (10) 0.043 (4)\* C18 0.41211 (4) 0.08869 (9) 0.14665 (6) 0.02682 (15) H18A 0.3865 (6) 0.0729 (15) 0.0807 (10) 0.036 (3)\* H18B 0.4239 (6) −0.0029 (16) 0.1787 (9) 0.039 (3)\* H18C 0.4464 (5) 0.1393 (14) 0.1442 (9) 0.034 (3)\* C19 0.36195 (4) 0.31667 (9) 0.15095 (7) 0.03147 (17) H19A 0.3940 (6) 0.3712 (17) 0.1398 (11) 0.048 (4)\* H19B 0.3440 (6) 0.3764 (17) 0.1896 (10) 0.045 (4)\* H19C 0.3354 (6) 0.2977 (15) 0.0893 (10) 0.037 (3)\* C20 0.28082 (3) −0.00267 (7) 0.31829 (5) 0.01867 (12) H20A 0.2799 (5) −0.0936 (12) 0.2844 (8) 0.022 (3)\* H20B 0.2880 (4) −0.0209 (12) 0.3870 (8) 0.022 (2)\* ------ ------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1226 .table-wrap} ----- ------------ ------------ -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0226 (2) 0.0428 (3) 0.0156 (2) 0.0040 (2) 0.00490 (18) −0.0048 (2) O2 0.0181 (2) 0.0313 (3) 0.01191 (19) 0.00406 (19) 0.00491 (16) 0.00394 (17) O3 0.0166 (2) 0.0264 (2) 0.0148 (2) 0.00275 (17) 0.00536 (16) −0.00128 (17) C1 0.0154 (3) 0.0273 (3) 0.0159 (3) 0.0042 (2) 0.0026 (2) −0.0018 (2) C2 0.0178 (3) 0.0336 (4) 0.0254 (3) −0.0039 (3) 0.0051 (2) −0.0100 (3) C3 0.0174 (3) 0.0287 (4) 0.0284 (3) −0.0002 (2) 0.0082 (2) −0.0037 (3) C4 0.0206 (3) 0.0185 (3) 0.0220 (3) 0.0002 (2) 0.0100 (2) −0.0002 (2) C5 0.0178 (3) 0.0177 (3) 0.0167 (2) 0.0012 (2) 0.0065 (2) −0.0009 (2) C6 0.0210 (3) 0.0246 (3) 0.0174 (3) 0.0002 (2) 0.0078 (2) −0.0051 (2) C7 0.0210 (3) 0.0267 (3) 0.0172 (3) 0.0002 (2) 0.0061 (2) −0.0069 (2) C8 0.0169 (2) 0.0185 (3) 0.0154 (2) −0.0007 (2) 0.0048 (2) −0.0037 (2) C9 0.0155 (2) 0.0155 (2) 0.0158 (2) 0.00006 (19) 0.00547 (19) 0.00067 (19) C10 0.0154 (2) 0.0197 (3) 0.0151 (2) 0.0027 (2) 0.00442 (19) 0.0006 (2) C11 0.0157 (2) 0.0166 (2) 0.0127 (2) 0.00038 (19) 0.00469 (18) 0.00190 (19) C12 0.0152 (2) 0.0160 (2) 0.0140 (2) −0.00001 (19) 0.00473 (19) −0.00030 (18) C13 0.0156 (2) 0.0200 (3) 0.0147 (2) 0.0005 (2) 0.00235 (19) −0.0028 (2) C14 0.0182 (3) 0.0241 (3) 0.0143 (2) −0.0001 (2) 0.0030 (2) −0.0046 (2) C15 0.0183 (3) 0.0285 (3) 0.0157 (3) 0.0051 (2) 0.0013 (2) −0.0036 (2) C16 0.0164 (3) 0.0421 (5) 0.0334 (4) −0.0012 (3) 0.0060 (3) 0.0097 (3) C17 0.0259 (4) 0.0298 (4) 0.0305 (4) 0.0017 (3) 0.0002 (3) 0.0083 (3) C18 0.0278 (3) 0.0259 (3) 0.0338 (4) −0.0016 (3) 0.0198 (3) −0.0033 (3) C19 0.0345 (4) 0.0222 (3) 0.0384 (4) 0.0030 (3) 0.0126 (4) 0.0088 (3) C20 0.0184 (3) 0.0186 (3) 0.0201 (3) 0.0032 (2) 0.0077 (2) 0.0038 (2) ----- ------------ ------------ -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1662 .table-wrap} --------------------- ------------- ----------------------- ------------- O1---C1 1.2403 (9) C9---C20 1.5022 (9) O2---C11 1.3725 (8) C10---C20 1.4976 (9) O2---H1O2 0.869 (16) C11---C12 1.3998 (9) O3---C12 1.3610 (8) C12---C13 1.4058 (9) O3---H1O3 0.875 (14) C13---C14 1.3948 (9) C1---C10 1.4638 (10) C13---C15 1.5196 (9) C1---C2 1.5003 (11) C14---H14A 0.997 (12) C2---C3 1.5208 (11) C15---C17 1.5280 (12) C2---H2A 1.008 (14) C15---C16 1.5329 (12) C2---H2B 0.982 (15) C15---H15A 1.006 (15) C3---C4 1.5406 (11) C16---H16A 0.989 (14) C3---H3A 0.996 (13) C16---H16B 0.969 (14) C3---H3B 1.011 (13) C16---H16C 0.993 (15) C4---C5 1.5286 (10) C17---H17A 1.008 (16) C4---C19 1.5345 (11) C17---H17B 1.026 (14) C4---C18 1.5379 (10) C17---H17C 1.026 (15) C5---C10 1.3674 (9) C18---H18A 1.001 (13) C5---C6 1.4615 (10) C18---H18B 0.987 (15) C6---C7 1.3655 (10) C18---H18C 0.996 (13) C6---H6A 0.984 (12) C19---H19A 1.013 (15) C7---C8 1.4574 (9) C19---H19B 1.011 (15) C7---H7A 0.975 (12) C19---H19C 0.966 (14) C8---C9 1.4065 (9) C20---H20A 0.993 (11) C8---C14 1.4068 (9) C20---H20B 1.000 (11) C9---C11 1.3912 (9) C11---O2---H1O2 108.3 (10) O3---C12---C13 119.36 (6) C12---O3---H1O3 108.7 (9) C11---C12---C13 120.46 (6) O1---C1---C10 120.59 (7) C14---C13---C12 118.06 (6) O1---C1---C2 121.49 (7) C14---C13---C15 122.54 (6) C10---C1---C2 117.78 (6) C12---C13---C15 119.35 (6) C1---C2---C3 111.47 (6) C13---C14---C8 122.04 (6) C1---C2---H2A 109.2 (8) C13---C14---H14A 120.7 (7) C3---C2---H2A 112.7 (8) C8---C14---H14A 117.3 (7) C1---C2---H2B 106.1 (8) C13---C15---C17 113.17 (6) C3---C2---H2B 112.5 (8) C13---C15---C16 109.93 (6) H2A---C2---H2B 104.4 (11) C17---C15---C16 110.29 (6) C2---C3---C4 113.28 (6) C13---C15---H15A 107.8 (8) C2---C3---H3A 111.3 (7) C17---C15---H15A 108.4 (9) C4---C3---H3A 107.2 (7) C16---C15---H15A 107.0 (9) C2---C3---H3B 110.9 (7) C15---C16---H16A 107.6 (8) C4---C3---H3B 108.5 (7) C15---C16---H16B 110.0 (8) H3A---C3---H3B 105.3 (10) H16A---C16---H16B 112.7 (11) C5---C4---C19 109.16 (6) C15---C16---H16C 111.9 (8) C5---C4---C18 110.87 (6) H16A---C16---H16C 109.3 (12) C19---C4---C18 109.12 (7) H16B---C16---H16C 105.3 (11) C5---C4---C3 109.63 (6) C15---C17---H17A 111.3 (9) C19---C4---C3 110.87 (7) C15---C17---H17B 109.3 (8) C18---C4---C3 107.17 (6) H17A---C17---H17B 107.7 (12) C10---C5---C6 120.53 (6) C15---C17---H17C 112.8 (8) C10---C5---C4 121.86 (6) H17A---C17---H17C 108.0 (12) C6---C5---C4 117.47 (6) H17B---C17---H17C 107.6 (11) C7---C6---C5 126.80 (6) C4---C18---H18A 111.3 (8) C7---C6---H6A 117.7 (7) C4---C18---H18B 109.3 (8) C5---C6---H6A 114.9 (7) H18A---C18---H18B 110.3 (11) C6---C7---C8 128.23 (6) C4---C18---H18C 108.9 (8) C6---C7---H7A 115.8 (7) H18A---C18---H18C 109.0 (10) C8---C7---H7A 115.7 (7) H18B---C18---H18C 108.0 (11) C9---C8---C14 118.71 (6) C4---C19---H19A 110.6 (9) C9---C8---C7 121.08 (6) C4---C19---H19B 109.0 (9) C14---C8---C7 120.20 (6) H19A---C19---H19B 109.6 (12) C11---C9---C8 119.44 (6) C4---C19---H19C 110.9 (8) C11---C9---C20 122.14 (6) H19A---C19---H19C 106.1 (12) C8---C9---C20 118.41 (6) H19B---C19---H19C 110.6 (12) C5---C10---C1 121.89 (6) C10---C20---C9 107.30 (5) C5---C10---C20 120.26 (6) C10---C20---H20A 108.4 (6) C1---C10---C20 116.97 (6) C9---C20---H20A 110.8 (6) O2---C11---C9 122.74 (6) C10---C20---H20B 109.8 (6) O2---C11---C12 116.45 (5) C9---C20---H20B 110.4 (6) C9---C11---C12 120.63 (6) H20A---C20---H20B 110.1 (9) O3---C12---C11 120.14 (5) O1---C1---C2---C3 160.07 (7) O1---C1---C10---C20 −4.42 (10) C10---C1---C2---C3 −24.13 (10) C2---C1---C10---C20 179.74 (6) C1---C2---C3---C4 54.32 (9) C8---C9---C11---O2 −175.30 (6) C2---C3---C4---C5 −48.51 (9) C20---C9---C11---O2 5.92 (10) C2---C3---C4---C19 72.08 (9) C8---C9---C11---C12 9.76 (9) C2---C3---C4---C18 −168.92 (7) C20---C9---C11---C12 −169.02 (6) C19---C4---C5---C10 −108.14 (8) O2---C11---C12---O3 −2.53 (9) C18---C4---C5---C10 131.62 (7) C9---C11---C12---O3 172.71 (6) C3---C4---C5---C10 13.49 (9) O2---C11---C12---C13 179.82 (6) C19---C4---C5---C6 67.64 (8) C9---C11---C12---C13 −4.93 (10) C18---C4---C5---C6 −52.61 (8) O3---C12---C13---C14 −178.92 (6) C3---C4---C5---C6 −170.74 (6) C11---C12---C13---C14 −1.26 (10) C10---C5---C6---C7 35.04 (12) O3---C12---C13---C15 −1.36 (10) C4---C5---C6---C7 −140.79 (8) C11---C12---C13---C15 176.30 (6) C5---C6---C7---C8 −3.68 (14) C12---C13---C14---C8 2.58 (11) C6---C7---C8---C9 −29.82 (12) C15---C13---C14---C8 −174.89 (7) C6---C7---C8---C14 148.89 (8) C9---C8---C14---C13 2.18 (10) C14---C8---C9---C11 −8.32 (10) C7---C8---C14---C13 −176.55 (7) C7---C8---C9---C11 170.41 (6) C14---C13---C15---C17 −42.19 (10) C14---C8---C9---C20 170.51 (6) C12---C13---C15---C17 140.37 (7) C7---C8---C9---C20 −10.77 (9) C14---C13---C15---C16 81.62 (9) C6---C5---C10---C1 −159.14 (6) C12---C13---C15---C16 −95.82 (8) C4---C5---C10---C1 16.50 (10) C5---C10---C20---C9 −75.85 (8) C6---C5---C10---C20 9.77 (10) C1---C10---C20---C9 93.60 (7) C4---C5---C10---C20 −174.58 (6) C11---C9---C20---C10 −106.68 (7) O1---C1---C10---C5 164.85 (7) C8---C9---C20---C10 74.52 (7) C2---C1---C10---C5 −10.99 (10) --------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2620 .table-wrap} ---------------------------------------------- Cg1 is the centroid of C8--C9/C11--C14 ring. ---------------------------------------------- ::: ::: {#d1e2624 .table-wrap} ---------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H1O2···O1 0.870 (18) 2.088 (18) 2.9479 (8) 169.8 (15) O2---H1O2···O2^i^ 0.870 (18) 2.541 (16) 2.8818 (7) 104.3 (12) O3---H1O3···O2 0.875 (14) 2.208 (16) 2.6955 (7) 114.9 (12) O3---H1O3···O1^i^ 0.875 (14) 2.046 (14) 2.8448 (7) 151.3 (14) C7---H7A···O2^ii^ 0.974 (12) 2.440 (12) 3.2262 (9) 137.5 (10) C15---H15A···O3 1.007 (15) 2.364 (15) 2.8216 (8) 106.6 (10) C18---H18B···O3^iii^ 0.986 (15) 2.585 (15) 3.3467 (10) 134.1 (11) C19---H19B···Cg1^ii^ 1.011 (15) 2.798 (16) 3.7130 (10) 150.8 (12) C20---H20A···Cg1^iv^ 0.993 (11) 2.847 (12) 3.7506 (8) 151.6 (9) ---------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1/2, −*y*+1/2, −*z*+1; (ii) *x*, −*y*, *z*−1/2; (iii) −*x*+1/2, *y*−1/2, −*z*+1/2; (iv) *x*, −*y*−1, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of C8--C9/C11--C14 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ------------ ------------ ------------- ------------- O2---H1*O*2⋯O1 0.870 (18) 2.088 (18) 2.9479 (8) 169.8 (15) O2---H1*O*2⋯O2^i^ 0.870 (18) 2.541 (16) 2.8818 (7) 104.3 (12) O3---H1*O*3⋯O2 0.875 (14) 2.208 (16) 2.6955 (7) 114.9 (12) O3---H1*O*3⋯O1^i^ 0.875 (14) 2.046 (14) 2.8448 (7) 151.3 (14) C7---H7*A*⋯O2^ii^ 0.974 (12) 2.440 (12) 3.2262 (9) 137.5 (10) C15---H15*A*⋯O3 1.007 (15) 2.364 (15) 2.8216 (8) 106.6 (10) C18---H18*B*⋯O3^iii^ 0.986 (15) 2.585 (15) 3.3467 (10) 134.1 (11) C19---H19*B*⋯*Cg*1^ii^ 1.011 (15) 2.798 (16) 3.7130 (10) 150.8 (12) C20---H20*A*⋯*Cg*1^iv^ 0.993 (11) 2.847 (12) 3.7506 (8) 151.6 (9) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . ::: [^1]: ‡ Additional correspondence author, e-mail: [email protected]. Thomson Reuters ResearcherID: A-5085-2009. [^2]: § Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:16.639957
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051731/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o256-o257", "authors": [ { "first": "Ibrahim Abdul", "last": "Razak" }, { "first": "Suchada", "last": "Chantrapromma" }, { "first": "Abdul Wahab", "last": "Salae" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3051732
Related literature {#sec1} ================== For general background to the applications and biological activity of the title compound, see: Sarala *et al.* (2006[@bb6]). For puckering parameters, see: Cremer & Pople (1975[@bb2]) and for asymmetry parameters, see: Nardelli *et al.* (1983[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~31~H~22~ClNO~2~S~2~*M* *~r~* = 540.07Orthorhombic,*a* = 12.6858 (13) Å*b* = 13.6733 (13) Å*c* = 15.2782 (17) Å*V* = 2650.1 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 0.33 mm^−1^*T* = 293 K0.25 × 0.22 × 0.19 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 2006[@bb7]) *T* ~min~ = 0.920, *T* ~max~ = 0.93913196 measured reflections4384 independent reflections3364 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.033 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.113*S* = 1.044384 reflections355 parameters5 restraintsH-atom parameters constrainedΔρ~max~ = 0.31 e Å^−3^Δρ~min~ = −0.28 e Å^−3^Absolute structure: Flack (1983[@bb4]), 1898 Friedel pairsFlack parameter: 0.00 (9) {#d5e359} Data collection: *APEX2* (Bruker, 2004[@bb1]); cell refinement: *SAINT* (Bruker, 2004[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810053870/bt5403sup1.cif](http://dx.doi.org/10.1107/S1600536810053870/bt5403sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053870/bt5403Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053870/bt5403Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5403&file=bt5403sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5403sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5403&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5403](http://scripts.iucr.org/cgi-bin/sendsup?bt5403)). ST and ASP thank Dr Babu Varghese, SAIF, IIT, Chennai, India, for the data collection. Comment ======= X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1.The geometric parameters in the title compound agree with the reported values of a similar structure (Sarala *et al.*, 2006). The pyrrolidine ring makes dihedral angles of 42.3 (2), 89.8 (2) and 87.5 (1)° with the acenaphthylene ring system and the phenyl ring, and bithiophene rings respectively. The sum of the angles at N1 of the pyrrolidine ring (341.1°) is in accordance with *sp*^3^ hybridization. The pyrrolidine ring (N1/C9/C8/C23/C22) adopt an envelope conformation, with the puckering parameters q~2~ and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli *et al.*, 1983) as follows: q~2~= 0.410 (3) Å, φ= 316.4 (5)°, Δ~s~(C9)= 4.2 (3)°.The thiophene ring (S2/C28/C29\'/C31/C30) adopt an envelope conformation, with the puckering parameters q~2~ and φ (Cremer & Pople, 1975) and the smallest displacement asymmetric parameters, Δ, (Nardelli *et al.*, 1983) as follows: q~2~= 0.062 (7) Å, φ= 357 (12)°, Δ~s~(C29\')= 1.1 (12)°. The molecular structure of the title compound shows two intramolecular hydrogen bonds. The crystal packing is stabilized by π--π electron interactions. The π--π interactions between the rings *Cg*4 - *Cg*6 at *x*, *y*, *z* with the centroid-centroid distance equal to 3.869 (2) Å, is observed in the crystal structure \[*Cg*4 and *Cg*6 are the centroids of the rings C9/C10/C11/C19/C20 and C1---C6\]. Experimental {#experimental} ============ A solution of the (4-chloro-phenyl-3-Bithiophenyl-prop-2-ene-1-one derived from Bithiophene (1- mmol), Acenapthoquinone (1 mmol), sarcosine (1 mmol) in toluene (30 ml) was refluxed for 8 hrs. The progress of the reacion was evidenced by the TLC analysis. The solvent was removed under reduced pressure and the crude product was subjected to column chromatogarphy using petroleum ether/ethyl acetate (4:1) as solvent. X-ray diffraction were obtained by slow evaporation of a solution of the title compound in hexene at room temperature. Refinement {#refinement} ========== The C and S atoms of the thiophene ring are disordered over two positions (C29/C29\' and S2/S2\') with refined occupancies of 0.629 (7) and 0.373 (7). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same *U*^ij^ parameters were used for atoms C29 and C29\'and S2 and S2\'. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C---H distances fixed in the range 0.93--0.97 Å with *U*~iso~(H) = 1.5*U*~eq~(C) for methyl H 1.2*U*~eq~(C) for other H atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of showing the atom-numbering scheme and intramolecular hydrogen bond. Displacement ellipsoids are drawn at the 30% probability level.For clarity H atoms are omitted. ::: ![](e-67-0o268-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e191 .table-wrap} ------------------------------- --------------------------------------- C~31~H~22~ClNO~2~S~2~ *F*(000) = 1120 *M~r~* = 540.07 *D*~x~ = 1.354 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 4384 reflections *a* = 12.6858 (13) Å θ = 2.0--24.5° *b* = 13.6733 (13) Å µ = 0.33 mm^−1^ *c* = 15.2782 (17) Å *T* = 293 K *V* = 2650.1 (5) Å^3^ Block, colourless *Z* = 4 0.25 × 0.22 × 0.19 mm ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e318 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD area detector diffractometer 4384 independent reflections Radiation source: fine-focus sealed tube 3364 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.033 ω and φ scans θ~max~ = 24.5°, θ~min~ = 2.0° Absorption correction: multi-scan (*SADABS*; Sheldrick, 2006) *h* = −14→14 *T*~min~ = 0.920, *T*~max~ = 0.939 *k* = −15→12 13196 measured reflections *l* = −17→17 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e435 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 H-atom parameters constrained *wR*(*F*^2^) = 0.113 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0474*P*)^2^ + 0.7498*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.04 (Δ/σ)~max~ = 0.001 4384 reflections Δρ~max~ = 0.31 e Å^−3^ 355 parameters Δρ~min~ = −0.28 e Å^−3^ 5 restraints Absolute structure: Flack (1983), 1898 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (9) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e597 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e696 .table-wrap} ------- -------------- --------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) C1 1.3937 (4) −0.2222 (3) 0.0631 (3) 0.0800 (13) C2 1.3483 (5) −0.2581 (3) 0.1358 (4) 0.1047 (17) H2 1.3714 −0.3174 0.1586 0.126\* C3 1.2680 (4) −0.2083 (3) 0.1769 (3) 0.0861 (13) H3 1.2359 −0.2350 0.2261 0.103\* C4 1.2353 (3) −0.1191 (3) 0.1455 (2) 0.0566 (9) C5 1.2854 (4) −0.0835 (3) 0.0728 (3) 0.0832 (13) H5 1.2662 −0.0223 0.0514 0.100\* C6 1.3632 (4) −0.1351 (3) 0.0302 (3) 0.0966 (16) H6 1.3942 −0.1104 −0.0204 0.116\* C7 1.1509 (3) −0.0646 (2) 0.1911 (2) 0.0533 (8) C8 1.1575 (3) 0.0467 (2) 0.1911 (2) 0.0472 (8) H8 1.1689 0.0684 0.1307 0.057\* C9 1.2525 (3) 0.0844 (2) 0.2484 (2) 0.0496 (8) C10 1.3424 (3) 0.1227 (3) 0.1863 (2) 0.0624 (10) C11 1.4414 (3) 0.0747 (3) 0.2121 (2) 0.0654 (10) C12 1.5430 (4) 0.0814 (4) 0.1802 (3) 0.0920 (15) H12 1.5600 0.1236 0.1346 0.110\* C13 1.6186 (4) 0.0224 (5) 0.2192 (4) 0.1115 (19) H13 1.6874 0.0257 0.1985 0.134\* C14 1.5970 (4) −0.0401 (4) 0.2861 (4) 0.1040 (18) H14 1.6512 −0.0773 0.3101 0.125\* C15 1.4942 (4) −0.0495 (3) 0.3196 (3) 0.0740 (12) C16 1.4591 (5) −0.1096 (3) 0.3881 (3) 0.0922 (15) H16 1.5067 −0.1504 0.4166 0.111\* C17 1.3559 (5) −0.1086 (3) 0.4134 (3) 0.0899 (15) H17 1.3347 −0.1489 0.4592 0.108\* C18 1.2801 (3) −0.0481 (3) 0.3719 (2) 0.0705 (11) H18 1.2103 −0.0486 0.3905 0.085\* C19 1.3106 (3) 0.0107 (2) 0.3048 (2) 0.0552 (9) C20 1.4180 (3) 0.0097 (3) 0.2798 (2) 0.0565 (8) C21 1.2724 (4) 0.2350 (3) 0.3369 (3) 0.0880 (13) H21A 1.2967 0.2752 0.2895 0.132\* H21B 1.3318 0.2051 0.3653 0.132\* H21C 1.2348 0.2746 0.3783 0.132\* C22 1.1089 (3) 0.1941 (2) 0.2613 (2) 0.0567 (9) H22A 1.1251 0.2389 0.2139 0.068\* H22B 1.0624 0.2262 0.3027 0.068\* C23 1.0607 (3) 0.1006 (2) 0.2272 (2) 0.0496 (8) H23 1.0329 0.0634 0.2769 0.060\* C24 0.9739 (3) 0.1152 (2) 0.1621 (2) 0.0508 (8) C25 0.9350 (3) 0.1998 (3) 0.1294 (2) 0.0663 (10) H25 0.9606 0.2610 0.1453 0.080\* C26 0.8532 (3) 0.1871 (3) 0.0695 (3) 0.0721 (11) H26 0.8194 0.2393 0.0423 0.086\* C27 0.8272 (3) 0.0943 (3) 0.0545 (2) 0.0522 (8) C28 0.7479 (3) 0.0563 (3) −0.0029 (2) 0.0568 (9) C30 0.6091 (4) 0.0442 (3) −0.1079 (3) 0.0979 (16) H30 0.5593 0.0565 −0.1511 0.117\* C31 0.6363 (4) −0.0460 (4) −0.0872 (4) 0.111 (2) H31 0.6068 −0.1032 −0.1091 0.133\* N1 1.2030 (2) 0.1596 (2) 0.30319 (19) 0.0615 (8) O1 1.3271 (2) 0.1816 (2) 0.1289 (2) 0.0946 (10) O2 1.0810 (2) −0.10617 (19) 0.23110 (18) 0.0746 (7) S1 0.90714 (8) 0.01840 (7) 0.11587 (6) 0.0631 (3) S2 0.6657 (4) 0.1332 (3) −0.0552 (3) 0.0847 (11) 0.629 (7) C29\' 0.7190 (17) −0.0390 (8) −0.0252 (15) 0.105 (8) 0.629 (7) H29\' 0.7515 −0.0937 −0.0011 0.126\* 0.629 (7) S2\' 0.7253 (10) −0.0658 (7) −0.0140 (8) 0.097 (2) 0.372 (7) C29 0.686 (2) 0.1034 (13) −0.0665 (19) 0.128 (16) 0.372 (7) H29 0.6957 0.1690 −0.0806 0.153\* 0.372 (7) Cl1 1.49143 (12) −0.28892 (10) 0.00879 (10) 0.1206 (6) ------- -------------- --------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1566 .table-wrap} ------- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.084 (3) 0.079 (3) 0.077 (3) 0.026 (3) −0.020 (3) −0.028 (2) C2 0.144 (5) 0.069 (3) 0.102 (4) 0.045 (3) −0.011 (4) 0.006 (3) C3 0.118 (4) 0.062 (3) 0.078 (3) 0.018 (3) 0.003 (3) 0.005 (2) C4 0.072 (2) 0.048 (2) 0.050 (2) 0.0084 (18) −0.0128 (18) −0.0038 (16) C5 0.117 (4) 0.064 (3) 0.068 (3) 0.032 (3) 0.016 (3) 0.003 (2) C6 0.128 (4) 0.082 (3) 0.080 (3) 0.032 (3) 0.027 (3) 0.001 (3) C7 0.060 (2) 0.054 (2) 0.0459 (19) −0.0004 (18) −0.0096 (17) 0.0039 (16) C8 0.056 (2) 0.0465 (18) 0.0389 (16) 0.0059 (16) 0.0012 (15) 0.0043 (14) C9 0.047 (2) 0.0477 (18) 0.0542 (19) −0.0028 (16) −0.0017 (15) 0.0025 (15) C10 0.060 (2) 0.065 (2) 0.062 (2) −0.006 (2) 0.0040 (19) 0.008 (2) C11 0.050 (2) 0.080 (3) 0.066 (2) 0.005 (2) 0.0023 (18) −0.011 (2) C12 0.068 (3) 0.133 (4) 0.075 (3) 0.000 (3) 0.011 (2) −0.012 (3) C13 0.066 (3) 0.169 (6) 0.100 (4) 0.033 (4) 0.000 (3) −0.037 (4) C14 0.075 (4) 0.124 (4) 0.113 (4) 0.048 (3) −0.032 (3) −0.040 (4) C15 0.073 (3) 0.073 (3) 0.076 (3) 0.023 (2) −0.027 (2) −0.020 (2) C16 0.112 (4) 0.067 (3) 0.098 (3) 0.013 (3) −0.054 (3) 0.000 (3) C17 0.119 (4) 0.077 (3) 0.073 (3) −0.016 (3) −0.046 (3) 0.020 (2) C18 0.084 (3) 0.073 (2) 0.054 (2) −0.010 (2) −0.012 (2) 0.004 (2) C19 0.066 (2) 0.0488 (19) 0.0512 (19) −0.0036 (17) −0.0095 (17) 0.0001 (17) C20 0.056 (2) 0.057 (2) 0.0570 (19) 0.0089 (18) −0.0102 (18) −0.0111 (17) C21 0.084 (3) 0.069 (3) 0.112 (3) −0.012 (2) −0.015 (3) −0.023 (2) C22 0.058 (2) 0.054 (2) 0.057 (2) 0.0021 (18) 0.0014 (17) −0.0056 (17) C23 0.051 (2) 0.055 (2) 0.0430 (17) 0.0017 (16) 0.0066 (15) 0.0018 (15) C24 0.047 (2) 0.056 (2) 0.0495 (18) 0.0076 (17) 0.0057 (15) −0.0022 (16) C25 0.068 (3) 0.050 (2) 0.081 (3) 0.0092 (19) −0.014 (2) −0.0122 (19) C26 0.069 (3) 0.061 (2) 0.086 (3) 0.016 (2) −0.019 (2) 0.000 (2) C27 0.047 (2) 0.056 (2) 0.054 (2) 0.0063 (17) 0.0044 (16) 0.0018 (17) C28 0.050 (2) 0.059 (2) 0.061 (2) 0.0014 (19) −0.0058 (19) 0.0064 (19) C30 0.099 (4) 0.081 (3) 0.113 (4) 0.008 (3) −0.055 (3) −0.001 (3) C31 0.109 (4) 0.072 (3) 0.152 (5) −0.009 (3) −0.057 (4) −0.003 (3) N1 0.0594 (19) 0.0587 (18) 0.0664 (19) −0.0014 (15) −0.0048 (15) −0.0101 (15) O1 0.076 (2) 0.109 (2) 0.099 (2) −0.0064 (18) 0.0060 (17) 0.052 (2) O2 0.0753 (18) 0.0601 (15) 0.0886 (18) −0.0089 (15) 0.0040 (16) 0.0109 (14) S1 0.0631 (6) 0.0538 (5) 0.0724 (6) −0.0014 (5) −0.0180 (5) 0.0079 (5) S2 0.0851 (18) 0.0775 (18) 0.0916 (17) 0.0007 (15) −0.0399 (16) 0.0029 (13) C29\' 0.094 (8) 0.099 (16) 0.123 (11) 0.021 (10) −0.056 (7) 0.015 (10) S2\' 0.127 (5) 0.053 (3) 0.112 (4) 0.000 (3) −0.073 (3) 0.010 (3) C29 0.13 (2) 0.11 (2) 0.14 (2) −0.036 (19) −0.001 (17) 0.018 (17) Cl1 0.1074 (10) 0.1174 (11) 0.1371 (12) 0.0501 (9) −0.0110 (9) −0.0470 (9) ------- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2307 .table-wrap} ----------------------- ------------ -------------------------- ------------- C1---C2 1.344 (7) C17---H17 0.9300 C1---C6 1.349 (6) C18---C19 1.360 (5) C1---Cl1 1.748 (4) C18---H18 0.9300 C2---C3 1.377 (6) C19---C20 1.415 (5) C2---H2 0.9300 C21---N1 1.450 (5) C3---C4 1.375 (5) C21---H21A 0.9600 C3---H3 0.9300 C21---H21B 0.9600 C4---C5 1.370 (5) C21---H21C 0.9600 C4---C7 1.479 (5) C22---N1 1.435 (4) C5---C6 1.377 (6) C22---C23 1.510 (5) C5---H5 0.9300 C22---H22A 0.9700 C6---H6 0.9300 C22---H22B 0.9700 C7---O2 1.218 (4) C23---C24 1.498 (4) C7---C8 1.524 (5) C23---H23 0.9800 C8---C23 1.535 (4) C24---C25 1.354 (5) C8---C9 1.577 (5) C24---S1 1.723 (4) C8---H8 0.9800 C25---C26 1.394 (5) C9---N1 1.466 (4) C25---H25 0.9300 C9---C19 1.517 (5) C26---C27 1.332 (5) C9---C10 1.573 (5) C26---H26 0.9300 C10---O1 1.206 (4) C27---C28 1.432 (5) C10---C11 1.470 (5) C27---S1 1.727 (3) C11---C12 1.381 (5) C28---C29\' 1.396 (9) C11---C20 1.396 (5) C28---C29 1.402 (10) C12---C13 1.387 (7) C28---S2 1.682 (5) C12---H12 0.9300 C28---S2\' 1.703 (8) C13---C14 1.360 (8) C30---C31 1.318 (6) C13---H13 0.9300 C30---C29 1.420 (10) C14---C15 1.408 (7) C30---S2 1.625 (6) C14---H14 0.9300 C30---H30 0.9300 C15---C20 1.400 (5) C31---C29\' 1.416 (9) C15---C16 1.403 (7) C31---S2\' 1.612 (9) C16---C17 1.365 (7) C31---H31 0.9300 C16---H16 0.9300 C29\'---H29\' 0.9300 C17---C18 1.419 (6) C29---H29 0.9300 C2---C1---C6 120.5 (4) C11---C20---C15 122.9 (4) C2---C1---Cl1 120.4 (4) C11---C20---C19 113.5 (3) C6---C1---Cl1 119.2 (4) C15---C20---C19 123.6 (4) C1---C2---C3 120.9 (4) N1---C21---H21A 109.5 C1---C2---H2 119.6 N1---C21---H21B 109.5 C3---C2---H2 119.6 H21A---C21---H21B 109.5 C4---C3---C2 120.2 (4) N1---C21---H21C 109.5 C4---C3---H3 119.9 H21A---C21---H21C 109.5 C2---C3---H3 119.9 H21B---C21---H21C 109.5 C5---C4---C3 117.3 (4) N1---C22---C23 102.3 (3) C5---C4---C7 122.6 (3) N1---C22---H22A 111.3 C3---C4---C7 120.1 (4) C23---C22---H22A 111.3 C4---C5---C6 122.2 (4) N1---C22---H22B 111.3 C4---C5---H5 118.9 C23---C22---H22B 111.3 C6---C5---H5 118.9 H22A---C22---H22B 109.2 C1---C6---C5 118.8 (4) C24---C23---C22 114.4 (3) C1---C6---H6 120.6 C24---C23---C8 114.5 (3) C5---C6---H6 120.6 C22---C23---C8 101.9 (3) O2---C7---C4 121.9 (3) C24---C23---H23 108.6 O2---C7---C8 120.4 (3) C22---C23---H23 108.6 C4---C7---C8 117.6 (3) C8---C23---H23 108.6 C7---C8---C23 115.8 (3) C25---C24---C23 128.9 (3) C7---C8---C9 111.7 (3) C25---C24---S1 109.0 (3) C23---C8---C9 104.7 (2) C23---C24---S1 122.1 (2) C7---C8---H8 108.1 C24---C25---C26 114.0 (3) C23---C8---H8 108.1 C24---C25---H25 123.0 C9---C8---H8 108.1 C26---C25---H25 123.0 N1---C9---C19 110.5 (3) C27---C26---C25 114.6 (4) N1---C9---C10 114.9 (3) C27---C26---H26 122.7 C19---C9---C10 102.2 (3) C25---C26---H26 122.7 N1---C9---C8 102.7 (3) C26---C27---C28 128.7 (3) C19---C9---C8 118.0 (3) C26---C27---S1 109.5 (3) C10---C9---C8 109.1 (3) C28---C27---S1 121.8 (3) O1---C10---C11 129.1 (4) C29\'---C28---C29 96.6 (8) O1---C10---C9 122.9 (4) C29\'---C28---C27 132.2 (5) C11---C10---C9 108.0 (3) C29---C28---C27 130.4 (6) C12---C11---C20 120.1 (4) C29\'---C28---S2 107.7 (6) C12---C11---C10 132.3 (4) C27---C28---S2 120.0 (3) C20---C11---C10 107.5 (3) C29---C28---S2\' 106.7 (7) C11---C12---C13 117.1 (5) C27---C28---S2\' 122.3 (3) C11---C12---H12 121.5 S2---C28---S2\' 117.5 (3) C13---C12---H12 121.5 C31---C30---C29 104.2 (8) C14---C13---C12 123.3 (5) C31---C30---S2 117.8 (4) C14---C13---H13 118.3 C31---C30---H30 121.1 C12---C13---H13 118.3 C29---C30---H30 133.1 C13---C14---C15 121.1 (4) S2---C30---H30 121.1 C13---C14---H14 119.4 C30---C31---C29\' 106.9 (6) C15---C14---H14 119.4 C30---C31---S2\' 120.4 (5) C20---C15---C16 116.4 (4) C30---C31---H31 126.5 C20---C15---C14 115.4 (4) C29\'---C31---H31 126.5 C16---C15---C14 128.2 (5) S2\'---C31---H31 113.0 C17---C16---C15 120.6 (4) C22---N1---C21 115.5 (3) C17---C16---H16 119.7 C22---N1---C9 109.4 (3) C15---C16---H16 119.7 C21---N1---C9 116.2 (3) C16---C17---C18 121.9 (5) C24---S1---C27 92.86 (17) C16---C17---H17 119.0 C30---S2---C28 92.3 (3) C18---C17---H17 119.0 C28---C29\'---C31 114.8 (8) C19---C18---C17 119.3 (4) C28---C29\'---H29\' 122.6 C19---C18---H18 120.3 C31---C29\'---H29\' 122.6 C17---C18---H18 120.3 C31---S2\'---C28 91.2 (5) C18---C19---C20 118.2 (3) C28---C29---C30 115.5 (10) C18---C19---C9 133.1 (4) C28---C29---H29 122.3 C20---C19---C9 108.7 (3) C30---C29---H29 122.3 C6---C1---C2---C3 1.7 (8) N1---C22---C23---C24 −166.4 (3) Cl1---C1---C2---C3 −177.1 (4) N1---C22---C23---C8 −42.3 (3) C1---C2---C3---C4 −2.0 (8) C7---C8---C23---C24 −83.9 (4) C2---C3---C4---C5 0.1 (6) C9---C8---C23---C24 152.7 (3) C2---C3---C4---C7 −178.5 (4) C7---C8---C23---C22 152.0 (3) C3---C4---C5---C6 2.1 (7) C9---C8---C23---C22 28.6 (3) C7---C4---C5---C6 −179.4 (4) C22---C23---C24---C25 1.3 (5) C2---C1---C6---C5 0.5 (8) C8---C23---C24---C25 −115.8 (4) Cl1---C1---C6---C5 179.3 (4) C22---C23---C24---S1 −179.3 (2) C4---C5---C6---C1 −2.4 (7) C8---C23---C24---S1 63.6 (4) C5---C4---C7---O2 151.1 (4) C23---C24---C25---C26 −179.9 (3) C3---C4---C7---O2 −30.3 (5) S1---C24---C25---C26 0.7 (4) C5---C4---C7---C8 −32.4 (5) C24---C25---C26---C27 −0.2 (5) C3---C4---C7---C8 146.1 (4) C25---C26---C27---C28 −179.7 (3) O2---C7---C8---C23 −12.0 (5) C25---C26---C27---S1 −0.4 (5) C4---C7---C8---C23 171.5 (3) C26---C27---C28---C29\' 176.8 (17) O2---C7---C8---C9 107.7 (4) S1---C27---C28---C29\' −2.5 (17) C4---C7---C8---C9 −68.8 (4) C26---C27---C28---C29 10 (2) C7---C8---C9---N1 −131.0 (3) S1---C27---C28---C29 −170 (2) C23---C8---C9---N1 −5.0 (3) C26---C27---C28---S2 −5.6 (6) C7---C8---C9---C19 −9.3 (4) S1---C27---C28---S2 175.2 (3) C23---C8---C9---C19 116.7 (3) C26---C27---C28---S2\' 180.0 (8) C7---C8---C9---C10 106.6 (3) S1---C27---C28---S2\' 0.8 (8) C23---C8---C9---C10 −127.3 (3) C29---C30---C31---C29\' 8(2) N1---C9---C10---O1 −62.6 (5) S2---C30---C31---C29\' −4.8 (15) C19---C9---C10---O1 177.7 (4) C29---C30---C31---S2\' 10.7 (18) C8---C9---C10---O1 52.1 (5) S2---C30---C31---S2\' −1.8 (11) N1---C9---C10---C11 117.3 (3) C23---C22---N1---C21 175.1 (3) C19---C9---C10---C11 −2.4 (4) C23---C22---N1---C9 41.8 (3) C8---C9---C10---C11 −128.1 (3) C19---C9---N1---C22 −149.3 (3) O1---C10---C11---C12 −0.1 (8) C10---C9---N1---C22 95.7 (3) C9---C10---C11---C12 −180.0 (4) C8---C9---N1---C22 −22.7 (3) O1---C10---C11---C20 −177.7 (4) C19---C9---N1---C21 77.8 (4) C9---C10---C11---C20 2.5 (4) C10---C9---N1---C21 −37.2 (4) C20---C11---C12---C13 −0.8 (6) C8---C9---N1---C21 −155.6 (3) C10---C11---C12---C13 −178.2 (4) C25---C24---S1---C27 −0.7 (3) C11---C12---C13---C14 −0.2 (8) C23---C24---S1---C27 179.8 (3) C12---C13---C14---C15 0.8 (8) C26---C27---S1---C24 0.6 (3) C13---C14---C15---C20 −0.4 (6) C28---C27---S1---C24 180.0 (3) C13---C14---C15---C16 −179.6 (5) C31---C30---S2---C28 6.1 (6) C20---C15---C16---C17 −0.2 (6) C29---C30---S2---C28 −37 (4) C14---C15---C16---C17 179.0 (4) C29\'---C28---S2---C30 −5.1 (13) C15---C16---C17---C18 0.3 (7) C29---C28---S2---C30 42 (4) C16---C17---C18---C19 0.2 (6) C27---C28---S2---C30 176.7 (3) C17---C18---C19---C20 −0.8 (5) S2\'---C28---S2---C30 −8.6 (8) C17---C18---C19---C9 −178.5 (4) C29---C28---C29\'---C31 −8(2) N1---C9---C19---C18 56.5 (5) C27---C28---C29\'---C31 −178.6 (9) C10---C9---C19---C18 179.3 (4) S2---C28---C29\'---C31 4(2) C8---C9---C19---C18 −61.1 (5) S2\'---C28---C29\'---C31 166 (12) N1---C9---C19---C20 −121.3 (3) C30---C31---C29\'---C28 0(2) C10---C9---C19---C20 1.5 (3) S2\'---C31---C29\'---C28 −169 (9) C8---C9---C19---C20 121.1 (3) C30---C31---S2\'---C28 −3.6 (11) C12---C11---C20---C15 1.3 (6) C29\'---C31---S2\'---C28 8(7) C10---C11---C20---C15 179.2 (3) C29\'---C28---S2\'---C31 −11 (9) C12---C11---C20---C19 −179.5 (4) C29---C28---S2\'---C31 −5.2 (19) C10---C11---C20---C19 −1.6 (4) C27---C28---S2\'---C31 −177.6 (4) C16---C15---C20---C11 178.7 (4) S2---C28---S2\'---C31 7.8 (10) C14---C15---C20---C11 −0.6 (5) C29\'---C28---C29---C30 14 (3) C16---C15---C20---C19 −0.5 (5) C27---C28---C29---C30 −175.8 (12) C14---C15---C20---C19 −179.8 (4) S2---C28---C29---C30 −121 (6) C18---C19---C20---C11 −178.2 (3) S2\'---C28---C29---C30 13 (3) C9---C19---C20---C11 0.0 (4) C31---C30---C29---C28 −15 (3) C18---C19---C20---C15 1.0 (5) S2---C30---C29---C28 127 (6) C9---C19---C20---C15 179.2 (3) ----------------------- ------------ -------------------------- ------------- :::
PubMed Central
2024-06-05T04:04:16.646517
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051732/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o268", "authors": [ { "first": "S.", "last": "Thenmozhi" }, { "first": "E.", "last": "Govindan" }, { "first": "D.", "last": "Gavaskar" }, { "first": "R.", "last": "Raghunathan" }, { "first": "A.", "last": "SubbiahPandi" } ] }
PMC3051733
Related literature {#sec1} ================== For the analogous DMF disolvate Pd^II^ complex, see: Khaledi & Mohd Ali (2011[@bb3]). For a discussion of the coordination chemistry of indole-based *S*-benzyl­dithio­carbazones, see: Khaledi *et al.* (2011[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Pd(C~17~H~14~N~3~S~2~)~2~\]·2C~5~H~5~N*M* *~r~* = 913.46Triclinic,*a* = 9.9688 (2) Å*b* = 10.5041 (2) Å*c* = 10.9491 (2) Åα = 62.534 (2)°β = 78.494 (2)°γ = 78.985 (2)°*V* = 990.35 (3) Å^3^*Z* = 1Mo *K*α radiationμ = 0.72 mm^−1^*T* = 100 K0.10 × 0.07 × 0.05 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.931, *T* ~max~ = 0.9658128 measured reflections3879 independent reflections3045 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.041 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.070*S* = 0.993879 reflections262 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.73 e Å^−3^Δρ~min~ = −1.03 e Å^−3^ {#d5e466} Data collection: *APEX2* (Bruker, 2007[@bb2]); cell refinement: *SAINT* (Bruker, 2007[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811001991/pv2380sup1.cif](http://dx.doi.org/10.1107/S1600536811001991/pv2380sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001991/pv2380Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001991/pv2380Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2380&file=pv2380sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2380sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2380&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2380](http://scripts.iucr.org/cgi-bin/sendsup?pv2380)). The authors thank University of Malaya for funding this study (FRGS grant FP004/2010B). Comment ======= The crystal of the title compound was obtained from a pyridine solution of the Pd^II^ complex of indole-3-carbaldehyde *S*-benzyldithiocarbazone. Upon deprotonation, the Schiff base chelates the Pd^II^ ion in an *N,S*-bidentate bonding mode to form a five-membered ring with the metal center. The Pd^II^ ion, located on an inversion center, is four-coordinated by two of the Schiff base ligands in a square-planar geometry. The pyridine solvent molecules remain uncoordinated to the metal ion and are hydrogen bonded to indole NH groups. This is similar to what was observed in the structure of the analogous DMF solvate Pd^II^ complex (Khaledi & Mohd Ali, 2011). In contrast, the cadmium(II) complex of the Schiff base ligand in a pyridine solution gave an octahedral complex wherein two *trans*-pyridine molecules are coordinated to the metal center (Khaledi *et al.*, 2011). In the present structure, the aromatic ring planes within the ligand make a dihedral angle of 71.12 (9)°. The pyridine solvent ring is nearly coplanar with the indole ring, the dihedral angle between them being 11.39 (19)°. The structure is further consolidated by intramolecular interactions of the types C---H···S and C---H···N (Table 1). Experimental {#experimental} ============ The Schiff base ligand was prepared as reported previously (Khaledi *et al*., 2011). A solution of palladium(II) acetate (0.224 g, 1 mmol) in ethanol (30 ml) was added to an ethanolic solution (30 ml) of the ligand (0.65 g, 2 mmol) containing a few drops of triethylamine. The mixture was refluxed for an hour, then cooled to room temperature. The resulting brown solid was filtered, washed with cold ethanol and dried over siliga-gel. The crystals of the title compound were obtained by slow evaporation of a solution of the solid in pyridine. Refinement {#refinement} ========== The C-bound H atoms were placed at calculated positions (C--H 0.95--0.99 Å) and were treated as riding on their parent C atoms. The N-bound H atom was located in a difference Fourier map, and was refined with a distance restraint of N--H 0.88±0.02. For all H atoms, *U*~iso~(H) was set to 1.2 *U*~eq~(carrier atom). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled atoms by symmetry operation: -x, -y, -z. ::: ![](e-67-0m230-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e126 .table-wrap} ------------------------------------------ --------------------------------------- \[Pd(C~17~H~14~N~3~S~2~)~2~\]·2C~5~H~5~N *Z* = 1 *M~r~* = 913.46 *F*(000) = 468 Triclinic, *P*1 *D*~x~ = 1.532 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 9.9688 (2) Å Cell parameters from 2496 reflections *b* = 10.5041 (2) Å θ = 2.2--27.4° *c* = 10.9491 (2) Å µ = 0.72 mm^−1^ α = 62.534 (2)° *T* = 100 K β = 78.494 (2)° Block, red γ = 78.985 (2)° 0.10 × 0.07 × 0.05 mm *V* = 990.35 (3) Å^3^ ------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e273 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 3879 independent reflections Radiation source: fine-focus sealed tube 3045 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.041 φ and ω scans θ~max~ = 26.0°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −11→12 *T*~min~ = 0.931, *T*~max~ = 0.965 *k* = −12→12 8128 measured reflections *l* = −13→13 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e390 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.070 H atoms treated by a mixture of independent and constrained refinement *S* = 0.99 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0263*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3879 reflections (Δ/σ)~max~ = 0.001 262 parameters Δρ~max~ = 0.73 e Å^−3^ 1 restraint Δρ~min~ = −1.03 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e544 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e643 .table-wrap} ------ ------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Pd1 0.0000 0.0000 0.0000 0.01415 (11) S1 0.22662 (8) −0.07299 (8) 0.03590 (8) 0.01946 (19) S2 0.39814 (8) 0.01851 (8) 0.15858 (8) 0.01993 (19) N1 −0.0326 (3) 0.4905 (3) 0.2098 (3) 0.0209 (6) H1N 0.014 (3) 0.528 (3) 0.240 (3) 0.025\* N2 0.0161 (3) 0.1372 (2) 0.0784 (2) 0.0161 (6) N3 0.1382 (3) 0.1317 (2) 0.1281 (2) 0.0168 (6) C1 0.0172 (3) 0.3767 (3) 0.1816 (3) 0.0211 (7) H1 0.1081 0.3286 0.1913 0.025\* C2 −0.0838 (3) 0.3404 (3) 0.1364 (3) 0.0175 (7) C3 −0.2052 (3) 0.4404 (3) 0.1403 (3) 0.0175 (7) C4 −0.3413 (3) 0.4581 (3) 0.1129 (3) 0.0207 (7) H4 −0.3696 0.3974 0.0822 0.025\* C5 −0.4324 (3) 0.5660 (3) 0.1317 (3) 0.0247 (8) H5 −0.5249 0.5785 0.1146 0.030\* C6 −0.3925 (4) 0.6577 (3) 0.1754 (3) 0.0257 (8) H6 −0.4580 0.7315 0.1863 0.031\* C7 −0.2600 (3) 0.6428 (3) 0.2026 (3) 0.0236 (8) H7 −0.2324 0.7052 0.2317 0.028\* C8 −0.1682 (3) 0.5327 (3) 0.1860 (3) 0.0185 (7) C9 −0.0809 (3) 0.2353 (3) 0.0870 (3) 0.0161 (7) H9 −0.1638 0.2379 0.0551 0.019\* C10 0.2357 (3) 0.0394 (3) 0.1092 (3) 0.0155 (7) C11 0.3916 (3) 0.1657 (3) 0.2031 (3) 0.0192 (7) H11A 0.4837 0.2004 0.1736 0.023\* H11B 0.3258 0.2461 0.1484 0.023\* C12 0.3507 (3) 0.1328 (3) 0.3543 (3) 0.0180 (7) C13 0.2418 (3) 0.0539 (3) 0.4334 (3) 0.0243 (7) H13 0.1898 0.0208 0.3920 0.029\* C14 0.2083 (4) 0.0229 (3) 0.5724 (3) 0.0283 (8) H14 0.1344 −0.0324 0.6260 0.034\* C15 0.2820 (4) 0.0720 (3) 0.6337 (3) 0.0289 (8) H15 0.2590 0.0507 0.7291 0.035\* C16 0.3883 (4) 0.1516 (3) 0.5552 (3) 0.0265 (8) H16 0.4383 0.1868 0.5964 0.032\* C17 0.4238 (3) 0.1814 (3) 0.4174 (3) 0.0209 (7) H17 0.4988 0.2356 0.3650 0.025\* N4 0.1071 (3) 0.5947 (3) 0.3379 (3) 0.0247 (6) C18 0.0482 (4) 0.6915 (3) 0.3856 (3) 0.0293 (8) H18 −0.0442 0.7315 0.3704 0.035\* C19 0.1138 (4) 0.7360 (4) 0.4550 (3) 0.0322 (8) H19 0.0671 0.8044 0.4875 0.039\* C20 0.2470 (4) 0.6811 (4) 0.4771 (4) 0.0392 (10) H20 0.2951 0.7107 0.5245 0.047\* C21 0.3098 (4) 0.5814 (4) 0.4286 (4) 0.0435 (10) H21 0.4026 0.5412 0.4416 0.052\* C22 0.2362 (4) 0.5409 (4) 0.3610 (3) 0.0327 (9) H22 0.2799 0.4710 0.3293 0.039\* ------ ------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1293 .table-wrap} ----- ------------- -------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Pd1 0.0175 (2) 0.01085 (18) 0.0166 (2) −0.00293 (15) −0.00176 (15) −0.00774 (15) S1 0.0206 (5) 0.0190 (4) 0.0251 (4) −0.0007 (4) −0.0042 (4) −0.0151 (4) S2 0.0200 (5) 0.0204 (4) 0.0249 (4) 0.0001 (4) −0.0052 (4) −0.0147 (4) N1 0.0240 (17) 0.0187 (14) 0.0272 (15) −0.0053 (12) −0.0004 (12) −0.0160 (12) N2 0.0220 (15) 0.0108 (12) 0.0192 (13) −0.0021 (11) −0.0027 (11) −0.0094 (10) N3 0.0201 (15) 0.0144 (13) 0.0184 (13) −0.0034 (12) −0.0033 (11) −0.0084 (11) C1 0.0260 (19) 0.0155 (15) 0.0219 (17) −0.0009 (14) −0.0011 (14) −0.0096 (13) C2 0.0228 (18) 0.0120 (14) 0.0159 (15) −0.0032 (13) 0.0021 (13) −0.0060 (12) C3 0.0207 (18) 0.0128 (15) 0.0157 (16) −0.0033 (14) 0.0030 (13) −0.0050 (12) C4 0.026 (2) 0.0179 (16) 0.0185 (16) −0.0060 (14) −0.0002 (14) −0.0081 (13) C5 0.0251 (19) 0.0237 (17) 0.0209 (17) 0.0025 (15) −0.0028 (14) −0.0082 (14) C6 0.032 (2) 0.0178 (16) 0.0204 (17) 0.0060 (15) 0.0017 (15) −0.0080 (13) C7 0.034 (2) 0.0141 (15) 0.0213 (17) 0.0000 (15) 0.0000 (15) −0.0093 (13) C8 0.0207 (18) 0.0165 (15) 0.0173 (16) −0.0043 (14) 0.0028 (13) −0.0079 (13) C9 0.0170 (17) 0.0153 (15) 0.0149 (15) −0.0052 (13) −0.0009 (13) −0.0051 (12) C10 0.0210 (18) 0.0133 (14) 0.0115 (15) −0.0045 (13) −0.0006 (13) −0.0046 (12) C11 0.0186 (18) 0.0183 (15) 0.0240 (17) −0.0048 (14) −0.0022 (14) −0.0111 (13) C12 0.0211 (18) 0.0139 (15) 0.0189 (16) 0.0027 (13) −0.0056 (13) −0.0077 (13) C13 0.0253 (19) 0.0274 (17) 0.0255 (18) −0.0069 (15) −0.0023 (15) −0.0149 (15) C14 0.030 (2) 0.0265 (17) 0.0221 (17) −0.0056 (16) 0.0026 (14) −0.0066 (14) C15 0.039 (2) 0.0242 (17) 0.0201 (18) 0.0099 (17) −0.0075 (16) −0.0106 (15) C16 0.035 (2) 0.0217 (17) 0.0277 (18) 0.0053 (16) −0.0130 (16) −0.0149 (15) C17 0.0237 (19) 0.0162 (15) 0.0246 (17) −0.0011 (14) −0.0053 (14) −0.0102 (13) N4 0.0237 (16) 0.0202 (14) 0.0313 (16) −0.0052 (13) −0.0042 (13) −0.0110 (12) C18 0.025 (2) 0.0247 (18) 0.041 (2) −0.0061 (16) 0.0012 (16) −0.0175 (16) C19 0.038 (2) 0.032 (2) 0.033 (2) −0.0160 (18) 0.0082 (17) −0.0209 (16) C20 0.047 (3) 0.051 (2) 0.025 (2) −0.027 (2) −0.0019 (18) −0.0140 (18) C21 0.030 (2) 0.057 (3) 0.034 (2) 0.001 (2) −0.0108 (18) −0.011 (2) C22 0.034 (2) 0.0276 (19) 0.031 (2) 0.0034 (17) −0.0009 (17) −0.0120 (16) ----- ------------- -------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1915 .table-wrap} --------------------- ------------- ------------------- ------------- Pd1---N2^i^ 2.031 (2) C9---H9 0.9500 Pd1---N2 2.031 (2) C11---C12 1.510 (4) Pd1---S1^i^ 2.2936 (8) C11---H11A 0.9900 Pd1---S1 2.2936 (8) C11---H11B 0.9900 S1---C10 1.729 (3) C12---C13 1.387 (4) S2---C10 1.751 (3) C12---C17 1.393 (4) S2---C11 1.810 (3) C13---C14 1.384 (4) N1---C1 1.350 (4) C13---H13 0.9500 N1---C8 1.377 (4) C14---C15 1.384 (5) N1---H1N 0.857 (18) C14---H14 0.9500 N2---C9 1.296 (3) C15---C16 1.369 (5) N2---N3 1.411 (3) C15---H15 0.9500 N3---C10 1.294 (3) C16---C17 1.376 (4) C1---C2 1.387 (4) C16---H16 0.9500 C1---H1 0.9500 C17---H17 0.9500 C2---C9 1.430 (4) N4---C22 1.326 (4) C2---C3 1.450 (4) N4---C18 1.339 (4) C3---C8 1.408 (4) C18---C19 1.365 (5) C3---C4 1.408 (4) C18---H18 0.9500 C4---C5 1.378 (4) C19---C20 1.365 (5) C4---H4 0.9500 C19---H19 0.9500 C5---C6 1.400 (4) C20---C21 1.378 (5) C5---H5 0.9500 C20---H20 0.9500 C6---C7 1.376 (5) C21---C22 1.376 (5) C6---H6 0.9500 C21---H21 0.9500 C7---C8 1.390 (4) C22---H22 0.9500 C7---H7 0.9500 N2^i^---Pd1---N2 180.0 N3---C10---S2 120.5 (2) N2^i^---Pd1---S1^i^ 83.22 (7) S1---C10---S2 112.65 (16) N2---Pd1---S1^i^ 96.78 (7) C12---C11---S2 116.6 (2) N2^i^---Pd1---S1 96.78 (7) C12---C11---H11A 108.1 N2---Pd1---S1 83.22 (7) S2---C11---H11A 108.1 S1^i^---Pd1---S1 180.0 C12---C11---H11B 108.1 C10---S1---Pd1 95.95 (11) S2---C11---H11B 108.1 C10---S2---C11 104.39 (14) H11A---C11---H11B 107.3 C1---N1---C8 109.9 (3) C13---C12---C17 118.5 (3) C1---N1---H1N 124 (2) C13---C12---C11 121.7 (3) C8---N1---H1N 126 (2) C17---C12---C11 119.8 (3) C9---N2---N3 114.6 (2) C14---C13---C12 120.4 (3) C9---N2---Pd1 124.4 (2) C14---C13---H13 119.8 N3---N2---Pd1 121.06 (17) C12---C13---H13 119.8 C10---N3---N2 112.8 (2) C13---C14---C15 120.5 (3) N1---C1---C2 110.1 (3) C13---C14---H14 119.8 N1---C1---H1 125.0 C15---C14---H14 119.8 C2---C1---H1 125.0 C16---C15---C14 119.2 (3) C1---C2---C9 131.8 (3) C16---C15---H15 120.4 C1---C2---C3 105.7 (3) C14---C15---H15 120.4 C9---C2---C3 122.4 (3) C15---C16---C17 120.9 (3) C8---C3---C4 118.9 (3) C15---C16---H16 119.5 C8---C3---C2 106.7 (3) C17---C16---H16 119.5 C4---C3---C2 134.3 (3) C16---C17---C12 120.5 (3) C5---C4---C3 118.1 (3) C16---C17---H17 119.7 C5---C4---H4 121.0 C12---C17---H17 119.7 C3---C4---H4 121.0 C22---N4---C18 116.7 (3) C4---C5---C6 121.9 (3) N4---C18---C19 123.6 (3) C4---C5---H5 119.1 N4---C18---H18 118.2 C6---C5---H5 119.1 C19---C18---H18 118.2 C7---C6---C5 121.1 (3) C18---C19---C20 119.3 (3) C7---C6---H6 119.4 C18---C19---H19 120.4 C5---C6---H6 119.4 C20---C19---H19 120.4 C6---C7---C8 117.3 (3) C19---C20---C21 118.1 (4) C6---C7---H7 121.4 C19---C20---H20 120.9 C8---C7---H7 121.4 C21---C20---H20 120.9 N1---C8---C7 129.7 (3) C22---C21---C20 119.1 (4) N1---C8---C3 107.6 (2) C22---C21---H21 120.5 C7---C8---C3 122.7 (3) C20---C21---H21 120.5 N2---C9---C2 130.7 (3) N4---C22---C21 123.2 (3) N2---C9---H9 114.7 N4---C22---H22 118.4 C2---C9---H9 114.7 C21---C22---H22 118.4 N3---C10---S1 126.8 (2) --------------------- ------------- ------------------- ------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2601 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1N···N4 0.86 (2) 1.96 (2) 2.808 (4) 171 (3) C9---H9···S1^i^ 0.95 2.58 3.267 (3) 130 C1---H1···N3 0.95 2.42 2.889 (4) 110 C11---H11B···N3 0.99 2.50 2.937 (4) 106 ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- N1---H1*N*⋯N4 0.86 (2) 1.96 (2) 2.808 (4) 171 (3) C9---H9⋯S1^i^ 0.95 2.58 3.267 (3) 130 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.656311
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051733/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m230", "authors": [ { "first": "Hamid", "last": "Khaledi" }, { "first": "Hapipah", "last": "Mohd Ali" } ] }
PMC3051734
Related literature {#sec1} ================== For properties of Schiff bases, see: Chen *et al.* (2008[@bb2]); May *et al.* (2004[@bb3]); Weber *et al.* (2007[@bb6]). For related structures, see: Tariq *et al.* (2010[@bb5]); Zhu *et al.* (2010[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~17~NO~2~*M* *~r~* = 291.34Orthorhombic,*a* = 7.7163 (7) Å*b* = 17.0786 (16) Å*c* = 23.427 (2) Å*V* = 3087.3 (5) Å^3^*Z* = 8Mo *K*α radiationμ = 0.08 mm^−1^*T* = 298 K0.48 × 0.45 × 0.36 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2007[@bb1]) *T* ~min~ = 0.962, *T* ~max~ = 0.97114855 measured reflections2721 independent reflections1452 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.057 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.048*wR*(*F* ^2^) = 0.187*S* = 1.122721 reflections202 parametersH-atom parameters constrainedΔρ~max~ = 0.18 e Å^−3^Δρ~min~ = −0.15 e Å^−3^ {#d5e406} Data collection: *SMART* (Bruker, 2007[@bb1]); cell refinement: *SAINT* (Bruker, 2007[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000079/pv2375sup1.cif](http://dx.doi.org/10.1107/S1600536811000079/pv2375sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000079/pv2375Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000079/pv2375Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2375&file=pv2375sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2375sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2375&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2375](http://scripts.iucr.org/cgi-bin/sendsup?pv2375)). The authors wish to acknowledge the Scientific and Technological Project of the Shanxi Science and Technology Agency (2006031083--01), the Scientific and Technological Project of Shanxi Province Health Department (200651) and the Shanxi University of Traditional Chinese Medicine Eleventh Five-Year Program of Science and Technology Industry (2006). Comment ======= The Schiff bases have received considerable attention for many years, primarily due to their importance as ligands in metal complexes with special magnetic (Weber *et al.*, 2007), catalytic (Chen *et al.*, 2008) and biological properties (May *et al.*, 2004). Here, we report the crystal structure of the title compound. The title molecule (Fig. 1) represents a *trans*-isomer with respect to the C11═N1 bond. The planes of the aromatic systems of the the naphthyl and benzene groups, C10---C19 and C2---C7, respectively, form dihedral angle of 71.70 (3)°. The bond distances and bond angles in the title compound are in agreement with the corresponding bond distances and angles reported in the crystale structures of closely related compounds, (Tariq *et al.*, 2010; Zhu *et al.*, 2010). The crystal structure of the title compound displays weak intermolecular interactions C8---H8C···O1 as well as intramolecular hydrogen bonds, C8---H8C···O2 and C16---H16···N1. Experimental {#experimental} ============ 1-Naphthylamine (0.72 g, 5 mmol) and 2,3-dimethoxybenzaldehyde (0.83 g, 5 mmol) were dissolved in ethanol (20 ml). The mixture was refluxed for 2 h, and then cooled to room temperature. The reaction mixture was filtered and the filtered cake was recreystallized from ethyl alcohol (yield 80%). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. Refinement {#refinement} ========== H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C---H = 0.93--0.96 Å and *U*~iso~(H) = 1.2 or 1.5 times *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the molecular structure of the title compound; displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o285-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e121 .table-wrap} ------------------------- --------------------------------------- C~19~H~17~NO~2~ *F*(000) = 1232 *M~r~* = 291.34 *D*~x~ = 1.254 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 2315 reflections *a* = 7.7163 (7) Å θ = 2.4--24.2° *b* = 17.0786 (16) Å µ = 0.08 mm^−1^ *c* = 23.427 (2) Å *T* = 298 K *V* = 3087.3 (5) Å^3^ Block, colorless *Z* = 8 0.48 × 0.45 × 0.36 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e242 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART CCD area-detector diffractometer 2721 independent reflections Radiation source: fine-focus sealed tube 1452 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.057 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Bruker, 2007) *h* = −8→9 *T*~min~ = 0.962, *T*~max~ = 0.971 *k* = −20→10 14855 measured reflections *l* = −27→27 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e359 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.048 H-atom parameters constrained *wR*(*F*^2^) = 0.187 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0462*P*)^2^ + 2.0418*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.12 (Δ/σ)~max~ \< 0.001 2721 reflections Δρ~max~ = 0.18 e Å^−3^ 202 parameters Δρ~min~ = −0.15 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0059 (11) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e540 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e639 .table-wrap} ----- ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.3928 (4) 0.08249 (16) 0.55054 (11) 0.0578 (8) O1 0.4329 (3) 0.18230 (12) 0.70513 (9) 0.0535 (6) O2 0.4198 (3) 0.10066 (14) 0.80315 (9) 0.0682 (7) C1 0.4312 (4) 0.11133 (19) 0.59845 (13) 0.0508 (8) H1 0.4599 0.1641 0.6006 0.061\* C2 0.4323 (4) 0.06453 (19) 0.65073 (13) 0.0492 (8) C3 0.4280 (4) 0.10162 (18) 0.70328 (13) 0.0471 (8) C4 0.4265 (4) 0.05837 (19) 0.75393 (14) 0.0523 (8) C5 0.4328 (5) −0.0221 (2) 0.75084 (16) 0.0660 (10) H5 0.4311 −0.0517 0.7842 0.079\* C6 0.4417 (5) −0.0591 (2) 0.69855 (17) 0.0714 (11) H6 0.4489 −0.1134 0.6971 0.086\* C7 0.4402 (4) −0.0173 (2) 0.64880 (16) 0.0624 (10) H7 0.4443 −0.0430 0.6139 0.075\* C8 0.2786 (5) 0.2204 (2) 0.72204 (17) 0.0784 (12) H8A 0.1901 0.2114 0.6940 0.118\* H8B 0.2996 0.2756 0.7254 0.118\* H8C 0.2414 0.2001 0.7582 0.118\* C9 0.4279 (6) 0.0592 (2) 0.85555 (14) 0.0817 (13) H9A 0.3322 0.0235 0.8579 0.122\* H9B 0.4222 0.0956 0.8867 0.122\* H9C 0.5347 0.0306 0.8575 0.122\* C10 0.4014 (4) 0.13165 (18) 0.50188 (13) 0.0522 (8) C11 0.5459 (5) 0.1750 (2) 0.48899 (15) 0.0650 (10) H11 0.6406 0.1746 0.5136 0.078\* C12 0.5514 (5) 0.2198 (2) 0.43916 (16) 0.0720 (11) H12 0.6505 0.2486 0.4308 0.086\* C13 0.4152 (5) 0.2221 (2) 0.40291 (15) 0.0657 (10) H13 0.4217 0.2522 0.3699 0.079\* C14 0.2641 (5) 0.17926 (18) 0.41459 (13) 0.0519 (8) C15 0.2558 (4) 0.13319 (17) 0.46482 (12) 0.0478 (8) C16 0.1014 (5) 0.09268 (19) 0.47708 (14) 0.0556 (9) H16 0.0948 0.0620 0.5098 0.067\* C17 −0.0383 (5) 0.0976 (2) 0.44183 (15) 0.0644 (10) H17 −0.1399 0.0711 0.4509 0.077\* C18 −0.0290 (5) 0.1425 (2) 0.39210 (16) 0.0697 (11) H18 −0.1246 0.1454 0.3680 0.084\* C19 0.1173 (5) 0.1817 (2) 0.37866 (15) 0.0636 (10) H19 0.1215 0.2108 0.3451 0.076\* ----- ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1166 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0671 (19) 0.0592 (17) 0.0471 (16) −0.0026 (15) −0.0064 (14) −0.0001 (14) O1 0.0566 (14) 0.0493 (13) 0.0546 (13) −0.0039 (11) 0.0012 (11) 0.0036 (10) O2 0.0968 (19) 0.0635 (15) 0.0443 (13) −0.0053 (14) −0.0050 (12) 0.0108 (12) C1 0.051 (2) 0.0505 (19) 0.051 (2) −0.0018 (16) −0.0015 (16) −0.0015 (16) C2 0.0459 (19) 0.0527 (19) 0.0490 (19) −0.0018 (15) −0.0078 (15) 0.0007 (16) C3 0.0377 (17) 0.0510 (19) 0.0526 (19) −0.0033 (15) −0.0039 (14) 0.0078 (16) C4 0.050 (2) 0.055 (2) 0.051 (2) −0.0034 (16) −0.0060 (16) 0.0079 (17) C5 0.077 (3) 0.058 (2) 0.063 (2) −0.005 (2) −0.009 (2) 0.016 (2) C6 0.086 (3) 0.048 (2) 0.081 (3) 0.0014 (19) −0.014 (2) 0.006 (2) C7 0.065 (2) 0.058 (2) 0.064 (2) 0.0025 (18) −0.0112 (18) −0.0026 (19) C8 0.077 (3) 0.070 (3) 0.088 (3) 0.015 (2) 0.017 (2) 0.006 (2) C9 0.106 (3) 0.088 (3) 0.051 (2) −0.010 (2) −0.007 (2) 0.022 (2) C10 0.062 (2) 0.0515 (19) 0.0428 (18) −0.0016 (17) 0.0023 (16) −0.0055 (15) C11 0.064 (2) 0.076 (2) 0.055 (2) −0.008 (2) 0.0008 (18) −0.013 (2) C12 0.079 (3) 0.074 (3) 0.063 (2) −0.020 (2) 0.020 (2) −0.008 (2) C13 0.091 (3) 0.057 (2) 0.049 (2) −0.004 (2) 0.014 (2) 0.0008 (17) C14 0.070 (2) 0.0433 (18) 0.0427 (18) 0.0072 (18) 0.0079 (17) −0.0064 (15) C15 0.061 (2) 0.0412 (17) 0.0411 (17) 0.0046 (16) 0.0028 (16) −0.0054 (14) C16 0.067 (2) 0.0498 (19) 0.0502 (19) −0.0001 (18) −0.0005 (17) 0.0017 (16) C17 0.065 (2) 0.061 (2) 0.067 (2) −0.0013 (19) −0.0048 (19) 0.0021 (19) C18 0.076 (3) 0.065 (2) 0.068 (3) 0.015 (2) −0.015 (2) 0.000 (2) C19 0.088 (3) 0.054 (2) 0.049 (2) 0.016 (2) −0.004 (2) 0.0052 (17) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1617 .table-wrap} --------------------- ------------ ----------------------- ------------ N1---C1 1.261 (4) C9---H9B 0.9600 N1---C10 1.418 (4) C9---H9C 0.9600 O1---C3 1.379 (4) C10---C11 1.372 (5) O1---C8 1.413 (4) C10---C15 1.420 (4) O2---C4 1.362 (4) C11---C12 1.396 (5) O2---C9 1.418 (4) C11---H11 0.9300 C1---C2 1.462 (4) C12---C13 1.352 (5) C1---H1 0.9300 C12---H12 0.9300 C2---C3 1.385 (4) C13---C14 1.403 (5) C2---C7 1.399 (4) C13---H13 0.9300 C3---C4 1.398 (4) C14---C19 1.412 (5) C4---C5 1.378 (5) C14---C15 1.417 (4) C5---C6 1.380 (5) C15---C16 1.407 (4) C5---H5 0.9300 C16---C17 1.360 (5) C6---C7 1.367 (5) C16---H16 0.9300 C6---H6 0.9300 C17---C18 1.396 (5) C7---H7 0.9300 C17---H17 0.9300 C8---H8A 0.9600 C18---C19 1.350 (5) C8---H8B 0.9600 C18---H18 0.9300 C8---H8C 0.9600 C19---H19 0.9300 C9---H9A 0.9600 C1---N1---C10 118.3 (3) O2---C9---H9C 109.5 C3---O1---C8 116.5 (3) H9A---C9---H9C 109.5 C4---O2---C9 117.8 (3) H9B---C9---H9C 109.5 N1---C1---C2 122.2 (3) C11---C10---N1 122.3 (3) N1---C1---H1 118.9 C11---C10---C15 119.9 (3) C2---C1---H1 118.9 N1---C10---C15 117.7 (3) C3---C2---C7 119.1 (3) C10---C11---C12 120.3 (3) C3---C2---C1 119.6 (3) C10---C11---H11 119.8 C7---C2---C1 121.3 (3) C12---C11---H11 119.8 O1---C3---C2 119.0 (3) C13---C12---C11 121.1 (4) O1---C3---C4 120.1 (3) C13---C12---H12 119.4 C2---C3---C4 120.9 (3) C11---C12---H12 119.4 O2---C4---C5 125.1 (3) C12---C13---C14 120.6 (3) O2---C4---C3 116.0 (3) C12---C13---H13 119.7 C5---C4---C3 118.9 (3) C14---C13---H13 119.7 C4---C5---C6 120.3 (3) C13---C14---C19 122.4 (3) C4---C5---H5 119.8 C13---C14---C15 119.3 (3) C6---C5---H5 119.8 C19---C14---C15 118.3 (3) C7---C6---C5 121.2 (3) C16---C15---C14 118.7 (3) C7---C6---H6 119.4 C16---C15---C10 122.4 (3) C5---C6---H6 119.4 C14---C15---C10 118.8 (3) C6---C7---C2 119.6 (3) C17---C16---C15 121.1 (3) C6---C7---H7 120.2 C17---C16---H16 119.5 C2---C7---H7 120.2 C15---C16---H16 119.5 O1---C8---H8A 109.5 C16---C17---C18 120.0 (4) O1---C8---H8B 109.5 C16---C17---H17 120.0 H8A---C8---H8B 109.5 C18---C17---H17 120.0 O1---C8---H8C 109.5 C19---C18---C17 120.6 (4) H8A---C8---H8C 109.5 C19---C18---H18 119.7 H8B---C8---H8C 109.5 C17---C18---H18 119.7 O2---C9---H9A 109.5 C18---C19---C14 121.2 (3) O2---C9---H9B 109.5 C18---C19---H19 119.4 H9A---C9---H9B 109.5 C14---C19---H19 119.4 C10---N1---C1---C2 −177.7 (3) C1---N1---C10---C15 −130.1 (3) N1---C1---C2---C3 −162.3 (3) N1---C10---C11---C12 177.0 (3) N1---C1---C2---C7 18.7 (5) C15---C10---C11---C12 −0.9 (5) C8---O1---C3---C2 109.7 (3) C10---C11---C12---C13 0.5 (6) C8---O1---C3---C4 −73.1 (4) C11---C12---C13---C14 0.1 (6) C7---C2---C3---O1 175.4 (3) C12---C13---C14---C19 178.3 (3) C1---C2---C3---O1 −3.7 (4) C12---C13---C14---C15 −0.3 (5) C7---C2---C3---C4 −1.8 (5) C13---C14---C15---C16 177.8 (3) C1---C2---C3---C4 179.1 (3) C19---C14---C15---C16 −0.7 (4) C9---O2---C4---C5 3.0 (5) C13---C14---C15---C10 −0.1 (4) C9---O2---C4---C3 −176.6 (3) C19---C14---C15---C10 −178.7 (3) O1---C3---C4---O2 3.7 (4) C11---C10---C15---C16 −177.2 (3) C2---C3---C4---O2 −179.2 (3) N1---C10---C15---C16 4.8 (4) O1---C3---C4---C5 −175.9 (3) C11---C10---C15---C14 0.7 (4) C2---C3---C4---C5 1.2 (5) N1---C10---C15---C14 −177.3 (3) O2---C4---C5---C6 −179.1 (3) C14---C15---C16---C17 −0.4 (5) C3---C4---C5---C6 0.5 (5) C10---C15---C16---C17 177.5 (3) C4---C5---C6---C7 −1.6 (6) C15---C16---C17---C18 1.0 (5) C5---C6---C7---C2 1.1 (6) C16---C17---C18---C19 −0.4 (5) C3---C2---C7---C6 0.6 (5) C17---C18---C19---C14 −0.7 (5) C1---C2---C7---C6 179.7 (3) C13---C14---C19---C18 −177.2 (3) C1---N1---C10---C11 51.9 (4) C15---C14---C19---C18 1.3 (5) --------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2376 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C8---H8C···O1^i^ 0.96 2.54 3.232 (4) 129 C8---H8C···O2 0.96 2.43 2.998 (4) 118 C16---H16···N1 0.93 2.52 2.839 (4) 101 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*−1/2, *y*, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- C8---H8*C*⋯O1^i^ 0.96 2.54 3.232 (4) 129 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.662701
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051734/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o285", "authors": [ { "first": "Ailing", "last": "Guo" }, { "first": "Shurong", "last": "Zhang" }, { "first": "Xiaofang", "last": "Liu" }, { "first": "Jianhua", "last": "Jiao" } ] }
PMC3051735
Related literature {#sec1} ================== For the biological activity of thio­semicarbazides, see: Gowda & Mahadevappa (1977)[@bb4]; Pillai *et al.* (1977[@bb6]). For the use of thio­semicarbazide as a masking agent, see: Kirkbright & Taddia (1978[@bb5]). For the crystal structure of a similar five-coordinate zinc(II)--thio­semicarbazide complex, see: Babb *et al.* (2003[@bb2]). For a description of five-coordinate metal atoms, see: Addison *et al.* (1984[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn(CH~5~N~3~S)~2~(C~2~H~6~OS)\](C~6~H~2~N~3~O~7~)~2~·C~2~H~6~OS·H~2~O*M* *~r~* = 878.13Triclinic,*a* = 10.8762 (11) Å*b* = 11.2559 (12) Å*c* = 14.4859 (15) Åα = 81.124 (2)°β = 77.063 (2)°γ = 81.168 (2)°*V* = 1694.6 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 1.06 mm^−1^*T* = 294 K0.24 × 0.24 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD area-detector diffractometer18781 measured reflections7719 independent reflections6573 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.095*S* = 1.057719 reflections546 parameters6 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.54 e Å^−3^Δρ~min~ = −0.37 e Å^−3^ {#d5e850} Data collection: *SMART* (Bruker, 2007[@bb3]); cell refinement: *SAINT* (Bruker, 2007[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *PLATON* (Spek, 2009[@bb8]); software used to prepare material for publication: *SHELXL97* and *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681005378X/hg2775sup1.cif](http://dx.doi.org/10.1107/S160053681005378X/hg2775sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681005378X/hg2775Isup2.hkl](http://dx.doi.org/10.1107/S160053681005378X/hg2775Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2775&file=hg2775sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2775sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2775&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2775](http://scripts.iucr.org/cgi-bin/sendsup?hg2775)). RS thanks the University Grants Commission of India for the award of a minor research project (File No. MRP 2976/2009). HSE thanks the staff of the XRD Application Lab., CSEM, Neuchâtel, for access to the X-ray diffraction equipment. Comment ======= Thosemicarbazide, a well known chelating agent, is used to characterize aldehydes, ketones, and polysaccharides. Some thiosemicarbazide derivatives are potential anti-tumor, anti-hypertensive agents, and are active against influenza, protozoa and smallpox (Gowda & Mahadevappa, 1977; Pillai *et al.*, 1977). Thiosemicarbazide is also used as a masking agent to minimize interference from metals such as copper, nickel and platinum in the determination of arsenic by atomic absorption methods (Kirkbright & Taddia, 1978). The conformational preferences of thiosemicarbazide in metal-complex formation are therefore of some interest. The reaction of zinc chloride with thiosemicarbazide in the presence of picric acid gave a yellow powder that was recrystallized using DMSO. This lead to the formation of yellow crystals of the title compoud, a DMSO-water solvate. The molecular structure of the title complex is illustrated in Fig. 1. In the cation \[Zn(thiosemicarbazide)~2~(DMSO)\]^2+^ the thiosemicarbazide ligands coordinate in a bidentate mode, bonding to atom Zn1 through atoms S1, N1 and S2, N4, in a *trans* arrangment. Atom Zn1 is also coordinated to a DMSO molecule through the O-atom, O1. The zinc atom has a distorted square pyramidal coordination sphere with a τ value of 0.17 \[τ = 0 for square pyramidal, τ = 1 for trigonal bipyramidal; Addison *et al.*, 1984\]. The bond distances are comparable to those in a related penta-coordinated complex, (Citraconato-*O*)-bis(thiosemicarbazide-N,*S*)-zinc(II) monohydrate (Babb *et al.*, 2003). Interestingly, here the thiosemicarbazide ligands are in a *cis* disposition, and the zinc coordination sphere has a τ value of 0.72, hence it can be described as a distorted trigonal bipyramid. In the crystal a sheet-like network is formed, propagating in the *ac*-plane, as a result of a number of intermolecular N---H···O, O---H···O and N---H···S hydrogen bonds. These sheets are then linked *via* weak C---H···O interactions to form a three-dimensional arrangement (Table 1 and Fig. 2). Experimental {#experimental} ============ A mixture of supersaturated solutions of thiosemicarbazide, picric acid and zinc chloride were added in the molar ratio of 1:1:1 (0.9 g: 2.5 g: 2.8 g). The calculated amount of thiosemicarbazide and zinc chloride were dissolved in distilled water and picric acid dissolved in acetone was added. Within a few minutes, the solution became turbid. The reaction was ensured with continuous stirring and after 1 h a yellow product was deposited at the bottom of the beaker, it was filtered off and dried. This yellow solid was recrystallized from DMSO to afford yellow block-like crystals of the title compound (yield: 4 g, 66.6%) Refinement {#refinement} ========== There is a certain positional disorder in one of the methyl groups of the coordinated DMSO molecule, and in the two picrate anions. Methyl C4 was refined with occupanices of C4A/C4B = 0.5/0.5, with C---S distance restraints of 1.76 (2) Å and their ADP\'s were made equal to those of atom C3. O-atom O9 in one of the picrate anions was refined with occupancies of O9A/O9B = 0.56 (8)/0.44 (8), while O-atoms O14 and O15 of a NO~2~ group in the second picrate anion where refined with occupancies of O14A/O14B = O15A/O15B = 0.67 (3)/0.33 (7). There is a short O13···O13^i^ contact involving a NO~2~ O-atom \[symmetry code (i) = -*x* + 2, -*y* + 1, -*z*\]. This contact was refined with a distance restraint of 2.95 (3) Å. The NH~2~ and NH H atoms were located in difference electron density maps and were freely refined. The water molecule H-atoms could also be located in a difference electron density map and were refined with distance restraints of 0.84 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms; C---H = 0.93 and 0.96 Å for CH and methyl H-atoms, respectively, with *U*~iso~(H) = k ×*U*~eq~(C), where k =1.5 for methyl H-atoms and k = 1.2 for all other H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the asymmetric unit of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the principal components of the disordered atoms are shown. ::: ![](e-67-0m133-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines \[details are given in Table 1; C-bound H-atoms have been omitted for clarity\]. ::: ![](e-67-0m133-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e181 .table-wrap} ------------------------------------------------------------------------- --------------------------------------- \[Zn(CH~5~N~3~S)~2~(C~2~H~6~OS)\](C~6~H~2~N~3~O~7~)~2~·C~2~H~6~OS·H~2~O *Z* = 2 *M~r~* = 878.13 *F*(000) = 900 Triclinic, *P*1 *D*~x~ = 1.721 Mg m^−3^ Hall symbol: -P 1 Melting point: 469 K *a* = 10.8762 (11) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 11.2559 (12) Å Cell parameters from 5926 reflections *c* = 14.4859 (15) Å θ = 1.9--25.0° α = 81.124 (2)° µ = 1.06 mm^−1^ β = 77.063 (2)° *T* = 294 K γ = 81.168 (2)° Block, yellow *V* = 1694.6 (3) Å^3^ 0.24 × 0.24 × 0.20 mm ------------------------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e348 .table-wrap} ---------------------------------------------------- -------------------------------------- Bruker SMART APEX CCD area-detector diffractometer 6573 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.021 graphite θ~max~ = 28.0°, θ~min~ = 1.9° ω scans *h* = −14→13 18781 measured reflections *k* = −14→14 7719 independent reflections *l* = −18→18 ---------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e443 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.095 H atoms treated by a mixture of independent and constrained refinement *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0559*P*)^2^ + 0.4578*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7719 reflections (Δ/σ)~max~ = 0.001 546 parameters Δρ~max~ = 0.54 e Å^−3^ 6 restraints Δρ~min~ = −0.37 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e600 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e702 .table-wrap} ------ --------------- --------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Zn1 0.26667 (2) 0.03164 (2) 0.50488 (1) 0.0319 (1) S1 0.14900 (4) 0.05204 (5) 0.38255 (3) 0.0384 (1) S2 0.32467 (5) −0.06515 (5) 0.64778 (3) 0.0377 (1) S3 0.33061 (5) 0.30032 (5) 0.44415 (4) 0.0427 (2) O1 0.37531 (13) 0.16931 (13) 0.47872 (10) 0.0403 (4) N1 0.39527 (17) −0.08894 (18) 0.41352 (11) 0.0353 (5) N2 0.37816 (15) −0.06488 (16) 0.31838 (11) 0.0356 (5) N3 0.25503 (19) −0.00172 (19) 0.20917 (12) 0.0425 (6) N4 0.10145 (16) 0.11037 (18) 0.60253 (11) 0.0357 (5) N5 0.12502 (16) 0.10238 (17) 0.69507 (11) 0.0392 (5) N6 0.23281 (19) 0.0216 (2) 0.81157 (13) 0.0464 (6) C1 0.26914 (17) −0.01021 (16) 0.29808 (13) 0.0304 (5) C2 0.22014 (17) 0.02636 (17) 0.72219 (13) 0.0323 (5) C3 0.3683 (3) 0.3103 (3) 0.31805 (18) 0.0625 (8) C4A 0.4290 (6) 0.3825 (6) 0.4800 (4) 0.0625 (8) 0.500 C4B 0.4667 (6) 0.3781 (6) 0.4444 (4) 0.0625 (8) 0.500 O10 0.37612 (15) 0.93032 (16) 0.00119 (11) 0.0523 (5) O11 0.46364 (16) 0.86421 (16) −0.13237 (11) 0.0530 (5) O12 0.83363 (17) 0.59567 (19) −0.17971 (11) 0.0648 (6) O13 0.95110 (17) 0.5539 (2) −0.07638 (13) 0.0719 (7) O14A 0.7817 (12) 0.655 (3) 0.2427 (8) 0.083 (4) 0.67 (7) O15A 0.604 (2) 0.7437 (19) 0.2841 (6) 0.074 (3) 0.67 (7) O16 0.48564 (19) 0.8581 (2) 0.14820 (12) 0.0727 (7) N10 0.46168 (16) 0.86917 (15) −0.04741 (12) 0.0373 (5) N11 0.85340 (17) 0.60065 (17) −0.10083 (12) 0.0432 (5) N12 0.6796 (2) 0.69437 (19) 0.22324 (13) 0.0535 (7) C13 0.56306 (18) 0.79722 (17) −0.00584 (13) 0.0335 (5) C14 0.65550 (18) 0.73364 (17) −0.06708 (13) 0.0344 (5) C15 0.75575 (18) 0.66393 (18) −0.03405 (13) 0.0355 (5) C16 0.76483 (19) 0.65359 (18) 0.06125 (14) 0.0384 (6) C17 0.6701 (2) 0.71427 (19) 0.12300 (13) 0.0386 (6) C18 0.5638 (2) 0.79503 (19) 0.09423 (14) 0.0393 (6) O15B 0.575 (3) 0.709 (4) 0.2800 (14) 0.070 (5) 0.33 (7) O14B 0.759 (4) 0.607 (4) 0.2468 (12) 0.076 (5) 0.33 (7) O3 0.35471 (17) 0.59850 (19) −0.20375 (12) 0.0616 (6) O4 0.47002 (16) 0.55050 (18) −0.09782 (13) 0.0644 (6) O5 −0.02160 (17) 0.8604 (2) −0.15007 (12) 0.0684 (7) O6 −0.10969 (17) 0.91940 (19) −0.01512 (12) 0.0648 (6) O7 0.12595 (19) 0.7413 (2) 0.26100 (12) 0.0690 (7) O8 0.3023 (2) 0.6364 (2) 0.22031 (14) 0.0917 (9) O9A 0.002 (3) 0.849 (3) 0.1297 (7) 0.059 (4) 0.56 (8) N7 0.37299 (16) 0.59932 (17) −0.12325 (12) 0.0422 (5) N8 −0.02350 (16) 0.86148 (17) −0.06498 (12) 0.0432 (6) N9 0.20614 (17) 0.69458 (17) 0.20037 (12) 0.0417 (5) C7 0.27455 (18) 0.66079 (18) −0.05566 (13) 0.0349 (5) C8 0.28479 (17) 0.64976 (17) 0.03925 (14) 0.0352 (5) C9 0.19018 (18) 0.70787 (18) 0.10207 (13) 0.0356 (6) C10 0.0773 (2) 0.7806 (2) 0.07608 (14) 0.0434 (6) C11 0.07928 (18) 0.78936 (18) −0.02508 (14) 0.0367 (6) C12 0.17383 (18) 0.73076 (18) −0.08814 (13) 0.0355 (5) O9B −0.0239 (12) 0.803 (4) 0.1378 (10) 0.047 (3) 0.44 (8) S4 −0.00366 (5) 0.64929 (5) 0.61310 (4) 0.0427 (2) O2 0.03790 (16) 0.69781 (16) 0.50943 (11) 0.0524 (5) C5 0.1098 (3) 0.6799 (3) 0.6734 (2) 0.0726 (11) C6 0.0343 (4) 0.4902 (2) 0.6228 (2) 0.0740 (12) O1W 0.29788 (19) 0.67515 (18) 0.42553 (14) 0.0576 (6) H1NA 0.385 (2) −0.164 (2) 0.4348 (18) 0.049 (7)\* H1NB 0.465 (3) −0.076 (2) 0.4097 (15) 0.047 (7)\* HN2 0.429 (2) −0.097 (2) 0.2780 (15) 0.039 (6)\* H3A 0.45390 0.27340 0.29780 0.0940\* H3B 0.36070 0.39390 0.29120 0.0940\* H3C 0.31090 0.26890 0.29680 0.0940\* H3NA 0.312 (3) −0.043 (2) 0.1701 (19) 0.053 (7)\* H3NB 0.192 (2) 0.030 (2) 0.1965 (17) 0.041 (6)\* H5N 0.074 (2) 0.139 (2) 0.7368 (16) 0.037 (6)\* H4NA 0.080 (2) 0.187 (2) 0.5829 (18) 0.050 (7)\* H4NB 0.035 (3) 0.077 (2) 0.6116 (18) 0.050 (7)\* H6NA 0.179 (3) 0.061 (2) 0.8477 (19) 0.054 (7)\* H6NB 0.290 (3) −0.026 (2) 0.8302 (18) 0.050 (7)\* H4B1 0.47740 0.37480 0.50880 0.0940\* 0.500 H4B2 0.45180 0.46110 0.41740 0.0940\* 0.500 H4B3 0.54210 0.33900 0.40720 0.0940\* 0.500 H4A1 0.42610 0.36100 0.54720 0.0940\* 0.500 H4A2 0.40120 0.46750 0.46740 0.0940\* 0.500 H4A3 0.51460 0.36480 0.44540 0.0940\* 0.500 H16 0.83350 0.60660 0.08270 0.0460\* H14 0.65030 0.73770 −0.13070 0.0410\* H8 0.35460 0.60380 0.05970 0.0420\* H12 0.16980 0.73830 −0.15230 0.0430\* H5A 0.10470 0.76580 0.67340 0.1090\* H5B 0.19340 0.64940 0.64160 0.1090\* H5C 0.09310 0.64110 0.73800 0.1090\* H6A 0.12030 0.47020 0.58990 0.1110\* H6B −0.02230 0.45630 0.59490 0.1110\* H6C 0.02570 0.45780 0.68890 0.1110\* H1WA 0.305 (3) 0.679 (3) 0.3677 (13) 0.079 (10)\* H1WB 0.2231 (18) 0.688 (3) 0.445 (2) 0.079 (11)\* ------ --------------- --------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1874 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.0304 (1) 0.0402 (1) 0.0272 (1) −0.0032 (1) −0.0084 (1) −0.0087 (1) S1 0.0272 (2) 0.0551 (3) 0.0363 (2) 0.0046 (2) −0.0122 (2) −0.0176 (2) S2 0.0387 (2) 0.0412 (3) 0.0309 (2) 0.0088 (2) −0.0099 (2) −0.0067 (2) S3 0.0398 (3) 0.0435 (3) 0.0471 (3) 0.0000 (2) −0.0169 (2) −0.0063 (2) O1 0.0408 (7) 0.0413 (7) 0.0431 (8) −0.0097 (6) −0.0171 (6) −0.0016 (6) N1 0.0323 (9) 0.0488 (10) 0.0277 (8) 0.0042 (7) −0.0144 (6) −0.0107 (7) N2 0.0304 (8) 0.0515 (10) 0.0240 (7) 0.0058 (7) −0.0072 (6) −0.0102 (7) N3 0.0393 (10) 0.0588 (11) 0.0301 (8) 0.0083 (8) −0.0152 (8) −0.0103 (8) N4 0.0290 (8) 0.0517 (10) 0.0263 (8) 0.0013 (7) −0.0105 (6) −0.0038 (7) N5 0.0348 (9) 0.0560 (10) 0.0254 (8) 0.0115 (8) −0.0103 (7) −0.0117 (7) N6 0.0416 (10) 0.0673 (13) 0.0288 (8) 0.0150 (9) −0.0145 (8) −0.0121 (8) C1 0.0297 (8) 0.0333 (9) 0.0305 (8) −0.0034 (7) −0.0099 (7) −0.0060 (7) C2 0.0287 (8) 0.0398 (10) 0.0285 (9) −0.0011 (7) −0.0083 (7) −0.0039 (7) C3 0.0726 (16) 0.0699 (13) 0.0501 (13) −0.0240 (12) −0.0251 (11) 0.0108 (11) C4A 0.0726 (16) 0.0699 (13) 0.0501 (13) −0.0240 (12) −0.0251 (11) 0.0108 (11) C4B 0.0726 (16) 0.0699 (13) 0.0501 (13) −0.0240 (12) −0.0251 (11) 0.0108 (11) O10 0.0416 (8) 0.0646 (10) 0.0461 (9) 0.0187 (7) −0.0124 (7) −0.0132 (7) O11 0.0544 (9) 0.0681 (11) 0.0376 (8) 0.0168 (8) −0.0242 (7) −0.0121 (7) O12 0.0578 (10) 0.0959 (14) 0.0380 (9) 0.0225 (10) −0.0137 (7) −0.0260 (9) O13 0.0516 (10) 0.0996 (15) 0.0582 (11) 0.0363 (10) −0.0204 (8) −0.0229 (10) O14A 0.088 (4) 0.106 (10) 0.058 (3) 0.038 (5) −0.046 (2) −0.023 (4) O15A 0.078 (5) 0.108 (6) 0.035 (2) 0.028 (4) −0.027 (3) −0.026 (3) O16 0.0752 (12) 0.0983 (15) 0.0355 (8) 0.0452 (11) −0.0187 (8) −0.0257 (9) N10 0.0357 (8) 0.0421 (9) 0.0349 (8) 0.0023 (7) −0.0136 (7) −0.0050 (7) N11 0.0393 (9) 0.0509 (10) 0.0361 (9) 0.0071 (8) −0.0073 (7) −0.0084 (7) N12 0.0645 (13) 0.0628 (12) 0.0340 (9) 0.0129 (10) −0.0239 (9) −0.0088 (8) C13 0.0337 (9) 0.0361 (9) 0.0312 (9) 0.0037 (7) −0.0126 (7) −0.0048 (7) C14 0.0367 (10) 0.0398 (10) 0.0275 (8) −0.0008 (8) −0.0102 (7) −0.0056 (7) C15 0.0341 (9) 0.0400 (10) 0.0318 (9) 0.0021 (8) −0.0081 (7) −0.0076 (7) C16 0.0383 (10) 0.0418 (10) 0.0364 (10) 0.0046 (8) −0.0165 (8) −0.0050 (8) C17 0.0453 (11) 0.0437 (11) 0.0279 (9) 0.0027 (9) −0.0142 (8) −0.0058 (8) C18 0.0416 (11) 0.0446 (11) 0.0305 (9) 0.0067 (8) −0.0108 (8) −0.0084 (8) O15B 0.066 (7) 0.122 (12) 0.021 (4) 0.010 (8) −0.012 (4) −0.019 (5) O14B 0.106 (11) 0.075 (11) 0.039 (4) 0.041 (9) −0.036 (5) −0.008 (5) O3 0.0527 (10) 0.0909 (13) 0.0397 (9) 0.0133 (9) −0.0087 (7) −0.0270 (8) O4 0.0427 (9) 0.0877 (13) 0.0552 (10) 0.0275 (9) −0.0122 (8) −0.0176 (9) O5 0.0597 (11) 0.1050 (15) 0.0401 (9) 0.0329 (10) −0.0282 (8) −0.0239 (9) O6 0.0496 (10) 0.0909 (14) 0.0490 (9) 0.0321 (9) −0.0181 (8) −0.0228 (9) O7 0.0631 (11) 0.1053 (15) 0.0325 (8) 0.0230 (10) −0.0140 (8) −0.0171 (9) O8 0.0740 (13) 0.147 (2) 0.0503 (11) 0.0524 (14) −0.0364 (10) −0.0318 (12) O9A 0.057 (6) 0.078 (9) 0.0335 (19) 0.029 (6) −0.012 (2) −0.018 (3) N7 0.0368 (9) 0.0498 (10) 0.0376 (9) 0.0026 (7) −0.0047 (7) −0.0104 (7) N8 0.0364 (9) 0.0570 (11) 0.0379 (9) 0.0079 (8) −0.0166 (7) −0.0116 (8) N9 0.0425 (9) 0.0521 (10) 0.0323 (8) 0.0006 (8) −0.0153 (7) −0.0064 (7) C7 0.0296 (9) 0.0408 (10) 0.0336 (9) 0.0004 (7) −0.0059 (7) −0.0085 (7) C8 0.0298 (9) 0.0397 (10) 0.0359 (9) 0.0020 (7) −0.0112 (7) −0.0040 (8) C9 0.0351 (10) 0.0435 (10) 0.0294 (9) −0.0008 (8) −0.0105 (7) −0.0065 (7) C10 0.0377 (10) 0.0595 (13) 0.0321 (10) 0.0103 (9) −0.0117 (8) −0.0127 (9) C11 0.0325 (9) 0.0463 (11) 0.0328 (9) 0.0055 (8) −0.0138 (8) −0.0092 (8) C12 0.0337 (9) 0.0447 (10) 0.0295 (9) −0.0007 (8) −0.0097 (7) −0.0088 (8) O9B 0.037 (3) 0.069 (9) 0.033 (3) 0.011 (4) −0.007 (2) −0.020 (4) S4 0.0414 (3) 0.0479 (3) 0.0403 (3) −0.0013 (2) −0.0136 (2) −0.0069 (2) O2 0.0545 (9) 0.0617 (10) 0.0409 (8) −0.0040 (8) −0.0163 (7) 0.0005 (7) C5 0.083 (2) 0.093 (2) 0.0590 (16) −0.0320 (17) −0.0335 (15) −0.0139 (14) C6 0.122 (3) 0.0469 (14) 0.0635 (16) −0.0030 (15) −0.0447 (17) −0.0084 (12) O1W 0.0559 (11) 0.0734 (12) 0.0472 (10) −0.0066 (9) −0.0200 (9) −0.0065 (9) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3010 .table-wrap} ------------------------ -------------- ------------------------ -------------- Zn1---S1 2.3728 (5) N3---H3NB 0.77 (2) Zn1---S2 2.3554 (6) N4---H4NA 0.88 (2) Zn1---O1 2.0302 (15) N4---H4NB 0.84 (3) Zn1---N1 2.1662 (19) N5---H5N 0.84 (2) Zn1---N4 2.1852 (18) N6---H6NA 0.82 (3) S1---C1 1.7214 (19) N6---H6NB 0.82 (3) S2---C2 1.718 (2) N10---C13 1.452 (3) S3---O1 1.5240 (16) N11---C15 1.446 (3) S3---C3 1.770 (3) N12---C17 1.459 (3) S3---C4A 1.724 (7) N7---C7 1.448 (3) S3---C4B 1.833 (7) N8---C11 1.452 (3) S4---C5 1.764 (3) N9---C9 1.455 (3) S4---C6 1.766 (2) C3---H3C 0.9600 S4---O2 1.5088 (17) C3---H3A 0.9600 O10---N10 1.223 (2) C3---H3B 0.9600 O11---N10 1.236 (2) C4A---H4A3 0.9600 O12---N11 1.220 (2) C4A---H4A1 0.9600 O13---N11 1.213 (3) C4A---H4A2 0.9600 O14A---N12 1.208 (17) C4B---H4B3 0.9600 O14B---N12 1.26 (4) C4B---H4B2 0.9600 O15A---N12 1.203 (16) C4B---H4B1 0.9600 O15B---N12 1.25 (3) C13---C14 1.373 (3) O16---C18 1.235 (3) C13---C18 1.448 (3) O3---N7 1.228 (2) C14---C15 1.374 (3) O4---N7 1.219 (3) C15---C16 1.392 (3) O5---N8 1.230 (2) C16---C17 1.374 (3) O6---N8 1.217 (3) C17---C18 1.454 (3) O7---N9 1.211 (3) C14---H14 0.9300 O8---N9 1.214 (3) C16---H16 0.9300 O9A---C10 1.25 (3) C7---C8 1.389 (3) O9B---C10 1.272 (19) C7---C12 1.376 (3) O1W---H1WB 0.80 (2) C8---C9 1.368 (3) O1W---H1WA 0.819 (19) C9---C10 1.457 (3) N1---N2 1.411 (2) C10---C11 1.449 (3) N2---C1 1.322 (3) C11---C12 1.373 (3) N3---C1 1.318 (3) C8---H8 0.9300 N4---N5 1.407 (2) C12---H12 0.9300 N5---C2 1.328 (3) C5---H5B 0.9600 N6---C2 1.325 (3) C5---H5C 0.9600 N1---H1NB 0.78 (3) C5---H5A 0.9600 N1---H1NA 0.87 (2) C6---H6C 0.9600 N2---HN2 0.80 (2) C6---H6A 0.9600 N3---H3NA 0.87 (3) C6---H6B 0.9600 S1---Zn1---S2 152.59 (2) S3---C4A---H4A3 109.00 S1---Zn1---O1 108.71 (4) C4B---C4A---H4A1 137.00 S1---Zn1---N1 82.09 (5) S3---C4A---H4A2 110.00 S1---Zn1---N4 91.39 (5) C4B---C4A---H4B2 54.00 S2---Zn1---O1 98.68 (4) S3---C4A---H4B1 141.00 S2---Zn1---N1 95.55 (5) S3---C4A---H4B2 106.00 S2---Zn1---N4 82.99 (5) H4B2---C4A---H4A3 71.00 O1---Zn1---N1 97.42 (7) H4A1---C4A---H4A2 109.00 O1---Zn1---N4 99.60 (7) H4A1---C4A---H4A3 109.00 N1---Zn1---N4 162.94 (7) H4A2---C4A---H4A3 109.00 Zn1---S1---C1 97.02 (7) C4B---C4A---H4B1 93.00 Zn1---S2---C2 96.46 (7) H4B1---C4A---H4A2 109.00 O1---S3---C3 104.91 (12) H4B1---C4A---H4A3 65.00 O1---S3---C4A 103.8 (2) H4B2---C4A---H4A1 142.00 O1---S3---C4B 102.5 (2) C4B---C4A---H4A2 97.00 C3---S3---C4A 108.6 (2) H4B1---C4A---H4B2 108.00 C3---S3---C4B 91.3 (2) S3---C4B---H4B3 109.00 C5---S4---C6 97.69 (17) S3---C4B---H4A3 136.00 O2---S4---C5 106.85 (12) S3---C4B---H4A2 93.00 O2---S4---C6 107.24 (12) H4B2---C4B---H4B3 110.00 Zn1---O1---S3 124.56 (9) S3---C4B---H4B1 109.00 H1WA---O1W---H1WB 104 (3) S3---C4B---H4B2 109.00 Zn1---N1---N2 112.09 (13) H4B2---C4B---H4A3 112.00 N1---N2---C1 121.00 (16) H4B3---C4B---H4A2 150.00 Zn1---N4---N5 111.38 (13) H4A2---C4B---H4A3 129.00 N4---N5---C2 121.32 (17) C4A---C4B---H4B2 96.00 Zn1---N1---H1NB 108.9 (16) C4A---C4B---H4B3 152.00 H1NA---N1---H1NB 112 (2) C4A---C4B---H4A3 120.00 N2---N1---H1NA 109.0 (16) H4B1---C4B---H4B2 110.00 N2---N1---H1NB 103.8 (16) H4B1---C4B---H4B3 109.00 Zn1---N1---H1NA 110.6 (16) H4B1---C4B---H4A2 79.00 C1---N2---HN2 118.8 (16) H4B1---C4B---H4A3 71.00 N1---N2---HN2 118.9 (16) N10---C13---C18 120.67 (17) C1---N3---H3NB 118.7 (18) C14---C13---C18 123.49 (18) H3NA---N3---H3NB 123 (3) N10---C13---C14 115.84 (16) C1---N3---H3NA 117.8 (19) C13---C14---C15 119.81 (17) Zn1---N4---H4NA 111.4 (16) N11---C15---C16 119.95 (18) Zn1---N4---H4NB 116.2 (17) C14---C15---C16 121.52 (18) N5---N4---H4NB 103.2 (17) N11---C15---C14 118.52 (17) H4NA---N4---H4NB 106 (2) C15---C16---C17 118.52 (19) N5---N4---H4NA 108.2 (16) C16---C17---C18 124.12 (18) C2---N5---H5N 117.6 (15) N12---C17---C18 119.41 (18) N4---N5---H5N 120.6 (15) N12---C17---C16 116.47 (19) H6NA---N6---H6NB 122 (3) C13---C18---C17 112.38 (17) C2---N6---H6NA 119 (2) O16---C18---C17 123.79 (19) C2---N6---H6NB 119.0 (17) O16---C18---C13 123.8 (2) O10---N10---C13 120.59 (16) C13---C14---H14 120.00 O11---N10---C13 117.81 (17) C15---C14---H14 120.00 O10---N10---O11 121.59 (18) C15---C16---H16 121.00 O12---N11---O13 122.5 (2) C17---C16---H16 121.00 O12---N11---C15 118.43 (19) N7---C7---C12 118.57 (16) O13---N11---C15 119.08 (17) C8---C7---C12 121.73 (18) O14B---N12---C17 116.3 (10) N7---C7---C8 119.69 (18) O15B---N12---C17 113.9 (12) C7---C8---C9 118.72 (18) O14A---N12---O15A 115.6 (12) C8---C9---C10 124.08 (17) O14B---N12---O15B 117 (2) N9---C9---C8 116.57 (18) O14A---N12---C17 118.3 (6) N9---C9---C10 119.35 (17) O15A---N12---C17 123.0 (8) O9A---C10---C11 122.6 (10) O3---N7---C7 118.38 (18) C9---C10---C11 112.28 (18) O4---N7---C7 118.72 (17) O9B---C10---C9 122.0 (11) O3---N7---O4 122.90 (19) O9B---C10---C11 123.0 (7) O5---N8---C11 117.93 (18) O9A---C10---C9 123.3 (12) O6---N8---C11 120.77 (17) C10---C11---C12 123.67 (19) O5---N8---O6 121.3 (2) N8---C11---C12 116.06 (17) O8---N9---C9 118.53 (18) N8---C11---C10 120.26 (18) O7---N9---O8 120.53 (19) C7---C12---C11 119.44 (17) O7---N9---C9 120.93 (19) C9---C8---H8 121.00 S1---C1---N2 122.28 (14) C7---C8---H8 121.00 S1---C1---N3 119.89 (16) C7---C12---H12 120.00 N2---C1---N3 117.81 (18) C11---C12---H12 120.00 S2---C2---N5 123.28 (14) S4---C5---H5A 109.00 S2---C2---N6 119.36 (16) S4---C5---H5B 109.00 N5---C2---N6 117.36 (18) H5A---C5---H5B 109.00 S3---C4A---C4B 91.2 (9) H5A---C5---H5C 109.00 S3---C4B---C4A 70.1 (9) S4---C5---H5C 109.00 S3---C3---H3C 109.00 H5B---C5---H5C 109.00 S3---C3---H3A 109.00 S4---C6---H6B 109.00 S3---C3---H3B 109.00 S4---C6---H6C 109.00 H3B---C3---H3C 110.00 S4---C6---H6A 109.00 H3A---C3---H3B 109.00 H6A---C6---H6C 109.00 H3A---C3---H3C 109.00 H6B---C6---H6C 110.00 S3---C4A---H4A1 109.00 H6A---C6---H6B 110.00 S2---Zn1---S1---C1 −101.75 (7) O15A---N12---C17---C18 −1.3 (13) O1---Zn1---S1---C1 80.25 (8) O4---N7---C7---C8 −8.4 (3) N1---Zn1---S1---C1 −14.95 (8) O3---N7---C7---C8 171.5 (2) N4---Zn1---S1---C1 −179.13 (8) O3---N7---C7---C12 −9.7 (3) S1---Zn1---S2---C2 −94.78 (8) O4---N7---C7---C12 170.5 (2) O1---Zn1---S2---C2 83.31 (8) O6---N8---C11---C10 3.1 (3) N1---Zn1---S2---C2 −178.29 (8) O5---N8---C11---C10 −175.7 (2) N4---Zn1---S2---C2 −15.39 (8) O5---N8---C11---C12 3.3 (3) S1---Zn1---O1---S3 41.44 (11) O6---N8---C11---C12 −177.9 (2) S2---Zn1---O1---S3 −137.63 (9) O7---N9---C9---C10 1.3 (3) N1---Zn1---O1---S3 125.56 (10) O7---N9---C9---C8 −178.8 (2) N4---Zn1---O1---S3 −53.34 (11) O8---N9---C9---C8 1.9 (3) S1---Zn1---N1---N2 21.71 (13) O8---N9---C9---C10 −178.1 (2) S2---Zn1---N1---N2 174.21 (13) N10---C13---C14---C15 179.42 (18) O1---Zn1---N1---N2 −86.26 (14) C14---C13---C18---C17 −2.4 (3) S1---Zn1---N4---N5 172.48 (13) N10---C13---C18---O16 −4.8 (3) S2---Zn1---N4---N5 19.39 (13) N10---C13---C18---C17 177.75 (18) O1---Zn1---N4---N5 −78.28 (14) C18---C13---C14---C15 −0.4 (3) Zn1---S1---C1---N2 9.21 (17) C14---C13---C18---O16 175.0 (2) Zn1---S1---C1---N3 −169.23 (16) C13---C14---C15---N11 −178.34 (18) Zn1---S2---C2---N5 13.08 (18) C13---C14---C15---C16 1.5 (3) Zn1---S2---C2---N6 −167.45 (16) N11---C15---C16---C17 −179.62 (19) C3---S3---O1---Zn1 −89.65 (14) C14---C15---C16---C17 0.5 (3) C4A---S3---O1---Zn1 156.5 (2) C15---C16---C17---N12 176.16 (19) C4B---S3---O1---Zn1 175.6 (2) C15---C16---C17---C18 −3.8 (3) O1---S3---C4A---C4B 88.3 (9) C16---C17---C18---O16 −172.9 (2) C3---S3---C4A---C4B −22.9 (10) C16---C17---C18---C13 4.6 (3) O1---S3---C4B---C4A −96.1 (9) N12---C17---C18---C13 −175.37 (19) C3---S3---C4B---C4A 158.3 (9) N12---C17---C18---O16 7.2 (3) Zn1---N1---N2---C1 −23.6 (2) N7---C7---C8---C9 −179.51 (18) N1---N2---C1---S1 8.4 (3) C12---C7---C8---C9 1.7 (3) N1---N2---C1---N3 −173.14 (19) N7---C7---C12---C11 179.74 (18) Zn1---N4---N5---C2 −17.8 (2) C8---C7---C12---C11 −1.4 (3) N4---N5---C2---S2 1.8 (3) C7---C8---C9---N9 −179.32 (18) N4---N5---C2---N6 −177.69 (19) C7---C8---C9---C10 0.6 (3) O10---N10---C13---C14 −178.90 (18) N9---C9---C10---O9A 12.0 (17) O10---N10---C13---C18 0.9 (3) N9---C9---C10---C11 177.15 (18) O11---N10---C13---C14 2.7 (3) C8---C9---C10---O9A −168.0 (17) O11---N10---C13---C18 −177.51 (19) C8---C9---C10---C11 −2.8 (3) O12---N11---C15---C14 −11.4 (3) O9A---C10---C11---N8 −12.7 (18) O12---N11---C15---C16 168.7 (2) O9A---C10---C11---C12 168.4 (18) O13---N11---C15---C14 169.1 (2) C9---C10---C11---N8 −178.05 (18) O13---N11---C15---C16 −10.8 (3) C9---C10---C11---C12 3.0 (3) O14A---N12---C17---C16 19.5 (17) N8---C11---C12---C7 179.91 (18) O14A---N12---C17---C18 −160.6 (17) C10---C11---C12---C7 −1.1 (3) O15A---N12---C17---C16 178.7 (12) ------------------------ -------------- ------------------------ -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4682 .table-wrap} ---------------------- ------------ ---------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1NA···O1W^i^ 0.87 (2) 2.20 (2) 2.974 (3) 148 (2) N2---HN2···O15A^i^ 0.80 (2) 2.41 (3) 3.01 (2) 133 (2) N2---HN2···O16^i^ 0.80 (2) 1.96 (2) 2.693 (2) 152 (2) N3---H3NA···O10^i^ 0.87 (3) 2.44 (3) 3.166 (2) 141 (2) N3---H3NA···O16^i^ 0.87 (3) 2.03 (3) 2.790 (3) 146 (3) N3---H3NB···O5^ii^ 0.77 (2) 2.24 (2) 3.004 (3) 173 (2) N5---H5N···O7^iii^ 0.84 (2) 2.37 (2) 3.007 (3) 133 (2) N5---H5N···O9A^iii^ 0.84 (2) 1.94 (3) 2.698 (17) 150 (2) N4---H4NA···O2^iii^ 0.88 (2) 2.20 (2) 2.933 (3) 141 (2) N4---H4NB···S1^iv^ 0.84 (3) 2.63 (3) 3.457 (2) 170 (2) N6---H6NA···O6^iii^ 0.82 (3) 2.41 (3) 3.081 (3) 140 (2) N6---H6NA···O9A^iii^ 0.82 (3) 2.05 (5) 2.76 (3) 145 (3) N6---H6NB···O11^v^ 0.82 (3) 2.22 (3) 3.034 (3) 172 (3) O1W---H1WA···O8 0.819 (19) 2.27 (2) 3.059 (3) 163 (3) O1W---H1WB···O2 0.80 (2) 2.02 (2) 2.806 (3) 171 (3) C6---H6B···O2^iii^ 0.96 2.52 3.347 (3) 145 C8---H8···O4^vi^ 0.93 2.47 3.390 (3) 168 C12---H12···O5 0.93 2.31 2.636 (3) 100 C14---H14···O11 0.93 2.30 2.631 (3) 101 C4A---H4A2···O1W 0.96 2.48 3.430 (7) 170 ---------------------- ------------ ---------- ------------ --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) −*x*, −*y*+1, −*z*; (iii) −*x*, −*y*+1, −*z*+1; (iv) −*x*, −*y*, −*z*+1; (v) *x*, *y*−1, *z*+1; (vi) −*x*+1, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ ------------ ---------- ------------ ------------- N1---H1*NA*⋯O1*W*^i^ 0.87 (2) 2.20 (2) 2.974 (3) 148 (2) N2---H*N*2⋯O15*A*^i^ 0.80 (2) 2.41 (3) 3.01 (2) 133 (2) N2---H*N*2⋯O16^i^ 0.80 (2) 1.96 (2) 2.693 (2) 152 (2) N3---H3*NA*⋯O10^i^ 0.87 (3) 2.44 (3) 3.166 (2) 141 (2) N3---H3*NA*⋯O16^i^ 0.87 (3) 2.03 (3) 2.790 (3) 146 (3) N3---H3*NB*⋯O5^ii^ 0.77 (2) 2.24 (2) 3.004 (3) 173 (2) N5---H5*N*⋯O7^iii^ 0.84 (2) 2.37 (2) 3.007 (3) 133 (2) N5---H5*N*⋯O9*A*^iii^ 0.84 (2) 1.94 (3) 2.698 (17) 150 (2) N4---H4*NA*⋯O2^iii^ 0.88 (2) 2.20 (2) 2.933 (3) 141 (2) N4---H4*NB*⋯S1^iv^ 0.84 (3) 2.63 (3) 3.457 (2) 170 (2) N6---H6*NA*⋯O6^iii^ 0.82 (3) 2.41 (3) 3.081 (3) 140 (2) N6---H6*NA*⋯O9*A*^iii^ 0.82 (3) 2.05 (5) 2.76 (3) 145 (3) N6---H6*NB*⋯O11^v^ 0.82 (3) 2.22 (3) 3.034 (3) 172 (3) O1*W*---H1*WA*⋯O8 0.819 (19) 2.27 (2) 3.059 (3) 163 (3) O1*W*---H1*WB*⋯O2 0.80 (2) 2.02 (2) 2.806 (3) 171 (3) C6---H6*B*⋯O2^iii^ 0.96 2.52 3.347 (3) 145 C8---H8⋯O4^vi^ 0.93 2.47 3.390 (3) 168 C4*A*---H4*A*2⋯O1*W* 0.96 2.48 3.430 (7) 170 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) ; (vi) . :::
PubMed Central
2024-06-05T04:04:16.668086
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051735/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):m133-m134", "authors": [ { "first": "R.", "last": "Shanthakumari" }, { "first": "Ramu", "last": "Hema" }, { "first": "K.", "last": "Ramamurthy" }, { "first": "Balasubramnian", "last": "Sridar" }, { "first": "Helen", "last": "Stoeckli-Evans" } ] }
PMC3051736
Related literature {#sec1} ================== For related tin--oxinate structures, see: Archer *et al.* (1987[@bb2]); Faza­eli *et al.* (2009[@bb4]); Lo & Ng (2009[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~10~H~10~NO)\[SnCl~4~(C~9~H~6~NO)\]·2CH~4~O*M* *~r~* = 628.91Triclinic,*a* = 7.9395 (3) Å*b* = 9.9721 (4) Å*c* = 16.0531 (8) Åα = 75.056 (4)°β = 82.529 (4)°γ = 88.529 (3)°*V* = 1217.53 (9) Å^3^*Z* = 2Mo *K*α radiationμ = 1.52 mm^−1^*T* = 100 K0.30 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010[@bb1]) *T* ~min~ = 0.659, *T* ~max~ = 0.7518825 measured reflections5371 independent reflections4258 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.040 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.130*S* = 1.055371 reflections295 parametersH-atom parameters constrainedΔρ~max~ = 1.76 e Å^−3^Δρ~min~ = −1.85 e Å^−3^ {#d5e512} Data collection: *CrysAlis PRO* (Agilent Technologies, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *X-SEED* (Barbour, 2001[@bb3]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001954/si2328sup1.cif](http://dx.doi.org/10.1107/S1600536811001954/si2328sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001954/si2328Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001954/si2328Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?si2328&file=si2328sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?si2328sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?si2328&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SI2328](http://scripts.iucr.org/cgi-bin/sendsup?si2328)). We thank Shahid Beheshti University and the University of Malaya for supporting this study. Comment ======= Only symmetrical dichlorotin bis(oxinates) have been reported; these include the 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline derivatives (Archer *et al.*, 1987; Fazaeli *et al.*, 2009; Lo & Ng, 2009). In the reaction of 8-hydroxyquinoline, 2-methyl-8-hydroxyquinoline and stannic chloride, the 2-methyl-8-hydroxyquinoline is protonated to yield the disolvated salt, \[SnCl~4~(C~9~H~6~NO~2~)\]^-.^2CH~3~OH (Scheme I, Fig. 1). The tin atom in the anion is *N*,*O*-chelated by the hydroxyquinolinate and it exists in a *cis*-SnNOCl~4~ octahedral geometry. The cation, anion and solvent molecules are linked by N--H···O and O--H···O hydrogen bonds to generate a three-dimensional network (Table 1). Experimental {#experimental} ============ Stannic chloride pentahydrate (0.35 g, 1 mmol), 8-hydroxyquinoline (0.15 g, 1 mmol) and 2-methyl-8-hydroxyquinoline (0.16 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Yellow crystals were collected from the side arm after several days. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C---H 0.95 to 0.98 Å, *U*~iso~(H) 1.2 to 1.5*U*~eq~(C)\] and were included in the refinement in the riding model approximation. The amino and hydroxy H-atoms were similarly placed (N--H 0.88±0.01, O--H 0.84±0.01 Å) and their temperature factors were also tied. The final difference Fourier map had a peak and a hole in the vicinity of Sn1. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of \[C10H10NO\]+ \[SnCl4(C9H6NO)\]--. 2CH3OH at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m241-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e163 .table-wrap} ----------------------------------------------- --------------------------------------- (C~10~H~10~NO)\[SnCl~4~(C~9~H~6~NO)\]·2CH~4~O *Z* = 2 *M~r~* = 628.91 *F*(000) = 628 Triclinic, *P*1 *D*~x~ = 1.715 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.9395 (3) Å Cell parameters from 4114 reflections *b* = 9.9721 (4) Å θ = 2.6--29.3° *c* = 16.0531 (8) Å µ = 1.52 mm^−1^ α = 75.056 (4)° *T* = 100 K β = 82.529 (4)° Prism, yellow γ = 88.529 (3)° 0.30 × 0.25 × 0.20 mm *V* = 1217.53 (9) Å^3^ ----------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e307 .table-wrap} -------------------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with an Atlas detector 5371 independent reflections Radiation source: SuperNova (Mo) X-ray Source 4258 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.040 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.6° ω scans *h* = −8→10 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010) *k* = −11→12 *T*~min~ = 0.659, *T*~max~ = 0.751 *l* = −16→20 8825 measured reflections -------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e427 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.130 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0633*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5371 reflections (Δ/σ)~max~ = 0.001 295 parameters Δρ~max~ = 1.76 e Å^−3^ 0 restraints Δρ~min~ = −1.85 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e583 .table-wrap} ------ -------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 0.51336 (4) 0.56573 (3) 0.20809 (2) 0.01909 (12) Cl1 0.24880 (15) 0.54380 (11) 0.30721 (8) 0.0232 (3) Cl2 0.47350 (15) 0.33873 (11) 0.18991 (8) 0.0242 (3) Cl3 0.67740 (16) 0.50347 (12) 0.32577 (8) 0.0262 (3) Cl4 0.75884 (15) 0.60727 (11) 0.09839 (8) 0.0227 (3) O1 0.5234 (4) 0.7725 (3) 0.2102 (2) 0.0203 (7) O2 0.8013 (5) 1.0336 (3) 0.3161 (2) 0.0280 (8) H2 0.8017 0.9885 0.2786 0.042\* O3 0.8327 (4) 0.8959 (3) 0.1982 (2) 0.0253 (8) H3 0.7453 0.8506 0.1976 0.038\* O4 1.0402 (4) 1.2688 (3) 0.3035 (2) 0.0262 (8) H4 1.1279 1.3129 0.3052 0.039\* N1 0.3617 (5) 0.6649 (4) 0.1035 (2) 0.0191 (8) N2 0.8391 (5) 1.1312 (4) 0.4535 (3) 0.0216 (9) H2N 0.8831 1.1741 0.4004 0.032\* C1 0.2875 (6) 0.6087 (5) 0.0509 (3) 0.0235 (10) H1 0.2968 0.5117 0.0565 0.028\* C2 0.1958 (6) 0.6896 (5) −0.0127 (3) 0.0256 (11) H2A 0.1428 0.6470 −0.0492 0.031\* C3 0.1824 (6) 0.8287 (5) −0.0226 (3) 0.0215 (10) H3A 0.1215 0.8834 −0.0663 0.026\* C4 0.2598 (6) 0.8921 (5) 0.0328 (3) 0.0211 (10) C5 0.2544 (6) 1.0356 (5) 0.0277 (3) 0.0219 (10) H5 0.1940 1.0964 −0.0139 0.026\* C6 0.3369 (6) 1.0866 (5) 0.0830 (3) 0.0247 (11) H6 0.3334 1.1834 0.0788 0.030\* C7 0.4256 (6) 1.0005 (5) 0.1451 (3) 0.0228 (10) H7 0.4803 1.0393 0.1828 0.027\* C8 0.4353 (6) 0.8596 (5) 0.1527 (3) 0.0197 (10) C9 0.3486 (6) 0.8058 (4) 0.0956 (3) 0.0171 (9) C10 0.7577 (6) 1.0063 (5) 0.4660 (3) 0.0208 (10) C11 0.7396 (6) 0.9540 (5) 0.3939 (3) 0.0220 (10) C12 0.6582 (6) 0.8283 (5) 0.4091 (3) 0.0238 (11) H12 0.6452 0.7911 0.3614 0.029\* C13 0.5940 (6) 0.7539 (5) 0.4932 (3) 0.0254 (11) H13 0.5399 0.6668 0.5013 0.030\* C14 0.6071 (6) 0.8030 (5) 0.5637 (3) 0.0251 (11) H14 0.5609 0.7521 0.6203 0.030\* C15 0.6919 (6) 0.9330 (5) 0.5509 (3) 0.0226 (10) C16 0.7117 (7) 0.9934 (5) 0.6198 (3) 0.0283 (11) H16 0.6721 0.9455 0.6781 0.034\* C17 0.7881 (6) 1.1211 (5) 0.6025 (3) 0.0247 (11) H17 0.7957 1.1629 0.6488 0.030\* C18 0.8548 (6) 1.1910 (5) 0.5179 (3) 0.0224 (10) C19 0.9411 (6) 1.3281 (5) 0.4955 (4) 0.0278 (11) H19A 0.9106 1.3840 0.4399 0.042\* H19B 1.0644 1.3150 0.4908 0.042\* H19C 0.9054 1.3758 0.5410 0.042\* C20 0.9683 (6) 0.8028 (5) 0.2200 (4) 0.0289 (12) H20A 1.0752 0.8552 0.2092 0.043\* H20B 0.9763 0.7361 0.1843 0.043\* H20C 0.9470 0.7529 0.2816 0.043\* C21 0.9985 (7) 1.3030 (6) 0.2168 (3) 0.0319 (12) H21A 0.8821 1.2724 0.2171 0.048\* H21B 1.0773 1.2565 0.1812 0.048\* H21C 1.0075 1.4037 0.1924 0.048\* ------ -------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1306 .table-wrap} ----- ------------- -------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.0224 (2) 0.01323 (17) 0.0203 (2) −0.00323 (12) −0.00130 (14) −0.00209 (13) Cl1 0.0248 (6) 0.0189 (5) 0.0238 (6) −0.0031 (4) 0.0030 (5) −0.0041 (5) Cl2 0.0291 (7) 0.0147 (5) 0.0277 (7) −0.0021 (4) −0.0006 (5) −0.0045 (5) Cl3 0.0291 (7) 0.0225 (6) 0.0245 (7) −0.0029 (5) −0.0066 (5) 0.0002 (5) Cl4 0.0249 (6) 0.0167 (5) 0.0237 (6) −0.0025 (4) 0.0021 (5) −0.0028 (5) O1 0.0243 (18) 0.0132 (15) 0.0230 (19) −0.0003 (13) −0.0024 (15) −0.0039 (14) O2 0.041 (2) 0.0218 (17) 0.0186 (19) −0.0130 (15) 0.0025 (16) −0.0020 (14) O3 0.0248 (19) 0.0234 (17) 0.025 (2) −0.0081 (14) −0.0014 (15) −0.0005 (15) O4 0.030 (2) 0.0241 (18) 0.024 (2) −0.0085 (14) −0.0026 (15) −0.0041 (15) N1 0.018 (2) 0.0176 (19) 0.019 (2) −0.0039 (15) 0.0008 (16) −0.0001 (16) N2 0.024 (2) 0.021 (2) 0.018 (2) −0.0018 (16) −0.0012 (17) −0.0019 (17) C1 0.027 (3) 0.015 (2) 0.025 (3) −0.0030 (19) 0.004 (2) −0.003 (2) C2 0.029 (3) 0.029 (3) 0.019 (3) −0.005 (2) −0.002 (2) −0.007 (2) C3 0.022 (3) 0.020 (2) 0.018 (3) 0.0015 (18) −0.002 (2) 0.0032 (19) C4 0.022 (3) 0.019 (2) 0.020 (3) −0.0034 (18) 0.006 (2) −0.005 (2) C5 0.022 (3) 0.019 (2) 0.021 (3) 0.0026 (19) −0.002 (2) 0.000 (2) C6 0.026 (3) 0.014 (2) 0.030 (3) −0.0032 (19) 0.007 (2) −0.001 (2) C7 0.024 (3) 0.021 (2) 0.019 (3) −0.0067 (19) 0.005 (2) −0.002 (2) C8 0.016 (2) 0.019 (2) 0.021 (3) −0.0012 (18) 0.0017 (19) −0.0030 (19) C9 0.018 (2) 0.017 (2) 0.014 (2) −0.0023 (17) 0.0039 (18) −0.0025 (18) C10 0.019 (3) 0.017 (2) 0.023 (3) 0.0003 (18) 0.000 (2) −0.002 (2) C11 0.023 (3) 0.020 (2) 0.022 (3) −0.0006 (19) −0.003 (2) −0.003 (2) C12 0.023 (3) 0.023 (2) 0.024 (3) −0.0014 (19) 0.001 (2) −0.005 (2) C13 0.023 (3) 0.016 (2) 0.034 (3) −0.0063 (19) 0.004 (2) −0.002 (2) C14 0.030 (3) 0.016 (2) 0.024 (3) 0.0005 (19) 0.002 (2) 0.003 (2) C15 0.016 (2) 0.022 (2) 0.028 (3) 0.0051 (19) −0.001 (2) −0.005 (2) C16 0.031 (3) 0.031 (3) 0.020 (3) 0.002 (2) 0.001 (2) −0.003 (2) C17 0.026 (3) 0.028 (3) 0.019 (3) −0.001 (2) −0.002 (2) −0.005 (2) C18 0.014 (2) 0.028 (3) 0.024 (3) 0.0036 (19) −0.002 (2) −0.004 (2) C19 0.023 (3) 0.030 (3) 0.032 (3) −0.002 (2) −0.006 (2) −0.011 (2) C20 0.025 (3) 0.031 (3) 0.029 (3) −0.002 (2) −0.004 (2) −0.005 (2) C21 0.032 (3) 0.034 (3) 0.027 (3) −0.004 (2) −0.004 (2) −0.002 (2) ----- ------------- -------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1972 .table-wrap} --------------------- ------------- ----------------------- ------------ Sn1---O1 2.075 (3) C6---H6 0.9500 Sn1---N1 2.204 (4) C7---C8 1.379 (6) Sn1---Cl3 2.3758 (12) C7---H7 0.9500 Sn1---Cl2 2.3898 (11) C8---C9 1.428 (6) Sn1---Cl4 2.4174 (12) C10---C15 1.409 (7) Sn1---Cl1 2.4427 (12) C10---C11 1.412 (6) O1---C8 1.350 (5) C11---C12 1.376 (6) O2---C11 1.333 (6) C12---C13 1.399 (7) O2---H2 0.8400 C12---H12 0.9500 O3---C20 1.423 (6) C13---C14 1.361 (7) O3---H3 0.8400 C13---H13 0.9500 O4---C21 1.426 (6) C14---C15 1.431 (7) O4---H4 0.8400 C14---H14 0.9500 N1---C1 1.328 (6) C15---C16 1.416 (6) N1---C9 1.381 (5) C16---C17 1.371 (7) N2---C18 1.341 (6) C16---H16 0.9500 N2---C10 1.373 (6) C17---C18 1.397 (7) N2---H2N 0.8800 C17---H17 0.9500 C1---C2 1.400 (7) C18---C19 1.483 (7) C1---H1 0.9500 C19---H19A 0.9800 C2---C3 1.358 (6) C19---H19B 0.9800 C2---H2A 0.9500 C19---H19C 0.9800 C3---C4 1.422 (6) C20---H20A 0.9800 C3---H3A 0.9500 C20---H20B 0.9800 C4---C9 1.399 (7) C20---H20C 0.9800 C4---C5 1.411 (6) C21---H21A 0.9800 C5---C6 1.370 (6) C21---H21B 0.9800 C5---H5 0.9500 C21---H21C 0.9800 C6---C7 1.393 (7) O1---Sn1---N1 78.45 (12) N1---C9---C4 121.7 (4) O1---Sn1---Cl3 90.22 (9) N1---C9---C8 116.6 (4) N1---Sn1---Cl3 168.60 (9) C4---C9---C8 121.7 (4) O1---Sn1---Cl2 171.51 (9) N2---C10---C15 119.3 (4) N1---Sn1---Cl2 93.09 (10) N2---C10---C11 119.7 (4) Cl3---Sn1---Cl2 98.22 (4) C15---C10---C11 121.0 (4) O1---Sn1---Cl4 88.73 (9) O2---C11---C12 125.8 (4) N1---Sn1---Cl4 87.00 (10) O2---C11---C10 116.2 (4) Cl3---Sn1---Cl4 93.98 (4) C12---C11---C10 118.0 (5) Cl2---Sn1---Cl4 91.61 (4) C11---C12---C13 121.5 (4) O1---Sn1---Cl1 88.01 (9) C11---C12---H12 119.3 N1---Sn1---Cl1 86.76 (10) C13---C12---H12 119.3 Cl3---Sn1---Cl1 91.73 (4) C14---C13---C12 121.7 (4) Cl2---Sn1---Cl1 90.78 (4) C14---C13---H13 119.1 Cl4---Sn1---Cl1 173.44 (4) C12---C13---H13 119.1 C8---O1---Sn1 114.7 (2) C13---C14---C15 118.7 (5) C11---O2---H2 109.5 C13---C14---H14 120.7 C20---O3---H3 109.5 C15---C14---H14 120.7 C21---O4---H4 109.5 C10---C15---C16 117.8 (4) C1---N1---C9 119.6 (4) C10---C15---C14 119.1 (4) C1---N1---Sn1 129.6 (3) C16---C15---C14 123.1 (5) C9---N1---Sn1 110.8 (3) C17---C16---C15 120.0 (5) C18---N2---C10 123.4 (4) C17---C16---H16 120.0 C18---N2---H2N 118.3 C15---C16---H16 120.0 C10---N2---H2N 118.3 C16---C17---C18 121.2 (4) N1---C1---C2 121.3 (4) C16---C17---H17 119.4 N1---C1---H1 119.3 C18---C17---H17 119.4 C2---C1---H1 119.3 N2---C18---C17 118.2 (4) C3---C2---C1 120.3 (4) N2---C18---C19 118.2 (4) C3---C2---H2A 119.8 C17---C18---C19 123.6 (4) C1---C2---H2A 119.8 C18---C19---H19A 109.5 C2---C3---C4 119.8 (4) C18---C19---H19B 109.5 C2---C3---H3A 120.1 H19A---C19---H19B 109.5 C4---C3---H3A 120.1 C18---C19---H19C 109.5 C9---C4---C5 118.5 (4) H19A---C19---H19C 109.5 C9---C4---C3 117.2 (4) H19B---C19---H19C 109.5 C5---C4---C3 124.3 (4) O3---C20---H20A 109.5 C6---C5---C4 119.6 (4) O3---C20---H20B 109.5 C6---C5---H5 120.2 H20A---C20---H20B 109.5 C4---C5---H5 120.2 O3---C20---H20C 109.5 C5---C6---C7 121.8 (4) H20A---C20---H20C 109.5 C5---C6---H6 119.1 H20B---C20---H20C 109.5 C7---C6---H6 119.1 O4---C21---H21A 109.5 C8---C7---C6 120.9 (4) O4---C21---H21B 109.5 C8---C7---H7 119.5 H21A---C21---H21B 109.5 C6---C7---H7 119.5 O4---C21---H21C 109.5 O1---C8---C7 123.1 (4) H21A---C21---H21C 109.5 O1---C8---C9 119.4 (4) H21B---C21---H21C 109.5 C7---C8---C9 117.5 (4) N1---Sn1---O1---C8 1.6 (3) C5---C4---C9---N1 −178.9 (4) Cl3---Sn1---O1---C8 −177.2 (3) C3---C4---C9---N1 0.3 (7) Cl4---Sn1---O1---C8 88.8 (3) C5---C4---C9---C8 −1.1 (7) Cl1---Sn1---O1---C8 −85.5 (3) C3---C4---C9---C8 178.1 (4) O1---Sn1---N1---C1 178.1 (4) O1---C8---C9---N1 −0.1 (6) Cl3---Sn1---N1---C1 −175.9 (4) C7---C8---C9---N1 179.2 (4) Cl2---Sn1---N1---C1 −2.6 (4) O1---C8---C9---C4 −178.0 (4) Cl4---Sn1---N1---C1 88.8 (4) C7---C8---C9---C4 1.3 (7) Cl1---Sn1---N1---C1 −93.2 (4) C18---N2---C10---C15 −2.4 (7) O1---Sn1---N1---C9 −1.6 (3) C18---N2---C10---C11 176.9 (4) Cl3---Sn1---N1---C9 4.4 (7) N2---C10---C11---O2 −1.5 (7) Cl2---Sn1---N1---C9 177.6 (3) C15---C10---C11---O2 177.8 (4) Cl4---Sn1---N1---C9 −90.9 (3) N2---C10---C11---C12 179.7 (4) Cl1---Sn1---N1---C9 87.0 (3) C15---C10---C11---C12 −1.0 (7) C9---N1---C1---C2 0.0 (7) O2---C11---C12---C13 −178.4 (5) Sn1---N1---C1---C2 −179.7 (3) C10---C11---C12---C13 0.3 (7) N1---C1---C2---C3 0.7 (8) C11---C12---C13---C14 0.8 (8) C1---C2---C3---C4 −0.9 (8) C12---C13---C14---C15 −1.2 (7) C2---C3---C4---C9 0.4 (7) N2---C10---C15---C16 0.7 (7) C2---C3---C4---C5 179.5 (5) C11---C10---C15---C16 −178.7 (4) C9---C4---C5---C6 0.7 (7) N2---C10---C15---C14 179.9 (4) C3---C4---C5---C6 −178.5 (5) C11---C10---C15---C14 0.6 (7) C4---C5---C6---C7 −0.5 (8) C13---C14---C15---C10 0.5 (7) C5---C6---C7---C8 0.7 (8) C13---C14---C15---C16 179.7 (5) Sn1---O1---C8---C7 179.3 (4) C10---C15---C16---C17 2.0 (7) Sn1---O1---C8---C9 −1.4 (5) C14---C15---C16---C17 −177.2 (5) C6---C7---C8---O1 178.2 (4) C15---C16---C17---C18 −3.1 (7) C6---C7---C8---C9 −1.1 (7) C10---N2---C18---C17 1.4 (7) C1---N1---C9---C4 −0.5 (7) C10---N2---C18---C19 −178.2 (4) Sn1---N1---C9---C4 179.3 (4) C16---C17---C18---N2 1.4 (7) C1---N1---C9---C8 −178.4 (4) C16---C17---C18---C19 −179.0 (4) Sn1---N1---C9---C8 1.4 (5) --------------------- ------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3051 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H2···O3 0.84 1.76 2.595 (4) 172 O3---H3···O1 0.84 1.91 2.736 (4) 168 O4---H4···Cl1^i^ 0.84 2.53 3.258 (3) 146 N2---H2n···O4 0.88 1.91 2.764 (5) 162 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- O2---H2⋯O3 0.84 1.76 2.595 (4) 172 O3---H3⋯O1 0.84 1.91 2.736 (4) 168 O4---H4⋯Cl1^i^ 0.84 2.53 3.258 (3) 146 N2---H2n⋯O4 0.88 1.91 2.764 (5) 162 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.678595
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051736/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m241", "authors": [ { "first": "Ezzatollah", "last": "Najafi" }, { "first": "Mostafa M.", "last": "Amini" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3051737
Related literature {#sec1} ================== For the structure determination of natural warwickite, Mg~3~TiO~2~(BO~3~)~2~, see: Takéuchi *et al.* (1950[@bb12]); Moore & Araki (1974[@bb9]). For the synthesis and crystal structure analysis of Co~3~ *M*O~2~(BO~3~)~2~ (*M* = Ti, Zr), see: Utzolino & Bluhm (1995[@bb13]). For the synthesis of Mg~5~TiO~4~(BO~3~)~2~ and Mg~3~ZrO~2~(BO~3~)~2~, see: Konijnendijk & Blasse (1985[@bb7]). For the structure of Mg~5~TiO~4~(BO~3~)~2~, see: Kawano & Yamane (2010[@bb6]). For bond-valence-sum calculations, see: Brown & Altermatt (1985[@bb2]). For bond-valence parameters, see: Brese & O'Keeffe (1991[@bb1]). For structure standardization, see: Gelato & Parthé (1987[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} Mg~3~TiO~2~(BO~3~)~2~*M* *~r~* = 270.45Orthorhombic,*a* = 9.3013 (5) Å*b* = 3.10080 (14) Å*c* = 9.3914 (6) Å*V* = 270.86 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 1.94 mm^−1^*T* = 293 K0.17 × 0.17 × 0.12 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID II diffractometerAbsorption correction: numerical (*NUMABS*; Higashi, 1999[@bb5]) *T* ~min~ = 0.791, *T* ~max~ = 0.8392510 measured reflections364 independent reflections348 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.026*wR*(*F* ^2^) = 0.070*S* = 1.20364 reflections44 parametersΔρ~max~ = 0.36 e Å^−3^Δρ~min~ = −0.59 e Å^−3^ {#d5e697} Data collection: *PROCESS-AUTO* (Rigaku/MSC, 2005[@bb10]); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *VESTA* (Momma & Izumi, 2008[@bb8]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002157/wm2443sup1.cif](http://dx.doi.org/10.1107/S1600536811002157/wm2443sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002157/wm2443Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002157/wm2443Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2443&file=wm2443sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?wm2443sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?wm2443&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [WM2443](http://scripts.iucr.org/cgi-bin/sendsup?wm2443)). This work was supported in part by the Global COE Program 'Materials Integration, Tohoku University' and by a Grant-in-Aid for Scientific Research (B) (No. 21350113, 2009) from the Ministry of Education, Culture, Sports and Technology (MEXT), Japan. Comment ======= Crystal structure determinations of the mineral warwickite, Mg~3~TiO~2~(BO~3~)~2~, were reported by Takéuchi *et al.* (1950) and Moore & Araki (1974). The natural samples contained a few amount of Fe and Al. The crystal structure of synthetic Mg~3~TiO~2~(BO~3~)~2~ has not been analyzed up to now. We obtained single crystals of this compound during the preparation of Mg~5~TiO~4~(BO~3~)~2~ (Kawano & Yamane, 2010). Anisotropic atomic displacement parameters (*U~ij~*) of Mg, Ti, B and O atoms were refined in the present study. Moore & Araki (1974) refined isotropic atomic displacement parameters (*B*~iso~) of Mg, Ti, B and O atoms; neither *U* nor *B*-values were reported by Takéuchi *et al.* (1950). Synthetic warwickite-type oxyborates with general composition *M*^II^~3~*M*^IV^O~2~(BO~3~)~2~ are known for Co~3~*M*O~2~(BO~3~)~2~ \[*M* = Ti, Zr (Utzolino & Bluhm, 1995)\] and Mg~3~ZrO~2~(BO~3~)~2~ (Konijnendijk & Blasse, 1985). However, only the crystal structures of Co~3~*M*O~2~(BO~3~)~2~ (*M* = Ti, Zr) were analyzed. The title compound Mg~3~TiO~2~(BO~3~)~2~ is isotypic with Co~3~*M*O~2~(BO~3~)~2~ \[*M* = Ti, Zr (Utzolino & Bluhm, 1995)\]. Figs. 1 and 2 show the coordination environments of the Mg, Ti, B and O atoms, and the crystal structure of Mg~3~TiO~2~(BO~3~)~2~, respectively. In the asymmetric unit, there is one Ti/Mg mixed site (*M*1) with occupancies of 0.5/0.5 and one Mg site (*M*2). Moore and Araki (1974) refined the site occupancy factors of Mg and Ti atoms at the *M*1 and *M*2 sites, ignoring Al and Fe atoms due to their similarities with the scattering profiles of Mg^2+^ and Ti^4+^, respectively. Refined occupancy factors were *M*1 = Mg~0.96 (1)~/Ti~0.04 (1)~ and *M*2 = Mg~0.62 (2)~/Ti~0.38 (2)~ and an ideal formula of Mg(Mg~0.5~Ti~0.5~)O~2~\[BO~3~\] was suggested (Moore & Araki, 1974). Our refinement (*M*1 = Mg1 and *M*2 = Mg~0.5~/Ti~0.5~) is consistent with the ideal formula. Although Takéuchi *et al.* (1950) reported the atomic coordinates of natural warwickite, site occupancy factors of the *M*1 and *M*2 sites were not reported. All atoms are at special positions (*x*, 1/4, *z*), 4*c*, with site symmetries of (.*m*.). Mg and Ti atoms occupy six-coordinated oxygen-octahedral sites, forming layers composed of *M*~4~O~18~ (*M* = Ti/Mg, Mg) units. The layers are connected by edge-sharing O4 atoms of (Ti1/Mg1)O~6~ and Mg2O~6~ octahedra into a three-dimensional framework. B1 atoms are located in triangular prismatic tunnels of the framework. Bond valence sums (BVS; Brown & Altermatt, 1985) of the Mg, Ti and B atoms were calculated with the bond valence parameters of 1.693 Å for Mg^2+^, 1.815 Å for Ti^4+^ and 1.371 Å for B^3+^ (Brese & O\'Keeffe, 1991). The BVS values of the Mg2 and B1 atoms were 2.1 and 2.9, respectively. Those of the Ti1 and Mg1 atoms at the Ti1/Mg1 site were 3.22 and 2.31, respectively. The average of these value is 2.8 and close to the expected mean valence (+3) of Mg^2+^ and Ti^4+^. The B1---O distances of 1.353 (3)--1.395 (3) Å agree well with those of isotypic Co~3~*M*O~2~(BO~3~)~2~ (*M* = Ti, Zr): 1.36 (2)--1.39 (2) Å (Utzolino & Bluhm, 1995). Warwickite-type Mg~3~TiO~2~(BO~3~)~2~ did not emit visible light under ultraviolet excitation at room temperature, while ludwigite-type Mg~5~TiO~4~(BO~3~)~2~ shows broad blue emission (435 nm) attributed to charge transfer transitions between Ti^4+^ and O^2--^ (Konijnendijk & Blasse, 1985). Experimental {#experimental} ============ Starting materials were powders of MgO (99.9%, Rare Metallic), TiO~2~ (99.9%, Rare Metallic) and H~3~BO~3~ (99.99%, Sigma-Aldrich). MgO was heated at 1173--1273 K for 6--12 h in air before weighing. The powders were weighed with a molar ratio of MgO: TiO~2~: H~3~BO~3~ = 5: 1: 2.7 and mixed in an agate mortar with a pestle. The mixture was pressed into a pellet, placed in a Pt boat and heated at 1623 K for 6 h in air. Heating and cooling rates were 200 and 900 K/h, respectively. About 400 mg of the sample and 100 mg of H~3~BO~3~ were weighed and mixed. The mixture in the Pt boat was heated at 1723 K for 3 h in air and cooled to room temperature at a cooling rate of 900 K/h. The obtained sample was crushed into fragments and a colourless and transparent single-crystal of about 0.12--0.17 mm was picked up under an optical microscope. Refinement {#refinement} ========== The crystal structures of natural warwickites were described in the space group *Pnam* (no. 62) in the previous studies (Takéuchi *et al.*, 1950; Moore & Araki, 1974). The original single-crystal X-ray diffraction data in the present study were indexed in a different setting in space group *Pmnb* and unit-cell parameters of *a* = 3.10080 (14), *b* = 9.3013 (5) and *c* = 9.3914 (6) Å. Structure parameters were eventually standardized based on the standard setting of the space group *Pnma* using the *STRUCTURE TIDY* program (Gelato & Parthé, 1987). In the final refinement, site occupation factors (s.o.f.\'s) of the Ti and Mg atoms at the Ti1/Mg1 and Mg2 sites were fixed to 0.5/0.5 and 1.0, respectively, since the freely refined s.o.f.\'s of the Ti and Mg atoms at the Ti1/Mg1 site were close to 1/2, and the s.o.f. of the Mg atom at the Mg2 site was about 1.0. The highest peak in the difference electron density map is 0.36 Å from O2 while the deepest hole is -0.59 Å from Ti1/Mg1. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The atomic arrangement around Mg, Ti, B and O atoms in the structure of Mg3TiO2(BO3)2. Displacement ellipsoids are drawn at the 95% probability level. Symmetry codes: (i) --x + 1/2, --y, z--1/2; (ii) --x + 1/2, --y + 1, z--1/2; (iii) x--1/2, y, --z + 1/2; (iv) --x, --y, --z + 1; (v) --x, --y + 1, --z + 1; (vi) x--1/2, y, --z + 3/2; (vii) --x + 1/2, --y + 1, z + 1/2; (viii) --x + 1/2, --y, z + 1/2. ::: ![](e-67-00i18-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal structure of Mg3TiO2(BO3)2 in a representation using cation-centred oxygen polyhedra. ::: ![](e-67-00i18-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e595 .table-wrap} ------------------------ --------------------------------------- Mg~3~TiO~2~(BO~3~)~2~ *F*(000) = 264 *M~r~* = 270.45 *D*~x~ = 3.316 Mg m^−3^ Orthorhombic, *Pnma* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2n Cell parameters from 2288 reflections *a* = 9.3013 (5) Å θ = 3.1--27.5° *b* = 3.10080 (14) Å µ = 1.94 mm^−1^ *c* = 9.3914 (6) Å *T* = 293 K *V* = 270.86 (3) Å^3^ Block, colourless *Z* = 2 0.17 × 0.17 × 0.12 mm ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e719 .table-wrap} ------------------------------------------------------------ ------------------------------------- Rigaku R-AXIS RAPID II diffractometer 364 independent reflections Radiation source: fine-focus sealed tube 348 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 Detector resolution: 10.0 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.1° ω scans *h* = −12→11 Absorption correction: numerical (*NUMABS*; Higashi, 1999) *k* = −3→3 *T*~min~ = 0.791, *T*~max~ = 0.839 *l* = −12→12 2510 measured reflections ------------------------------------------------------------ ------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e839 .table-wrap} ------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.026 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0347*P*)^2^ + 0.3981*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *wR*(*F*^2^) = 0.070 (Δ/σ)~max~ \< 0.001 *S* = 1.20 Δρ~max~ = 0.36 e Å^−3^ 364 reflections Δρ~min~ = −0.59 e Å^−3^ 44 parameters Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ 0 restraints Extinction coefficient: 0.039 (7) ------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e1015 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e1114 .table-wrap} ----- -------------- -------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ti1 0.11388 (7) 0.2500 0.07167 (7) 0.0115 (3) 0.50 Mg1 0.11388 (7) 0.2500 0.07167 (7) 0.0115 (3) 0.50 Mg2 0.10160 (8) 0.2500 0.68497 (9) 0.0055 (3) B1 0.1708 (3) 0.2500 0.3719 (3) 0.0061 (5) O1 0.24045 (19) 0.2500 0.50344 (18) 0.0088 (4) O2 0.25030 (18) 0.2500 0.24622 (19) 0.0078 (4) O3 0.0255 (2) 0.2500 0.36441 (19) 0.0100 (4) O4 0.5095 (2) 0.2500 0.61439 (18) 0.0100 (4) ----- -------------- -------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1249 .table-wrap} ----- ------------- ------------- ------------- --------- ------------- --------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ti1 0.0148 (4) 0.0079 (4) 0.0119 (4) 0.000 −0.0015 (2) 0.000 Mg1 0.0148 (4) 0.0079 (4) 0.0119 (4) 0.000 −0.0015 (2) 0.000 Mg2 0.0040 (4) 0.0045 (5) 0.0079 (4) 0.000 0.0001 (3) 0.000 B1 0.0069 (12) 0.0038 (13) 0.0077 (12) 0.000 −0.0013 (9) 0.000 O1 0.0071 (8) 0.0139 (10) 0.0054 (7) 0.000 −0.0006 (6) 0.000 O2 0.0085 (8) 0.0090 (9) 0.0058 (7) 0.000 0.0004 (6) 0.000 O3 0.0063 (9) 0.0095 (10) 0.0143 (9) 0.000 −0.0017 (7) 0.000 O4 0.0102 (9) 0.0128 (10) 0.0071 (8) 0.000 −0.0020 (6) 0.000 ----- ------------- ------------- ------------- --------- ------------- --------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1426 .table-wrap} -------------------------- -------------- --------------------------- -------------- Ti1---O4^i^ 1.9702 (12) Mg2---O4^x^ 2.0698 (19) Ti1---O4^ii^ 1.9702 (12) Mg2---O1 2.1387 (19) Ti1---O4^iii^ 1.9989 (19) Mg2---O2^xi^ 2.1522 (13) Ti1---O2 2.0730 (18) Mg2---O2^xii^ 2.1522 (13) Ti1---O1^ii^ 2.1565 (13) Mg2---Mg2^vi^ 3.10080 (14) Ti1---O1^i^ 2.1565 (13) Mg2---Mg2^vii^ 3.10080 (14) Ti1---Ti1^iv^ 2.9502 (11) Mg2---Ti1^xi^ 3.2465 (9) Ti1---Mg1^iv^ 2.9502 (11) Mg2---Mg1^xi^ 3.2465 (9) Ti1---Ti1^v^ 2.9502 (11) Mg2---Ti1^xii^ 3.2465 (9) Ti1---Mg1^v^ 2.9502 (11) Mg2---Mg1^xii^ 3.2465 (9) Ti1---Ti1^vi^ 3.10080 (14) B1---O3 1.353 (3) Ti1---Ti1^vii^ 3.10080 (14) B1---O2 1.393 (3) Mg2---O3^viii^ 2.0043 (12) B1---O1 1.395 (3) Mg2---O3^ix^ 2.0043 (12) O4^i^---Ti1---O4^ii^ 103.80 (9) Mg2---O1---Ti1^xi^ 98.20 (6) O4^i^---Ti1---O4^iii^ 83.98 (6) B1---O1---Ti1^xii^ 123.71 (9) O4^ii^---Ti1---O4^iii^ 83.98 (6) Mg2---O1---Ti1^xii^ 98.20 (6) O4^i^---Ti1---O2 101.28 (6) Mg1^xi^---O1---Ti1^xii^ 91.94 (7) O4^ii^---Ti1---O2 101.28 (6) Ti1^xi^---O1---Ti1^xii^ 91.94 (7) O4^iii^---Ti1---O2 171.31 (8) B1---O1---Mg1^xii^ 123.71 (9) O4^i^---Ti1---O1^ii^ 172.87 (6) Mg2---O1---Mg1^xii^ 98.20 (6) O4^ii^---Ti1---O1^ii^ 82.00 (5) Mg1^xi^---O1---Mg1^xii^ 91.94 (7) O4^iii^---Ti1---O1^ii^ 92.60 (6) Ti1^xi^---O1---Mg1^xii^ 91.94 (7) O2---Ti1---O1^ii^ 81.39 (6) B1---O2---Ti1 110.19 (15) O4^i^---Ti1---O1^i^ 82.00 (5) B1---O2---Mg2^ii^ 124.49 (8) O4^ii^---Ti1---O1^i^ 172.87 (6) Ti1---O2---Mg2^ii^ 100.40 (6) O4^iii^---Ti1---O1^i^ 92.60 (6) B1---O2---Mg2^i^ 124.49 (8) O2---Ti1---O1^i^ 81.39 (6) Ti1---O2---Mg2^i^ 100.40 (6) O1^ii^---Ti1---O1^i^ 91.94 (7) Mg2^ii^---O2---Mg2^i^ 92.17 (7) O3^viii^---Mg2---O3^ix^ 101.34 (9) B1---O3---Mg2^viii^ 126.96 (6) O3^viii^---Mg2---O4^x^ 88.08 (6) B1---O3---Mg2^ix^ 126.96 (6) O3^ix^---Mg2---O4^x^ 88.08 (6) Mg2^viii^---O3---Mg2^ix^ 101.34 (9) O3^viii^---Mg2---O1 99.89 (7) Mg1^xii^---O4---Mg1^xi^ 103.80 (9) O3^ix^---Mg2---O1 99.89 (7) Ti1^xii^---O4---Mg1^xi^ 103.80 (9) O4^x^---Mg2---O1 167.30 (8) Mg1^xii^---O4---Ti1^xi^ 103.80 (9) O3^viii^---Mg2---O2^xi^ 175.34 (6) Ti1^xii^---O4---Ti1^xi^ 103.80 (9) O3^ix^---Mg2---O2^xi^ 83.24 (5) Mg1^xii^---O4---Mg1^xiii^ 96.02 (6) O4^x^---Mg2---O2^xi^ 91.24 (6) Ti1^xii^---O4---Mg1^xiii^ 96.02 (6) O1---Mg2---O2^xi^ 80.01 (6) Mg1^xi^---O4---Mg1^xiii^ 96.02 (6) O3^viii^---Mg2---O2^xii^ 83.24 (5) Ti1^xi^---O4---Mg1^xiii^ 96.02 (6) O3^ix^---Mg2---O2^xii^ 175.34 (6) Mg1^xii^---O4---Ti1^xiii^ 96.02 (6) O4^x^---Mg2---O2^xii^ 91.24 (6) Ti1^xii^---O4---Ti1^xiii^ 96.02 (6) O1---Mg2---O2^xii^ 80.01 (6) Mg1^xi^---O4---Ti1^xiii^ 96.02 (6) O2^xi^---Mg2---O2^xii^ 92.17 (7) Ti1^xi^---O4---Ti1^xiii^ 96.02 (6) O3---B1---O2 119.1 (2) g1^xii^---O4---Mg2^xiv^ 115.24 (6) O3---B1---O1 120.7 (2) Ti1^xii^---O4---Mg2^xiv^ 115.24 (6) O2---B1---O1 120.3 (2) Mg1^xi^---O4---Mg2^xiv^ 115.24 (6) B1---O1---Mg2 115.18 (15) Ti1^xi^---O4---Mg2^xiv^ 115.24 (6) B1---O1---Mg1^xi^ 123.71 (9) Mg1^xiii^---O4---Mg2^xiv^ 126.50 (10) Mg2---O1---Mg1^xi^ 98.20 (6) Ti1^xiii^---O4---Mg2^xiv^ 126.50 (10) B1---O1---Ti1^xi^ 123.71 (9) -------------------------- -------------- --------------------------- -------------- ::: Symmetry codes: (i) −*x*+1/2, −*y*, *z*−1/2; (ii) −*x*+1/2, −*y*+1, *z*−1/2; (iii) *x*−1/2, *y*, −*z*+1/2; (iv) −*x*, −*y*, −*z*; (v) −*x*, −*y*+1, −*z*; (vi) *x*, *y*+1, *z*; (vii) *x*, *y*−1, *z*; (viii) −*x*, −*y*, −*z*+1; (ix) −*x*, −*y*+1, −*z*+1; (x) *x*−1/2, *y*, −*z*+3/2; (xi) −*x*+1/2, −*y*+1, *z*+1/2; (xii) −*x*+1/2, −*y*, *z*+1/2; (xiii) *x*+1/2, *y*, −*z*+1/2; (xiv) *x*+1/2, *y*, −*z*+3/2. Table 1 ::: {.caption} ###### Selected geometric parameters (Å, °), *M* = (Mg, Ti) ::: ::: {#d32e593 .table-wrap} --------------- ------------- *M*1---O4^i^ 1.9702 (12) *M*1---O4^ii^ 1.9989 (19) *M*1---O2 2.0730 (18) *M*1---O1^i^ 2.1565 (13) Mg2---O3^iii^ 2.0043 (12) Mg2---O4^iv^ 2.0698 (19) Mg2---O1 2.1387 (19) Mg2---O2^v^ 2.1522 (13) B1---O3 1.353 (3) B1---O2 1.393 (3) B1---O1 1.395 (3) --------------- ------------- ::: ::: {#d32e671 .table-wrap} -------------- ----------- O3---B1---O2 119.1 (2) O3---B1---O1 120.7 (2) O2---B1---O1 120.3 (2) -------------- ----------- Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:16.686796
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051737/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):i18-i19", "authors": [ { "first": "Tetsuya", "last": "Kawano" }, { "first": "Hisanori", "last": "Yamane" } ] }
PMC3051738
Related literature {#sec1} ================== For general background to the biological activity of thia­zole derivatives, see: Narayana *et al.* (2004[@bb2]). For the synthesis of the title compound, see: Bredereck *et al.* (1964[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~23~H~23~N~5~OS*M* *~r~* = 417.52Triclinic,*a* = 10.280 (3) Å*b* = 12.413 (2) Å*c* = 17.671 (4) Åα = 74.290 (9)°β = 87.96 (1)°γ = 68.281 (7)°*V* = 2011.3 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.19 mm^−1^*T* = 153 K0.40 × 0.40 × 0.23 mm ### Data collection {#sec2.1.2} Rigaku AFC10/Saturn724+ diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2008[@bb3]) *T* ~min~ = 0.929, *T* ~max~ = 0.95819475 measured reflections9061 independent reflections6741 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.028 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.043*wR*(*F* ^2^) = 0.115*S* = 1.039061 reflections551 parametersH-atom parameters constrainedΔρ~max~ = 0.34 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e439} Data collection: *CrystalClear* (Rigaku/MSC, 2008[@bb3]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb4]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810053559/ng5080sup1.cif](http://dx.doi.org/10.1107/S1600536810053559/ng5080sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053559/ng5080Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053559/ng5080Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5080&file=ng5080sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5080sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5080&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5080](http://scripts.iucr.org/cgi-bin/sendsup?ng5080)). We are very thankful to the Natural Science Foundation of Ningbo City (grant No. 2009 A610185) for financial support. We are also grateful to the Beijing Institute of Technology for the X-ray diffraction measurements. Comment ======= Thiazole derivatives are found to be associated with various biological activities (Narayana *et al.*, 2004). In order to further study the structure-activity relationship (SAR) of the thiazolyl-pyrimidine derivatives, we introduced arylamino group into 2-position of thiazole ring of thiazolyl-pyrimidine according to the general pyrimidine condensation method of Bredereck (Bredereck *et al.*, 1964). But, it was found that the obtained compound was not desired compound that confirmed by ^1^H NMR, MS. So, the structure of (I) was further determined using single-crystal X-ray diffraction. The molecular structure of (I) is illustrated in Fig. 1. The benzene ring makes opposite angles with thiazole-pyrimidine ring. The thiazole ring (S1/C7/N2/C8/C9) and the pyrimidine ring (C10/C11/C12/N3/C13/N4) are almost planar, with a dihedral angle of 2.48 (8)°. The aniline rings (C1/C2/C3/C4/C5/C6/N1) and (C14/C15/C16/C17/C18/C19/N5) make dihedral angles of 53.06 (8) Å and 19.21 (8) Å with the thiazole ring, respectively. In contrast, in the other independent molecule, the thiazole ring (S1\'/C7\'/N2\'/C8\'/C9\') and the pyrimidine ring (C10\'/C11\'/C12\'/N3\'/C13\'/N4\') make a dihedral angle of 12.82 (8)°. The aniline rings (C1\'/C2\'/C3\'/C4\'/C5\'/C6\'/N1\') and (C14\'/C15\'/C16\'/C17\'/C18\'/C19\'/N5\') make dihedral angles of 51.09 (9) Å and 29.07 (9) Å with the thiazole ring, respectively. Moreover, there exist different bond lengths in the two independent molecules due to different intermolecular hydrogen bonding interactions (Table 1). The crystal structure is stabilized by intermolecular weak N---H···N and C---H···O interactions, which extending down b axis. Experimental {#experimental} ============ A mixture of 3-Dimethylamino-1-\[2-(methyl-*p*-tolyl-amino)-4-methyl-thiazol-5-yl\]-propenone (1.575 g, 5 mmol) and NaOH (0.2 g, 5 mmol) in 2-methoxylethanol (35 ml) was treated with *N*-(3-Methoxy-phenyl)-guanidine carbonate (1.476 g, 6.5 mmol). The reaction mixture was heated at 383 K under N~2~ for 11 h. After concentration, the residue was filtered and washed liberally with ethanol and water. Recrystallization from THF affored the title compound as brown-yellow crystals, 0.97 g, m.p.453--456 K, yield 46.7%.Since the crystal product was not found to be suitable for X-ray diffraction studies,a few crystals were dissolved in 2-butanone, which was allowed to evaporate slowly to give yellow crystals of (I) suitable for X-ray diffraction studies. ^1^H NMR(CDCl~3~, TMS, 400 MHz, δp.p.m.): 8.27 (s, 1H, *J* = 4.8 Hz, py---H), 7.53 (s, 1H, Ar---H), 7.29--7.07 (m, 5H, Ar---H), 6.87 (d, 1H,*J* = 8.0 Hz, Ar---H), 6.83 (d, 1H, *J* = 5.2 Hz, py---H), 6.54 (d, 1H, *J* = 8.0 Hz, Ar---H), 3.64 (s, 3H, OCH~3~), 3.54 (s, 3H, CH~3~), 2.60 (s, 3H, CH~3~), 2.41 (s, 3H, CH~3~). EIMS m/*z* (%): 417 (*M*^+^,100), 402 (7), 311 (12), 105 (9), 91 (10), 73 (12), 57 (17). Refinement {#refinement} ========== All H atoms were placed in calculated positions (C---H 0.95--0.98 Å, N---H 0.87--0.89 Å) and refined as riding with *U*~iso~(H) = 1.2--1.22Ueq of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of (I), shown with 30% probability displacement ellipsoids. ::: ![](e-67-0o261-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing of the molecules down b axis. Dashed lines denote intermolecular N---H···N and C---H···O hydrogen bonds. ::: ![](e-67-0o261-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e168 .table-wrap} ----------------------- --------------------------------------- C~23~H~23~N~5~OS *Z* = 4 *M~r~* = 417.52 *F*(000) = 880 Triclinic, *P*1 *D*~x~ = 1.379 Mg m^−3^ Hall symbol: -P 1 Melting point = 456--453 K *a* = 10.280 (3) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 12.413 (2) Å Cell parameters from 5913 reflections *c* = 17.671 (4) Å θ = 3.0--27.5° α = 74.290 (9)° µ = 0.19 mm^−1^ β = 87.96 (1)° *T* = 153 K γ = 68.281 (7)° Block, yellow *V* = 2011.3 (8) Å^3^ 0.40 × 0.40 × 0.23 mm ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e303 .table-wrap} ---------------------------------------------------------------------- -------------------------------------- Rigaku AFC10/Saturn724+ diffractometer 9061 independent reflections Radiation source: fine-focus sealed tube 6741 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.028 Detector resolution: 28.5714 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.1° phi and ω scans *h* = −13→13 Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2008) *k* = −16→12 *T*~min~ = 0.929, *T*~max~ = 0.958 *l* = −22→21 19475 measured reflections ---------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e424 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.043 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.115 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0641*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 9061 reflections (Δ/σ)~max~ = 0.002 551 parameters Δρ~max~ = 0.34 e Å^−3^ 0 restraints Δρ~min~ = −0.25 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e578 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e677 .table-wrap} ------- --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.50315 (4) 0.38212 (4) 0.11927 (2) 0.02004 (11) O1 0.31361 (12) 0.76460 (10) 0.16457 (7) 0.0297 (3) N1 0.74892 (14) 0.22921 (12) 0.20606 (8) 0.0237 (3) N2 0.66177 (14) 0.16781 (12) 0.11226 (8) 0.0215 (3) N3 0.07766 (14) 0.54098 (12) −0.08838 (8) 0.0226 (3) N4 0.25101 (14) 0.50344 (11) 0.01314 (7) 0.0183 (3) C1 0.61409 (18) 0.34713 (15) 0.29291 (9) 0.0233 (4) H1 0.5369 0.3255 0.2855 0.028\* C2 0.60597 (19) 0.41897 (16) 0.34179 (10) 0.0287 (4) H2 0.5222 0.4465 0.3674 0.034\* C3 0.7163 (2) 0.45221 (16) 0.35466 (10) 0.0301 (4) C4 0.8380 (2) 0.40956 (16) 0.31677 (10) 0.0307 (4) H4 0.9158 0.4298 0.3252 0.037\* C5 0.84791 (18) 0.33830 (16) 0.26710 (10) 0.0264 (4) H5 0.9317 0.3108 0.2414 0.032\* C6 0.73559 (17) 0.30653 (14) 0.25448 (9) 0.0202 (3) C7 0.64954 (17) 0.24899 (14) 0.14957 (9) 0.0204 (3) C8 0.55242 (17) 0.20873 (14) 0.05698 (9) 0.0203 (3) C9 0.45492 (16) 0.32321 (14) 0.05084 (9) 0.0186 (3) C10 0.32638 (16) 0.39460 (14) 0.00112 (9) 0.0186 (3) C11 0.27980 (18) 0.35759 (15) −0.05700 (10) 0.0257 (4) H11 0.3320 0.2823 −0.0668 0.031\* C12 0.15554 (18) 0.43451 (15) −0.09934 (10) 0.0266 (4) H12 0.1230 0.4102 −0.1391 0.032\* C13 0.13195 (16) 0.57067 (14) −0.03208 (9) 0.0191 (3) C14 0.06599 (17) 0.74316 (14) 0.02929 (9) 0.0202 (3) C15 −0.05486 (18) 0.83747 (15) 0.03962 (10) 0.0272 (4) H15 −0.1416 0.8547 0.0126 0.033\* C16 −0.04857 (19) 0.90526 (16) 0.08867 (10) 0.0316 (4) H16 −0.1305 0.9703 0.0941 0.038\* C17 0.07593 (19) 0.87930 (15) 0.12995 (10) 0.0278 (4) H17 0.0801 0.9256 0.1641 0.033\* C18 0.19478 (17) 0.78470 (14) 0.12089 (10) 0.0225 (4) C19 0.19246 (17) 0.71745 (14) 0.07009 (9) 0.0213 (4) H19 0.2757 0.6549 0.0632 0.026\* C20 0.7059 (3) 0.52907 (19) 0.40976 (12) 0.0483 (6) H20A 0.7917 0.5462 0.4096 0.058\* H20B 0.6946 0.4857 0.4633 0.058\* H20C 0.6248 0.6051 0.3921 0.058\* C21 0.87705 (18) 0.12023 (16) 0.21626 (11) 0.0303 (4) H21A 0.8514 0.0509 0.2184 0.036\* H21B 0.9303 0.1054 0.2654 0.036\* H21C 0.9348 0.1318 0.1717 0.036\* C22 0.55248 (19) 0.12289 (15) 0.01110 (10) 0.0276 (4) H22A 0.6287 0.0447 0.0330 0.033\* H22B 0.5664 0.1557 −0.0442 0.033\* H22C 0.4624 0.1123 0.0147 0.033\* C23 0.42224 (18) 0.64788 (16) 0.17922 (11) 0.0312 (4) H23A 0.3823 0.5860 0.1995 0.037\* H23B 0.4933 0.6396 0.2182 0.037\* H23C 0.4658 0.6378 0.1301 0.037\* S1\' 0.62905 (4) 0.02186 (4) 0.35481 (2) 0.02269 (11) O1\' 0.32556 (14) 0.34116 (11) 0.45343 (7) 0.0364 (3) N1\' 0.86877 (15) −0.12792 (13) 0.44911 (8) 0.0268 (3) N2\' 0.81090 (15) −0.18076 (13) 0.34154 (9) 0.0273 (3) N3\' 0.21894 (15) 0.16941 (12) 0.14055 (8) 0.0236 (3) N4\' 0.39489 (14) 0.14313 (11) 0.23753 (8) 0.0188 (3) C1\' 0.80415 (18) 0.07463 (16) 0.46503 (10) 0.0269 (4) H1\' 0.8030 0.1065 0.4096 0.032\* C2\' 0.7700 (2) 0.15134 (17) 0.51301 (11) 0.0312 (4) H2\' 0.7424 0.2357 0.4895 0.037\* C3\' 0.7748 (2) 0.10854 (18) 0.59446 (11) 0.0336 (4) C4\' 0.8157 (2) −0.01508 (18) 0.62604 (11) 0.0324 (4) H4\' 0.8218 −0.0473 0.6816 0.039\* C5\' 0.84775 (19) −0.09272 (17) 0.57929 (10) 0.0279 (4) H5\' 0.8753 −0.1770 0.6030 0.033\* C6\' 0.84012 (17) −0.04864 (16) 0.49739 (10) 0.0250 (4) C7\' 0.78435 (17) −0.10428 (15) 0.38390 (10) 0.0237 (4) C8\' 0.70529 (18) −0.14324 (15) 0.28392 (10) 0.0259 (4) C9\' 0.59585 (17) −0.03712 (14) 0.28235 (9) 0.0212 (4) C10\' 0.46677 (17) 0.02952 (14) 0.23224 (9) 0.0204 (3) C11\' 0.41421 (19) −0.01837 (16) 0.18333 (10) 0.0269 (4) H11\' 0.4618 −0.0989 0.1807 0.032\* C12\' 0.29073 (19) 0.05571 (15) 0.13900 (10) 0.0270 (4) H12\' 0.2542 0.0242 0.1052 0.032\* C13\' 0.27571 (17) 0.20653 (14) 0.19190 (9) 0.0195 (3) C14\' 0.20829 (16) 0.38181 (14) 0.24965 (9) 0.0194 (3) C15\' 0.13941 (18) 0.50655 (15) 0.22759 (10) 0.0260 (4) H15\' 0.0979 0.5474 0.1755 0.031\* C16\' 0.1311 (2) 0.57126 (16) 0.28114 (12) 0.0328 (4) H16\' 0.0825 0.6563 0.2658 0.039\* C17\' 0.1926 (2) 0.51390 (16) 0.35649 (11) 0.0327 (4) H17\' 0.1850 0.5586 0.3935 0.039\* C18\' 0.26553 (18) 0.39037 (16) 0.37766 (10) 0.0251 (4) C19\' 0.27451 (17) 0.32300 (15) 0.32526 (9) 0.0210 (3) H19\' 0.3249 0.2382 0.3405 0.025\* C20\' 0.7379 (3) 0.1922 (2) 0.64597 (13) 0.0567 (7) H20D 0.6760 0.1704 0.6856 0.068\* H20E 0.6897 0.2754 0.6136 0.068\* H20F 0.8238 0.1856 0.6724 0.068\* C21\' 0.96868 (19) −0.25356 (16) 0.47869 (12) 0.0358 (5) H21D 0.9171 −0.3061 0.5006 0.043\* H21E 1.0339 −0.2588 0.5199 0.043\* H21F 1.0214 −0.2794 0.4353 0.043\* C22\' 0.7241 (2) −0.22037 (18) 0.22881 (12) 0.0422 (5) H22D 0.8231 −0.2735 0.2320 0.051\* H22E 0.6952 −0.1686 0.1747 0.051\* H22F 0.6664 −0.2693 0.2438 0.051\* C23\' 0.4145 (2) 0.21765 (16) 0.47661 (10) 0.0311 (4) H23D 0.3615 0.1684 0.4712 0.037\* H23E 0.4501 0.1951 0.5317 0.037\* H23F 0.4936 0.2039 0.4430 0.037\* N5 0.05080 (14) 0.68186 (12) −0.02343 (8) 0.0225 (3) H0 −0.0238 0.7215 −0.0569 0.036 (6)\* N5\' 0.19792 (14) 0.32157 (12) 0.19486 (8) 0.0212 (3) H0\' 0.1314 0.3641 0.1567 0.029 (5)\* ------- --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2062 .table-wrap} ------- -------------- ------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.01671 (19) 0.0193 (2) 0.0227 (2) −0.00196 (15) −0.00337 (16) −0.00978 (17) O1 0.0243 (6) 0.0262 (7) 0.0397 (7) −0.0040 (5) −0.0083 (6) −0.0170 (6) N1 0.0176 (7) 0.0247 (8) 0.0249 (7) 0.0006 (6) −0.0038 (6) −0.0121 (6) N2 0.0193 (7) 0.0222 (7) 0.0209 (7) −0.0032 (5) −0.0003 (6) −0.0090 (6) N3 0.0186 (7) 0.0256 (8) 0.0212 (7) −0.0033 (6) −0.0033 (6) −0.0094 (6) N4 0.0169 (6) 0.0182 (7) 0.0180 (7) −0.0034 (5) 0.0000 (5) −0.0067 (5) C1 0.0204 (8) 0.0272 (9) 0.0201 (8) −0.0070 (7) −0.0018 (7) −0.0053 (7) C2 0.0279 (9) 0.0303 (10) 0.0222 (9) −0.0042 (7) 0.0002 (7) −0.0076 (8) C3 0.0407 (11) 0.0258 (9) 0.0211 (9) −0.0085 (8) −0.0074 (8) −0.0065 (7) C4 0.0348 (10) 0.0340 (10) 0.0270 (9) −0.0183 (8) −0.0060 (8) −0.0056 (8) C5 0.0233 (9) 0.0352 (10) 0.0213 (9) −0.0132 (7) 0.0009 (7) −0.0059 (8) C6 0.0199 (8) 0.0206 (8) 0.0163 (8) −0.0041 (6) −0.0031 (6) −0.0036 (7) C7 0.0177 (8) 0.0201 (8) 0.0207 (8) −0.0041 (6) 0.0008 (6) −0.0052 (7) C8 0.0205 (8) 0.0204 (8) 0.0196 (8) −0.0053 (6) 0.0023 (6) −0.0084 (7) C9 0.0179 (8) 0.0200 (8) 0.0185 (8) −0.0054 (6) 0.0003 (6) −0.0084 (7) C10 0.0165 (7) 0.0203 (8) 0.0186 (8) −0.0055 (6) 0.0018 (6) −0.0071 (7) C11 0.0212 (8) 0.0255 (9) 0.0292 (9) −0.0010 (7) −0.0036 (7) −0.0160 (8) C12 0.0244 (9) 0.0309 (10) 0.0253 (9) −0.0064 (7) −0.0042 (7) −0.0141 (8) C13 0.0181 (8) 0.0217 (8) 0.0162 (8) −0.0061 (6) 0.0017 (6) −0.0054 (6) C14 0.0224 (8) 0.0186 (8) 0.0178 (8) −0.0044 (6) −0.0012 (7) −0.0064 (7) C15 0.0222 (9) 0.0257 (9) 0.0271 (9) 0.0008 (7) −0.0066 (7) −0.0099 (8) C16 0.0251 (9) 0.0278 (10) 0.0356 (10) 0.0027 (7) −0.0046 (8) −0.0160 (8) C17 0.0290 (9) 0.0237 (9) 0.0311 (10) −0.0038 (7) −0.0019 (8) −0.0162 (8) C18 0.0218 (8) 0.0205 (8) 0.0252 (9) −0.0073 (7) −0.0023 (7) −0.0064 (7) C19 0.0190 (8) 0.0201 (8) 0.0233 (8) −0.0041 (6) 0.0005 (7) −0.0081 (7) C20 0.0673 (16) 0.0416 (12) 0.0410 (12) −0.0169 (11) −0.0073 (11) −0.0226 (10) C21 0.0207 (9) 0.0302 (10) 0.0326 (10) 0.0022 (7) −0.0060 (8) −0.0126 (8) C22 0.0285 (9) 0.0221 (9) 0.0294 (9) −0.0019 (7) −0.0033 (8) −0.0130 (7) C23 0.0217 (9) 0.0282 (10) 0.0412 (11) −0.0024 (7) −0.0087 (8) −0.0139 (8) S1\' 0.0201 (2) 0.0222 (2) 0.0229 (2) −0.00219 (16) −0.00535 (17) −0.00906 (17) O1\' 0.0433 (8) 0.0365 (8) 0.0248 (7) −0.0039 (6) −0.0043 (6) −0.0159 (6) N1\' 0.0207 (7) 0.0268 (8) 0.0279 (8) −0.0031 (6) −0.0071 (6) −0.0064 (6) N2\' 0.0223 (7) 0.0244 (8) 0.0308 (8) −0.0016 (6) −0.0017 (6) −0.0104 (7) N3\' 0.0215 (7) 0.0252 (8) 0.0238 (7) −0.0068 (6) −0.0044 (6) −0.0081 (6) N4\' 0.0176 (7) 0.0187 (7) 0.0187 (7) −0.0053 (5) −0.0003 (5) −0.0049 (5) C1\' 0.0254 (9) 0.0333 (10) 0.0225 (9) −0.0136 (7) −0.0051 (7) −0.0040 (8) C2\' 0.0342 (10) 0.0330 (10) 0.0298 (10) −0.0180 (8) −0.0047 (8) −0.0057 (8) C3\' 0.0375 (11) 0.0421 (12) 0.0317 (10) −0.0235 (9) 0.0017 (8) −0.0145 (9) C4\' 0.0332 (10) 0.0455 (12) 0.0233 (9) −0.0225 (9) −0.0010 (8) −0.0057 (8) C5\' 0.0252 (9) 0.0315 (10) 0.0254 (9) −0.0137 (7) −0.0068 (7) −0.0001 (8) C6\' 0.0160 (8) 0.0310 (10) 0.0280 (9) −0.0091 (7) −0.0041 (7) −0.0071 (8) C7\' 0.0194 (8) 0.0235 (9) 0.0250 (9) −0.0052 (7) −0.0009 (7) −0.0052 (7) C8\' 0.0240 (9) 0.0236 (9) 0.0286 (9) −0.0041 (7) 0.0000 (7) −0.0112 (7) C9\' 0.0229 (8) 0.0195 (8) 0.0200 (8) −0.0057 (7) −0.0022 (7) −0.0062 (7) C10\' 0.0221 (8) 0.0208 (8) 0.0175 (8) −0.0072 (6) 0.0006 (7) −0.0050 (7) C11\' 0.0287 (9) 0.0236 (9) 0.0281 (9) −0.0069 (7) −0.0039 (8) −0.0101 (7) C12\' 0.0310 (10) 0.0288 (10) 0.0245 (9) −0.0114 (8) −0.0038 (8) −0.0114 (8) C13\' 0.0190 (8) 0.0224 (8) 0.0165 (8) −0.0081 (6) 0.0017 (6) −0.0043 (7) C14\' 0.0133 (7) 0.0231 (8) 0.0230 (8) −0.0077 (6) 0.0025 (6) −0.0070 (7) C15\' 0.0223 (9) 0.0244 (9) 0.0295 (9) −0.0076 (7) −0.0030 (7) −0.0057 (7) C16\' 0.0289 (10) 0.0208 (9) 0.0463 (12) −0.0051 (7) −0.0039 (9) −0.0105 (8) C17\' 0.0318 (10) 0.0302 (10) 0.0396 (11) −0.0071 (8) 0.0013 (9) −0.0213 (9) C18\' 0.0223 (8) 0.0304 (9) 0.0239 (9) −0.0086 (7) 0.0015 (7) −0.0114 (7) C19\' 0.0178 (8) 0.0220 (8) 0.0233 (8) −0.0063 (6) 0.0033 (7) −0.0082 (7) C20\' 0.091 (2) 0.0563 (15) 0.0408 (13) −0.0408 (14) 0.0134 (13) −0.0252 (11) C21\' 0.0256 (10) 0.0303 (10) 0.0405 (11) 0.0005 (8) −0.0110 (9) −0.0064 (9) C22\' 0.0319 (11) 0.0401 (12) 0.0520 (13) 0.0012 (9) −0.0059 (10) −0.0285 (10) C23\' 0.0325 (10) 0.0335 (10) 0.0235 (9) −0.0081 (8) −0.0051 (8) −0.0073 (8) N5 0.0193 (7) 0.0212 (7) 0.0225 (7) −0.0002 (6) −0.0070 (6) −0.0083 (6) N5\' 0.0179 (7) 0.0220 (7) 0.0209 (7) −0.0035 (5) −0.0043 (6) −0.0064 (6) ------- -------------- ------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3324 .table-wrap} ---------------------------- -------------- ------------------------------- -------------- S1---C7 1.7377 (16) S1\'---C7\' 1.7427 (17) S1---C9 1.7414 (16) O1\'---C18\' 1.372 (2) O1---C18 1.3739 (19) O1\'---C23\' 1.416 (2) O1---C23 1.4259 (19) N1\'---C7\' 1.366 (2) N1---C7 1.362 (2) N1\'---C6\' 1.416 (2) N1---C6 1.418 (2) N1\'---C21\' 1.474 (2) N1---C21 1.4709 (19) N2\'---C7\' 1.309 (2) N2---C7 1.314 (2) N2\'---C8\' 1.371 (2) N2---C8 1.365 (2) N3\'---C12\' 1.336 (2) N3---C12 1.330 (2) N3\'---C13\' 1.356 (2) N3---C13 1.352 (2) N4\'---C13\' 1.336 (2) N4---C13 1.3362 (19) N4\'---C10\' 1.356 (2) N4---C10 1.3563 (19) C1\'---C2\' 1.385 (2) C1---C2 1.380 (2) C1\'---C6\' 1.388 (2) C1---C6 1.391 (2) C1\'---H1\' 0.9500 C1---H1 0.9500 C2\'---C3\' 1.389 (3) C2---C3 1.387 (3) C2\'---H2\' 0.9500 C2---H2 0.9500 C3\'---C4\' 1.385 (3) C3---C4 1.391 (3) C3\'---C20\' 1.499 (3) C3---C20 1.513 (2) C4\'---C5\' 1.377 (3) C4---C5 1.382 (2) C4\'---H4\' 0.9500 C4---H4 0.9500 C5\'---C6\' 1.395 (2) C5---C6 1.393 (2) C5\'---H5\' 0.9500 C5---H5 0.9500 C8\'---C9\' 1.374 (2) C8---C9 1.381 (2) C8\'---C22\' 1.502 (2) C8---C22 1.503 (2) C9\'---C10\' 1.450 (2) C9---C10 1.448 (2) C10\'---C11\' 1.393 (2) C10---C11 1.396 (2) C11\'---C12\' 1.374 (2) C11---C12 1.372 (2) C11\'---H11\' 0.9500 C11---H11 0.9500 C12\'---H12\' 0.9500 C12---H12 0.9500 C13\'---N5\' 1.369 (2) C13---N5 1.370 (2) C14\'---C15\' 1.390 (2) C14---C19 1.395 (2) C14\'---C19\' 1.396 (2) C14---N5 1.398 (2) C14\'---N5\' 1.402 (2) C14---C15 1.404 (2) C15\'---C16\' 1.380 (2) C15---C16 1.379 (2) C15\'---H15\' 0.9500 C15---H15 0.9500 C16\'---C17\' 1.376 (3) C16---C17 1.381 (2) C16\'---H16\' 0.9500 C16---H16 0.9500 C17\'---C18\' 1.383 (2) C17---C18 1.387 (2) C17\'---H17\' 0.9500 C17---H17 0.9500 C18\'---C19\' 1.386 (2) C18---C19 1.388 (2) C19\'---H19\' 0.9500 C19---H19 0.9500 C20\'---H20D 0.9800 C20---H20A 0.9800 C20\'---H20E 0.9800 C20---H20B 0.9800 C20\'---H20F 0.9800 C20---H20C 0.9800 C21\'---H21D 0.9800 C21---H21A 0.9800 C21\'---H21E 0.9800 C21---H21B 0.9800 C21\'---H21F 0.9800 C21---H21C 0.9800 C22\'---H22D 0.9800 C22---H22A 0.9800 C22\'---H22E 0.9800 C22---H22B 0.9800 C22\'---H22F 0.9800 C22---H22C 0.9800 C23\'---H23D 0.9800 C23---H23A 0.9800 C23\'---H23E 0.9800 C23---H23B 0.9800 C23\'---H23F 0.9800 C23---H23C 0.9800 N5---H0 0.8800 S1\'---C9\' 1.7367 (16) N5\'---H0\' 0.8800 C7---S1---C9 88.64 (8) C7\'---N1\'---C21\' 115.57 (15) C18---O1---C23 116.99 (13) C6\'---N1\'---C21\' 119.97 (14) C7---N1---C6 124.09 (13) C7\'---N2\'---C8\' 110.83 (14) C7---N1---C21 116.77 (14) C12\'---N3\'---C13\' 114.45 (14) C6---N1---C21 119.14 (13) C13\'---N4\'---C10\' 116.72 (14) C7---N2---C8 110.62 (13) C2\'---C1\'---C6\' 120.40 (16) C12---N3---C13 114.57 (13) C2\'---C1\'---H1\' 119.8 C13---N4---C10 117.02 (14) C6\'---C1\'---H1\' 119.8 C2---C1---C6 119.79 (17) C1\'---C2\'---C3\' 121.91 (18) C2---C1---H1 120.1 C1\'---C2\'---H2\' 119.0 C6---C1---H1 120.1 C3\'---C2\'---H2\' 119.0 C1---C2---C3 122.08 (17) C4\'---C3\'---C2\' 116.98 (18) C1---C2---H2 119.0 C4\'---C3\'---C20\' 121.47 (18) C3---C2---H2 119.0 C2\'---C3\'---C20\' 121.55 (18) C2---C3---C4 117.55 (17) C5\'---C4\'---C3\' 122.02 (17) C2---C3---C20 121.09 (19) C5\'---C4\'---H4\' 119.0 C4---C3---C20 121.34 (19) C3\'---C4\'---H4\' 119.0 C5---C4---C3 121.29 (17) C4\'---C5\'---C6\' 120.58 (17) C5---C4---H4 119.4 C4\'---C5\'---H5\' 119.7 C3---C4---H4 119.4 C6\'---C5\'---H5\' 119.7 C4---C5---C6 120.32 (17) C1\'---C6\'---C5\' 118.04 (16) C4---C5---H5 119.8 C1\'---C6\'---N1\' 121.29 (15) C6---C5---H5 119.8 C5\'---C6\'---N1\' 120.66 (16) C1---C6---C5 118.96 (16) N2\'---C7\'---N1\' 121.33 (15) C1---C6---N1 121.09 (15) N2\'---C7\'---S1\' 115.06 (12) C5---C6---N1 119.88 (15) N1\'---C7\'---S1\' 123.46 (13) N2---C7---N1 121.04 (14) N2\'---C8\'---C9\' 115.64 (15) N2---C7---S1 115.41 (12) N2\'---C8\'---C22\' 116.69 (15) N1---C7---S1 123.51 (13) C9\'---C8\'---C22\' 127.65 (16) N2---C8---C9 115.91 (14) C8\'---C9\'---C10\' 131.90 (15) N2---C8---C22 115.90 (14) C8\'---C9\'---S1\' 109.75 (12) C9---C8---C22 128.19 (15) C10\'---C9\'---S1\' 118.34 (12) C8---C9---C10 131.61 (15) N4\'---C10\'---C11\' 120.66 (14) C8---C9---S1 109.42 (12) N4\'---C10\'---C9\' 115.53 (14) C10---C9---S1 118.95 (12) C11\'---C10\'---C9\' 123.78 (15) N4---C10---C11 120.22 (14) C12\'---C11\'---C10\' 117.26 (16) N4---C10---C9 116.07 (14) C12\'---C11\'---H11\' 121.4 C11---C10---C9 123.70 (14) C10\'---C11\'---H11\' 121.4 C12---C11---C10 117.24 (15) N3\'---C12\'---C11\' 123.97 (16) C12---C11---H11 121.4 N3\'---C12\'---H12\' 118.0 C10---C11---H11 121.4 C11\'---C12\'---H12\' 118.0 N3---C12---C11 124.25 (15) N4\'---C13\'---N3\' 126.86 (15) N3---C12---H12 117.9 N4\'---C13\'---N5\' 119.53 (14) C11---C12---H12 117.9 N3\'---C13\'---N5\' 113.61 (14) N4---C13---N3 126.68 (14) C15\'---C14\'---C19\' 119.57 (15) N4---C13---N5 120.21 (14) C15\'---C14\'---N5\' 116.54 (14) N3---C13---N5 113.11 (13) C19\'---C14\'---N5\' 123.74 (14) C19---C14---N5 124.14 (14) C16\'---C15\'---C14\' 120.21 (16) C19---C14---C15 119.27 (15) C16\'---C15\'---H15\' 119.9 N5---C14---C15 116.57 (14) C14\'---C15\'---H15\' 119.9 C16---C15---C14 120.50 (16) C17\'---C16\'---C15\' 120.70 (17) C16---C15---H15 119.7 C17\'---C16\'---H16\' 119.6 C14---C15---H15 119.7 C15\'---C16\'---H16\' 119.6 C15---C16---C17 120.48 (16) C16\'---C17\'---C18\' 119.15 (17) C15---C16---H16 119.8 C16\'---C17\'---H17\' 120.4 C17---C16---H16 119.8 C18\'---C17\'---H17\' 120.4 C16---C17---C18 119.04 (16) O1\'---C18\'---C17\' 115.16 (15) C16---C17---H17 120.5 O1\'---C18\'---C19\' 123.49 (15) C18---C17---H17 120.5 C17\'---C18\'---C19\' 121.34 (16) O1---C18---C17 115.16 (15) C18\'---C19\'---C14\' 118.95 (15) O1---C18---C19 123.15 (14) C18\'---C19\'---H19\' 120.5 C17---C18---C19 121.68 (15) C14\'---C19\'---H19\' 120.5 C18---C19---C14 118.98 (15) C3\'---C20\'---H20D 109.5 C18---C19---H19 120.5 C3\'---C20\'---H20E 109.5 C14---C19---H19 120.5 H20D---C20\'---H20E 109.5 C3---C20---H20A 109.5 C3\'---C20\'---H20F 109.5 C3---C20---H20B 109.5 H20D---C20\'---H20F 109.5 H20A---C20---H20B 109.5 H20E---C20\'---H20F 109.5 C3---C20---H20C 109.5 N1\'---C21\'---H21D 109.5 H20A---C20---H20C 109.5 N1\'---C21\'---H21E 109.5 H20B---C20---H20C 109.5 H21D---C21\'---H21E 109.5 N1---C21---H21A 109.5 N1\'---C21\'---H21F 109.5 N1---C21---H21B 109.5 H21D---C21\'---H21F 109.5 H21A---C21---H21B 109.5 H21E---C21\'---H21F 109.5 N1---C21---H21C 109.5 C8\'---C22\'---H22D 109.5 H21A---C21---H21C 109.5 C8\'---C22\'---H22E 109.5 H21B---C21---H21C 109.5 H22D---C22\'---H22E 109.5 C8---C22---H22A 109.5 C8\'---C22\'---H22F 109.5 C8---C22---H22B 109.5 H22D---C22\'---H22F 109.5 H22A---C22---H22B 109.5 H22E---C22\'---H22F 109.5 C8---C22---H22C 109.5 O1\'---C23\'---H23D 109.5 H22A---C22---H22C 109.5 O1\'---C23\'---H23E 109.5 H22B---C22---H22C 109.5 H23D---C23\'---H23E 109.5 O1---C23---H23A 109.5 O1\'---C23\'---H23F 109.5 O1---C23---H23B 109.5 H23D---C23\'---H23F 109.5 H23A---C23---H23B 109.5 H23E---C23\'---H23F 109.5 O1---C23---H23C 109.5 C13---N5---C14 131.15 (13) H23A---C23---H23C 109.5 C13---N5---H0 114.4 H23B---C23---H23C 109.5 C14---N5---H0 114.4 C9\'---S1\'---C7\' 88.66 (8) C13\'---N5\'---C14\' 129.69 (13) C18\'---O1\'---C23\' 118.32 (13) C13\'---N5\'---H0\' 115.2 C7\'---N1\'---C6\' 122.53 (14) C14\'---N5\'---H0\' 115.2 C6---C1---C2---C3 −0.4 (3) C20\'---C3\'---C4\'---C5\' 178.9 (2) C1---C2---C3---C4 −0.5 (3) C3\'---C4\'---C5\'---C6\' 0.1 (3) C1---C2---C3---C20 −178.81 (17) C2\'---C1\'---C6\'---C5\' −3.3 (3) C2---C3---C4---C5 1.0 (3) C2\'---C1\'---C6\'---N1\' 176.88 (16) C20---C3---C4---C5 179.31 (17) C4\'---C5\'---C6\'---C1\' 2.2 (3) C3---C4---C5---C6 −0.6 (3) C4\'---C5\'---C6\'---N1\' −178.01 (16) C2---C1---C6---C5 0.8 (2) C7\'---N1\'---C6\'---C1\' −46.7 (3) C2---C1---C6---N1 177.79 (14) C21\'---N1\'---C6\'---C1\' 149.80 (17) C4---C5---C6---C1 −0.3 (2) C7\'---N1\'---C6\'---C5\' 133.47 (18) C4---C5---C6---N1 −177.33 (15) C21\'---N1\'---C6\'---C5\' −30.0 (2) C7---N1---C6---C1 48.2 (2) C8\'---N2\'---C7\'---N1\' 174.26 (16) C21---N1---C6---C1 −131.79 (17) C8\'---N2\'---C7\'---S1\' −1.4 (2) C7---N1---C6---C5 −134.82 (18) C6\'---N1\'---C7\'---N2\' −177.96 (16) C21---N1---C6---C5 45.2 (2) C21\'---N1\'---C7\'---N2\' −13.8 (3) C8---N2---C7---N1 −178.21 (15) C6\'---N1\'---C7\'---S1\' −2.7 (3) C8---N2---C7---S1 −0.28 (19) C21\'---N1\'---C7\'---S1\' 161.47 (14) C6---N1---C7---N2 −172.95 (15) C9\'---S1\'---C7\'---N2\' 2.15 (15) C21---N1---C7---N2 7.1 (2) C9\'---S1\'---C7\'---N1\' −173.40 (17) C6---N1---C7---S1 9.3 (2) C7\'---N2\'---C8\'---C9\' −0.5 (2) C21---N1---C7---S1 −170.69 (13) C7\'---N2\'---C8\'---C22\' 177.95 (17) C9---S1---C7---N2 0.00 (14) N2\'---C8\'---C9\'---C10\' −178.95 (18) C9---S1---C7---N1 177.87 (16) C22\'---C8\'---C9\'---C10\' 2.9 (3) C7---N2---C8---C9 0.5 (2) N2\'---C8\'---C9\'---S1\' 2.0 (2) C7---N2---C8---C22 −178.81 (15) C22\'---C8\'---C9\'---S1\' −176.16 (17) N2---C8---C9---C10 −178.73 (17) C7\'---S1\'---C9\'---C8\' −2.23 (14) C22---C8---C9---C10 0.5 (3) C7\'---S1\'---C9\'---C10\' 178.60 (15) N2---C8---C9---S1 −0.52 (19) C13\'---N4\'---C10\'---C11\' −2.3 (2) C22---C8---C9---S1 178.71 (15) C13\'---N4\'---C10\'---C9\' 179.90 (15) C7---S1---C9---C8 0.28 (13) C8\'---C9\'---C10\'---N4\' −167.75 (18) C7---S1---C9---C10 178.75 (14) S1\'---C9\'---C10\'---N4\' 11.2 (2) C13---N4---C10---C11 0.7 (2) C8\'---C9\'---C10\'---C11\' 14.5 (3) C13---N4---C10---C9 −179.93 (15) S1\'---C9\'---C10\'---C11\' −166.56 (14) C8---C9---C10---N4 177.00 (17) N4\'---C10\'---C11\'---C12\' 2.5 (3) S1---C9---C10---N4 −1.1 (2) C9\'---C10\'---C11\'---C12\' −179.83 (17) C8---C9---C10---C11 −3.7 (3) C13\'---N3\'---C12\'---C11\' −1.8 (3) S1---C9---C10---C11 178.22 (14) C10\'---C11\'---C12\'---N3\' −0.4 (3) N4---C10---C11---C12 −1.0 (3) C10\'---N4\'---C13\'---N3\' −0.2 (3) C9---C10---C11---C12 179.69 (17) C10\'---N4\'---C13\'---N5\' 179.63 (15) C13---N3---C12---C11 1.3 (3) C12\'---N3\'---C13\'---N4\' 2.2 (3) C10---C11---C12---N3 −0.1 (3) C12\'---N3\'---C13\'---N5\' −177.63 (15) C10---N4---C13---N3 0.7 (3) C19\'---C14\'---C15\'---C16\' −2.9 (3) C10---N4---C13---N5 −179.70 (15) N5\'---C14\'---C15\'---C16\' 172.79 (16) C12---N3---C13---N4 −1.7 (3) C14\'---C15\'---C16\'---C17\' 1.1 (3) C12---N3---C13---N5 178.67 (15) C15\'---C16\'---C17\'---C18\' 1.3 (3) C19---C14---C15---C16 0.9 (3) C23\'---O1\'---C18\'---C17\' −173.22 (17) N5---C14---C15---C16 −178.00 (16) C23\'---O1\'---C18\'---C19\' 7.4 (3) C14---C15---C16---C17 −1.7 (3) C16\'---C17\'---C18\'---O1\' 178.81 (18) C15---C16---C17---C18 0.5 (3) C16\'---C17\'---C18\'---C19\' −1.8 (3) C23---O1---C18---C17 158.88 (17) O1\'---C18\'---C19\'---C14\' 179.33 (16) C23---O1---C18---C19 −22.2 (2) C17\'---C18\'---C19\'---C14\' 0.0 (3) C16---C17---C18---O1 −179.50 (16) C15\'---C14\'---C19\'---C18\' 2.3 (2) C16---C17---C18---C19 1.5 (3) N5\'---C14\'---C19\'---C18\' −173.03 (15) O1---C18---C19---C14 178.81 (15) N4---C13---N5---C14 −2.6 (3) C17---C18---C19---C14 −2.3 (3) N3---C13---N5---C14 177.09 (16) N5---C14---C19---C18 179.88 (15) C19---C14---N5---C13 20.4 (3) C15---C14---C19---C18 1.1 (3) C15---C14---N5---C13 −160.71 (17) C6\'---C1\'---C2\'---C3\' 2.3 (3) N4\'---C13\'---N5\'---C14\' −12.8 (3) C1\'---C2\'---C3\'---C4\' 0.0 (3) N3\'---C13\'---N5\'---C14\' 167.01 (16) C1\'---C2\'---C3\'---C20\' 179.9 (2) C15\'---C14\'---N5\'---C13\' 164.55 (17) C2\'---C3\'---C4\'---C5\' −1.2 (3) C19\'---C14\'---N5\'---C13\' −20.0 (3) ---------------------------- -------------- ------------------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5355 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N5---H0···N3\'^i^ 0.88 2.27 3.151 (2) 177 N5\'---H0\'···N3^i^ 0.88 2.24 3.089 (2) 164 C22---H22B···O1^ii^ 0.98 2.57 3.500 (2) 159 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) −*x*+1, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- N5---H0⋯N3′^i^ 0.88 2.27 3.151 (2) 177 N5′---H0′⋯N3^i^ 0.88 2.24 3.089 (2) 164 C22---H22*B*⋯O1^ii^ 0.98 2.57 3.500 (2) 159 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.690302
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051738/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o261", "authors": [ { "first": "Hai-Bo", "last": "Shi" }, { "first": "Hai-Bo", "last": "Li" }, { "first": "Wei-Xiao", "last": "Hu" } ] }
PMC3051739
Related literature {#sec1} ================== For background to quinolines and their microbial activity, see: Roth & Fenner (2000[@bb8]); Miller *et al.* (1999[@bb7]); Hirota *et al.* (2002[@bb5]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For a related structure, see: Loh *et al.* (2011[@bb6]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~17~N~5~*M* *~r~* = 255.33Triclinic,*a* = 5.4735 (2) Å*b* = 9.1275 (3) Å*c* = 13.3814 (5) Åα = 98.076 (1)°β = 101.787 (1)°γ = 96.269 (1)°*V* = 641.35 (4) Å^3^*Z* = 2Mo *K*α radiationμ = 0.08 mm^−1^*T* = 100 K0.68 × 0.42 × 0.09 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.945, *T* ~max~ = 0.99220646 measured reflections5797 independent reflections4836 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.023 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.137*S* = 1.125797 reflections240 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.53 e Å^−3^Δρ~min~ = −0.32 e Å^−3^ {#d5e489} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001553/is2657sup1.cif](http://dx.doi.org/10.1107/S1600536811001553/is2657sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001553/is2657Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001553/is2657Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2657&file=is2657sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2657sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2657&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2657](http://scripts.iucr.org/cgi-bin/sendsup?is2657)). HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. Comment ======= The quinoline scaffold is present in many classes of biologically active compounds (Roth & Fenner, 2000), as for example, in 1*H*-imidazo-\[4,5-*c*\]quinolines that induce IFN, as well as other cytokines, in mice, rats, guinea pigs, monkeys and humans (Miller *et al.*, 1999). This initiated the syntheses of a series of compounds with differing substitution at N-1, C-2, C-4 and on substitution on the benzene ring. Phenoxymethyl and benzyl groups at C-2 increase the activity. All other C-4 substituents investigated fail to induce IFN production. This investigation encouraged us to substitute C-4 by- NHNH~2~ in continuation of our research to explore novel series of immune response modifiers in an effort to find small molecules that treat diseases involving the immune system (Hirota *et al.*, 2002). In the title compound (Fig. 1), the 1*H*-imidazo\[4,5-*c*\]quinoline ring (C1--C6/N1/C7/C8/N3/C10/N2/C9) is approximately planar with a maximum deviation of 0.0325 (7) Å at atom C1. The torsion angle formed between this ring system and the isobutyl moiety, C10--N2--C11--C12, is 101.17 (8)°. Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to the related structure (Loh *et al.*, 2011). In the crystal packing (Fig. 2), intermolecular N4---H1N4···N3 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers and generate *R*~2~^2^(10) ring motifs (Bernstein *et al.*, 1995). These dimers are further connected into chains down the *b* axis *via* intermolecular C5---H5···N5 hydrogen bonds (Table 1), resulting in *R*~2~^2^(14) ring motifs (Bernstein *et al.*, 1995). Experimental {#experimental} ============ 4-Chloro-1-(2-methylpropyl)-1*H*-imidazo\[4,5-*c*\]quinolone (10 g, 0.0385 mole) and hydrazine-hydrate (80%, 19.3 g, 0.385 mole) in ethanol was refluxed for 9 h during which white solids separated out. After cooling to room temperature, the resulting 4-hydrazinyl-1-(2-methylpropyl)-1*H*-imidazo\[4,5-*c*\]quinoline was filtered off, dried and crystallized from ethanol. Yield, 7.4 g (74%). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation. Refinement {#refinement} ========== All H atoms were located from difference Fourier map and were refined freely \[N---H = 0.883 (15) to 0.909 (14) Å; C---H = 0.978 (13) to 1.037 (12) Å\]. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. ::: ![](e-67-0o406-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, showing the chains along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. ::: ![](e-67-0o406-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e168 .table-wrap} ----------------------- --------------------------------------- C~14~H~17~N~5~ *Z* = 2 *M~r~* = 255.33 *F*(000) = 272 Triclinic, *P*1 *D*~x~ = 1.322 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.4735 (2) Å Cell parameters from 9851 reflections *b* = 9.1275 (3) Å θ = 2.5--35.6° *c* = 13.3814 (5) Å µ = 0.08 mm^−1^ α = 98.076 (1)° *T* = 100 K β = 101.787 (1)° Plate, yellow γ = 96.269 (1)° 0.68 × 0.42 × 0.09 mm *V* = 641.35 (4) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e301 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII DUO CCD area-detector diffractometer 5797 independent reflections Radiation source: fine-focus sealed tube 4836 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.023 φ and ω scans θ~max~ = 35.6°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −8→8 *T*~min~ = 0.945, *T*~max~ = 0.992 *k* = −14→14 20646 measured reflections *l* = −21→21 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e418 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.137 H atoms treated by a mixture of independent and constrained refinement *S* = 1.12 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0821*P*)^2^ + 0.0687*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5797 reflections (Δ/σ)~max~ = 0.001 240 parameters Δρ~max~ = 0.53 e Å^−3^ 0 restraints Δρ~min~ = −0.32 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e575 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e680 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N3 0.66263 (12) 0.41343 (6) 0.40530 (5) 0.01739 (12) N2 0.83913 (11) 0.28950 (6) 0.28779 (4) 0.01494 (11) N1 0.29129 (11) 0.04458 (6) 0.39588 (4) 0.01382 (11) N4 0.27467 (12) 0.27155 (7) 0.49606 (5) 0.01719 (12) N5 0.09896 (12) 0.21044 (7) 0.54799 (5) 0.01683 (11) C9 0.66447 (12) 0.18519 (7) 0.31040 (5) 0.01294 (11) C1 0.58776 (12) 0.02794 (7) 0.27674 (5) 0.01284 (11) C2 0.68633 (13) −0.06582 (7) 0.20610 (5) 0.01545 (12) C3 0.60210 (14) −0.21733 (7) 0.18278 (5) 0.01727 (13) C4 0.41445 (14) −0.27919 (7) 0.22854 (6) 0.01769 (13) C5 0.31322 (13) −0.19005 (7) 0.29698 (5) 0.01611 (12) C6 0.39780 (12) −0.03437 (7) 0.32402 (5) 0.01301 (11) C7 0.37122 (12) 0.18938 (7) 0.42576 (5) 0.01334 (11) C8 0.55945 (13) 0.26428 (7) 0.38309 (5) 0.01385 (11) C10 0.82902 (15) 0.42279 (7) 0.34703 (5) 0.01813 (13) C11 1.00391 (12) 0.26889 (7) 0.21544 (5) 0.01498 (12) C12 0.86854 (13) 0.26095 (7) 0.10230 (5) 0.01536 (12) C13 1.04956 (16) 0.22187 (9) 0.03277 (6) 0.02337 (15) C14 0.77216 (15) 0.40809 (8) 0.08500 (6) 0.02100 (14) H12 0.714 (2) 0.1783 (13) 0.0858 (9) 0.022 (3)\* H5 0.188 (2) −0.2330 (14) 0.3351 (9) 0.023 (3)\* H11A 1.082 (2) 0.1765 (14) 0.2249 (9) 0.021 (3)\* H11B 1.135 (2) 0.3583 (12) 0.2340 (8) 0.016 (2)\* H3 0.684 (3) −0.2852 (15) 0.1362 (10) 0.030 (3)\* H14A 0.647 (2) 0.4297 (15) 0.1284 (10) 0.028 (3)\* H2 0.824 (3) −0.0234 (15) 0.1744 (10) 0.028 (3)\* H14B 0.684 (2) 0.4015 (15) 0.0128 (10) 0.027 (3)\* H13A 1.198 (3) 0.3048 (16) 0.0476 (10) 0.035 (3)\* H13B 0.967 (3) 0.2083 (16) −0.0425 (11) 0.042 (4)\* H14C 0.914 (3) 0.4902 (15) 0.1002 (10) 0.027 (3)\* H2N5 −0.034 (3) 0.1553 (16) 0.5007 (11) 0.034 (3)\* H1N5 0.168 (2) 0.1427 (14) 0.5847 (9) 0.026 (3)\* H4 0.351 (3) −0.3897 (15) 0.2119 (11) 0.033 (3)\* H1N4 0.338 (3) 0.3668 (17) 0.5163 (11) 0.039 (4)\* H10 0.947 (2) 0.5153 (13) 0.3482 (9) 0.023 (3)\* H13C 1.111 (3) 0.1258 (16) 0.0456 (11) 0.036 (3)\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1173 .table-wrap} ----- ------------ ------------ ------------ --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N3 0.0241 (3) 0.0107 (2) 0.0180 (2) −0.00015 (19) 0.0094 (2) −0.00037 (18) N2 0.0186 (2) 0.0106 (2) 0.0163 (2) −0.00019 (17) 0.00804 (18) 0.00044 (17) N1 0.0166 (2) 0.0107 (2) 0.0146 (2) 0.00162 (17) 0.00618 (18) −0.00006 (16) N4 0.0236 (3) 0.0116 (2) 0.0184 (2) 0.00107 (19) 0.0123 (2) −0.00060 (18) N5 0.0190 (3) 0.0158 (2) 0.0174 (2) 0.00174 (19) 0.00878 (19) 0.00190 (18) C9 0.0160 (3) 0.0101 (2) 0.0132 (2) 0.00083 (19) 0.00551 (19) 0.00118 (17) C1 0.0152 (3) 0.0103 (2) 0.0134 (2) 0.00142 (18) 0.00501 (19) 0.00076 (18) C2 0.0191 (3) 0.0117 (2) 0.0168 (3) 0.0018 (2) 0.0085 (2) 0.00019 (19) C3 0.0211 (3) 0.0121 (2) 0.0196 (3) 0.0017 (2) 0.0096 (2) −0.0009 (2) C4 0.0209 (3) 0.0107 (2) 0.0215 (3) 0.0000 (2) 0.0091 (2) −0.0015 (2) C5 0.0180 (3) 0.0112 (2) 0.0195 (3) −0.0001 (2) 0.0082 (2) −0.0001 (2) C6 0.0145 (2) 0.0109 (2) 0.0140 (2) 0.00148 (18) 0.00531 (19) 0.00056 (18) C7 0.0164 (3) 0.0112 (2) 0.0131 (2) 0.00201 (19) 0.00547 (19) 0.00073 (18) C8 0.0180 (3) 0.0106 (2) 0.0135 (2) 0.00126 (19) 0.00616 (19) 0.00052 (18) C10 0.0244 (3) 0.0108 (2) 0.0195 (3) −0.0011 (2) 0.0096 (2) −0.0006 (2) C11 0.0157 (3) 0.0136 (2) 0.0166 (2) 0.0008 (2) 0.0067 (2) 0.00201 (19) C12 0.0174 (3) 0.0133 (2) 0.0162 (2) 0.0012 (2) 0.0064 (2) 0.00193 (19) C13 0.0275 (4) 0.0252 (3) 0.0210 (3) 0.0058 (3) 0.0129 (3) 0.0032 (2) C14 0.0244 (3) 0.0170 (3) 0.0226 (3) 0.0049 (2) 0.0055 (2) 0.0048 (2) ----- ------------ ------------ ------------ --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1526 .table-wrap} -------------------- ------------- ---------------------- ------------- N3---C10 1.3179 (9) C3---H3 1.020 (13) N3---C8 1.3821 (8) C4---C5 1.3798 (9) N2---C10 1.3687 (9) C4---H4 1.008 (14) N2---C9 1.3828 (8) C5---C6 1.4170 (9) N2---C11 1.4590 (9) C5---H5 1.011 (12) N1---C7 1.3236 (8) C7---C8 1.4322 (9) N1---C6 1.3820 (8) C10---H10 1.002 (12) N4---C7 1.3484 (8) C11---C12 1.5315 (9) N4---N5 1.4085 (9) C11---H11A 0.999 (12) N4---H1N4 0.883 (15) C11---H11B 0.993 (11) N5---H2N5 0.909 (14) C12---C14 1.5258 (10) N5---H1N5 0.909 (13) C12---C13 1.5282 (10) C9---C8 1.3854 (9) C12---H12 1.037 (12) C9---C1 1.4314 (9) C13---H13A 1.014 (14) C1---C2 1.4138 (9) C13---H13B 1.000 (14) C1---C6 1.4302 (9) C13---H13C 0.998 (14) C2---C3 1.3795 (9) C14---H14A 1.001 (13) C2---H2 1.008 (14) C14---H14B 0.978 (13) C3---C4 1.4058 (10) C14---H14C 0.985 (14) C10---N3---C8 103.93 (5) N1---C7---C8 121.10 (6) C10---N2---C9 106.32 (6) N4---C7---C8 117.90 (6) C10---N2---C11 124.73 (6) N3---C8---C9 111.27 (6) C9---N2---C11 128.95 (5) N3---C8---C7 128.47 (6) C7---N1---C6 118.55 (6) C9---C8---C7 120.25 (6) C7---N4---N5 123.58 (6) N3---C10---N2 113.44 (6) C7---N4---H1N4 118.2 (10) N3---C10---H10 124.7 (7) N5---N4---H1N4 117.8 (10) N2---C10---H10 121.7 (7) N4---N5---H2N5 109.3 (9) N2---C11---C12 113.35 (6) N4---N5---H1N5 109.3 (8) N2---C11---H11A 108.6 (7) H2N5---N5---H1N5 104.1 (12) C12---C11---H11A 110.6 (7) N2---C9---C8 105.04 (5) N2---C11---H11B 106.1 (6) N2---C9---C1 134.08 (6) C12---C11---H11B 107.6 (6) C8---C9---C1 120.87 (6) H11A---C11---H11B 110.5 (9) C2---C1---C6 119.84 (6) C14---C12---C13 111.16 (6) C2---C1---C9 126.25 (6) C14---C12---C11 110.90 (5) C6---C1---C9 113.89 (6) C13---C12---C11 108.94 (6) C3---C2---C1 120.58 (6) C14---C12---H12 107.7 (6) C3---C2---H2 119.1 (7) C13---C12---H12 110.1 (7) C1---C2---H2 120.3 (7) C11---C12---H12 108.0 (6) C2---C3---C4 119.88 (6) C12---C13---H13A 109.6 (8) C2---C3---H3 120.0 (8) C12---C13---H13B 112.4 (9) C4---C3---H3 120.0 (8) H13A---C13---H13B 108.1 (11) C5---C4---C3 120.75 (6) C12---C13---H13C 109.9 (8) C5---C4---H4 118.6 (8) H13A---C13---H13C 109.8 (12) C3---C4---H4 120.6 (8) H13B---C13---H13C 106.9 (12) C4---C5---C6 120.97 (6) C12---C14---H14A 110.3 (7) C4---C5---H5 122.2 (7) C12---C14---H14B 110.4 (8) C6---C5---H5 116.6 (7) H14A---C14---H14B 106.7 (10) N1---C6---C5 116.69 (6) C12---C14---H14C 110.4 (8) N1---C6---C1 125.32 (6) H14A---C14---H14C 111.1 (11) C5---C6---C1 117.98 (6) H14B---C14---H14C 107.9 (11) N1---C7---N4 120.99 (6) C10---N2---C9---C8 −0.05 (7) C6---N1---C7---N4 −179.65 (6) C11---N2---C9---C8 −179.38 (6) C6---N1---C7---C8 1.52 (10) C10---N2---C9---C1 −178.69 (7) N5---N4---C7---N1 4.70 (11) C11---N2---C9---C1 1.98 (12) N5---N4---C7---C8 −176.43 (6) N2---C9---C1---C2 0.80 (12) C10---N3---C8---C9 −0.50 (8) C8---C9---C1---C2 −177.67 (6) C10---N3---C8---C7 178.70 (7) N2---C9---C1---C6 178.97 (7) N2---C9---C8---N3 0.34 (8) C8---C9---C1---C6 0.50 (9) C1---C9---C8---N3 179.20 (6) C6---C1---C2---C3 −0.43 (10) N2---C9---C8---C7 −178.94 (6) C9---C1---C2---C3 177.64 (6) C1---C9---C8---C7 −0.07 (10) C1---C2---C3---C4 0.77 (11) N1---C7---C8---N3 179.87 (6) C2---C3---C4---C5 −0.14 (11) N4---C7---C8---N3 1.00 (11) C3---C4---C5---C6 −0.84 (11) N1---C7---C8---C9 −0.99 (10) C7---N1---C6---C5 177.81 (6) N4---C7---C8---C9 −179.86 (6) C7---N1---C6---C1 −1.08 (10) C8---N3---C10---N2 0.48 (8) C4---C5---C6---N1 −177.81 (6) C9---N2---C10---N3 −0.28 (8) C4---C5---C6---C1 1.16 (10) C11---N2---C10---N3 179.09 (6) C2---C1---C6---N1 178.35 (6) C10---N2---C11---C12 −101.17 (8) C9---C1---C6---N1 0.05 (10) C9---N2---C11---C12 78.06 (8) C2---C1---C6---C5 −0.52 (10) N2---C11---C12---C14 63.65 (7) C9---C1---C6---C5 −178.82 (6) N2---C11---C12---C13 −173.69 (6) -------------------- ------------- ---------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2255 .table-wrap} ------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N4---H1N4···N3^i^ 0.883 (16) 2.130 (15) 2.9429 (9) 152.9 (15) C5---H5···N5^ii^ 1.012 (12) 2.437 (11) 3.3700 (10) 152.9 (10) ------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*, −*y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ------------ ------------ ------------- ------------- N4---H1*N*4⋯N3^i^ 0.883 (16) 2.130 (15) 2.9429 (9) 152.9 (15) C5---H5⋯N5^ii^ 1.012 (12) 2.437 (11) 3.3700 (10) 152.9 (10) Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: C-7581-2009. [^2]: § Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:16.700167
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051739/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o406", "authors": [ { "first": "Wan-Sin", "last": "Loh" }, { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Reshma", "last": "Kayarmar" }, { "first": "S.", "last": "Viveka" }, { "first": "G. K.", "last": "Nagaraja" } ] }
PMC3051740
Related literature {#sec1} ================== For related tin(IV) compounds, see: Mao & You (1990[@bb3]); Reuter & Schröder (1992[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sn~2~(CH~3~O)~2~Cl~6~(C~3~H~7~NO)~2~\]*M* *~r~* = 658.34Monoclinic,*a* = 8.589 (8) Å*b* = 11.4444 (13) Å*c* = 11.8453 (10) Åβ = 111.155 (1)°*V* = 1085.9 (10) Å^3^*Z* = 2Mo *K*α radiationμ = 3.05 mm^−1^*T* = 298 K0.22 × 0.17 × 0.16 mm ### Data collection {#sec2.1.2} Bruker APEX CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.553, *T* ~max~ = 0.6415512 measured reflections1903 independent reflections1554 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.063 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.117*S* = 1.141903 reflections103 parameters13 restraintsH-atom parameters constrainedΔρ~max~ = 1.54 e Å^−3^Δρ~min~ = −2.07 e Å^−3^ {#d5e532} Data collection: *SMART* (Bruker, 2007[@bb2]); cell refinement: *SAINT* (Bruker, 2007[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]) and *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810053997/hy2391sup1.cif](http://dx.doi.org/10.1107/S1600536810053997/hy2391sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053997/hy2391Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053997/hy2391Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hy2391&file=hy2391sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hy2391sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hy2391&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HY2391](http://scripts.iucr.org/cgi-bin/sendsup?hy2391)). We acknowledge the National Natural Science Foundation of China (grant No. 20771053), the National Basic Research Program (grant No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support. This work was also supported by the Shandong Tai-Shan Scholar Research Fund. Comment ======= The title compound (Fig.1) consists of six Cl anions, two methoxo anions, two Sn^IV^ ions and two dimethylformamide molecules. The molecule has an inversion center in the middle of the Sn~2~O~2~ ring. This ring is planar and can be described as rhombic, with the endocyclic angles at the O atoms larger than those at the Sn atoms \[Sn1^i^---O1---Sn1 = 106.9 (2), O1^i^---Sn1---O1 = 73.1 (2)°. Symmetry code: (i) -x+2, -y, -z+1\]. The Sn1---O1 distance \[2.106 (5) Å\] is very close to the Sn1---O1^i^ distance \[2.101 (5) Å\] (Table 1). Each Sn^IV^ atom is hexacoordinated with two methoxo anions, three Cl anions and one dimethylformamide molecule in a distorted octahedral geometry. As is indicated from Fig. 2 and Table 2, the intramolecular interactions, C1---H1C···Cl3, strengthen the dimeric unit and the intermolecular ones, C3---H3A···Cl3^ii^ and C4---H4B···Cl1^iii^ \[symmetry codes: (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+3/2, y+1/2, -z+1/2\], give rise to a two-dimensional polymer-like supramolecular network. Experimental {#experimental} ============ Stannic chloride hydrate (0.4 mmol, 0.14 g) was dissolved in methanol (20 ml) and dimethylformamide (5 ml) was added with stirring at room temperature. The mixture was allowed to react for 6 h and was then filtered. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of methanol over a period of two weeks (yield: 60%). Analysis, calculated for C~8~H~20~Cl~6~N~2~O~4~Sn~2~: C 14.59, H 3.06, N 4.25%; found: C 14.58, H 3.04, N 4.27%. Refinement {#refinement} ========== H atoms were placed in calculated positions and treated as riding on their parent atoms, with C---H = 0.93 (CH) and 0.96 (CH~3~) Å and with *U*~iso~(H) = 1.2(1.5 for methyl)*U*~eq~(C). The highest residual electron density was found at 0.72 Å from H1A atom and the deepest hole at 1.01 Å from Sn1 atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with 50% probability displacement ellipsoids. \[Symmetry code: (i) -x+2, -y, -z+1.\] ::: ![](e-67-0m146-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the two-dimensional polymer-like supramolecular network in the title compound. ::: ![](e-67-0m146-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e157 .table-wrap} ------------------------------------------ --------------------------------------- \[Sn~2~(CH~3~O)~2~Cl~6~(C~3~H~7~NO)~2~\] *F*(000) = 632 *M~r~* = 658.34 *D*~x~ = 2.013 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 2694 reflections *a* = 8.589 (8) Å θ = 2.6--27.0° *b* = 11.4444 (13) Å µ = 3.05 mm^−1^ *c* = 11.8453 (10) Å *T* = 298 K β = 111.155 (1)° Block, colourless *V* = 1085.9 (10) Å^3^ 0.22 × 0.17 × 0.16 mm *Z* = 2 ------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e298 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEX CCD diffractometer 1903 independent reflections Radiation source: fine-focus sealed tube 1554 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.063 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.6° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −6→10 *T*~min~ = 0.553, *T*~max~ = 0.641 *k* = −13→12 5512 measured reflections *l* = −14→14 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e415 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.117 H-atom parameters constrained *S* = 1.14 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.065*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1903 reflections (Δ/σ)~max~ = 0.012 103 parameters Δρ~max~ = 1.54 e Å^−3^ 13 restraints Δρ~min~ = −2.07 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e571 .table-wrap} ----- ------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 0.99552 (5) 0.07346 (3) 0.37511 (4) 0.0383 (2) Cl1 1.1769 (3) −0.06088 (15) 0.3320 (2) 0.0619 (5) Cl2 1.1500 (2) 0.24014 (15) 0.35788 (19) 0.0586 (5) Cl3 0.7989 (3) 0.07190 (15) 0.17440 (19) 0.0629 (5) N1 0.7652 (7) 0.3252 (5) 0.5241 (5) 0.0498 (14) O1 0.8762 (6) −0.0591 (4) 0.4372 (5) 0.0511 (10) O2 0.8269 (5) 0.1862 (4) 0.4134 (4) 0.0461 (10) C1 0.7018 (10) −0.0904 (6) 0.3757 (7) 0.0556 (11) H1A 0.6323 −0.0359 0.3974 0.083\* H1B 0.6828 −0.1677 0.3993 0.083\* H1C 0.6750 −0.0881 0.2897 0.083\* C2 0.8701 (8) 0.2657 (5) 0.4921 (6) 0.0438 (15) H2 0.9832 0.2824 0.5290 0.053\* C3 0.8233 (14) 0.4147 (7) 0.6175 (10) 0.078 (3) H3A 0.9420 0.4236 0.6411 0.117\* H3B 0.7968 0.3919 0.6864 0.117\* H3C 0.7696 0.4876 0.5864 0.117\* C4 0.5869 (9) 0.3028 (7) 0.4732 (9) 0.072 (2) H4A 0.5679 0.2218 0.4517 0.109\* H4B 0.5372 0.3501 0.4023 0.109\* H4C 0.5377 0.3217 0.5319 0.109\* ----- ------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e872 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.0438 (3) 0.0350 (3) 0.0425 (3) 0.00087 (17) 0.0231 (2) 0.00141 (16) Cl1 0.0809 (14) 0.0551 (10) 0.0707 (13) 0.0188 (9) 0.0527 (11) 0.0088 (8) Cl2 0.0610 (11) 0.0488 (9) 0.0764 (13) −0.0084 (8) 0.0371 (10) 0.0094 (8) Cl3 0.0709 (13) 0.0691 (12) 0.0452 (10) 0.0061 (9) 0.0165 (9) 0.0006 (8) N1 0.056 (4) 0.044 (3) 0.059 (4) 0.008 (3) 0.032 (3) 0.000 (3) O1 0.0531 (15) 0.0515 (15) 0.0514 (15) −0.0033 (12) 0.0221 (12) 0.0004 (12) O2 0.043 (2) 0.044 (2) 0.056 (3) −0.001 (2) 0.023 (2) −0.008 (2) C1 0.0560 (14) 0.0550 (13) 0.0553 (14) −0.0025 (9) 0.0195 (9) 0.0009 (9) C2 0.048 (4) 0.044 (3) 0.044 (3) 0.003 (3) 0.022 (3) −0.004 (3) C3 0.097 (7) 0.065 (5) 0.083 (7) 0.001 (4) 0.046 (6) −0.030 (4) C4 0.051 (5) 0.071 (5) 0.099 (7) 0.016 (4) 0.031 (4) 0.000 (5) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1096 .table-wrap} --------------------------- -------------- ------------------------- ------------ Sn1---O1 2.106 (5) O2---C2 1.259 (7) Sn1---O1^i^ 2.101 (5) C1---H1A 0.9600 Sn1---O2 2.108 (4) C1---H1B 0.9600 Sn1---Cl1 2.372 (2) C1---H1C 0.9600 Sn1---Cl2 2.3743 (18) C2---H2 0.9300 Sn1---Cl3 2.368 (2) C3---H3A 0.9600 N1---C2 1.291 (8) C3---H3B 0.9600 N1---C4 1.452 (9) C3---H3C 0.9600 N1---C3 1.457 (10) C4---H4A 0.9600 O1---C1 1.455 (9) C4---H4B 0.9600 O1---Sn1^i^ 2.101 (5) C4---H4C 0.9600 O1^i^---Sn1---O2 87.65 (18) O1---C1---H1A 109.5 O1^i^---Sn1---O1 73.1 (2) O1---C1---H1B 109.5 O2---Sn1---O1 84.69 (19) H1A---C1---H1B 109.5 O1^i^---Sn1---Cl3 166.73 (15) O1---C1---H1C 109.5 O2---Sn1---Cl3 85.64 (14) H1A---C1---H1C 109.5 O1---Sn1---Cl3 94.86 (16) H1B---C1---H1C 109.5 O1^i^---Sn1---Cl1 92.45 (15) O2---C2---N1 123.2 (6) O2---Sn1---Cl1 177.31 (12) O2---C2---H2 118.4 O1---Sn1---Cl1 92.76 (15) N1---C2---H2 118.4 Cl3---Sn1---Cl1 93.72 (9) N1---C3---H3A 109.5 O1^i^---Sn1---Cl2 93.32 (14) N1---C3---H3B 109.5 O2---Sn1---Cl2 88.59 (13) H3A---C3---H3B 109.5 O1---Sn1---Cl2 165.05 (15) N1---C3---H3C 109.5 Cl3---Sn1---Cl2 97.94 (8) H3A---C3---H3C 109.5 Cl1---Sn1---Cl2 94.09 (8) H3B---C3---H3C 109.5 C2---N1---C4 121.9 (6) N1---C4---H4A 109.5 C2---N1---C3 120.6 (7) N1---C4---H4B 109.5 C4---N1---C3 117.4 (6) H4A---C4---H4B 109.5 C1---O1---Sn1^i^ 124.2 (4) N1---C4---H4C 109.5 C1---O1---Sn1 123.0 (4) H4A---C4---H4C 109.5 Sn1^i^---O1---Sn1 106.9 (2) H4B---C4---H4C 109.5 C2---O2---Sn1 124.0 (4) O1^i^---Sn1---O1---C1 154.0 (6) Cl2---Sn1---O1---Sn1^i^ −25.5 (7) O2---Sn1---O1---C1 64.8 (5) O1^i^---Sn1---O2---C2 42.9 (5) Cl3---Sn1---O1---C1 −20.3 (5) O1---Sn1---O2---C2 116.2 (5) Cl1---Sn1---O1---C1 −114.3 (5) Cl3---Sn1---O2---C2 −148.5 (5) Cl2---Sn1---O1---C1 128.5 (6) Cl2---Sn1---O2---C2 −50.4 (5) O1^i^---Sn1---O1---Sn1^i^ 0.0 Sn1---O2---C2---N1 −171.9 (5) O2---Sn1---O1---Sn1^i^ −89.1 (2) C4---N1---C2---O2 1.6 (10) Cl3---Sn1---O1---Sn1^i^ −174.30 (17) C3---N1---C2---O2 178.8 (7) Cl1---Sn1---O1---Sn1^i^ 91.72 (19) --------------------------- -------------- ------------------------- ------------ ::: Symmetry codes: (i) −*x*+2, −*y*, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1573 .table-wrap} --------------------- --------- --------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1C···Cl3 0.96 2.72 3.356 (8) 124 C3---H3A···Cl3^ii^ 0.96 2.95 3.895 (11) 170 C4---H4B···Cl1^iii^ 0.96 2.90 3.837 (9) 164 --------------------- --------- --------- ------------ --------------- ::: Symmetry codes: (ii) *x*+1/2, −*y*+1/2, *z*+1/2; (iii) −*x*+3/2, *y*+1/2, −*z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ------------- ------------- Sn1---O1 2.106 (5) Sn1---O1^i^ 2.101 (5) Sn1---O2 2.108 (4) Sn1---Cl1 2.372 (2) Sn1---Cl2 2.3743 (18) Sn1---Cl3 2.368 (2) ------------- ------------- Symmetry code: (i) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ------------ ------------- C1---H1*C*⋯Cl3 0.96 2.72 3.356 (8) 124 C3---H3*A*⋯Cl3^ii^ 0.96 2.95 3.895 (11) 170 C4---H4*B*⋯Cl1^iii^ 0.96 2.90 3.837 (9) 164 Symmetry codes: (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.705471
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051740/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):m146", "authors": [ { "first": "Qijun", "last": "Zhang" }, { "first": "Handong", "last": "Yin" }, { "first": "Daqi", "last": "Wang" } ] }
PMC3051741
Related literature {#sec1} ================== For the pharmacological activity of naphtho­furan compounds, see: Einhorn *et al.* (1984[@bb5]); Hranjec *et al.* (2003[@bb7]); Mahadevan & Vaidya (2003[@bb8]). For our previous structural studies of related 1-aryl­sulfonyl-7-bromo-2-methyl­naphtho­\[2,1-*b*\]furan derivatives, see: Choi *et al.* (2008*a* [@bb3],*b* [@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~12~BrFO~3~S*M* *~r~* = 419.26Monoclinic,*a* = 12.0415 (2) Å*b* = 8.1579 (1) Å*c* = 17.4578 (3) Åβ = 105.325 (1)°*V* = 1653.96 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 2.64 mm^−1^*T* = 173 K0.25 × 0.21 × 0.12 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb2]) *T* ~min~ = 0.553, *T* ~max~ = 0.74414803 measured reflections3803 independent reflections3026 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.078*S* = 1.023803 reflections227 parametersH-atom parameters constrainedΔρ~max~ = 0.42 e Å^−3^Δρ~min~ = −0.41 e Å^−3^ {#d5e573} Data collection: *APEX2* (Bruker, 2009[@bb2]); cell refinement: *SAINT* (Bruker, 2009[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb6]) and *DIAMOND* (Brandenburg, 1998[@bb1]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681005436X/rk2255sup1.cif](http://dx.doi.org/10.1107/S160053681005436X/rk2255sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681005436X/rk2255Isup2.hkl](http://dx.doi.org/10.1107/S160053681005436X/rk2255Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2255&file=rk2255sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2255sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2255&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2255](http://scripts.iucr.org/cgi-bin/sendsup?rk2255)). Comment ======= Many compounds involving a naphthofuran ring have attracted much attention in view of their diverse pharmacological properties such as antibacterial, antitumor and anthelmintic activities (Einhorn *et al.*, 1984, Hranjec *et al.*, 2003, Mahadevan & Vaidya, 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 1-arylsulfonyl-7-bromo-2-methylnaphtho\[2,1-*b*\]furan analogues (Choi *et al.*, 2008**a*,b*), we report herein on the crystal structure of the title compound. In the title molecule (Fig. 1), the naphthofuran moiety is essentially planar, with a mean deviation of 0.011 (2)Å from the least-squares plane defined by the thirteen constituent atoms. The dihedral angle formed by the mean plane of the naphthofuran system and the 4-fluorophenyl ring is 80.32 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C--H···O hydrogen bonds; the first one between a benzene H atom and the oxygen of the O═S═O unit (Table 1; C5--H5···O2^i^), and the second one between the 4-fluorophenyl H atom and the oxygen of the O═S═O unit (Table 1; C18--H18···O2^ii^), and the third one between the 4-fluorophenyl H and the oxygen of the O═S═O unit (Table 1; C19--H19···O3^i^). The molecular packing (Fig. 3) is further stabilized by an intermolecular C--H···π interaction between a benzene H atom and the 4-fluorophenyl ring (Table 1; C10--H10···Cg1^iii^, Cg1 is the centroid of the C14-C19 4-fluorophenyl ring). In addition, the crystal packing (Fig. 3) exhibits an aromatic π--π interaction between the central benzene rings of neighbouring molecules. The Cg2···Cg2^vi^ distance is 3.564 (3)Å (Cg2 is the centroid of the C2/C3/C8-C11 benzene ring). Experimental {#experimental} ============ 3-Chloroperoxybenzoic acid (77%) (404 mg, 1.8 mmol) was added in small portions to a stirred solution of 7-bromo-1-(4-fluorophenylsulfanyl)-2-methylnaphtho\[2,1-b\]furan (348 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colourless solid \[yield 73%, m.p. 485-486 K; R~f~ = 0.52 (hexane-ethyl acetate, 4:1 v/v)\]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature. Refinement {#refinement} ========== All H atoms were positioned geometrically and refined using a riding model, with C--H = 0.95Å for aryl and 0.98Å for methyl H atoms. *U*~iso~(H) = 1.2*U*~eq~(C) for aryl and 1.5*U*~eq~(C) for methyl H atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0o280-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of C--H···O interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (i) -x+1/2, y+1/2, -z+1/2; (ii) x, y+1, z; (iv) -x+1/2, y-1/2, -z+1/2; (v) x, y-1, z. ::: ![](e-67-0o280-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### A view of C--H···π and π--π interactions (dotted lines) in the crystal structure of the title compound. Symmetry codes: (iii) x+1/2, -y+1/2, z+1/2; (vi) -x+1, -y, -z + 1; (vii) x-1/2, -y+1/2, z-1/2. ::: ![](e-67-0o280-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e259 .table-wrap} ------------------------- --------------------------------------- C~19~H~12~BrFO~3~S *F*(000) = 840 *M~r~* = 419.26 *D*~x~ = 1.684 Mg m^−3^ Monoclinic, *P*2~1~/*n* Melting point = 485--486 K Hall symbol: -P 2yn Mo *K*α radiation, λ = 0.71073 Å *a* = 12.0415 (2) Å Cell parameters from 4448 reflections *b* = 8.1579 (1) Å θ = 2.4--27.4° *c* = 17.4578 (3) Å µ = 2.64 mm^−1^ β = 105.325 (1)° *T* = 173 K *V* = 1653.96 (5) Å^3^ Block, colourless *Z* = 4 0.25 × 0.21 × 0.12 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e388 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD diffractometer 3803 independent reflections Radiation source: rotating anode 3026 reflections with *I* \> 2σ(*I*) graphite multilayer *R*~int~ = 0.032 Detector resolution: 10.0 pixels mm^-1^ θ~max~ = 27.6°, θ~min~ = 1.9° φ and ω scans *h* = −15→15 Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *k* = −10→10 *T*~min~ = 0.553, *T*~max~ = 0.744 *l* = −22→22 14803 measured reflections ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e511 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.078 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0385*P*)^2^ + 0.6504*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3803 reflections (Δ/σ)~max~ = 0.001 227 parameters Δρ~max~ = 0.42 e Å^−3^ 0 restraints Δρ~min~ = −0.41 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e668 .table-wrap} --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor w*R* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e763 .table-wrap} ------ -------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Br1 0.23409 (2) 0.55058 (3) 0.595181 (15) 0.04881 (10) S1 0.40951 (4) 0.07887 (6) 0.25320 (3) 0.02349 (12) F1 0.52925 (15) 0.6513 (2) 0.09244 (10) 0.0670 (5) O1 0.68915 (11) 0.0164 (2) 0.42360 (8) 0.0308 (3) O2 0.42383 (14) −0.06341 (18) 0.20874 (9) 0.0363 (4) O3 0.29924 (11) 0.1077 (2) 0.26702 (8) 0.0316 (3) C1 0.51536 (16) 0.0748 (2) 0.34372 (11) 0.0240 (4) C2 0.52174 (16) 0.1490 (3) 0.42090 (10) 0.0234 (4) C3 0.44999 (16) 0.2428 (2) 0.45819 (10) 0.0236 (4) C4 0.33609 (16) 0.2927 (3) 0.42204 (11) 0.0285 (4) H4 0.3021 0.2637 0.3682 0.034\* C5 0.27304 (18) 0.3815 (3) 0.46198 (12) 0.0327 (5) H5 0.1963 0.4132 0.4363 0.039\* C6 0.32294 (19) 0.4253 (3) 0.54121 (13) 0.0322 (5) C7 0.43192 (19) 0.3815 (3) 0.57901 (12) 0.0329 (5) H7 0.4638 0.4137 0.6326 0.040\* C8 0.49895 (17) 0.2882 (3) 0.53949 (11) 0.0277 (4) C9 0.61271 (18) 0.2411 (3) 0.58063 (11) 0.0331 (5) H9 0.6429 0.2747 0.6342 0.040\* C10 0.67917 (17) 0.1498 (3) 0.54546 (12) 0.0323 (5) H10 0.7547 0.1165 0.5731 0.039\* C11 0.63028 (16) 0.1071 (3) 0.46594 (11) 0.0269 (4) C12 0.61837 (17) −0.0014 (3) 0.34912 (12) 0.0280 (4) C13 0.6701 (2) −0.0921 (3) 0.29391 (14) 0.0407 (6) H13A 0.7321 −0.0267 0.2826 0.061\* H13B 0.6110 −0.1136 0.2443 0.061\* H13C 0.7014 −0.1964 0.3182 0.061\* C14 0.44463 (15) 0.2512 (3) 0.20340 (10) 0.0219 (4) C15 0.49975 (17) 0.2294 (3) 0.14369 (11) 0.0327 (5) H15 0.5180 0.1225 0.1292 0.039\* C16 0.5279 (2) 0.3660 (4) 0.10549 (13) 0.0423 (6) H16 0.5651 0.3549 0.0641 0.051\* C17 0.5005 (2) 0.5172 (3) 0.12903 (14) 0.0400 (6) C18 0.44494 (19) 0.5411 (3) 0.18684 (13) 0.0344 (5) H18 0.4264 0.6484 0.2007 0.041\* C19 0.41645 (17) 0.4054 (3) 0.22448 (11) 0.0268 (4) H19 0.3775 0.4180 0.2649 0.032\* ------ -------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1258 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Br1 0.06439 (18) 0.04182 (17) 0.05384 (16) −0.00541 (13) 0.03959 (13) −0.00784 (12) S1 0.0259 (2) 0.0209 (3) 0.0210 (2) −0.00233 (19) 0.00152 (17) −0.00073 (19) F1 0.0806 (11) 0.0562 (11) 0.0654 (10) −0.0212 (9) 0.0216 (9) 0.0257 (9) O1 0.0236 (7) 0.0369 (9) 0.0295 (7) 0.0027 (6) 0.0025 (6) 0.0064 (7) O2 0.0475 (9) 0.0228 (8) 0.0324 (7) 0.0016 (7) 0.0001 (7) −0.0057 (7) O3 0.0245 (7) 0.0399 (9) 0.0282 (7) −0.0059 (7) 0.0031 (5) 0.0003 (7) C1 0.0260 (9) 0.0230 (11) 0.0215 (8) −0.0011 (8) 0.0035 (7) 0.0048 (8) C2 0.0254 (9) 0.0204 (10) 0.0220 (8) −0.0053 (8) 0.0019 (7) 0.0044 (8) C3 0.0282 (9) 0.0200 (10) 0.0208 (8) −0.0053 (8) 0.0034 (7) 0.0045 (8) C4 0.0303 (10) 0.0307 (12) 0.0235 (9) −0.0016 (9) 0.0054 (8) 0.0011 (9) C5 0.0320 (10) 0.0350 (13) 0.0316 (10) 0.0018 (10) 0.0095 (8) 0.0037 (10) C6 0.0453 (12) 0.0250 (12) 0.0328 (10) −0.0040 (10) 0.0217 (9) −0.0015 (9) C7 0.0460 (12) 0.0310 (12) 0.0233 (9) −0.0120 (10) 0.0116 (9) −0.0008 (9) C8 0.0342 (10) 0.0240 (11) 0.0235 (9) −0.0085 (9) 0.0049 (8) 0.0018 (9) C9 0.0374 (11) 0.0355 (13) 0.0210 (9) −0.0114 (10) −0.0017 (8) 0.0019 (9) C10 0.0262 (10) 0.0376 (13) 0.0263 (9) −0.0054 (9) −0.0048 (8) 0.0076 (10) C11 0.0258 (9) 0.0260 (11) 0.0269 (9) −0.0033 (8) 0.0037 (8) 0.0058 (9) C12 0.0286 (10) 0.0283 (11) 0.0252 (9) −0.0005 (9) 0.0036 (8) 0.0062 (9) C13 0.0378 (12) 0.0487 (16) 0.0375 (12) 0.0106 (11) 0.0131 (9) 0.0027 (11) C14 0.0200 (8) 0.0243 (11) 0.0187 (8) 0.0015 (8) 0.0004 (6) 0.0014 (8) C15 0.0360 (11) 0.0347 (13) 0.0292 (10) 0.0052 (10) 0.0116 (9) −0.0006 (10) C16 0.0404 (12) 0.0553 (18) 0.0359 (11) 0.0010 (12) 0.0183 (10) 0.0100 (12) C17 0.0396 (12) 0.0381 (14) 0.0387 (12) −0.0108 (11) 0.0040 (10) 0.0151 (11) C18 0.0394 (12) 0.0222 (12) 0.0366 (11) −0.0024 (10) 0.0012 (9) 0.0004 (10) C19 0.0283 (10) 0.0259 (11) 0.0242 (9) 0.0014 (9) 0.0036 (7) −0.0016 (9) ----- -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1732 .table-wrap} --------------------- -------------- ----------------------- -------------- Br1---C6 1.900 (2) C7---H7 0.9500 S1---O3 1.4303 (14) C8---C9 1.421 (3) S1---O2 1.4319 (16) C9---C10 1.354 (3) S1---C1 1.7487 (18) C9---H9 0.9500 S1---C14 1.762 (2) C10---C11 1.401 (3) F1---C17 1.357 (3) C10---H10 0.9500 O1---C12 1.361 (2) C12---C13 1.477 (3) O1---C11 1.369 (3) C13---H13A 0.9800 C1---C12 1.368 (3) C13---H13B 0.9800 C1---C2 1.461 (3) C13---H13C 0.9800 C2---C11 1.378 (3) C14---C19 1.378 (3) C2---C3 1.433 (3) C14---C15 1.387 (3) C3---C4 1.410 (3) C15---C16 1.386 (3) C3---C8 1.434 (3) C15---H15 0.9500 C4---C5 1.367 (3) C16---C17 1.367 (4) C4---H4 0.9500 C16---H16 0.9500 C5---C6 1.401 (3) C17---C18 1.364 (3) C5---H5 0.9500 C18---C19 1.376 (3) C6---C7 1.352 (3) C18---H18 0.9500 C7---C8 1.415 (3) C19---H19 0.9500 O3---S1---O2 118.34 (10) C9---C10---C11 116.25 (18) O3---S1---C1 109.76 (9) C9---C10---H10 121.9 O2---S1---C1 108.13 (9) C11---C10---H10 121.9 O3---S1---C14 107.86 (9) O1---C11---C2 112.00 (17) O2---S1---C14 107.47 (9) O1---C11---C10 121.84 (18) C1---S1---C14 104.37 (9) C2---C11---C10 126.2 (2) C12---O1---C11 106.89 (15) O1---C12---C1 110.17 (18) C12---C1---C2 107.40 (16) O1---C12---C13 114.29 (17) C12---C1---S1 120.12 (15) C1---C12---C13 135.52 (19) C2---C1---S1 132.37 (15) C12---C13---H13A 109.5 C11---C2---C3 117.91 (17) C12---C13---H13B 109.5 C11---C2---C1 103.54 (17) H13A---C13---H13B 109.5 C3---C2---C1 138.54 (17) C12---C13---H13C 109.5 C4---C3---C2 125.66 (17) H13A---C13---H13C 109.5 C4---C3---C8 117.73 (18) H13B---C13---H13C 109.5 C2---C3---C8 116.61 (17) C19---C14---C15 121.19 (19) C5---C4---C3 122.05 (18) C19---C14---S1 119.23 (14) C5---C4---H4 119.0 C15---C14---S1 119.57 (17) C3---C4---H4 119.0 C16---C15---C14 119.0 (2) C4---C5---C6 119.2 (2) C16---C15---H15 120.5 C4---C5---H5 120.4 C14---C15---H15 120.5 C6---C5---H5 120.4 C17---C16---C15 118.1 (2) C7---C6---C5 121.5 (2) C17---C16---H16 120.9 C7---C6---Br1 120.08 (16) C15---C16---H16 120.9 C5---C6---Br1 118.42 (17) F1---C17---C18 117.9 (2) C6---C7---C8 120.63 (19) F1---C17---C16 118.3 (2) C6---C7---H7 119.7 C18---C17---C16 123.8 (2) C8---C7---H7 119.7 C17---C18---C19 118.1 (2) C7---C8---C9 119.80 (18) C17---C18---H18 121.0 C7---C8---C3 118.90 (18) C19---C18---H18 121.0 C9---C8---C3 121.30 (19) C18---C19---C14 119.79 (19) C10---C9---C8 121.73 (18) C18---C19---H19 120.1 C10---C9---H9 119.1 C14---C19---H19 120.1 C8---C9---H9 119.1 O3---S1---C1---C12 158.70 (17) C12---O1---C11---C2 0.2 (2) O2---S1---C1---C12 28.3 (2) C12---O1---C11---C10 −179.3 (2) C14---S1---C1---C12 −85.93 (18) C3---C2---C11---O1 179.30 (17) O3---S1---C1---C2 −25.7 (2) C1---C2---C11---O1 0.2 (2) O2---S1---C1---C2 −156.10 (19) C3---C2---C11---C10 −1.1 (3) C14---S1---C1---C2 89.7 (2) C1---C2---C11---C10 179.8 (2) C12---C1---C2---C11 −0.6 (2) C9---C10---C11---O1 179.38 (19) S1---C1---C2---C11 −176.64 (17) C9---C10---C11---C2 −0.1 (3) C12---C1---C2---C3 −179.4 (2) C11---O1---C12---C1 −0.7 (2) S1---C1---C2---C3 4.6 (4) C11---O1---C12---C13 177.91 (19) C11---C2---C3---C4 −178.3 (2) C2---C1---C12---O1 0.8 (2) C1---C2---C3---C4 0.4 (4) S1---C1---C12---O1 177.41 (14) C11---C2---C3---C8 1.3 (3) C2---C1---C12---C13 −177.3 (3) C1---C2---C3---C8 180.0 (2) S1---C1---C12---C13 −0.7 (4) C2---C3---C4---C5 179.7 (2) O3---S1---C14---C19 38.53 (17) C8---C3---C4---C5 0.1 (3) O2---S1---C14---C19 167.16 (15) C3---C4---C5---C6 0.3 (3) C1---S1---C14---C19 −78.17 (16) C4---C5---C6---C7 −0.1 (3) O3---S1---C14---C15 −141.32 (15) C4---C5---C6---Br1 179.40 (17) O2---S1---C14---C15 −12.69 (18) C5---C6---C7---C8 −0.6 (3) C1---S1---C14---C15 101.98 (16) Br1---C6---C7---C8 179.98 (16) C19---C14---C15---C16 0.7 (3) C6---C7---C8---C9 −179.0 (2) S1---C14---C15---C16 −179.40 (16) C6---C7---C8---C3 0.9 (3) C14---C15---C16---C17 0.5 (3) C4---C3---C8---C7 −0.7 (3) C15---C16---C17---F1 179.2 (2) C2---C3---C8---C7 179.70 (18) C15---C16---C17---C18 −1.5 (4) C4---C3---C8---C9 179.25 (19) F1---C17---C18---C19 −179.53 (19) C2---C3---C8---C9 −0.4 (3) C16---C17---C18---C19 1.1 (3) C7---C8---C9---C10 179.0 (2) C17---C18---C19---C14 0.2 (3) C3---C8---C9---C10 −0.9 (3) C15---C14---C19---C18 −1.1 (3) C8---C9---C10---C11 1.2 (3) S1---C14---C19---C18 179.04 (15) --------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2571 .table-wrap} ---------------------------------------------------------- Cg1 is the centroid of the C14--C19 4-fluorophenyl ring. ---------------------------------------------------------- ::: ::: {#d1e2575 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5···O2^i^ 0.95 2.57 3.312 (3) 135. C18---H18···O2^ii^ 0.95 2.36 3.266 (3) 160. C19---H19···O3^i^ 0.95 2.57 3.113 (2) 117. C10---H10···Cg1^iii^ 0.95 2.69 3.609 (2) 152. ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*+1/2, −*z*+1/2; (ii) *x*, *y*+1, *z*; (iii) *x*+1/2, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C14--C19 4-fluoro­phenyl ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- --------- ------- ----------- ------------- C5---H5⋯O2^i^ 0.95 2.57 3.312 (3) 135 C18---H18⋯O2^ii^ 0.95 2.36 3.266 (3) 160 C19---H19⋯O3^i^ 0.95 2.57 3.113 (2) 117 C10---H10⋯*Cg*1^iii^ 0.95 2.69 3.609 (2) 152 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.709712
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051741/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o280", "authors": [ { "first": "Hong Dae", "last": "Choi" }, { "first": "Pil Ja", "last": "Seo" }, { "first": "Byeng Wha", "last": "Son" }, { "first": "Uk", "last": "Lee" } ] }
PMC3051742
Related literature {#sec1} ================== For background to pyrazole derivatives and their microbial activity, see: Ragavan *et al.* (2009[@bb9], 2010[@bb10]). For bond-length data, see: Allen *et al.* (1987[@bb1]). For related structures, see: Loh *et al.* (2010[@bb5], 2010*a* [@bb7],*b* [@bb8], 2011[@bb6]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~11~H~12~N~2~O*M* *~r~* = 188.23Monoclinic,*a* = 11.0898 (3) Å*b* = 13.2171 (4) Å*c* = 15.0265 (5) Åβ = 114.539 (2)°*V* = 2003.58 (11) Å^3^*Z* = 8Mo *K*α radiationμ = 0.08 mm^−1^*T* = 100 K0.60 × 0.16 × 0.13 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.953, *T* ~max~ = 0.98922130 measured reflections5845 independent reflections3654 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.063 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.065*wR*(*F* ^2^) = 0.166*S* = 1.055845 reflections284 parameters2 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e630} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb12]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001589/is2655sup1.cif](http://dx.doi.org/10.1107/S1600536811001589/is2655sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001589/is2655Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001589/is2655Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2655&file=is2655sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2655sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2655&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2655](http://scripts.iucr.org/cgi-bin/sendsup?is2655)). HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST--India for funding through the Young Scientist Scheme (Fast Track Proposal). Comment ======= Antibacterial and antifungal activities of the azoles are most widely studied and some of them are in clinical practice as anti-microbial agents. However, the azole-resistant strains had led to the development of new anti-microbial compounds. In particular, pyrazole derivatives are extensively studied and used as anti-microbial agents. Pyrazole is an important class of heterocyclic compounds and many pyrazole derivatives are reported to have the broad spectrum of biological properties such as anti-inflammatory, antifungal, herbicidal, anti-tumour, cytotoxic, molecular modelling and antiviral activities. Pyrazole derivatives also act as anti-angiogenic agents, A3 adenosine receptor antagonists, neuropeptide YY5 receptor antagonists as well as kinase inhibitor for treatment of type 2 diabetes, hyperlipidemia, obesity and thrombopiotinmimetics. Recently urea derivatives of pyrazoles have been reported as potent inhibitors of p38 kinase. Since the high electronegativity of halogens (particularly chlorine and fluorine) in the aromatic part of the drug molecules play an important role in enhancing their biological activity, we are interested to have 4-fluoro or 4-chloro substitution in the aryls of 1,5-diaryl pyrazoles. As part of our on-going research aiming the synthesis of new anti-microbial compounds, we have reported the synthesis of novel pyrazole derivatives and their microbial activities (Ragavan *et al.*, 2009, 2010). The title compound (Fig. 1), consists of two crystallographically independent molecules, with similar geometries and exist in keto-form with the bond length of C═O being 1.286 (2) Å in molecule *A* and 1.283 (2) Å in molecule *B*. This indicates that the compound undergoes an enol-to-keto tautomerism during the crystallization process In molecule *A*, the pyrazole ring (N1A/N2A/C1A--C3A) is approximately planar \[maximum deviation of 0.0262 (16) Å at N2A\] and forms a dihedral angle of 43.28 (12)° with the attached phenyl ring (C4A--C9A). In molecule *B*, the pyrazole ring (N1B/N2B/C1B--C3B) is approximately planar with a maximum deviation of 0.0209 (15) Å at N1B and form a dihedral angle of 46.88 (11)° with the attached phenyl ring (C4B--C9B). The ethyl unit (C10B/C11B) in the molecule *B* is observed to be disordered over two positions with a site-occupancy ratio of 0.508 (5):0.492 (5). Bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to the related structures (Loh *et al.*, 2010, 2011; Loh *et al.*, 2010*a*,*b*). In the crystal packing (Fig. 2), intermolecular N2A---H2NA···O1A and N2B---H2NB···O1B hydrogen bonds (Table 1) link the neighbouring molecules to form dimers, generating *R*~2~^2^(8) ring motifs (Bernstein *et al.*, 1995) and are further packed into three-dimensional network by intermolecular N1B---H1NB···O1A, N1A---H1NA···O1B and C8A---H8AA···O1A hydrogen bonds (Table 1). The crystal structure is further stabilized by C---H···π interactions (Table 1) involving *Cg*1 (C4B--C9B) and *Cg*2 (C4A--C9A). Experimental {#experimental} ============ The compound has been synthesized using the method available in the literature (Ragavan *et al.*, 2010) and recrystallized using the ethanol-chloroform 1:1 mixture (yield 81%, *m. p.* 361.3--362.1 K). Refinement {#refinement} ========== N-bound H atoms were located from a difference Fourier map and were refined freely \[N---H = 0.97 (2) to 1.02 (2) Å\]. The remaining H atoms were positioned geometrically with the bond length of C---H = 0.93 to 0.97 Å and were refined using a riding model, with *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). A rotating group model was applied to the methyl groups. The ethyl unit of molecule *B* was disordered over two positions with a site-occupancy of 0.508 (5):0.492 (5). Bond-distance restraints were applied for C10B---C11B and C10B---C11C. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor component. ::: ![](e-67-0o403-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, showing the three-dimensional network. Only the major component is shown. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity. ::: ![](e-67-0o403-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e175 .table-wrap} ------------------------- --------------------------------------- C~11~H~12~N~2~O *F*(000) = 800 *M~r~* = 188.23 *D*~x~ = 1.248 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 4628 reflections *a* = 11.0898 (3) Å θ = 2.5--30.0° *b* = 13.2171 (4) Å µ = 0.08 mm^−1^ *c* = 15.0265 (5) Å *T* = 100 K β = 114.539 (2)° Needle, colourless *V* = 2003.58 (11) Å^3^ 0.60 × 0.16 × 0.13 mm *Z* = 8 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e303 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 5845 independent reflections Radiation source: fine-focus sealed tube 3654 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.063 φ and ω scans θ~max~ = 30.1°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −15→15 *T*~min~ = 0.953, *T*~max~ = 0.989 *k* = −18→18 22130 measured reflections *l* = −20→21 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e420 .table-wrap} ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.065 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.166 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0659*P*)^2^ + 0.5295*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.05 (Δ/σ)~max~ = 0.001 5845 reflections Δρ~max~ = 0.38 e Å^−3^ 284 parameters Δρ~min~ = −0.30 e Å^−3^ 2 restraints Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0163 (19) ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e601 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e706 .table-wrap} ------ -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1A 0.59450 (13) 0.07629 (9) 0.94578 (11) 0.0314 (3) N1A 0.29084 (17) 0.16378 (11) 0.92423 (13) 0.0288 (4) N2A 0.38633 (15) 0.09048 (11) 0.94491 (12) 0.0271 (4) C1A 0.32664 (18) 0.24453 (13) 0.88567 (14) 0.0246 (4) C2A 0.48806 (18) 0.12736 (13) 0.92718 (14) 0.0244 (4) C3A 0.44982 (17) 0.22608 (12) 0.88657 (14) 0.0239 (4) C4A 0.53044 (18) 0.29233 (13) 0.85342 (16) 0.0298 (4) C5A 0.6668 (2) 0.30005 (15) 0.90864 (18) 0.0396 (5) H5AA 0.7066 0.2645 0.9671 0.047\* C6A 0.7438 (2) 0.36080 (18) 0.8767 (3) 0.0602 (8) H6AA 0.8348 0.3652 0.9137 0.072\* C7A 0.6861 (3) 0.41400 (18) 0.7910 (3) 0.0685 (10) H7AA 0.7379 0.4549 0.7704 0.082\* C8A 0.5513 (3) 0.40705 (19) 0.7351 (2) 0.0604 (8) H8AA 0.5124 0.4430 0.6768 0.072\* C9A 0.4736 (2) 0.34624 (16) 0.76586 (18) 0.0401 (5) H9AA 0.3829 0.3415 0.7278 0.048\* C10A 0.23852 (19) 0.33569 (14) 0.85216 (16) 0.0306 (4) H10C 0.1769 0.3258 0.7845 0.037\* H10D 0.2927 0.3942 0.8546 0.037\* C11A 0.1600 (2) 0.35798 (17) 0.91215 (19) 0.0450 (6) H11D 0.1092 0.4187 0.8884 0.068\* H11E 0.2199 0.3668 0.9795 0.068\* H11F 0.1013 0.3025 0.9064 0.068\* O1B 1.07863 (12) 0.06616 (9) 0.92558 (9) 0.0254 (3) N1B 0.73764 (15) 0.06391 (11) 0.83821 (12) 0.0275 (4) N2B 0.86312 (14) 0.04445 (11) 0.90754 (12) 0.0228 (3) C1B 0.74826 (19) 0.11417 (14) 0.76342 (15) 0.0303 (4) C2B 0.95360 (17) 0.07674 (12) 0.87492 (13) 0.0215 (4) C3B 0.88097 (18) 0.12138 (13) 0.78120 (14) 0.0251 (4) C4B 0.9388 (2) 0.16679 (13) 0.71837 (14) 0.0291 (4) C5B 1.0386 (2) 0.11721 (15) 0.70194 (16) 0.0361 (5) H5BA 1.0694 0.0549 0.7315 0.043\* C6B 1.0928 (3) 0.15955 (16) 0.64204 (18) 0.0505 (7) H6BA 1.1588 0.1253 0.6312 0.061\* C7B 1.0483 (3) 0.25308 (17) 0.59830 (17) 0.0541 (7) H7BA 1.0840 0.2814 0.5579 0.065\* C8B 0.9506 (3) 0.30381 (16) 0.61513 (16) 0.0459 (6) H8BA 0.9209 0.3665 0.5862 0.055\* C9B 0.8973 (2) 0.26163 (15) 0.67475 (15) 0.0360 (5) H9BA 0.8326 0.2969 0.6862 0.043\* C10B 0.6280 (2) 0.14952 (18) 0.67717 (18) 0.0499 (6) H10A 0.5568 0.1581 0.6980 0.060\* 0.508 (5) H10B 0.6473 0.2157 0.6583 0.060\* 0.508 (5) H10E 0.6172 0.2209 0.6868 0.060\* 0.492 (5) H10F 0.6477 0.1442 0.6202 0.060\* 0.492 (5) C11B 0.5811 (4) 0.0874 (3) 0.5935 (3) 0.0427 (13) 0.508 (5) H11A 0.5027 0.1168 0.5442 0.064\* 0.508 (5) H11B 0.5608 0.0215 0.6104 0.064\* 0.508 (5) H11C 0.6481 0.0816 0.5689 0.064\* 0.508 (5) C11C 0.5046 (3) 0.1031 (3) 0.6533 (4) 0.0395 (13) 0.492 (5) H11G 0.4387 0.1358 0.5970 0.059\* 0.492 (5) H11H 0.4805 0.1090 0.7075 0.059\* 0.492 (5) H11I 0.5101 0.0329 0.6390 0.059\* 0.492 (5) H1NB 0.669 (2) 0.0719 (16) 0.8648 (17) 0.043 (6)\* H2NB 0.881 (2) 0.0033 (18) 0.9694 (18) 0.053 (7)\* H2NA 0.384 (2) 0.029 (2) 0.9802 (19) 0.060 (8)\* H1NA 0.204 (3) 0.1404 (18) 0.9184 (19) 0.052 (7)\* ------ -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1456 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1A 0.0284 (7) 0.0292 (7) 0.0398 (9) 0.0114 (5) 0.0174 (7) 0.0106 (6) N1A 0.0297 (9) 0.0254 (8) 0.0368 (10) 0.0094 (6) 0.0193 (8) 0.0101 (6) N2A 0.0286 (8) 0.0247 (8) 0.0325 (9) 0.0087 (6) 0.0172 (7) 0.0083 (6) C1A 0.0265 (9) 0.0235 (8) 0.0255 (10) 0.0036 (7) 0.0125 (8) 0.0027 (7) C2A 0.0246 (9) 0.0250 (8) 0.0234 (10) 0.0043 (7) 0.0097 (7) 0.0020 (7) C3A 0.0234 (9) 0.0223 (8) 0.0256 (10) 0.0022 (6) 0.0097 (7) 0.0024 (7) C4A 0.0229 (9) 0.0237 (9) 0.0442 (13) 0.0030 (7) 0.0153 (9) 0.0036 (8) C5A 0.0263 (10) 0.0321 (10) 0.0574 (15) 0.0007 (8) 0.0144 (10) −0.0018 (10) C6A 0.0270 (12) 0.0389 (13) 0.116 (3) −0.0031 (9) 0.0309 (15) −0.0020 (14) C7A 0.0510 (16) 0.0381 (13) 0.141 (3) 0.0047 (11) 0.064 (2) 0.0232 (16) C8A 0.0510 (15) 0.0508 (14) 0.100 (2) 0.0200 (11) 0.0524 (16) 0.0411 (14) C9A 0.0293 (11) 0.0391 (11) 0.0591 (16) 0.0110 (8) 0.0255 (11) 0.0210 (10) C10A 0.0316 (10) 0.0290 (9) 0.0372 (12) 0.0101 (7) 0.0203 (9) 0.0095 (8) C11A 0.0548 (15) 0.0391 (12) 0.0558 (16) 0.0228 (10) 0.0375 (13) 0.0147 (10) O1B 0.0221 (6) 0.0288 (6) 0.0264 (7) 0.0022 (5) 0.0111 (6) 0.0067 (5) N1B 0.0201 (8) 0.0305 (8) 0.0294 (9) 0.0028 (6) 0.0076 (7) 0.0030 (6) N2B 0.0189 (7) 0.0276 (7) 0.0221 (8) 0.0029 (5) 0.0087 (6) 0.0017 (6) C1B 0.0321 (10) 0.0248 (9) 0.0266 (10) 0.0025 (7) 0.0049 (8) 0.0028 (7) C2B 0.0249 (9) 0.0212 (8) 0.0217 (9) 0.0026 (6) 0.0129 (7) 0.0004 (6) C3B 0.0307 (10) 0.0229 (8) 0.0213 (9) 0.0022 (7) 0.0104 (8) 0.0019 (7) C4B 0.0410 (11) 0.0255 (9) 0.0186 (9) −0.0031 (7) 0.0102 (8) 0.0008 (7) C5B 0.0589 (14) 0.0258 (9) 0.0337 (12) −0.0007 (9) 0.0294 (11) 0.0013 (8) C6B 0.092 (2) 0.0353 (11) 0.0465 (15) −0.0071 (11) 0.0504 (15) −0.0031 (10) C7B 0.104 (2) 0.0381 (12) 0.0357 (13) −0.0155 (13) 0.0448 (15) −0.0001 (10) C8B 0.0787 (18) 0.0286 (10) 0.0245 (11) −0.0093 (10) 0.0156 (12) 0.0046 (8) C9B 0.0488 (13) 0.0281 (10) 0.0239 (10) −0.0020 (8) 0.0081 (9) 0.0042 (7) C10B 0.0427 (13) 0.0442 (13) 0.0400 (14) 0.0094 (10) −0.0054 (11) 0.0093 (10) C11B 0.032 (2) 0.053 (3) 0.033 (3) 0.0001 (18) 0.0032 (19) 0.0136 (19) C11C 0.021 (2) 0.047 (3) 0.047 (3) −0.0040 (17) 0.0109 (19) 0.014 (2) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1964 .table-wrap} ------------------------- -------------- ------------------------- -------------- O1A---C2A 1.286 (2) N1B---H1NB 1.00 (2) N1A---C1A 1.350 (2) N2B---C2B 1.356 (2) N1A---N2A 1.372 (2) N2B---H2NB 1.02 (3) N1A---H1NA 0.98 (2) C1B---C3B 1.386 (3) N2A---C2A 1.353 (2) C1B---C10B 1.497 (3) N2A---H2NA 0.98 (3) C2B---C3B 1.427 (2) C1A---C3A 1.382 (2) C3B---C4B 1.471 (3) C1A---C10A 1.500 (2) C4B---C5B 1.394 (3) C2A---C3A 1.428 (2) C4B---C9B 1.401 (3) C3A---C4A 1.478 (2) C5B---C6B 1.391 (3) C4A---C5A 1.394 (3) C5B---H5BA 0.9300 C4A---C9A 1.396 (3) C6B---C7B 1.391 (3) C5A---C6A 1.395 (3) C6B---H6BA 0.9300 C5A---H5AA 0.9300 C7B---C8B 1.383 (4) C6A---C7A 1.371 (4) C7B---H7BA 0.9300 C6A---H6AA 0.9300 C8B---C9B 1.379 (3) C7A---C8A 1.381 (4) C8B---H8BA 0.9300 C7A---H7AA 0.9300 C9B---H9BA 0.9300 C8A---C9A 1.391 (3) C10B---C11C 1.403 (3) C8A---H8AA 0.9300 C10B---C11B 1.408 (3) C9A---H9AA 0.9300 C10B---H10A 0.9700 C10A---C11A 1.520 (3) C10B---H10B 0.9700 C10A---H10C 0.9700 C10B---H10E 0.9700 C10A---H10D 0.9700 C10B---H10F 0.9700 C11A---H11D 0.9600 C11B---H11A 0.9600 C11A---H11E 0.9600 C11B---H11B 0.9600 C11A---H11F 0.9600 C11B---H11C 0.9600 O1B---C2B 1.283 (2) C11C---H11G 0.9600 N1B---C1B 1.352 (2) C11C---H11H 0.9600 N1B---N2B 1.372 (2) C11C---H11I 0.9600 C1A---N1A---N2A 108.56 (15) N1B---N2B---H2NB 123.0 (14) C1A---N1A---H1NA 131.6 (14) N1B---C1B---C3B 109.01 (16) N2A---N1A---H1NA 115.8 (14) N1B---C1B---C10B 121.27 (19) C2A---N2A---N1A 109.22 (15) C3B---C1B---C10B 129.69 (19) C2A---N2A---H2NA 128.0 (15) O1B---C2B---N2B 122.08 (16) N1A---N2A---H2NA 121.5 (15) O1B---C2B---C3B 131.19 (16) N1A---C1A---C3A 108.78 (15) N2B---C2B---C3B 106.72 (16) N1A---C1A---C10A 120.80 (16) C1B---C3B---C2B 106.31 (16) C3A---C1A---C10A 130.40 (16) C1B---C3B---C4B 127.96 (17) O1A---C2A---N2A 122.23 (16) C2B---C3B---C4B 125.72 (17) O1A---C2A---C3A 130.95 (17) C5B---C4B---C9B 117.91 (18) N2A---C2A---C3A 106.82 (15) C5B---C4B---C3B 120.77 (16) C1A---C3A---C2A 106.39 (15) C9B---C4B---C3B 121.31 (18) C1A---C3A---C4A 128.76 (15) C6B---C5B---C4B 120.9 (2) C2A---C3A---C4A 124.86 (16) C6B---C5B---H5BA 119.5 C5A---C4A---C9A 118.53 (19) C4B---C5B---H5BA 119.5 C5A---C4A---C3A 120.08 (18) C5B---C6B---C7B 120.0 (2) C9A---C4A---C3A 121.37 (17) C5B---C6B---H6BA 120.0 C4A---C5A---C6A 120.4 (2) C7B---C6B---H6BA 120.0 C4A---C5A---H5AA 119.8 C8B---C7B---C6B 119.7 (2) C6A---C5A---H5AA 119.8 C8B---C7B---H7BA 120.1 C7A---C6A---C5A 120.3 (2) C6B---C7B---H7BA 120.1 C7A---C6A---H6AA 119.8 C9B---C8B---C7B 120.1 (2) C5A---C6A---H6AA 119.8 C9B---C8B---H8BA 119.9 C6A---C7A---C8A 120.2 (2) C7B---C8B---H8BA 119.9 C6A---C7A---H7AA 119.9 C8B---C9B---C4B 121.3 (2) C8A---C7A---H7AA 119.9 C8B---C9B---H9BA 119.3 C7A---C8A---C9A 120.0 (2) C4B---C9B---H9BA 119.3 C7A---C8A---H8AA 120.0 C11C---C10B---C1B 120.6 (3) C9A---C8A---H8AA 120.0 C11B---C10B---C1B 117.2 (2) C8A---C9A---C4A 120.6 (2) C11B---C10B---H10A 108.0 C8A---C9A---H9AA 119.7 C1B---C10B---H10A 108.0 C4A---C9A---H9AA 119.7 C11B---C10B---H10B 108.0 C1A---C10A---C11A 114.22 (16) C1B---C10B---H10B 108.0 C1A---C10A---H10C 108.7 H10A---C10B---H10B 107.2 C11A---C10A---H10C 108.7 C11C---C10B---H10E 107.2 C1A---C10A---H10D 108.7 C1B---C10B---H10E 107.2 C11A---C10A---H10D 108.7 C11C---C10B---H10F 107.2 H10C---C10A---H10D 107.6 C1B---C10B---H10F 107.2 C10A---C11A---H11D 109.5 H10E---C10B---H10F 106.8 C10A---C11A---H11E 109.5 C10B---C11B---H11A 109.5 H11D---C11A---H11E 109.5 C10B---C11B---H11B 109.5 C10A---C11A---H11F 109.5 C10B---C11B---H11C 109.5 H11D---C11A---H11F 109.5 C10B---C11C---H11G 109.5 H11E---C11A---H11F 109.5 C10B---C11C---H11H 109.5 C1B---N1B---N2B 108.18 (15) H11G---C11C---H11H 109.5 C1B---N1B---H1NB 128.5 (13) C10B---C11C---H11I 109.5 N2B---N1B---H1NB 114.6 (14) H11G---C11C---H11I 109.5 C2B---N2B---N1B 109.63 (15) H11H---C11C---H11I 109.5 C2B---N2B---H2NB 126.9 (14) C1A---N1A---N2A---C2A 5.0 (2) N2B---N1B---C1B---C3B 4.0 (2) N2A---N1A---C1A---C3A −3.5 (2) N2B---N1B---C1B---C10B −177.96 (18) N2A---N1A---C1A---C10A 177.71 (17) N1B---N2B---C2B---O1B −179.06 (15) N1A---N2A---C2A---O1A 175.93 (17) N1B---N2B---C2B---C3B 1.65 (18) N1A---N2A---C2A---C3A −4.4 (2) N1B---C1B---C3B---C2B −2.9 (2) N1A---C1A---C3A---C2A 0.8 (2) C10B---C1B---C3B---C2B 179.2 (2) C10A---C1A---C3A---C2A 179.43 (19) N1B---C1B---C3B---C4B 177.89 (17) N1A---C1A---C3A---C4A −179.05 (19) C10B---C1B---C3B---C4B 0.1 (3) C10A---C1A---C3A---C4A −0.4 (3) O1B---C2B---C3B---C1B −178.43 (18) O1A---C2A---C3A---C1A −178.1 (2) N2B---C2B---C3B---C1B 0.77 (19) N2A---C2A---C3A---C1A 2.2 (2) O1B---C2B---C3B---C4B 0.8 (3) O1A---C2A---C3A---C4A 1.7 (3) N2B---C2B---C3B---C4B 179.96 (16) N2A---C2A---C3A---C4A −177.92 (18) C1B---C3B---C4B---C5B −134.8 (2) C1A---C3A---C4A---C5A 138.1 (2) C2B---C3B---C4B---C5B 46.2 (3) C2A---C3A---C4A---C5A −41.7 (3) C1B---C3B---C4B---C9B 46.4 (3) C1A---C3A---C4A---C9A −43.5 (3) C2B---C3B---C4B---C9B −132.6 (2) C2A---C3A---C4A---C9A 136.7 (2) C9B---C4B---C5B---C6B −1.6 (3) C9A---C4A---C5A---C6A 0.2 (3) C3B---C4B---C5B---C6B 179.5 (2) C3A---C4A---C5A---C6A 178.6 (2) C4B---C5B---C6B---C7B 0.6 (4) C4A---C5A---C6A---C7A 0.4 (4) C5B---C6B---C7B---C8B 0.4 (4) C5A---C6A---C7A---C8A −0.6 (4) C6B---C7B---C8B---C9B −0.2 (4) C6A---C7A---C8A---C9A 0.2 (4) C7B---C8B---C9B---C4B −0.8 (3) C7A---C8A---C9A---C4A 0.4 (4) C5B---C4B---C9B---C8B 1.8 (3) C5A---C4A---C9A---C8A −0.6 (3) C3B---C4B---C9B---C8B −179.4 (2) C3A---C4A---C9A---C8A −179.0 (2) N1B---C1B---C10B---C11C −22.8 (4) N1A---C1A---C10A---C11A 33.3 (3) C3B---C1B---C10B---C11C 154.8 (3) C3A---C1A---C10A---C11A −145.2 (2) N1B---C1B---C10B---C11B −96.9 (3) C1B---N1B---N2B---C2B −3.53 (19) C3B---C1B---C10B---C11B 80.7 (3) ------------------------- -------------- ------------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3020 .table-wrap} --------------------------------------------------------------------------------- Cg1 and Cg2 are the centroids of the C4B--C9B and C4A--C9A rings, respectively. --------------------------------------------------------------------------------- ::: ::: {#d1e3024 .table-wrap} ------------------------ ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1B---H1NB···O1A 1.00 (2) 1.73 (2) 2.700 (2) 161 (2) N2B---H2NB···O1B^i^ 1.02 (2) 1.72 (2) 2.738 (2) 176 (2) N2A---H2NA···O1A^ii^ 0.98 (3) 1.74 (3) 2.704 (2) 171 (2) N1A---H1NA···O1B^iii^ 0.98 (3) 1.74 (3) 2.691 (2) 162 (2) C8A---H8AA···O1A^iv^ 0.93 2.47 3.370 (3) 163 C10A---H10C···Cg1^iii^ 0.97 2.61 3.464 (2) 147 C10B---H10E···Cg2 0.97 2.71 3.524 (3) 142 ------------------------ ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*, −*z*+2; (ii) −*x*+1, −*y*, −*z*+2; (iii) *x*−1, *y*, *z*; (iv) −*x*+1, *y*+1/2, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 and *Cg*2 are the centroids of the C4*B*--C9*B* and C4*A*--C9*A* rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------------- ---------- ---------- ----------- ------------- N1*B*---H1*NB*⋯O1*A* 1.00 (2) 1.73 (2) 2.700 (2) 161 (2) N2*B*---H2*NB*⋯O1*B*^i^ 1.02 (2) 1.72 (2) 2.738 (2) 176 (2) N2*A*---H2*NA*⋯O1*A*^ii^ 0.98 (3) 1.74 (3) 2.704 (2) 171 (2) N1*A*---H1*NA*⋯O1*B*^iii^ 0.98 (3) 1.74 (3) 2.691 (2) 162 (2) C8*A*---H8*AA*⋯O1*A*^iv^ 0.93 2.47 3.370 (3) 163 C10*A*---H10*C*⋯*Cg*1^iii^ 0.97 2.61 3.464 (2) 147 C10*B*---H10*E*⋯*Cg*2 0.97 2.71 3.524 (3) 142 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . ::: [^1]: ‡ Thomson Reuters ResearcherID: C-7581-2009. [^2]: § Thomson Reuters ResearcherID: A-3561-2009.
PubMed Central
2024-06-05T04:04:16.715771
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051742/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o403-o404", "authors": [ { "first": "Wan-Sin", "last": "Loh" }, { "first": "Hoong-Kun", "last": "Fun" }, { "first": "R. Venkat", "last": "Ragavan" }, { "first": "V.", "last": "Vijayakumar" }, { "first": "M.", "last": "Venkatesh" } ] }
PMC3051743
Related literature {#sec1} ================== For the use of 3-pyridyl-substituted 5-amino-1,2,4-triazoles in the synthesis of biologically active compounds, see: Lipinski (1983[@bb23]); Ram (1988[@bb28]); Akahoshi *et al.* (1998[@bb1]); Young *et al.* (2001[@bb35]); Ouyang *et al.* (2005[@bb27]); Dolzhenko *et al.* (2007[@bb12]). For metal complexes of 3-pyridyl-substituted 5-amino-1,2,4-tri­azoles, see: Mishra *et al.* (1989[@bb26]); Ferrer *et al.* (2004[@bb20]); Castineiras & Garcia-Santos (2008[@bb9]). For a theoretical investigation of the protonation of *C*-amino-1,2,4-triazoles, see: Anders *et al.* (1997[@bb4]). For the crystal structures of protonated *C*-amino-1,2,4-triazoles, see: Lynch *et al.* (1999[@bb24]); Baouab *et al.* (2000[@bb5]); Bichay *et al.* (2006[@bb6]); Guerfel *et al.* (2007[@bb21]); Matulková *et al.* (2007[@bb25]). For the ionization constants (p*K* ~α~) of 3-substituted 5-amino-1*H*-1,2,4-triazoles, see: Voronkov *et al.* (1976[@bb32]). For the ^1^H and ^13^C NMR spectra of 3-pyridyl-substituted 5-amino-1,2,4-triazoles, see: Dolzhenko *et al.* (2009*a* [@bb13]). For typical NMR chemical shifts of 3-substituted 5-amino-1,2,4-triazoles and their salts, see: Chernyshev *et al.* (2010[@bb10]). For the crystal structures of 3-substituted 5-amino-1*H*-1,2,4-triazoles, see: Rusinov *et al.* (1991[@bb30]); Daro *et al.* (2000[@bb11]); Boechat *et al.* (2004[@bb7]); Dolzhenko *et al.* (2009*b* [@bb14],*c* [@bb15]). For the crystal structures of 3(5)-pyridyl-substituted 1,2,4-triazoles protonated at the pyridine ring, see: Ren & Jian (2008[@bb29]); Xie *et al.* (2009[@bb34]); Du *et al.* (2009[@bb16]). For values of bond lengths in organic compounds, see: Allen *et al.* (1987[@bb3]). For the correlation of bond lengths with bond orders between *sp* ^2^-hybridized C and N atoms, see: Burke-Laing & Laing (1976[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~7~H~8~N~5~ ^+^·Cl^−^·H~2~O*M* *~r~* = 215.65Monoclinic,*a* = 5.3411 (5) Å*b* = 24.656 (3) Å*c* = 7.3488 (7) Åβ = 97.62 (2)°*V* = 959.22 (18) Å^3^*Z* = 4Ag *K*α radiationλ = 0.56085 Åμ = 0.20 mm^−1^*T* = 295 K0.20 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Enraf--Nonius CAD-4 diffractometerAbsorption correction: refined from Δ*F* (Walker & Stuart, 1983[@bb33]) *T* ~min~ = 0.314, *T* ~max~ = 0.9612389 measured reflections2389 independent reflections1518 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.0001 standard reflections every 60 min intensity decay: 2% ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.109*S* = 0.932389 reflections151 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.26 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e688} Data collection: *CAD-4 EXPRESS* (Enraf--Nonius, 1994[@bb17]); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995[@bb22]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb31]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb31]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb18]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb19]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811002406/aa2001sup1.cif](http://dx.doi.org/10.1107/S1600536811002406/aa2001sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002406/aa2001Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002406/aa2001Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?aa2001&file=aa2001sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?aa2001sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?aa2001&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [AA2001](http://scripts.iucr.org/cgi-bin/sendsup?aa2001)). This work was supported by the Ministry of Education and Science of the Russian Federation through the Federal Target Program 'Research and Educational Personnel of Innovative Russia at 2009--2013 Years', State contract P1472, project NK-186P/3. The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002[@bb2]). Comment ======= 3-Pyridyl-substituted 5-amino-1,2,4-triazoles are used as reagents and ligands for the synthesis of biologically active compounds (Lipinski, 1983; Ram, 1988; Akahoshi *et al.*, 1998; Young *et al.*, 2001; Ouyang *et al.*, 2005; Dolzhenko *et al.*, 2007) and metal complexes (Mishra *et al.*, 1989; Ferrer *et al.*, 2004; Castineiras & Garcia-Santos, 2008). These substances are weak bases and form salts with acids. However, the positions of protonation centres of their molecules are open to question. For example, one would assume the existence of the tautomers A--E for the hydrochloride of 5-amino-3-(pyridin-4-yl)-1,2,4-triazole (Fig. 1). The tautomers A and D can be expected to be the most probable on the basis of the theoretical investigation of the protonation of *C*-amino-1,2,4-triazoles (Anders *et al.*, 1997) and X-ray studies of *C*-amino-1,2,4-triazolium salts (Lynch *et al.*, 1999; Baouab *et al.*, 2000; Bichay *et al.*, 2006; Guerfel *et al.*, 2007; Matulková *et al.*, 2007). Since knowledge of specific features of protonation of 3-pyridyl-substituted 5-amino-1,2,4-triazoles is essential for understanding their reactivity and biological properties, we investigated the structure of the hydrochloride of 5-amino-3-(pyridin-4-yl)-1,2,4-triazole in the solution and solid state. This compound was obtained by one-pot synthesis starting from aminoguanidine hydrogen carbonate, isonicotinic acid and hydrochloric acid (see Fig. 2 and Experimental). By potentiometric titration with 0.1 *M* hydrochloric acid we established that the p*K*~α~ of the 5-amino-3-(pyridin-4-yl)-1,2,4-triazole in water is 4.68 (5) at 293 K. A model compound, 5-amino-3-phenyl-1*H*-1,2,4-triazole, which is protonated at the N^4^ of triazole cycle in acid solutions (Voronkov *et al.*, 1976), has the p*K*~α~ = 3.80 (3) at 293 K. Since the basicity of the 5-amino-3-(pyridin-4-yl)-1,2,4-triazole is almost eight times higher than the model compound, it is possible to assume that in water solution the pyridine rather than triazole cycle is protonated. In the ^13^C NMR spectrum of the hydrochloride of 5-amino-3-(pyridin-4-yl)-1,2,4-triazole in dimethyl sulfoxide (*DMSO*-*d*~6~), the signals of the triazole carbons C^3\'^ and C^5\'^ are observed at 153.71 and 157.83 ppm, correspondingly (for the chemical numbering scheme, see Fig. 1). These values are very close to the same signals of the unprotonated 5-amino-3-(pyridin-4-yl)-1H-1,2,4-triazole (Dolzhenko *et al.*, 2009*a*) and are typical for 5-amino-1*H*-1,2,4-triazoles (Chernyshev *et al.*, 2010). The chemical shift of the carbon connected to amino group is most representative. Thus, in the 5-amino- and 3-amino-4*H*-1,2,4-triazolium salts the signals of the same atoms are high field shifted to 149.3--154.7 ppm (Chernyshev *et al.*, 2010). Therefore, it could be concluded that the triazole cycle is unprotonated in DMSO solution of the studied salt. However, the signals of the carbons of the pyridine cycle of the hydrochloride (especially the carbons, connected with nitrogen atom) differ sufficiently from the ones of unprotonated 5-amino-3-(pyridin-4-yl)-1,2,4-triazole. In the unprotonated compound the signals of C^2^ and C^6^ are detected at 149.9 ppm (Dolzhenko *et al.*, 2009*a*), while in the hydrochloride they are observed at 142.9 ppm. Therefore, we can conclude that the pyridine cycle is protonated and the tautomeric form A is predominant in DMSO (Fig. 1). For unambiguous confirmation of the proposed structure, we performed an X-ray investigation of the title compound. In the ensuing discussion of the structure, the crystallographic numbering system will be used (Fig. 3). In accordance with the X-ray diffraction data, the studied compound in the crystal exists as the tautomer A (Fig. 3). The pyridine and triazole rings are almost coplanar, the dihedral angle between the planes of the rings is 2.3 (1)°. Bond lengths and angles in the triazole cycle are within the normal ranges and are comparable with those found in the other 3-substituted 5-amino-1*H*-1,2,4-triazoles (Rusinov *et al.*, 1991; Daro *et al.*, 2000; Boechat *et al.*, 2004; Dolzhenko *et al.*, 2009*b*,*c*). The nitrogen atom of the amino group is in a trigonal pyramidal configuration (sum of valence angles is 356.0° and deviates from the triazole plane by only 0.020 (3)Å. Conjugation between the unshared electron pair of N21 and the π-system of the triazole fragment leads to a shortening of the N21---C2 bond (1.330 (2)Å) relative to the standard length of a purely single Nsp^2^---Csp^2^ bond (1.43--1.45Å) (Burke-Laing & Laing, 1976; Allen *et al.*, 1987). Bond lengths and angles in the pyridine cycle are analogous to the ones in the pyridyl-substituted 1,2,4-triazoles, protonated at the pyridine cycle (Ren & Jian, 2008; Xie *et al.*, 2009; Du *et al.*, 2009). The wide system of hydrogen bonds are found in crystal structure of title compound. Firstly, atom Cl1 form contact 2.22 (2)Å (Table 1) with atom H16 of pyridyl moiety; secondly, atom H3 of triazole moiety, forms contact with O1^i^ atom from water molecule (symmetry code: (i) *x*, -*y*+1/2, *z*+1/2; thirdly, atom H1B^i^ from water molecule forms contact with Cl1^ii^ (symmetry code: (ii) -*x*+1, *y*-1/2, -*z*+3/2). Thus, we can see chain of hydrogen bonds along \[0 1 0\]. These chains form layers parallel (1, 0, 1/2) plane (Fig. 4). These layers connected by hydrogen bonds with involving H1A atoms of water molecule (Fig. 5). In the future, it would be interesting to investigate the structure of isomers of the studied compound, i.e. salts of the 5-amino-3-(pyridin-2-yl)-1,2,4-triazole and 5-amino-3-(pyridin-3-yl)-1,2,4-triazole in order to estimate the influence of structural peculiarities on protonation. Experimental {#experimental} ============ The title compound was prepared by the following procedure. A mixture of aminoguanidine hydrogen carbonate (5.53 g, 40.6 mmol), isonicotinic acid (5.01 g, 40.7 mmol) and 33.5% hydrochloric acid (5.0 ml) was heated to reflux for 15 min, then water was distilled off until the temperature of the reaction mixture raised to 448--453 K. The reaction mixture was heated at the same temperature for 6 h, cooled to \~373 K and dissolved in water (5 ml). The resulted solution was cooled to 276--278 K, the precipitate formed was isolated by filtration, recrystallized from 50% ethanol and dried at 403 K to give 6.82 g (85% yield) of yellowish powder, m. p. 579--581 K. Spectrum ^1^H NMR (600 MHz), δ: 6.61 (br s, 2H, NH~2~), 8.26 (d, J = 6.7 Hz, 2H, *Ar*), 8.85 (d, J = 6.7 Hz, 2H, *Ar*). Spectrum ^13^C NMR (150 MHz), δ: 121.78 (C^3^ and C^5^ of pyridine), 142.92 (C^2^ and C^6^ of pyridine), 145.51 (C^4^ of pyridine), 153.71 (C^3\'^ of triazole), 157.83 (C^5\'^ of triazole). MS (EI, 70 eV), m/*z* (%): 162 (10) \[C~7~H~8~N~5~^+^\], 161 (100) \[C~7~H~7~N~5~^+^\], 119 (26), 105 (45), 78 (46), 57 (68), 51 (71), 50 (38), 43 (38). Anal. Calcd for C~7~H~8~ClN~5~: C, 42.54; H, 4.08; N, 35.44. Found: C 42.35; H 4.19; N 35.18. The crystals of title compound suitable for *X*-ray analysis were grown by slow evaporation from water at room temperature. Refinement {#refinement} ========== C-bound H atoms were placed in calculated positions C---H 0.93Å and refined as riding, with *U*~iso~(H) = 1.2*U*~eq~(C). H-atoms forming hydrogen (N- and O-bound H atoms) bonds were found from difference Fourier map and refined independently. The initial experimental data were obtained for independent area of reciprocal space, but at the final stage of refinement procedure \'MERG 2\' instruction was used and \'*DIFABS* CAD4\' (Walker & Stuart, 1983) was applied. As a result, we have FVAR = 1, *R*~int~ = 0. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Possible tautomeric forms for hydrochloride of 5-amino-3-(pyridin-4-yl)-1,2,4-triazole. ::: ![](e-67-0o466-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Synthesis of the title compound. ::: ![](e-67-0o466-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### ORTEP-3 (Farrugia, 1997) plot of molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0o466-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### The molecular packing of the title compound along the b-axis showing molecular layers parallel to the plane (1, 0, 1/2). Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o466-fig4) ::: ::: {#Fap5 .fig} Fig. 5. ::: {.caption} ###### The molecular packing of the title compound along the c axis. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o466-fig5) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e425 .table-wrap} ----------------------------- ------------------------------------- C~7~H~8~N~5~^+^·Cl^−^·H~2~O *F*(000) = 448 *M~r~* = 215.65 *D*~x~ = 1.493 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point = 579--581 K Hall symbol: -P 2ybc Ag *K*α radiation, λ = 0.56085 Å *a* = 5.3411 (5) Å Cell parameters from 25 reflections *b* = 24.656 (3) Å θ = 12.1--14.0° *c* = 7.3488 (7) Å µ = 0.20 mm^−1^ β = 97.62 (2)° *T* = 295 K *V* = 959.22 (18) Å^3^ Prism, yellow *Z* = 4 0.20 × 0.20 × 0.20 mm ----------------------------- ------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e563 .table-wrap} ------------------------------------------------------------------------------------ -------------------------------------- Enraf--Nonius CAD-4 diffractometer 1518 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.000 graphite θ~max~ = 22.0°, θ~min~ = 1.3° Non--profiled ω scans *h* = −7→7 Absorption correction: part of the refinement model (Δ*F*) (Walker & Stuart, 1983) *k* = 0→32 *T*~min~ = 0.314, *T*~max~ = 0.961 *l* = 0→9 2389 measured reflections 1 standard reflections every 60 min 2389 independent reflections intensity decay: 2% ------------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e677 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.109 H atoms treated by a mixture of independent and constrained refinement *S* = 0.93 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0642*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2389 reflections (Δ/σ)~max~ = 0.001 151 parameters Δρ~max~ = 0.26 e Å^−3^ 0 restraints Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e831 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e879 .table-wrap} ------ ------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.03502 (9) 0.29662 (2) 0.52890 (9) 0.0585 (2) N1 0.4858 (3) −0.06015 (6) 0.7559 (2) 0.0421 (4) H1 0.458 (3) −0.0952 (8) 0.751 (3) 0.038 (5)\* N2 0.3363 (3) −0.01915 (6) 0.6821 (2) 0.0438 (4) C3 0.4713 (3) 0.02346 (7) 0.7339 (3) 0.0380 (4) N4 0.7008 (3) 0.01345 (6) 0.8344 (2) 0.0401 (4) C5 0.7035 (3) −0.03999 (7) 0.8458 (3) 0.0391 (4) C13 0.3868 (3) 0.07839 (7) 0.6860 (3) 0.0376 (4) C14 0.1558 (3) 0.08732 (8) 0.5770 (3) 0.0477 (5) H14 0.0536 0.0583 0.5337 0.057\* C15 0.0833 (4) 0.13903 (8) 0.5355 (3) 0.0512 (5) H15 −0.0694 0.1455 0.4620 0.061\* N16 0.2275 (3) 0.18070 (7) 0.5984 (3) 0.0514 (5) H16 0.197 (4) 0.2140 (9) 0.580 (3) 0.053 (6)\* C17 0.4501 (4) 0.17327 (8) 0.7024 (3) 0.0535 (6) H17 0.5484 0.2031 0.7435 0.064\* C18 0.5325 (3) 0.12272 (8) 0.7479 (3) 0.0468 (5) H18 0.6869 0.1177 0.8207 0.056\* N51 0.8895 (3) −0.07055 (7) 0.9294 (3) 0.0514 (5) H51A 0.869 (4) −0.1036 (9) 0.934 (3) 0.048 (6)\* H51B 0.994 (4) −0.0532 (9) 0.998 (3) 0.063 (7)\* O1 0.4229 (4) 0.67460 (7) 0.2570 (3) 0.0635 (5) H1A 0.309 (6) 0.6799 (12) 0.333 (4) 0.092 (11)\* H1B 0.562 (6) 0.6872 (11) 0.319 (4) 0.092 (10)\* ------ ------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1221 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0424 (3) 0.0401 (3) 0.0893 (5) 0.0049 (2) −0.0051 (3) 0.0026 (3) N1 0.0292 (7) 0.0325 (8) 0.0603 (11) −0.0045 (6) −0.0100 (7) 0.0005 (8) N2 0.0291 (7) 0.0428 (8) 0.0560 (10) −0.0051 (6) −0.0078 (7) −0.0022 (8) C3 0.0237 (8) 0.0429 (10) 0.0452 (11) −0.0004 (7) −0.0041 (7) −0.0041 (8) N4 0.0289 (7) 0.0330 (7) 0.0545 (10) −0.0017 (6) −0.0082 (7) −0.0009 (7) C5 0.0283 (8) 0.0359 (8) 0.0501 (11) −0.0031 (7) −0.0063 (7) −0.0005 (8) C13 0.0273 (8) 0.0392 (9) 0.0450 (10) 0.0019 (7) −0.0002 (7) −0.0004 (8) C14 0.0320 (9) 0.0486 (11) 0.0584 (13) −0.0007 (8) −0.0092 (9) −0.0014 (9) C15 0.0312 (9) 0.0532 (12) 0.0650 (14) 0.0094 (8) −0.0090 (9) 0.0057 (10) N16 0.0413 (9) 0.0419 (9) 0.0686 (13) 0.0117 (7) −0.0012 (8) 0.0048 (9) C17 0.0393 (10) 0.0464 (11) 0.0706 (16) 0.0013 (9) −0.0078 (10) −0.0023 (10) C18 0.0285 (9) 0.0426 (10) 0.0657 (13) 0.0029 (8) −0.0076 (9) 0.0008 (10) N51 0.0361 (8) 0.0326 (9) 0.0784 (14) −0.0011 (7) −0.0187 (8) 0.0002 (9) O1 0.0426 (9) 0.0564 (10) 0.0867 (13) 0.0052 (7) −0.0094 (10) −0.0090 (9) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1535 .table-wrap} --------------------- -------------- ----------------------- ------------- N4---C5 1.320 (2) C15---N16 1.330 (3) N4---C3 1.367 (2) C15---H15 0.9300 C5---N51 1.330 (2) N16---C17 1.338 (3) C5---N1 1.353 (2) N16---H16 0.85 (2) N1---N2 1.356 (2) C17---C18 1.349 (3) N1---H1 0.876 (19) C17---H17 0.9300 N2---C3 1.302 (2) C18---H18 0.9300 C3---C13 1.456 (2) N51---H51A 0.82 (2) C13---C18 1.383 (2) N51---H51B 0.82 (2) C13---C14 1.396 (2) O1---H1A 0.89 (3) C14---C15 1.355 (3) O1---H1B 0.88 (3) C14---H14 0.9300 C5---N4---C3 102.47 (14) N16---C15---C14 120.89 (17) N4---C5---N51 126.56 (17) N16---C15---H15 119.6 N4---C5---N1 109.53 (15) C14---C15---H15 119.6 N51---C5---N1 123.90 (18) C15---N16---C17 121.52 (18) C5---N1---N2 110.08 (15) C15---N16---H16 127.1 (16) C5---N1---H1 120.6 (12) C17---N16---H16 111.3 (16) N2---N1---H1 129.3 (12) N16---C17---C18 120.25 (18) C3---N2---N1 102.18 (14) N16---C17---H17 119.9 N2---C3---N4 115.73 (16) C18---C17---H17 119.9 N2---C3---C13 122.53 (15) C17---C18---C13 119.87 (17) N4---C3---C13 121.73 (15) C17---C18---H18 120.1 C18---C13---C14 118.66 (17) C13---C18---H18 120.1 C18---C13---C3 120.84 (15) C5---N51---H51A 118.8 (15) C14---C13---C3 120.50 (16) C5---N51---H51B 113.2 (17) C15---C14---C13 118.80 (17) H51A---N51---H51B 125 (2) C15---C14---H14 120.6 H1A---O1---H1B 103 (3) C13---C14---H14 120.6 C3---N4---C5---N51 179.2 (2) N2---C3---C13---C14 −1.6 (3) C3---N4---C5---N1 0.1 (2) N4---C3---C13---C14 177.42 (19) N4---C5---N1---N2 0.4 (2) C18---C13---C14---C15 0.2 (3) N51---C5---N1---N2 −178.75 (19) C3---C13---C14---C15 179.92 (19) C5---N1---N2---C3 −0.8 (2) C13---C14---C15---N16 −0.6 (3) N1---N2---C3---N4 0.9 (2) C14---C15---N16---C17 0.9 (3) N1---N2---C3---C13 179.91 (17) C15---N16---C17---C18 −0.7 (3) C5---N4---C3---N2 −0.6 (2) N16---C17---C18---C13 0.3 (3) C5---N4---C3---C13 −179.68 (18) C14---C13---C18---C17 0.0 (3) N2---C3---C13---C18 178.20 (19) C3---C13---C18---C17 −179.8 (2) N4---C3---C13---C18 −2.8 (3) --------------------- -------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1936 .table-wrap} ---------------------- ------------ ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O1^i^ 0.876 (19) 1.97 (2) 2.842 (2) 175.0 (18) N16---H16···Cl1 0.85 (2) 2.22 (2) 3.0574 (18) 169 (2) N51---H51A···Cl1^ii^ 0.82 (2) 2.52 (2) 3.3092 (18) 160.5 (19) N51---H51B···N4^iii^ 0.82 (2) 2.15 (2) 2.963 (2) 174 (2) O1---H1A···Cl1^iv^ 0.89 (3) 2.29 (3) 3.159 (2) 167 (3) O1---H1B···Cl1^v^ 0.88 (3) 2.32 (3) 3.187 (2) 168 (2) ---------------------- ------------ ---------- ------------- --------------- ::: Symmetry codes: (i) *x*, −*y*+1/2, *z*+1/2; (ii) −*x*+1, *y*−1/2, −*z*+3/2; (iii) −*x*+2, −*y*, −*z*+2; (iv) −*x*, −*y*+1, −*z*+1; (v) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- ------------ ---------- ------------- ------------- N1---H1⋯O1^i^ 0.876 (19) 1.97 (2) 2.842 (2) 175.0 (18) N16---H16⋯Cl1 0.85 (2) 2.22 (2) 3.0574 (18) 169 (2) N51---H51*A*⋯Cl1^ii^ 0.82 (2) 2.52 (2) 3.3092 (18) 160.5 (19) N51---H51*B*⋯N4^iii^ 0.82 (2) 2.15 (2) 2.963 (2) 174 (2) O1---H1*A*⋯Cl1^iv^ 0.89 (3) 2.29 (3) 3.159 (2) 167 (3) O1---H1*B*⋯Cl1^v^ 0.88 (3) 2.32 (3) 3.187 (2) 168 (2) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:16.722660
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051743/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o466-o467", "authors": [ { "first": "Victor M.", "last": "Chernyshev" }, { "first": "Elena V.", "last": "Tarasova" }, { "first": "Anna V.", "last": "Chernysheva" }, { "first": "Victor B.", "last": "Rybakov" } ] }
PMC3051744
Related literature {#sec1} ================== Benzofuran­ones are precursors of a wide range of natural and synthetic products. For a related transformation of benzo­furan­ones in aurones, see: Schoepfer *et al.* (2002[@bb9]); Löser *et al.* (2004[@bb8]); in spiro­annulated and aromatic spiro­ketal compounds, see: Braun *et al.* (2008[@bb2]); Zhou *et al.* (2008[@bb12]); in benzofurane derivatives, see: Venkatesan *et al.*(2010[@bb11]); and in pyran­o­benzofuranes, see: Foroumadi *et al.* (2009[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~26~H~28~O~3~Si*M* *~r~* = 416.57Triclinic,*a* = 9.8210 (18) Å*b* = 11.081 (2) Å*c* = 12.025 (2) Åα = 98.803 (2)°β = 112.151 (2)°γ = 101.791 (2)°*V* = 1147.7 (4) Å^3^*Z* = 2Mo *K*α radiationμ = 0.13 mm^−1^*T* = 100 K0.49 × 0.43 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART 1000 CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb3]) *T* ~min~ = 0.941, *T* ~max~ = 0.98814369 measured reflections4197 independent reflections3325 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.111*S* = 1.054197 reflections276 parametersH-atom parameters constrainedΔρ~max~ = 0.83 e Å^−3^Δρ~min~ = −0.29 e Å^−3^ {#d5e375} Data collection: *SMART* (Bruker, 2007[@bb4]); cell refinement: *SAINT* (Bruker, 2007[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810054462/si2320sup1.cif](http://dx.doi.org/10.1107/S1600536810054462/si2320sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054462/si2320Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054462/si2320Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?si2320&file=si2320sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?si2320sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?si2320&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SI2320](http://scripts.iucr.org/cgi-bin/sendsup?si2320)). We gratefully acknowledge the Unidade de Raios X, RIAIDT, University of Santi­ago de Compostela, Spain. Comment ======= Benzofuranones are very important compounds because of their use in a wide range of natural and synthetic products with relevant properties such as spiroannulated benzofuranones (Braun *et al.*, 2008), aromatics spiroketals compounds (Zhou *et al.*, 2008), aurones (Schoepfer *et al*, 2002; Löser *et al.*, 2004), pyranobenzofuranes (Foroumadi *et al.*, 2009) and some benzofuranes derivatives (Venkatesan *et al.*, 2010). The benzofuranone 3 is the product of the allylic oxidation of the *tert*-butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane with *N*-bromosuccinimide (NBS) and 2,2\'-azobis-isobutyronitrile (AIBN) (Fig. 2). The molecular structure of the title compound is represented in Fig. 1. Bond lengths and angles are within the expected values and confirm the bond orders giving in the Scheme. The 9-atom bicyclic system is, as expected, planar, with r.m.s deviation = 0.0123 (2) Å and a maximum deviation of 0.031 (2) Å. The molecules pile up along the *b* axis but the strongest intermolecular contacts are the π--π stacking interactions between the benzo rings along the *c* axis \[centroid--centroid distances = 3.655 (5) Å\]. Experimental {#experimental} ============ *tert*-Butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2) *tert*-Butyldiphenylsilyl chloride (1.0 g, 3.64 mmol) and imidazole (1.52 g, 22.35 mmol) were added to a solution of 2,2-dimethyl-2,3-dihydrobenzofuran-7-ol (1) (0.59 g, 3.62 mmol) in dry THF (50 ml) and the mixture was stirred at room temperature for 12 h. under an nitrogen atmosphere. Petroleum ether (100 ml) was added and the solid was filtered off and the solvents were removed *in vacuo* to give an oil residue, which was purified by flash column chromatography (CH~2~Cl~2~/ petroleum ether, 9:1) to give *tert*-butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2) (1.43 g, 98%) as a colorless oil. 7-(*tert*-Butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2*H*)-one (3). NBS (1.54 g, 8.70 mmol) and AIBN (25 mg) were added to a solution of *tert*-butyl(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2) (1.0 g, 2.39 mmol) in dry CCl~4~ (150 ml) and the resulting suspension was stirred at reflux for 2 h. The mixture was cooled and filtered. The filtrate was evaporated to dryness *in vacuo* to give a residue, which was purified by flash column chromatography (CH~2~Cl~2~) to give 7-(*tert*-butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2*H*)-one (3) (0.75 g, 75%) as a white solid. mp: 354.5--355.5 K. Crystals were grown by slow evaporation from CH~2~Cl~2~. Refinement {#refinement} ========== H atoms were placed in idealized positions with C---H distances 0.95 -- 0.98 Å and thereafter treated as riding. A torsional parameter was refined for each methyl group. *U*iso for H were assigned as 1.2 times *U*eq of the attached C atom (1.5 for the methyl groups). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms with arbitrary radius. ::: ![](e-67-0o375-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Chemical reactions scheme for obtain molecule 3. ::: ![](e-67-0o375-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e207 .table-wrap} ----------------------- --------------------------------------- C~26~H~28~O~3~Si *Z* = 2 *M~r~* = 416.57 *F*(000) = 444 Triclinic, *P*1 *D*~x~ = 1.205 Mg m^−3^ *a* = 9.8210 (18) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 11.081 (2) Å Cell parameters from 3414 reflections *c* = 12.025 (2) Å θ = 2.3--27.3° α = 98.803 (2)° µ = 0.13 mm^−1^ β = 112.151 (2)° *T* = 100 K γ = 101.791 (2)° Prism, colourless *V* = 1147.7 (4) Å^3^ 0.49 × 0.43 × 0.10 mm ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e336 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART 1000 CCD diffractometer 4197 independent reflections Radiation source: fine-focus sealed tube 3325 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 ω scans θ~max~ = 25.4°, θ~min~ = 1.9° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −11→10 *T*~min~ = 0.941, *T*~max~ = 0.988 *k* = −13→13 14369 measured reflections *l* = 0→14 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e447 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.111 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0422*P*)^2^ + 0.8404*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4197 reflections (Δ/σ)~max~ \< 0.001 276 parameters Δρ~max~ = 0.83 e Å^−3^ 0 restraints Δρ~min~ = −0.29 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e604 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Experimental. *tert*-Butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2)^1^H RMN (CDCl~3~, 200 MHz) d 1.18 (s, 9H, 3xCH~3~); 1.34 (s, 6H, 2xCH~3~), 2.96 (s, 2H, H3); 6.53--6.56 (m, 2H, H5, H4); 6.70 (m, 1H, H6); 7.35--7.44 (m, 6H, H---Ar); 7.38--7.83 (m, 4H, H---Ar). ^13^C RMN (CDCl~3~, 50 MHz) d 19.7 (C(CH~3~)~3~); 26.8 (3xCH~3~); 28.1 (2xCH~3~); 43.4 (C3); 86.4 (C2); 117.9 (C6); 119.6 (C5); 119.8 (C4); 127.5 (Ar); 127.8 (C3a); 129.6 (Ar); 133.9 (Ar); 135.7 (Ar); 139.9 (C7); 149.4 (C7a).7-(*tert*-Butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2*H*)-one (3).IR (NaCl, cm^-1^): 1714 (CO). ^1^H-RMN (CDCl~3~, 200 MHz) d 1.18 (s, 9H, 3xCH~3~); 1.30 (s, 6H, 2xCH~3~); 6.74 (t, 1H, *J* =7.7 Hz, H5,); 6.97 (dd, 1H, *J* =1.1, *J* =7.8 Hz, H6); 7.21 (dd, 1H, *J* =1,1, *J* =7,6 Hz, H4); 7.32--7.48 (m, 6H, H---Ar); 7.72--7.77 (m, 4H, H---Ar). ^13^C-RMN (CDCl~3~, 50 MHz) d 19.7 (C(CH~3~)~3~); 22.8 (3xCH~3~); 26.6 (2xCH~3~); 87.9 (C2); 117.0 (C5); 121.0 (C7); 121.8 (C4); 127.7 (Ar); 130.0 (Ar); 133.0 (C6); 135.5 (Ar); 142.4 (C3a); 162.4 (C7a); 204.8 (C3). MS (CI) *m*/*z* 417 \[(*M*^+^, 74\]; 359 (66); 339 (100). Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e822 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Si1 0.05281 (6) 0.33072 (5) 0.76624 (5) 0.01833 (15) O1 0.32466 (15) 0.13402 (12) 0.72764 (12) 0.0227 (3) C2 0.4315 (2) 0.05650 (19) 0.75715 (18) 0.0223 (4) C3 0.3300 (2) −0.07888 (19) 0.73025 (18) 0.0227 (4) C4 0.1727 (2) −0.07133 (18) 0.68675 (17) 0.0202 (4) C5 0.0325 (2) −0.16301 (19) 0.64733 (18) 0.0232 (4) H5 0.0270 −0.2501 0.6447 0.028\* C6 −0.0980 (2) −0.1229 (2) 0.61233 (18) 0.0252 (5) H6 −0.1955 −0.1833 0.5839 0.030\* C7 −0.0885 (2) 0.0057 (2) 0.61825 (18) 0.0236 (4) H7 −0.1800 0.0311 0.5953 0.028\* C8 0.0501 (2) 0.09704 (18) 0.65653 (17) 0.0193 (4) C9 0.1812 (2) 0.05545 (18) 0.68970 (16) 0.0188 (4) C10 0.5136 (2) 0.0626 (2) 0.6729 (2) 0.0296 (5) H10A 0.4379 0.0327 0.5860 0.044\* H10B 0.5824 0.0083 0.6894 0.044\* H10C 0.5734 0.1508 0.6886 0.044\* C11 0.5402 (2) 0.1070 (2) 0.8933 (2) 0.0316 (5) H11A 0.5988 0.1955 0.9086 0.047\* H11B 0.6109 0.0548 0.9159 0.047\* H11C 0.4813 0.1033 0.9434 0.047\* O12 0.37919 (16) −0.17058 (14) 0.74359 (14) 0.0320 (4) O13 0.06209 (15) 0.22261 (12) 0.65909 (12) 0.0217 (3) C14 0.0978 (2) 0.27196 (18) 0.90971 (18) 0.0212 (4) C15 0.2433 (2) 0.2591 (2) 0.97519 (19) 0.0270 (5) H15 0.3220 0.2867 0.9493 0.032\* C16 0.2760 (3) 0.2073 (2) 1.0766 (2) 0.0323 (5) H16 0.3764 0.2007 1.1200 0.039\* C17 0.1623 (3) 0.1654 (2) 1.1145 (2) 0.0358 (6) H17 0.1840 0.1291 1.1837 0.043\* C18 0.0170 (3) 0.1763 (2) 1.0515 (2) 0.0371 (6) H18 −0.0613 0.1476 1.0776 0.045\* C19 −0.0147 (2) 0.2288 (2) 0.9508 (2) 0.0285 (5) H19 −0.1151 0.2358 0.9084 0.034\* C20 −0.1450 (2) 0.34886 (18) 0.70512 (18) 0.0215 (4) C21 −0.2426 (2) 0.3037 (2) 0.57890 (19) 0.0253 (5) H21 −0.2115 0.2558 0.5252 0.030\* C22 −0.3847 (2) 0.3276 (2) 0.5300 (2) 0.0337 (5) H22 −0.4498 0.2958 0.4438 0.040\* C23 −0.4303 (3) 0.3977 (2) 0.6075 (2) 0.0379 (6) H23 −0.5273 0.4139 0.5748 0.045\* C24 −0.3351 (3) 0.4442 (2) 0.7324 (2) 0.0365 (6) H24 −0.3665 0.4928 0.7854 0.044\* C25 −0.1943 (2) 0.4205 (2) 0.7807 (2) 0.0281 (5) H25 −0.1298 0.4534 0.8668 0.034\* C26 0.1895 (2) 0.48211 (19) 0.77629 (18) 0.0220 (4) C27 0.3543 (3) 0.4743 (2) 0.8183 (3) 0.0462 (7) H27A 0.3558 0.3973 0.7669 0.069\* H27B 0.3951 0.4711 0.9054 0.069\* H27C 0.4179 0.5495 0.8094 0.069\* C28 0.1375 (3) 0.5049 (2) 0.6466 (2) 0.0318 (5) H28A 0.2037 0.5858 0.6497 0.048\* H28B 0.0312 0.5086 0.6170 0.048\* H28C 0.1442 0.4351 0.5899 0.048\* C29 0.1862 (3) 0.5957 (2) 0.8649 (2) 0.0428 (6) H29A 0.2554 0.6739 0.8663 0.064\* H29B 0.2195 0.5823 0.9486 0.064\* H29C 0.0816 0.6034 0.8363 0.064\* ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1609 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Si1 0.0189 (3) 0.0199 (3) 0.0175 (3) 0.0066 (2) 0.0087 (2) 0.0046 (2) O1 0.0195 (7) 0.0194 (7) 0.0283 (8) 0.0056 (6) 0.0088 (6) 0.0070 (6) C2 0.0201 (10) 0.0210 (10) 0.0256 (11) 0.0085 (8) 0.0076 (8) 0.0069 (8) C3 0.0243 (10) 0.0234 (11) 0.0208 (10) 0.0083 (9) 0.0085 (8) 0.0074 (8) C4 0.0240 (10) 0.0208 (10) 0.0156 (9) 0.0069 (8) 0.0079 (8) 0.0050 (8) C5 0.0268 (11) 0.0190 (10) 0.0223 (10) 0.0033 (8) 0.0104 (9) 0.0050 (8) C6 0.0222 (10) 0.0266 (11) 0.0236 (11) 0.0009 (9) 0.0100 (9) 0.0052 (9) C7 0.0205 (10) 0.0326 (12) 0.0201 (10) 0.0096 (9) 0.0101 (8) 0.0069 (9) C8 0.0259 (10) 0.0199 (10) 0.0158 (9) 0.0094 (8) 0.0112 (8) 0.0047 (8) C9 0.0204 (10) 0.0206 (10) 0.0143 (9) 0.0031 (8) 0.0080 (8) 0.0034 (8) C10 0.0266 (11) 0.0322 (12) 0.0336 (12) 0.0105 (9) 0.0142 (10) 0.0112 (10) C11 0.0284 (12) 0.0297 (12) 0.0289 (12) 0.0059 (9) 0.0057 (10) 0.0058 (9) O12 0.0287 (8) 0.0236 (8) 0.0416 (9) 0.0108 (7) 0.0098 (7) 0.0110 (7) O13 0.0280 (8) 0.0216 (7) 0.0207 (7) 0.0119 (6) 0.0128 (6) 0.0069 (6) C14 0.0268 (11) 0.0175 (10) 0.0200 (10) 0.0074 (8) 0.0104 (8) 0.0037 (8) C15 0.0280 (11) 0.0293 (12) 0.0264 (11) 0.0100 (9) 0.0122 (9) 0.0095 (9) C16 0.0369 (13) 0.0359 (13) 0.0252 (11) 0.0173 (10) 0.0097 (10) 0.0105 (10) C17 0.0558 (16) 0.0353 (13) 0.0273 (12) 0.0228 (12) 0.0210 (11) 0.0163 (10) C18 0.0502 (15) 0.0418 (14) 0.0389 (13) 0.0194 (12) 0.0320 (12) 0.0210 (11) C19 0.0288 (12) 0.0326 (12) 0.0320 (12) 0.0124 (10) 0.0176 (10) 0.0124 (10) C20 0.0228 (10) 0.0199 (10) 0.0260 (11) 0.0077 (8) 0.0126 (9) 0.0096 (8) C21 0.0257 (11) 0.0277 (11) 0.0259 (11) 0.0085 (9) 0.0122 (9) 0.0117 (9) C22 0.0250 (11) 0.0424 (14) 0.0337 (13) 0.0103 (10) 0.0083 (10) 0.0196 (11) C23 0.0256 (12) 0.0436 (14) 0.0563 (16) 0.0199 (11) 0.0193 (11) 0.0265 (12) C24 0.0360 (13) 0.0348 (13) 0.0538 (16) 0.0188 (11) 0.0286 (12) 0.0160 (12) C25 0.0295 (12) 0.0258 (11) 0.0336 (12) 0.0089 (9) 0.0175 (10) 0.0079 (9) C26 0.0208 (10) 0.0221 (10) 0.0208 (10) 0.0026 (8) 0.0087 (8) 0.0043 (8) C27 0.0239 (12) 0.0448 (15) 0.0687 (18) 0.0044 (11) 0.0147 (12) 0.0314 (14) C28 0.0398 (13) 0.0257 (12) 0.0271 (11) 0.0042 (10) 0.0131 (10) 0.0091 (9) C29 0.0602 (17) 0.0235 (12) 0.0409 (14) −0.0067 (11) 0.0316 (13) −0.0038 (10) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2110 .table-wrap} ----------------------- -------------- ----------------------- -------------- Si1---O13 1.6627 (14) C16---C17 1.381 (3) Si1---C14 1.866 (2) C16---H16 0.9500 Si1---C20 1.866 (2) C17---C18 1.381 (3) Si1---C26 1.878 (2) C17---H17 0.9500 O1---C9 1.358 (2) C18---C19 1.382 (3) O1---C2 1.465 (2) C18---H18 0.9500 C2---C11 1.513 (3) C19---H19 0.9500 C2---C10 1.515 (3) C20---C21 1.396 (3) C2---C3 1.532 (3) C20---C25 1.400 (3) C3---O12 1.218 (2) C21---C22 1.394 (3) C3---C4 1.457 (3) C21---H21 0.9500 C4---C9 1.384 (3) C22---C23 1.382 (3) C4---C5 1.394 (3) C22---H22 0.9500 C5---C6 1.379 (3) C23---C24 1.379 (3) C5---H5 0.9500 C23---H23 0.9500 C6---C7 1.398 (3) C24---C25 1.381 (3) C6---H6 0.9500 C24---H24 0.9500 C7---C8 1.383 (3) C25---H25 0.9500 C7---H7 0.9500 C26---C28 1.526 (3) C8---O13 1.367 (2) C26---C27 1.529 (3) C8---C9 1.393 (3) C26---C29 1.534 (3) C10---H10A 0.9800 C27---H27A 0.9800 C10---H10B 0.9800 C27---H27B 0.9800 C10---H10C 0.9800 C27---H27C 0.9800 C11---H11A 0.9800 C28---H28A 0.9800 C11---H11B 0.9800 C28---H28B 0.9800 C11---H11C 0.9800 C28---H28C 0.9800 C14---C15 1.397 (3) C29---H29A 0.9800 C14---C19 1.400 (3) C29---H29B 0.9800 C15---C16 1.383 (3) C29---H29C 0.9800 C15---H15 0.9500 O13---Si1---C14 107.62 (8) C17---C16---H16 120.1 O13---Si1---C20 108.10 (8) C15---C16---H16 120.1 C14---Si1---C20 111.46 (9) C18---C17---C16 119.8 (2) O13---Si1---C26 103.79 (8) C18---C17---H17 120.1 C14---Si1---C26 116.95 (9) C16---C17---H17 120.1 C20---Si1---C26 108.36 (9) C17---C18---C19 120.2 (2) C9---O1---C2 107.46 (14) C17---C18---H18 119.9 O1---C2---C11 107.94 (16) C19---C18---H18 119.9 O1---C2---C10 108.69 (16) C18---C19---C14 121.5 (2) C11---C2---C10 112.76 (17) C18---C19---H19 119.3 O1---C2---C3 104.86 (15) C14---C19---H19 119.3 C11---C2---C3 111.31 (17) C21---C20---C25 117.43 (18) C10---C2---C3 110.89 (17) C21---C20---Si1 120.75 (15) O12---C3---C4 129.89 (19) C25---C20---Si1 121.41 (16) O12---C3---C2 123.83 (18) C22---C21---C20 121.4 (2) C4---C3---C2 106.28 (16) C22---C21---H21 119.3 C9---C4---C5 121.40 (18) C20---C21---H21 119.3 C9---C4---C3 106.16 (17) C23---C22---C21 119.6 (2) C5---C4---C3 132.44 (18) C23---C22---H22 120.2 C6---C5---C4 117.65 (19) C21---C22---H22 120.2 C6---C5---H5 121.2 C24---C23---C22 120.0 (2) C4---C5---H5 121.2 C24---C23---H23 120.0 C5---C6---C7 120.71 (19) C22---C23---H23 120.0 C5---C6---H6 119.6 C23---C24---C25 120.3 (2) C7---C6---H6 119.6 C23---C24---H24 119.8 C8---C7---C6 121.96 (18) C25---C24---H24 119.8 C8---C7---H7 119.0 C24---C25---C20 121.3 (2) C6---C7---H7 119.0 C24---C25---H25 119.4 O13---C8---C7 123.14 (17) C20---C25---H25 119.4 O13---C8---C9 119.85 (17) C28---C26---C27 107.98 (18) C7---C8---C9 116.99 (18) C28---C26---C29 108.62 (18) O1---C9---C4 115.22 (17) C27---C26---C29 109.12 (19) O1---C9---C8 123.50 (17) C28---C26---Si1 107.54 (14) C4---C9---C8 121.27 (17) C27---C26---Si1 112.54 (15) C2---C10---H10A 109.5 C29---C26---Si1 110.90 (14) C2---C10---H10B 109.5 C26---C27---H27A 109.5 H10A---C10---H10B 109.5 C26---C27---H27B 109.5 C2---C10---H10C 109.5 H27A---C27---H27B 109.5 H10A---C10---H10C 109.5 C26---C27---H27C 109.5 H10B---C10---H10C 109.5 H27A---C27---H27C 109.5 C2---C11---H11A 109.5 H27B---C27---H27C 109.5 C2---C11---H11B 109.5 C26---C28---H28A 109.5 H11A---C11---H11B 109.5 C26---C28---H28B 109.5 C2---C11---H11C 109.5 H28A---C28---H28B 109.5 H11A---C11---H11C 109.5 C26---C28---H28C 109.5 H11B---C11---H11C 109.5 H28A---C28---H28C 109.5 C8---O13---Si1 126.65 (12) H28B---C28---H28C 109.5 C15---C14---C19 116.86 (18) C26---C29---H29A 109.5 C15---C14---Si1 120.96 (15) C26---C29---H29B 109.5 C19---C14---Si1 121.97 (15) H29A---C29---H29B 109.5 C16---C15---C14 121.9 (2) C26---C29---H29C 109.5 C16---C15---H15 119.0 H29A---C29---H29C 109.5 C14---C15---H15 119.0 H29B---C29---H29C 109.5 C17---C16---C15 119.7 (2) C9---O1---C2---C11 −118.39 (17) C26---Si1---C14---C15 −50.63 (19) C9---O1---C2---C10 119.01 (17) O13---Si1---C14---C19 −108.91 (17) C9---O1---C2---C3 0.37 (19) C20---Si1---C14---C19 9.4 (2) O1---C2---C3---O12 179.64 (18) C26---Si1---C14---C19 134.85 (17) C11---C2---C3---O12 −63.9 (3) C19---C14---C15---C16 −0.6 (3) C10---C2---C3---O12 62.5 (3) Si1---C14---C15---C16 −175.34 (17) O1---C2---C3---C4 0.30 (19) C14---C15---C16---C17 0.8 (3) C11---C2---C3---C4 116.76 (18) C15---C16---C17---C18 −0.5 (3) C10---C2---C3---C4 −116.84 (18) C16---C17---C18---C19 0.1 (4) O12---C3---C4---C9 179.9 (2) C17---C18---C19---C14 0.1 (4) C2---C3---C4---C9 −0.8 (2) C15---C14---C19---C18 0.1 (3) O12---C3---C4---C5 −0.2 (4) Si1---C14---C19---C18 174.87 (17) C2---C3---C4---C5 179.0 (2) O13---Si1---C20---C21 −16.23 (18) C9---C4---C5---C6 −0.6 (3) C14---Si1---C20---C21 −134.30 (16) C3---C4---C5---C6 179.51 (19) C26---Si1---C20---C21 95.65 (17) C4---C5---C6---C7 −0.9 (3) O13---Si1---C20---C25 171.27 (15) C5---C6---C7---C8 1.3 (3) C14---Si1---C20---C25 53.20 (19) C6---C7---C8---O13 177.67 (17) C26---Si1---C20---C25 −76.85 (18) C6---C7---C8---C9 −0.2 (3) C25---C20---C21---C22 −0.8 (3) C2---O1---C9---C4 −1.0 (2) Si1---C20---C21---C22 −173.60 (16) C2---O1---C9---C8 178.51 (17) C20---C21---C22---C23 0.3 (3) C5---C4---C9---O1 −178.72 (16) C21---C22---C23---C24 0.3 (3) C3---C4---C9---O1 1.2 (2) C22---C23---C24---C25 −0.3 (3) C5---C4---C9---C8 1.8 (3) C23---C24---C25---C20 −0.2 (3) C3---C4---C9---C8 −178.34 (17) C21---C20---C25---C24 0.8 (3) O13---C8---C9---O1 1.3 (3) Si1---C20---C25---C24 173.55 (16) C7---C8---C9---O1 179.22 (17) O13---Si1---C26---C28 56.95 (15) O13---C8---C9---C4 −179.26 (16) C14---Si1---C26---C28 175.28 (13) C7---C8---C9---C4 −1.3 (3) C20---Si1---C26---C28 −57.78 (16) C7---C8---O13---Si1 78.3 (2) O13---Si1---C26---C27 −61.85 (17) C9---C8---O13---Si1 −103.83 (18) C14---Si1---C26---C27 56.47 (19) C14---Si1---O13---C8 21.23 (17) C20---Si1---C26---C27 −176.58 (16) C20---Si1---O13---C8 −99.27 (16) O13---Si1---C26---C29 175.59 (15) C26---Si1---O13---C8 145.81 (15) C14---Si1---C26---C29 −66.09 (18) O13---Si1---C14---C15 65.61 (18) C20---Si1---C26---C29 60.85 (17) C20---Si1---C14---C15 −176.04 (16) ----------------------- -------------- ----------------------- -------------- :::
PubMed Central
2024-06-05T04:04:16.726755
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051744/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o375", "authors": [ { "first": "Cristian O.", "last": "Salas" }, { "first": "Ricardo A.", "last": "Tapia" }, { "first": "Alejandro", "last": "Macías" } ] }
PMC3051745
Related literature {#sec1} ================== For general background to supra­molecular inter­actions, see: Jeffrey (1997[@bb2]). For the structures of metal complexes with imidazole ligands reported by our group, see: Ren, Ye, He *et al.* (2004[@bb5]); Ren, Ye, Zhu *et al.* (2004[@bb6]); Ren *et al.* (2007[@bb3], 2009[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~12~H~16~N~4~ ^2+^·2C~7~H~4~NO~4~ ^−^*M* *~r~* = 548.51Triclinic,*a* = 6.9882 (12) Å*b* = 7.4165 (12) Å*c* = 13.233 (2) Åα = 81.343 (3)°β = 82.443 (3)°γ = 62.699 (2)°*V* = 600.96 (17) Å^3^*Z* = 1Mo *K*α radiationμ = 0.12 mm^−1^*T* = 273 K0.67 × 0.55 × 0.42 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1998[@bb1]) *T* ~min~ = 0.927, *T* ~max~ = 0.9533714 measured reflections2575 independent reflections1676 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.016 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.151*S* = 1.072575 reflections181 parameters1 restraintH-atom parameters constrainedΔρ~max~ = 0.20 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e514} Data collection: *SMART* (Bruker, 1998[@bb1]); cell refinement: *SAINT-Plus* (Bruker, 1998[@bb1]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008)[@bb7]; program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008)[@bb7]; molecular graphics: *SHELXTL* (Sheldrick, 2008)[@bb7]; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810053341/ds2078sup1.cif](http://dx.doi.org/10.1107/S1600536810053341/ds2078sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053341/ds2078Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053341/ds2078Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ds2078&file=ds2078sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ds2078sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ds2078&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [DS2078](http://scripts.iucr.org/cgi-bin/sendsup?ds2078)). This work was generously supported by the National Natural Science Foundation of China (No. 20701016). Comment ======= Attention has been recently focused on the use of supramolecular interactions, such as hydrogen bonding and π-π interactions, in the controlled assembly of supramolecular architectures (Jeffrey, 1997). Hydrogen bonds often play a dominant role in crystal engineering because of their combine strength with directionality. We have reported several complexes having an imidazole entity, and have concluded that hydrogen bonding involving this group influences the geometry around the metal atom and the crystallization mechanism (Ren, Ye, He *et al.*, 2004; Ren, Ye, Zhu *et al.*, 2004; Ren, *et al.*, 2007; Ren, *et al.*, 2009). As a further contribution to this field, we describe herein the synthesis and crystal structure of the title compound. The asymmetric unit of the title compound (Fig. 1) contains one-half of 1,4-bis(4,5-dihydro-*H*,4*H*--imidazol-2-yl)benzene (bib) cation and one 3-nitrobenzoate (NB) anion. In the bib molecule, the imidazole ring A (N1/N2/C1---C3) adopts an envelop conformation with atom C4 displaced by 0.082 (3)/A from the plane of the other ring atoms. Rings B (C4/C5/C6/C4\'/C5\'/C6\') \[symmetry code (\'): 3 - *x*,-*y*,-*z*\] are, of course, planar and they are oriented at a dihedral angle of 96.6/%. In the crystal structure, the bib and NB ligands are joined together through hydrogen bonds between the carboxy oxygen in NB and nitrogen atom in bib to give a macrocycle N1---H1···O1 and N2---H2···O2 with the hydrogen bond geometry given in Table 1, and a face-to-face intracyclic π-π interaction at 3.50 (1) /A. Each bib group also features another macrocycles, resulting in 1-D chains running along the *a* axis. As illustracted in Fig. 2, the adjacent NB ligands are furthermore linked in the antiparallel alignment with offset along the *bc* plane by π-π contacts (3.28 (1)/A) in a 3-D structure (Fig. 2). Weak intermolecular C---H···O contacts contribute to the stability of the layered structure (Table 1). Experimental {#experimental} ============ All the reagents and solvents employed were commercially available and used as received without further purification. Syntheses of 1,4-bis(4,5-dihydro-1*H*-imidazol-2-yl)benzene: a mixture of 1,4-Benzenedicarboxylic acid (2.31 g, 13.9 mmol), ethylenediamine (3.70 ml, 50 mmol), ethylenediamine dihydrochloride(6.64 g, 50 mmol) and toluene-*p*-sulfonic acid (0.208 g, 1.09 mmol) in ethyleneglycol (20 ml) was refluxed at 198/%C for 3 h. Then about half of the ethylene glycol solvent was then slowly removed by distillation at 120 /%C. The residue was dissolved in a mixture of water (40 ml) and concentrated hydrochloric acid (11 *M*, 3 ml). The addition of 50% aqueous sodium hydroxide gave a yellow precipitate that was recrystallized by methonal (yield 83% based on 1,4-benzenedicarboxylic acid (*ca* 2.50 g). Calc. for C~12~H~14~N~4~: C 67.27; H 6.59; N 26.15%. Found: C 66.98; H 6.92; N 26.08%. IR (KBr, cm^-1^): 3188(*m*), 2936(*m*), 2866(*m*), 1606(*s*), 1532(*s*), 1466(*s*), 1345(*m*), 1270(*s*), 1191(w), 1080(w), 981(*m*), 855(*m*). Syntheses of the title compound: to a solution of 1,4-bis(4,5-dihydro-1*H*-imidazol-2-yl)benzene (0.0109 g, 0.05 mmol) in methonal (1 ml), an acetonitrile solution (1 ml) of 3-nitrobenzoic acid (0.0069 g, 0.06 mmol) was added and stirred 10 min at room temperature. The solution was allowed at room temperature in 10 ml diethyl diether for 25 h by slow evaporation. Colorless prismatic crystals of the title compound were obtained, which were collected by filtration, washed with water and dried in vacuum desiccator over silica gel (0.0095 g, 41%). IR (KBr,cm^-1^): 3436(*s*), 3080(w), 2924(*m*), 1618(*s*), 1560(*m*), 1524(*s*), 1383(*s*), 1370(*s*), 1351(*s*), 1282(*m*), 720(*m*), 696(w). Refinement {#refinement} ========== Anisotropic thermal parameters were applied to all nonhydrogen atoms. The organic hydrogen atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C---H = 0.93 Å (aromatic) or 0.97 Å (methylene) and N---H = 0.86 Å with *U*~iso~(H) = 1.2 *U*~eq~(C or N). Rigid bond restraint instruction DELU was applied to improve the anisotropic displacement parameters involving N3 and C12. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the title complex 1,4-bis(4,5-dihydro-H,4H-imidazol-2-yl)benzene bis(3-nitrobenzoate) showing 30° probability displacement ellipsoids. ::: ![](e-67-0o263-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound viewed along the baxis. H atoms not involved in hydrogen bonding are omitted for clarity. ::: ![](e-67-0o263-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e270 .table-wrap} -------------------------------------- ---------------------------------- C~12~H~16~N~4~^2+^·2C~7~H~4~NO~4~^−^ *V* = 600.96 (17) Å^3^ *M~r~* = 548.51 *Z* = 1 Triclinic, *P*1 *F*(000) = 286 Hall symbol: -P 1 *D*~x~ = 1.516 Mg m^−3^ *a* = 6.9882 (12) Å Mo *K*α radiation, λ = 0.71073 Å *b* = 7.4165 (12) Å µ = 0.12 mm^−1^ *c* = 13.233 (2) Å *T* = 273 K α = 81.343 (3)° Block, colorless β = 82.443 (3)° 0.67 × 0.55 × 0.42 mm γ = 62.699 (2)° -------------------------------------- ---------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e410 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEX CCD area-detector diffractometer 2575 independent reflections Radiation source: fine-focus sealed tube 1676 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.016 φ and ω scans θ~max~ = 27.0°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Bruker, 1998) *h* = −8→8 *T*~min~ = 0.927, *T*~max~ = 0.953 *k* = −9→9 3714 measured reflections *l* = −16→8 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e527 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.151 H-atom parameters constrained *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0613*P*)^2^ + 0.1694*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2575 reflections (Δ/σ)~max~ \< 0.001 181 parameters Δρ~max~ = 0.20 e Å^−3^ 1 restraint Δρ~min~ = −0.28 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e684 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e783 .table-wrap} ----- ------------ ------------ --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.7607 (4) 0.1903 (4) 0.18562 (17) 0.0483 (6) H1A 0.7398 0.2592 0.2458 0.058\* H1B 0.6839 0.1075 0.1981 0.058\* C2 0.6871 (4) 0.3430 (3) 0.09029 (18) 0.0492 (6) H2A 0.5961 0.3147 0.0521 0.059\* H2B 0.6093 0.4820 0.1083 0.059\* C3 1.0544 (3) 0.1481 (3) 0.07401 (15) 0.0383 (5) C4 1.2831 (3) 0.0707 (3) 0.03509 (15) 0.0373 (5) C5 1.3404 (3) 0.1420 (3) −0.06192 (15) 0.0414 (5) H5 1.2337 0.2373 −0.1034 0.050\* C6 1.5554 (4) 0.0716 (3) −0.09660 (15) 0.0416 (5) H6 1.5925 0.1195 −0.1615 0.050\* C7 0.1900 (4) 0.5421 (5) 0.2448 (2) 0.0620 (8) C8 0.2163 (3) 0.3932 (3) 0.33993 (16) 0.0437 (5) C9 0.1925 (4) 0.2191 (4) 0.33805 (19) 0.0529 (6) H9 0.1691 0.1887 0.2765 0.064\* C10 0.2027 (4) 0.0885 (4) 0.4264 (2) 0.0639 (7) H10 0.1849 −0.0275 0.4239 0.077\* C11 0.2391 (4) 0.1307 (4) 0.5170 (2) 0.0620 (7) H11 0.2445 0.0452 0.5769 0.074\* C12 0.2671 (3) 0.3009 (4) 0.51797 (16) 0.0507 (6) C13 0.2561 (3) 0.4345 (3) 0.43168 (17) 0.0462 (5) H13 0.2750 0.5497 0.4350 0.055\* N1 0.8925 (3) 0.3081 (3) 0.03187 (14) 0.0482 (5) H1 0.9055 0.3822 −0.0226 0.058\* N2 0.9901 (3) 0.0671 (3) 0.15833 (13) 0.0438 (5) H2 1.0721 −0.0439 0.1930 0.053\* N3 0.3060 (4) 0.3471 (5) 0.61616 (18) 0.0776 (8) O1 0.1555 (3) 0.4959 (3) 0.16467 (14) 0.0884 (7) O2 0.2025 (3) 0.7013 (3) 0.25649 (18) 0.0916 (8) O3 0.3241 (4) 0.5037 (6) 0.6153 (2) 0.1100 (10) O4 0.3135 (4) 0.2288 (5) 0.69216 (16) 0.1205 (11) ----- ------------ ------------ --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1219 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0495 (13) 0.0543 (13) 0.0410 (12) −0.0242 (11) −0.0023 (10) −0.0025 (10) C2 0.0456 (13) 0.0468 (12) 0.0473 (13) −0.0152 (10) −0.0034 (10) −0.0009 (10) C3 0.0477 (12) 0.0387 (10) 0.0286 (10) −0.0187 (9) −0.0089 (9) −0.0010 (8) C4 0.0446 (12) 0.0356 (10) 0.0298 (10) −0.0160 (9) −0.0068 (8) −0.0011 (8) C5 0.0472 (12) 0.0380 (11) 0.0323 (11) −0.0142 (9) −0.0099 (9) 0.0053 (8) C6 0.0516 (13) 0.0424 (11) 0.0273 (10) −0.0197 (10) −0.0045 (9) 0.0040 (8) C7 0.0410 (13) 0.0717 (18) 0.0494 (16) −0.0137 (12) −0.0021 (11) 0.0233 (13) C8 0.0359 (11) 0.0477 (12) 0.0367 (12) −0.0129 (9) −0.0031 (9) 0.0074 (9) C9 0.0513 (14) 0.0599 (15) 0.0463 (14) −0.0226 (11) −0.0085 (11) −0.0052 (11) C10 0.0610 (16) 0.0510 (14) 0.080 (2) −0.0292 (13) −0.0097 (14) 0.0104 (13) C11 0.0513 (15) 0.0686 (17) 0.0530 (16) −0.0235 (13) −0.0059 (12) 0.0225 (13) C12 0.0350 (12) 0.0701 (16) 0.0336 (12) −0.0131 (11) −0.0033 (9) −0.0013 (11) C13 0.0362 (11) 0.0487 (12) 0.0484 (13) −0.0153 (10) −0.0014 (9) −0.0037 (10) N1 0.0481 (11) 0.0478 (10) 0.0372 (10) −0.0146 (9) −0.0047 (8) 0.0072 (8) N2 0.0464 (10) 0.0434 (10) 0.0365 (10) −0.0181 (8) −0.0060 (8) 0.0062 (8) N3 0.0438 (13) 0.124 (2) 0.0481 (14) −0.0212 (14) −0.0029 (10) −0.0174 (15) O1 0.0837 (14) 0.1023 (16) 0.0365 (10) −0.0115 (12) −0.0080 (9) 0.0177 (10) O2 0.0766 (14) 0.0759 (14) 0.1167 (19) −0.0418 (12) −0.0346 (12) 0.0561 (13) O3 0.0816 (17) 0.173 (3) 0.0934 (19) −0.0593 (18) 0.0042 (13) −0.0671 (19) O4 0.0984 (18) 0.183 (3) 0.0363 (12) −0.0305 (18) −0.0134 (11) 0.0122 (15) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1661 .table-wrap} ----------------- ------------- ----------------- ------------- C1---N2 1.462 (3) C7---O2 1.257 (4) C1---C2 1.531 (3) C7---C8 1.514 (3) C1---H1A 0.9700 C8---C9 1.380 (3) C1---H1B 0.9700 C8---C13 1.387 (3) C2---N1 1.468 (3) C9---C10 1.388 (3) C2---H2A 0.9700 C9---H9 0.9300 C2---H2B 0.9700 C10---C11 1.367 (4) C3---N2 1.312 (3) C10---H10 0.9300 C3---N1 1.317 (3) C11---C12 1.366 (4) C3---C4 1.476 (3) C11---H11 0.9300 C4---C6^i^ 1.393 (3) C12---C13 1.380 (3) C4---C5 1.394 (3) C12---N3 1.481 (3) C5---C6 1.383 (3) C13---H13 0.9300 C5---H5 0.9300 N1---H1 0.8600 C6---C4^i^ 1.393 (3) N2---H2 0.8600 C6---H6 0.9300 N3---O4 1.221 (3) C7---O1 1.246 (4) N3---O3 1.222 (4) N2---C1---C2 102.53 (17) C9---C8---C13 118.9 (2) N2---C1---H1A 111.3 C9---C8---C7 120.8 (2) C2---C1---H1A 111.3 C13---C8---C7 120.2 (2) N2---C1---H1B 111.3 C8---C9---C10 121.2 (2) C2---C1---H1B 111.3 C8---C9---H9 119.4 H1A---C1---H1B 109.2 C10---C9---H9 119.4 N1---C2---C1 102.37 (17) C11---C10---C9 119.9 (2) N1---C2---H2A 111.3 C11---C10---H10 120.1 C1---C2---H2A 111.3 C9---C10---H10 120.1 N1---C2---H2B 111.3 C12---C11---C10 118.7 (2) C1---C2---H2B 111.3 C12---C11---H11 120.7 H2A---C2---H2B 109.2 C10---C11---H11 120.7 N2---C3---N1 111.85 (19) C11---C12---C13 122.8 (2) N2---C3---C4 122.98 (18) C11---C12---N3 118.7 (2) N1---C3---C4 125.13 (18) C13---C12---N3 118.4 (3) C6^i^---C4---C5 119.30 (19) C12---C13---C8 118.5 (2) C6^i^---C4---C3 119.93 (18) C12---C13---H13 120.7 C5---C4---C3 120.75 (18) C8---C13---H13 120.7 C6---C5---C4 120.20 (19) C3---N1---C2 110.95 (18) C6---C5---H5 119.9 C3---N1---H1 124.5 C4---C5---H5 119.9 C2---N1---H1 124.5 C5---C6---C4^i^ 120.50 (19) C3---N2---C1 111.14 (17) C5---C6---H6 119.7 C3---N2---H2 124.4 C4^i^---C6---H6 119.7 C1---N2---H2 124.4 O1---C7---O2 127.2 (2) O4---N3---O3 124.9 (3) O1---C7---C8 117.2 (3) O4---N3---C12 117.8 (3) O2---C7---C8 115.6 (3) O3---N3---C12 117.3 (3) ----------------- ------------- ----------------- ------------- ::: Symmetry codes: (i) −*x*+3, −*y*, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2110 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C6---H6···O2^ii^ 0.93 2.48 3.283 (3) 144 N1---H1···O1^iii^ 0.86 1.97 2.763 (3) 153 N2---H2···O2^iv^ 0.86 1.80 2.646 (3) 166 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) −*x*+2, −*y*+1, −*z*; (iii) −*x*+1, −*y*+1, −*z*; (iv) *x*+1, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------- --------- ------- ----------- ------------- C6---H6⋯O2^i^ 0.93 2.48 3.283 (3) 144 N1---H1⋯O1^ii^ 0.86 1.97 2.763 (3) 153 N2---H2⋯O2^iii^ 0.86 1.80 2.646 (3) 166 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.734100
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051745/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o263", "authors": [ { "first": "Xiu-Mei", "last": "Song" }, { "first": "Jun-Jun", "last": "Li" }, { "first": "Xin-Hua", "last": "Liu" }, { "first": "Chun-Xia", "last": "Ren" }, { "first": "Shao-Ming", "last": "Shang" } ] }
PMC3051746
Related literature {#sec1} ================== For the syntheses of rare earth complexes with Schiff bases derived from *o*-vanillin and adamantane­amine, see: Burrows & Bailar (1966[@bb2]); Li *et al.* (2008[@bb4]); Xian *et al.* (2008[@bb10]); Zhao *et al.* (2005[@bb11]); Liu *et al.* (2009[@bb6], 2010[@bb5]). For their applications, see: Leadbeater & Marco (2002[@bb3]); Quici *et al.* (2004[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sm(NO~3~)~3~(C~15~H~15~NO~2~)~2~(CH~4~O)\]*M* *~r~* = 850.99Triclinic,*a* = 7.8547 (10) Å*b* = 14.6893 (19) Å*c* = 16.590 (2) Åα = 73.402 (8)°β = 85.738 (7)°γ = 79.230 (7)°*V* = 1801.6 (4) Å^3^*Z* = 2Mo *K*α radiationμ = 1.70 mm^−1^*T* = 296 K0.26 × 0.11 × 0.08 mm ### Data collection {#sec2.1.2} Bruker APEXII area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb8]) *T* ~min~ = 0.797, *T* ~max~ = 0.87025616 measured reflections6337 independent reflections5512 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.043 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.043*wR*(*F* ^2^) = 0.123*S* = 1.056337 reflections474 parametersH-atom parameters constrainedΔρ~max~ = 0.91 e Å^−3^Δρ~min~ = −0.73 e Å^−3^ {#d5e570} Data collection: *APEX2* (Bruker, 2006[@bb1]); cell refinement: *SAINT* (Bruker, 2006[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb9]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000407/bv2165sup1.cif](http://dx.doi.org/10.1107/S1600536811000407/bv2165sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000407/bv2165Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000407/bv2165Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bv2165&file=bv2165sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bv2165sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bv2165&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BV2165](http://scripts.iucr.org/cgi-bin/sendsup?bv2165)). Comment ======= Schiff base complexes utilizing ligands obtained from substituted *o*-vanillin have been attracted considerable attention in past decades due to the intriguing biological activities of *o*-vanillin (Zhao *et al.*, 2005) and its convenience in Schiff base syntheses (Burrows & Bailar, 1966). Interested in this field, we have been engaged in a major effort directed toward the development of syntheses of new analogous Schiff bases derived from *o*-vanillin and their rare metal complexes. In a few of articles we have reported our partial research results (Zhao *et al.*, 2005; Xian *et al.* 2008; Li *et al.* 2008; Liu *et al.*, 2009). Herein, we describe a new Sm^III^ complex. The structure of the title complex is shown in Fig.1. In this complex, the O5 atom in a nitrate anion is disordered over two sites (assigned in a 50: 50 ratio). The Sm^III^ is nine-coordinated by O atoms, six of which come from three nitrate ions, one from methanol and two from the Schiff base ligands (H*L*). The H*L* ligands coordinate to the Sm^III^ ion using oxygen atoms from deprotonated phenolic hydroxyl groups. Interestingly, the Schiff base ligands are in a zwitterionic state with the phenolic H transferred to the imine N. The bonds between Sm^III^ and O atoms from phenoxy groups are 2.486 (3) and 2.428 (3), which are shorter than those between Sm^III^ and O atoms of methoxyl groups (2.806 (4) Å and 2.957 (4) Å for Sm---O2 and Sm---O4). The nitrate anions coordinate to the Sm^III^ via O atoms with distances ranging from 2.59 (2) to 2.743 (5), which are intermediate between the Sm---O(phenolic) and the Sm---O (methoxy) bond lengths. The Sm---*O*(methoxyl) bond length is only slightly longer than that for Sm---O(phenolic), and these values are similar to those reported for related complexes (Liu *et al.*, 2010). The hydrogen bonds and π--π weak non-covalent interactions lend stability to the structure. The hydrogen bonds are listed in Table 2 and the stacking plot of this compound is shown in Fig. 2. Different lines are interlocked with benzene rings of Schiff base using π--π stacking. As indicated above, in the H*L* ligands, the proton of the phenolic hydroxyl group has been transferred to the *N*-imine atom, and is involved in an intramolecular hydrogen bond (Table 2). Experimental {#experimental} ============ Reagents and solvents used were of commercially available quality and used without further purification. The Schiff base ligand 2-\[(4-methylphenyl)iminomethyl\]-6-methoxy-phenol was prepared by condensation of *o*-vanillin and *p*-methylaniline with a high yield and which was purified by recrystallization in ethanol. The compound (1) was obtained by adding Sm(NO~3~)~3~ (1 mmol, dissolved in methanol) to *N*-salicylidene-*p*-toluidine (2 mmol) in methanol solution. The solution was stirred at room temperature for 8 h to obtain a purplish red solution. At last, the deposit was filtered out and the solution was kept for evaporating. Red crystals were formed after several days. Refinement {#refinement} ========== The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model \[aliphatic C---H =0.96 Å (*U*~iso~(H) = 1.5*U*~eq~(C)), aromatic C---H = 0.93 Å (*U*~iso~(H) = 1.2*U*~eq~(C)) and N---H = 0.86 Å with *U*~iso~(H) = 1.2*U*~eq~(N). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title complex, showing the atom-labeling scheme. Weaker bonds to methoxy O donors shown with dashed lines. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0m184-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The stacking plot of the title compound, showing H-bond interactions (dashed lines) and π--π stacking interactions. ::: ![](e-67-0m184-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e230 .table-wrap} ---------------------------------------------- --------------------------------------- \[Sm(NO~3~)~3~(C~15~H~15~NO~2~)~2~(CH~4~O)\] *Z* = 2 *M~r~* = 850.99 *F*(000) = 858 Triclinic, *P*1 *D*~x~ = 1.569 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.8547 (10) Å Cell parameters from 7607 reflections *b* = 14.6893 (19) Å θ = 1.7--25.0° *c* = 16.590 (2) Å µ = 1.70 mm^−1^ α = 73.402 (8)° *T* = 296 K β = 85.738 (7)° Block, red γ = 79.230 (7)° 0.26 × 0.11 × 0.08 mm *V* = 1801.6 (4) Å^3^ ---------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e377 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII area-detector diffractometer 6337 independent reflections Radiation source: fine-focus sealed tube 5512 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.043 φ and ω scans θ~max~ = 25.0°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −9→9 *T*~min~ = 0.797, *T*~max~ = 0.870 *k* = −17→16 25616 measured reflections *l* = −19→19 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e494 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.043 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.123 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0718*P*)^2^ + 2.0645*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6337 reflections (Δ/σ)~max~ = 0.001 474 parameters Δρ~max~ = 0.91 e Å^−3^ 0 restraints Δρ~min~ = −0.73 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e651 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e750 .table-wrap} ------ -------------- --------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Sm −0.01017 (3) 0.327313 (17) 0.806379 (17) 0.04596 (12) O1 0.0691 (5) 0.4434 (2) 0.6739 (2) 0.0471 (8) O2 0.2571 (5) 0.2701 (3) 0.6999 (3) 0.0583 (10) O3 0.1465 (5) 0.1745 (2) 0.8891 (2) 0.0456 (8) O4 0.0886 (6) 0.2926 (3) 0.9826 (3) 0.0608 (11) O5 −0.109 (3) 0.4813 (14) 0.8558 (16) 0.111 (8) 0.50 O5\' −0.165 (3) 0.4487 (11) 0.8865 (11) 0.073 (4) 0.50 O6 −0.2260 (8) 0.5018 (4) 0.7536 (4) 0.0900 (16) O7 −0.3204 (8) 0.5922 (4) 0.8313 (4) 0.109 (2) O8 −0.3483 (6) 0.3231 (4) 0.8222 (3) 0.0765 (13) O9 −0.2151 (6) 0.2403 (4) 0.9302 (3) 0.0735 (12) O10 −0.4885 (5) 0.2504 (4) 0.9299 (3) 0.0859 (16) O11 −0.0722 (6) 0.1724 (3) 0.7704 (3) 0.0583 (10) O12 −0.1428 (6) 0.3007 (3) 0.6725 (2) 0.0579 (10) O13 −0.1868 (6) 0.1644 (3) 0.6599 (3) 0.0726 (12) O14 0.2519 (6) 0.3925 (3) 0.8307 (3) 0.0835 (15) H14B 0.3311 0.3550 0.8584 0.125\* N1 −0.0024 (5) 0.6247 (3) 0.5829 (3) 0.0416 (9) H1A −0.0255 0.5804 0.6267 0.050\* N2 0.2117 (6) −0.0081 (3) 0.8804 (3) 0.0461 (10) H2A 0.1604 0.0499 0.8577 0.055\* N3 −0.2281 (8) 0.5202 (4) 0.8184 (4) 0.0698 (15) N4 −0.3519 (6) 0.2712 (3) 0.8951 (3) 0.0492 (10) N5 −0.1351 (6) 0.2118 (3) 0.7001 (3) 0.0478 (10) C1 0.1944 (6) 0.5004 (4) 0.5381 (3) 0.0406 (11) C2 0.1746 (6) 0.4282 (3) 0.6144 (3) 0.0412 (11) C3 0.2795 (7) 0.3353 (4) 0.6224 (4) 0.0469 (12) C4 0.3871 (7) 0.3178 (4) 0.5585 (4) 0.0552 (14) H4A 0.4532 0.2568 0.5650 0.066\* C5 0.4003 (8) 0.3892 (5) 0.4837 (4) 0.0570 (14) H5A 0.4738 0.3753 0.4406 0.068\* C6 0.3066 (7) 0.4788 (4) 0.4733 (3) 0.0507 (13) H6A 0.3164 0.5264 0.4232 0.061\* C7 0.1065 (7) 0.5962 (4) 0.5278 (3) 0.0437 (11) H7A 0.1276 0.6422 0.4782 0.052\* C8 0.3849 (10) 0.1852 (5) 0.7224 (5) 0.094 (3) H8A 0.3758 0.1447 0.6871 0.141\* H8B 0.3670 0.1509 0.7801 0.141\* H8C 0.4981 0.2026 0.7151 0.141\* C9 −0.0869 (7) 0.7200 (4) 0.5783 (3) 0.0457 (12) C10 −0.1867 (9) 0.7369 (4) 0.6440 (4) 0.0701 (18) H10A −0.2013 0.6857 0.6906 0.084\* C11 −0.2681 (10) 0.8297 (5) 0.6430 (5) 0.0770 (19) H11A −0.3370 0.8393 0.6889 0.092\* C12 −0.2492 (9) 0.9063 (4) 0.5768 (5) 0.0673 (18) C13 −0.1481 (13) 0.8886 (5) 0.5111 (5) 0.090 (3) H13A −0.1320 0.9404 0.4652 0.108\* C14 −0.0678 (12) 0.7970 (4) 0.5095 (4) 0.083 (2) H14A −0.0020 0.7874 0.4627 0.099\* C15 −0.3410 (12) 1.0074 (5) 0.5779 (6) 0.097 (3) H15A −0.3125 1.0535 0.5271 0.145\* H15B −0.3041 1.0230 0.6255 0.145\* H15C −0.4641 1.0093 0.5819 0.145\* C16 0.2408 (7) 0.0397 (4) 1.0044 (3) 0.0476 (12) C17 0.1778 (6) 0.1389 (3) 0.9681 (3) 0.0394 (10) C18 0.1523 (7) 0.1990 (4) 1.0221 (3) 0.0465 (12) C19 0.1914 (9) 0.1636 (5) 1.1055 (4) 0.0627 (16) H19A 0.1752 0.2049 1.1397 0.075\* C20 0.2555 (10) 0.0657 (5) 1.1392 (4) 0.0711 (18) H20A 0.2793 0.0420 1.1962 0.085\* C21 0.2832 (10) 0.0052 (4) 1.0904 (4) 0.0668 (17) H21A 0.3302 −0.0594 1.1132 0.080\* C22 0.2596 (8) −0.0269 (4) 0.9567 (3) 0.0538 (14) H22A 0.3112 −0.0900 0.9825 0.065\* C23 0.0593 (17) 0.3594 (6) 1.0325 (7) 0.144 (5) H23A −0.0264 0.3413 1.0756 0.216\* H23B 0.0190 0.4231 0.9974 0.216\* H23C 0.1656 0.3585 1.0580 0.216\* C24 0.2346 (7) −0.0733 (3) 0.8296 (3) 0.0452 (12) C25 0.1500 (8) −0.0456 (4) 0.7550 (4) 0.0589 (15) H25A 0.0786 0.0144 0.7385 0.071\* C26 0.1708 (9) −0.1065 (4) 0.7045 (4) 0.0658 (17) H26A 0.1108 −0.0877 0.6545 0.079\* C27 0.2795 (8) −0.1956 (4) 0.7264 (4) 0.0582 (15) C28 0.3595 (9) −0.2217 (4) 0.8015 (4) 0.0663 (17) H28A 0.4299 −0.2819 0.8185 0.080\* C29 0.3398 (8) −0.1621 (4) 0.8528 (4) 0.0598 (15) H29A 0.3976 −0.1816 0.9035 0.072\* C30 0.3049 (11) −0.2602 (6) 0.6691 (6) 0.090 (2) H30A 0.3798 −0.3195 0.6951 0.136\* H30B 0.3564 −0.2287 0.6167 0.136\* H30C 0.1948 −0.2738 0.6589 0.136\* C31 0.3016 (13) 0.4851 (7) 0.7970 (8) 0.128 (4) H31A 0.3892 0.4917 0.8313 0.192\* H31B 0.2024 0.5346 0.7965 0.192\* H31C 0.3464 0.4912 0.7407 0.192\* ------ -------------- --------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1924 .table-wrap} ------ -------------- -------------- -------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sm 0.04454 (18) 0.03294 (16) 0.05411 (19) −0.00013 (11) −0.00159 (12) −0.00623 (12) O1 0.047 (2) 0.0330 (17) 0.053 (2) −0.0016 (15) 0.0119 (16) −0.0051 (15) O2 0.049 (2) 0.0330 (18) 0.078 (3) 0.0069 (16) 0.0148 (19) −0.0046 (18) O3 0.050 (2) 0.0344 (17) 0.046 (2) 0.0045 (15) −0.0124 (16) −0.0070 (15) O4 0.077 (3) 0.039 (2) 0.070 (3) 0.0017 (18) −0.020 (2) −0.0224 (19) O5 0.097 (15) 0.072 (13) 0.18 (2) 0.028 (9) −0.043 (14) −0.074 (14) O5\' 0.090 (12) 0.049 (8) 0.084 (9) 0.020 (6) −0.034 (8) −0.036 (7) O6 0.108 (4) 0.063 (3) 0.083 (4) 0.012 (3) 0.012 (3) −0.015 (3) O7 0.116 (5) 0.069 (3) 0.133 (5) 0.048 (3) −0.016 (4) −0.049 (3) O8 0.056 (3) 0.086 (3) 0.071 (3) −0.006 (2) −0.004 (2) −0.001 (3) O9 0.059 (3) 0.080 (3) 0.068 (3) −0.016 (2) −0.002 (2) 0.004 (2) O10 0.041 (2) 0.099 (4) 0.090 (3) −0.014 (2) 0.003 (2) 0.017 (3) O11 0.072 (3) 0.0380 (19) 0.062 (2) 0.0004 (18) −0.021 (2) −0.0105 (18) O12 0.075 (3) 0.047 (2) 0.044 (2) −0.0038 (19) −0.0061 (18) −0.0042 (17) O13 0.076 (3) 0.084 (3) 0.072 (3) −0.017 (2) −0.008 (2) −0.039 (3) O14 0.060 (3) 0.064 (3) 0.113 (4) −0.023 (2) −0.036 (3) 0.014 (3) N1 0.049 (2) 0.032 (2) 0.043 (2) −0.0102 (18) −0.0021 (18) −0.0069 (17) N2 0.055 (3) 0.029 (2) 0.047 (2) 0.0057 (18) −0.001 (2) −0.0069 (18) N3 0.068 (4) 0.043 (3) 0.093 (4) 0.012 (3) −0.006 (3) −0.023 (3) N4 0.042 (3) 0.043 (2) 0.050 (3) −0.0067 (19) −0.002 (2) 0.007 (2) N5 0.042 (2) 0.054 (3) 0.049 (3) −0.004 (2) 0.0041 (19) −0.019 (2) C1 0.037 (3) 0.045 (3) 0.045 (3) −0.014 (2) −0.003 (2) −0.015 (2) C2 0.036 (3) 0.040 (3) 0.051 (3) −0.011 (2) 0.003 (2) −0.017 (2) C3 0.038 (3) 0.038 (3) 0.064 (3) −0.007 (2) 0.006 (2) −0.016 (2) C4 0.047 (3) 0.051 (3) 0.073 (4) −0.004 (2) 0.006 (3) −0.031 (3) C5 0.055 (3) 0.068 (4) 0.058 (3) −0.015 (3) 0.014 (3) −0.035 (3) C6 0.053 (3) 0.062 (3) 0.042 (3) −0.019 (3) 0.005 (2) −0.019 (3) C7 0.049 (3) 0.042 (3) 0.040 (3) −0.015 (2) −0.007 (2) −0.006 (2) C8 0.077 (5) 0.060 (4) 0.106 (6) 0.029 (4) 0.025 (4) 0.005 (4) C9 0.048 (3) 0.039 (3) 0.053 (3) −0.011 (2) −0.008 (2) −0.014 (2) C10 0.086 (5) 0.043 (3) 0.076 (4) −0.015 (3) 0.022 (4) −0.011 (3) C11 0.080 (5) 0.059 (4) 0.095 (5) −0.005 (3) 0.015 (4) −0.035 (4) C12 0.079 (4) 0.039 (3) 0.088 (5) −0.005 (3) −0.024 (4) −0.022 (3) C13 0.152 (8) 0.041 (3) 0.065 (4) −0.001 (4) 0.005 (5) −0.005 (3) C14 0.137 (7) 0.046 (3) 0.051 (4) 0.002 (4) 0.013 (4) −0.007 (3) C15 0.123 (7) 0.051 (4) 0.121 (7) 0.005 (4) −0.024 (6) −0.040 (4) C16 0.054 (3) 0.037 (3) 0.043 (3) −0.002 (2) 0.000 (2) −0.003 (2) C17 0.035 (3) 0.037 (2) 0.043 (3) −0.002 (2) −0.002 (2) −0.009 (2) C18 0.043 (3) 0.040 (3) 0.056 (3) −0.005 (2) −0.005 (2) −0.013 (2) C19 0.077 (4) 0.063 (4) 0.052 (3) −0.010 (3) −0.001 (3) −0.023 (3) C20 0.104 (5) 0.061 (4) 0.040 (3) −0.009 (4) −0.006 (3) −0.005 (3) C21 0.098 (5) 0.046 (3) 0.043 (3) −0.001 (3) −0.004 (3) 0.001 (3) C22 0.069 (4) 0.032 (3) 0.051 (3) 0.004 (2) 0.004 (3) −0.006 (2) C23 0.230 (13) 0.064 (5) 0.150 (9) 0.048 (6) −0.099 (9) −0.072 (6) C24 0.047 (3) 0.032 (2) 0.054 (3) 0.002 (2) 0.000 (2) −0.013 (2) C25 0.072 (4) 0.036 (3) 0.063 (4) 0.011 (3) −0.011 (3) −0.015 (3) C26 0.078 (4) 0.054 (3) 0.065 (4) −0.002 (3) −0.019 (3) −0.016 (3) C27 0.056 (3) 0.049 (3) 0.074 (4) −0.001 (3) −0.001 (3) −0.029 (3) C28 0.072 (4) 0.041 (3) 0.081 (4) 0.018 (3) −0.013 (3) −0.024 (3) C29 0.063 (4) 0.048 (3) 0.061 (3) 0.013 (3) −0.010 (3) −0.014 (3) C30 0.092 (6) 0.074 (5) 0.122 (7) 0.004 (4) −0.012 (5) −0.062 (5) C31 0.106 (7) 0.085 (6) 0.190 (11) −0.044 (5) −0.050 (7) −0.006 (7) ------ -------------- -------------- -------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2977 .table-wrap} ---------------------- ------------- ----------------------- ------------ Sm---O3 2.428 (3) C8---H8B 0.9600 Sm---O1 2.486 (3) C8---H8C 0.9600 Sm---O14 2.529 (4) C9---C10 1.349 (8) Sm---O5 2.59 (2) C9---C14 1.380 (8) Sm---O5\' 2.594 (19) C10---C11 1.389 (9) Sm---O11 2.648 (4) C10---H10A 0.9300 Sm---O8 2.660 (4) C11---C12 1.352 (10) Sm---O12 2.676 (4) C11---H11A 0.9300 Sm---O9 2.688 (4) C12---C13 1.357 (11) Sm---O6 2.743 (5) C12---C15 1.530 (9) Sm---O2 2.806 (4) C13---C14 1.382 (9) Sm---O4 2.957 (4) C13---H13A 0.9300 O1---C2 1.283 (6) C14---H14A 0.9300 O2---C3 1.387 (7) C15---H15A 0.9600 O2---C8 1.423 (7) C15---H15B 0.9600 O3---C17 1.288 (6) C15---H15C 0.9600 O4---C18 1.359 (6) C16---C22 1.407 (7) O4---C23 1.434 (8) C16---C21 1.413 (8) O5---N3 1.12 (2) C16---C17 1.416 (7) O5\'---N3 1.354 (19) C17---C18 1.407 (7) O6---N3 1.179 (7) C18---C19 1.368 (8) O7---N3 1.229 (7) C19---C20 1.396 (9) O8---N4 1.234 (6) C19---H19A 0.9300 O9---N4 1.208 (6) C20---C21 1.344 (9) O10---N4 1.227 (6) C20---H20A 0.9300 O11---N5 1.238 (6) C21---H21A 0.9300 O12---N5 1.246 (6) C22---H22A 0.9300 O13---N5 1.227 (6) C23---H23A 0.9600 O14---C31 1.431 (9) C23---H23B 0.9600 O14---H14B 0.8200 C23---H23C 0.9600 N1---C7 1.307 (7) C24---C25 1.368 (8) N1---C9 1.417 (6) C24---C29 1.375 (7) N1---H1A 0.8601 C25---C26 1.371 (8) N2---C22 1.285 (7) C25---H25A 0.9300 N2---C24 1.427 (6) C26---C27 1.390 (8) N2---H2A 0.8601 C26---H26A 0.9300 C1---C6 1.407 (7) C27---C28 1.360 (9) C1---C7 1.415 (7) C27---C30 1.503 (8) C1---C2 1.421 (7) C28---C29 1.367 (8) C2---C3 1.431 (7) C28---H28A 0.9300 C3---C4 1.359 (8) C29---H29A 0.9300 C4---C5 1.389 (9) C30---H30A 0.9600 C4---H4A 0.9300 C30---H30B 0.9600 C5---C6 1.354 (8) C30---H30C 0.9600 C5---H5A 0.9300 C31---H31A 0.9600 C6---H6A 0.9300 C31---H31B 0.9600 C7---H7A 0.9300 C31---H31C 0.9600 C8---H8A 0.9600 O3---Sm---O1 131.61 (12) O1---C2---C1 122.9 (4) O3---Sm---O14 83.87 (13) O1---C2---C3 120.6 (5) O1---Sm---O14 70.74 (14) C1---C2---C3 116.5 (5) O3---Sm---O5 126.1 (6) C4---C3---O2 126.3 (5) O1---Sm---O5 83.5 (5) C4---C3---C2 120.8 (5) O14---Sm---O5 70.3 (5) O2---C3---C2 112.8 (4) O3---Sm---O5\' 117.5 (4) C3---C4---C5 121.4 (5) O1---Sm---O5\' 99.2 (3) C3---C4---H4A 119.3 O14---Sm---O5\' 81.8 (4) C5---C4---H4A 119.3 O5---Sm---O5\' 17.0 (6) C6---C5---C4 120.2 (5) O3---Sm---O11 64.60 (11) C6---C5---H5A 119.9 O1---Sm---O11 108.63 (12) C4---C5---H5A 119.9 O14---Sm---O11 137.26 (15) C5---C6---C1 120.3 (5) O5---Sm---O11 151.9 (5) C5---C6---H6A 119.8 O5\'---Sm---O11 137.5 (4) C1---C6---H6A 119.8 O3---Sm---O8 109.06 (14) N1---C7---C1 124.8 (5) O1---Sm---O8 112.92 (13) N1---C7---H7A 117.6 O14---Sm---O8 151.18 (19) C1---C7---H7A 117.6 O5---Sm---O8 81.5 (5) O2---C8---H8A 109.5 O5\'---Sm---O8 69.4 (4) O2---C8---H8B 109.5 O11---Sm---O8 70.40 (15) H8A---C8---H8B 109.5 O3---Sm---O12 109.27 (11) O2---C8---H8C 109.5 O1---Sm---O12 68.65 (12) H8A---C8---H8C 109.5 O14---Sm---O12 134.84 (16) H8B---C8---H8C 109.5 O5---Sm---O12 122.6 (6) C10---C9---C14 118.6 (5) O5\'---Sm---O12 123.4 (4) C10---C9---N1 119.1 (5) O11---Sm---O12 46.92 (11) C14---C9---N1 122.3 (5) O8---Sm---O12 66.47 (14) C9---C10---C11 121.0 (6) O3---Sm---O9 69.41 (13) C9---C10---H10A 119.5 O1---Sm---O9 158.08 (13) C11---C10---H10A 119.5 O14---Sm---O9 124.08 (16) C12---C11---C10 121.4 (7) O5---Sm---O9 87.0 (5) C12---C11---H11A 119.3 O5\'---Sm---O9 70.0 (4) C10---C11---H11A 119.3 O11---Sm---O9 72.44 (15) C11---C12---C13 117.2 (6) O8---Sm---O9 45.88 (14) C11---C12---C15 119.9 (7) O12---Sm---O9 100.68 (14) C13---C12---C15 122.9 (7) O3---Sm---O6 164.80 (15) C12---C13---C14 122.9 (7) O1---Sm---O6 62.02 (14) C12---C13---H13A 118.6 O14---Sm---O6 96.90 (17) C14---C13---H13A 118.6 O5---Sm---O6 41.8 (6) C9---C14---C13 119.0 (7) O5\'---Sm---O6 48.0 (4) C9---C14---H14A 120.5 O11---Sm---O6 121.16 (16) C13---C14---H14A 120.5 O8---Sm---O6 63.90 (17) C12---C15---H15A 109.5 O12---Sm---O6 80.97 (16) C12---C15---H15B 109.5 O9---Sm---O6 98.12 (16) H15A---C15---H15B 109.5 O3---Sm---O2 74.45 (12) C12---C15---H15C 109.5 O1---Sm---O2 59.20 (10) H15A---C15---H15C 109.5 O14---Sm---O2 73.05 (17) H15B---C15---H15C 109.5 O5---Sm---O2 134.4 (5) C22---C16---C21 118.4 (5) O5\'---Sm---O2 151.0 (4) C22---C16---C17 121.2 (5) O11---Sm---O2 71.23 (13) C21---C16---C17 120.4 (5) O8---Sm---O2 134.55 (14) O3---C17---C18 120.4 (4) O12---Sm---O2 69.76 (13) O3---C17---C16 122.5 (4) O9---Sm---O2 136.84 (13) C18---C17---C16 117.1 (4) O6---Sm---O2 120.37 (14) O4---C18---C19 125.2 (5) O3---Sm---O4 56.71 (10) O4---C18---C17 113.3 (4) O1---Sm---O4 131.51 (12) C19---C18---C17 121.5 (5) O14---Sm---O4 62.62 (15) C18---C19---C20 120.1 (5) O5---Sm---O4 69.4 (6) C18---C19---H19A 119.9 O5\'---Sm---O4 62.8 (4) C20---C19---H19A 119.9 O11---Sm---O4 114.13 (11) C21---C20---C19 120.9 (6) O8---Sm---O4 102.27 (13) C21---C20---H20A 119.6 O12---Sm---O4 159.57 (12) C19---C20---H20A 119.6 O9---Sm---O4 61.61 (13) C20---C21---C16 120.0 (5) O6---Sm---O4 110.19 (15) C20---C21---H21A 120.0 O2---Sm---O4 115.10 (12) C16---C21---H21A 120.0 C2---O1---Sm 129.3 (3) N2---C22---C16 125.5 (5) C3---O2---C8 116.8 (5) N2---C22---H22A 117.2 C3---O2---Sm 117.3 (3) C16---C22---H22A 117.2 C8---O2---Sm 125.4 (4) O4---C23---H23A 109.5 C17---O3---Sm 133.4 (3) O4---C23---H23B 109.5 C18---O4---C23 117.3 (5) H23A---C23---H23B 109.5 C18---O4---Sm 114.4 (3) O4---C23---H23C 109.5 C23---O4---Sm 127.9 (4) H23A---C23---H23C 109.5 N3---O5---Sm 104.8 (14) H23B---C23---H23C 109.5 N3---O5\'---Sm 97.3 (9) C25---C24---C29 119.3 (5) N3---O6---Sm 94.8 (4) C25---C24---N2 118.5 (4) N4---O8---Sm 98.8 (3) C29---C24---N2 122.1 (5) N4---O9---Sm 98.1 (3) C24---C25---C26 119.8 (5) N5---O11---Sm 98.8 (3) C24---C25---H25A 120.1 N5---O12---Sm 97.1 (3) C26---C25---H25A 120.1 C31---O14---Sm 131.7 (5) C25---C26---C27 121.5 (6) C31---O14---H14B 109.5 C25---C26---H26A 119.2 Sm---O14---H14B 118.5 C27---C26---H26A 119.2 C7---N1---C9 127.4 (4) C28---C27---C26 117.3 (5) C7---N1---H1A 116.2 C28---C27---C30 121.9 (6) C9---N1---H1A 116.4 C26---C27---C30 120.8 (6) C22---N2---C24 126.7 (4) C27---C28---C29 122.0 (5) C22---N2---H2A 116.5 C27---C28---H28A 119.0 C24---N2---H2A 116.8 C29---C28---H28A 119.0 O5---N3---O6 111.8 (13) C28---C29---C24 120.1 (5) O5---N3---O7 123.0 (13) C28---C29---H29A 120.0 O6---N3---O7 122.2 (7) C24---C29---H29A 120.0 O5---N3---O5\' 34.4 (13) C27---C30---H30A 109.5 O6---N3---O5\' 118.1 (9) C27---C30---H30B 109.5 O7---N3---O5\' 117.3 (10) H30A---C30---H30B 109.5 O9---N4---O10 121.5 (5) C27---C30---H30C 109.5 O9---N4---O8 117.2 (5) H30A---C30---H30C 109.5 O10---N4---O8 121.3 (5) H30B---C30---H30C 109.5 O13---N5---O11 120.7 (5) O14---C31---H31A 109.5 O13---N5---O12 122.1 (5) O14---C31---H31B 109.5 O11---N5---O12 117.2 (4) H31A---C31---H31B 109.5 C6---C1---C7 119.2 (5) O14---C31---H31C 109.5 C6---C1---C2 120.7 (5) H31A---C31---H31C 109.5 C7---C1---C2 120.1 (5) H31B---C31---H31C 109.5 O3---Sm---O1---C2 26.1 (5) O3---Sm---O11---N5 −161.7 (4) O14---Sm---O1---C2 88.6 (4) O1---Sm---O11---N5 −33.7 (3) O5---Sm---O1---C2 160.0 (7) O14---Sm---O11---N5 −115.1 (3) O5\'---Sm---O1---C2 166.5 (6) O5---Sm---O11---N5 78.5 (13) O11---Sm---O1---C2 −46.1 (4) O5\'---Sm---O11---N5 94.5 (6) O8---Sm---O1---C2 −122.1 (4) O8---Sm---O11---N5 74.8 (3) O12---Sm---O1---C2 −71.2 (4) O12---Sm---O11---N5 −0.9 (3) O9---Sm---O1---C2 −135.2 (4) O9---Sm---O11---N5 123.3 (3) O6---Sm---O1---C2 −162.1 (5) O6---Sm---O11---N5 34.3 (4) O2---Sm---O1---C2 7.3 (4) O2---Sm---O11---N5 −80.4 (3) O4---Sm---O1---C2 104.9 (4) O4---Sm---O11---N5 169.8 (3) O3---Sm---O2---C3 −173.2 (4) O3---Sm---O12---N5 19.3 (3) O1---Sm---O2---C3 −7.7 (3) O1---Sm---O12---N5 147.5 (3) O14---Sm---O2---C3 −85.0 (4) O14---Sm---O12---N5 120.1 (3) O5---Sm---O2---C3 −47.4 (9) O5---Sm---O12---N5 −145.7 (6) O5\'---Sm---O2---C3 −54.0 (9) O5\'---Sm---O12---N5 −125.5 (5) O11---Sm---O2---C3 118.9 (4) O11---Sm---O12---N5 0.9 (3) O8---Sm---O2---C3 85.2 (4) O8---Sm---O12---N5 −83.7 (3) O12---Sm---O2---C3 68.9 (3) O9---Sm---O12---N5 −52.5 (3) O9---Sm---O2---C3 152.9 (3) O6---Sm---O12---N5 −149.1 (3) O6---Sm---O2---C3 3.1 (4) O2---Sm---O12---N5 83.7 (3) O4---Sm---O2---C3 −132.6 (3) O4---Sm---O12---N5 −24.1 (5) O3---Sm---O2---C8 −1.5 (5) O3---Sm---O14---C31 172.3 (9) O1---Sm---O2---C8 164.1 (6) O1---Sm---O14---C31 34.1 (9) O14---Sm---O2---C8 86.8 (6) O5---Sm---O14---C31 −55.8 (10) O5---Sm---O2---C8 124.3 (10) O5\'---Sm---O14---C31 −68.7 (9) O5\'---Sm---O2---C8 117.7 (10) O11---Sm---O14---C31 131.0 (8) O11---Sm---O2---C8 −69.4 (6) O8---Sm---O14---C31 −68.6 (10) O8---Sm---O2---C8 −103.1 (6) O12---Sm---O14---C31 61.1 (9) O12---Sm---O2---C8 −119.3 (6) O9---Sm---O14---C31 −127.7 (9) O9---Sm---O2---C8 −35.3 (6) O6---Sm---O14---C31 −23.0 (9) O6---Sm---O2---C8 174.9 (6) O2---Sm---O14---C31 96.7 (9) O4---Sm---O2---C8 39.1 (6) O4---Sm---O14---C31 −132.2 (9) O1---Sm---O3---C17 131.5 (4) Sm---O5---N3---O6 −26.8 (14) O14---Sm---O3---C17 74.1 (4) Sm---O5---N3---O7 172.7 (6) O5---Sm---O3---C17 14.0 (8) Sm---O5---N3---O5\' 81 (3) O5\'---Sm---O3---C17 −3.3 (6) Sm---O6---N3---O5 24.4 (12) O11---Sm---O3---C17 −135.6 (5) Sm---O6---N3---O7 −174.9 (7) O8---Sm---O3---C17 −79.4 (4) Sm---O6---N3---O5\' −13.0 (11) O12---Sm---O3---C17 −150.3 (4) Sm---O5\'---N3---O5 −74 (3) O9---Sm---O3---C17 −55.8 (4) Sm---O5\'---N3---O6 13.9 (11) O6---Sm---O3---C17 −19.7 (8) Sm---O5\'---N3---O7 176.6 (6) O2---Sm---O3---C17 148.2 (4) Sm---O9---N4---O10 −179.1 (5) O4---Sm---O3---C17 13.0 (4) Sm---O9---N4---O8 2.1 (6) O3---Sm---O4---C18 −9.3 (3) Sm---O8---N4---O9 −2.1 (6) O1---Sm---O4---C18 −128.0 (3) Sm---O8---N4---O10 179.1 (5) O14---Sm---O4---C18 −110.6 (4) Sm---O11---N5---O13 −178.6 (4) O5---Sm---O4---C18 171.6 (6) Sm---O11---N5---O12 1.6 (5) O5\'---Sm---O4---C18 154.5 (6) Sm---O12---N5---O13 178.6 (4) O11---Sm---O4---C18 21.8 (4) Sm---O12---N5---O11 −1.6 (5) O8---Sm---O4---C18 95.6 (4) Sm---O1---C2---C1 173.7 (3) O12---Sm---O4---C18 41.5 (6) Sm---O1---C2---C3 −6.3 (7) O9---Sm---O4---C18 73.6 (4) C6---C1---C2---O1 −177.3 (5) O6---Sm---O4---C18 162.0 (4) C7---C1---C2---O1 5.3 (7) O2---Sm---O4---C18 −57.9 (4) C6---C1---C2---C3 2.7 (7) O3---Sm---O4---C23 178.3 (8) C7---C1---C2---C3 −174.8 (4) O1---Sm---O4---C23 59.7 (8) C8---O2---C3---C4 15.5 (9) O14---Sm---O4---C23 77.0 (8) Sm---O2---C3---C4 −172.0 (4) O5---Sm---O4---C23 −0.8 (9) C8---O2---C3---C2 −164.4 (6) O5\'---Sm---O4---C23 −17.9 (9) Sm---O2---C3---C2 8.1 (5) O11---Sm---O4---C23 −150.6 (8) O1---C2---C3---C4 177.7 (5) O8---Sm---O4---C23 −76.8 (8) C1---C2---C3---C4 −2.2 (7) O12---Sm---O4---C23 −130.8 (8) O1---C2---C3---O2 −2.4 (7) O9---Sm---O4---C23 −98.7 (8) C1---C2---C3---O2 177.7 (4) O6---Sm---O4---C23 −10.3 (8) O2---C3---C4---C5 −179.4 (5) O2---Sm---O4---C23 129.8 (8) C2---C3---C4---C5 0.6 (8) O3---Sm---O5---N3 −151.7 (11) C3---C4---C5---C6 0.7 (9) O1---Sm---O5---N3 70.1 (14) C4---C5---C6---C1 −0.3 (8) O14---Sm---O5---N3 142.0 (15) C7---C1---C6---C5 176.0 (5) O5\'---Sm---O5---N3 −87 (3) C2---C1---C6---C5 −1.5 (7) O11---Sm---O5---N3 −48 (2) C9---N1---C7---C1 176.3 (4) O8---Sm---O5---N3 −44.3 (13) C6---C1---C7---N1 179.1 (5) O12---Sm---O5---N3 10.7 (17) C2---C1---C7---N1 −3.5 (7) O9---Sm---O5---N3 −90.1 (14) C7---N1---C9---C10 −175.6 (5) O6---Sm---O5---N3 15.7 (9) C7---N1---C9---C14 3.0 (8) O2---Sm---O5---N3 103.7 (13) C14---C9---C10---C11 −0.4 (10) O4---Sm---O5---N3 −150.8 (15) N1---C9---C10---C11 178.3 (6) O3---Sm---O5\'---N3 178.7 (7) C9---C10---C11---C12 −0.5 (11) O1---Sm---O5\'---N3 31.2 (9) C10---C11---C12---C13 0.3 (11) O14---Sm---O5\'---N3 100.1 (9) C10---C11---C12---C15 179.9 (7) O5---Sm---O5\'---N3 54 (3) C11---C12---C13---C14 0.9 (13) O11---Sm---O5\'---N3 −99.8 (8) C15---C12---C13---C14 −178.8 (8) O8---Sm---O5\'---N3 −79.9 (9) C10---C9---C14---C13 1.5 (11) O12---Sm---O5\'---N3 −39.2 (10) N1---C9---C14---C13 −177.1 (7) O9---Sm---O5\'---N3 −129.0 (10) C12---C13---C14---C9 −1.8 (13) O6---Sm---O5\'---N3 −7.0 (6) Sm---O3---C17---C18 −15.1 (7) O2---Sm---O5\'---N3 70.2 (14) Sm---O3---C17---C16 165.9 (4) O4---Sm---O5\'---N3 163.4 (10) C22---C16---C17---O3 −5.2 (8) O3---Sm---O6---N3 27.7 (9) C21---C16---C17---O3 176.1 (5) O1---Sm---O6---N3 −128.2 (5) C22---C16---C17---C18 175.8 (5) O14---Sm---O6---N3 −64.3 (5) C21---C16---C17---C18 −2.9 (8) O5---Sm---O6---N3 −14.5 (8) C23---O4---C18---C19 −0.3 (10) O5\'---Sm---O6---N3 8.0 (6) Sm---O4---C18---C19 −173.5 (5) O11---Sm---O6---N3 136.0 (4) C23---O4---C18---C17 −179.7 (7) O8---Sm---O6---N3 93.1 (5) Sm---O4---C18---C17 7.1 (5) O12---Sm---O6---N3 161.3 (5) O3---C17---C18---O4 2.1 (7) O9---Sm---O6---N3 61.7 (5) C16---C17---C18---O4 −178.8 (5) O2---Sm---O6---N3 −138.7 (4) O3---C17---C18---C19 −177.3 (5) O4---Sm---O6---N3 −1.0 (5) C16---C17---C18---C19 1.8 (8) O3---Sm---O8---N4 32.6 (4) O4---C18---C19---C20 179.7 (6) O1---Sm---O8---N4 −172.0 (3) C17---C18---C19---C20 −1.0 (10) O14---Sm---O8---N4 −80.6 (5) C18---C19---C20---C21 1.4 (11) O5---Sm---O8---N4 −92.8 (7) C19---C20---C21---C16 −2.5 (11) O5\'---Sm---O8---N4 −80.5 (5) C22---C16---C21---C20 −175.4 (7) O11---Sm---O8---N4 85.4 (4) C17---C16---C21---C20 3.3 (10) O12---Sm---O8---N4 135.9 (4) C24---N2---C22---C16 177.6 (5) O9---Sm---O8---N4 1.2 (3) C21---C16---C22---N2 173.2 (6) O6---Sm---O8---N4 −132.8 (4) C17---C16---C22---N2 −5.5 (9) O2---Sm---O8---N4 119.3 (3) C22---N2---C24---C25 169.1 (6) O4---Sm---O8---N4 −26.1 (4) C22---N2---C24---C29 −11.6 (9) O3---Sm---O9---N4 −149.4 (4) C29---C24---C25---C26 0.1 (10) O1---Sm---O9---N4 15.7 (6) N2---C24---C25---C26 179.4 (6) O14---Sm---O9---N4 143.6 (3) C24---C25---C26---C27 −1.4 (11) O5---Sm---O9---N4 80.0 (7) C25---C26---C27---C28 2.4 (10) O5\'---Sm---O9---N4 79.1 (6) C25---C26---C27---C30 −178.2 (7) O11---Sm---O9---N4 −80.7 (4) C26---C27---C28---C29 −2.1 (11) O8---Sm---O9---N4 −1.2 (3) C30---C27---C28---C29 178.5 (7) O12---Sm---O9---N4 −42.7 (4) C27---C28---C29---C24 0.9 (11) O6---Sm---O9---N4 39.6 (4) C25---C24---C29---C28 0.2 (10) O2---Sm---O9---N4 −114.4 (4) N2---C24---C29---C28 −179.1 (6) O4---Sm---O9---N4 148.2 (4) ---------------------- ------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5728 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O14---H14B···O10^i^ 0.82 2.04 2.859 (6) 174 O14---H14B···O8^i^ 0.82 2.53 3.121 (6) 130 O14---H14B···N4^i^ 0.82 2.60 3.367 (6) 157 N1---H1A···O1 0.86 1.96 2.637 (5) 135 N1---H1A···O6 0.86 2.65 3.449 (7) 154 N2---H2A···O3 0.86 2.02 2.678 (5) 132 N2---H2A···O11 0.86 2.52 3.311 (5) 153 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- --------- ------- ----------- ------------- O14---H14*B*⋯O10^i^ 0.82 2.04 2.859 (6) 174 O14---H14*B*⋯O8^i^ 0.82 2.53 3.121 (6) 130 O14---H14*B*⋯N4^i^ 0.82 2.60 3.367 (6) 157 N1---H1*A*⋯O1 0.86 1.96 2.637 (5) 135 N1---H1*A*⋯O6 0.86 2.65 3.449 (7) 154 N2---H2*A*⋯O3 0.86 2.02 2.678 (5) 132 N2---H2*A*⋯O11 0.86 2.52 3.311 (5) 153 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.738335
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051746/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m184-m185", "authors": [ { "first": "Hang-Ming", "last": "Guo" } ] }
PMC3051747
Related literature {#sec1} ================== For related structures, see: Nasirullah *et al.* (2010[@bb7]); Rodriguez *et al.* (2007[@bb9]); Damas *et al.* (1997[@bb4]); Nawaz *et al.* (2007[@bb8]); For graph-set notation, see: Bernstein *et al.* (1995[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~13~Cl~2~NO*M* *~r~* = 282.15Monoclinic,*a* = 8.3521 (3) Å*b* = 15.0986 (5) Å*c* = 10.9225 (5) Åβ = 107.180 (1)°*V* = 1315.93 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.48 mm^−1^*T* = 296 K0.28 × 0.18 × 0.14 mm ### Data collection {#sec2.1.2} Bruker Kappa APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb2]) *T* ~min~ = 0.903, *T* ~max~ = 0.9349878 measured reflections2348 independent reflections2029 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.022 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.082*S* = 1.062348 reflections167 parametersAll H-atom parameters refinedΔρ~max~ = 0.30 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e459} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]) and *PLATON* (Spek, 2009[@bb11]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]) and *PLATON*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810054590/bq2270sup1.cif](http://dx.doi.org/10.1107/S1600536810054590/bq2270sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054590/bq2270Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054590/bq2270Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bq2270&file=bq2270sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bq2270sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bq2270&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BQ2270](http://scripts.iucr.org/cgi-bin/sendsup?bq2270)). The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. Comment ======= The title compound (I, Fig. 1) has been prepared for further derivatization and in continuation to the reduction of carboxylic moieties of some important drugs (Nasirullah *et al.*, 2010) without affecting the medicinally important functional groups. The crystal structures of (II) *i.e.*, (*Z*)-3-(4-(2-hydroxyethyl)phenylamino)-1-phenylbut-2-en-1-one (Rodriguez *et al.*, 2007) and (III) 2-\[2-(hydroxyethyl)phenoxy\]benzoic acid (Damas *et al.*, 1997) have been published previously which seems relavant to the present structure. In (I), the 2,6-dichloroanilinic moiety A (N1/C1---C6/CL1/CL2) and the benzene ring of 2-phenylethanol B (C7---C12) are planar with r. m. s. deviations of 0.0298 Å and 0.0031 Å, respectively. The ethanol moiety C (C13/C14/O1) is of course planar. The dihedral angles between A/B, A/C and B/C are 67.71 (4)°, 10.40 (20)° and 64.94 (9)°, respectively. The molecules are stabilized as monomers due to intramolecular H-bondings of N---H···Cl and N---H···O types (Table 1, Fig. 1) with S(5) and S(7) ring motifs (Bernstein *et al.*, 1995). In the stabilization of molecules C---H···π and π--π interaction at a distance of 3.5706 (11) Å between the centroids of chloro containing benzene rings play an important role. Experimental {#experimental} ============ A solution of dichlofenac sodium (6.75 mmol) in THF (10 ml) was slowly added to suspension of NaBH~4~ (10 mmol) in THF (10 ml), at room temperature. The mixture was stirred until evolution of hydrogen ceased. Iodine (6.75 mmol) in THF (10 ml) was drop wise added to this mixture. When the addition of iodine was complete, the reaction mixture was refluxed for 8 h and cooled to room temperature. 10 ml of 2 N HCl was added and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with 20 ml of 2 N NaOH and then with brine. Finally the ethyl acetate layer was dried over MgSO~4~. On evaporation of the solvent 1.3 g of the crude product was obtained. The product was further purified by column chromatography on silica gel. Light yellow needles of (I) were obtained by recrystallization from ethyl acetate and n-hexane. m.p. of pure product:383 K. Refinement {#refinement} ========== The coordinates of amide H-atoms were refined. Other H-atoms were positioned geometrically (O---H = 0.82, C--H = 0.93--0.97 Å) and refined as riding with *U*~iso~(H) = x*U*~eq~(C, N, O), where x = 1.2 for all H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of (I) with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dotted lines represent the intramolecular H-bonding. ::: ![](e-67-0o273-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e135 .table-wrap} ------------------------- --------------------------------------- C~14~H~13~Cl~2~NO *F*(000) = 584 *M~r~* = 282.15 *D*~x~ = 1.424 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2029 reflections *a* = 8.3521 (3) Å θ = 2.4--25.3° *b* = 15.0986 (5) Å µ = 0.48 mm^−1^ *c* = 10.9225 (5) Å *T* = 296 K β = 107.180 (1)° Needle, light yellow *V* = 1315.93 (9) Å^3^ 0.28 × 0.18 × 0.14 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e263 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker Kappa APEXII CCD diffractometer 2348 independent reflections Radiation source: fine-focus sealed tube 2029 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.022 Detector resolution: 8.10 pixels mm^-1^ θ~max~ = 25.3°, θ~min~ = 2.4° ω scans *h* = −10→9 Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *k* = −18→18 *T*~min~ = 0.903, *T*~max~ = 0.934 *l* = −13→11 9878 measured reflections ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e383 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.082 All H-atom parameters refined *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0334*P*)^2^ + 0.510*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2348 reflections (Δ/σ)~max~ \< 0.001 167 parameters Δρ~max~ = 0.30 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e540 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e642 .table-wrap} ------ -------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.75713 (7) −0.13208 (3) 0.78183 (5) 0.0643 (2) Cl2 1.11847 (6) 0.17019 (3) 0.84323 (5) 0.0563 (2) O1 0.45224 (19) 0.01954 (11) 0.67674 (19) 0.0809 (6) N1 0.80367 (17) 0.06112 (10) 0.74340 (13) 0.0391 (4) C1 0.94805 (19) 0.01500 (11) 0.81022 (15) 0.0363 (5) C2 0.9460 (2) −0.07553 (11) 0.83623 (16) 0.0426 (5) C3 1.0862 (3) −0.12212 (13) 0.90315 (18) 0.0533 (7) C4 1.2364 (3) −0.07878 (14) 0.9456 (2) 0.0586 (7) C5 1.2460 (2) 0.01071 (14) 0.92471 (19) 0.0540 (7) C6 1.1029 (2) 0.05691 (11) 0.85975 (16) 0.0415 (5) C7 0.78660 (18) 0.10202 (10) 0.62459 (14) 0.0322 (4) C8 0.90748 (19) 0.09185 (10) 0.56114 (16) 0.0373 (5) C9 0.8907 (2) 0.13202 (11) 0.44481 (17) 0.0438 (6) C10 0.7518 (2) 0.18261 (12) 0.38800 (17) 0.0476 (6) C11 0.6306 (2) 0.19269 (11) 0.44974 (17) 0.0428 (5) C12 0.64417 (18) 0.15399 (10) 0.56786 (16) 0.0353 (5) C13 0.5069 (2) 0.16759 (12) 0.62982 (19) 0.0469 (6) C14 0.3779 (2) 0.09453 (15) 0.6051 (2) 0.0599 (7) H1 0.719 (2) 0.0399 (12) 0.7492 (18) 0.0469\* H1A 0.39115 −0.02359 0.65344 0.0971\* H3 1.07894 −0.18223 0.91928 0.0639\* H4 1.33248 −0.10997 0.98888 0.0703\* H5 1.34815 0.04001 0.95408 0.0648\* H8 1.00146 0.05723 0.59803 0.0448\* H9 0.97366 0.12489 0.40455 0.0525\* H10 0.73968 0.20961 0.30925 0.0571\* H11 0.53635 0.22662 0.41086 0.0514\* H13A 0.45039 0.22296 0.59905 0.0562\* H13B 0.55757 0.17322 0.72162 0.0562\* H14A 0.28150 0.11344 0.63079 0.0719\* H14B 0.34044 0.08021 0.51453 0.0719\* ------ -------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1066 .table-wrap} ----- ------------- ------------- ------------- ------------- ------------ -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0701 (3) 0.0482 (3) 0.0678 (3) −0.0170 (2) 0.0101 (3) −0.0019 (2) Cl2 0.0524 (3) 0.0452 (3) 0.0661 (3) −0.0084 (2) 0.0096 (2) 0.0026 (2) O1 0.0531 (9) 0.0673 (10) 0.1199 (14) −0.0221 (7) 0.0219 (9) 0.0031 (10) N1 0.0316 (7) 0.0469 (8) 0.0403 (8) 0.0002 (6) 0.0131 (6) 0.0060 (6) C1 0.0394 (9) 0.0411 (9) 0.0301 (8) 0.0027 (7) 0.0130 (7) 0.0022 (7) C2 0.0513 (10) 0.0418 (9) 0.0355 (9) −0.0022 (8) 0.0142 (7) 0.0006 (7) C3 0.0689 (13) 0.0453 (10) 0.0473 (11) 0.0117 (9) 0.0197 (9) 0.0107 (8) C4 0.0536 (12) 0.0628 (13) 0.0569 (12) 0.0191 (10) 0.0126 (9) 0.0153 (10) C5 0.0389 (10) 0.0667 (13) 0.0536 (11) 0.0038 (9) 0.0093 (8) 0.0069 (9) C6 0.0417 (9) 0.0442 (9) 0.0392 (9) 0.0014 (7) 0.0127 (7) 0.0045 (7) C7 0.0313 (8) 0.0298 (7) 0.0341 (8) −0.0033 (6) 0.0077 (6) −0.0027 (6) C8 0.0339 (8) 0.0381 (8) 0.0400 (9) 0.0042 (7) 0.0111 (7) 0.0026 (7) C9 0.0457 (10) 0.0464 (10) 0.0428 (10) 0.0006 (7) 0.0187 (8) 0.0036 (8) C10 0.0531 (10) 0.0468 (10) 0.0400 (10) 0.0006 (8) 0.0094 (8) 0.0096 (8) C11 0.0373 (9) 0.0352 (8) 0.0480 (10) 0.0024 (7) 0.0002 (7) 0.0022 (7) C12 0.0301 (8) 0.0308 (8) 0.0425 (9) −0.0019 (6) 0.0067 (7) −0.0071 (7) C13 0.0359 (9) 0.0479 (10) 0.0569 (11) 0.0038 (7) 0.0139 (8) −0.0110 (8) C14 0.0332 (9) 0.0786 (14) 0.0688 (13) −0.0077 (9) 0.0163 (9) −0.0147 (11) ----- ------------- ------------- ------------- ------------- ------------ -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1406 .table-wrap} -------------------- -------------- ----------------------- -------------- Cl1---C2 1.7369 (18) C9---C10 1.374 (2) Cl2---C6 1.7288 (17) C10---C11 1.381 (2) O1---C14 1.412 (3) C11---C12 1.390 (2) O1---H1A 0.8200 C12---C13 1.508 (2) N1---C1 1.397 (2) C13---C14 1.510 (3) N1---C7 1.406 (2) C3---H3 0.9300 N1---H1 0.796 (18) C4---H4 0.9300 C1---C2 1.397 (2) C5---H5 0.9300 C1---C6 1.397 (2) C8---H8 0.9300 C2---C3 1.377 (3) C9---H9 0.9300 C3---C4 1.369 (3) C10---H10 0.9300 C4---C5 1.377 (3) C11---H11 0.9300 C5---C6 1.385 (3) C13---H13A 0.9700 C7---C8 1.392 (2) C13---H13B 0.9700 C7---C12 1.407 (2) C14---H14A 0.9700 C8---C9 1.377 (2) C14---H14B 0.9700 C14---O1---H1A 109.00 C12---C13---C14 114.67 (15) C1---N1---C7 122.53 (14) O1---C14---C13 108.25 (16) C1---N1---H1 114.1 (13) C2---C3---H3 120.00 C7---N1---H1 113.6 (14) C4---C3---H3 120.00 N1---C1---C2 122.23 (15) C3---C4---H4 120.00 N1---C1---C6 122.27 (15) C5---C4---H4 120.00 C2---C1---C6 115.46 (15) C4---C5---H5 120.00 C1---C2---C3 123.25 (17) C6---C5---H5 120.00 Cl1---C2---C1 118.41 (13) C7---C8---H8 119.00 Cl1---C2---C3 118.34 (14) C9---C8---H8 119.00 C2---C3---C4 119.10 (18) C8---C9---H9 120.00 C3---C4---C5 120.4 (2) C10---C9---H9 120.00 C4---C5---C6 119.71 (18) C9---C10---H10 121.00 C1---C6---C5 122.03 (16) C11---C10---H10 121.00 Cl2---C6---C1 119.81 (13) C10---C11---H11 119.00 Cl2---C6---C5 118.15 (14) C12---C11---H11 119.00 N1---C7---C12 119.57 (14) C12---C13---H13A 109.00 N1---C7---C8 121.37 (14) C12---C13---H13B 109.00 C8---C7---C12 119.06 (14) C14---C13---H13A 109.00 C7---C8---C9 121.32 (15) C14---C13---H13B 109.00 C8---C9---C10 120.24 (16) H13A---C13---H13B 108.00 C9---C10---C11 118.92 (16) O1---C14---H14A 110.00 C10---C11---C12 122.44 (16) O1---C14---H14B 110.00 C7---C12---C13 122.31 (15) C13---C14---H14A 110.00 C7---C12---C11 118.02 (15) C13---C14---H14B 110.00 C11---C12---C13 119.67 (15) H14A---C14---H14B 108.00 C7---N1---C1---C2 −117.26 (18) C4---C5---C6---Cl2 176.57 (16) C7---N1---C1---C6 65.2 (2) C4---C5---C6---C1 −2.2 (3) C1---N1---C7---C8 6.0 (2) N1---C7---C8---C9 −179.93 (15) C1---N1---C7---C12 −174.38 (15) C12---C7---C8---C9 0.4 (2) N1---C1---C2---Cl1 0.6 (2) N1---C7---C12---C11 −179.35 (15) N1---C1---C2---C3 −179.22 (17) N1---C7---C12---C13 −0.2 (2) C6---C1---C2---Cl1 178.28 (12) C8---C7---C12---C11 0.3 (2) C6---C1---C2---C3 −1.5 (3) C8---C7---C12---C13 179.44 (15) N1---C1---C6---Cl2 2.0 (2) C7---C8---C9---C10 −0.8 (3) N1---C1---C6---C5 −179.29 (16) C8---C9---C10---C11 0.3 (3) C2---C1---C6---Cl2 −175.70 (13) C9---C10---C11---C12 0.4 (3) C2---C1---C6---C5 3.0 (2) C10---C11---C12---C7 −0.7 (2) Cl1---C2---C3---C4 179.35 (16) C10---C11---C12---C13 −179.89 (16) C1---C2---C3---C4 −0.8 (3) C7---C12---C13---C14 −83.6 (2) C2---C3---C4---C5 1.8 (3) C11---C12---C13---C14 95.6 (2) C3---C4---C5---C6 −0.4 (3) C12---C13---C14---O1 72.5 (2) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1991 .table-wrap} ------------------------------------------ Cg1 is the centroid of the C7--C12 ring. ------------------------------------------ ::: ::: {#d1e1995 .table-wrap} ------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···Cl1 0.796 (18) 2.628 (18) 2.9888 (16) 109.5 (15) N1---H1···O1 0.796 (18) 2.155 (18) 2.877 (2) 151.0 (18) O1---H1A···Cg1^i^ 0.82 2.58 3.3465 (19) 156 C3---H3···Cg1^ii^ 0.93 2.95 3.791 (2) 152 ------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+1; (ii) −*x*+2, *y*−1/2, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C7--C12 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- ------------ ------------ ------------- ------------- N1---H1⋯Cl1 0.796 (18) 2.628 (18) 2.9888 (16) 109.5 (15) N1---H1⋯O1 0.796 (18) 2.155 (18) 2.877 (2) 151.0 (18) O1---H1*A*⋯*Cg*1^i^ 0.82 2.58 3.3465 (19) 156 C3---H3⋯*Cg*1^ii^ 0.93 2.95 3.791 (2) 152 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.752167
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051747/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o273", "authors": [ { "first": null, "last": "Nasirullah" }, { "first": "Nazar", "last": "Ul Islam" }, { "first": "M. Nawaz", "last": "Tahir" }, { "first": "Ikhtiar", "last": "Khan" } ] }
PMC3051748
Related literature {#sec1} ================== For bond-length data, see: Allen *et al.* (1987[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For background to and applications of pyrimidine derivatives, see: Cheng & Roth (1971[@bb4]); Cox (1968[@bb5]); Eussell (1945[@bb6]); Jain *et al.* (2006[@bb7]); Shinogi (1959[@bb9]); Tani *et al.* (1979[@bb11]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~18~H~21~N~3~O~6~*M* *~r~* = 375.38Monoclinic,*a* = 16.5226 (2) Å*b* = 8.5717 (1) Å*c* = 13.0944 (2) Åβ = 97.236 (1)°*V* = 1839.75 (4) Å^3^*Z* = 4Mo *K*α radiationμ = 0.10 mm^−1^*T* = 297 K0.57 × 0.52 × 0.39 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb3]) *T* ~min~ = 0.944, *T* ~max~ = 0.96120111 measured reflections5348 independent reflections4087 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.024 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.054*wR*(*F* ^2^) = 0.164*S* = 1.045348 reflections256 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.52 e Å^−3^Δρ~min~ = −0.33 e Å^−3^ {#d5e510} Data collection: *APEX2* (Bruker, 2005[@bb3]); cell refinement: *SAINT* (Bruker, 2005[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681005467X/is2653sup1.cif](http://dx.doi.org/10.1107/S160053681005467X/is2653sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681005467X/is2653Isup2.hkl](http://dx.doi.org/10.1107/S160053681005467X/is2653Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2653&file=is2653sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2653sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2653&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2653](http://scripts.iucr.org/cgi-bin/sendsup?is2653)). VS, DJP and BP thank Mangalore University for a research grant. SC thanks the Prince of Songkla University for generous support. The authors thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. Comment ======= Several pyrimidine derivatives have been developed as chemotherapeutic agents and have found wide clinical applications (Jain *et al.*, 2006). The pyrimidine ring is found in vitamins like thiamine, riboflavin and folic acid (Cox, 1968). Barbiton, a pyrimidine derivative, possesses hypnotic, sedative and anticonvulsant (Eussell, 1945) activities. Pyrimidine derivatives of sulfa drugs, namely sulfadiazine, sulfamerazine and sulfadimidine are superior to many other sulfonamides and are used for treatment in some acute UT infections, cerebrospinal meningitis and for patients allergic to pencillins (Shinogi, 1959). 2-Thiouracil and its alkyl analogue, thiobarbital, are effective drugs against hyperthyroidism. Propylthiouracil is used as a drug for hyperthyroidism with minimum side effects (Cheng & Roth, 1971). Afloqualone has been evaluated as a successful anti-inflammatory agent with lower-back-pain patients (Tani *et al.*, 1979). In view of the importance of pyrimidine derivatives, the title compound (I) was synthesized and its crystal structure was reported. The molecule of (I), (Fig. 1), is a V-shaped structure with the dihedral angle between the benzene and pyrimidine rings being 52.26 (12)°. The oxycarbonylamino unit (atoms C8, N1, O1 and O2) are planar with *r.m.s*. 0.0035 (1) Å. This unit makes dihedral angles of 62.35 (12) and 65.98 (8)° with the benzyl group (C1---C7) and pyrimidine ring, respectively. The hydroxy group is co-planar with the pyrimidine ring \[*r.m.s*. 0.0190 (1) Å\] whereas the methoxy is slightly deviated with the torsion angle C18--O3--C11--C12 = 175.74 (12)°. The carboxylate moiety is planar with *r.m.s*. 0.0033 (1) Å and makes the dihedral angle of 12.33 (7)° with the pyrimidine ring. The conformation of the carboxylate moiety is indicated by the torsion angles of C15--O6--C14--C13 = 179.53 (11)° and C12--C13--C14--O5 = -10.7 (2)°. Intramolecular O4--H1O4···O5 hydrogen bond generate S(6) ring motif (Bernstein *et al.*, 1995). The bond distances are of normal values (Allen *et al.*, 1987). In the crystal packing (Fig. 2), the molecules are linked bya pair of O---H···O hydrogen bonds (Table 1), forming an inversion dimer. These dimers are stacked into columns along the *b* axis through weak C---H···O interactions (Table 1). The crystal is solidated and stabilized by O---H···O hydrogen bonds and C---H···O weak interactions (Table 1). Experimental {#experimental} ============ The title compound was synthesized by taking benzyl (1-cyano-1-methylethyl) carbamate (0.10 mole) in xylene and dimethyl acetylene dicarboxylate (0.12 mole) was added. The reaction mixture is heated to 407 K and maintained at the temperature for 10 hrs until the reaction was completed. On cooling, the precipitated product, methyl 2-(1-{\[(benzyloxy) carbonyl\] amino}-1-methylethyl)-5,6-dihydroxypyrimidine-4-carboxylate, is filtered and washed with hexane. The sample is dried at 313 K for 4--5 hrs. The obtained material is taken in 5 volume of methanol and 0.22 mole of 5% sodium hydroxide in methanol. The mixture was cooled to 288 K and methyl iodide (0.20 mole) was then added and heated to 323 K. After the reaction was over, methanol was distilled off and the product was quenched in water and then filtered to get the title compound. Colorless block-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days, Mp. 391--393 K. Refinement {#refinement} ========== Amide and hydroxy H atoms are located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with *d*(C---H) = 0.93 Å for aromatic and 0.96 Å for CH~3~ atoms. The *U*~iso~ values were constrained to be 1.5*U*~eq~ of the carrier atom for methyl H atoms and 1.2*U*~eq~ for the remaining H atoms. A rotating group model was used for the methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as dashed line. ::: ![](e-67-0o274-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound viewed along the b axis, showing columns along the b axis. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o274-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e154 .table-wrap} ------------------------- --------------------------------------- C~18~H~21~N~3~O~6~ *F*(000) = 792 *M~r~* = 375.38 *D*~x~ = 1.355 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point = 391--393 K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 16.5226 (2) Å Cell parameters from 5348 reflections *b* = 8.5717 (1) Å θ = 2.5--30.0° *c* = 13.0944 (2) Å µ = 0.10 mm^−1^ β = 97.236 (1)° *T* = 297 K *V* = 1839.75 (4) Å^3^ Block, colorless *Z* = 4 0.57 × 0.52 × 0.39 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e285 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 5348 independent reflections Radiation source: sealed tube 4087 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.024 φ and ω scans θ~max~ = 30.0°, θ~min~ = 2.5° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −23→22 *T*~min~ = 0.944, *T*~max~ = 0.961 *k* = −8→12 20111 measured reflections *l* = −18→18 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e402 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.054 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.164 H atoms treated by a mixture of independent and constrained refinement *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0839*P*)^2^ + 0.5187*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5348 reflections (Δ/σ)~max~ = 0.001 256 parameters Δρ~max~ = 0.52 e Å^−3^ 0 restraints Δρ~min~ = −0.33 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e559 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e658 .table-wrap} ------ -------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.33157 (8) 0.66001 (18) 0.07370 (11) 0.0657 (4) O2 0.24087 (8) 0.48066 (17) 0.11686 (10) 0.0576 (3) O3 0.06818 (6) 0.74259 (11) −0.14162 (9) 0.0416 (3) O4 −0.06047 (6) 0.56031 (12) −0.13886 (9) 0.0417 (3) O5 −0.10852 (6) 0.26969 (13) −0.11206 (10) 0.0473 (3) O6 −0.01903 (6) 0.07581 (11) −0.11913 (8) 0.0393 (2) N1 0.30737 (7) 0.45068 (16) −0.02407 (11) 0.0407 (3) N2 0.15729 (7) 0.53687 (13) −0.11038 (9) 0.0355 (3) N3 0.10782 (7) 0.27843 (13) −0.09593 (9) 0.0335 (2) C1 0.43521 (17) 0.8804 (4) 0.2532 (3) 0.0946 (9) H1A 0.4369 0.9541 0.2015 0.114\* C2 0.49368 (19) 0.8838 (5) 0.3419 (3) 0.1240 (13) H2A 0.5334 0.9611 0.3500 0.149\* C3 0.49077 (19) 0.7724 (5) 0.4147 (3) 0.1109 (12) H3A 0.5300 0.7721 0.4723 0.133\* C4 0.43242 (19) 0.6625 (5) 0.4054 (2) 0.1040 (10) H4A 0.4310 0.5876 0.4566 0.125\* C5 0.37474 (15) 0.6607 (3) 0.3200 (2) 0.0802 (7) H5A 0.3342 0.5848 0.3144 0.096\* C6 0.37579 (10) 0.7669 (2) 0.24422 (15) 0.0554 (4) C7 0.31165 (14) 0.7682 (3) 0.15168 (18) 0.0690 (6) H7A 0.2593 0.7402 0.1727 0.083\* H7B 0.3070 0.8727 0.1230 0.083\* C8 0.28785 (9) 0.5255 (2) 0.06047 (12) 0.0438 (3) C9 0.25579 (8) 0.32633 (17) −0.07422 (12) 0.0402 (3) C10 0.16670 (8) 0.38177 (15) −0.09313 (10) 0.0334 (3) C11 0.08266 (8) 0.59052 (15) −0.12577 (10) 0.0331 (3) C12 0.01324 (8) 0.49250 (15) −0.12617 (10) 0.0319 (3) C13 0.03020 (8) 0.33494 (15) −0.11279 (10) 0.0306 (3) C14 −0.03910 (8) 0.22435 (15) −0.11428 (10) 0.0327 (3) C15 −0.08544 (9) −0.03516 (18) −0.11987 (13) 0.0428 (3) H15A −0.0688 −0.1342 −0.1443 0.064\* H15B −0.1320 0.0021 −0.1645 0.064\* H15C −0.0995 −0.0467 −0.0513 0.064\* C16 0.28446 (11) 0.2973 (3) −0.17910 (16) 0.0620 (5) H16A 0.2781 0.3910 −0.2195 0.093\* H16B 0.2524 0.2154 −0.2141 0.093\* H16C 0.3409 0.2672 −0.1696 0.093\* C17 0.26450 (10) 0.1795 (2) −0.00690 (18) 0.0621 (5) H17A 0.2431 0.1996 0.0567 0.093\* H17B 0.3211 0.1517 0.0072 0.093\* H17C 0.2348 0.0953 −0.0424 0.093\* C18 0.13886 (10) 0.84324 (18) −0.13387 (14) 0.0459 (4) H18A 0.1215 0.9500 −0.1412 0.069\* H18B 0.1714 0.8175 −0.1873 0.069\* H18C 0.1706 0.8291 −0.0679 0.069\* H1N1 0.3337 (13) 0.501 (3) −0.0634 (16) 0.056 (6)\* H1O4 −0.0985 (14) 0.492 (3) −0.1310 (16) 0.061 (6)\* ------ -------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1356 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0588 (8) 0.0660 (9) 0.0713 (8) −0.0192 (6) 0.0041 (6) −0.0211 (7) O2 0.0530 (7) 0.0649 (8) 0.0557 (7) 0.0042 (6) 0.0103 (6) 0.0081 (6) O3 0.0391 (5) 0.0268 (5) 0.0573 (6) −0.0004 (4) −0.0006 (4) 0.0011 (4) O4 0.0325 (5) 0.0345 (5) 0.0567 (6) 0.0049 (4) 0.0008 (4) 0.0005 (4) O5 0.0312 (5) 0.0390 (6) 0.0718 (8) 0.0009 (4) 0.0068 (5) 0.0000 (5) O6 0.0327 (5) 0.0293 (5) 0.0552 (6) −0.0027 (4) 0.0033 (4) 0.0006 (4) N1 0.0304 (6) 0.0433 (7) 0.0474 (7) −0.0052 (5) 0.0014 (5) 0.0011 (5) N2 0.0333 (5) 0.0301 (5) 0.0416 (6) −0.0014 (4) −0.0004 (4) −0.0009 (4) N3 0.0304 (5) 0.0298 (5) 0.0394 (6) 0.0008 (4) 0.0003 (4) −0.0007 (4) C1 0.0813 (16) 0.0911 (19) 0.111 (2) −0.0374 (15) 0.0084 (15) −0.0063 (16) C2 0.0691 (17) 0.151 (3) 0.147 (3) −0.053 (2) −0.0074 (19) −0.038 (3) C3 0.0686 (16) 0.165 (4) 0.093 (2) 0.002 (2) −0.0162 (15) −0.040 (2) C4 0.089 (2) 0.142 (3) 0.0788 (17) 0.013 (2) 0.0018 (14) 0.0011 (18) C5 0.0657 (13) 0.0840 (17) 0.0898 (16) −0.0073 (12) 0.0052 (12) 0.0038 (13) C6 0.0419 (8) 0.0564 (10) 0.0666 (11) −0.0045 (7) 0.0025 (8) −0.0181 (9) C7 0.0615 (11) 0.0586 (11) 0.0818 (14) 0.0012 (9) −0.0102 (10) −0.0192 (10) C8 0.0332 (7) 0.0502 (8) 0.0455 (8) 0.0006 (6) −0.0050 (6) 0.0024 (6) C9 0.0293 (6) 0.0348 (7) 0.0553 (8) 0.0005 (5) 0.0009 (6) −0.0013 (6) C10 0.0308 (6) 0.0302 (6) 0.0381 (6) 0.0006 (5) −0.0001 (5) −0.0010 (5) C11 0.0362 (6) 0.0278 (6) 0.0341 (6) 0.0007 (5) −0.0004 (5) −0.0010 (5) C12 0.0318 (6) 0.0300 (6) 0.0324 (6) 0.0028 (5) −0.0011 (5) −0.0024 (5) C13 0.0295 (6) 0.0296 (6) 0.0317 (6) −0.0005 (5) 0.0002 (4) −0.0009 (5) C14 0.0319 (6) 0.0313 (6) 0.0339 (6) 0.0003 (5) 0.0000 (5) 0.0000 (5) C15 0.0394 (7) 0.0344 (7) 0.0539 (8) −0.0075 (6) 0.0028 (6) 0.0019 (6) C16 0.0462 (9) 0.0700 (12) 0.0707 (12) 0.0050 (9) 0.0103 (8) −0.0242 (10) C17 0.0386 (8) 0.0397 (8) 0.1037 (15) 0.0030 (7) −0.0084 (9) 0.0170 (9) C18 0.0458 (8) 0.0310 (7) 0.0596 (9) −0.0061 (6) 0.0016 (7) 0.0005 (6) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1880 .table-wrap} --------------------- -------------- ----------------------- -------------- O1---C8 1.360 (2) C4---H4A 0.9300 O1---C7 1.448 (3) C5---C6 1.349 (3) O2---C8 1.200 (2) C5---H5A 0.9300 O3---C11 1.3368 (16) C6---C7 1.506 (3) O3---C18 1.4452 (18) C7---H7A 0.9700 O4---C12 1.3408 (16) C7---H7B 0.9700 O4---H1O4 0.88 (2) C9---C16 1.529 (2) O5---C14 1.2149 (17) C9---C17 1.533 (2) O6---C14 1.3193 (16) C9---C10 1.5370 (18) O6---C15 1.4513 (17) C11---C12 1.4213 (19) N1---C8 1.353 (2) C12---C13 1.3860 (18) N1---C9 1.4672 (19) C13---C14 1.4847 (18) N1---H1N1 0.83 (2) C15---H15A 0.9600 N2---C11 1.3077 (17) C15---H15B 0.9600 N2---C10 1.3542 (17) C15---H15C 0.9600 N3---C10 1.3127 (17) C16---H16A 0.9600 N3---C13 1.3627 (16) C16---H16B 0.9600 C1---C6 1.376 (3) C16---H16C 0.9600 C1---C2 1.414 (5) C17---H17A 0.9600 C1---H1A 0.9300 C17---H17B 0.9600 C2---C3 1.354 (5) C17---H17C 0.9600 C2---H2A 0.9300 C18---H18A 0.9600 C3---C4 1.343 (5) C18---H18B 0.9600 C3---H3A 0.9300 C18---H18C 0.9600 C4---C5 1.375 (4) C8---O1---C7 117.95 (16) C17---C9---C10 111.42 (13) C11---O3---C18 116.35 (11) N3---C10---N2 126.07 (12) C12---O4---H1O4 110.4 (15) N3---C10---C9 119.16 (12) C14---O6---C15 116.01 (11) N2---C10---C9 114.70 (12) C8---N1---C9 121.72 (13) N2---C11---O3 120.91 (12) C8---N1---H1N1 117.3 (15) N2---C11---C12 122.52 (12) C9---N1---H1N1 114.6 (15) O3---C11---C12 116.57 (12) C11---N2---C10 117.20 (12) O4---C12---C13 127.17 (12) C10---N3---C13 116.34 (11) O4---C12---C11 117.66 (12) C6---C1---C2 119.4 (3) C13---C12---C11 115.17 (12) C6---C1---H1A 120.3 N3---C13---C12 122.55 (12) C2---C1---H1A 120.3 N3---C13---C14 118.93 (11) C3---C2---C1 118.8 (3) C12---C13---C14 118.50 (11) C3---C2---H2A 120.6 O5---C14---O6 123.62 (13) C1---C2---H2A 120.6 O5---C14---C13 121.63 (12) C4---C3---C2 121.3 (3) O6---C14---C13 114.75 (11) C4---C3---H3A 119.3 O6---C15---H15A 109.5 C2---C3---H3A 119.3 O6---C15---H15B 109.5 C3---C4---C5 119.9 (3) H15A---C15---H15B 109.5 C3---C4---H4A 120.1 O6---C15---H15C 109.5 C5---C4---H4A 120.1 H15A---C15---H15C 109.5 C6---C5---C4 121.3 (3) H15B---C15---H15C 109.5 C6---C5---H5A 119.4 C9---C16---H16A 109.5 C4---C5---H5A 119.4 C9---C16---H16B 109.5 C5---C6---C1 119.3 (2) H16A---C16---H16B 109.5 C5---C6---C7 121.61 (19) C9---C16---H16C 109.5 C1---C6---C7 119.1 (2) H16A---C16---H16C 109.5 O1---C7---C6 111.30 (17) H16B---C16---H16C 109.5 O1---C7---H7A 109.4 C9---C17---H17A 109.5 C6---C7---H7A 109.4 C9---C17---H17B 109.5 O1---C7---H7B 109.4 H17A---C17---H17B 109.5 C6---C7---H7B 109.4 C9---C17---H17C 109.5 H7A---C7---H7B 108.0 H17A---C17---H17C 109.5 O2---C8---N1 126.21 (16) H17B---C17---H17C 109.5 O2---C8---O1 124.59 (16) O3---C18---H18A 109.5 N1---C8---O1 109.19 (14) O3---C18---H18B 109.5 N1---C9---C16 106.99 (13) H18A---C18---H18B 109.5 N1---C9---C17 109.39 (13) O3---C18---H18C 109.5 C16---C9---C17 111.45 (16) H18A---C18---H18C 109.5 N1---C9---C10 109.75 (11) H18B---C18---H18C 109.5 C16---C9---C10 107.73 (12) C6---C1---C2---C3 1.6 (5) C17---C9---C10---N3 −30.53 (19) C1---C2---C3---C4 −1.8 (6) N1---C9---C10---N2 31.13 (17) C2---C3---C4---C5 0.7 (6) C16---C9---C10---N2 −85.01 (16) C3---C4---C5---C6 0.6 (5) C17---C9---C10---N2 152.45 (14) C4---C5---C6---C1 −0.8 (4) C10---N2---C11---O3 178.86 (12) C4---C5---C6---C7 −178.5 (2) C10---N2---C11---C12 −0.8 (2) C2---C1---C6---C5 −0.3 (4) C18---O3---C11---N2 −3.98 (19) C2---C1---C6---C7 177.4 (3) C18---O3---C11---C12 175.74 (12) C8---O1---C7---C6 106.6 (2) N2---C11---C12---O4 177.56 (12) C5---C6---C7---O1 −84.3 (3) O3---C11---C12---O4 −2.16 (18) C1---C6---C7---O1 98.0 (3) N2---C11---C12---C13 −2.25 (19) C9---N1---C8---O2 18.1 (2) O3---C11---C12---C13 178.04 (12) C9---N1---C8---O1 −163.27 (13) C10---N3---C13---C12 −0.14 (19) C7---O1---C8---O2 −9.7 (2) C10---N3---C13---C14 −178.53 (11) C7---O1---C8---N1 171.67 (15) O4---C12---C13---N3 −177.02 (12) C8---N1---C9---C16 166.62 (15) C11---C12---C13---N3 2.76 (19) C8---N1---C9---C17 −72.52 (18) O4---C12---C13---C14 1.4 (2) C8---N1---C9---C10 50.01 (18) C11---C12---C13---C14 −178.85 (11) C13---N3---C10---N2 −3.5 (2) C15---O6---C14---O5 −1.1 (2) C13---N3---C10---C9 179.89 (12) C15---O6---C14---C13 179.53 (11) C11---N2---C10---N3 4.0 (2) N3---C13---C14---O5 167.78 (13) C11---N2---C10---C9 −179.24 (12) C12---C13---C14---O5 −10.7 (2) N1---C9---C10---N3 −151.85 (13) N3---C13---C14---O6 −12.83 (17) C16---C9---C10---N3 92.00 (17) C12---C13---C14---O6 168.72 (12) --------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2768 .table-wrap} --------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O4---H1O4···O5 0.87 (2) 1.93 (3) 2.6513 (15) 139 (2) O4---H1O4···O2^i^ 0.87 (2) 2.39 (2) 3.0508 (17) 132 (2) C7---H7A···O5^i^ 0.97 2.52 3.347 (3) 143 C15---H15A···O3^ii^ 0.96 2.49 3.2148 (18) 132 C17---H17A···O2 0.96 2.54 3.099 (2) 117 --------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------------- ---------- ---------- ------------- ------------- O4---H1*O*4⋯O5 0.87 (2) 1.93 (3) 2.6513 (15) 139 (2) O4---H1*O*4⋯O2^i^ 0.87 (2) 2.39 (2) 3.0508 (17) 132 (2) C7---H7*A*⋯O5^i^ 0.97 2.52 3.347 (3) 143 C15---H15*A*⋯O3^ii^ 0.96 2.49 3.2148 (18) 132 C17---H17*A*⋯O2 0.96 2.54 3.099 (2) 117 Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009. [^2]: § Thomson Reuters ResearcherID: A-5085-2009.
PubMed Central
2024-06-05T04:04:16.758410
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051748/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o274", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "V.", "last": "Sumangala" }, { "first": "D. Jagadeesh", "last": "Prasad" }, { "first": "Boja", "last": "Poojary" }, { "first": "Suchada", "last": "Chantrapromma" } ] }
PMC3051749
Related literature {#sec1} ================== For the characterization of the *P*2~1~2~1~2~1~ polymorph, see: Conde *et al.* (1970[@bb2]); Husebye & Helland-Madsen (1970[@bb5]); Sugihara (1985[@bb9]). For the benzene solvate, see: Klapötke *et al.* (2008[@bb6]). For the synthesis of bis­(*o*-formyl­phen­yl)selenide acetal, see: Panda *et al.* (2001[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~10~H~20~N~2~S~4~Se*M* *~r~* = 375.52Orthorhombic,*a* = 16.0338 (18) Å*b* = 15.6376 (18) Å*c* = 13.5880 (15) Å*V* = 3406.9 (7) Å^3^*Z* = 8Mo *K*α radiationμ = 2.68 mm^−1^*T* = 297 K0.27 × 0.26 × 0.19 mm ### Data collection {#sec2.1.2} Bruker SMART APEX diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb1]) *T* ~min~ = 0.532, *T* ~max~ = 0.63017395 measured reflections5896 independent reflections4856 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.046 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.076*S* = 0.945896 reflections315 parameters1 restraintH-atom parameters constrainedΔρ~max~ = 0.36 e Å^−3^Δρ~min~ = −0.22 e Å^−3^Absolute structure: Flack (1983[@bb4]), 2755 Friedel pairsFlack parameter: 0.007 (7) {#d5e400} Data collection: *SMART* (Bruker, 2001[@bb1]); cell refinement: *SAINT-Plus* (Bruker, 2001[@bb1]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000511/bh2326sup1.cif](http://dx.doi.org/10.1107/S1600536811000511/bh2326sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000511/bh2326Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000511/bh2326Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bh2326&file=bh2326sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bh2326sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bh2326&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BH2326](http://scripts.iucr.org/cgi-bin/sendsup?bh2326)). Financial support from the National University Research Council of Romania (Research Project PNII-ID-2404/2008) is greatly appreciated. Comment ======= In the crystal, the title compound contains two independent molecules in the asymmetric unit, with only slight differences in the bond distances and bond angles between the two molecules (Fig. 1). Both Se atoms are tetracoordinated with four S atoms arranged in a distorted square-planar geometry. The distortion of the coordination geometry is the result of the small bite and asymmetric coordination of the ligands. Each ligand coordinates strongly to the corresponding Se center through one S atom \[range 2.2833 (13)--2.3041 (15) Å\] and forms a weaker interaction through the second S atom \[range 2.7318 (14)--2.7873 (12) Å\]. The molecular structure is similar to the ones published (Klapötke *et al.*, 2008; Sugihara, 1985; Husebye & Helland-Madsen, 1970; Conde *et al.*, 1970) in terms of structure parameters. Only one difference can be observed between the title compound and the benzene solvate (Klapötke *et al.*, 2008), the position of the Et groups from the ligands. While in the title compound the organic fragments from the same ligand are on the opposite sides of the coordination plane, in the benzene solvate they are on the same side. Experimental {#experimental} ============ The title compound was recovered as unreacted material after the reaction described for the synthesis of bis(*o*-formylphenyl)selenide acetal by Panda *et al.* (2001). Recrystallization from diethylether at -20°C over 72 h afforded suitable crystals. Refinement {#refinement} ========== All hydrogen atoms were placed in calculated positions using a riding model, with C---H = 0.96--0.97 Å and with *U*~iso~= 1.2 or 1.5*U*~eq~ (C) for H. The methyl groups were allowed to rotate but not to tip. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. ::: ![](e-67-0o411-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e115 .table-wrap} ------------------------- --------------------------------------- C~10~H~20~N~2~S~4~Se *F*(000) = 1536 *M~r~* = 375.52 *D*~x~ = 1.464 Mg m^−3^ Orthorhombic, *Pca*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2ac Cell parameters from 3414 reflections *a* = 16.0338 (18) Å θ = 2.4--21.5° *b* = 15.6376 (18) Å µ = 2.68 mm^−1^ *c* = 13.5880 (15) Å *T* = 297 K *V* = 3406.9 (7) Å^3^ Block, orange *Z* = 8 0.27 × 0.26 × 0.19 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e241 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEX diffractometer 5896 independent reflections Radiation source: fine-focus sealed tube 4856 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.046 φ and ω scans θ~max~ = 25.0°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −18→19 *T*~min~ = 0.532, *T*~max~ = 0.630 *k* = −18→17 17395 measured reflections *l* = −16→15 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e358 .table-wrap} ---------------------------------------------------------------- -------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 H-atom parameters constrained *wR*(*F*^2^) = 0.076 *w* = 1/\[σ^2^(*F*~o~^2^)\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 0.94 (Δ/σ)~max~ = 0.001 5896 reflections Δρ~max~ = 0.36 e Å^−3^ 315 parameters Δρ~min~ = −0.22 e Å^−3^ 1 restraint Absolute structure: Flack (1983), 2755 Friedel pairs 0 constraints Flack parameter: 0.007 (7) Primary atom site location: structure-invariant direct methods ---------------------------------------------------------------- -------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e516 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.2875 (3) 0.5449 (3) 0.9917 (3) 0.0528 (11) C2 0.2975 (4) 0.4729 (4) 1.1515 (5) 0.0899 (18) H2A 0.2578 0.4655 1.2046 0.108\* H2B 0.3357 0.5184 1.1697 0.108\* C3 0.3460 (5) 0.3900 (6) 1.1355 (9) 0.172 (4) H3A 0.3078 0.3448 1.1194 0.258\* H3B 0.3757 0.3756 1.1946 0.258\* H3C 0.3849 0.3976 1.0825 0.258\* C4 0.1673 (3) 0.4642 (4) 1.0520 (4) 0.0766 (16) H4A 0.1626 0.4094 1.0849 0.092\* H4B 0.1542 0.4558 0.9830 0.092\* C5 0.1059 (3) 0.5257 (5) 1.0961 (5) 0.106 (2) H5A 0.1192 0.5346 1.1642 0.159\* H5B 0.0506 0.5025 1.0907 0.159\* H5C 0.1086 0.5792 1.0616 0.159\* C6 0.5408 (3) 0.7480 (3) 0.7986 (4) 0.0540 (12) C7 0.6744 (3) 0.7964 (4) 0.8659 (5) 0.0879 (18) H7A 0.6486 0.7904 0.9301 0.105\* H7B 0.7018 0.8517 0.8639 0.105\* C8 0.7384 (4) 0.7283 (4) 0.8539 (6) 0.104 (2) H8A 0.7117 0.6734 0.8543 0.156\* H8B 0.7777 0.7314 0.9071 0.156\* H8C 0.7671 0.7362 0.7925 0.156\* C9 0.6213 (4) 0.8503 (4) 0.7051 (5) 0.0860 (18) H9A 0.5988 0.8232 0.6466 0.103\* H9B 0.6806 0.8588 0.6949 0.103\* C10 0.5794 (4) 0.9369 (4) 0.7195 (7) 0.130 (3) H10A 0.5209 0.9287 0.7309 0.195\* H10B 0.5872 0.9711 0.6616 0.195\* H10C 0.6038 0.9653 0.7751 0.195\* C11 0.5475 (2) 0.7900 (3) 0.2665 (4) 0.0511 (11) C12 0.4976 (4) 0.7850 (4) 0.4376 (4) 0.0868 (18) H12A 0.5448 0.8218 0.4516 0.104\* H12B 0.4982 0.7387 0.4850 0.104\* C13 0.4186 (5) 0.8354 (5) 0.4500 (6) 0.136 (3) H13A 0.4187 0.8829 0.4053 0.205\* H13B 0.4150 0.8561 0.5164 0.205\* H13C 0.3715 0.7993 0.4364 0.205\* C14 0.4681 (3) 0.6663 (3) 0.3214 (5) 0.0836 (18) H14A 0.4498 0.6628 0.2535 0.100\* H14B 0.4193 0.6611 0.3632 0.100\* C15 0.5265 (5) 0.5937 (4) 0.3426 (7) 0.127 (3) H15A 0.5748 0.5984 0.3011 0.190\* H15B 0.4987 0.5405 0.3297 0.190\* H15C 0.5433 0.5958 0.4103 0.190\* C16 0.7525 (3) 1.0497 (3) 0.0838 (3) 0.0551 (12) C17 0.8189 (3) 1.1743 (4) 0.1579 (5) 0.093 (2) H17A 0.8760 1.1945 0.1537 0.112\* H17B 0.8135 1.1422 0.2186 0.112\* C18 0.7628 (4) 1.2492 (4) 0.1626 (7) 0.127 (3) H18A 0.7674 1.2815 0.1028 0.191\* H18B 0.7782 1.2846 0.2174 0.191\* H18C 0.7063 1.2302 0.1707 0.191\* C19 0.8443 (4) 1.1369 (4) −0.0176 (5) 0.0847 (18) H19A 0.8535 1.1982 −0.0209 0.102\* H19B 0.8079 1.1213 −0.0717 0.102\* C20 0.9255 (4) 1.0925 (4) −0.0301 (5) 0.105 (2) H20A 0.9640 1.1124 0.0188 0.158\* H20B 0.9473 1.1043 −0.0945 0.158\* H20C 0.9175 1.0320 −0.0228 0.158\* N1 0.2536 (3) 0.4961 (2) 1.0614 (3) 0.0615 (11) N2 0.6087 (2) 0.7942 (2) 0.7896 (3) 0.0598 (10) N3 0.5070 (3) 0.7493 (3) 0.3382 (3) 0.0637 (11) N4 0.8028 (2) 1.1167 (3) 0.0749 (3) 0.0633 (11) S1 0.38904 (8) 0.58095 (9) 1.01289 (10) 0.0616 (3) S2 0.24068 (9) 0.57133 (9) 0.88656 (11) 0.0775 (4) S3 0.52830 (8) 0.68637 (9) 0.90454 (10) 0.0632 (3) S4 0.46334 (8) 0.74428 (10) 0.71483 (10) 0.0758 (4) S5 0.58959 (8) 0.88991 (8) 0.29503 (10) 0.0669 (4) S6 0.56063 (7) 0.75098 (8) 0.15308 (10) 0.0597 (3) S7 0.70132 (9) 1.03237 (8) 0.19479 (10) 0.0675 (4) S8 0.73695 (10) 0.97916 (9) −0.00757 (10) 0.0794 (4) Se1 0.39627 (3) 0.64649 (3) 0.86143 (4) 0.05358 (13) Se2 0.64458 (3) 0.90662 (3) 0.13955 (4) 0.05516 (13) ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1460 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.053 (3) 0.051 (3) 0.055 (3) 0.006 (2) 0.009 (2) 0.002 (2) C2 0.091 (4) 0.120 (5) 0.058 (4) −0.010 (4) −0.002 (4) 0.030 (4) C3 0.183 (8) 0.161 (8) 0.171 (9) 0.073 (7) 0.025 (8) 0.103 (8) C4 0.082 (4) 0.083 (4) 0.065 (4) −0.028 (3) 0.004 (3) 0.002 (3) C5 0.062 (4) 0.154 (7) 0.101 (5) −0.020 (4) 0.015 (4) −0.019 (5) C6 0.061 (3) 0.052 (3) 0.049 (3) 0.004 (2) 0.010 (2) −0.007 (2) C7 0.094 (4) 0.098 (5) 0.071 (4) −0.043 (4) −0.007 (4) −0.022 (4) C8 0.068 (4) 0.120 (5) 0.123 (6) −0.009 (4) −0.018 (4) 0.013 (5) C9 0.077 (4) 0.089 (5) 0.093 (5) −0.022 (3) 0.020 (3) 0.005 (4) C10 0.126 (6) 0.075 (5) 0.188 (9) −0.001 (4) 0.034 (6) 0.053 (5) C11 0.043 (2) 0.050 (3) 0.061 (3) 0.004 (2) 0.002 (2) 0.009 (2) C12 0.108 (4) 0.098 (5) 0.055 (4) 0.016 (4) 0.023 (3) 0.017 (3) C13 0.151 (6) 0.162 (8) 0.096 (6) 0.070 (6) 0.046 (5) 0.010 (5) C14 0.083 (4) 0.076 (4) 0.092 (5) −0.015 (3) 0.017 (3) 0.017 (3) C15 0.170 (7) 0.070 (4) 0.141 (7) 0.010 (4) −0.009 (6) 0.035 (5) C16 0.063 (3) 0.045 (3) 0.057 (3) −0.005 (2) −0.004 (3) 0.002 (2) C17 0.080 (4) 0.084 (4) 0.115 (6) −0.024 (3) 0.012 (4) −0.033 (4) C18 0.088 (4) 0.090 (5) 0.204 (9) −0.012 (4) 0.050 (5) −0.042 (5) C19 0.105 (5) 0.069 (4) 0.080 (4) −0.035 (3) 0.016 (4) 0.006 (3) C20 0.110 (5) 0.104 (5) 0.101 (5) −0.028 (4) 0.036 (5) −0.018 (4) N1 0.063 (3) 0.064 (3) 0.058 (3) −0.004 (2) 0.004 (2) 0.007 (2) N2 0.062 (2) 0.054 (2) 0.064 (3) −0.0117 (19) 0.010 (2) −0.005 (2) N3 0.072 (3) 0.066 (3) 0.053 (3) 0.001 (2) 0.013 (2) 0.009 (2) N4 0.068 (3) 0.053 (2) 0.070 (3) −0.014 (2) 0.003 (2) −0.002 (2) S1 0.0544 (7) 0.0774 (9) 0.0529 (8) −0.0004 (6) −0.0011 (6) 0.0125 (6) S2 0.0656 (8) 0.1032 (10) 0.0637 (9) −0.0092 (8) −0.0120 (7) 0.0199 (8) S3 0.0588 (7) 0.0774 (9) 0.0534 (8) −0.0031 (6) 0.0000 (6) 0.0056 (7) S4 0.0649 (8) 0.0990 (11) 0.0635 (10) −0.0127 (7) −0.0047 (7) 0.0243 (8) S5 0.0789 (9) 0.0604 (8) 0.0614 (8) −0.0046 (6) 0.0107 (7) −0.0104 (7) S6 0.0708 (7) 0.0561 (7) 0.0522 (7) −0.0081 (6) 0.0056 (7) −0.0016 (6) S7 0.0809 (9) 0.0592 (8) 0.0624 (8) −0.0170 (7) 0.0135 (7) −0.0101 (7) S8 0.1033 (10) 0.0782 (10) 0.0565 (9) −0.0355 (8) 0.0075 (8) −0.0147 (7) Se1 0.0552 (3) 0.0547 (3) 0.0509 (3) 0.0034 (2) 0.0032 (3) 0.0038 (2) Se2 0.0558 (3) 0.0524 (3) 0.0572 (3) −0.0074 (2) 0.0025 (3) −0.0011 (3) ----- ------------- ------------- ------------- -------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2109 .table-wrap} ---------------------- ------------ ---------------------- -------------- C1---N1 1.332 (6) C12---C13 1.501 (8) C1---S2 1.666 (5) C12---H12A 0.9700 C1---S1 1.747 (5) C12---H12B 0.9700 C2---N1 1.458 (7) C13---H13A 0.9600 C2---C3 1.527 (10) C13---H13B 0.9600 C2---H2A 0.9700 C13---H13C 0.9600 C2---H2B 0.9700 C14---N3 1.457 (7) C3---H3A 0.9600 C14---C15 1.499 (8) C3---H3B 0.9600 C14---H14A 0.9700 C3---H3C 0.9600 C14---H14B 0.9700 C4---N1 1.476 (6) C15---H15A 0.9600 C4---C5 1.501 (8) C15---H15B 0.9600 C4---H4A 0.9700 C15---H15C 0.9600 C4---H4B 0.9700 C16---N4 1.327 (6) C5---H5A 0.9600 C16---S8 1.680 (5) C5---H5B 0.9600 C16---S7 1.738 (5) C5---H5C 0.9600 C17---N4 1.467 (7) C6---N2 1.312 (5) C17---C18 1.478 (8) C6---S4 1.685 (5) C17---H17A 0.9700 C6---S3 1.744 (5) C17---H17B 0.9700 C7---N2 1.479 (7) C18---H18A 0.9600 C7---C8 1.488 (8) C18---H18B 0.9600 C7---H7A 0.9700 C18---H18C 0.9600 C7---H7B 0.9700 C19---N4 1.457 (7) C8---H8A 0.9600 C19---C20 1.485 (8) C8---H8B 0.9600 C19---H19A 0.9700 C8---H8C 0.9600 C19---H19B 0.9700 C9---N2 1.460 (7) C20---H20A 0.9600 C9---C10 1.523 (8) C20---H20B 0.9600 C9---H9A 0.9700 C20---H20C 0.9600 C9---H9B 0.9700 S1---Se1 2.3020 (14) C10---H10A 0.9600 S3---Se1 2.2833 (13) C10---H10B 0.9600 S5---Se2 2.3041 (15) C10---H10C 0.9600 S7---Se2 2.2930 (13) C11---N3 1.332 (6) S8---Se2 2.7343 (15) C11---S6 1.671 (5) S6---Se2 2.7873 (12) C11---S5 1.746 (5) S2---Se1 2.7788 (15) C12---N3 1.470 (7) S4---Se1 2.7318 (14) N1---C1---S2 124.6 (3) C12---C13---H13A 109.5 N1---C1---S1 116.6 (3) C12---C13---H13B 109.5 S2---C1---S1 118.7 (3) H13A---C13---H13B 109.5 N1---C2---C3 109.7 (6) C12---C13---H13C 109.5 N1---C2---H2A 109.7 H13A---C13---H13C 109.5 C3---C2---H2A 109.7 H13B---C13---H13C 109.5 N1---C2---H2B 109.7 N3---C14---C15 112.2 (5) C3---C2---H2B 109.7 N3---C14---H14A 109.2 H2A---C2---H2B 108.2 C15---C14---H14A 109.2 C2---C3---H3A 109.5 N3---C14---H14B 109.2 C2---C3---H3B 109.5 C15---C14---H14B 109.2 H3A---C3---H3B 109.5 H14A---C14---H14B 107.9 C2---C3---H3C 109.5 C14---C15---H15A 109.5 H3A---C3---H3C 109.5 C14---C15---H15B 109.5 H3B---C3---H3C 109.5 H15A---C15---H15B 109.5 N1---C4---C5 111.3 (5) C14---C15---H15C 109.5 N1---C4---H4A 109.4 H15A---C15---H15C 109.5 C5---C4---H4A 109.4 H15B---C15---H15C 109.5 N1---C4---H4B 109.4 N4---C16---S8 122.7 (4) C5---C4---H4B 109.4 N4---C16---S7 119.3 (4) H4A---C4---H4B 108.0 S8---C16---S7 118.0 (3) C4---C5---H5A 109.5 N4---C17---C18 114.4 (6) C4---C5---H5B 109.5 N4---C17---H17A 108.7 H5A---C5---H5B 109.5 C18---C17---H17A 108.7 C4---C5---H5C 109.5 N4---C17---H17B 108.7 H5A---C5---H5C 109.5 C18---C17---H17B 108.7 H5B---C5---H5C 109.5 H17A---C17---H17B 107.6 N2---C6---S4 124.6 (4) C17---C18---H18A 109.5 N2---C6---S3 118.4 (4) C17---C18---H18B 109.5 S4---C6---S3 117.0 (3) H18A---C18---H18B 109.5 N2---C7---C8 113.4 (5) C17---C18---H18C 109.5 N2---C7---H7A 108.9 H18A---C18---H18C 109.5 C8---C7---H7A 108.9 H18B---C18---H18C 109.5 N2---C7---H7B 108.9 N4---C19---C20 113.4 (6) C8---C7---H7B 108.9 N4---C19---H19A 108.9 H7A---C7---H7B 107.7 C20---C19---H19A 108.9 C7---C8---H8A 109.5 N4---C19---H19B 108.9 C7---C8---H8B 109.5 C20---C19---H19B 108.9 H8A---C8---H8B 109.5 H19A---C19---H19B 107.7 C7---C8---H8C 109.5 C19---C20---H20A 109.5 H8A---C8---H8C 109.5 C19---C20---H20B 109.5 H8B---C8---H8C 109.5 H20A---C20---H20B 109.5 N2---C9---C10 111.8 (5) C19---C20---H20C 109.5 N2---C9---H9A 109.2 H20A---C20---H20C 109.5 C10---C9---H9A 109.2 H20B---C20---H20C 109.5 N2---C9---H9B 109.2 C1---N1---C2 122.8 (4) C10---C9---H9B 109.2 C1---N1---C4 121.0 (4) H9A---C9---H9B 107.9 C2---N1---C4 116.2 (4) C9---C10---H10A 109.5 C6---N2---C9 121.3 (5) C9---C10---H10B 109.5 C6---N2---C7 122.6 (4) H10A---C10---H10B 109.5 C9---N2---C7 116.0 (4) C9---C10---H10C 109.5 C11---N3---C14 121.3 (4) H10A---C10---H10C 109.5 C11---N3---C12 122.7 (4) H10B---C10---H10C 109.5 C14---N3---C12 116.0 (5) N3---C11---S6 124.1 (4) C16---N4---C19 121.9 (4) N3---C11---S5 117.0 (4) C16---N4---C17 121.4 (5) S6---C11---S5 118.9 (3) C19---N4---C17 116.7 (4) N3---C12---C13 112.9 (6) C1---S1---Se1 92.48 (16) N3---C12---H12A 109.0 C6---S3---Se1 92.62 (16) C13---C12---H12A 109.0 C11---S5---Se2 92.63 (16) N3---C12---H12B 109.0 C16---S7---Se2 92.13 (16) C13---C12---H12B 109.0 S3---Se1---S1 86.50 (5) H12A---C12---H12B 107.8 S7---Se2---S5 87.07 (5) S2---C1---N1---C2 178.6 (4) C13---C12---N3---C11 92.4 (7) S1---C1---N1---C2 −0.1 (6) C13---C12---N3---C14 −86.8 (7) S2---C1---N1---C4 −3.0 (7) S8---C16---N4---C19 4.1 (7) S1---C1---N1---C4 178.4 (4) S7---C16---N4---C19 −177.0 (4) C3---C2---N1---C1 −89.6 (7) S8---C16---N4---C17 −176.3 (4) C3---C2---N1---C4 91.9 (6) S7---C16---N4---C17 2.5 (7) C5---C4---N1---C1 −89.9 (6) C20---C19---N4---C16 −87.4 (6) C5---C4---N1---C2 88.7 (6) C20---C19---N4---C17 93.0 (6) S4---C6---N2---C9 2.5 (7) C18---C17---N4---C16 −92.6 (7) S3---C6---N2---C9 −177.1 (4) C18---C17---N4---C19 87.0 (7) S4---C6---N2---C7 179.0 (4) N1---C1---S1---Se1 176.8 (3) S3---C6---N2---C7 −0.5 (6) S2---C1---S1---Se1 −2.0 (3) C10---C9---N2---C6 84.1 (7) N2---C6---S3---Se1 174.3 (3) C10---C9---N2---C7 −92.7 (6) S4---C6---S3---Se1 −5.3 (3) C8---C7---N2---C6 88.1 (6) N3---C11---S5---Se2 179.0 (3) C8---C7---N2---C9 −95.2 (6) S6---C11---S5---Se2 −0.6 (3) S6---C11---N3---C14 −1.7 (7) N4---C16---S7---Se2 −176.1 (4) S5---C11---N3---C14 178.8 (4) S8---C16---S7---Se2 2.8 (3) S6---C11---N3---C12 179.2 (4) C6---S3---Se1---S1 −174.55 (15) S5---C11---N3---C12 −0.4 (6) C1---S1---Se1---S3 −179.80 (16) C15---C14---N3---C11 90.1 (7) C16---S7---Se2---S5 176.19 (17) C15---C14---N3---C12 −90.7 (6) C11---S5---Se2---S7 −176.75 (15) ---------------------- ------------ ---------------------- -------------- :::
PubMed Central
2024-06-05T04:04:16.765551
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051749/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o411", "authors": [ { "first": "Alpar", "last": "Pöllnitz" }, { "first": "Richard A.", "last": "Varga" }, { "first": "Anca", "last": "Silvestru" } ] }
PMC3051750
Related literature {#sec1} ================== For background to the biological importance of thia­zetoquinoline anti­biotics, see: Ozaki *et al.* (1991[@bb6]). For similar work using different procedures, see: Ito *et al.* (1992[@bb2], 1994[@bb3]); Matsuoka *et al.* (1999[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~9~NO~5~S*M* *~r~* = 327.31Monoclinic,*a* = 7.237 (2) Å*b* = 16.171 (5) Å*c* = 11.929 (4) Åβ = 106.081 (8)°*V* = 1341.5 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 0.27 mm^−1^*T* = 153 K0.18 × 0.04 × 0.04 mm ### Data collection {#sec2.1.2} Rigaku Saturn diffractometerAbsorption correction: numerical (*ABSCOR*; Higashi, 1999[@bb1]) *T* ~min~ = 0.974, *T* ~max~ = 0.99617300 measured reflections2769 independent reflections2614 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.074 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.088*wR*(*F* ^2^) = 0.164*S* = 1.302769 reflections214 parameters2 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.31 e Å^−3^Δρ~min~ = −0.31 e Å^−3^ {#d5e519} Data collection: *CrystalClear* (Rigaku, 2005[@bb7]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *Mercury* (Macrae *et al.*, 2006[@bb4]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb9]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003333/su2249sup1.cif](http://dx.doi.org/10.1107/S1600536811003333/su2249sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003333/su2249Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003333/su2249Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?su2249&file=su2249sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?su2249sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?su2249&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SU2249](http://scripts.iucr.org/cgi-bin/sendsup?su2249)). Comment ======= 4-oxo-1,4-dihydroquinoline-3-carboxylic acid derivatives (quinolones) are an important class of antibacterial agents, and a significant market exists for thiazetoquinoline antibiotics (Matsuoka *et al.*,1999; Ito *et al.*, 1992; Ito *et al.*, 1994; Ozaki *et al.*, 1991). To this end, the title comound was obtained from the reaction of ethyl 2-{\[2- ethoxy-2-oxoethyl)thio)-4-hydroxybenzo\[*h*\]quinoline-3-carboxylate with 1,2-dibromopropane in the presence of a catalytic amount of KI, followed by saponification using sodium hydroxide. The molecular structure of the title molecule is shown in Fig. 1. It exhibits intra- (O5---H5a···O1) and intermolecular (O3---H3···O4^i^) hydrogen bonding (Table 1 and Fig. 2) leading to a chain-like arrangement of molecules which run along \[201\] and perpendicular to the π stacks (Fig. 2). Centroid-centroid distances range from 3.560 (2) to 3.688 (2) Å with angles of elevation between 19.56 and 24.39° (Table 2), while the inter-planar distance, as defined by the adjacent 14-atom (N1,C1---C13) ring system is 3.34 (1) Å. Experimental {#experimental} ============ To a mixture of ethyl 2-{\[2- ethoxy-2-oxoethyl)thio)-4-hydroxybenzo\[*h*\]quinoline-3-carboxylate (1 mmol) and K~2~CO~3~ (2.8 mmol) in dry DMF (25 ml) under a nitrogen atmosphere was added 1,2-dibromopropane (2.8 mmol) along with a catlytic amount of KI. The reaction mixture was heated at 343 K for 24 h, and then poured into ice-H~2~O. The resulting thiazetoquinoline derivative was collected by filtration. The separated product was reacted with sodium hydroxide (2.2 mmol) in water (20 ml) and heated at 373 K for 3--4 h. After being cooled, the reaction mixture was neutralized with hydrochloric acid (1 mol/*L*), extracted with CH~2~Cl~2~, dried over MgSO~4~, and then evaporated. The obtained solid was purified by recrystallization from ethanol to afford the title compound as a yellowish white powder. Mp. 508 K, yield = 39%. ^1^H-NMR and ^13^C-NMR data are given in the archived CIF. Refinement {#refinement} ========== The OH H-atoms, H3 and H5a, were located from difference Fourier maps, and were refined with distance restraints: O-H = 0.96 (3) Å, with *U*~iso~(H) = 1.2U~eq~(O). The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.95, 0.98, 0.99 and 1.0 Å for H-aromatic, H-methyl, H-methylene and methine H-atoms, respectively, with U~iso~(H) = k × U~eq~(parent C-atom), where k = 1.5 for H-methyl and k = 1.2 for all other H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the molecular structure of the title molecule, with displacement ellipsoids drawn at the 50% probability level. ::: ![](e-67-0o529-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A partial view of the crystal packing of the title compound. Both the hydrogen bonding \[symmetry codes: (i) x-1, y, z; (ii) x, -y+1/2, z+1/2; (iii) x+1, y, z+1\] and π···π interactions \[symmetry codes: (ii) x, -y+1/2, z+1/2; (iv) -x+1, y+1/2, -z+1/2\] are shown as dashed lines; ring centroids are marked by small spheres. See Tables 1 and 2 for details. ::: ![](e-67-0o529-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e169 .table-wrap} ------------------------- --------------------------------------- C~16~H~9~NO~5~S *F*(000) = 672 *M~r~* = 327.31 *D*~x~ = 1.621 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71075 Å Hall symbol: -P 2ybc Cell parameters from 4915 reflections *a* = 7.237 (2) Å θ = 2.2--30.6° *b* = 16.171 (5) Å µ = 0.27 mm^−1^ *c* = 11.929 (4) Å *T* = 153 K β = 106.081 (8)° Needle, colourless *V* = 1341.5 (7) Å^3^ 0.18 × 0.04 × 0.04 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e297 .table-wrap} ------------------------------------------------------------ -------------------------------------- Rigaku Saturn diffractometer 2769 independent reflections Radiation source: fine-focus sealed tube 2614 reflections with *I* \> 2σ(*I*) graphite - Rigaku SHINE *R*~int~ = 0.074 Detector resolution: 14.63 pixels mm^-1^ θ~max~ = 26.5°, θ~min~ = 2.5° ω scans *h* = −9→9 Absorption correction: numerical (*ABSCOR*; Higashi, 1999) *k* = −20→20 *T*~min~ = 0.974, *T*~max~ = 0.996 *l* = −14→14 17300 measured reflections ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e417 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.088 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.164 H atoms treated by a mixture of independent and constrained refinement *S* = 1.30 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0366*P*)^2^ + 2.1946*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2769 reflections (Δ/σ)~max~ \< 0.001 214 parameters Δρ~max~ = 0.31 e Å^−3^ 2 restraints Δρ~min~ = −0.31 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e574 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. Spectroscopic data:^1^H-NMR: (500 MHz, DMSO-d6): δ= 8.27(1*H*, d, *J*=8.8), 8.25(1*H*, d, *J*=8.4), 8.17(1*H*, d, *J*=7.5), 8.02(1*H*, d, *J*=8.80), 7.83(1*H*, dd, *J*=11.0, 4.0), 7.81--7.76(1*H*, m), 7.73(1*H*, s)}. ^13^C-NMR: (500 MHz, DMSO-d6): δ= 175.76, 165.64, 165.25, 164.26, 136.09, 135.26, 129.58, 128.97, 127.58, 126.05, 122.67, 122.33, 121.53, 121.15, 103.64, 70.43. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e731 .table-wrap} ----- -------------- --------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.60834 (14) 0.26465 (6) 0.14885 (8) 0.0347 (3) O1 0.5029 (4) −0.01520 (17) 0.3384 (2) 0.0387 (7) O2 0.2537 (4) 0.33079 (19) −0.0999 (3) 0.0512 (8) O3 0.1270 (4) 0.25356 (17) 0.0178 (2) 0.0370 (6) O4 0.7870 (4) 0.20609 (17) 0.3966 (2) 0.0379 (7) O5 0.7226 (4) 0.08587 (19) 0.4695 (2) 0.0439 (7) N1 0.4277 (4) 0.14703 (17) 0.0711 (2) 0.0257 (6) C1 0.5397 (5) 0.1656 (2) 0.1790 (3) 0.0274 (7) C2 0.5731 (5) 0.1139 (2) 0.2722 (3) 0.0289 (8) C3 0.4829 (5) 0.0354 (2) 0.2544 (3) 0.0303 (8) C4 0.3696 (5) 0.0139 (2) 0.1369 (3) 0.0277 (8) C5 0.2892 (5) −0.0668 (2) 0.1153 (3) 0.0318 (8) H5 0.3105 −0.1057 0.1774 0.038\* C6 0.1828 (5) −0.0887 (2) 0.0074 (3) 0.0317 (8) H6 0.1297 −0.1428 −0.0048 0.038\* C7 0.1484 (5) −0.0329 (2) −0.0882 (3) 0.0281 (8) C8 0.0343 (5) −0.0566 (2) −0.2002 (3) 0.0327 (8) H8 −0.0180 −0.1108 −0.2118 0.039\* C9 −0.0019 (5) −0.0027 (3) −0.2920 (3) 0.0364 (9) H9 −0.0819 −0.0190 −0.3661 0.044\* C10 0.0790 (6) 0.0762 (2) −0.2765 (3) 0.0359 (9) H10 0.0552 0.1130 −0.3410 0.043\* C11 0.1927 (5) 0.1015 (2) −0.1696 (3) 0.0324 (8) H11 0.2475 0.1553 −0.1611 0.039\* C12 0.2288 (5) 0.0480 (2) −0.0719 (3) 0.0275 (8) C13 0.3401 (5) 0.0702 (2) 0.0439 (3) 0.0254 (7) C14 0.4427 (5) 0.2249 (2) 0.0104 (3) 0.0298 (8) H14 0.5090 0.2174 −0.0521 0.036\* C15 0.2618 (5) 0.2759 (2) −0.0304 (3) 0.0327 (8) C16 0.7025 (5) 0.1379 (2) 0.3852 (3) 0.0332 (9) H5A 0.649 (6) 0.039 (2) 0.432 (4) 0.052\* H3 0.008 (4) 0.277 (2) −0.029 (3) 0.044\* ----- -------------- --------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1209 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0343 (5) 0.0303 (5) 0.0351 (5) −0.0046 (4) 0.0023 (4) −0.0016 (4) O1 0.0403 (16) 0.0408 (16) 0.0313 (14) 0.0000 (12) 0.0036 (12) 0.0104 (12) O2 0.0460 (17) 0.0450 (17) 0.062 (2) 0.0053 (14) 0.0138 (15) 0.0244 (16) O3 0.0304 (14) 0.0391 (15) 0.0396 (15) 0.0034 (12) 0.0065 (12) 0.0059 (12) O4 0.0335 (14) 0.0420 (16) 0.0337 (14) −0.0013 (13) 0.0022 (11) −0.0073 (12) O5 0.0438 (17) 0.0558 (19) 0.0260 (14) −0.0055 (14) −0.0006 (12) 0.0038 (13) N1 0.0257 (15) 0.0240 (15) 0.0263 (15) −0.0017 (12) 0.0053 (12) 0.0024 (12) C1 0.0220 (17) 0.0300 (18) 0.0289 (18) −0.0005 (14) 0.0051 (14) −0.0049 (15) C2 0.0265 (18) 0.033 (2) 0.0273 (18) −0.0005 (15) 0.0080 (14) −0.0024 (15) C3 0.0285 (18) 0.036 (2) 0.0268 (18) 0.0060 (16) 0.0076 (14) 0.0044 (15) C4 0.0243 (17) 0.0300 (19) 0.0294 (18) 0.0035 (15) 0.0087 (14) 0.0009 (15) C5 0.0285 (19) 0.0283 (19) 0.040 (2) 0.0039 (15) 0.0111 (16) 0.0066 (16) C6 0.0278 (18) 0.0252 (19) 0.042 (2) 0.0007 (15) 0.0092 (16) 0.0008 (16) C7 0.0237 (17) 0.0275 (18) 0.0326 (19) 0.0035 (14) 0.0072 (14) −0.0029 (15) C8 0.0259 (18) 0.033 (2) 0.039 (2) −0.0002 (15) 0.0076 (16) −0.0087 (17) C9 0.0282 (19) 0.045 (2) 0.031 (2) 0.0022 (17) 0.0004 (15) −0.0106 (17) C10 0.039 (2) 0.038 (2) 0.0280 (19) 0.0004 (18) 0.0058 (16) 0.0025 (17) C11 0.034 (2) 0.0300 (19) 0.0323 (19) −0.0032 (16) 0.0082 (16) −0.0041 (16) C12 0.0220 (17) 0.0298 (19) 0.0303 (18) 0.0010 (14) 0.0065 (14) −0.0007 (15) C13 0.0224 (16) 0.0250 (17) 0.0302 (18) 0.0013 (14) 0.0094 (14) 0.0003 (15) C14 0.0265 (18) 0.0290 (19) 0.0329 (19) 0.0002 (15) 0.0065 (15) 0.0027 (15) C15 0.035 (2) 0.0271 (19) 0.0325 (19) −0.0016 (16) 0.0029 (16) −0.0013 (16) C16 0.0300 (19) 0.044 (2) 0.0267 (19) 0.0051 (17) 0.0093 (15) −0.0021 (17) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1643 .table-wrap} ---------------- ------------ ----------------- ----------- S1---C1 1.744 (4) C5---C6 1.351 (5) S1---C14 1.866 (4) C5---H5 0.9500 O1---C3 1.271 (4) C6---C7 1.421 (5) O2---C15 1.205 (4) C6---H6 0.9500 O3---C15 1.314 (5) C7---C8 1.416 (5) O3---H3 0.963 (19) C7---C12 1.423 (5) O4---C16 1.250 (5) C8---C9 1.366 (5) O5---C16 1.288 (5) C8---H8 0.9500 O5---H5A 0.965 (19) C9---C10 1.394 (6) N1---C1 1.350 (4) C9---H9 0.9500 N1---C13 1.392 (4) C10---C11 1.375 (5) N1---C14 1.472 (4) C10---H10 0.9500 C1---C2 1.358 (5) C11---C12 1.416 (5) C2---C3 1.416 (5) C11---H11 0.9500 C2---C16 1.464 (5) C12---C13 1.438 (5) C3---C4 1.456 (5) C14---C15 1.509 (5) C4---C13 1.406 (5) C14---H14 1.0000 C4---C5 1.423 (5) C1---S1---C14 73.49 (16) C7---C8---H8 119.5 C15---O3---H3 107 (3) C8---C9---C10 119.8 (3) C16---O5---H5A 103 (3) C8---C9---H9 120.1 C1---N1---C13 122.3 (3) C10---C9---H9 120.1 C1---N1---C14 99.9 (3) C11---C10---C9 121.1 (4) C13---N1---C14 137.7 (3) C11---C10---H10 119.5 N1---C1---C2 124.6 (3) C9---C10---H10 119.5 N1---C1---S1 97.9 (2) C10---C11---C12 120.5 (3) C2---C1---S1 137.5 (3) C10---C11---H11 119.7 C1---C2---C3 117.2 (3) C12---C11---H11 119.7 C1---C2---C16 121.0 (3) C11---C12---C7 118.3 (3) C3---C2---C16 121.8 (3) C11---C12---C13 124.3 (3) O1---C3---C2 120.8 (3) C7---C12---C13 117.3 (3) O1---C3---C4 121.0 (3) N1---C13---C4 115.7 (3) C2---C3---C4 118.2 (3) N1---C13---C12 123.0 (3) C13---C4---C5 119.1 (3) C4---C13---C12 121.3 (3) C13---C4---C3 121.8 (3) N1---C14---C15 116.8 (3) C5---C4---C3 119.1 (3) N1---C14---S1 88.6 (2) C6---C5---C4 120.6 (3) C15---C14---S1 112.6 (3) C6---C5---H5 119.7 N1---C14---H14 112.3 C4---C5---H5 119.7 C15---C14---H14 112.3 C5---C6---C7 121.7 (3) S1---C14---H14 112.3 C5---C6---H6 119.2 O2---C15---O3 127.1 (4) C7---C6---H6 119.2 O2---C15---C14 119.8 (4) C8---C7---C6 120.8 (3) O3---C15---C14 113.1 (3) C8---C7---C12 119.2 (3) O4---C16---O5 123.0 (3) C6---C7---C12 120.0 (3) O4---C16---C2 120.2 (3) C9---C8---C7 121.0 (4) O5---C16---C2 116.8 (4) C9---C8---H8 119.5 ---------------- ------------ ----------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2087 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O5---H5A···O1 0.96 (4) 1.57 (4) 2.504 (4) 161 (4) O3---H3···O4^i^ 0.97 (3) 1.62 (3) 2.569 (4) 166 (3) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*−1, −*y*+1/2, *z*−1/2. Table 2 π···π interactions (Å, °) {#d1e2166} ================================= Angle of elevation defined as the angle of the *Cg*(*I*)→*Cg*(*J*) vector and the normal to plane *J*. Cg1, Cg2 and Cg3 are the centroids of the C7--C12, N1/C1--C4/C13 and C4--C7/C12/C13 rings, respectively. ::: {#d1e2205 .table-wrap} -------------- ----------- -------------------- π···π Distance Angle of Elevation Cg1···Cg2^i^ 3.560 (2) 19.56 Cg3···Cg2^i^ 3.644 (2) 22.75 Cg3···Cg3^i^ 3.688 (2) 24.39 -------------- ----------- -------------------- ::: Symmetry code: (i) -x+1, -y, -z. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- O5---H5*A*⋯O1 0.96 (4) 1.57 (4) 2.504 (4) 161 (4) O3---H3⋯O4^i^ 0.97 (3) 1.62 (3) 2.569 (4) 166 (3) Symmetry code: (i) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### π⋯π inter­actions (Å, °) Angle of elevation defined as the angle of the *Cg*(*I*)→*Cg*(*J*) vector and the normal to plane *J. Cg*1, *Cg*2 and *Cg*3 are the centroids of the C7--C12, N1/C1--C4/C13 and C4--C7/C12/C13 rings, respectively. ::: π⋯π Distance Angle of Elevation ---------------- ----------- -------------------- *Cg*1⋯*Cg*2^i^ 3.560 (2) 19.56 *Cg*3⋯*Cg*2^i^ 3.644 (2) 22.75 *Cg*3⋯*Cg*3^i^ 3.688 (2) 24.39 Symmetry code: (i) −*x* + 1, −*y*, −*z*. :::
PubMed Central
2024-06-05T04:04:16.773152
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051750/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):o529", "authors": [ { "first": "Louise N.", "last": "Dawe" }, { "first": "Abeer", "last": "Ahmed" }, { "first": "Mohsen", "last": "Daneshtalab" } ] }
PMC3051751
Related literature {#sec1} ================== For a related organotin structure, see: Nowell *et al.* (1983[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~7~H~8~NO~2~)\[SnCl~4~(C~6~H~4~NO~2~)\]*M* *~r~* = 520.74Orthorhombic,*a* = 8.8898 (3) Å*b* = 10.3571 (3) Å*c* = 20.0938 (7) Å*V* = 1850.09 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 1.98 mm^−1^*T* = 100 K0.30 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010[@bb1]) *T* ~min~ = 0.588, *T* ~max~ = 0.6936191 measured reflections3787 independent reflections3679 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.021*wR*(*F* ^2^) = 0.049*S* = 0.963787 reflections222 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.36 e Å^−3^Δρ~min~ = −0.68 e Å^−3^Absolute structure: Flack (1983[@bb3]), 1428 Friedel pairsFlack parameter: −0.03 (2) {#d5e475} Data collection: *CrysAlis PRO* (Agilent Technologies, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001930/si2326sup1.cif](http://dx.doi.org/10.1107/S1600536811001930/si2326sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001930/si2326Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001930/si2326Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?si2326&file=si2326sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?si2326sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?si2326&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SI2326](http://scripts.iucr.org/cgi-bin/sendsup?si2326)). We thank Shahid Beheshti University and the University of Malaya for supporting this study. Comment ======= The direct synthesis of a potentially chelating amino-carboxylic acid with stannic tetrachloride has not been reported. Pyridine-2-carboxylic acid yields a number of derivatives with organotin compounds; these are either synthesized by condensing the amino-carboxylic acids with an organotin oxide/hydroxide or by reacting the amino-carboxylic acids with an organotin chloride in the presence of a proton abstractor. With the latter route, the product may be an organostannate in which the pyridine-2-carboxylate chelates to the chlorine-bonded tin atom (Nowell *et al.*, 1983). In the reaction of pyridine-2-carboxylic acid and stannic chloride in methanol, one equivalent of the carboxylic acid is protonated at the amino site and is also esterified to yield the salt, \[C~7~H~8~NO~2~\]^+^ \[SnCl~4~(C~6~H~4~NO~2~)\]^-^ (Scheme I, Fig. 1). The tin atom in the anion is *N*,*O*-chelated by a pyridine-2-carboxylate in an octahedral geometry. The cation is linked to the anion by an N--H···O hydrogen bond (Table 1). Experimental {#experimental} ============ Stannic chloride pentahydrate 0.35 g, 1 mmol) and pyridine-2-carboxylic acid (0.13 g, 1 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C---H 0.95 to 0.98 Å, *U*~iso~(H) 1.2 to 1.5*U*~eq~(C)\] and were included in the refinement in the riding model approximation. The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N--H 0.88±0.01 Å; its temperature factor was refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of \[C7H8NO2\]+ \[SnCl4(C6H4NO2)\]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m239-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e166 .table-wrap} ------------------------------------------- --------------------------------------- (C~7~H~8~NO~2~)\[SnCl~4~(C~6~H~4~NO~2~)\] *F*(000) = 1016 *M~r~* = 520.74 *D*~x~ = 1.870 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 5063 reflections *a* = 8.8898 (3) Å θ = 2.5--29.3° *b* = 10.3571 (3) Å µ = 1.98 mm^−1^ *c* = 20.0938 (7) Å *T* = 100 K *V* = 1850.09 (10) Å^3^ Prism, colorless *Z* = 4 0.30 × 0.25 × 0.20 mm ------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e304 .table-wrap} -------------------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with an Atlas detector 3787 independent reflections Radiation source: SuperNova (Mo) X-ray Source 3679 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.021 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.5° ω scans *h* = −11→7 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010) *k* = −13→10 *T*~min~ = 0.588, *T*~max~ = 0.693 *l* = −25→15 6191 measured reflections -------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e424 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.021 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.049 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0199*P*)^2^ + 1.6372*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 0.96 (Δ/σ)~max~ = 0.001 3787 reflections Δρ~max~ = 0.36 e Å^−3^ 222 parameters Δρ~min~ = −0.68 e Å^−3^ 1 restraint Absolute structure: Flack (1983), 1428 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.03 (2) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e591 .table-wrap} ----- --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 0.389388 (18) 0.500107 (17) 0.098352 (8) 0.01202 (5) Cl4 0.19677 (7) 0.49203 (9) 0.18312 (3) 0.01817 (13) Cl3 0.59780 (8) 0.48209 (7) 0.02047 (3) 0.01800 (14) Cl2 0.39844 (9) 0.72817 (6) 0.09456 (4) 0.02160 (15) Cl1 0.21001 (8) 0.46486 (7) 0.01310 (4) 0.02040 (16) O1 0.54531 (19) 0.5006 (2) 0.17598 (8) 0.0163 (4) O2 0.6707 (2) 0.3817 (2) 0.24920 (10) 0.0217 (5) O3 0.9194 (2) 0.2695 (2) 0.17094 (10) 0.0202 (4) O4 1.1105 (3) 0.1264 (2) 0.16977 (11) 0.0271 (5) N1 0.4309 (3) 0.2927 (2) 0.11697 (11) 0.0127 (5) N2 0.9440 (3) 0.3078 (2) 0.30014 (13) 0.0148 (5) H2 0.866 (2) 0.338 (3) 0.2787 (14) 0.012 (8)\* C1 0.5869 (3) 0.3918 (3) 0.20127 (13) 0.0156 (6) C2 0.5262 (3) 0.2717 (3) 0.16754 (13) 0.0148 (6) C3 0.5707 (4) 0.1491 (3) 0.18569 (14) 0.0195 (6) H3 0.6361 0.1358 0.2225 0.023\* C4 0.5172 (3) 0.0454 (3) 0.14858 (15) 0.0208 (6) H4 0.5467 −0.0402 0.1594 0.025\* C5 0.4211 (3) 0.0678 (3) 0.09613 (15) 0.0196 (6) H5 0.3850 −0.0020 0.0700 0.024\* C6 0.3776 (3) 0.1931 (3) 0.08186 (14) 0.0158 (6) H6 0.3088 0.2085 0.0466 0.019\* C7 0.9024 (4) 0.2550 (3) 0.09935 (16) 0.0295 (7) H7A 0.8182 0.3084 0.0840 0.044\* H7B 0.8824 0.1643 0.0887 0.044\* H7C 0.9950 0.2827 0.0771 0.044\* C8 1.0302 (4) 0.2023 (3) 0.19757 (16) 0.0182 (7) C9 1.0474 (3) 0.2317 (3) 0.27057 (14) 0.0154 (6) C10 1.1650 (4) 0.1834 (3) 0.30627 (15) 0.0209 (6) H10 1.2384 0.1302 0.2856 0.025\* C11 1.1758 (4) 0.2136 (3) 0.37360 (17) 0.0266 (7) H11 1.2564 0.1803 0.3995 0.032\* C12 1.0684 (4) 0.2923 (3) 0.40256 (17) 0.0239 (7) H12 1.0752 0.3138 0.4484 0.029\* C13 0.9520 (4) 0.3391 (3) 0.36472 (15) 0.0177 (6) H13 0.8777 0.3932 0.3842 0.021\* ----- --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1066 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.01237 (8) 0.01123 (8) 0.01245 (8) 0.00035 (11) −0.00144 (7) −0.00058 (8) Cl4 0.0168 (3) 0.0182 (3) 0.0195 (3) −0.0011 (4) 0.0035 (2) −0.0029 (3) Cl3 0.0173 (3) 0.0198 (3) 0.0170 (3) 0.0010 (3) 0.0027 (3) 0.0005 (3) Cl2 0.0263 (4) 0.0115 (3) 0.0270 (4) 0.0001 (3) 0.0020 (4) −0.0006 (3) Cl1 0.0186 (3) 0.0253 (4) 0.0173 (3) 0.0008 (3) −0.0061 (3) −0.0007 (3) O1 0.0159 (8) 0.0182 (8) 0.0148 (8) −0.0015 (12) −0.0046 (7) 0.0011 (10) O2 0.0170 (10) 0.0324 (11) 0.0156 (10) 0.0063 (10) −0.0037 (9) −0.0041 (9) O3 0.0186 (11) 0.0297 (11) 0.0123 (9) 0.0005 (10) −0.0002 (9) −0.0031 (8) O4 0.0294 (12) 0.0277 (10) 0.0242 (11) 0.0063 (12) 0.0070 (11) −0.0067 (9) N1 0.0132 (12) 0.0110 (10) 0.0139 (12) 0.0013 (10) 0.0015 (10) 0.0005 (8) N2 0.0097 (12) 0.0163 (12) 0.0184 (13) 0.0012 (10) −0.0026 (11) 0.0034 (10) C1 0.0101 (13) 0.0242 (14) 0.0123 (12) 0.0042 (12) 0.0038 (11) −0.0027 (11) C2 0.0138 (13) 0.0190 (13) 0.0115 (13) 0.0018 (12) 0.0022 (11) 0.0021 (10) C3 0.0210 (15) 0.0220 (14) 0.0155 (14) 0.0036 (13) 0.0025 (12) 0.0055 (11) C4 0.0220 (15) 0.0150 (12) 0.0253 (16) 0.0023 (12) 0.0100 (13) 0.0063 (11) C5 0.0212 (14) 0.0132 (12) 0.0245 (14) −0.0020 (12) 0.0076 (14) −0.0009 (11) C6 0.0153 (13) 0.0151 (12) 0.0170 (14) −0.0025 (12) 0.0034 (12) −0.0015 (10) C7 0.0268 (17) 0.0482 (19) 0.0134 (14) 0.0025 (18) −0.0033 (17) −0.0023 (15) C8 0.0177 (15) 0.0183 (14) 0.0186 (16) −0.0025 (13) 0.0012 (14) −0.0014 (12) C9 0.0145 (13) 0.0136 (12) 0.0181 (14) −0.0013 (11) 0.0008 (12) 0.0009 (10) C10 0.0172 (14) 0.0204 (14) 0.0253 (16) 0.0060 (12) −0.0009 (14) −0.0009 (12) C11 0.0224 (16) 0.0333 (17) 0.0241 (16) 0.0063 (15) −0.0067 (15) 0.0012 (14) C12 0.0242 (16) 0.0292 (15) 0.0183 (14) 0.0027 (14) −0.0047 (15) −0.0018 (14) C13 0.0184 (14) 0.0180 (13) 0.0165 (14) 0.0019 (12) −0.0012 (12) −0.0015 (11) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1536 .table-wrap} --------------------- -------------- ----------------------- ------------ Sn1---O1 2.0868 (16) C3---H3 0.9500 Sn1---N1 2.211 (2) C4---C5 1.376 (4) Sn1---Cl2 2.3647 (6) C4---H4 0.9500 Sn1---Cl1 2.3687 (7) C5---C6 1.384 (4) Sn1---Cl4 2.4167 (6) C5---H5 0.9500 Sn1---Cl3 2.4325 (7) C6---H6 0.9500 O1---C1 1.291 (3) C7---H7A 0.9800 O2---C1 1.222 (3) C7---H7B 0.9800 O3---C8 1.320 (4) C7---H7C 0.9800 O3---C7 1.454 (4) C8---C9 1.506 (4) O4---C8 1.199 (4) C9---C10 1.363 (4) N1---C2 1.341 (4) C10---C11 1.392 (4) N1---C6 1.337 (3) C10---H10 0.9500 N2---C13 1.339 (4) C11---C12 1.384 (5) N2---C9 1.348 (4) C11---H11 0.9500 N2---H2 0.88 (2) C12---C13 1.373 (4) C1---C2 1.516 (4) C12---H12 0.9500 C2---C3 1.379 (4) C13---H13 0.9500 C3---C4 1.391 (4) O1---Sn1---N1 76.42 (9) C5---C4---H4 120.2 O1---Sn1---Cl2 89.93 (7) C3---C4---H4 120.2 N1---Sn1---Cl2 165.94 (7) C4---C5---C6 119.3 (3) O1---Sn1---Cl1 171.19 (7) C4---C5---H5 120.3 N1---Sn1---Cl1 94.88 (6) C6---C5---H5 120.3 Cl2---Sn1---Cl1 98.83 (3) N1---C6---C5 121.0 (3) O1---Sn1---Cl4 86.78 (5) N1---C6---H6 119.5 N1---Sn1---Cl4 88.02 (6) C5---C6---H6 119.5 Cl2---Sn1---Cl4 94.67 (3) O3---C7---H7A 109.5 Cl1---Sn1---Cl4 91.57 (2) O3---C7---H7B 109.5 O1---Sn1---Cl3 88.58 (5) H7A---C7---H7B 109.5 N1---Sn1---Cl3 84.67 (6) O3---C7---H7C 109.5 Cl2---Sn1---Cl3 91.72 (3) H7A---C7---H7C 109.5 Cl1---Sn1---Cl3 92.04 (2) H7B---C7---H7C 109.5 Cl4---Sn1---Cl3 172.10 (3) O4---C8---O3 126.9 (3) C1---O1---Sn1 118.83 (19) O4---C8---C9 121.7 (3) C8---O3---C7 115.1 (2) O3---C8---C9 111.3 (3) C2---N1---C6 119.9 (2) N2---C9---C10 120.3 (3) C2---N1---Sn1 113.08 (18) N2---C9---C8 118.6 (3) C6---N1---Sn1 126.95 (19) C10---C9---C8 121.1 (3) C13---N2---C9 122.2 (3) C9---C10---C11 118.8 (3) C13---N2---H2 116 (2) C9---C10---H10 120.6 C9---N2---H2 122 (2) C11---C10---H10 120.6 O2---C1---O1 124.0 (3) C10---C11---C12 119.6 (3) O2---C1---C2 119.9 (2) C10---C11---H11 120.2 O1---C1---C2 116.0 (2) C12---C11---H11 120.2 N1---C2---C3 122.1 (3) C13---C12---C11 119.7 (3) N1---C2---C1 115.5 (2) C13---C12---H12 120.1 C3---C2---C1 122.4 (3) C11---C12---H12 120.1 C2---C3---C4 118.1 (3) N2---C13---C12 119.4 (3) C2---C3---H3 121.0 N2---C13---H13 120.3 C4---C3---H3 121.0 C12---C13---H13 120.3 C5---C4---C3 119.5 (3) N1---Sn1---O1---C1 −3.82 (19) O1---C1---C2---C3 174.6 (3) Cl2---Sn1---O1---C1 179.60 (18) N1---C2---C3---C4 1.8 (4) Cl4---Sn1---O1---C1 84.92 (18) C1---C2---C3---C4 −175.4 (3) Cl3---Sn1---O1---C1 −88.68 (18) C2---C3---C4---C5 −0.9 (4) O1---Sn1---N1---C2 2.07 (18) C3---C4---C5---C6 −1.0 (4) Cl2---Sn1---N1---C2 16.3 (4) C2---N1---C6---C5 −1.1 (4) Cl1---Sn1---N1---C2 −176.51 (18) Sn1---N1---C6---C5 175.4 (2) Cl4---Sn1---N1---C2 −85.10 (19) C4---C5---C6---N1 2.0 (4) Cl3---Sn1---N1---C2 91.89 (19) C7---O3---C8---O4 −4.7 (5) O1---Sn1---N1---C6 −174.6 (3) C7---O3---C8---C9 175.2 (3) Cl2---Sn1---N1---C6 −160.4 (2) C13---N2---C9---C10 0.1 (4) Cl1---Sn1---N1---C6 6.8 (2) C13---N2---C9---C8 −179.6 (2) Cl4---Sn1---N1---C6 98.3 (2) O4---C8---C9---N2 −173.4 (3) Cl3---Sn1---N1---C6 −84.8 (2) O3---C8---C9---N2 6.7 (4) Sn1---O1---C1---O2 −175.6 (2) O4---C8---C9---C10 7.0 (5) Sn1---O1---C1---C2 4.8 (3) O3---C8---C9---C10 −173.0 (3) C6---N1---C2---C3 −0.9 (4) N2---C9---C10---C11 0.4 (4) Sn1---N1---C2---C3 −177.8 (2) C8---C9---C10---C11 180.0 (3) C6---N1---C2---C1 176.5 (2) C9---C10---C11---C12 −0.6 (5) Sn1---N1---C2---C1 −0.4 (3) C10---C11---C12---C13 0.4 (5) O2---C1---C2---N1 177.7 (2) C9---N2---C13---C12 −0.3 (4) O1---C1---C2---N1 −2.7 (4) C11---C12---C13---N2 0.0 (5) O2---C1---C2---C3 −5.0 (4) --------------------- -------------- ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2285 .table-wrap} --------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···O2 0.88 (3) 1.89 (1) 2.745 (3) 166 (3) --------------- ---------- ---------- ----------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------- ---------- ---------- ----------- ------------- N2---H2⋯O2 0.88 (3) 1.89 (1) 2.745 (3) 166 (3) :::
PubMed Central
2024-06-05T04:04:16.777026
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051751/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m239", "authors": [ { "first": "Ezzatollah", "last": "Najafi" }, { "first": "Mostafa M.", "last": "Amini" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3051752
Related literature {#sec1} ================== Chalcones are precursors of all flavonoid-type natural products in biosynthesis, see: Marais *et al.* (2005[@bb9]). For their pharmacological activity, see: Di Carlo *et al.* (1999[@bb5]) and for their anti­malarial activity, see: Ram *et al.* (2000[@bb14]); Troeberg *et al.* (2000[@bb17]). For the synthesis and biological activity of some fluorinated chalcone derivatives, see: Nakamura *et al.* (2002[@bb10]). For a review of anti-infective and anti-inflammatory chalcones, see: Nowakowska (2007[@bb12]) and for recent advances in therapeutic chalcones, see: Ni *et al.* (2004[@bb11]). For related structures, see: Butcher *et al.* (2006[@bb4], 2007*a* [@bb2],*b* [@bb3]); Harrison *et al.* (2006[@bb6]); Jasinski *et al.* (2009[@bb7]); Jing (2009[@bb8]); Sarojini *et al.* (2007[@bb15]). For standard bond lengths, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~16~FNO*M* *~r~* = 269.31Monoclinic,*a* = 12.8334 (3) Å*b* = 12.3560 (2) Å*c* = 9.3922 (2) Åβ = 105.965 (2)°*V* = 1431.87 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 295 K0.56 × 0.47 × 0.22 mm ### Data collection {#sec2.1.2} Oxford Diffraction Gemini R diffractometerAbsorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007[@bb13]) *T* ~min~ = 0.675, *T* ~max~ = 1.0006644 measured reflections2929 independent reflections2098 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.059*wR*(*F* ^2^) = 0.197*S* = 1.102929 reflections184 parametersH-atom parameters constrainedΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.13 e Å^−3^ {#d5e483} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007[@bb13]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2007[@bb13]); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb16]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000377/xu5139sup1.cif](http://dx.doi.org/10.1107/S1600536811000377/xu5139sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000377/xu5139Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000377/xu5139Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5139&file=xu5139sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5139sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5139&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5139](http://scripts.iucr.org/cgi-bin/sendsup?xu5139)). BN thanks Mangalore University for the use of research facilities and the UGC for financial assistance. HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. Comment ======= Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais *et al.*, 2005). Chalcones, one of the major classes of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based foodstuff have been recently subjects of interest for their interesting pharmacological activities (Di Carlo *et al.*, 1999). Many chalcones have been described for their high antimalarial activity, probably as a result of michael addition of nucleophilic species to the double bond of the enone (Troeberg *et al.*, 2000 & Ram *et al.*, 2000). Synthesis and biological activities of some fluorinated chalcone derivatives is published (Nakamura *et al.*, 2002). A review of anti-infective and anti-inflammatory chalcones (Nowakowska, 2007) and recent advances in therapeutic chalcones have been reported (Ni *et al.*, 2004). The crystal structures of few related fluoro chalcones *viz*., 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Butcher *et al.*, 2006), (2E)-3-(4-fluorophenyl)-1-(3-hydroxyphenyl)prop-2-en-1-one (Butcher *et al.*, 2007*a*), (2E)-3-(4-fluorophenyl)-1-(4-methylphenyl)prop-2-en-1-one (Butcher *et al.*, 2007*b*), a second polymorph of (2E)-1-(4-fluorophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (Jasinski, *et al.*, 2009), (*E*)-3-(4-fluorophenyl)-1-phenyl-2-propen-1-one (Jing, 2009), 1-(4-fluorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (Harrison *et al.*, 2006) and 3-(biphenyl-4-yl)-1-(4-fluorophenyl)prop-2-en-1-one (Sarojini *et al.*, 2007) have been reported. In a continuation of our studies and in view of the importance of fluoro chalcones, we report the synthesis and crystal structure of a new chalcone, C~17~H~16~FNO, (I). The mean planes of the two benzene rings in the title compound, C~17~H~16~FNO, are twisted slightly being separated by 7.8 (0)° (Fig. 2). The prop-2-en-1-one group is also twisted slightly with a C2---C1---C7---O1 torsion angle of -11.6 (3)°. Bond distances and angles are in normal ranges (Allen *et al.*, 1987). A weak C---H···O intermolecular interaction (Table 1) contributes to crystal packing creating a centrosymmetric dimer (Fig. 3). Experimental {#experimental} ============ 4-Fluoroaetophenone (1.38 g, 0.01 mol) was mixed with 4-(dimethylamino)benzaldehyde (1.49 g, 0.01 mol) and dissolved in ethanol (40 ml) (Fig. 1). To this solution 10 ml of KOH (30%) was added at 273 K. The reaction mixture stirred for 4 h and poured on to crushed ice. The resulting crude solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl acetate (M.P.: 383--388 K). Composition: Found (Calculated) for C~17~H~16~FNO; C: 75.77 (75.82%); H: 5.96 (5.99%); N: 5.16 (5.20%). Refinement {#refinement} ========== All of the H atoms were placed in their calculated positions and then refined using the riding model with C---H = 0.93 Å (aromatic), or 0.96 Å (CH~3~). Isotropic displacement parameters for these atoms were set to 1.19--1.20 (aromatic) or 1.49 (CH~3~) times *U*~eq~ of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Reaction scheme for C17H16FNO. ::: ![](e-67-0o313-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. ::: ![](e-67-0o313-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak a C---H···O intermolecular hydrogen bond interaction creating a layered structure along \[101\]. ::: ![](e-67-0o313-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e196 .table-wrap} ------------------------- --------------------------------------- C~17~H~16~FNO *F*(000) = 568 *M~r~* = 269.31 *D*~x~ = 1.249 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3513 reflections *a* = 12.8334 (3) Å θ = 2.4--38.6° *b* = 12.3560 (2) Å µ = 0.09 mm^−1^ *c* = 9.3922 (2) Å *T* = 295 K β = 105.965 (2)° Irregular triangular plate, yellow *V* = 1431.87 (5) Å^3^ 0.56 × 0.47 × 0.22 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e321 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Gemini R diffractometer 2929 independent reflections Radiation source: fine-focus sealed tube 2098 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 Detector resolution: 10.5081 pixels mm^-1^ θ~max~ = 26.7°, θ~min~ = 2.3° φ and ω scans *h* = −16→15 Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) *k* = −15→15 *T*~min~ = 0.675, *T*~max~ = 1.000 *l* = −11→11 6644 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e444 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.059 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.197 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.1067*P*)^2^ + 0.0852*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2929 reflections (Δ/σ)~max~ \< 0.001 184 parameters Δρ~max~ = 0.17 e Å^−3^ 0 restraints Δρ~min~ = −0.13 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e601 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e700 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ F1 1.15377 (18) 0.10045 (18) 1.0627 (2) 0.1881 (10) O1 0.83748 (14) 0.47322 (14) 0.78907 (19) 0.1242 (6) C1 0.92349 (14) 0.30455 (16) 0.8178 (2) 0.0850 (5) C2 1.0044 (2) 0.3397 (2) 0.9375 (3) 0.1251 (9) H2A 1.0064 0.4124 0.9635 0.150\* C3 1.0820 (3) 0.2720 (3) 1.0198 (4) 0.1402 (11) H3A 1.1363 0.2978 1.0999 0.168\* C4 1.0777 (2) 0.1681 (3) 0.9820 (3) 0.1281 (9) C5 0.9972 (3) 0.1257 (3) 0.8685 (4) 0.1464 (12) H5A 0.9942 0.0519 0.8480 0.176\* C6 0.9209 (2) 0.1953 (2) 0.7859 (3) 0.1187 (8) H6A 0.8665 0.1684 0.7068 0.142\* N1 0.36368 (14) 0.37392 (15) −0.0182 (2) 0.0984 (5) C7 0.84180 (15) 0.38300 (17) 0.7354 (2) 0.0894 (5) C8 0.76857 (15) 0.35318 (16) 0.5923 (2) 0.0853 (5) H8A 0.7756 0.2857 0.5520 0.102\* C9 0.69177 (16) 0.42082 (15) 0.5183 (2) 0.0861 (5) H9A 0.6893 0.4870 0.5645 0.103\* C10 0.61231 (15) 0.40735 (14) 0.3784 (2) 0.0810 (5) C11 0.60600 (15) 0.31682 (14) 0.2863 (2) 0.0831 (5) H11A 0.6573 0.2621 0.3149 0.100\* C12 0.52677 (16) 0.30671 (15) 0.1558 (2) 0.0856 (5) H12A 0.5265 0.2460 0.0972 0.103\* C13 0.44563 (15) 0.38556 (15) 0.1076 (2) 0.0828 (5) C14 0.45373 (18) 0.47770 (16) 0.1973 (2) 0.0968 (6) H14A 0.4037 0.5334 0.1684 0.116\* C15 0.53447 (19) 0.48642 (15) 0.3267 (2) 0.0963 (6) H15A 0.5373 0.5488 0.3831 0.116\* C16 0.3540 (2) 0.2790 (2) −0.1099 (3) 0.1289 (9) H16A 0.4204 0.2681 −0.1364 0.193\* H16B 0.2955 0.2886 −0.1980 0.193\* H16C 0.3398 0.2171 −0.0563 0.193\* C17 0.2862 (2) 0.4610 (2) −0.0696 (3) 0.1149 (7) H17A 0.2522 0.4790 0.0065 0.172\* H17B 0.2321 0.4381 −0.1569 0.172\* H17C 0.3233 0.5234 −0.0922 0.172\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1187 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ F1 0.1983 (18) 0.1869 (19) 0.1399 (14) 0.0835 (16) −0.0196 (14) 0.0050 (13) O1 0.1291 (12) 0.1024 (11) 0.1227 (12) 0.0113 (9) 0.0033 (10) −0.0346 (9) C1 0.0812 (10) 0.0904 (12) 0.0836 (10) −0.0030 (9) 0.0229 (8) −0.0078 (9) C2 0.1233 (17) 0.1070 (17) 0.1222 (18) 0.0007 (14) −0.0045 (15) −0.0236 (14) C3 0.1254 (19) 0.138 (2) 0.125 (2) 0.0128 (18) −0.0198 (16) −0.0143 (18) C4 0.1270 (18) 0.141 (2) 0.1022 (16) 0.0355 (17) 0.0072 (14) 0.0023 (16) C5 0.176 (3) 0.1129 (19) 0.124 (2) 0.0376 (19) −0.002 (2) −0.0146 (16) C6 0.1273 (17) 0.1016 (16) 0.1074 (15) 0.0120 (14) −0.0010 (14) −0.0146 (13) N1 0.1038 (11) 0.0985 (12) 0.0866 (10) 0.0089 (9) 0.0158 (9) 0.0029 (8) C7 0.0883 (11) 0.0872 (12) 0.0932 (11) −0.0069 (9) 0.0257 (9) −0.0135 (9) C8 0.0905 (11) 0.0770 (10) 0.0880 (11) −0.0035 (8) 0.0238 (9) −0.0064 (8) C9 0.0930 (11) 0.0749 (10) 0.0916 (11) −0.0034 (8) 0.0275 (9) −0.0068 (9) C10 0.0902 (10) 0.0682 (9) 0.0866 (10) −0.0003 (8) 0.0277 (9) 0.0002 (8) C11 0.0892 (10) 0.0692 (9) 0.0913 (11) 0.0045 (8) 0.0253 (9) 0.0009 (8) C12 0.0975 (11) 0.0703 (10) 0.0900 (11) 0.0007 (8) 0.0275 (9) −0.0055 (8) C13 0.0908 (10) 0.0794 (10) 0.0786 (10) 0.0002 (8) 0.0241 (8) 0.0067 (8) C14 0.1093 (13) 0.0786 (11) 0.0981 (13) 0.0192 (10) 0.0211 (11) 0.0053 (10) C15 0.1172 (14) 0.0709 (10) 0.0957 (12) 0.0115 (10) 0.0205 (11) −0.0066 (9) C16 0.1193 (17) 0.138 (2) 0.1126 (17) 0.0095 (16) 0.0036 (14) −0.0324 (16) C17 0.1095 (15) 0.1255 (19) 0.1013 (14) 0.0171 (14) 0.0150 (12) 0.0159 (13) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1577 .table-wrap} -------------------- -------------- ----------------------- -------------- F1---C4 1.349 (3) C9---C10 1.434 (3) O1---C7 1.231 (2) C9---H9A 0.9300 C1---C2 1.374 (3) C10---C15 1.386 (3) C1---C6 1.381 (3) C10---C11 1.403 (2) C1---C7 1.481 (3) C11---C12 1.366 (3) C2---C3 1.366 (4) C11---H11A 0.9300 C2---H2A 0.9300 C12---C13 1.407 (3) C3---C4 1.330 (4) C12---H12A 0.9300 C3---H3A 0.9300 C13---C14 1.403 (3) C4---C5 1.368 (4) C14---C15 1.368 (3) C5---C6 1.371 (4) C14---H14A 0.9300 C5---H5A 0.9300 C15---H15A 0.9300 C6---H6A 0.9300 C16---H16A 0.9600 N1---C13 1.356 (3) C16---H16B 0.9600 N1---C16 1.440 (3) C16---H16C 0.9600 N1---C17 1.454 (3) C17---H17A 0.9600 C7---C8 1.460 (3) C17---H17B 0.9600 C8---C9 1.333 (3) C17---H17C 0.9600 C8---H8A 0.9300 C2---C1---C6 117.0 (2) C15---C10---C11 115.62 (17) C2---C1---C7 119.2 (2) C15---C10---C9 120.08 (17) C6---C1---C7 123.72 (19) C11---C10---C9 124.30 (17) C3---C2---C1 122.6 (3) C12---C11---C10 121.92 (17) C3---C2---H2A 118.7 C12---C11---H11A 119.0 C1---C2---H2A 118.7 C10---C11---H11A 119.0 C4---C3---C2 118.0 (3) C11---C12---C13 121.86 (17) C4---C3---H3A 121.0 C11---C12---H12A 119.1 C2---C3---H3A 121.0 C13---C12---H12A 119.1 C3---C4---F1 118.5 (3) N1---C13---C14 121.39 (17) C3---C4---C5 123.0 (3) N1---C13---C12 122.34 (18) F1---C4---C5 118.4 (3) C14---C13---C12 116.27 (17) C4---C5---C6 118.0 (3) C15---C14---C13 120.71 (18) C4---C5---H5A 121.0 C15---C14---H14A 119.6 C6---C5---H5A 121.0 C13---C14---H14A 119.6 C5---C6---C1 121.3 (2) C14---C15---C10 123.54 (18) C5---C6---H6A 119.3 C14---C15---H15A 118.2 C1---C6---H6A 119.3 C10---C15---H15A 118.2 C13---N1---C16 121.72 (19) N1---C16---H16A 109.5 C13---N1---C17 120.40 (18) N1---C16---H16B 109.5 C16---N1---C17 117.76 (19) H16A---C16---H16B 109.5 O1---C7---C8 121.0 (2) N1---C16---H16C 109.5 O1---C7---C1 118.93 (18) H16A---C16---H16C 109.5 C8---C7---C1 120.03 (17) H16B---C16---H16C 109.5 C9---C8---C7 121.22 (18) N1---C17---H17A 109.5 C9---C8---H8A 119.4 N1---C17---H17B 109.5 C7---C8---H8A 119.4 H17A---C17---H17B 109.5 C8---C9---C10 129.98 (18) N1---C17---H17C 109.5 C8---C9---H9A 115.0 H17A---C17---H17C 109.5 C10---C9---H9A 115.0 H17B---C17---H17C 109.5 C6---C1---C2---C3 2.2 (4) C8---C9---C10---C15 175.4 (2) C7---C1---C2---C3 179.4 (3) C8---C9---C10---C11 −4.1 (3) C1---C2---C3---C4 −0.5 (5) C15---C10---C11---C12 −1.3 (3) C2---C3---C4---F1 −179.8 (3) C9---C10---C11---C12 178.19 (17) C2---C3---C4---C5 −2.5 (6) C10---C11---C12---C13 −1.2 (3) C3---C4---C5---C6 3.4 (5) C16---N1---C13---C14 −179.2 (2) F1---C4---C5---C6 −179.2 (3) C17---N1---C13---C14 4.7 (3) C4---C5---C6---C1 −1.5 (5) C16---N1---C13---C12 0.7 (3) C2---C1---C6---C5 −1.2 (4) C17---N1---C13---C12 −175.38 (19) C7---C1---C6---C5 −178.2 (2) C11---C12---C13---N1 −176.80 (18) C2---C1---C7---O1 −11.6 (3) C11---C12---C13---C14 3.1 (3) C6---C1---C7---O1 165.4 (2) N1---C13---C14---C15 177.5 (2) C2---C1---C7---C8 167.9 (2) C12---C13---C14---C15 −2.4 (3) C6---C1---C7---C8 −15.1 (3) C13---C14---C15---C10 −0.1 (3) O1---C7---C8---C9 −2.9 (3) C11---C10---C15---C14 2.0 (3) C1---C7---C8---C9 177.56 (17) C9---C10---C15---C14 −177.53 (19) C7---C8---C9---C10 −179.71 (19) -------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2239 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C17---H17A···O1^i^ 0.96 2.56 3.525 (3) 180 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C17---H17*A*⋯O1^i^ 0.96 2.56 3.525 (3) 180 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.781641
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051752/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o313-o314", "authors": [ { "first": "Jerry P.", "last": "Jasinski" }, { "first": "Ray J.", "last": "Butcher" }, { "first": "B. P.", "last": "Siddaraju" }, { "first": "B.", "last": "Narayana" }, { "first": "H. S.", "last": "Yathirajan" } ] }
PMC3051753
Related literature {#sec1} ================== For the use of nitro­gen mustards containing the β-chloro­ethyl­amine unit as anti­tumor drugs, see: Zhuang *et al.* (2008[@bb7]). Nitro­imidazole compounds are also used extensively in the treatment of various cancers as clinical radiosensitizers, see: Cai *et al.* (2009[@bb2]). For the synthesis, see: Fang *et al.* (2010[@bb3]); Gan *et al.* (2010[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~20~Cl~2~N~4~O~2~*M* *~r~* = 419.30Monoclinic,*a* = 8.8206 (16) Å*b* = 25.005 (5) Å*c* = 9.0450 (17) Åβ = 100.802 (3)°*V* = 1959.6 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 0.36 mm^−1^*T* = 298 K0.32 × 0.24 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.903, *T* ~max~ = 0.9389838 measured reflections3449 independent reflections2464 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.037 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.139*S* = 1.033449 reflections253 parametersH-atom parameters constrainedΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e358} Data collection: *SMART* (Bruker, 2000[@bb1]); cell refinement: *SAINT* (Bruker, 2000[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100256X/ng5107sup1.cif](http://dx.doi.org/10.1107/S160053681100256X/ng5107sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100256X/ng5107Isup2.hkl](http://dx.doi.org/10.1107/S160053681100256X/ng5107Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5107&file=ng5107sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5107sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5107&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5107](http://scripts.iucr.org/cgi-bin/sendsup?ng5107)). We thank Southwest University (grant Nos. SWUB2006018 and XSGX0602), the Natural Science Foundation of Chongqing (grant No. 2009BB5296) and the Research Funds for the Central Universities (XDJK2009c092) for financial support. Comment ======= Nitrogen mustards as anticancer agents containing typical β-chloroethylamine moiety with easy synthesis and inexpensive expense are one of the most important antitumor drugs (Zhuang *et al.*, 2008). Nitroimidazole compounds are also extensively used in the treatment of various cancers as clinical radiosensitizer (Cai *et al.*, 2009). In view of this, it is of great interest for us to investigate the nitrogen mustard-based nitroimidazoles as new potential anticancer agents. Herein we would like to report the crystal structure of the title compound (I). The title compound, C~20~H~20~Cl~2~N~4~O~2~, crystallized in non-chiral monoclinic crystal system of *P2(1)/n* space group, including a racemic chiral isomers. In the molecule, the nitroimidazole ring makes dihedral angles of 17.00 (1) and 60.45 (11)°, respectively, with the benzene and chlorophenyl ring. Experimental {#experimental} ============ The intermediate 2-chloro-*N*-(2-chloroethyl)-*N*-((4-chlorophenyl(phenyl)methyl)ethanamine (0.85 g, 2.5 mmol), which was prepared according to the procedure of Fang *et al.*(2010) and Gan *et al.*(2010), reacted with 4-nitroimidazole (0.34 g, 3.0 mmol) in the presence of weak base in acetonitrile at 60 °C for 12 h to produce the title compound (I) 0.30 g as white solid *via* silica gel column chromatography (ethyl acetate/petroleum ether, 1/2, V/V). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethyl acetate and petroleum ether by slow evaporation at room temperature. Refinement {#refinement} ========== Hydrogen atoms were placed in idealized positions and treated as riding, with C---H = 0.93Å (CH), 0.98Å (CH) or 0.98Å (CH~2~) and *U*iso(H) = 1.2 *U*eq(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Ellipsoid plot. ::: ![](e-67-0o491-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e142 .table-wrap} ------------------------- ---------------------------------- C~20~H~20~Cl~2~N~4~O~2~ *Z* = 4 *M~r~* = 419.30 *F*(000) = 872 Monoclinic, *P*2~1~/*n* *D*~x~ = 1.421 Mg m^−3^ Hall symbol: -P 2yn Mo *K*α radiation, λ = 0.71073 Å *a* = 8.8206 (16) Å θ = 2.4--21.3° *b* = 25.005 (5) Å µ = 0.36 mm^−1^ *c* = 9.0450 (17) Å *T* = 298 K β = 100.802 (3)° Block, colourless *V* = 1959.6 (6) Å^3^ 0.32 × 0.24 × 0.18 mm ------------------------- ---------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e271 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD area-detector diffractometer 3449 independent reflections Radiation source: fine-focus sealed tube 2464 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.037 phi and ω scans θ~max~ = 25.0°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −10→7 *T*~min~ = 0.903, *T*~max~ = 0.938 *k* = −29→29 9838 measured reflections *l* = −10→10 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e386 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.139 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0576*P*)^2^ + 0.904*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3449 reflections (Δ/σ)~max~ = 0.001 253 parameters Δρ~max~ = 0.49 e Å^−3^ 0 restraints Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e543 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e642 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.3270 (3) 0.05952 (13) 0.0927 (3) 0.0487 (7) C2 0.4173 (4) 0.01834 (13) 0.1569 (4) 0.0615 (9) H2 0.3972 −0.0165 0.1231 0.074\* C3 0.5385 (4) 0.02915 (12) 0.2723 (3) 0.0538 (8) H3 0.5994 0.0009 0.3161 0.065\* C4 0.5734 (3) 0.07989 (11) 0.3257 (3) 0.0402 (6) C5 0.4771 (3) 0.12070 (12) 0.2588 (3) 0.0498 (7) H5 0.4957 0.1556 0.2933 0.060\* C6 0.3544 (3) 0.11081 (12) 0.1423 (3) 0.0514 (8) H6 0.2917 0.1386 0.0985 0.062\* C7 0.7143 (3) 0.08861 (11) 0.4496 (3) 0.0401 (6) H7 0.7628 0.0533 0.4654 0.048\* C8 0.6827 (3) 0.10452 (10) 0.6032 (3) 0.0400 (6) C9 0.8038 (3) 0.10174 (11) 0.7245 (3) 0.0456 (7) H9 0.8999 0.0902 0.7091 0.055\* C10 0.7859 (4) 0.11550 (12) 0.8666 (3) 0.0536 (8) H10 0.8695 0.1137 0.9463 0.064\* C11 0.6439 (4) 0.13203 (13) 0.8913 (4) 0.0592 (8) H11 0.6313 0.1417 0.9875 0.071\* C12 0.5226 (4) 0.13412 (14) 0.7746 (4) 0.0657 (9) H12 0.4263 0.1448 0.7912 0.079\* C13 0.5415 (3) 0.12044 (12) 0.6309 (3) 0.0538 (8) H13 0.4573 0.1220 0.5518 0.065\* C14 0.9049 (3) 0.10277 (13) 0.2887 (3) 0.0547 (8) H14A 0.9671 0.1308 0.2559 0.066\* H14B 0.8231 0.0941 0.2046 0.066\* C15 1.0037 (4) 0.05433 (13) 0.3272 (4) 0.0591 (8) H15A 1.0457 0.0436 0.2400 0.071\* H15B 0.9407 0.0252 0.3526 0.071\* C16 0.7954 (3) 0.18032 (11) 0.3913 (3) 0.0498 (7) H16A 0.7132 0.1884 0.4456 0.060\* H16B 0.7574 0.1876 0.2855 0.060\* C17 0.9333 (4) 0.21643 (13) 0.4485 (3) 0.0557 (8) H17A 1.0205 0.2049 0.4051 0.067\* H17B 0.9081 0.2528 0.4158 0.067\* C18 1.1030 (3) 0.19238 (12) 0.6938 (4) 0.0523 (8) H18 1.1775 0.1748 0.6516 0.063\* C19 0.9802 (3) 0.22472 (11) 0.8478 (3) 0.0479 (7) C20 0.8953 (3) 0.23602 (11) 0.7104 (4) 0.0521 (8) H20 0.8017 0.2542 0.6891 0.063\* Cl1 0.17478 (11) 0.04618 (4) −0.05458 (11) 0.0835 (3) Cl2 1.15787 (10) 0.06636 (4) 0.48090 (12) 0.0777 (3) N1 0.8356 (2) 0.12352 (9) 0.4102 (2) 0.0412 (5) N2 0.9760 (3) 0.21524 (9) 0.6115 (3) 0.0458 (6) N3 1.1106 (3) 0.19743 (10) 0.8388 (3) 0.0538 (6) N4 0.9403 (4) 0.23746 (13) 0.9901 (4) 0.0692 (8) O1 1.0250 (3) 0.22177 (12) 1.1050 (3) 0.0897 (9) O2 0.8228 (4) 0.26290 (15) 0.9864 (4) 0.1142 (12) ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1262 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0397 (16) 0.0603 (19) 0.0430 (17) −0.0055 (14) −0.0002 (13) −0.0095 (14) C2 0.059 (2) 0.0473 (18) 0.073 (2) −0.0065 (16) −0.0015 (18) −0.0138 (16) C3 0.0534 (18) 0.0446 (17) 0.060 (2) 0.0017 (14) 0.0013 (16) −0.0014 (14) C4 0.0360 (14) 0.0425 (15) 0.0416 (16) 0.0020 (12) 0.0059 (12) 0.0013 (12) C5 0.0451 (16) 0.0416 (16) 0.0565 (19) 0.0023 (13) −0.0061 (14) −0.0055 (14) C6 0.0427 (17) 0.0503 (18) 0.0561 (19) 0.0063 (14) −0.0040 (14) 0.0038 (14) C7 0.0361 (14) 0.0399 (15) 0.0417 (16) 0.0039 (12) 0.0005 (12) 0.0038 (12) C8 0.0383 (15) 0.0369 (14) 0.0433 (16) −0.0022 (12) 0.0041 (12) 0.0054 (12) C9 0.0347 (15) 0.0561 (18) 0.0450 (17) 0.0012 (13) 0.0049 (13) 0.0102 (14) C10 0.0498 (18) 0.068 (2) 0.0392 (17) −0.0077 (16) −0.0004 (14) 0.0072 (15) C11 0.063 (2) 0.068 (2) 0.0475 (18) −0.0007 (17) 0.0118 (16) −0.0073 (16) C12 0.0505 (19) 0.087 (3) 0.059 (2) 0.0159 (18) 0.0107 (17) −0.0067 (18) C13 0.0397 (16) 0.069 (2) 0.0493 (18) 0.0076 (15) −0.0010 (14) −0.0013 (15) C14 0.0442 (17) 0.076 (2) 0.0419 (17) −0.0036 (16) 0.0032 (14) 0.0063 (15) C15 0.0513 (19) 0.072 (2) 0.057 (2) −0.0036 (17) 0.0181 (16) −0.0093 (17) C16 0.0454 (17) 0.0521 (18) 0.0463 (17) −0.0048 (14) −0.0055 (14) 0.0111 (14) C17 0.0549 (19) 0.0574 (19) 0.0500 (18) −0.0139 (15) −0.0022 (15) 0.0171 (15) C18 0.0396 (16) 0.0621 (19) 0.054 (2) 0.0032 (15) 0.0060 (14) 0.0025 (15) C19 0.0413 (16) 0.0467 (17) 0.0552 (19) −0.0076 (14) 0.0074 (14) −0.0049 (14) C20 0.0404 (17) 0.0441 (17) 0.067 (2) 0.0010 (14) −0.0030 (16) −0.0054 (15) Cl1 0.0626 (6) 0.0995 (7) 0.0751 (6) −0.0043 (5) −0.0216 (5) −0.0236 (5) Cl2 0.0537 (5) 0.0773 (6) 0.0937 (7) 0.0113 (4) −0.0080 (5) 0.0054 (5) N1 0.0341 (12) 0.0473 (13) 0.0411 (13) 0.0014 (10) 0.0038 (10) 0.0070 (10) N2 0.0381 (13) 0.0465 (13) 0.0494 (15) −0.0064 (11) −0.0001 (11) 0.0047 (11) N3 0.0452 (15) 0.0627 (16) 0.0507 (16) −0.0013 (13) 0.0017 (12) 0.0051 (13) N4 0.0560 (19) 0.080 (2) 0.072 (2) −0.0215 (16) 0.0145 (17) −0.0256 (17) O1 0.094 (2) 0.117 (2) 0.0570 (16) −0.0273 (18) 0.0125 (16) −0.0085 (15) O2 0.078 (2) 0.151 (3) 0.117 (3) 0.012 (2) 0.0262 (18) −0.065 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1811 .table-wrap} ----------------------- ------------ ---------------------- ------------ C1---C2 1.364 (4) C13---H13 0.9300 C1---C6 1.365 (4) C14---N1 1.450 (4) C1---Cl1 1.737 (3) C14---C15 1.495 (4) C2---C3 1.374 (4) C14---H14A 0.9700 C2---H2 0.9300 C14---H14B 0.9700 C3---C4 1.372 (4) C15---Cl2 1.779 (3) C3---H3 0.9300 C15---H15A 0.9700 C4---C5 1.392 (4) C15---H15B 0.9700 C4---C7 1.524 (4) C16---N1 1.466 (3) C5---C6 1.384 (4) C16---C17 1.525 (4) C5---H5 0.9300 C16---H16A 0.9700 C6---H6 0.9300 C16---H16B 0.9700 C7---N1 1.475 (3) C17---N2 1.452 (4) C7---C8 1.520 (4) C17---H17A 0.9700 C7---H7 0.9800 C17---H17B 0.9700 C8---C13 1.375 (4) C18---N3 1.307 (4) C8---C9 1.382 (4) C18---N2 1.350 (4) C9---C10 1.368 (4) C18---H18 0.9300 C9---H9 0.9300 C19---N3 1.353 (4) C10---C11 1.376 (4) C19---C20 1.355 (4) C10---H10 0.9300 C19---N4 1.432 (4) C11---C12 1.356 (4) C20---N2 1.348 (4) C11---H11 0.9300 C20---H20 0.9300 C12---C13 1.384 (4) N4---O2 1.211 (4) C12---H12 0.9300 N4---O1 1.225 (4) C2---C1---C6 121.1 (3) N1---C14---H14A 108.5 C2---C1---Cl1 119.2 (2) C15---C14---H14A 108.5 C6---C1---Cl1 119.8 (2) N1---C14---H14B 108.5 C1---C2---C3 119.0 (3) C15---C14---H14B 108.5 C1---C2---H2 120.5 H14A---C14---H14B 107.5 C3---C2---H2 120.5 C14---C15---Cl2 111.8 (2) C4---C3---C2 122.8 (3) C14---C15---H15A 109.2 C4---C3---H3 118.6 Cl2---C15---H15A 109.2 C2---C3---H3 118.6 C14---C15---H15B 109.2 C3---C4---C5 116.5 (3) Cl2---C15---H15B 109.2 C3---C4---C7 119.3 (2) H15A---C15---H15B 107.9 C5---C4---C7 124.2 (2) N1---C16---C17 112.0 (2) C6---C5---C4 121.8 (3) N1---C16---H16A 109.2 C6---C5---H5 119.1 C17---C16---H16A 109.2 C4---C5---H5 119.1 N1---C16---H16B 109.2 C1---C6---C5 118.9 (3) C17---C16---H16B 109.2 C1---C6---H6 120.6 H16A---C16---H16B 107.9 C5---C6---H6 120.6 N2---C17---C16 111.8 (2) N1---C7---C8 109.3 (2) N2---C17---H17A 109.3 N1---C7---C4 115.8 (2) C16---C17---H17A 109.3 C8---C7---C4 116.5 (2) N2---C17---H17B 109.3 N1---C7---H7 104.6 C16---C17---H17B 109.3 C8---C7---H7 104.6 H17A---C17---H17B 107.9 C4---C7---H7 104.6 N3---C18---N2 113.2 (3) C13---C8---C9 117.5 (3) N3---C18---H18 123.4 C13---C8---C7 124.7 (3) N2---C18---H18 123.4 C9---C8---C7 117.8 (2) N3---C19---C20 112.3 (3) C10---C9---C8 121.7 (3) N3---C19---N4 121.4 (3) C10---C9---H9 119.2 C20---C19---N4 126.2 (3) C8---C9---H9 119.2 N2---C20---C19 105.0 (3) C9---C10---C11 119.8 (3) N2---C20---H20 127.5 C9---C10---H10 120.1 C19---C20---H20 127.5 C11---C10---H10 120.1 C14---N1---C16 112.7 (2) C12---C11---C10 119.7 (3) C14---N1---C7 113.5 (2) C12---C11---H11 120.2 C16---N1---C7 115.5 (2) C10---C11---H11 120.2 C20---N2---C18 106.5 (2) C11---C12---C13 120.4 (3) C20---N2---C17 126.7 (3) C11---C12---H12 119.8 C18---N2---C17 126.8 (3) C13---C12---H12 119.8 C18---N3---C19 103.0 (3) C8---C13---C12 121.0 (3) O2---N4---O1 125.0 (3) C8---C13---H13 119.5 O2---N4---C19 116.4 (3) C12---C13---H13 119.5 O1---N4---C19 118.5 (3) N1---C14---C15 115.1 (2) C6---C1---C2---C3 −0.6 (5) N1---C14---C15---Cl2 −58.3 (3) Cl1---C1---C2---C3 179.4 (2) N1---C16---C17---N2 −70.4 (3) C1---C2---C3---C4 −0.4 (5) N3---C19---C20---N2 −0.3 (3) C2---C3---C4---C5 1.3 (4) N4---C19---C20---N2 −178.3 (3) C2---C3---C4---C7 −177.3 (3) C15---C14---N1---C16 156.5 (3) C3---C4---C5---C6 −1.3 (4) C15---C14---N1---C7 −69.7 (3) C7---C4---C5---C6 177.2 (3) C17---C16---N1---C14 −83.4 (3) C2---C1---C6---C5 0.6 (5) C17---C16---N1---C7 143.8 (2) Cl1---C1---C6---C5 −179.4 (2) C8---C7---N1---C14 163.5 (2) C4---C5---C6---C1 0.4 (5) C4---C7---N1---C14 −62.6 (3) C3---C4---C7---N1 118.5 (3) C8---C7---N1---C16 −64.1 (3) C5---C4---C7---N1 −60.0 (3) C4---C7---N1---C16 69.8 (3) C3---C4---C7---C8 −110.9 (3) C19---C20---N2---C18 0.6 (3) C5---C4---C7---C8 70.6 (3) C19---C20---N2---C17 179.6 (3) N1---C7---C8---C13 121.7 (3) N3---C18---N2---C20 −0.7 (3) C4---C7---C8---C13 −11.9 (4) N3---C18---N2---C17 −179.7 (3) N1---C7---C8---C9 −59.8 (3) C16---C17---N2---C20 −70.0 (4) C4---C7---C8---C9 166.6 (2) C16---C17---N2---C18 108.8 (3) C13---C8---C9---C10 −1.6 (4) N2---C18---N3---C19 0.4 (3) C7---C8---C9---C10 179.7 (3) C20---C19---N3---C18 −0.1 (3) C8---C9---C10---C11 0.7 (4) N4---C19---N3---C18 178.0 (3) C9---C10---C11---C12 0.5 (5) N3---C19---N4---O2 178.6 (3) C10---C11---C12---C13 −0.9 (5) C20---C19---N4---O2 −3.6 (5) C9---C8---C13---C12 1.2 (4) N3---C19---N4---O1 −2.0 (4) C7---C8---C13---C12 179.8 (3) C20---C19---N4---O1 175.8 (3) C11---C12---C13---C8 0.0 (5) ----------------------- ------------ ---------------------- ------------ :::
PubMed Central
2024-06-05T04:04:16.786322
2011-1-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051753/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 26; 67(Pt 2):o491", "authors": [ { "first": "Wen-Tai", "last": "Zhang" }, { "first": "Cheng-He", "last": "Zhou" }, { "first": "Qing-Gang", "last": "Ji" } ] }
PMC3051754
Related literature {#sec1} ================== For general background to 4-(3,4-dichloro­phen­yl)-3,4- dihydro­naphthalen-1(2*H*)-one, see: Zhengxu *et al.* (2007[@bb14]); Jerussi *et al.* (2004[@bb5]); Taber *et al.* (2004[@bb11]); Ray *et al.* (2003[@bb9]); Meth-Cohn & Stanforth (1991[@bb7]); Hurd & Webb (1941[@bb4]); Mallegol *et al.* (2005[@bb6]). For the synthesis, see Vilsmeier *et al.* (1937[@bb12]). For a related structure, see: Gowda *et al.* (2008[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~11~Cl~3~O*M* *~r~* = 337.61Monoclinic,*a* = 10.2969 (5) Å*b* = 10.8849 (5) Å*c* = 13.6144 (7) Åβ = 91.436 (5)°*V* = 1525.43 (13) Å^3^*Z* = 4Mo *K*α radiationμ = 0.60 mm^−1^*T* = 293 K0.22 × 0.15 × 0.12 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur diffractometerAbsorption correction: multi-scan (*CrysAlis PRO RED*; Oxford Diffraction, 2010[@bb8]) *T* ~min~ = 0.546, *T* ~max~ = 1.00015902 measured reflections3006 independent reflections2143 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.043 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.050*wR*(*F* ^2^) = 0.149*S* = 1.093006 reflections234 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.52 e Å^−3^Δρ~min~ = −0.33 e Å^−3^ {#d5e447} Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2010[@bb8]); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2010[@bb8]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb1]) and *CAMERON* (Watkin *et al.*, 1993[@bb13]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb2]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100105X/bv2168sup1.cif](http://dx.doi.org/10.1107/S160053681100105X/bv2168sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100105X/bv2168Isup2.hkl](http://dx.doi.org/10.1107/S160053681100105X/bv2168Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bv2168&file=bv2168sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bv2168sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bv2168&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BV2168](http://scripts.iucr.org/cgi-bin/sendsup?bv2168)). The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection. Comment ======= Recently drug candidates for blocking the monoamine reuptake trasporters have considerable interest in the pharmaceutical industry for treatment of central nervous system disorders (Zhengxu *et al.*, 2007). 1,2,3,4-tetrahydronaphthalene derivatives are for the treatment of central nervous system disorders (Jerussi *et al.*, 2004; Taber *et al.*, 2004). Tetrahydronaphthalene derivatives are also used in liquid crystal display elements (Ray *et al.*, 2003). Potent pharmaceutically active 1-chloro-4-(3,4-dichlorophenyl)-3, 4-dihydronaphthalene-2-carbaldehyde was prepared by the Vilsmeier- Haack reaction (Vilsmeier *et al.*, 1937; Meth-Cohn *et al.* , 1991; Hurd *et al.*, 1941; Mallegol *et al.*, 2005) of 4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2*H*)-one. The asymmetric unit of the 1-chloro-4-(3,4-dichlorophenyl)-3,4- dihydronaphthalene-2-carbaldehyde contains one molecule (Fig. 1). The dihydronaphthalene ring system is non-planar; the dihedral angle between the two ring system of the naphthalene ring is 10.87 (13)° and also the dihedral angle between the dihydronaphthalene ring system and the dichlorophenyl ring is 81.45 (10)°. The crystal structure shows intramolecular C5---H5···Cl1, C9---H9···Cl1, C15---H15B···O4 and C18---H18···O4 intermolecular hydrogen bonds. Bond distances within the aromatic rings are in agreement with those observed related structures (Gowda *et al.*, 2008). The packing of the molecules shows when viewed along the *a* axis (Fig.2). Experimental {#experimental} ============ To the Vilsmeier-Haack complex prepared from DMF and POCl~3~ (0.03 mol) at 0°C, the compound 4-(3,4-dichlorophenyl)-3,4-dihydronaphthalen-1(2*H*)-one (0.01 mol) was added and the reaction mixture was stirred at 65°C for 4 h. The reaction completion was monitored by TLC. The contents were cooled, poured in to ice-cold water and neutralized using Na~2~CO~3~ solution. The product that separated was filtered and dried. X-ray quality crystals were obtained from an ethyl acetate solution. Refinement {#refinement} ========== Hydrogen atoms were located in a difference Fourier map and were allowed to refine isotropically. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.Dashed lines indicate hydrogen bonds ::: ![](e-67-0o378-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the structure down the axis a. ::: ![](e-67-0o378-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e146 .table-wrap} ------------------------- --------------------------------------- C~17~H~11~Cl~3~O *F*(000) = 688 *M~r~* = 337.61 *D*~x~ = 1.470 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point: 383 K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 10.2969 (5) Å Cell parameters from 3006 reflections *b* = 10.8849 (5) Å θ = 2.4--26.0° *c* = 13.6144 (7) Å µ = 0.60 mm^−1^ β = 91.436 (5)° *T* = 293 K *V* = 1525.43 (13) Å^3^ Plate, colourless *Z* = 4 0.22 × 0.15 × 0.12 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e275 .table-wrap} ---------------------------------------------------------------------------------- -------------------------------------- Oxford Diffraction Xcalibur diffractometer 3006 independent reflections Radiation source: Enhance (Mo) X-ray Source 2143 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.043 Detector resolution: 16.0839 pixels mm^-1^ θ~max~ = 26.0°, θ~min~ = 2.4° ω scans *h* = −12→12 Absorption correction: multi-scan (*CrysAlis PRO RED*; Oxford Diffraction, 2010) *k* = −13→13 *T*~min~ = 0.546, *T*~max~ = 1.000 *l* = −16→16 15902 measured reflections ---------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e395 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.050 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.149 H atoms treated by a mixture of independent and constrained refinement *S* = 1.09 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0885*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3006 reflections (Δ/σ)~max~ = 0.001 234 parameters Δρ~max~ = 0.52 e Å^−3^ 0 restraints Δρ~min~ = −0.33 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e549 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Experimental. *CrysAlis PRO*, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05--01--2010 CrysAlis171. NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.^1^H NMR (CDCl~3~, 400 MHz): δ, 10.33 (s, 1H, -CHO), 6.92-8.00 (m, 7H, Ar-H), 4.13 (t, 1H, --CH proton of fused cyclohexane ring, J=10.0 Hz), 2.86-3.01(m, 2H, --CH~2~ proton of fused cyclohexane ring)IR (KBr, cm^-1^): 3443.28 (-CHO), 1662.34 (C=O of aldehyde), 1595.81(C=C,aromatic), 838.883 (C-Cl), 1255.43 (C-H stretch).FAB MASS: m/z = 337, mol. formulae: C~17~H~11~Cl~3~O). Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e686 .table-wrap} ------ ------------- ------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.40177 (8) 0.17987 (7) 0.18417 (6) 0.0642 (3) Cl2 1.03593 (8) 0.22018 (9) −0.40674 (6) 0.0809 (3) Cl3 1.07383 (9) 0.35613 (9) −0.20272 (7) 0.0853 (3) O4 0.3558 (2) 0.4375 (2) −0.04817 (19) 0.0873 (8) C5 0.3745 (3) 0.3618 (3) 0.0142 (3) 0.0654 (8) C6 0.4835 (3) 0.2751 (2) 0.01503 (19) 0.0461 (6) C7 0.5053 (2) 0.1922 (2) 0.08561 (18) 0.0410 (6) C8 0.6168 (2) 0.1084 (2) 0.08586 (17) 0.0389 (6) C9 0.6561 (3) 0.0405 (2) 0.16846 (19) 0.0474 (6) C10 0.7619 (3) −0.0361 (3) 0.1655 (2) 0.0604 (8) C11 0.8291 (3) −0.0479 (3) 0.0801 (2) 0.0595 (8) C12 0.7912 (3) 0.0171 (2) −0.0023 (2) 0.0520 (7) C13 0.6860 (2) 0.0965 (2) −0.00149 (17) 0.0409 (6) C14 0.6365 (3) 0.1633 (2) −0.09391 (19) 0.0462 (6) C15 0.5787 (3) 0.2861 (3) −0.0664 (2) 0.0539 (7) C16 0.7379 (2) 0.1794 (2) −0.17227 (19) 0.0433 (6) C17 0.7223 (3) 0.1248 (2) −0.26254 (19) 0.0447 (6) C18 0.8128 (3) 0.1384 (2) −0.3336 (2) 0.0475 (6) C19 0.9213 (3) 0.2083 (2) −0.31643 (19) 0.0451 (6) C20 0.9393 (3) 0.2661 (2) −0.2272 (2) 0.0476 (6) C21 0.8493 (3) 0.2513 (2) −0.1548 (2) 0.0503 (7) H5 0.327 (3) 0.359 (3) 0.067 (2) 0.080 (11)\* H9 0.616 (3) 0.050 (2) 0.224 (2) 0.061 (8)\* H10 0.792 (3) −0.082 (3) 0.218 (2) 0.088 (11)\* H11 0.904 (3) −0.096 (2) 0.0799 (18) 0.050 (7)\* H12 0.836 (3) 0.009 (2) −0.054 (2) 0.057 (8)\* H14 0.561 (2) 0.111 (2) −0.1275 (17) 0.040 (6)\* H17 0.653 (3) 0.068 (2) −0.2739 (18) 0.049 (7)\* H18 0.807 (3) 0.103 (2) −0.393 (2) 0.055 (8)\* H15A 0.668 (4) 0.339 (3) −0.040 (3) 0.101 (12)\* H15B 0.536 (3) 0.324 (2) −0.121 (2) 0.057 (8)\* H21 0.867 (3) 0.291 (3) −0.090 (2) 0.061 (8)\* ------ ------------- ------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1156 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0575 (5) 0.0748 (5) 0.0613 (5) 0.0080 (3) 0.0232 (4) 0.0094 (4) Cl2 0.0618 (5) 0.1218 (8) 0.0600 (5) 0.0032 (5) 0.0216 (4) 0.0190 (5) Cl3 0.0590 (5) 0.0868 (6) 0.1103 (8) −0.0339 (4) 0.0057 (5) −0.0100 (5) O4 0.0824 (17) 0.0849 (16) 0.0945 (18) 0.0370 (13) −0.0004 (14) 0.0272 (14) C5 0.0517 (19) 0.073 (2) 0.072 (2) 0.0171 (15) 0.0058 (17) 0.0092 (18) C6 0.0425 (14) 0.0474 (14) 0.0484 (15) 0.0052 (11) −0.0004 (12) 0.0029 (11) C7 0.0372 (13) 0.0438 (13) 0.0421 (13) −0.0044 (11) 0.0042 (11) −0.0034 (11) C8 0.0386 (13) 0.0339 (12) 0.0442 (13) −0.0052 (10) 0.0001 (11) −0.0009 (10) C9 0.0547 (17) 0.0480 (14) 0.0396 (14) 0.0000 (12) 0.0037 (13) 0.0049 (12) C10 0.071 (2) 0.0574 (17) 0.0522 (17) 0.0116 (15) −0.0045 (16) 0.0149 (14) C11 0.0551 (18) 0.0571 (17) 0.0664 (19) 0.0192 (14) 0.0034 (15) 0.0116 (14) C12 0.0526 (17) 0.0517 (15) 0.0521 (17) 0.0102 (13) 0.0116 (14) 0.0049 (13) C13 0.0409 (13) 0.0389 (13) 0.0430 (13) −0.0027 (10) 0.0021 (11) 0.0042 (10) C14 0.0415 (14) 0.0513 (15) 0.0458 (14) −0.0039 (12) 0.0028 (12) 0.0036 (12) C15 0.0569 (18) 0.0555 (16) 0.0496 (16) 0.0149 (14) 0.0075 (14) 0.0144 (13) C16 0.0392 (14) 0.0436 (13) 0.0472 (15) 0.0002 (11) 0.0037 (11) 0.0098 (11) C17 0.0467 (15) 0.0380 (13) 0.0493 (15) −0.0048 (11) −0.0035 (12) 0.0064 (11) C18 0.0510 (16) 0.0484 (14) 0.0430 (15) 0.0036 (12) −0.0020 (12) 0.0014 (12) C19 0.0425 (14) 0.0483 (14) 0.0446 (14) 0.0042 (11) 0.0053 (12) 0.0112 (12) C20 0.0395 (14) 0.0460 (14) 0.0570 (17) −0.0077 (11) −0.0005 (12) 0.0046 (12) C21 0.0529 (16) 0.0534 (15) 0.0444 (15) −0.0016 (12) −0.0017 (13) −0.0031 (13) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1555 .table-wrap} ----------------------- ------------- ----------------------- ------------- Cl1---C7 1.740 (2) C12---C13 1.386 (3) Cl2---C19 1.731 (2) C12---H12 0.86 (3) Cl3---C20 1.722 (3) C13---C14 1.530 (3) O4---C5 1.195 (4) C14---C15 1.514 (4) C5---C6 1.466 (4) C14---C16 1.521 (3) C5---H5 0.88 (3) C14---H14 1.06 (2) C6---C7 1.333 (3) C15---H15A 1.14 (4) C6---C15 1.503 (3) C15---H15B 0.94 (3) C7---C8 1.465 (3) C16---C17 1.371 (4) C8---C9 1.398 (3) C16---C21 1.404 (4) C8---C13 1.408 (3) C17---C18 1.368 (4) C9---C10 1.373 (4) C17---H17 0.95 (3) C9---H9 0.88 (3) C18---C19 1.367 (4) C10---C11 1.374 (4) C18---H18 0.89 (3) C10---H10 0.92 (3) C19---C20 1.377 (4) C11---C12 1.375 (4) C20---C21 1.379 (4) C11---H11 0.93 (3) C21---H21 0.99 (3) O4---C5---C6 123.9 (3) C16---C14---C13 114.3 (2) O4---C5---H5 121 (2) C15---C14---H14 106.9 (12) C6---C5---H5 115 (2) C16---C14---H14 105.6 (12) C7---C6---C5 123.8 (2) C13---C14---H14 109.1 (12) C7---C6---C15 119.0 (2) C6---C15---C14 112.3 (2) C5---C6---C15 117.1 (2) C6---C15---H15A 110.4 (19) C6---C7---C8 122.7 (2) C14---C15---H15A 101.8 (18) C6---C7---Cl1 120.84 (19) C6---C15---H15B 108.2 (16) C8---C7---Cl1 116.44 (17) C14---C15---H15B 111.5 (16) C9---C8---C13 119.2 (2) H15A---C15---H15B 113 (2) C9---C8---C7 122.8 (2) C17---C16---C21 118.1 (2) C13---C8---C7 117.9 (2) C17---C16---C14 120.8 (2) C10---C9---C8 120.8 (2) C21---C16---C14 121.2 (2) C10---C9---H9 119.4 (19) C18---C17---C16 121.4 (3) C8---C9---H9 119.7 (19) C18---C17---H17 118.4 (15) C9---C10---C11 119.9 (3) C16---C17---H17 119.8 (15) C9---C10---H10 124 (2) C19---C18---C17 120.5 (3) C11---C10---H10 116 (2) C19---C18---H18 115.4 (18) C10---C11---C12 120.2 (3) C17---C18---H18 124.1 (18) C10---C11---H11 119.2 (16) C18---C19---C20 119.8 (2) C12---C11---H11 120.4 (16) C18---C19---Cl2 119.3 (2) C11---C12---C13 121.3 (3) C20---C19---Cl2 120.9 (2) C11---C12---H12 117.9 (19) C19---C20---C21 119.9 (2) C13---C12---H12 120.7 (19) C19---C20---Cl3 121.4 (2) C12---C13---C8 118.5 (2) C21---C20---Cl3 118.7 (2) C12---C13---C14 122.3 (2) C20---C21---C16 120.3 (3) C8---C13---C14 119.1 (2) C20---C21---H21 118.3 (17) C15---C14---C16 110.7 (2) C16---C21---H21 121.3 (17) C15---C14---C13 110.0 (2) O4---C5---C6---C7 178.8 (3) C12---C13---C14---C16 −24.0 (3) O4---C5---C6---C15 2.0 (5) C8---C13---C14---C16 160.9 (2) C5---C6---C7---C8 −178.5 (3) C7---C6---C15---C14 34.9 (4) C15---C6---C7---C8 −1.7 (4) C5---C6---C15---C14 −148.1 (3) C5---C6---C7---Cl1 0.6 (4) C16---C14---C15---C6 −176.7 (2) C15---C6---C7---Cl1 177.4 (2) C13---C14---C15---C6 −49.5 (3) C6---C7---C8---C9 165.8 (3) C15---C14---C16---C17 −118.7 (3) Cl1---C7---C8---C9 −13.4 (3) C13---C14---C16---C17 116.5 (3) C6---C7---C8---C13 −14.4 (4) C15---C14---C16---C21 60.7 (3) Cl1---C7---C8---C13 166.37 (17) C13---C14---C16---C21 −64.1 (3) C13---C8---C9---C10 0.8 (4) C21---C16---C17---C18 0.7 (4) C7---C8---C9---C10 −179.4 (2) C14---C16---C17---C18 −179.9 (2) C8---C9---C10---C11 −1.0 (5) C16---C17---C18---C19 −0.6 (4) C9---C10---C11---C12 0.2 (5) C17---C18---C19---C20 −0.4 (4) C10---C11---C12---C13 0.6 (5) C17---C18---C19---Cl2 178.27 (19) C11---C12---C13---C8 −0.8 (4) C18---C19---C20---C21 1.3 (4) C11---C12---C13---C14 −175.9 (3) Cl2---C19---C20---C21 −177.3 (2) C9---C8---C13---C12 0.1 (4) C18---C19---C20---Cl3 −179.4 (2) C7---C8---C13---C12 −179.7 (2) Cl2---C19---C20---Cl3 1.9 (3) C9---C8---C13---C14 175.4 (2) C19---C20---C21---C16 −1.3 (4) C7---C8---C13---C14 −4.4 (3) Cl3---C20---C21---C16 179.5 (2) C12---C13---C14---C15 −149.2 (3) C17---C16---C21---C20 0.3 (4) C8---C13---C14---C15 35.7 (3) C14---C16---C21---C20 −179.2 (2) ----------------------- ------------- ----------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2254 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5···Cl1 0.88 (3) 2.62 (3) 3.053 (4) 111 (2) C9---H9···Cl1 0.88 (3) 2.66 (3) 3.039 (3) 107 (2) C15---H15B···O4 0.94 (3) 2.46 (3) 2.841 (4) 103.8 (19) C18---H18···O4^i^ 0.90 (3) 2.58 (3) 3.201 (3) 128 (2) ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*−1/2, −*z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------- ---------- ---------- ----------- ------------- C18---H18⋯O4^i^ 0.90 (3) 2.58 (3) 3.201 (3) 128 (2) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.791766
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051754/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o378", "authors": [ { "first": "H. C.", "last": "Devarajegowda" }, { "first": "P.", "last": "Nagendra" }, { "first": "S.", "last": "Jeyaseelan" }, { "first": "N.", "last": "Chidananda" }, { "first": "Boja", "last": "Poojary" } ] }
PMC3051755
Related literature {#sec1} ================== For related structures, see: Davis *et al.* (2007[@bb1]); Liu & Zhang (2006[@bb2]); Martynowski *et al.* (2006[@bb3]); Policar *et al.* (1999[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ni(NO~3~)(C~13~H~20~N~4~)~2~\]NO~3~*M* *~r~* = 647.39Monoclinic,*a* = 37.163 (3) Å*b* = 9.419 (1) Å*c* = 19.0191 (18) Åβ = 104.470 (1)°*V* = 6446.3 (11) Å^3^*Z* = 8Mo *K*α radiationμ = 0.66 mm^−1^*T* = 298 K0.40 × 0.31 × 0.30 mm ### Data collection {#sec2.1.2} Rigaku SCXmini CCD diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb5]) *T* ~min~ = 0.779, *T* ~max~ = 0.82815927 measured reflections5688 independent reflections2536 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.077 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.102*S* = 1.085688 reflections475 parametersH-atom parameters constrainedΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e529} Data collection: *CrystalClear* (Rigaku, 2005[@bb5]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811001000/hy2393sup1.cif](http://dx.doi.org/10.1107/S1600536811001000/hy2393sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001000/hy2393Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001000/hy2393Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hy2393&file=hy2393sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hy2393sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hy2393&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HY2393](http://scripts.iucr.org/cgi-bin/sendsup?hy2393)). Comment ======= Knowledge of the detailed coordination behavior of imidazoles and their limitation in the possible use in complexes with specific catalytic activity is of great current importance. Didentate nitrogen coordination to transition metal ions is a coordination mode, which is not uncommon in natural systems. Not many ligands with an analogous donor atom pattern are known. In fact, only a few crystal structures of the coordination compounds containing ligands with benzimidazole groups in the aforementioned arrangement have been reported (Davis *et al.*, 2007; Liu & Zhang, 2006; Martynowski *et al.*, 2006; Policar *et al.*, 1999). This paper describes the synthesis and structure of a coordination compound obtained from 5,5\'-bis(2-ethyl-4-methylimidazol)methane and nickle(II) nitrate hexahydrate. The asymmetric unit contains one Ni^II^ ion, two ligands, one coordinated nitrate anion and one uncoordinated nitrate anion. The Ni^II^ ion shows a distorted octahedral geometry formed by four N atoms from two ligands and two O atoms from one nitrate (Fig. 1). The dihedral angles formed by two imidazole rings of the same ligand are 50.6 (2) and 55.0 (2)°. In the crystal structure, intermolecular N---H···O hydrogen bonds (Table 1) connect the complex cations into a zigzag chain along \[0 1 0\] and N---H···O hydrogen bonds between the chains and the uncoordinated nitrate anions lead to a layer parallel to (1 0 0). Experimental {#experimental} ============ All chemicals used (reagent grade) were commercially available. To a methanol solution (3 ml) of nickel(II) nitrate hexahydrate (0.113 g, 0.2 mmol), a methanol solution (3 ml) of 5,5\'-bis(2-ethyl-4-methylimidazol)methane (0.058 g, 0.2 mmol) was added dropwise with stirring for about 30 min, and then filtered. The filtrate was slowly evaporated at room temperature over several days and blue crystals suitable for X-ray analysis were obtained. Refinement {#refinement} ========== H atoms were positioned geometrically and refined as riding atoms, with C---H = 0.97 (CH~2~) and 0.96 (CH~3~) Å and N---H = 0.86 Å and with *U*~iso~(H) = 1.2(1.5 for methyl)*U*~eq~(C,N). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. The uncoordinated nitrate anion is not shown. ::: ![](e-67-0m212-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A packing diagram. ::: ![](e-67-0m212-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e128 .table-wrap} --------------------------------------- --------------------------------------- \[Ni(NO~3~)(C~13~H~20~N~4~)~2~\]NO~3~ *F*(000) = 2736 *M~r~* = 647.39 *D*~x~ = 1.334 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 1945 reflections *a* = 37.163 (3) Å θ = 2.2--18.0° *b* = 9.419 (1) Å µ = 0.66 mm^−1^ *c* = 19.0191 (18) Å *T* = 298 K β = 104.470 (1)° Prism, blue *V* = 6446.3 (11) Å^3^ 0.40 × 0.31 × 0.30 mm *Z* = 8 --------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e262 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku SCXmini CCD diffractometer 5688 independent reflections Radiation source: fine-focus sealed tube 2536 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.077 Detector resolution: 8.192 pixels mm^-1^ θ~max~ = 25.0°, θ~min~ = 2.2° ω scans *h* = −44→35 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *k* = −11→11 *T*~min~ = 0.779, *T*~max~ = 0.828 *l* = −22→20 15927 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e382 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.102 H-atom parameters constrained *S* = 1.08 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0152*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5688 reflections (Δ/σ)~max~ = 0.001 475 parameters Δρ~max~ = 0.29 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e538 .table-wrap} ------- --------------- ------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ni1 0.650545 (16) 0.51105 (6) 0.71506 (3) 0.0569 (2) N1 0.63927 (12) 0.3681 (4) 0.6308 (2) 0.0650 (11) N2 0.61323 (12) 0.2495 (4) 0.5326 (2) 0.0771 (13) H2 0.5964 0.2103 0.4990 0.092\* N3 0.69444 (9) 0.5929 (4) 0.67886 (17) 0.0563 (10) N4 0.73519 (11) 0.7267 (4) 0.64743 (19) 0.0677 (11) H4 0.7479 0.8006 0.6427 0.081\* N5 0.61253 (10) 0.6598 (4) 0.6652 (2) 0.0630 (11) N6 0.57373 (13) 0.7919 (5) 0.5875 (2) 0.0904 (14) H6 0.5633 0.8351 0.5479 0.109\* N7 0.61273 (10) 0.4337 (4) 0.76797 (17) 0.0634 (11) N8 0.57560 (12) 0.3043 (5) 0.8130 (2) 0.0856 (13) H8 0.5658 0.2309 0.8276 0.103\* N9 0.69820 (13) 0.5096 (6) 0.8410 (3) 0.0883 (14) N10 0.44513 (16) 0.0136 (12) 0.5796 (5) 0.092 (2) O1 0.67689 (9) 0.6134 (4) 0.82047 (16) 0.0786 (11) O2 0.69436 (10) 0.4045 (4) 0.79776 (19) 0.0850 (11) O3 0.72186 (12) 0.5057 (6) 0.8983 (2) 0.157 (2) O4 0.4328 (3) −0.091 (2) 0.6047 (10) 0.133 (7) 0.63 (3) O5 0.4581 (7) 0.121 (3) 0.6057 (16) 0.144 (11) 0.63 (3) O6 0.4473 (7) −0.013 (2) 0.5157 (13) 0.110 (5) 0.63 (3) O4\' 0.4538 (12) 0.138 (4) 0.5696 (14) 0.103 (10) 0.37 (3) O5\' 0.4400 (13) −0.071 (5) 0.535 (3) 0.17 (2) 0.37 (3) O6\' 0.4477 (9) 0.001 (3) 0.6470 (15) 0.104 (12) 0.37 (3) C1 0.60730 (16) 0.3215 (5) 0.5906 (3) 0.0677 (14) C2 0.65083 (16) 0.2499 (5) 0.5368 (3) 0.0678 (15) C3 0.66668 (14) 0.3228 (5) 0.5976 (3) 0.0605 (13) C4 0.5691 (12) 0.329 (3) 0.604 (2) 0.078 (7) 0.72 (5) H4A 0.5695 0.3937 0.6439 0.094\* 0.72 (5) H4B 0.5622 0.2356 0.6183 0.094\* 0.72 (5) C5 0.5402 (5) 0.379 (3) 0.5363 (10) 0.112 (7) 0.72 (5) H5A 0.5453 0.4750 0.5257 0.167\* 0.72 (5) H5B 0.5158 0.3730 0.5449 0.167\* 0.72 (5) H5C 0.5412 0.3190 0.4960 0.167\* 0.72 (5) C4\' 0.569 (3) 0.380 (9) 0.592 (6) 0.074 (16) 0.28 (5) H4\'1 0.5662 0.4709 0.5673 0.089\* 0.28 (5) H4\'2 0.5691 0.3966 0.6420 0.089\* 0.28 (5) C5\' 0.5359 (12) 0.286 (8) 0.557 (3) 0.105 (17) 0.28 (5) H5\'1 0.5138 0.3433 0.5456 0.158\* 0.28 (5) H5\'2 0.5334 0.2125 0.5902 0.158\* 0.28 (5) H5\'3 0.5396 0.2448 0.5132 0.158\* 0.28 (5) C6 0.66657 (14) 0.1795 (5) 0.4803 (2) 0.0977 (18) H6A 0.6832 0.2438 0.4650 0.147\* H6B 0.6467 0.1540 0.4394 0.147\* H6C 0.6799 0.0956 0.5005 0.147\* C7 0.70839 (13) 0.7219 (5) 0.6826 (2) 0.0598 (13) C8 0.73922 (13) 0.5930 (5) 0.6197 (2) 0.0623 (13) C9 0.71433 (12) 0.5125 (5) 0.6403 (2) 0.0542 (11) C10 0.69670 (13) 0.8465 (5) 0.7201 (2) 0.0781 (15) H10A 0.6701 0.8399 0.7152 0.094\* H10B 0.7088 0.8398 0.7715 0.094\* C11 0.70486 (15) 0.9881 (5) 0.6940 (3) 0.1082 (19) H11A 0.7312 0.9984 0.7007 0.162\* H11B 0.6959 1.0605 0.7209 0.162\* H11C 0.6927 0.9973 0.6433 0.162\* C12 0.76670 (13) 0.5625 (5) 0.5767 (2) 0.0908 (17) H12A 0.7908 0.5492 0.6089 0.136\* H12B 0.7675 0.6407 0.5447 0.136\* H12C 0.7595 0.4778 0.5486 0.136\* C13 0.70651 (12) 0.3557 (4) 0.6293 (2) 0.0649 (13) H13A 0.7210 0.3184 0.5975 0.078\* H13B 0.7146 0.3078 0.6757 0.078\* C14 0.60378 (16) 0.7086 (6) 0.5977 (3) 0.0754 (16) C15 0.56248 (15) 0.7971 (6) 0.6504 (3) 0.0794 (16) C16 0.58627 (14) 0.7145 (5) 0.6974 (3) 0.0638 (14) C17 0.62176 (18) 0.6744 (7) 0.5375 (3) 0.104 (2) H17A 0.6398 0.5993 0.5538 0.125\* 0.802 (10) H17B 0.6029 0.6381 0.4966 0.125\* 0.802 (10) H17C 0.6399 0.6040 0.5607 0.125\* 0.198 (10) H17D 0.6362 0.7600 0.5375 0.125\* 0.198 (10) C18 0.6403 (2) 0.7937 (9) 0.5130 (4) 0.124 (4) 0.802 (10) H18A 0.6222 0.8641 0.4914 0.185\* 0.802 (10) H18B 0.6530 0.7613 0.4777 0.185\* 0.802 (10) H18C 0.6580 0.8344 0.5536 0.185\* 0.802 (10) C18\' 0.6126 (8) 0.638 (4) 0.4591 (18) 0.129 (16) 0.198 (10) H18D 0.6127 0.5370 0.4535 0.194\* 0.198 (10) H18E 0.6307 0.6798 0.4372 0.194\* 0.198 (10) H18F 0.5884 0.6746 0.4359 0.194\* 0.198 (10) C19 0.52842 (14) 0.8794 (5) 0.6555 (3) 0.111 (2) H19A 0.5067 0.8344 0.6260 0.167\* H19B 0.5301 0.9747 0.6387 0.167\* H19C 0.5268 0.8814 0.7051 0.167\* C20 0.60526 (16) 0.3029 (6) 0.7853 (3) 0.0764 (16) C21 0.56334 (14) 0.4411 (6) 0.8146 (2) 0.0728 (15) C22 0.58615 (12) 0.5196 (5) 0.7864 (2) 0.0566 (12) C23 0.6206 (8) 0.169 (3) 0.7596 (15) 0.077 (7) 0.52 (3) H23A 0.6020 0.1286 0.7195 0.092\* 0.52 (3) H23B 0.6422 0.1931 0.7420 0.092\* 0.52 (3) C24 0.6315 (6) 0.0605 (18) 0.8191 (14) 0.104 (7) 0.52 (3) H24A 0.6461 0.1052 0.8623 0.155\* 0.52 (3) H24B 0.6458 −0.0132 0.8042 0.155\* 0.52 (3) H24C 0.6095 0.0202 0.8289 0.155\* 0.52 (3) C23\' 0.6332 (9) 0.181 (4) 0.7946 (13) 0.073 (8) 0.48 (3) H23C 0.6539 0.2053 0.7743 0.087\* 0.48 (3) H23D 0.6426 0.1566 0.8454 0.087\* 0.48 (3) C24\' 0.6105 (6) 0.060 (2) 0.7527 (18) 0.109 (9) 0.48 (3) H24D 0.5887 0.0448 0.7702 0.164\* 0.48 (3) H24E 0.6252 −0.0253 0.7594 0.164\* 0.48 (3) H24F 0.6032 0.0831 0.7020 0.164\* 0.48 (3) C25 0.53078 (13) 0.4778 (5) 0.8438 (2) 0.1056 (19) H25A 0.5295 0.5790 0.8489 0.158\* H25B 0.5335 0.4336 0.8903 0.158\* H25C 0.5084 0.4445 0.8110 0.158\* C26 0.58718 (13) 0.6773 (5) 0.7746 (2) 0.0682 (14) H26A 0.5661 0.7209 0.7875 0.082\* H26B 0.6096 0.7159 0.8063 0.082\* ------- --------------- ------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1912 .table-wrap} ------- ------------ ------------ ------------ ------------- ------------ ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ni1 0.0592 (4) 0.0539 (4) 0.0624 (4) 0.0103 (4) 0.0243 (3) 0.0046 (3) N1 0.060 (3) 0.065 (3) 0.076 (3) −0.005 (2) 0.028 (3) −0.005 (2) N2 0.074 (3) 0.081 (3) 0.078 (3) −0.010 (3) 0.021 (3) −0.016 (2) N3 0.059 (3) 0.047 (2) 0.068 (3) 0.001 (2) 0.025 (2) −0.002 (2) N4 0.069 (3) 0.057 (3) 0.080 (3) −0.015 (2) 0.023 (2) −0.006 (2) N5 0.063 (3) 0.063 (3) 0.066 (3) 0.010 (2) 0.022 (3) 0.013 (2) N6 0.083 (4) 0.092 (4) 0.089 (4) 0.023 (3) 0.007 (3) 0.038 (3) N7 0.074 (3) 0.056 (3) 0.072 (3) 0.012 (2) 0.040 (2) 0.010 (2) N8 0.096 (4) 0.074 (3) 0.104 (3) 0.009 (3) 0.057 (3) 0.026 (3) N9 0.076 (4) 0.122 (5) 0.067 (4) 0.017 (4) 0.019 (3) 0.015 (4) N10 0.075 (4) 0.101 (8) 0.095 (7) 0.013 (5) 0.013 (5) −0.024 (8) O1 0.075 (3) 0.090 (3) 0.070 (2) 0.027 (2) 0.016 (2) −0.002 (2) O2 0.078 (3) 0.081 (3) 0.099 (3) 0.031 (2) 0.027 (2) 0.026 (2) O3 0.121 (4) 0.255 (6) 0.078 (3) 0.061 (4) −0.008 (3) 0.028 (4) O4 0.121 (6) 0.179 (14) 0.097 (11) −0.062 (7) 0.023 (6) 0.051 (11) O5 0.130 (11) 0.14 (2) 0.17 (2) 0.016 (11) 0.048 (16) −0.08 (2) O6 0.146 (11) 0.075 (10) 0.097 (8) −0.001 (8) 0.007 (6) 0.019 (8) O4\' 0.134 (14) 0.088 (19) 0.078 (15) 0.012 (12) 0.007 (14) 0.022 (15) O5\' 0.15 (2) 0.12 (3) 0.19 (5) 0.00 (2) −0.02 (3) −0.06 (3) O6\' 0.14 (2) 0.097 (16) 0.102 (16) 0.037 (13) 0.077 (15) 0.035 (13) C1 0.065 (4) 0.071 (4) 0.074 (4) −0.003 (3) 0.030 (4) −0.005 (3) C2 0.069 (4) 0.060 (4) 0.082 (4) −0.003 (3) 0.033 (4) −0.012 (3) C3 0.060 (4) 0.048 (3) 0.081 (4) −0.005 (3) 0.030 (3) −0.009 (3) C4 0.065 (10) 0.082 (17) 0.093 (17) −0.011 (15) 0.030 (11) 0.006 (13) C5 0.075 (10) 0.135 (17) 0.124 (11) 0.025 (10) 0.023 (8) 0.008 (10) C4\' 0.07 (3) 0.07 (4) 0.08 (4) 0.00 (4) 0.03 (2) 0.01 (3) C5\' 0.10 (3) 0.10 (3) 0.12 (3) −0.01 (2) 0.02 (2) −0.02 (2) C6 0.103 (5) 0.096 (4) 0.107 (4) −0.007 (4) 0.051 (4) −0.038 (3) C7 0.058 (3) 0.055 (3) 0.070 (3) 0.000 (3) 0.022 (3) −0.001 (3) C8 0.060 (3) 0.061 (3) 0.073 (3) −0.004 (3) 0.031 (3) −0.007 (3) C9 0.055 (3) 0.048 (3) 0.064 (3) 0.001 (3) 0.024 (3) −0.010 (3) C10 0.082 (4) 0.055 (3) 0.102 (4) −0.001 (3) 0.032 (3) −0.014 (3) C11 0.139 (5) 0.055 (4) 0.142 (5) 0.013 (4) 0.056 (4) −0.002 (4) C12 0.076 (4) 0.107 (5) 0.106 (4) −0.016 (3) 0.055 (3) −0.020 (3) C13 0.063 (4) 0.056 (3) 0.084 (4) 0.001 (3) 0.034 (3) −0.016 (3) C14 0.072 (4) 0.084 (4) 0.074 (4) 0.014 (3) 0.024 (4) 0.025 (3) C15 0.063 (4) 0.076 (4) 0.096 (5) 0.014 (3) 0.015 (4) 0.019 (4) C16 0.061 (4) 0.056 (3) 0.076 (4) 0.012 (3) 0.020 (3) 0.012 (3) C17 0.103 (5) 0.115 (6) 0.098 (6) 0.011 (4) 0.030 (5) 0.039 (4) C18 0.097 (6) 0.155 (9) 0.122 (7) −0.006 (6) 0.034 (5) 0.041 (6) C18\' 0.11 (3) 0.15 (4) 0.10 (3) 0.01 (2) −0.03 (2) 0.03 (2) C19 0.084 (4) 0.097 (5) 0.149 (5) 0.040 (4) 0.023 (4) 0.034 (4) C20 0.087 (5) 0.063 (4) 0.092 (4) 0.012 (4) 0.047 (4) 0.018 (3) C21 0.077 (4) 0.077 (4) 0.076 (4) 0.018 (3) 0.041 (3) 0.013 (3) C22 0.065 (3) 0.053 (3) 0.058 (3) 0.016 (3) 0.027 (3) 0.007 (3) C23 0.085 (19) 0.059 (13) 0.090 (19) 0.010 (12) 0.029 (14) 0.016 (17) C24 0.123 (13) 0.087 (13) 0.103 (17) 0.040 (9) 0.032 (13) 0.023 (9) C23\' 0.08 (2) 0.062 (13) 0.079 (16) 0.015 (14) 0.031 (15) 0.014 (16) C24\' 0.101 (14) 0.081 (13) 0.15 (2) 0.003 (10) 0.046 (16) −0.011 (12) C25 0.098 (4) 0.127 (5) 0.112 (4) 0.027 (4) 0.066 (4) 0.022 (4) C26 0.066 (4) 0.061 (4) 0.082 (4) 0.018 (3) 0.025 (3) −0.001 (3) ------- ------------ ------------ ------------ ------------- ------------ ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2805 .table-wrap} ----------------------- ------------- --------------------------- ------------- Ni1---N5 2.046 (4) C8---C9 1.328 (5) Ni1---N1 2.055 (4) C8---C12 1.488 (5) Ni1---N7 2.055 (3) C9---C13 1.510 (5) Ni1---N3 2.071 (3) C10---C11 1.482 (5) Ni1---O2 2.203 (3) C10---H10A 0.9700 Ni1---O1 2.219 (3) C10---H10B 0.9700 N1---C1 1.317 (5) C11---H11A 0.9600 N1---C3 1.393 (5) C11---H11B 0.9600 N2---C1 1.359 (5) C11---H11C 0.9600 N2---C2 1.380 (5) C12---H12A 0.9600 N2---H2 0.8600 C12---H12B 0.9600 N3---C7 1.316 (5) C12---H12C 0.9600 N3---C9 1.389 (4) C13---H13A 0.9700 N4---C7 1.332 (5) C13---H13B 0.9700 N4---C8 1.387 (5) C14---C17 1.497 (6) N4---H4 0.8600 C15---C16 1.339 (6) N5---C14 1.326 (5) C15---C19 1.508 (6) N5---C16 1.376 (5) C16---C26 1.500 (5) N6---C14 1.339 (5) C17---C18 1.455 (8) N6---C15 1.362 (5) C17---C18\' 1.48 (3) N6---H6 0.8600 C17---H17A 0.9700 N7---C20 1.323 (5) C17---H17B 0.9700 N7---C22 1.388 (5) C17---H17C 0.9700 N8---C20 1.335 (5) C17---H17D 0.9700 N8---C21 1.370 (5) C18---H17D 0.6134 N8---H8 0.8600 C18---H18A 0.9600 N9---O3 1.218 (5) C18---H18B 0.9600 N9---O1 1.257 (5) C18---H18C 0.9600 N9---O2 1.272 (5) C18\'---H18D 0.9600 N10---O5\' 1.14 (5) C18\'---H18E 0.9600 N10---O5 1.17 (3) C18\'---H18F 0.9600 N10---O4 1.230 (16) C19---H19A 0.9600 N10---O4\' 1.25 (5) C19---H19B 0.9600 N10---O6 1.26 (3) C19---H19C 0.9600 N10---O6\' 1.27 (2) C20---C23 1.51 (3) C1---C4 1.51 (4) C20---C23\' 1.53 (3) C1---C4\' 1.52 (11) C21---C22 1.333 (6) C2---C3 1.348 (6) C21---C25 1.493 (5) C2---C6 1.499 (5) C22---C26 1.504 (5) C3---C13 1.485 (5) C23---C24 1.50 (5) C4---C5 1.53 (6) C23---H23A 0.9700 C4---H4A 0.9700 C23---H23B 0.9700 C4---H4B 0.9700 C24---H24A 0.9600 C5---H5A 0.9600 C24---H24B 0.9600 C5---H5B 0.9600 C24---H24C 0.9600 C5---H5C 0.9600 C23\'---C24\' 1.52 (5) C4\'---C5\' 1.53 (15) C23\'---H23C 0.9700 C4\'---H4\'1 0.9700 C23\'---H23D 0.9700 C4\'---H4\'2 0.9700 C24\'---H24D 0.9600 C5\'---H5\'1 0.9600 C24\'---H24E 0.9600 C5\'---H5\'2 0.9600 C24\'---H24F 0.9600 C5\'---H5\'3 0.9600 C25---H25A 0.9600 C6---H6A 0.9600 C25---H25B 0.9600 C6---H6B 0.9600 C25---H25C 0.9600 C6---H6C 0.9600 C26---H26A 0.9700 C7---C10 1.493 (5) C26---H26B 0.9700 N5---Ni1---N1 95.98 (16) H10A---C10---H10B 107.4 N5---Ni1---N7 89.56 (15) C10---C11---H11A 109.5 N1---Ni1---N7 96.82 (15) C10---C11---H11B 109.5 N5---Ni1---N3 95.79 (14) H11A---C11---H11B 109.5 N1---Ni1---N3 90.50 (15) C10---C11---H11C 109.5 N7---Ni1---N3 170.46 (14) H11A---C11---H11C 109.5 N5---Ni1---O2 160.78 (15) H11B---C11---H11C 109.5 N1---Ni1---O2 103.24 (15) C8---C12---H12A 109.5 N7---Ni1---O2 87.87 (13) C8---C12---H12B 109.5 N3---Ni1---O2 84.48 (13) H12A---C12---H12B 109.5 N5---Ni1---O1 102.65 (14) C8---C12---H12C 109.5 N1---Ni1---O1 161.30 (15) H12A---C12---H12C 109.5 N7---Ni1---O1 85.00 (13) H12B---C12---H12C 109.5 N3---Ni1---O1 86.12 (13) C3---C13---C9 113.4 (4) O2---Ni1---O1 58.15 (13) C3---C13---H13A 108.9 C1---N1---C3 106.9 (4) C9---C13---H13A 108.9 C1---N1---Ni1 130.5 (4) C3---C13---H13B 108.9 C3---N1---Ni1 121.6 (4) C9---C13---H13B 108.9 C1---N2---C2 108.7 (5) H13A---C13---H13B 107.7 C1---N2---H2 125.7 N5---C14---N6 109.7 (5) C2---N2---H2 125.7 N5---C14---C17 128.1 (5) C7---N3---C9 106.1 (4) N6---C14---C17 122.1 (5) C7---N3---Ni1 131.1 (3) C16---C15---N6 105.6 (5) C9---N3---Ni1 122.7 (3) C16---C15---C19 132.9 (6) C7---N4---C8 109.0 (4) N6---C15---C19 121.5 (5) C7---N4---H4 125.5 C15---C16---N5 110.1 (4) C8---N4---H4 125.5 C15---C16---C26 129.7 (5) C14---N5---C16 105.8 (4) N5---C16---C26 120.2 (4) C14---N5---Ni1 131.3 (4) C18---C17---C18\' 82.1 (12) C16---N5---Ni1 122.3 (3) C18---C17---C14 114.6 (6) C14---N6---C15 108.8 (5) C18\'---C17---C14 141.5 (13) C14---N6---H6 125.6 C18---C17---H17A 108.6 C15---N6---H6 125.6 C18\'---C17---H17A 96.9 C20---N7---C22 105.8 (4) C14---C17---H17A 108.6 C20---N7---Ni1 131.6 (4) C18---C17---H17B 108.6 C22---N7---Ni1 122.3 (3) C14---C17---H17B 108.6 C20---N8---C21 109.2 (4) H17A---C17---H17B 107.6 C20---N8---H8 125.4 C18---C17---H17C 110.0 C21---N8---H8 125.4 C18\'---C17---H17C 105.0 O3---N9---O1 124.0 (6) C14---C17---H17C 101.1 O3---N9---O2 119.7 (6) H17B---C17---H17C 113.9 O1---N9---O2 116.4 (5) C18\'---C17---H17D 100.3 O5\'---N10---O5 152 (3) C14---C17---H17D 100.1 O5\'---N10---O4 74 (3) H17A---C17---H17D 105.5 O5---N10---O4 132.6 (17) H17B---C17---H17D 125.6 O5\'---N10---O4\' 123 (3) H17C---C17---H17D 104.2 O4---N10---O4\' 161.5 (19) C17---C18---H18A 109.5 O5---N10---O6 117.3 (19) H17D---C18---H18A 113.7 O4---N10---O6 109.5 (16) C17---C18---H18B 109.5 O4\'---N10---O6 87.6 (19) H17D---C18---H18B 128.6 O5\'---N10---O6\' 130 (3) C17---C18---H18C 109.5 O5---N10---O6\' 74.5 (16) H17D---C18---H18C 81.0 O4---N10---O6\' 58.4 (13) C17---C18\'---H18D 109.5 O4\'---N10---O6\' 107 (2) C17---C18\'---H18E 109.5 O6---N10---O6\' 161.7 (15) H18D---C18\'---H18E 109.5 N9---O1---Ni1 92.5 (3) C17---C18\'---H18F 109.5 N9---O2---Ni1 92.9 (3) H18D---C18\'---H18F 109.5 N1---C1---N2 109.4 (5) H18E---C18\'---H18F 109.5 N1---C1---C4 129.6 (18) C15---C19---H19A 109.5 N2---C1---C4 120.8 (18) C15---C19---H19B 109.5 N1---C1---C4\' 125 (5) H19A---C19---H19B 109.5 N2---C1---C4\' 122 (5) C15---C19---H19C 109.5 C3---C2---N2 105.6 (4) H19A---C19---H19C 109.5 C3---C2---C6 132.4 (5) H19B---C19---H19C 109.5 N2---C2---C6 121.9 (5) N7---C20---N8 109.6 (5) C2---C3---N1 109.4 (4) N7---C20---C23 125.1 (13) C2---C3---C13 129.2 (5) N8---C20---C23 123.4 (13) N1---C3---C13 121.4 (5) N7---C20---C23\' 123.4 (15) C1---C4---C5 111 (3) N8---C20---C23\' 124.4 (14) C1---C4---H4A 109.4 C22---C21---N8 105.4 (4) C5---C4---H4A 109.4 C22---C21---C25 132.6 (5) C1---C4---H4B 109.4 N8---C21---C25 122.1 (5) C5---C4---H4B 109.4 C21---C22---N7 110.0 (4) H4A---C4---H4B 108.0 C21---C22---C26 130.6 (4) C1---C4\'---C5\' 116 (7) N7---C22---C26 119.4 (4) C1---C4\'---H4\'1 107.0 C24---C23---C20 112 (2) C5\'---C4\'---H4\'1 109.0 C24---C23---H23A 109.2 C1---C4\'---H4\'2 108.2 C20---C23---H23A 109.2 C5\'---C4\'---H4\'2 108.2 C24---C23---H23B 109.2 H4\'1---C4\'---H4\'2 107.4 C20---C23---H23B 109.2 C4\'---C5\'---H5\'1 109.5 H23A---C23---H23B 107.9 C4\'---C5\'---H5\'2 109.5 C24\'---C23\'---C20 103 (2) H5\'1---C5\'---H5\'2 109.5 C24\'---C23\'---H23C 111.1 C4\'---C5\'---H5\'3 109.5 C20---C23\'---H23C 111.1 H5\'1---C5\'---H5\'3 109.5 C24\'---C23\'---H23D 111.1 H5\'2---C5\'---H5\'3 109.5 C20---C23\'---H23D 111.1 C2---C6---H6A 109.5 H23C---C23\'---H23D 109.0 C2---C6---H6B 109.5 C23\'---C24\'---H24D 109.5 H6A---C6---H6B 109.5 C23\'---C24\'---H24E 109.5 C2---C6---H6C 109.5 H24D---C24\'---H24E 109.5 H6A---C6---H6C 109.5 C23\'---C24\'---H24F 109.5 H6B---C6---H6C 109.5 H24D---C24\'---H24F 109.5 N3---C7---N4 109.7 (4) H24E---C24\'---H24F 109.5 N3---C7---C10 126.4 (5) C21---C25---H25A 109.5 N4---C7---C10 123.8 (5) C21---C25---H25B 109.5 C9---C8---N4 104.9 (4) H25A---C25---H25B 109.5 C9---C8---C12 132.5 (5) C21---C25---H25C 109.5 N4---C8---C12 122.6 (5) H25A---C25---H25C 109.5 C8---C9---N3 110.2 (4) H25B---C25---H25C 109.5 C8---C9---C13 129.9 (4) C16---C26---C22 112.5 (4) N3---C9---C13 119.8 (4) C16---C26---H26A 109.1 C11---C10---C7 116.0 (4) C22---C26---H26A 109.1 C11---C10---H10A 108.3 C16---C26---H26B 109.1 C7---C10---H10A 108.3 C22---C26---H26B 109.1 C11---C10---H10B 108.3 H26A---C26---H26B 107.8 C7---C10---H10B 108.3 N5---Ni1---N1---C1 −45.8 (5) N2---C1---C4\'---C5\' 38 (7) N7---Ni1---N1---C1 44.4 (5) C4---C1---C4\'---C5\' −54 (15) N3---Ni1---N1---C1 −141.7 (4) C9---N3---C7---N4 1.2 (5) O2---Ni1---N1---C1 133.8 (4) Ni1---N3---C7---N4 −175.9 (3) O1---Ni1---N1---C1 139.0 (5) C9---N3---C7---C10 −178.7 (4) N5---Ni1---N1---C3 121.6 (3) Ni1---N3---C7---C10 4.2 (7) N7---Ni1---N1---C3 −148.2 (3) C8---N4---C7---N3 −0.6 (5) N3---Ni1---N1---C3 25.7 (3) C8---N4---C7---C10 179.3 (4) O2---Ni1---N1---C3 −58.7 (3) C7---N4---C8---C9 −0.4 (5) O1---Ni1---N1---C3 −53.6 (6) C7---N4---C8---C12 179.3 (4) N5---Ni1---N3---C7 52.5 (4) N4---C8---C9---N3 1.1 (5) N1---Ni1---N3---C7 148.5 (4) C12---C8---C9---N3 −178.5 (4) O2---Ni1---N3---C7 −108.2 (4) N4---C8---C9---C13 −177.1 (4) O1---Ni1---N3---C7 −49.9 (4) C12---C8---C9---C13 3.2 (8) N5---Ni1---N3---C9 −124.2 (3) C7---N3---C9---C8 −1.5 (5) N1---Ni1---N3---C9 −28.1 (3) Ni1---N3---C9---C8 175.9 (3) O2---Ni1---N3---C9 75.1 (3) C7---N3---C9---C13 177.0 (4) O1---Ni1---N3---C9 133.5 (3) Ni1---N3---C9---C13 −5.6 (5) N1---Ni1---N5---C14 −42.6 (5) N3---C7---C10---C11 −156.6 (5) N7---Ni1---N5---C14 −139.4 (4) N4---C7---C10---C11 23.5 (7) N3---Ni1---N5---C14 48.6 (5) C2---C3---C13---C9 123.6 (5) O2---Ni1---N5---C14 138.4 (5) N1---C3---C13---C9 −56.5 (6) O1---Ni1---N5---C14 135.9 (4) C8---C9---C13---C3 −128.8 (5) N1---Ni1---N5---C16 127.2 (4) N3---C9---C13---C3 53.1 (5) N7---Ni1---N5---C16 30.4 (4) C16---N5---C14---N6 0.8 (6) N3---Ni1---N5---C16 −141.7 (3) Ni1---N5---C14---N6 171.8 (3) O2---Ni1---N5---C16 −51.8 (6) C16---N5---C14---C17 −175.7 (6) O1---Ni1---N5---C16 −54.4 (4) Ni1---N5---C14---C17 −4.7 (9) N5---Ni1---N7---C20 142.7 (5) C15---N6---C14---N5 −0.2 (6) N1---Ni1---N7---C20 46.7 (5) C15---N6---C14---C17 176.6 (5) O2---Ni1---N7---C20 −56.4 (5) C14---N6---C15---C16 −0.5 (6) O1---Ni1---N7---C20 −114.6 (5) C14---N6---C15---C19 −178.1 (5) N5---Ni1---N7---C22 −30.3 (3) N6---C15---C16---N5 1.0 (6) N1---Ni1---N7---C22 −126.2 (3) C19---C15---C16---N5 178.2 (5) O2---Ni1---N7---C22 130.7 (3) N6---C15---C16---C26 −178.5 (5) O1---Ni1---N7---C22 72.5 (3) C19---C15---C16---C26 −1.3 (10) O3---N9---O1---Ni1 177.4 (5) C14---N5---C16---C15 −1.1 (6) O2---N9---O1---Ni1 −2.0 (5) Ni1---N5---C16---C15 −173.2 (3) N5---Ni1---O1---N9 −179.8 (3) C14---N5---C16---C26 178.4 (4) N1---Ni1---O1---N9 −4.7 (6) Ni1---N5---C16---C26 6.4 (6) N7---Ni1---O1---N9 91.8 (3) N5---C14---C17---C18 −114.8 (6) N3---Ni1---O1---N9 −84.7 (3) N6---C14---C17---C18 69.0 (8) O2---Ni1---O1---N9 1.2 (3) N5---C14---C17---C18\' 136 (2) O3---N9---O2---Ni1 −177.4 (4) N6---C14---C17---C18\' −41 (2) O1---N9---O2---Ni1 2.0 (5) C22---N7---C20---N8 0.2 (5) N5---Ni1---O2---N9 −4.1 (6) Ni1---N7---C20---N8 −173.6 (3) N1---Ni1---O2---N9 176.9 (3) C22---N7---C20---C23 164.8 (13) N7---Ni1---O2---N9 −86.6 (3) Ni1---N7---C20---C23 −9.0 (15) N3---Ni1---O2---N9 87.7 (3) C22---N7---C20---C23\' −162.1 (12) O1---Ni1---O2---N9 −1.2 (3) Ni1---N7---C20---C23\' 24.1 (14) C3---N1---C1---N2 −0.6 (5) C21---N8---C20---N7 −0.6 (6) Ni1---N1---C1---N2 168.2 (3) C21---N8---C20---C23 −165.5 (13) C3---N1---C1---C4 174.2 (16) C21---N8---C20---C23\' 161.5 (14) Ni1---N1---C1---C4 −17.0 (17) C20---N8---C21---C22 0.7 (6) C3---N1---C1---C4\' −161 (3) C20---N8---C21---C25 −179.0 (4) Ni1---N1---C1---C4\' 8(3) N8---C21---C22---N7 −0.6 (5) C2---N2---C1---N1 0.4 (6) C25---C21---C22---N7 179.1 (5) C2---N2---C1---C4 −174.9 (15) N8---C21---C22---C26 −179.2 (4) C2---N2---C1---C4\' 161 (3) C25---C21---C22---C26 0.5 (9) C1---N2---C2---C3 −0.1 (5) C20---N7---C22---C21 0.2 (5) C1---N2---C2---C6 −179.7 (4) Ni1---N7---C22---C21 174.8 (3) N2---C2---C3---N1 −0.3 (5) C20---N7---C22---C26 179.0 (4) C6---C2---C3---N1 179.2 (5) Ni1---N7---C22---C26 −6.4 (5) N2---C2---C3---C13 179.5 (4) N7---C20---C23---C24 138.9 (17) C6---C2---C3---C13 −0.9 (9) N8---C20---C23---C24 −59 (3) C1---N1---C3---C2 0.6 (5) C23\'---C20---C23---C24 43 (4) Ni1---N1---C3---C2 −169.4 (3) N7---C20---C23\'---C24\' −134.0 (15) C1---N1---C3---C13 −179.3 (4) N8---C20---C23\'---C24\' 66 (2) Ni1---N1---C3---C13 10.7 (6) C23---C20---C23\'---C24\' −31 (4) N1---C1---C4---C5 134 (2) C15---C16---C26---C22 123.5 (6) N2---C1---C4---C5 −52 (3) N5---C16---C26---C22 −55.9 (6) C4\'---C1---C4---C5 48 (17) C21---C22---C26---C16 −125.9 (5) N1---C1---C4\'---C5\' −164 (5) N7---C22---C26---C16 55.6 (5) ----------------------- ------------- --------------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5116 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···O4^i^ 0.86 2.29 3.12 (2) 162 N2---H2···O5\'^i^ 0.86 1.88 2.67 (5) 152 N4---H4···O2^ii^ 0.86 2.37 3.063 (5) 138 N6---H6···O6^iii^ 0.86 2.05 2.83 (2) 152 N6---H6···O4\'^iii^ 0.86 2.18 2.98 (3) 155 N8---H8···O5^iv^ 0.86 2.01 2.81 (3) 155 --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+1; (ii) −*x*+3/2, *y*+1/2, −*z*+3/2; (iii) −*x*+1, −*y*+1, −*z*+1; (iv) −*x*+1, *y*, −*z*+3/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N2---H2⋯O4^i^ 0.86 2.29 3.12 (2) 162 N2---H2⋯O5′^i^ 0.86 1.88 2.67 (5) 152 N4---H4⋯O2^ii^ 0.86 2.37 3.063 (5) 138 N6---H6⋯O6^iii^ 0.86 2.05 2.83 (2) 152 N6---H6⋯O4′^iii^ 0.86 2.18 2.98 (3) 155 N8---H8⋯O5^iv^ 0.86 2.01 2.81 (3) 155 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:16.795665
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051755/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m212", "authors": [ { "first": "Ge", "last": "Gao" }, { "first": "Shu-Lin", "last": "Mao" }, { "first": "Xiao-Min", "last": "Qian" }, { "first": "Yang-Hui", "last": "Luo" }, { "first": "Jin-Feng", "last": "Li" } ] }
PMC3051756
Related literature {#sec1} ================== For related literature on the conformation of porphyrins, see: Senge (2000[@bb8]). For the chemistry of porphyrins with mixed *meso* substituents, see: Dahms *et al.* (2007[@bb1]); Senge *et al.* (2010[@bb10]). For Ni(II) porphyrin structures, see: Fleischer *et al.* (1964[@bb2]); Gallucci *et al.* (1982[@bb3]); Hoard (1973[@bb4]); Lee & Scheidt (1987[@bb6]), Senge (2000[@bb8]) and Senge *et al.* (2000[@bb9]). For handling of the crystals, see: Hope (1994[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ni(C~40~H~28~N~4~O)\]*M* *~r~* = 639.37Triclinic,*a* = 10.869 (2) Å*b* = 11.984 (2) Å*c* = 12.332 (3) Åα = 72.356 (6)°β = 85.305 (8)°γ = 74.219 (7)°*V* = 1473.0 (5) Å^3^*Z* = 2Mo *K*α radiationμ = 0.70 mm^−1^*T* = 123 K0.20 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku Saturn724 diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2007[@bb7]) *T* ~min~ = 0.873, *T* ~max~ = 0.87329300 measured reflections7270 independent reflections6754 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.040 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.108*S* = 1.107270 reflections436 parametersH-atom parameters constrainedΔρ~max~ = 0.37 e Å^−3^Δρ~min~ = −0.52 e Å^−3^ {#d5e362} Data collection: *CrystalClear* (Rigaku, 2007[@bb7]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb11]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002960/go2001sup1.cif](http://dx.doi.org/10.1107/S1600536811002960/go2001sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002960/go2001Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002960/go2001Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?go2001&file=go2001sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?go2001sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?go2001&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [GO2001](http://scripts.iucr.org/cgi-bin/sendsup?go2001)). This work was supported by a grant from Science Foundation Ireland (SFI P·I. 09/IN.1/B2650). Comment ======= The title compound (I) crystallized as the racemic form in the triclinic space group *P*1. It was obtained from a Grignard reaction of the respective formylporphyrin to yield {5-\[hydroxy(phenyl)methyl\]-10,20-diphenylporphyrinato}nickel(II), (II) (Fig. 2), followed by crystallization from methylene chloride/methanol. *I.e.*, substitution of the hydroxy group by a methoxy group occurred during the crystallization. The stucture of the title compound, (I), is shown below. Dimensions are available in the archived CIF. The molecule exhibits a ruffled macrocycle with an average deviation of the 24 macrocycle atoms from their least-squares-plane (Δ24) of 0.26 Å and an average Ni--N bond length of 1.931 (2) Å. In line with the unsymmetrical substituent pattern the degree of distortion is slightly larger at C5 (the methoxyphenylmethyl residue) then at C15 (the unsubstituted *meso* position). This is indicated by the individual displacements of the C~m~ positions from the least-squares-plane of the four nitrogen atoms. The respective displacement values are -0.64, 0.49, -0.49, 0.47 Å for C5, C10, C15 and C20, respectively. Similarly, the C~a~---C~m~---C~a~ angle for C15 is widened (123.2 (2)°) compared to the other three *meso* positions (average = 121.3 (2)°). In terms of macrocycle distortion modes, the most significant out-of-plane contributor is *B*~1u~ (ruffled) with some degree of *B*~2u~ (saddle) mixed in. The most prominent in-plane distortion mode is *A*~1\ g~, *i.e.*, macrocycle breathing. The molecules form a close spaced lattice structure characterized by stacking of the porphyrin macrocycles (not shown). The closest intramolecular contacts are Ni--H15 (3.034 Å) and Ni--H203 (2.764 Å). The former is a side-on contact and blocks one face of the porphyrin. The latter involves a *meta*-phenyl hydrogen atom pointing towards the nickel(II) center. Experimental {#experimental} ============ The title compound I was obtained from II (Dahms *et al.*, 2007) upon crystallization from CH~2~Cl~2~/CH~3~OH. Porphyrin II in turn was prepared *via* Grignard reaction of (5-formyl-10,20-diphenylporphyrinato)nickel(II) with phenyl magnesium bromide. Refinement {#refinement} ========== The compound crystallized with crystallographic disorder of the methoxy group at the *meso* carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58*a* atoms were refined with standard distances of 0.97 Å, for methyl groups with *U*~iso~(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with *U*~iso~(H)=1.2 *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### : View of the molecular structure of I in the crystals. Thermal ellipsoids are drawn for 50% occupancy. Only one of the two enantiomeric forms is shown; hydrogen atoms have been omitted for clarity. ::: ![](e-67-0m265-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Schematic representations of (I) and (II). ::: ![](e-67-0m265-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e185 .table-wrap} ------------------------- --------------------------------------- \[Ni(C~40~H~28~N~4~O)\] *Z* = 2 *M~r~* = 639.37 *F*(000) = 664 Triclinic, *P*1 *D*~x~ = 1.442 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.7107 Å *a* = 10.869 (2) Å Cell parameters from 4706 reflections *b* = 11.984 (2) Å θ = 2.0--28.3° *c* = 12.332 (3) Å µ = 0.70 mm^−1^ α = 72.356 (6)° *T* = 123 K β = 85.305 (8)° Prism, red γ = 74.219 (7)° 0.20 × 0.20 × 0.20 mm *V* = 1473.0 (5) Å^3^ ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e319 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku Saturn724 diffractometer 7270 independent reflections Radiation source: Sealed Tube 6754 reflections with *I* \> 2σ(*I*) Graphite Monochromator *R*~int~ = 0.040 Detector resolution: 28.5714 pixels mm^-1^ θ~max~ = 28.4°, θ~min~ = 2.6° dtprofit.ref scans *h* = −14→14 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2007) *k* = −16→15 *T*~min~ = 0.873, *T*~max~ = 0.873 *l* = −16→16 29300 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e437 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.108 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0324*P*)^2^ + 1.2452*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7270 reflections (Δ/σ)~max~ = 0.001 436 parameters Δρ~max~ = 0.37 e Å^−3^ 0 restraints Δρ~min~ = −0.52 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e594 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. The compound crystallized with crystallographic disorder of the methoxy group at the *meso* carbon (C51) with the site-occupancy factors of 0.533 (3) and 0.467 (3) for part A and B respectively. The H atoms bonded to C58 and C58*a* atoms were refined with standard distances of 0.97 Å, for methyl groups with *U*~iso~(H)=1.5Ueq(C) and the H atom for C51 was refined with 0.98Å with *U*~iso~(H)=1.2 *U*~eq~(C). ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e715 .table-wrap} ------ --------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ni 0.06269 (3) 0.66980 (3) 0.41138 (2) 0.02087 (8) O1 −0.1607 (3) 0.9874 (3) −0.0116 (3) 0.0299 (8) 0.534 (4) C58 −0.1951 (6) 1.0236 (5) −0.1294 (4) 0.0373 (13) 0.534 (4) H58A −0.2379 1.1105 −0.1538 0.056\* 0.534 (4) H58B −0.2531 0.9777 −0.1397 0.056\* 0.534 (4) H58C −0.1179 1.0074 −0.1750 0.056\* 0.534 (4) O1A −0.0393 (3) 0.8932 (3) −0.0643 (3) 0.0282 (9) 0.466 (4) C58A −0.1124 (5) 0.9638 (5) −0.1660 (4) 0.0317 (13) 0.466 (4) H58D −0.0571 0.9623 −0.2328 0.047\* 0.466 (4) H58E −0.1464 1.0477 −0.1639 0.047\* 0.466 (4) H58F −0.1833 0.9295 −0.1706 0.047\* 0.466 (4) N21 −0.06152 (17) 0.82009 (17) 0.34561 (15) 0.0224 (4) N22 0.13478 (17) 0.67312 (17) 0.26209 (15) 0.0224 (4) N23 0.18836 (17) 0.51926 (17) 0.47673 (15) 0.0217 (4) N24 −0.00879 (17) 0.66697 (17) 0.56101 (15) 0.0229 (4) C1 −0.1395 (2) 0.8957 (2) 0.40303 (19) 0.0249 (4) C2 −0.2243 (2) 0.9954 (2) 0.3252 (2) 0.0292 (5) H2 −0.2845 1.0612 0.3434 0.035\* C3 −0.2025 (2) 0.9785 (2) 0.2211 (2) 0.0292 (5) H3 −0.2467 1.0287 0.1529 0.035\* C4 −0.0998 (2) 0.8703 (2) 0.23274 (18) 0.0239 (4) C5 −0.0403 (2) 0.8278 (2) 0.14332 (18) 0.0240 (4) C6 0.0776 (2) 0.7423 (2) 0.15786 (18) 0.0229 (4) C7 0.1641 (2) 0.7195 (2) 0.06717 (19) 0.0275 (5) H7 0.1475 0.7538 −0.0121 0.033\* C8 0.2729 (2) 0.6402 (2) 0.11593 (19) 0.0282 (5) H8 0.3486 0.6116 0.0774 0.034\* C9 0.2530 (2) 0.6072 (2) 0.23683 (19) 0.0241 (4) C10 0.3340 (2) 0.5109 (2) 0.31438 (19) 0.0238 (4) C11 0.2962 (2) 0.4657 (2) 0.42545 (18) 0.0232 (4) C12 0.3591 (2) 0.3490 (2) 0.50041 (19) 0.0266 (5) H12 0.4356 0.2948 0.4854 0.032\* C13 0.2880 (2) 0.3315 (2) 0.59614 (19) 0.0265 (5) H13 0.3039 0.2616 0.6606 0.032\* C14 0.1843 (2) 0.4377 (2) 0.58233 (18) 0.0228 (4) C15 0.0995 (2) 0.4599 (2) 0.66710 (19) 0.0244 (4) H15 0.1007 0.3960 0.7354 0.029\* C16 0.0134 (2) 0.5698 (2) 0.65786 (18) 0.0240 (4) C17 −0.0566 (2) 0.6025 (2) 0.7521 (2) 0.0295 (5) H17 −0.0589 0.5505 0.8272 0.035\* C18 −0.1184 (2) 0.7206 (2) 0.7145 (2) 0.0312 (5) H18 −0.1695 0.7687 0.7586 0.037\* C19 −0.0921 (2) 0.7607 (2) 0.59404 (19) 0.0248 (4) C20 −0.1506 (2) 0.8725 (2) 0.52061 (19) 0.0256 (5) C51 −0.1098 (2) 0.8703 (2) 0.0298 (2) 0.0336 (6) H51 −0.0424 0.8493 −0.0262 0.040\* 0.534 (4) H51A −0.1685 0.9511 0.0283 0.040\* 0.466 (4) C52 −0.1998 (2) 0.7901 (2) 0.03594 (19) 0.0280 (5) C53 −0.3275 (2) 0.8242 (3) 0.0657 (2) 0.0375 (6) H53 −0.3621 0.9014 0.0775 0.045\* C54 −0.4051 (3) 0.7458 (3) 0.0782 (2) 0.0425 (7) H54 −0.4926 0.7699 0.0980 0.051\* C55 −0.3551 (3) 0.6327 (3) 0.0621 (2) 0.0386 (6) H55 −0.4075 0.5785 0.0723 0.046\* C56 −0.2285 (3) 0.5993 (3) 0.0310 (2) 0.0380 (6) H56 −0.1941 0.5224 0.0184 0.046\* C57 −0.1515 (2) 0.6774 (2) 0.0180 (2) 0.0320 (5) H57 −0.0646 0.6536 −0.0034 0.038\* C101 0.4587 (2) 0.4433 (2) 0.27784 (18) 0.0240 (4) C102 0.4646 (2) 0.3764 (2) 0.2015 (2) 0.0281 (5) H102 0.3881 0.3775 0.1685 0.034\* C103 0.5811 (2) 0.3085 (2) 0.1734 (2) 0.0321 (5) H103 0.5841 0.2637 0.1211 0.039\* C104 0.6934 (2) 0.3057 (2) 0.2216 (2) 0.0328 (5) H104 0.7732 0.2597 0.2018 0.039\* C105 0.6885 (2) 0.3702 (2) 0.2984 (2) 0.0323 (5) H105 0.7651 0.3674 0.3324 0.039\* C106 0.5727 (2) 0.4388 (2) 0.3261 (2) 0.0288 (5) H106 0.5705 0.4834 0.3785 0.035\* C201 −0.2389 (2) 0.9668 (2) 0.56703 (19) 0.0266 (5) C202 −0.2094 (2) 1.0755 (2) 0.5560 (2) 0.0307 (5) H202 −0.1335 1.0907 0.5176 0.037\* C203 −0.2902 (2) 1.1623 (2) 0.6010 (2) 0.0344 (6) H203 −0.2697 1.2366 0.5927 0.041\* C204 −0.4003 (2) 1.1408 (3) 0.6577 (2) 0.0373 (6) H204 −0.4542 1.1993 0.6901 0.045\* C205 −0.4319 (2) 1.0338 (3) 0.6670 (2) 0.0391 (6) H205 −0.5083 1.0195 0.7048 0.047\* C206 −0.3522 (2) 0.9476 (2) 0.6214 (2) 0.0346 (6) H206 −0.3750 0.8749 0.6271 0.041\* ------ --------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1857 .table-wrap} ------ -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ni 0.02108 (14) 0.02495 (16) 0.01675 (14) −0.00704 (11) 0.00045 (10) −0.00553 (11) O1 0.0398 (18) 0.0252 (16) 0.0224 (16) −0.0079 (14) −0.0088 (13) −0.0017 (13) C58 0.057 (3) 0.030 (3) 0.023 (2) −0.014 (2) −0.018 (2) 0.002 (2) O1A 0.0301 (18) 0.037 (2) 0.0164 (16) −0.0129 (16) −0.0029 (13) −0.0010 (15) C58A 0.040 (3) 0.037 (3) 0.017 (2) −0.017 (3) −0.010 (2) 0.001 (2) N21 0.0231 (9) 0.0254 (10) 0.0191 (9) −0.0073 (7) −0.0012 (7) −0.0057 (8) N22 0.0234 (9) 0.0257 (10) 0.0190 (9) −0.0084 (7) −0.0007 (7) −0.0057 (8) N23 0.0218 (8) 0.0264 (10) 0.0174 (8) −0.0077 (7) 0.0009 (7) −0.0060 (7) N24 0.0232 (9) 0.0257 (10) 0.0188 (9) −0.0064 (7) 0.0001 (7) −0.0052 (8) C1 0.0235 (10) 0.0269 (11) 0.0242 (11) −0.0070 (9) −0.0003 (8) −0.0071 (9) C2 0.0264 (11) 0.0285 (12) 0.0287 (12) −0.0031 (9) −0.0002 (9) −0.0062 (10) C3 0.0268 (11) 0.0302 (12) 0.0254 (11) −0.0038 (10) −0.0036 (9) −0.0031 (10) C4 0.0241 (10) 0.0270 (11) 0.0195 (10) −0.0082 (9) −0.0018 (8) −0.0036 (9) C5 0.0273 (11) 0.0255 (11) 0.0196 (10) −0.0125 (9) 0.0013 (8) −0.0028 (9) C6 0.0271 (10) 0.0264 (11) 0.0169 (10) −0.0117 (9) 0.0022 (8) −0.0049 (9) C7 0.0324 (12) 0.0297 (12) 0.0193 (10) −0.0090 (10) 0.0024 (9) −0.0051 (9) C8 0.0309 (12) 0.0319 (13) 0.0218 (11) −0.0089 (10) 0.0049 (9) −0.0084 (10) C9 0.0250 (10) 0.0275 (11) 0.0211 (10) −0.0097 (9) 0.0023 (8) −0.0070 (9) C10 0.0238 (10) 0.0281 (12) 0.0222 (11) −0.0096 (9) 0.0013 (8) −0.0091 (9) C11 0.0219 (10) 0.0275 (11) 0.0213 (10) −0.0073 (9) 0.0004 (8) −0.0080 (9) C12 0.0244 (10) 0.0282 (12) 0.0257 (11) −0.0056 (9) −0.0005 (9) −0.0069 (10) C13 0.0269 (11) 0.0279 (12) 0.0230 (11) −0.0080 (9) −0.0018 (9) −0.0036 (9) C14 0.0229 (10) 0.0259 (11) 0.0193 (10) −0.0083 (9) −0.0014 (8) −0.0040 (9) C15 0.0243 (10) 0.0292 (12) 0.0191 (10) −0.0103 (9) 0.0006 (8) −0.0036 (9) C16 0.0248 (10) 0.0287 (12) 0.0179 (10) −0.0099 (9) 0.0007 (8) −0.0035 (9) C17 0.0305 (11) 0.0362 (13) 0.0197 (11) −0.0074 (10) 0.0033 (9) −0.0068 (10) C18 0.0333 (12) 0.0366 (13) 0.0202 (11) −0.0041 (10) 0.0029 (9) −0.0085 (10) C19 0.0243 (10) 0.0290 (12) 0.0217 (11) −0.0064 (9) 0.0019 (8) −0.0091 (9) C20 0.0232 (10) 0.0288 (12) 0.0249 (11) −0.0072 (9) 0.0009 (9) −0.0082 (10) C51 0.0384 (13) 0.0414 (15) 0.0207 (11) −0.0202 (12) −0.0057 (10) 0.0014 (11) C52 0.0312 (12) 0.0362 (13) 0.0175 (10) −0.0137 (10) −0.0020 (9) −0.0039 (10) C53 0.0349 (13) 0.0457 (16) 0.0378 (14) −0.0124 (12) 0.0019 (11) −0.0196 (12) C54 0.0331 (13) 0.0645 (19) 0.0391 (15) −0.0219 (13) 0.0060 (11) −0.0218 (14) C55 0.0464 (15) 0.0505 (17) 0.0279 (13) −0.0288 (13) 0.0011 (11) −0.0104 (12) C56 0.0460 (15) 0.0415 (15) 0.0306 (13) −0.0152 (12) −0.0032 (11) −0.0124 (12) C57 0.0314 (12) 0.0405 (14) 0.0249 (12) −0.0099 (11) −0.0016 (9) −0.0099 (11) C101 0.0243 (10) 0.0265 (11) 0.0204 (10) −0.0082 (9) 0.0034 (8) −0.0051 (9) C102 0.0293 (11) 0.0308 (12) 0.0254 (11) −0.0081 (10) −0.0004 (9) −0.0096 (10) C103 0.0390 (13) 0.0303 (13) 0.0266 (12) −0.0060 (11) 0.0036 (10) −0.0112 (10) C104 0.0299 (12) 0.0299 (13) 0.0329 (13) −0.0039 (10) 0.0078 (10) −0.0064 (11) C105 0.0250 (11) 0.0379 (14) 0.0345 (13) −0.0103 (10) 0.0018 (10) −0.0100 (11) C106 0.0274 (11) 0.0334 (13) 0.0288 (12) −0.0112 (10) 0.0028 (9) −0.0115 (10) C201 0.0254 (11) 0.0326 (12) 0.0218 (11) −0.0049 (9) −0.0013 (9) −0.0099 (10) C202 0.0280 (11) 0.0344 (13) 0.0306 (12) −0.0071 (10) −0.0013 (10) −0.0113 (11) C203 0.0340 (13) 0.0359 (14) 0.0337 (13) −0.0036 (11) −0.0062 (10) −0.0144 (11) C204 0.0304 (12) 0.0461 (16) 0.0336 (13) 0.0036 (11) −0.0042 (10) −0.0200 (12) C205 0.0243 (11) 0.0518 (17) 0.0403 (15) −0.0053 (11) 0.0039 (11) −0.0174 (13) C206 0.0276 (12) 0.0398 (14) 0.0383 (14) −0.0093 (11) 0.0025 (10) −0.0144 (12) ------ -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2854 .table-wrap} ------------------------ -------------- --------------------------- -------------- Ni---N21 1.9224 (19) C15---C16 1.371 (3) Ni---N23 1.9308 (19) C15---H15 0.9500 Ni---N22 1.9343 (18) C16---C17 1.432 (3) Ni---N24 1.9368 (18) C17---C18 1.344 (3) O1---C51 1.314 (4) C17---H17 0.9500 O1---C58 1.434 (5) C18---C19 1.446 (3) O1---H51A 0.5664 C18---H18 0.9500 C58---H58A 0.9800 C19---C20 1.384 (3) C58---H58B 0.9800 C20---C201 1.496 (3) C58---H58C 0.9800 C51---C52 1.529 (3) O1A---C51 1.336 (4) C51---H51 1.0000 O1A---C58A 1.440 (6) C51---H51A 1.0000 C58A---H58D 0.9800 C52---C57 1.387 (3) C58A---H58E 0.9800 C52---C53 1.388 (3) C58A---H58F 0.9800 C53---C54 1.394 (4) N21---C1 1.383 (3) C53---H53 0.9500 N21---C4 1.387 (3) C54---C55 1.384 (4) N22---C9 1.380 (3) C54---H54 0.9500 N22---C6 1.390 (3) C55---C56 1.381 (4) N23---C14 1.377 (3) C55---H55 0.9500 N23---C11 1.379 (3) C56---C57 1.384 (4) N24---C16 1.376 (3) C56---H56 0.9500 N24---C19 1.382 (3) C57---H57 0.9500 C1---C20 1.393 (3) C101---C102 1.398 (3) C1---C2 1.432 (3) C101---C106 1.398 (3) C2---C3 1.352 (3) C102---C103 1.387 (3) C2---H2 0.9500 C102---H102 0.9500 C3---C4 1.440 (3) C103---C104 1.389 (4) C3---H3 0.9500 C103---H103 0.9500 C4---C5 1.392 (3) C104---C105 1.383 (3) C5---C6 1.391 (3) C104---H104 0.9500 C5---C51 1.524 (3) C105---C106 1.384 (3) C6---C7 1.443 (3) C105---H105 0.9500 C7---C8 1.350 (3) C106---H106 0.9500 C7---H7 0.9500 C201---C202 1.390 (3) C8---C9 1.436 (3) C201---C206 1.394 (3) C8---H8 0.9500 C202---C203 1.391 (3) C9---C10 1.392 (3) C202---H202 0.9500 C10---C11 1.385 (3) C203---C204 1.381 (4) C10---C101 1.490 (3) C203---H203 0.9500 C11---C12 1.441 (3) C204---C205 1.386 (4) C12---C13 1.350 (3) C204---H204 0.9500 C12---H12 0.9500 C205---C206 1.385 (3) C13---C14 1.428 (3) C205---H205 0.9500 C13---H13 0.9500 C206---H206 0.9500 C14---C15 1.375 (3) N21---Ni---N23 179.60 (8) C16---C17---H17 126.4 N21---Ni---N22 89.80 (8) C17---C18---C19 106.9 (2) N23---Ni---N22 89.88 (8) C17---C18---H18 126.6 N21---Ni---N24 90.21 (8) C19---C18---H18 126.6 N23---Ni---N24 90.10 (8) N24---C19---C20 124.8 (2) N22---Ni---N24 179.66 (8) N24---C19---C18 110.0 (2) C51---O1---C58 113.3 (3) C20---C19---C18 125.0 (2) C51---O1---H51A 45.3 C19---C20---C1 121.4 (2) C58---O1---H51A 136.1 C19---C20---C201 119.7 (2) C51---O1A---C58A 114.3 (4) C1---C20---C201 118.6 (2) O1A---C58A---H58D 109.5 O1---C51---O1A 80.5 (2) O1A---C58A---H58E 109.5 O1---C51---C5 116.8 (2) H58D---C58A---H58E 109.5 O1A---C51---C5 117.0 (2) O1A---C58A---H58F 109.5 O1---C51---C52 115.3 (2) H58D---C58A---H58F 109.5 O1A---C51---C52 117.1 (2) H58E---C58A---H58F 109.5 C5---C51---C52 108.33 (19) C1---N21---C4 105.40 (18) O1---C51---H51 105.1 C1---N21---Ni 126.87 (15) C5---C51---H51 105.1 C4---N21---Ni 127.52 (15) C52---C51---H51 105.1 C9---N22---C6 105.75 (17) O1A---C51---H51A 104.2 C9---N22---Ni 127.32 (15) C5---C51---H51A 104.2 C6---N22---Ni 126.94 (15) C52---C51---H51A 104.2 C14---N23---C11 104.96 (18) H51---C51---H51A 128.8 C14---N23---Ni 127.10 (14) C57---C52---C53 118.9 (2) C11---N23---Ni 127.79 (15) C57---C52---C51 119.5 (2) C16---N24---C19 105.15 (18) C53---C52---C51 121.5 (2) C16---N24---Ni 126.83 (15) C52---C53---C54 120.3 (3) C19---N24---Ni 128.03 (15) C52---C53---H53 119.9 N21---C1---C20 126.4 (2) C54---C53---H53 119.9 N21---C1---C2 110.34 (19) C55---C54---C53 120.2 (3) C20---C1---C2 122.6 (2) C55---C54---H54 119.9 C3---C2---C1 107.1 (2) C53---C54---H54 119.9 C3---C2---H2 126.4 C56---C55---C54 119.6 (3) C1---C2---H2 126.4 C56---C55---H55 120.2 C2---C3---C4 107.3 (2) C54---C55---H55 120.2 C2---C3---H3 126.3 C55---C56---C57 120.2 (3) C4---C3---H3 126.3 C55---C56---H56 119.9 N21---C4---C5 124.7 (2) C57---C56---H56 119.9 N21---C4---C3 109.72 (19) C56---C57---C52 120.8 (2) C5---C4---C3 125.4 (2) C56---C57---H57 119.6 C6---C5---C4 121.2 (2) C52---C57---H57 119.6 C6---C5---C51 119.7 (2) C102---C101---C106 118.5 (2) C4---C5---C51 119.0 (2) C102---C101---C10 121.4 (2) N22---C6---C5 125.21 (19) C106---C101---C10 120.0 (2) N22---C6---C7 109.45 (19) C103---C102---C101 120.5 (2) C5---C6---C7 125.1 (2) C103---C102---H102 119.7 C8---C7---C6 107.3 (2) C101---C102---H102 119.7 C8---C7---H7 126.4 C102---C103---C104 120.3 (2) C6---C7---H7 126.4 C102---C103---H103 119.9 C7---C8---C9 107.3 (2) C104---C103---H103 119.9 C7---C8---H8 126.3 C105---C104---C103 119.7 (2) C9---C8---H8 126.3 C105---C104---H104 120.2 N22---C9---C10 125.3 (2) C103---C104---H104 120.2 N22---C9---C8 110.0 (2) C104---C105---C106 120.3 (2) C10---C9---C8 124.1 (2) C104---C105---H105 119.8 C11---C10---C9 121.4 (2) C106---C105---H105 119.8 C11---C10---C101 117.1 (2) C105---C106---C101 120.7 (2) C9---C10---C101 121.2 (2) C105---C106---H106 119.6 N23---C11---C10 125.6 (2) C101---C106---H106 119.6 N23---C11---C12 110.31 (19) C202---C201---C206 118.9 (2) C10---C11---C12 123.9 (2) C202---C201---C20 120.3 (2) C13---C12---C11 106.7 (2) C206---C201---C20 120.8 (2) C13---C12---H12 126.6 C203---C202---C201 120.4 (2) C11---C12---H12 126.6 C203---C202---H202 119.8 C12---C13---C14 107.1 (2) C201---C202---H202 119.8 C12---C13---H13 126.4 C204---C203---C202 120.2 (2) C14---C13---H13 126.4 C204---C203---H203 119.9 C15---C14---N23 124.6 (2) C202---C203---H203 119.9 C15---C14---C13 124.2 (2) C203---C204---C205 119.8 (2) N23---C14---C13 110.83 (19) C203---C204---H204 120.1 C16---C15---C14 123.2 (2) C205---C204---H204 120.1 C16---C15---H15 118.4 C206---C205---C204 120.2 (2) C14---C15---H15 118.4 C206---C205---H205 119.9 C15---C16---N24 125.3 (2) C204---C205---H205 119.9 C15---C16---C17 123.8 (2) C205---C206---C201 120.5 (2) N24---C16---C17 110.6 (2) C205---C206---H206 119.8 C18---C17---C16 107.3 (2) C201---C206---H206 119.8 C18---C17---H17 126.4 N22---Ni---N21---C1 −166.05 (18) C14---C15---C16---N24 6.8 (4) N24---Ni---N21---C1 13.61 (18) C14---C15---C16---C17 −166.5 (2) N22---Ni---N21---C4 20.04 (18) C19---N24---C16---C15 −173.9 (2) N24---Ni---N21---C4 −160.30 (18) Ni---N24---C16---C15 6.0 (3) N21---Ni---N22---C9 163.03 (18) C19---N24---C16---C17 0.1 (2) N23---Ni---N22---C9 −16.72 (18) Ni---N24---C16---C17 −179.93 (15) N21---Ni---N22---C6 −17.24 (18) C15---C16---C17---C18 172.1 (2) N23---Ni---N22---C6 163.01 (18) N24---C16---C17---C18 −2.0 (3) N22---Ni---N23---C14 −163.01 (18) C16---C17---C18---C19 2.9 (3) N24---Ni---N23---C14 17.33 (18) C16---N24---C19---C20 −172.9 (2) N22---Ni---N23---C11 11.83 (18) Ni---N24---C19---C20 7.2 (3) N24---Ni---N23---C11 −167.83 (18) C16---N24---C19---C18 1.7 (2) N21---Ni---N24---C16 165.54 (19) Ni---N24---C19---C18 −178.24 (16) N23---Ni---N24---C16 −14.71 (19) C17---C18---C19---N24 −3.0 (3) N21---Ni---N24---C19 −14.53 (19) C17---C18---C19---C20 171.6 (2) N23---Ni---N24---C19 165.21 (19) N24---C19---C20---C1 6.7 (4) C4---N21---C1---C20 169.3 (2) C18---C19---C20---C1 −167.0 (2) Ni---N21---C1---C20 −5.7 (3) N24---C19---C20---C201 −179.9 (2) C4---N21---C1---C2 −1.7 (2) C18---C19---C20---C201 6.3 (4) Ni---N21---C1---C2 −176.72 (15) N21---C1---C20---C19 −7.6 (4) N21---C1---C2---C3 2.7 (3) C2---C1---C20---C19 162.5 (2) C20---C1---C2---C3 −168.8 (2) N21---C1---C20---C201 179.0 (2) C1---C2---C3---C4 −2.4 (3) C2---C1---C20---C201 −11.0 (3) C1---N21---C4---C5 175.2 (2) C58---O1---C51---O1A 49.5 (4) Ni---N21---C4---C5 −9.9 (3) C58---O1---C51---C5 165.0 (3) C1---N21---C4---C3 0.2 (2) C58---O1---C51---C52 −66.1 (4) Ni---N21---C4---C3 175.18 (15) C58A---O1A---C51---O1 −48.2 (4) C2---C3---C4---N21 1.4 (3) C58A---O1A---C51---C5 −163.5 (3) C2---C3---C4---C5 −173.5 (2) C58A---O1A---C51---C52 65.4 (4) N21---C4---C5---C6 −11.2 (3) C6---C5---C51---O1 −135.6 (3) C3---C4---C5---C6 163.0 (2) C4---C5---C51---O1 48.1 (3) N21---C4---C5---C51 165.1 (2) C6---C5---C51---O1A −42.8 (4) C3---C4---C5---C51 −20.7 (3) C4---C5---C51---O1A 140.9 (3) C9---N22---C6---C5 −176.1 (2) C6---C5---C51---C52 92.2 (3) Ni---N22---C6---C5 4.1 (3) C4---C5---C51---C52 −84.1 (3) C9---N22---C6---C7 −1.0 (2) O1---C51---C52---C57 145.6 (3) Ni---N22---C6---C7 179.22 (15) O1A---C51---C52---C57 53.5 (4) C4---C5---C6---N22 14.0 (3) C5---C51---C52---C57 −81.5 (3) C51---C5---C6---N22 −162.2 (2) O1---C51---C52---C53 −38.2 (4) C4---C5---C6---C7 −160.3 (2) O1A---C51---C52---C53 −130.4 (3) C51---C5---C6---C7 23.4 (3) C5---C51---C52---C53 94.7 (3) N22---C6---C7---C8 −1.6 (3) C57---C52---C53---C54 0.6 (4) C5---C6---C7---C8 173.5 (2) C51---C52---C53---C54 −175.6 (2) C6---C7---C8---C9 3.4 (3) C52---C53---C54---C55 0.5 (4) C6---N22---C9---C10 −168.4 (2) C53---C54---C55---C56 −1.4 (4) Ni---N22---C9---C10 11.4 (3) C54---C55---C56---C57 1.1 (4) C6---N22---C9---C8 3.1 (2) C55---C56---C57---C52 0.0 (4) Ni---N22---C9---C8 −177.11 (15) C53---C52---C57---C56 −0.9 (4) C7---C8---C9---N22 −4.2 (3) C51---C52---C57---C56 175.4 (2) C7---C8---C9---C10 167.4 (2) C11---C10---C101---C102 109.2 (3) N22---C9---C10---C11 5.4 (3) C9---C10---C101---C102 −64.1 (3) C8---C9---C10---C11 −164.9 (2) C11---C10---C101---C106 −66.3 (3) N22---C9---C10---C101 178.4 (2) C9---C10---C101---C106 120.5 (2) C8---C9---C10---C101 8.0 (3) C106---C101---C102---C103 −0.8 (4) C14---N23---C11---C10 174.9 (2) C10---C101---C102---C103 −176.3 (2) Ni---N23---C11---C10 −0.8 (3) C101---C102---C103---C104 0.4 (4) C14---N23---C11---C12 0.4 (2) C102---C103---C104---C105 0.5 (4) Ni---N23---C11---C12 −175.32 (15) C103---C104---C105---C106 −1.0 (4) C9---C10---C11---N23 −10.9 (3) C104---C105---C106---C101 0.6 (4) C101---C10---C11---N23 175.9 (2) C102---C101---C106---C105 0.3 (4) C9---C10---C11---C12 162.9 (2) C10---C101---C106---C105 175.9 (2) C101---C10---C11---C12 −10.3 (3) C19---C20---C201---C202 116.7 (3) N23---C11---C12---C13 0.9 (3) C1---C20---C201---C202 −69.8 (3) C10---C11---C12---C13 −173.7 (2) C19---C20---C201---C206 −63.7 (3) C11---C12---C13---C14 −1.8 (3) C1---C20---C201---C206 109.9 (3) C11---N23---C14---C15 172.7 (2) C206---C201---C202---C203 1.5 (4) Ni---N23---C14---C15 −11.5 (3) C20---C201---C202---C203 −178.8 (2) C11---N23---C14---C13 −1.5 (2) C201---C202---C203---C204 0.4 (4) Ni---N23---C14---C13 174.25 (14) C202---C203---C204---C205 −1.7 (4) C12---C13---C14---C15 −172.1 (2) C203---C204---C205---C206 1.1 (4) C12---C13---C14---N23 2.1 (3) C204---C205---C206---C201 0.9 (4) N23---C14---C15---C16 −4.0 (4) C202---C201---C206---C205 −2.2 (4) C13---C14---C15---C16 169.5 (2) C20---C201---C206---C205 178.2 (2) ------------------------ -------------- --------------------------- -------------- :::
PubMed Central
2024-06-05T04:04:16.808607
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051756/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):m265", "authors": [ { "first": "Mathias O.", "last": "Senge" }, { "first": "Katja", "last": "Dahms" } ] }
PMC3051757
Related literature {#sec1} ================== For details of nitro­gen-containing heterocyclic compounds, see: Sankaran *et al.* (2010[@bb19]) and for their pharmacological activity, see: Shi *et al.* (2008[@bb21]); Lunniss *et al.* (2009[@bb14]); He *et al.* (2005[@bb9]); Eswaran *et al.* (2010[@bb5]). For reactions of isoxazoles, see: Taldone *et al.* (2008[@bb23]); Narlawar *et al.* (2008[@bb15]); Velaparthi *et al.* (2008[@bb24]); Rizzi *et al.* (2008[@bb18]); Lautens & Roy (2000[@bb13]); Broggini *et al.* (2005[@bb3]); Kotera *et al.* (1970[@bb11]). For applications of compounds possessing the quinoline system as drugs and pharmaceuticals, see: Kalita *et al.* (2006[@bb10]). For syntheses of quinolines, see: Kouznetsov *et al.* (2005[@bb12]). For the *trans* diastereoisomer of the title compound, see: Gutierrez *et al.* (2011[@bb8]). For graph-set motifs see: Bernstein *et al.* (1995[@bb2]) and for puckering parameters, see: Cremer & Pople (1975[@bb4]) Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~28~H~24~N~4~O~4~*M* *~r~* = 480.51Hexagonal,*a* = 20.753 (3) Å*c* = 10.446 (2) Å*V* = 3896.2 (11) Å^3^*Z* = 6Mo *K*α radiationμ = 0.08 mm^−1^*T* = 293 K0.20 × 0.20 × 0.18 mm ### Data collection {#sec2.1.2} Nonius KappaCCD area-detector diffractometer5951 measured reflections3144 independent reflections2646 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.026 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.075*wR*(*F* ^2^) = 0.162*S* = 1.223144 reflections329 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.32 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e509} Data collection: *COLLECT* (Nonius, 2000[@bb16]); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997[@bb17]); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb20]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb6]) and *PLATON* (Spek, 2009[@bb22]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810054048/sj5084sup1.cif](http://dx.doi.org/10.1107/S1600536810054048/sj5084sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054048/sj5084Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054048/sj5084Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5084&file=sj5084sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5084sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5084&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5084](http://scripts.iucr.org/cgi-bin/sendsup?sj5084)). LAS thanks FONDECYT (project No. 1100481) and PBCT ADI-38. We also thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the CSD system. Comment ======= Nitrogen containing heterocycles are indispensable structural units for medicinal chemists (Sankaran *et al.*, 2010). Compounds possessing the quinoline system have wide applications as drugs and pharmaceuticals and also occur as the structural framework in some natural products (Kalita *et al.*, 2006). They also have several pharmacological activities as anti-breast cancer (Shi *et al.*, 2008), selective PDE4 inhibition (Lunniss *et al.*, 2009), immuno modulatory (He *et al.*, 2005), and antimycobacterial agents (Eswaran *et al.*, 2010), among others. Quinoline and its derivatives represent a major class of heterocycles, and a number of preparations have been known since the late 1800\'s. The quinoline skeleton is often used for the design of many synthetic compounds with diverse pharmacological properties. Several syntheses of quinolines are known, but due to their importance, the development of new synthetic approaches remains an active research area (Kouznetsov *et al.*, 2005). The isoxazoles form a relevant group of biologically active compounds with a wide range of applications, including Hsp90 super chaperone complex inhibitors (Taldone *et al.*, 2008), tau aggregation inhibitors for treatment of Alzheimer\'s disease (Narlawar *et al.*, 2008), *mycobacterium tuberculosis* pantothenate synthetase inhibitors (Velaparthi *et al.*, 2008) and neuronal nicotinic acetylcholine receptor agonists (Rizzi *et al.*, 2008). A considerable number of methods to synthesize substituted isoxazoles have been published including approaches based on intramolecular cycloadditions, condensations, and intramolecular cyclizations of amino acids. These methods sometime suffer in their versatility, convenience and yield (Lautens & Roy, 2000). The isoxazole ring can be synthetized by 1, 3-dipolar cyclo-addition reactions between a nitrile oxide and an alkyne, that reaction may be catalyzed by copper(II). Cycloaddition reactions are among the most useful reactions in synthetic and mechanistic organic chemistry (Broggini *et al.*, 2005). Isoxazoles have a rich chemistry because of their easy reductive cleavage and susceptibility to ring transformations (Kotera *et al.*, 1970). Depending on the substitution patterns, isoxazoles can be used as reagents for the imino-Diels-Alder condensation between anilines, aldehydes and electron-rich alkenes to generate tetrahydroquinolines with different selected substitution patterns. Due to these facts, the combination of the two heterocyclic rings into a new chemical entity is of interest, as no examples are known in the chemical literature to date. Many molecules widely used today consist of fusions of rings; an example is the case of penicillins, where incorporation of an isoxazole ring led to the formation of stable derivatives which catalyzed the degradation of gastric acid levels (flucloxacillin and cloxacillin). We report here the crystal structure of a novel synthetic derivative *cis* quinoline-isoxazole prepared by imino Diels-Alder cyclo-addition, Scheme 1. The structure of the title compound, (I) C~28~H~24~N~4~O~4~, has hexagonal (*P*6~1~) symmetry and is the *trans* diastereoisomer of the compound 1-\[2-(4-nitrophenyl)-6-(5-phenyl-3-isoxazolyl)-1,2,3,4-tetrahydro-4-\\ quinolinyl\]-2-pyrrolidinone-dihydrate, (II) (Gutierrez *et al.*, 2011), so the pyrrolidinone fragment is *trans* oriented respect to 4-nitrophenyl fragment \[C7---C8---C9---N4 torsion angle 85.59 (4)°; -175.(2) (4)° for (II) (mean)\]. The most obvious differences between both diastereoisomers are the torsion angles between the isoxazole ring and the benzene and phenyl rings \[47.0 (2); 56.4 (2) and 33.3 (2); 11.0 (2)° for (II) 75.4 (2) and 5.8 (3) for (I)\]. In both diastereoisomers the six-membered heterocyclic ring has a half-boat conformation (Q~T~= 0.477 (5) Å, θ = 47.7 (5)° φ= 76.3 (7)°), Cremer & Pople, 1975. In the crystal, molecules are linked by N--- H··· O interactions into chains with graph-set notation C(8) along \[001\], Fig. 2, Bernstein *et al.*, 1995. Experimental {#experimental} ============ A mixture of 3-(3-aminophenyl)-5-phenylisoxazole (2.8 mmol) 3 and 4-nitrobenzaldehyde (3.4 mmol) 1 in anhydrous CH~3~CN (15 mL) was stirred at room temperature for 30 min. BiCl~3~ (2.0 mmol) was added. Over a period of 20 min, a solution the *N*-vinyl.2-pyrrolidone (NVP) (5.5 mmol) 4 in CH~3~CN (10 ml) was added dropwise. The resulting mixture was stirred for 10--14 h. After completion of the reaction as indicated by TLC, the reaction mixture was diluted with water (30 mL) and extracted with ethyl acetate (3×15 mL). The organic layer was separated and dried (Na~2~SO~4~),concentrated in vacuum and the resulting product was purified by column chromatography (silica gel) using PE and EtOAc mixtures. Obtained for derivatives *trans* and *cis* Quinoline-Isoxazole 5 and (I), see Figure 3. Solid crystalline mp 130 - 132 °C; RMN-^1^H(CDCl~3~), 400 MHz, δ): 8.24 (2*H*, d, *J* = 8.0); 7.81 (2*H*, d, *J*= 8.0); 7.60 (1*H*, d, *J* = 8.0); 7.27(2*H*, dd, *J* = 8.0 and 4.0); 7.17 (1*H*,t, *J* = 8.0); 6.97 (1*H*, d, *J* = 8.0); 6.89 (2*H*, d, *J* = 8.0); 6.78 (1*H*, d, *J* = 8.0); 6.62 (1*H*, s); 5.35 (1*H*, s); 4.59 (1*H*, dd, *J* = 12.0 and 1.0); 4.41 (1*H*, br. s);2.39 (2*H*, m); 1.97 (2*H*, m); 1.62 (2*H*, s). RMN-^13^H (CDCl~3~),400 MHz, δ): 174.68, 169.95, 162.48, 150.61, 147.65, 145.15, 130.87, 129.31, 128.98, 127.47,127.27, 125.95, 125.04, 124.61, 119.61, 116.32, 115.27, 99.89, 52.54, 47.51,46.22, 37.37, 31.36, 18.56. MS *m/z* (EI): 480. Anal. Calcd. for C~28~H~24~N~4~O~4~: C, 69.99; H,5.03;N, 11.66. Found: C, 69.89; H, 5.01; N, 11.77. Refinement {#refinement} ========== The SQUEEZE function of *PLATON* (Spek, 2009) was used to eliminate the contribution of electron density in the solvent region from the intensity data, and a solvent-free model was employed for the final refinement. The volume which is accessible for potential solvent molecules was calculated to be 452.0 Å^3^ and the total electron count per cell was calculated to be 15. Note that the calculated density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option in *PLATON* (Spek, 2009). Therefore, the solvent-free model and intensity data were used for the final results reported here. The absolute configuration of the two stereogenic centres could not be established by the Flack parameter (Flack, 1983) and Friedel opposites were merged. The position of the N2 H atom was refined freely with isotropic displacement parameters. All other H atoms were placed in geometrically idealized positions (C---H = 0.93--0.97 Å) and constrained to ride on their parent atoms with *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are plotted at the 30% probability level. ::: ![](e-67-0o308-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of (I), showing the mono-dimensional framework constructed via N---H···O hydrogen bonds. Hydrogen bonds are depicted as dashed lines \[symmetry-code:(i) y, -x + y, z - 1/6.\] ::: ![](e-67-0o308-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The preparation of the title compound. ::: ![](e-67-0o308-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e380 .table-wrap} ------------------------ --------------------------------------- C~28~H~24~N~4~O~4~ *D*~x~ = 1.229 Mg m^−3^ *M~r~* = 480.51 Mo *K*α radiation, λ = 0.71073 Å Hexagonal, *P*6~1~ Cell parameters from 2728 reflections Hall symbol: P 61 θ = 2.8--27.5° *a* = 20.753 (3) Å µ = 0.08 mm^−1^ *c* = 10.446 (2) Å *T* = 293 K *V* = 3896.2 (11) Å^3^ Prismatic, orange *Z* = 6 0.20 × 0.20 × 0.18 mm *F*(000) = 1512 ------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e498 .table-wrap} ---------------------------------------------- -------------------------------------- Nonius KappaCCD area-detector diffractometer 2646 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.026 graphite θ~max~ = 27.5°, θ~min~ = 2.8° φ scans, and ω scans with κ offsets *h* = −22→0 5951 measured reflections *k* = 0→26 3144 independent reflections *l* = −13→13 ---------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e596 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.075 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.162 H atoms treated by a mixture of independent and constrained refinement *S* = 1.22 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0755*P*)^2^ + 0.8624*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3144 reflections (Δ/σ)~max~ = 0.010 329 parameters Δρ~max~ = 0.32 e Å^−3^ 1 restraint Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e753 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> 2σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e852 .table-wrap} ------ -------------- -------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.2019 (3) −0.0999 (3) 0.6005 (5) 0.1165 (18) O2 0.1082 (3) −0.1080 (3) 0.5004 (7) 0.147 (3) O3 0.54683 (17) 0.55998 (14) 0.2252 (3) 0.0485 (7) O4 0.36115 (17) 0.42435 (19) 0.2789 (3) 0.0607 (8) N1 0.1743 (3) −0.0784 (3) 0.5205 (5) 0.0880 (15) N2 0.43438 (18) 0.19821 (17) 0.2011 (4) 0.0456 (8) N3 0.5569 (2) 0.49764 (18) 0.2257 (4) 0.0492 (8) N4 0.36641 (16) 0.33963 (17) 0.1463 (3) 0.0388 (7) C1 0.2234 (3) −0.0115 (2) 0.4445 (5) 0.0631 (12) C2 0.2982 (3) 0.0205 (3) 0.4559 (5) 0.0637 (12) H2 0.3186 −0.0002 0.5098 0.076\* C3 0.3433 (2) 0.0833 (2) 0.3881 (5) 0.0597 (12) H3 0.3946 0.1050 0.3963 0.072\* C4 0.3145 (2) 0.1154 (2) 0.3075 (4) 0.0489 (10) C5 0.2376 (3) 0.0806 (3) 0.2964 (7) 0.0855 (19) H5 0.2168 0.1006 0.2416 0.103\* C6 0.1916 (3) 0.0171 (3) 0.3647 (7) 0.091 (2) H6 0.1401 −0.0057 0.3568 0.109\* C7 0.3612 (2) 0.1867 (2) 0.2334 (5) 0.0471 (9) H7 0.3351 0.1839 0.1535 0.057\* C8 0.3719 (2) 0.25488 (19) 0.3085 (4) 0.0404 (8) H8A 0.3237 0.2483 0.3310 0.048\* H8B 0.3985 0.2591 0.3873 0.048\* C9 0.41529 (18) 0.32633 (18) 0.2308 (4) 0.0337 (7) H9 0.4378 0.3677 0.2918 0.040\* C10 0.47821 (18) 0.32842 (19) 0.1526 (4) 0.0335 (7) C11 0.4825 (2) 0.26296 (19) 0.1383 (4) 0.0379 (8) C12 0.5384 (2) 0.2653 (2) 0.0586 (4) 0.0451 (10) H12 0.5428 0.2231 0.0502 0.054\* C13 0.5865 (2) 0.3290 (2) −0.0069 (4) 0.0499 (10) H13 0.6217 0.3289 −0.0618 0.060\* C14 0.5826 (2) 0.3935 (2) 0.0088 (4) 0.0439 (9) H14 0.6151 0.4365 −0.0357 0.053\* C15 0.53053 (19) 0.39350 (19) 0.0906 (4) 0.0345 (8) C16 0.53036 (18) 0.46432 (19) 0.1164 (4) 0.0355 (8) C17 0.5044 (2) 0.5032 (2) 0.0404 (4) 0.0393 (8) H17 0.4844 0.4914 −0.0417 0.047\* C18 0.51507 (19) 0.56076 (19) 0.1134 (4) 0.0374 (8) C19 0.4969 (2) 0.6206 (2) 0.0963 (4) 0.0401 (8) C20 0.4578 (2) 0.6207 (2) −0.0102 (4) 0.0456 (9) H20 0.4425 0.5828 −0.0704 0.055\* C21 0.4409 (2) 0.6770 (3) −0.0284 (5) 0.0552 (11) H21 0.4141 0.6767 −0.0999 0.066\* C22 0.4643 (3) 0.7329 (3) 0.0603 (6) 0.0655 (14) H22 0.4544 0.7714 0.0476 0.079\* C23 0.5015 (4) 0.7325 (3) 0.1657 (6) 0.0790 (17) H23 0.5157 0.7701 0.2262 0.095\* C24 0.5191 (3) 0.6767 (3) 0.1855 (5) 0.0671 (14) H24 0.5454 0.6773 0.2579 0.080\* C25 0.3392 (3) 0.3060 (3) 0.0210 (5) 0.0674 (14) H25A 0.3053 0.2529 0.0290 0.081\* H25B 0.3802 0.3141 −0.0341 0.081\* C26 0.2998 (3) 0.3441 (4) −0.0316 (6) 0.0799 (16) H26A 0.3271 0.3753 −0.1038 0.096\* H26B 0.2503 0.3076 −0.0602 0.096\* C27 0.2955 (3) 0.3900 (3) 0.0734 (5) 0.0704 (14) H27A 0.2446 0.3694 0.1028 0.085\* H27B 0.3135 0.4407 0.0446 0.085\* C28 0.3444 (2) 0.3884 (2) 0.1797 (4) 0.0474 (10) H2N 0.4315 (16) 0.1573 (18) 0.174 (3) 0.017 (8)\* ------ -------------- -------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1649 .table-wrap} ----- ------------- ------------- ------------- ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.113 (4) 0.106 (3) 0.110 (4) 0.039 (3) 0.008 (3) 0.058 (3) O2 0.088 (3) 0.109 (4) 0.173 (6) −0.005 (3) −0.006 (4) 0.069 (4) O3 0.0723 (18) 0.0384 (13) 0.0401 (15) 0.0317 (13) −0.0135 (14) −0.0066 (12) O4 0.0657 (18) 0.086 (2) 0.0577 (19) 0.0587 (18) −0.0052 (16) −0.0198 (18) N1 0.079 (3) 0.063 (3) 0.090 (4) 0.011 (2) 0.004 (3) 0.018 (3) N2 0.0506 (18) 0.0267 (15) 0.062 (2) 0.0212 (14) 0.0040 (17) −0.0034 (15) N3 0.067 (2) 0.0429 (17) 0.0464 (19) 0.0341 (16) −0.0109 (18) −0.0027 (16) N4 0.0363 (15) 0.0475 (16) 0.0394 (17) 0.0262 (14) −0.0005 (14) −0.0013 (14) C1 0.066 (3) 0.040 (2) 0.064 (3) 0.012 (2) 0.001 (2) 0.007 (2) C2 0.070 (3) 0.061 (3) 0.063 (3) 0.035 (2) 0.004 (3) 0.016 (2) C3 0.052 (2) 0.057 (2) 0.068 (3) 0.026 (2) −0.002 (2) 0.014 (2) C4 0.046 (2) 0.0338 (18) 0.058 (3) 0.0127 (16) −0.001 (2) 0.0012 (19) C5 0.059 (3) 0.070 (3) 0.111 (5) 0.020 (2) −0.008 (3) 0.038 (4) C6 0.056 (3) 0.068 (3) 0.117 (5) 0.008 (3) −0.013 (3) 0.029 (4) C7 0.046 (2) 0.0363 (19) 0.055 (2) 0.0175 (16) −0.0023 (19) 0.0047 (18) C8 0.0396 (18) 0.0416 (19) 0.043 (2) 0.0225 (16) 0.0057 (17) 0.0045 (17) C9 0.0337 (16) 0.0332 (17) 0.0379 (18) 0.0194 (14) 0.0005 (15) −0.0010 (15) C10 0.0337 (17) 0.0359 (17) 0.0354 (18) 0.0207 (15) −0.0041 (15) −0.0050 (15) C11 0.0400 (18) 0.0380 (18) 0.044 (2) 0.0260 (16) −0.0081 (17) −0.0073 (17) C12 0.042 (2) 0.044 (2) 0.059 (3) 0.0297 (18) −0.007 (2) −0.016 (2) C13 0.0383 (19) 0.059 (2) 0.056 (3) 0.0276 (19) 0.008 (2) −0.012 (2) C14 0.0369 (18) 0.043 (2) 0.050 (2) 0.0181 (16) 0.0077 (18) −0.0001 (19) C15 0.0344 (17) 0.0341 (17) 0.0376 (18) 0.0192 (14) −0.0063 (15) −0.0017 (15) C16 0.0317 (17) 0.0348 (17) 0.0365 (19) 0.0139 (14) 0.0064 (15) 0.0058 (15) C17 0.0493 (19) 0.0404 (18) 0.0315 (19) 0.0249 (16) 0.0008 (16) 0.0012 (16) C18 0.0385 (18) 0.0345 (18) 0.0376 (19) 0.0170 (15) 0.0034 (16) 0.0050 (15) C19 0.047 (2) 0.0351 (18) 0.042 (2) 0.0236 (16) 0.0096 (17) 0.0055 (16) C20 0.053 (2) 0.047 (2) 0.041 (2) 0.0287 (19) 0.0041 (19) 0.0014 (18) C21 0.065 (3) 0.063 (3) 0.053 (2) 0.044 (2) 0.002 (2) 0.010 (2) C22 0.093 (4) 0.055 (3) 0.070 (3) 0.053 (3) 0.012 (3) 0.010 (3) C23 0.120 (5) 0.063 (3) 0.076 (4) 0.061 (3) −0.020 (4) −0.025 (3) C24 0.101 (4) 0.057 (3) 0.059 (3) 0.051 (3) −0.025 (3) −0.017 (2) C25 0.078 (3) 0.086 (3) 0.058 (3) 0.055 (3) −0.024 (3) −0.020 (3) C26 0.083 (4) 0.119 (5) 0.059 (3) 0.067 (4) −0.022 (3) −0.011 (3) C27 0.075 (3) 0.096 (4) 0.069 (3) 0.064 (3) −0.008 (3) 0.000 (3) C28 0.042 (2) 0.062 (2) 0.051 (2) 0.035 (2) 0.0038 (19) 0.005 (2) ----- ------------- ------------- ------------- ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2309 .table-wrap} ----------------------- ------------ ----------------------- ------------ O1---N1 1.217 (6) C11---C12 1.409 (6) O2---N1 1.209 (7) C12---C13 1.375 (6) O3---C18 1.344 (5) C12---H12 0.9300 O3---N3 1.410 (4) C13---C14 1.390 (6) O4---C28 1.221 (5) C13---H13 0.9300 N1---C1 1.477 (6) C14---C15 1.378 (5) N2---C11 1.375 (5) C14---H14 0.9300 N2---C7 1.454 (5) C15---C16 1.496 (5) N2---H2N 0.87 (3) C16---C17 1.416 (5) N3---C16 1.306 (5) C17---C18 1.339 (5) N4---C28 1.349 (5) C17---H17 0.9300 N4---C25 1.457 (6) C18---C19 1.477 (5) N4---C9 1.472 (4) C19---C20 1.378 (6) C1---C2 1.353 (7) C19---C24 1.379 (6) C1---C6 1.370 (7) C20---C21 1.390 (6) C2---C3 1.362 (6) C20---H20 0.9300 C2---H2 0.9300 C21---C22 1.370 (7) C3---C4 1.381 (6) C21---H21 0.9300 C3---H3 0.9300 C22---C23 1.346 (8) C4---C5 1.389 (6) C22---H22 0.9300 C4---C7 1.514 (6) C23---C24 1.394 (7) C5---C6 1.378 (8) C23---H23 0.9300 C5---H5 0.9300 C24---H24 0.9300 C6---H6 0.9300 C25---C26 1.497 (7) C7---C8 1.534 (5) C25---H25A 0.9700 C7---H7 0.9800 C25---H25B 0.9700 C8---C9 1.527 (5) C26---C27 1.486 (8) C8---H8A 0.9700 C26---H26A 0.9700 C8---H8B 0.9700 C26---H26B 0.9700 C9---C10 1.523 (5) C27---C28 1.515 (7) C9---H9 0.9800 C27---H27A 0.9700 C10---C15 1.398 (5) C27---H27B 0.9700 C10---C11 1.413 (5) C18---O3---N3 108.2 (3) C12---C13---H13 119.9 O2---N1---O1 123.8 (5) C14---C13---H13 119.9 O2---N1---C1 117.2 (5) C15---C14---C13 119.8 (4) O1---N1---C1 119.0 (5) C15---C14---H14 120.1 C11---N2---C7 117.3 (3) C13---C14---H14 120.1 C11---N2---H2N 117 (2) C14---C15---C10 121.1 (3) C7---N2---H2N 111.2 (19) C14---C15---C16 119.9 (3) C16---N3---O3 105.4 (3) C10---C15---C16 118.9 (3) C28---N4---C25 113.3 (3) N3---C16---C17 111.6 (3) C28---N4---C9 120.7 (3) N3---C16---C15 118.0 (3) C25---N4---C9 126.0 (3) C17---C16---C15 130.4 (3) C2---C1---C6 121.6 (4) C18---C17---C16 104.4 (3) C2---C1---N1 119.8 (5) C18---C17---H17 127.8 C6---C1---N1 118.6 (5) C16---C17---H17 127.8 C1---C2---C3 119.6 (5) C17---C18---O3 110.3 (3) C1---C2---H2 120.2 C17---C18---C19 133.0 (4) C3---C2---H2 120.2 O3---C18---C19 116.6 (3) C2---C3---C4 121.5 (4) C20---C19---C24 119.5 (4) C2---C3---H3 119.3 C20---C19---C18 119.9 (4) C4---C3---H3 119.3 C24---C19---C18 120.7 (4) C3---C4---C5 117.5 (4) C19---C20---C21 120.5 (4) C3---C4---C7 124.3 (4) C19---C20---H20 119.7 C5---C4---C7 118.2 (4) C21---C20---H20 119.7 C6---C5---C4 121.4 (5) C22---C21---C20 119.2 (4) C6---C5---H5 119.3 C22---C21---H21 120.4 C4---C5---H5 119.3 C20---C21---H21 120.4 C1---C6---C5 118.4 (5) C23---C22---C21 120.6 (4) C1---C6---H6 120.8 C23---C22---H22 119.7 C5---C6---H6 120.8 C21---C22---H22 119.7 N2---C7---C4 112.6 (3) C22---C23---C24 121.0 (5) N2---C7---C8 108.0 (3) C22---C23---H23 119.5 C4---C7---C8 111.5 (4) C24---C23---H23 119.5 N2---C7---H7 108.2 C19---C24---C23 119.1 (5) C4---C7---H7 108.2 C19---C24---H24 120.4 C8---C7---H7 108.2 C23---C24---H24 120.4 C9---C8---C7 111.5 (3) N4---C25---C26 105.1 (4) C9---C8---H8A 109.3 N4---C25---H25A 110.7 C7---C8---H8A 109.3 C26---C25---H25A 110.7 C9---C8---H8B 109.3 N4---C25---H25B 110.7 C7---C8---H8B 109.3 C26---C25---H25B 110.7 H8A---C8---H8B 108.0 H25A---C25---H25B 108.8 N4---C9---C10 109.5 (3) C27---C26---C25 107.0 (4) N4---C9---C8 112.0 (3) C27---C26---H26A 110.3 C10---C9---C8 113.2 (3) C25---C26---H26A 110.3 N4---C9---H9 107.3 C27---C26---H26B 110.3 C10---C9---H9 107.3 C25---C26---H26B 110.3 C8---C9---H9 107.3 H26A---C26---H26B 108.6 C15---C10---C11 119.2 (3) C26---C27---C28 105.7 (4) C15---C10---C9 121.1 (3) C26---C27---H27A 110.6 C11---C10---C9 119.6 (3) C28---C27---H27A 110.6 N2---C11---C12 119.9 (3) C26---C27---H27B 110.6 N2---C11---C10 121.7 (3) C28---C27---H27B 110.6 C12---C11---C10 118.4 (3) H27A---C27---H27B 108.7 C13---C12---C11 121.2 (3) O4---C28---N4 125.3 (4) C13---C12---H12 119.4 O4---C28---C27 126.7 (4) C11---C12---H12 119.4 N4---C28---C27 108.0 (4) C12---C13---C14 120.2 (3) C18---O3---N3---C16 −0.6 (4) C12---C13---C14---C15 0.2 (6) O2---N1---C1---C2 −174.9 (7) C13---C14---C15---C10 −4.0 (6) O1---N1---C1---C2 6.3 (8) C13---C14---C15---C16 174.8 (4) O2---N1---C1---C6 5.8 (9) C11---C10---C15---C14 4.8 (5) O1---N1---C1---C6 −173.0 (6) C9---C10---C15---C14 −173.0 (3) C6---C1---C2---C3 0.9 (8) C11---C10---C15---C16 −174.0 (3) N1---C1---C2---C3 −178.4 (5) C9---C10---C15---C16 8.2 (5) C1---C2---C3---C4 0.1 (8) O3---N3---C16---C17 1.5 (4) C2---C3---C4---C5 −1.0 (8) O3---N3---C16---C15 −177.6 (3) C2---C3---C4---C7 177.5 (5) C14---C15---C16---N3 −103.9 (4) C3---C4---C5---C6 1.1 (10) C10---C15---C16---N3 74.9 (4) C7---C4---C5---C6 −177.5 (6) C14---C15---C16---C17 77.0 (5) C2---C1---C6---C5 −0.8 (10) C10---C15---C16---C17 −104.2 (5) N1---C1---C6---C5 178.5 (6) N3---C16---C17---C18 −1.9 (4) C4---C5---C6---C1 −0.2 (11) C15---C16---C17---C18 177.2 (4) C11---N2---C7---C4 −177.3 (4) C16---C17---C18---O3 1.4 (4) C11---N2---C7---C8 −53.8 (5) C16---C17---C18---C19 −176.3 (4) C3---C4---C7---N2 29.5 (6) N3---O3---C18---C17 −0.6 (4) C5---C4---C7---N2 −152.0 (5) N3---O3---C18---C19 177.6 (3) C3---C4---C7---C8 −92.1 (5) C17---C18---C19---C20 4.0 (6) C5---C4---C7---C8 86.4 (6) O3---C18---C19---C20 −173.6 (3) N2---C7---C8---C9 59.0 (4) C17---C18---C19---C24 −175.8 (5) C4---C7---C8---C9 −176.8 (3) O3---C18---C19---C24 6.6 (6) C28---N4---C9---C10 −133.2 (3) C24---C19---C20---C21 0.4 (6) C25---N4---C9---C10 44.6 (5) C18---C19---C20---C21 −179.4 (4) C28---N4---C9---C8 100.4 (4) C19---C20---C21---C22 0.6 (6) C25---N4---C9---C8 −81.8 (5) C20---C21---C22---C23 −1.7 (8) C7---C8---C9---N4 85.5 (4) C21---C22---C23---C24 1.9 (9) C7---C8---C9---C10 −38.9 (4) C20---C19---C24---C23 −0.2 (8) N4---C9---C10---C15 63.8 (4) C18---C19---C24---C23 179.5 (5) C8---C9---C10---C15 −170.5 (3) C22---C23---C24---C19 −0.9 (9) N4---C9---C10---C11 −114.0 (4) C28---N4---C25---C26 4.4 (6) C8---C9---C10---C11 11.8 (5) C9---N4---C25---C26 −173.5 (4) C7---N2---C11---C12 −153.3 (4) N4---C25---C26---C27 −8.6 (7) C7---N2---C11---C10 27.5 (6) C25---C26---C27---C28 9.5 (7) C15---C10---C11---N2 177.3 (3) C25---N4---C28---O4 −178.7 (4) C9---C10---C11---N2 −4.9 (5) C9---N4---C28---O4 −0.7 (6) C15---C10---C11---C12 −1.9 (5) C25---N4---C28---C27 1.6 (5) C9---C10---C11---C12 175.9 (3) C9---N4---C28---C27 179.6 (4) N2---C11---C12---C13 179.0 (4) C26---C27---C28---O4 173.3 (5) C10---C11---C12---C13 −1.8 (6) C26---C27---C28---N4 −7.0 (6) C11---C12---C13---C14 2.7 (6) ----------------------- ------------ ----------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3613 .table-wrap} ------------------ ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2N···O4^i^ 0.87 (3) 1.99 (3) 2.859 (6) 180 (5) ------------------ ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *y*, −*x*+*y*, *z*−1/6. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ ---------- ---------- ----------- ------------- N2---H2*N*⋯O4^i^ 0.87 (3) 1.99 (3) 2.859 (6) 180 (5) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.820088
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051757/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o308-o309", "authors": [ { "first": "Margarita", "last": "Gutierrez" }, { "first": "Luis", "last": "Astudillo" }, { "first": "Luisa", "last": "Quesada" }, { "first": "Iván", "last": "Brito" }, { "first": "Matías", "last": "López-Rodríguez" } ] }
PMC3051758
Related literature {#sec1} ================== For general background to *triangulo*-triruthenium derivatives, see: Bruce *et al.* (1985[@bb4], 1988*a* [@bb1],*b* [@bb2]). For related structures, see: Shawkataly *et al.* (2011*a* [@bb7],*b* [@bb8]). For the synthesis of Ru~3~(CO)~10~(μ-Ph~2~PCH~2~PPh~2~), see: Bruce *et al.* (1983[@bb3]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ru~3~(C~36~H~27~As)(C~25~H~22~P~2~)(CO)~9~\]*M* *~r~* = 1474.16Triclinic,*a* = 10.8435 (7) Å*b* = 12.6134 (8) Å*c* = 22.4695 (15) Åα = 81.029 (1)°β = 82.769 (1)°γ = 79.265 (1)°*V* = 2967.6 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 1.42 mm^−1^*T* = 100 K0.50 × 0.17 × 0.02 mm ### Data collection {#sec2.1.2} Bruker APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb5]) *T* ~min~ = 0.539, *T* ~max~ = 0.96750392 measured reflections13475 independent reflections11159 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.039 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.030*wR*(*F* ^2^) = 0.085*S* = 1.1113475 reflections766 parametersH-atom parameters constrainedΔρ~max~ = 0.91 e Å^−3^Δρ~min~ = −0.67 e Å^−3^ {#d5e585} Data collection: *APEX2* (Bruker, 2009[@bb5]); cell refinement: *SAINT* (Bruker, 2009[@bb5]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681100078X/ng5095sup1.cif](http://dx.doi.org/10.1107/S160053681100078X/ng5095sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100078X/ng5095Isup2.hkl](http://dx.doi.org/10.1107/S160053681100078X/ng5095Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5095&file=ng5095sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5095sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5095&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5095](http://scripts.iucr.org/cgi-bin/sendsup?ng5095)). The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research Grant 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. SSS thanks USM for the G A position. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= A large number of substituted derivatives, Ru~3~(CO)~12-n~*L*~n~ (*L* = group 15 ligand) have been reported (Bruce *et al.*, 1985 1988*a*,*b*). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, herein we report the synthesis and structure of the title compound. The bis(diphenylphosphanyl)methane ligand bridges the Ru1--Ru2 bond and the monodentate phosphine ligand bonds to the Ru3 atom. Both phosphine and arsine ligands are equatorial with respect to the Ru~3~ triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands (Fig 1). The conformation of the title compound is very identical to its closely related structure (Shawkataly *et al.*, 2011*b*). Both phenyl rings of biphenyl (C26--C31/C32--C37, C38--C43/C44--C49 and C50--C55/C56--C61) make dihedral angles of 51.22 (18), 42.94 (16) and 26.95 (16)° from each other respectively are more twisted from each other compare to the reported monodentate arsine ligand (Shawkataly *et al.*, 2011*a*). The arsine-substituted phenyl rings make dihedral angles (C26--C31/C38--C43, C26--C31/C50--C55 and C38--C43/C50--C55) of 61.22 (15), 87.17 (15) and 83.32 (15)° with each other respectively. The dihedral angles between the two benzene rings (C1--C6/C7--C12 and C14--C19/C20--C25) are 85.52 (18) and 81.77 (15)° for the two diphenylphosphanyl groups respectively. In the crystal packing, the molecules are linked into dimers by intermolecular C46---H46A···O9 hydrogen bonds (Fig. 2, Table 1). Weak intermolecular C---H···π (Table 1) and *Cg*3···*Cg*3 interactions stabilize the crystal structure. *Cg*3···*Cg*3^iii^ = 3.6981 (18) Å; *Cg*3 is centroid of C14--C19; (iii) 2 - *x*, -*y*, -*z*. Experimental {#experimental} ============ All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen free nitrogen. Tri(\[1,1\'-biphenyl\]-4-yl)arsine is prepared by the reaction of AsCl~3~ with biphenyl magnesiumbromide in THF and Ru~3~(CO)~10~(µ-Ph~2~PCH~2~PPh~2~) (Bruce *et al.*, 1983) was prepared by reported procedure. The title compound was obtained by refluxing equimolar quantities of Ru~3~(CO)~10~(µ-Ph~2~PCH~2~PPh~2~) and tri(\[1,1\'-biphenyl\]-4-yl)arsine in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH~3~OH into CH~2~Cl~2~. Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically and refined using a riding model with C---H = 0.93 or 0.97 Å and *U*~iso~(H) = 1.2*U*~eq~(C). The maximum and minimum residual electron density peaks of 0.91 and -0.67 e Å^-3^ were located 1.45 and 0.91 Å from the O8 and Ru1 atom, respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. ::: ![](e-67-0m216-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, viewed down the b axis, showing the molecules are linked into dimers. Hydrogen atoms not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity. ::: ![](e-67-0m216-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e231 .table-wrap} ------------------------------------------------ --------------------------------------- \[Ru~3~(C~36~H~27~As)(C~25~H~22~P~2~)(CO)~9~\] *Z* = 2 *M~r~* = 1474.16 *F*(000) = 1472 Triclinic, *P*1 *D*~x~ = 1.650 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.8435 (7) Å Cell parameters from 9028 reflections *b* = 12.6134 (8) Å θ = 2.8--29.9° *c* = 22.4695 (15) Å µ = 1.42 mm^−1^ α = 81.029 (1)° *T* = 100 K β = 82.769 (1)° Plate, brown γ = 79.265 (1)° 0.50 × 0.17 × 0.02 mm *V* = 2967.6 (3) Å^3^ ------------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e378 .table-wrap} ------------------------------------------------------------ --------------------------------------- Bruker APEXII DUO CCD area-detector diffractometer 13475 independent reflections Radiation source: fine-focus sealed tube 11159 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.039 φ and ω scans θ~max~ = 27.5°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −13→14 *T*~min~ = 0.539, *T*~max~ = 0.967 *k* = −16→16 50392 measured reflections *l* = −29→29 ------------------------------------------------------------ --------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e495 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.030 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.085 H-atom parameters constrained *S* = 1.11 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0394*P*)^2^ + 2.0751*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 13475 reflections (Δ/σ)~max~ = 0.001 766 parameters Δρ~max~ = 0.91 e Å^−3^ 0 restraints Δρ~min~ = −0.67 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e652 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e757 .table-wrap} ------ ------------- ---------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ru1 0.44891 (2) −0.078490 (17) 0.251421 (10) 0.01666 (6) Ru2 0.59682 (2) 0.043132 (17) 0.162673 (10) 0.01608 (6) Ru3 0.38778 (2) 0.156754 (18) 0.228718 (10) 0.01686 (6) As1 0.18353 (3) 0.23145 (2) 0.280389 (13) 0.01803 (7) P1 0.53340 (7) −0.23935 (6) 0.21184 (3) 0.01721 (15) P2 0.74739 (7) −0.11370 (6) 0.15430 (3) 0.01714 (15) O1 0.6635 (2) −0.08213 (19) 0.32987 (10) 0.0307 (5) O2 0.2964 (2) −0.1792 (2) 0.36158 (10) 0.0366 (6) O3 0.2224 (2) −0.04572 (19) 0.17687 (10) 0.0306 (5) O4 0.4449 (2) −0.02871 (18) 0.07405 (10) 0.0278 (5) O5 0.6747 (3) 0.21237 (19) 0.06021 (10) 0.0377 (6) O6 0.7332 (2) 0.1412 (2) 0.24679 (10) 0.0315 (5) O7 0.5071 (2) 0.1390 (2) 0.34769 (10) 0.0325 (5) O8 0.4815 (3) 0.36584 (19) 0.17562 (11) 0.0404 (6) O9 0.2679 (2) 0.17734 (18) 0.11014 (10) 0.0300 (5) C1 0.4231 (3) −0.2927 (2) 0.17412 (13) 0.0214 (6) C2 0.4389 (4) −0.3083 (3) 0.11416 (15) 0.0347 (8) H2A 0.5104 −0.2910 0.0899 0.042\* C3 0.3489 (4) −0.3499 (3) 0.08924 (17) 0.0437 (10) H3A 0.3605 −0.3593 0.0485 0.052\* C4 0.2444 (3) −0.3767 (3) 0.12452 (17) 0.0345 (8) H4A 0.1864 −0.4072 0.1084 0.041\* C5 0.2255 (4) −0.3585 (3) 0.18381 (18) 0.0373 (9) H5A 0.1529 −0.3746 0.2075 0.045\* C6 0.3125 (3) −0.3169 (3) 0.20871 (16) 0.0329 (8) H6A 0.2978 −0.3046 0.2489 0.040\* C7 0.5935 (3) −0.3629 (2) 0.26236 (13) 0.0216 (6) C8 0.6277 (3) −0.4617 (2) 0.23914 (14) 0.0275 (7) H8A 0.6143 −0.4654 0.1995 0.033\* C9 0.6816 (4) −0.5544 (3) 0.27470 (16) 0.0383 (9) H9A 0.7049 −0.6199 0.2588 0.046\* C10 0.7004 (4) −0.5497 (3) 0.33351 (16) 0.0392 (9) H10A 0.7373 −0.6118 0.3573 0.047\* C11 0.6646 (4) −0.4525 (3) 0.35749 (15) 0.0346 (8) H11A 0.6762 −0.4501 0.3975 0.041\* C12 0.6117 (3) −0.3592 (3) 0.32242 (14) 0.0259 (7) H12A 0.5883 −0.2942 0.3387 0.031\* C13 0.6680 (3) −0.2300 (2) 0.15242 (12) 0.0190 (6) H13A 0.7289 −0.2968 0.1575 0.023\* H13B 0.6376 −0.2236 0.1130 0.023\* C14 0.8514 (3) −0.1181 (2) 0.08339 (13) 0.0201 (6) C15 0.8004 (3) −0.0690 (2) 0.02949 (13) 0.0237 (6) H15A 0.7168 −0.0342 0.0304 0.028\* C16 0.8753 (3) −0.0727 (3) −0.02557 (13) 0.0280 (7) H16A 0.8415 −0.0407 −0.0614 0.034\* C17 0.9990 (3) −0.1235 (2) −0.02698 (14) 0.0278 (7) H17A 1.0490 −0.1246 −0.0638 0.033\* C18 1.0501 (3) −0.1732 (3) 0.02629 (15) 0.0296 (7) H18A 1.1336 −0.2083 0.0251 0.036\* C19 0.9754 (3) −0.1701 (2) 0.08146 (14) 0.0249 (7) H19A 1.0093 −0.2032 0.1171 0.030\* C20 0.8549 (3) −0.1593 (2) 0.21285 (13) 0.0203 (6) C21 0.8689 (3) −0.2634 (3) 0.24509 (14) 0.0249 (6) H21A 0.8234 −0.3136 0.2361 0.030\* C22 0.9496 (3) −0.2942 (3) 0.29044 (15) 0.0312 (7) H22A 0.9573 −0.3640 0.3119 0.037\* C23 1.0183 (3) −0.2204 (3) 0.30354 (15) 0.0332 (8) H23A 1.0722 −0.2408 0.3340 0.040\* C24 1.0076 (3) −0.1164 (3) 0.27177 (14) 0.0302 (7) H24A 1.0543 −0.0671 0.2807 0.036\* C25 0.9266 (3) −0.0862 (3) 0.22646 (14) 0.0269 (7) H25A 0.9199 −0.0165 0.2049 0.032\* C26 0.0712 (3) 0.1451 (2) 0.33399 (13) 0.0214 (6) C27 −0.0586 (3) 0.1666 (2) 0.33179 (13) 0.0240 (6) H27A −0.0941 0.2243 0.3047 0.029\* C28 −0.1362 (3) 0.1027 (3) 0.36984 (13) 0.0253 (7) H28A −0.2231 0.1185 0.3681 0.030\* C29 −0.0847 (3) 0.0155 (3) 0.41026 (13) 0.0260 (7) C30 0.0441 (3) −0.0045 (3) 0.41272 (14) 0.0303 (7) H30A 0.0796 −0.0618 0.4400 0.036\* C31 0.1223 (3) 0.0596 (3) 0.37503 (14) 0.0277 (7) H31A 0.2090 0.0448 0.3775 0.033\* C32 −0.1695 (3) −0.0550 (3) 0.44874 (14) 0.0280 (7) C33 −0.2758 (4) −0.0132 (3) 0.48258 (18) 0.0440 (10) H33A −0.2972 0.0619 0.4820 0.053\* C34 −0.3534 (4) −0.0810 (4) 0.51826 (19) 0.0497 (11) H34A −0.4251 −0.0504 0.5410 0.060\* C35 −0.3249 (4) −0.1900 (3) 0.51981 (17) 0.0426 (10) H35A −0.3751 −0.2351 0.5443 0.051\* C36 −0.2208 (5) −0.2332 (3) 0.48460 (19) 0.0520 (11) H36A −0.2026 −0.3080 0.4837 0.062\* C37 −0.1421 (4) −0.1665 (3) 0.45017 (17) 0.0418 (9) H37A −0.0700 −0.1975 0.4278 0.050\* C38 0.0689 (3) 0.3128 (2) 0.22322 (13) 0.0189 (6) C39 0.0500 (3) 0.4262 (2) 0.21320 (14) 0.0253 (7) H39A 0.0863 0.4639 0.2369 0.030\* C40 −0.0220 (3) 0.4828 (2) 0.16844 (14) 0.0255 (7) H40A −0.0321 0.5585 0.1618 0.031\* C41 −0.0798 (3) 0.4293 (2) 0.13306 (13) 0.0201 (6) C42 −0.0631 (3) 0.3152 (2) 0.14432 (14) 0.0240 (6) H42A −0.1029 0.2777 0.1220 0.029\* C43 0.0116 (3) 0.2581 (2) 0.18805 (14) 0.0238 (6) H43A 0.0238 0.1824 0.1941 0.029\* C44 −0.1574 (3) 0.4898 (2) 0.08500 (13) 0.0229 (6) C45 −0.1181 (3) 0.5773 (3) 0.04611 (14) 0.0296 (7) H45A −0.0429 0.5989 0.0508 0.035\* C46 −0.1900 (4) 0.6326 (3) 0.00051 (16) 0.0387 (9) H46A −0.1632 0.6909 −0.0252 0.046\* C47 −0.3019 (4) 0.6006 (3) −0.00657 (17) 0.0425 (9) H47A −0.3497 0.6367 −0.0376 0.051\* C48 −0.3424 (4) 0.5159 (3) 0.03199 (18) 0.0432 (9) H48A −0.4188 0.4959 0.0276 0.052\* C49 −0.2709 (3) 0.4600 (3) 0.07737 (15) 0.0311 (7) H49A −0.2990 0.4021 0.1030 0.037\* C50 0.1957 (3) 0.3424 (2) 0.32999 (13) 0.0206 (6) C51 0.3039 (3) 0.3891 (3) 0.32329 (14) 0.0270 (7) H51A 0.3696 0.3683 0.2944 0.032\* C52 0.3153 (3) 0.4654 (3) 0.35879 (14) 0.0283 (7) H52A 0.3883 0.4960 0.3530 0.034\* C53 0.2209 (3) 0.4978 (2) 0.40296 (13) 0.0244 (7) C54 0.1089 (3) 0.4544 (3) 0.40785 (14) 0.0293 (7) H54A 0.0419 0.4775 0.4356 0.035\* C55 0.0971 (3) 0.3781 (3) 0.37216 (14) 0.0275 (7) H55A 0.0225 0.3501 0.3763 0.033\* C56 0.2393 (3) 0.5731 (3) 0.44450 (13) 0.0276 (7) C57 0.3587 (4) 0.5795 (3) 0.45740 (15) 0.0357 (8) H57A 0.4278 0.5355 0.4398 0.043\* C58 0.3789 (4) 0.6495 (3) 0.49567 (16) 0.0417 (9) H58A 0.4604 0.6527 0.5032 0.050\* C59 0.2778 (5) 0.7135 (3) 0.52219 (15) 0.0448 (11) H59A 0.2904 0.7598 0.5485 0.054\* C60 0.1584 (4) 0.7098 (3) 0.51025 (15) 0.0400 (10) H60A 0.0903 0.7540 0.5284 0.048\* C61 0.1373 (4) 0.6409 (3) 0.47137 (15) 0.0353 (8) H61A 0.0556 0.6398 0.4632 0.042\* C62 0.5866 (3) −0.0778 (2) 0.29897 (13) 0.0233 (6) C63 0.3517 (3) −0.1386 (2) 0.31993 (13) 0.0234 (6) C64 0.3081 (3) −0.0515 (2) 0.20328 (13) 0.0219 (6) C65 0.4964 (3) −0.0032 (2) 0.10934 (13) 0.0213 (6) C66 0.6478 (3) 0.1485 (2) 0.09948 (13) 0.0235 (6) C67 0.6797 (3) 0.1011 (2) 0.21860 (13) 0.0235 (6) C68 0.4649 (3) 0.1379 (2) 0.30345 (14) 0.0248 (7) C69 0.4426 (3) 0.2888 (2) 0.19714 (14) 0.0264 (7) C70 0.3137 (3) 0.1633 (2) 0.15409 (14) 0.0232 (6) ------ ------------- ---------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2631 .table-wrap} ----- -------------- -------------- -------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ru1 0.01510 (13) 0.01704 (11) 0.01680 (11) −0.00413 (9) 0.00168 (9) −0.00005 (8) Ru2 0.01274 (12) 0.01755 (11) 0.01752 (11) −0.00462 (9) 0.00147 (9) −0.00097 (8) Ru3 0.01466 (12) 0.01714 (11) 0.01768 (11) −0.00304 (9) 0.00072 (9) −0.00051 (8) As1 0.01521 (16) 0.01817 (14) 0.02020 (14) −0.00388 (11) −0.00016 (11) −0.00104 (11) P1 0.0151 (4) 0.0171 (3) 0.0187 (3) −0.0043 (3) 0.0000 (3) 0.0001 (3) P2 0.0133 (4) 0.0192 (3) 0.0186 (3) −0.0041 (3) 0.0008 (3) −0.0017 (3) O1 0.0280 (14) 0.0378 (13) 0.0279 (11) −0.0057 (11) −0.0070 (10) −0.0052 (10) O2 0.0341 (15) 0.0388 (13) 0.0309 (12) −0.0096 (12) 0.0090 (11) 0.0085 (10) O3 0.0235 (13) 0.0353 (12) 0.0332 (12) −0.0119 (10) −0.0074 (10) 0.0071 (10) O4 0.0234 (13) 0.0366 (12) 0.0258 (11) −0.0082 (10) −0.0042 (9) −0.0064 (9) O5 0.0469 (17) 0.0292 (12) 0.0332 (12) −0.0144 (12) 0.0128 (12) 0.0034 (10) O6 0.0218 (13) 0.0428 (13) 0.0350 (12) −0.0111 (11) −0.0034 (10) −0.0141 (10) O7 0.0280 (14) 0.0446 (14) 0.0262 (12) −0.0020 (11) −0.0055 (10) −0.0117 (10) O8 0.0486 (18) 0.0282 (12) 0.0440 (14) −0.0193 (12) 0.0108 (13) −0.0008 (10) O9 0.0346 (15) 0.0286 (11) 0.0248 (11) 0.0020 (10) −0.0102 (10) −0.0004 (9) C1 0.0194 (16) 0.0156 (13) 0.0292 (15) −0.0046 (12) −0.0030 (12) −0.0010 (11) C2 0.034 (2) 0.046 (2) 0.0302 (17) −0.0238 (17) −0.0013 (15) −0.0046 (15) C3 0.047 (3) 0.059 (2) 0.0349 (19) −0.026 (2) −0.0120 (18) −0.0083 (17) C4 0.0232 (19) 0.0317 (17) 0.053 (2) −0.0069 (15) −0.0106 (16) −0.0100 (15) C5 0.0218 (19) 0.0364 (19) 0.058 (2) −0.0152 (15) 0.0048 (17) −0.0136 (17) C6 0.027 (2) 0.0382 (18) 0.0358 (18) −0.0144 (15) 0.0078 (15) −0.0107 (14) C7 0.0156 (16) 0.0218 (14) 0.0248 (14) −0.0038 (12) 0.0014 (12) 0.0026 (11) C8 0.0291 (19) 0.0225 (15) 0.0275 (16) −0.0002 (13) 0.0019 (14) −0.0015 (12) C9 0.043 (2) 0.0271 (17) 0.0387 (19) 0.0015 (16) 0.0015 (17) 0.0010 (14) C10 0.040 (2) 0.0328 (18) 0.0362 (19) 0.0029 (16) −0.0016 (17) 0.0102 (15) C11 0.032 (2) 0.0418 (19) 0.0245 (16) −0.0019 (16) −0.0019 (14) 0.0080 (14) C12 0.0215 (17) 0.0275 (15) 0.0261 (15) −0.0032 (13) 0.0018 (13) 0.0002 (12) C13 0.0179 (16) 0.0193 (13) 0.0200 (13) −0.0034 (12) 0.0015 (11) −0.0053 (11) C14 0.0195 (16) 0.0205 (13) 0.0208 (13) −0.0077 (12) 0.0029 (12) −0.0032 (11) C15 0.0205 (17) 0.0269 (15) 0.0257 (15) −0.0090 (13) 0.0022 (12) −0.0074 (12) C16 0.035 (2) 0.0340 (17) 0.0186 (14) −0.0147 (15) 0.0006 (13) −0.0056 (12) C17 0.034 (2) 0.0262 (15) 0.0253 (15) −0.0123 (14) 0.0090 (14) −0.0093 (12) C18 0.0216 (18) 0.0298 (16) 0.0351 (17) −0.0044 (14) 0.0098 (14) −0.0077 (13) C19 0.0241 (18) 0.0241 (15) 0.0241 (15) −0.0042 (13) 0.0046 (13) −0.0019 (12) C20 0.0133 (15) 0.0260 (14) 0.0206 (14) −0.0006 (12) −0.0002 (11) −0.0047 (11) C21 0.0176 (16) 0.0293 (16) 0.0278 (15) −0.0048 (13) −0.0004 (13) −0.0041 (12) C22 0.0228 (18) 0.0362 (18) 0.0294 (16) 0.0014 (14) −0.0025 (14) 0.0041 (14) C23 0.0199 (18) 0.052 (2) 0.0256 (16) 0.0000 (16) −0.0037 (13) −0.0055 (15) C24 0.0190 (18) 0.0442 (19) 0.0297 (16) −0.0073 (15) 0.0018 (13) −0.0137 (14) C25 0.0192 (17) 0.0348 (17) 0.0272 (15) −0.0067 (14) 0.0010 (13) −0.0060 (13) C26 0.0227 (17) 0.0219 (14) 0.0195 (13) −0.0066 (12) 0.0025 (12) −0.0026 (11) C27 0.0219 (17) 0.0239 (14) 0.0254 (15) −0.0041 (13) −0.0028 (13) −0.0007 (12) C28 0.0177 (17) 0.0309 (16) 0.0281 (15) −0.0075 (13) −0.0003 (13) −0.0038 (13) C29 0.0270 (18) 0.0278 (15) 0.0238 (15) −0.0113 (14) 0.0040 (13) −0.0029 (12) C30 0.0278 (19) 0.0318 (17) 0.0285 (16) −0.0064 (15) −0.0037 (14) 0.0066 (13) C31 0.0167 (17) 0.0321 (16) 0.0310 (16) −0.0017 (13) −0.0007 (13) 0.0013 (13) C32 0.0276 (19) 0.0350 (17) 0.0219 (15) −0.0112 (15) −0.0025 (13) 0.0015 (13) C33 0.037 (2) 0.039 (2) 0.052 (2) −0.0109 (18) 0.0119 (19) −0.0010 (17) C34 0.033 (2) 0.058 (3) 0.052 (2) −0.013 (2) 0.0123 (19) 0.005 (2) C35 0.042 (2) 0.048 (2) 0.039 (2) −0.0259 (19) −0.0019 (18) 0.0117 (17) C36 0.062 (3) 0.043 (2) 0.049 (2) −0.022 (2) 0.008 (2) 0.0050 (18) C37 0.047 (3) 0.0365 (19) 0.0382 (19) −0.0132 (18) 0.0086 (18) 0.0015 (15) C38 0.0135 (15) 0.0200 (13) 0.0221 (14) −0.0033 (11) −0.0006 (11) 0.0001 (11) C39 0.0277 (18) 0.0208 (14) 0.0304 (16) −0.0078 (13) −0.0071 (14) −0.0044 (12) C40 0.0280 (19) 0.0185 (14) 0.0305 (16) −0.0030 (13) −0.0086 (14) −0.0012 (12) C41 0.0152 (15) 0.0216 (14) 0.0217 (14) −0.0018 (12) 0.0017 (11) −0.0021 (11) C42 0.0252 (18) 0.0201 (14) 0.0282 (15) −0.0050 (13) −0.0053 (13) −0.0050 (12) C43 0.0266 (18) 0.0139 (13) 0.0301 (16) −0.0012 (12) −0.0037 (13) −0.0024 (11) C44 0.0233 (17) 0.0208 (14) 0.0240 (14) −0.0021 (12) −0.0015 (12) −0.0041 (11) C45 0.031 (2) 0.0273 (16) 0.0302 (16) −0.0067 (14) −0.0062 (14) −0.0001 (13) C46 0.047 (3) 0.0303 (17) 0.0357 (19) −0.0045 (17) −0.0087 (17) 0.0049 (14) C47 0.050 (3) 0.039 (2) 0.039 (2) −0.0014 (18) −0.0252 (19) 0.0024 (16) C48 0.033 (2) 0.045 (2) 0.055 (2) −0.0071 (18) −0.0221 (19) −0.0046 (18) C49 0.0277 (19) 0.0277 (16) 0.0384 (18) −0.0057 (14) −0.0072 (15) −0.0021 (14) C50 0.0185 (16) 0.0218 (14) 0.0205 (13) −0.0026 (12) −0.0019 (12) −0.0011 (11) C51 0.0190 (17) 0.0313 (16) 0.0311 (16) −0.0063 (13) 0.0048 (13) −0.0090 (13) C52 0.0239 (18) 0.0298 (16) 0.0333 (17) −0.0120 (14) 0.0016 (14) −0.0055 (13) C53 0.0293 (19) 0.0239 (14) 0.0199 (14) −0.0069 (13) −0.0014 (13) −0.0008 (11) C54 0.0250 (19) 0.0377 (18) 0.0259 (15) −0.0096 (15) 0.0064 (13) −0.0089 (13) C55 0.0208 (18) 0.0334 (17) 0.0293 (16) −0.0099 (14) 0.0028 (13) −0.0050 (13) C56 0.036 (2) 0.0253 (15) 0.0207 (14) −0.0082 (14) 0.0017 (13) −0.0024 (12) C57 0.042 (2) 0.0356 (18) 0.0314 (17) −0.0098 (17) −0.0068 (16) −0.0040 (14) C58 0.058 (3) 0.039 (2) 0.0324 (18) −0.0136 (19) −0.0132 (18) −0.0045 (15) C59 0.081 (3) 0.0333 (19) 0.0253 (17) −0.022 (2) −0.0015 (19) −0.0067 (14) C60 0.058 (3) 0.0360 (19) 0.0258 (17) −0.0155 (19) 0.0133 (17) −0.0085 (14) C61 0.040 (2) 0.0327 (17) 0.0325 (17) −0.0123 (16) 0.0098 (16) −0.0065 (14) C62 0.0246 (18) 0.0205 (14) 0.0233 (14) −0.0050 (13) 0.0027 (13) −0.0017 (11) C63 0.0204 (17) 0.0232 (14) 0.0258 (15) −0.0040 (13) −0.0025 (13) −0.0007 (12) C64 0.0205 (17) 0.0211 (14) 0.0224 (14) −0.0076 (12) 0.0029 (12) 0.0034 (11) C65 0.0173 (16) 0.0223 (14) 0.0214 (14) −0.0031 (12) 0.0046 (12) 0.0004 (11) C66 0.0183 (16) 0.0256 (15) 0.0266 (15) −0.0067 (13) 0.0043 (12) −0.0058 (12) C67 0.0162 (16) 0.0255 (15) 0.0262 (15) −0.0022 (12) 0.0049 (12) −0.0032 (12) C68 0.0181 (17) 0.0275 (15) 0.0271 (16) −0.0030 (13) 0.0030 (13) −0.0034 (12) C69 0.0234 (18) 0.0246 (15) 0.0302 (16) −0.0040 (13) 0.0029 (13) −0.0049 (12) C70 0.0225 (17) 0.0181 (13) 0.0270 (15) −0.0023 (12) 0.0012 (13) −0.0011 (11) ----- -------------- -------------- -------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e4324 .table-wrap} ----------------------- -------------- ----------------------- -------------- Ru1---C63 1.892 (3) C22---H22A 0.9300 Ru1---C64 1.930 (3) C23---C24 1.385 (5) Ru1---C62 1.944 (3) C23---H23A 0.9300 Ru1---P1 2.3265 (8) C24---C25 1.390 (5) Ru1---Ru2 2.8389 (3) C24---H24A 0.9300 Ru1---Ru3 2.8956 (4) C25---H25A 0.9300 Ru2---C66 1.891 (3) C26---C31 1.384 (4) Ru2---C67 1.933 (3) C26---C27 1.388 (5) Ru2---C65 1.935 (3) C27---C28 1.395 (4) Ru2---P2 2.3345 (8) C27---H27A 0.9300 Ru2---Ru3 2.8285 (3) C28---C29 1.390 (4) Ru3---C69 1.878 (3) C28---H28A 0.9300 Ru3---C68 1.931 (3) C29---C30 1.379 (5) Ru3---C70 1.932 (3) C29---C32 1.499 (4) Ru3---As1 2.4612 (4) C30---C31 1.397 (4) As1---C38 1.940 (3) C30---H30A 0.9300 As1---C50 1.952 (3) C31---H31A 0.9300 As1---C26 1.959 (3) C32---C33 1.365 (5) P1---C1 1.826 (3) C32---C37 1.378 (5) P1---C7 1.843 (3) C33---C34 1.402 (5) P1---C13 1.858 (3) C33---H33A 0.9300 P2---C20 1.823 (3) C34---C35 1.348 (6) P2---C14 1.835 (3) C34---H34A 0.9300 P2---C13 1.843 (3) C35---C36 1.370 (6) O1---C62 1.139 (4) C35---H35A 0.9300 O2---C63 1.150 (4) C36---C37 1.391 (5) O3---C64 1.149 (4) C36---H36A 0.9300 O4---C65 1.142 (4) C37---H37A 0.9300 O5---C66 1.146 (4) C38---C43 1.393 (4) O6---C67 1.138 (4) C38---C39 1.393 (4) O7---C68 1.149 (4) C39---C40 1.378 (4) O8---C69 1.145 (4) C39---H39A 0.9300 O9---C70 1.136 (4) C40---C41 1.391 (4) C1---C2 1.377 (4) C40---H40A 0.9300 C1---C6 1.401 (4) C41---C42 1.403 (4) C2---C3 1.400 (5) C41---C44 1.479 (4) C2---H2A 0.9300 C42---C43 1.380 (4) C3---C4 1.364 (5) C42---H42A 0.9300 C3---H3A 0.9300 C43---H43A 0.9300 C4---C5 1.371 (5) C44---C49 1.390 (5) C4---H4A 0.9300 C44---C45 1.394 (4) C5---C6 1.375 (5) C45---C46 1.385 (5) C5---H5A 0.9300 C45---H45A 0.9300 C6---H6A 0.9300 C46---C47 1.381 (6) C7---C8 1.395 (4) C46---H46A 0.9300 C7---C12 1.397 (4) C47---C48 1.370 (5) C8---C9 1.385 (5) C47---H47A 0.9300 C8---H8A 0.9300 C48---C49 1.382 (5) C9---C10 1.374 (5) C48---H48A 0.9300 C9---H9A 0.9300 C49---H49A 0.9300 C10---C11 1.385 (5) C50---C51 1.389 (4) C10---H10A 0.9300 C50---C55 1.394 (4) C11---C12 1.381 (4) C51---C52 1.374 (4) C11---H11A 0.9300 C51---H51A 0.9300 C12---H12A 0.9300 C52---C53 1.384 (4) C13---H13A 0.9700 C52---H52A 0.9300 C13---H13B 0.9700 C53---C54 1.408 (4) C14---C19 1.380 (4) C53---C56 1.485 (4) C14---C15 1.401 (4) C54---C55 1.377 (4) C15---C16 1.394 (4) C54---H54A 0.9300 C15---H15A 0.9300 C55---H55A 0.9300 C16---C17 1.373 (5) C56---C57 1.381 (5) C16---H16A 0.9300 C56---C61 1.399 (5) C17---C18 1.391 (5) C57---C58 1.386 (5) C17---H17A 0.9300 C57---H57A 0.9300 C18---C19 1.394 (4) C58---C59 1.365 (6) C18---H18A 0.9300 C58---H58A 0.9300 C19---H19A 0.9300 C59---C60 1.365 (6) C20---C21 1.389 (4) C59---H59A 0.9300 C20---C25 1.400 (4) C60---C61 1.390 (5) C21---C22 1.389 (5) C60---H60A 0.9300 C21---H21A 0.9300 C61---H61A 0.9300 C22---C23 1.380 (5) C63---Ru1---C64 91.69 (13) C23---C22---C21 119.6 (3) C63---Ru1---C62 91.95 (13) C23---C22---H22A 120.2 C64---Ru1---C62 169.84 (12) C21---C22---H22A 120.2 C63---Ru1---P1 98.00 (9) C22---C23---C24 120.6 (3) C64---Ru1---P1 91.94 (9) C22---C23---H23A 119.7 C62---Ru1---P1 96.94 (9) C24---C23---H23A 119.7 C63---Ru1---Ru2 168.92 (9) C23---C24---C25 119.5 (3) C64---Ru1---Ru2 93.18 (8) C23---C24---H24A 120.3 C62---Ru1---Ru2 81.66 (8) C25---C24---H24A 120.3 P1---Ru1---Ru2 91.782 (19) C24---C25---C20 120.9 (3) C63---Ru1---Ru3 112.71 (9) C24---C25---H25A 119.5 C64---Ru1---Ru3 76.03 (8) C20---C25---H25A 119.5 C62---Ru1---Ru3 93.82 (9) C31---C26---C27 118.9 (3) P1---Ru1---Ru3 147.04 (2) C31---C26---As1 119.3 (2) Ru2---Ru1---Ru3 59.098 (8) C27---C26---As1 121.9 (2) C66---Ru2---C67 89.89 (13) C26---C27---C28 120.7 (3) C66---Ru2---C65 90.22 (12) C26---C27---H27A 119.7 C67---Ru2---C65 173.34 (13) C28---C27---H27A 119.7 C66---Ru2---P2 105.29 (10) C29---C28---C27 120.5 (3) C67---Ru2---P2 96.30 (10) C29---C28---H28A 119.8 C65---Ru2---P2 90.10 (9) C27---C28---H28A 119.8 C66---Ru2---Ru3 104.86 (10) C30---C29---C28 118.5 (3) C67---Ru2---Ru3 78.76 (9) C30---C29---C32 122.0 (3) C65---Ru2---Ru3 94.77 (9) C28---C29---C32 119.5 (3) P2---Ru2---Ru3 149.428 (19) C29---C30---C31 121.4 (3) C66---Ru2---Ru1 163.01 (10) C29---C30---H30A 119.3 C67---Ru2---Ru1 96.62 (8) C31---C30---H30A 119.3 C65---Ru2---Ru1 81.51 (8) C26---C31---C30 120.1 (3) P2---Ru2---Ru1 89.629 (19) C26---C31---H31A 119.9 Ru3---Ru2---Ru1 61.450 (9) C30---C31---H31A 119.9 C69---Ru3---C68 95.45 (13) C33---C32---C37 117.5 (3) C69---Ru3---C70 88.24 (13) C33---C32---C29 122.5 (3) C68---Ru3---C70 175.47 (12) C37---C32---C29 120.0 (3) C69---Ru3---As1 98.37 (10) C32---C33---C34 121.4 (4) C68---Ru3---As1 90.29 (9) C32---C33---H33A 119.3 C70---Ru3---As1 91.77 (10) C34---C33---H33A 119.3 C69---Ru3---Ru2 89.80 (10) C35---C34---C33 120.6 (4) C68---Ru3---Ru2 96.06 (9) C35---C34---H34A 119.7 C70---Ru3---Ru2 81.31 (9) C33---C34---H34A 119.7 As1---Ru3---Ru2 169.149 (12) C34---C35---C36 118.8 (3) C69---Ru3---Ru1 147.65 (10) C34---C35---H35A 120.6 C68---Ru3---Ru1 79.45 (9) C36---C35---H35A 120.6 C70---Ru3---Ru1 96.03 (8) C35---C36---C37 120.7 (4) As1---Ru3---Ru1 113.473 (11) C35---C36---H36A 119.6 Ru2---Ru3---Ru1 59.452 (8) C37---C36---H36A 119.6 C38---As1---C50 101.53 (12) C32---C37---C36 120.9 (4) C38---As1---C26 100.80 (13) C32---C37---H37A 119.5 C50---As1---C26 101.54 (12) C36---C37---H37A 119.5 C38---As1---Ru3 111.63 (9) C43---C38---C39 118.8 (3) C50---As1---Ru3 113.18 (9) C43---C38---As1 120.2 (2) C26---As1---Ru3 125.09 (9) C39---C38---As1 120.9 (2) C1---P1---C7 99.95 (13) C40---C39---C38 120.4 (3) C1---P1---C13 102.47 (13) C40---C39---H39A 119.8 C7---P1---C13 102.02 (14) C38---C39---H39A 119.8 C1---P1---Ru1 114.45 (10) C39---C40---C41 121.3 (3) C7---P1---Ru1 120.11 (10) C39---C40---H40A 119.3 C13---P1---Ru1 115.25 (9) C41---C40---H40A 119.3 C20---P2---C14 103.80 (14) C40---C41---C42 118.0 (3) C20---P2---C13 105.34 (13) C40---C41---C44 121.5 (3) C14---P2---C13 100.07 (12) C42---C41---C44 120.5 (3) C20---P2---Ru2 118.69 (10) C43---C42---C41 120.8 (3) C14---P2---Ru2 117.18 (10) C43---C42---H42A 119.6 C13---P2---Ru2 109.61 (10) C41---C42---H42A 119.6 C2---C1---C6 117.8 (3) C42---C43---C38 120.6 (3) C2---C1---P1 125.0 (2) C42---C43---H43A 119.7 C6---C1---P1 117.2 (2) C38---C43---H43A 119.7 C1---C2---C3 120.9 (3) C49---C44---C45 118.5 (3) C1---C2---H2A 119.5 C49---C44---C41 120.6 (3) C3---C2---H2A 119.5 C45---C44---C41 121.0 (3) C4---C3---C2 120.1 (3) C46---C45---C44 120.7 (3) C4---C3---H3A 119.9 C46---C45---H45A 119.6 C2---C3---H3A 119.9 C44---C45---H45A 119.6 C3---C4---C5 119.6 (3) C47---C46---C45 119.7 (3) C3---C4---H4A 120.2 C47---C46---H46A 120.2 C5---C4---H4A 120.2 C45---C46---H46A 120.2 C4---C5---C6 120.8 (3) C48---C47---C46 120.1 (3) C4---C5---H5A 119.6 C48---C47---H47A 119.9 C6---C5---H5A 119.6 C46---C47---H47A 119.9 C5---C6---C1 120.7 (3) C47---C48---C49 120.5 (4) C5---C6---H6A 119.7 C47---C48---H48A 119.7 C1---C6---H6A 119.7 C49---C48---H48A 119.7 C8---C7---C12 119.1 (3) C48---C49---C44 120.4 (3) C8---C7---P1 119.1 (2) C48---C49---H49A 119.8 C12---C7---P1 121.8 (2) C44---C49---H49A 119.8 C9---C8---C7 120.5 (3) C51---C50---C55 118.2 (3) C9---C8---H8A 119.8 C51---C50---As1 120.2 (2) C7---C8---H8A 119.8 C55---C50---As1 121.7 (2) C10---C9---C8 120.0 (3) C52---C51---C50 120.9 (3) C10---C9---H9A 120.0 C52---C51---H51A 119.5 C8---C9---H9A 120.0 C50---C51---H51A 119.5 C9---C10---C11 120.1 (3) C51---C52---C53 121.7 (3) C9---C10---H10A 119.9 C51---C52---H52A 119.2 C11---C10---H10A 119.9 C53---C52---H52A 119.2 C12---C11---C10 120.5 (3) C52---C53---C54 117.4 (3) C12---C11---H11A 119.7 C52---C53---C56 120.9 (3) C10---C11---H11A 119.7 C54---C53---C56 121.7 (3) C11---C12---C7 119.8 (3) C55---C54---C53 121.0 (3) C11---C12---H12A 120.1 C55---C54---H54A 119.5 C7---C12---H12A 120.1 C53---C54---H54A 119.5 P2---C13---P1 113.20 (14) C54---C55---C50 120.7 (3) P2---C13---H13A 108.9 C54---C55---H55A 119.6 P1---C13---H13A 108.9 C50---C55---H55A 119.6 P2---C13---H13B 108.9 C57---C56---C61 117.6 (3) P1---C13---H13B 108.9 C57---C56---C53 120.8 (3) H13A---C13---H13B 107.8 C61---C56---C53 121.6 (3) C19---C14---C15 119.7 (3) C56---C57---C58 122.1 (4) C19---C14---P2 122.4 (2) C56---C57---H57A 118.9 C15---C14---P2 117.9 (2) C58---C57---H57A 118.9 C16---C15---C14 119.8 (3) C59---C58---C57 119.3 (4) C16---C15---H15A 120.1 C59---C58---H58A 120.4 C14---C15---H15A 120.1 C57---C58---H58A 120.4 C17---C16---C15 120.2 (3) C58---C59---C60 120.2 (3) C17---C16---H16A 119.9 C58---C59---H59A 119.9 C15---C16---H16A 119.9 C60---C59---H59A 119.9 C16---C17---C18 120.4 (3) C59---C60---C61 120.9 (4) C16---C17---H17A 119.8 C59---C60---H60A 119.5 C18---C17---H17A 119.8 C61---C60---H60A 119.5 C17---C18---C19 119.7 (3) C60---C61---C56 119.9 (4) C17---C18---H18A 120.2 C60---C61---H61A 120.1 C19---C18---H18A 120.2 C56---C61---H61A 120.1 C14---C19---C18 120.3 (3) O1---C62---Ru1 175.3 (3) C14---C19---H19A 119.8 O2---C63---Ru1 177.1 (3) C18---C19---H19A 119.8 O3---C64---Ru1 173.2 (2) C21---C20---C25 118.1 (3) O4---C65---Ru2 174.2 (2) C21---C20---P2 123.0 (2) O5---C66---Ru2 177.4 (3) C25---C20---P2 118.8 (2) O6---C67---Ru2 173.4 (3) C22---C21---C20 121.3 (3) O7---C68---Ru3 172.4 (3) C22---C21---H21A 119.4 O8---C69---Ru3 175.8 (3) C20---C21---H21A 119.4 O9---C70---Ru3 173.6 (3) C63---Ru1---Ru2---C66 −82.9 (6) C13---P1---C7---C8 −59.8 (3) C64---Ru1---Ru2---C66 33.1 (3) Ru1---P1---C7---C8 171.3 (2) C62---Ru1---Ru2---C66 −138.1 (3) C1---P1---C7---C12 −137.9 (3) P1---Ru1---Ru2---C66 125.1 (3) C13---P1---C7---C12 116.9 (3) Ru3---Ru1---Ru2---C66 −38.6 (3) Ru1---P1---C7---C12 −12.0 (3) C63---Ru1---Ru2---C67 29.0 (5) C12---C7---C8---C9 −1.4 (5) C64---Ru1---Ru2---C67 144.98 (13) P1---C7---C8---C9 175.4 (3) C62---Ru1---Ru2---C67 −26.22 (13) C7---C8---C9---C10 0.7 (6) P1---Ru1---Ru2---C67 −122.98 (10) C8---C9---C10---C11 0.6 (6) Ru3---Ru1---Ru2---C67 73.35 (9) C9---C10---C11---C12 −1.1 (6) C63---Ru1---Ru2---C65 −144.5 (5) C10---C11---C12---C7 0.4 (5) C64---Ru1---Ru2---C65 −28.56 (13) C8---C7---C12---C11 0.9 (5) C62---Ru1---Ru2---C65 160.23 (13) P1---C7---C12---C11 −175.8 (3) P1---Ru1---Ru2---C65 63.47 (9) C20---P2---C13---P1 82.02 (18) Ru3---Ru1---Ru2---C65 −100.20 (9) C14---P2---C13---P1 −170.52 (16) C63---Ru1---Ru2---P2 125.3 (5) Ru2---P2---C13---P1 −46.75 (17) C64---Ru1---Ru2---P2 −118.72 (9) C1---P1---C13---P2 145.82 (16) C62---Ru1---Ru2---P2 70.08 (9) C7---P1---C13---P2 −111.01 (17) P1---Ru1---Ru2---P2 −26.68 (3) Ru1---P1---C13---P2 20.87 (19) Ru3---Ru1---Ru2---P2 169.65 (2) C20---P2---C14---C19 13.1 (3) C63---Ru1---Ru2---Ru3 −44.3 (5) C13---P2---C14---C19 −95.6 (3) C64---Ru1---Ru2---Ru3 71.63 (9) Ru2---P2---C14---C19 146.1 (2) C62---Ru1---Ru2---Ru3 −99.57 (9) C20---P2---C14---C15 −168.8 (2) P1---Ru1---Ru2---Ru3 163.67 (2) C13---P2---C14---C15 82.6 (2) C66---Ru2---Ru3---C69 −21.45 (14) Ru2---P2---C14---C15 −35.8 (2) C67---Ru2---Ru3---C69 65.41 (14) C19---C14---C15---C16 −0.3 (4) C65---Ru2---Ru3---C69 −112.95 (13) P2---C14---C15---C16 −178.5 (2) P2---Ru2---Ru3---C69 148.73 (11) C14---C15---C16---C17 −0.5 (4) Ru1---Ru2---Ru3---C69 169.41 (10) C15---C16---C17---C18 1.1 (4) C66---Ru2---Ru3---C68 −116.92 (13) C16---C17---C18---C19 −0.8 (5) C67---Ru2---Ru3---C68 −30.05 (13) C15---C14---C19---C18 0.6 (4) C65---Ru2---Ru3---C68 151.58 (12) P2---C14---C19---C18 178.6 (2) P2---Ru2---Ru3---C68 53.27 (10) C17---C18---C19---C14 0.0 (5) Ru1---Ru2---Ru3---C68 73.95 (9) C14---P2---C20---C21 −102.9 (3) C66---Ru2---Ru3---C70 66.79 (13) C13---P2---C20---C21 1.8 (3) C67---Ru2---Ru3---C70 153.66 (12) Ru2---P2---C20---C21 124.9 (2) C65---Ru2---Ru3---C70 −24.71 (12) C14---P2---C20---C25 77.4 (3) P2---Ru2---Ru3---C70 −123.02 (9) C13---P2---C20---C25 −177.9 (2) Ru1---Ru2---Ru3---C70 −102.34 (8) Ru2---P2---C20---C25 −54.7 (3) C66---Ru2---Ru3---As1 117.60 (12) C25---C20---C21---C22 1.3 (5) C67---Ru2---Ru3---As1 −155.54 (11) P2---C20---C21---C22 −178.4 (2) C65---Ru2---Ru3---As1 26.10 (10) C20---C21---C22---C23 −0.6 (5) P2---Ru2---Ru3---As1 −72.22 (8) C21---C22---C23---C24 −0.2 (5) Ru1---Ru2---Ru3---As1 −51.54 (6) C22---C23---C24---C25 0.2 (5) C66---Ru2---Ru3---Ru1 169.13 (10) C23---C24---C25---C20 0.5 (5) C67---Ru2---Ru3---Ru1 −104.00 (9) C21---C20---C25---C24 −1.2 (5) C65---Ru2---Ru3---Ru1 77.63 (8) P2---C20---C25---C24 178.4 (2) P2---Ru2---Ru3---Ru1 −20.68 (4) C38---As1---C26---C31 167.7 (2) C63---Ru1---Ru3---C69 151.5 (2) C50---As1---C26---C31 −88.0 (3) C64---Ru1---Ru3---C69 −122.5 (2) Ru3---As1---C26---C31 41.4 (3) C62---Ru1---Ru3---C69 57.8 (2) C38---As1---C26---C27 −11.8 (3) P1---Ru1---Ru3---C69 −51.18 (19) C50---As1---C26---C27 92.4 (3) Ru2---Ru1---Ru3---C69 −20.08 (19) Ru3---As1---C26---C27 −138.2 (2) C63---Ru1---Ru3---C68 68.06 (14) C31---C26---C27---C28 −0.6 (5) C64---Ru1---Ru3---C68 153.99 (13) As1---C26---C27---C28 179.0 (2) C62---Ru1---Ru3---C68 −25.66 (13) C26---C27---C28---C29 −0.6 (5) P1---Ru1---Ru3---C68 −134.66 (10) C27---C28---C29---C30 1.4 (5) Ru2---Ru1---Ru3---C68 −103.57 (9) C27---C28---C29---C32 −177.3 (3) C63---Ru1---Ru3---C70 −112.19 (14) C28---C29---C30---C31 −1.0 (5) C64---Ru1---Ru3---C70 −26.27 (13) C32---C29---C30---C31 177.7 (3) C62---Ru1---Ru3---C70 154.09 (13) C27---C26---C31---C30 1.0 (5) P1---Ru1---Ru3---C70 45.08 (10) As1---C26---C31---C30 −178.6 (2) Ru2---Ru1---Ru3---C70 76.18 (9) C29---C30---C31---C26 −0.2 (5) C63---Ru1---Ru3---As1 −17.62 (10) C30---C29---C32---C33 130.4 (4) C64---Ru1---Ru3---As1 68.30 (9) C28---C29---C32---C33 −50.9 (5) C62---Ru1---Ru3---As1 −111.34 (9) C30---C29---C32---C37 −50.5 (5) P1---Ru1---Ru3---As1 139.66 (4) C28---C29---C32---C37 128.2 (4) Ru2---Ru1---Ru3---As1 170.752 (14) C37---C32---C33---C34 1.0 (6) C63---Ru1---Ru3---Ru2 171.63 (10) C29---C32---C33---C34 −179.9 (4) C64---Ru1---Ru3---Ru2 −102.45 (9) C32---C33---C34---C35 −0.3 (7) C62---Ru1---Ru3---Ru2 77.91 (9) C33---C34---C35---C36 −1.8 (7) P1---Ru1---Ru3---Ru2 −31.10 (4) C34---C35---C36---C37 3.2 (7) C69---Ru3---As1---C38 65.82 (13) C33---C32---C37---C36 0.4 (6) C68---Ru3---As1---C38 161.38 (12) C29---C32---C37---C36 −178.7 (4) C70---Ru3---As1---C38 −22.65 (12) C35---C36---C37---C32 −2.6 (7) Ru2---Ru3---As1---C38 −72.69 (11) C50---As1---C38---C43 −165.2 (2) Ru1---Ru3---As1---C38 −120.01 (9) C26---As1---C38---C43 −60.9 (3) C69---Ru3---As1---C50 −47.98 (14) Ru3---As1---C38---C43 74.0 (2) C68---Ru3---As1---C50 47.57 (13) C50---As1---C38---C39 19.8 (3) C70---Ru3---As1---C50 −136.46 (12) C26---As1---C38---C39 124.1 (3) Ru2---Ru3---As1---C50 173.50 (11) Ru3---As1---C38---C39 −101.0 (2) Ru1---Ru3---As1---C50 126.18 (9) C43---C38---C39---C40 −1.3 (5) C69---Ru3---As1---C26 −172.52 (15) As1---C38---C39---C40 173.8 (2) C68---Ru3---As1---C26 −76.96 (14) C38---C39---C40---C41 1.4 (5) C70---Ru3---As1---C26 99.00 (14) C39---C40---C41---C42 0.2 (5) Ru2---Ru3---As1---C26 48.97 (13) C39---C40---C41---C44 179.9 (3) Ru1---Ru3---As1---C26 1.65 (11) C40---C41---C42---C43 −1.9 (5) C63---Ru1---P1---C1 75.39 (14) C44---C41---C42---C43 178.4 (3) C64---Ru1---P1---C1 −16.59 (13) C41---C42---C43---C38 2.0 (5) C62---Ru1---P1---C1 168.35 (13) C39---C38---C43---C42 −0.4 (5) Ru2---Ru1---P1---C1 −109.84 (10) As1---C38---C43---C42 −175.5 (2) Ru3---Ru1---P1---C1 −83.52 (11) C40---C41---C44---C49 −137.7 (3) C63---Ru1---P1---C7 −43.49 (15) C42---C41---C44---C49 42.1 (4) C64---Ru1---P1---C7 −135.47 (14) C40---C41---C44---C45 42.8 (4) C62---Ru1---P1---C7 49.47 (14) C42---C41---C44---C45 −137.5 (3) Ru2---Ru1---P1---C7 131.28 (11) C49---C44---C45---C46 −0.7 (5) Ru3---Ru1---P1---C7 157.60 (11) C41---C44---C45---C46 178.9 (3) C63---Ru1---P1---C13 −166.15 (15) C44---C45---C46---C47 0.0 (6) C64---Ru1---P1---C13 101.87 (13) C45---C46---C47---C48 1.1 (6) C62---Ru1---P1---C13 −73.19 (14) C46---C47---C48---C49 −1.5 (6) Ru2---Ru1---P1---C13 8.63 (11) C47---C48---C49---C44 0.8 (6) Ru3---Ru1---P1---C13 34.95 (12) C45---C44---C49---C48 0.3 (5) C66---Ru2---P2---C20 110.86 (14) C41---C44---C49---C48 −179.2 (3) C67---Ru2---P2---C20 19.24 (14) C38---As1---C50---C51 −105.5 (3) C65---Ru2---P2---C20 −158.89 (13) C26---As1---C50---C51 150.8 (3) Ru3---Ru2---P2---C20 −59.31 (12) Ru3---As1---C50---C51 14.3 (3) Ru1---Ru2---P2---C20 −77.38 (11) C38---As1---C50---C55 73.7 (3) C66---Ru2---P2---C14 −15.08 (15) C26---As1---C50---C55 −30.0 (3) C67---Ru2---P2---C14 −106.69 (14) Ru3---As1---C50---C55 −166.6 (2) C65---Ru2---P2---C14 75.18 (13) C55---C50---C51---C52 2.3 (5) Ru3---Ru2---P2---C14 174.76 (10) As1---C50---C51---C52 −178.5 (3) Ru1---Ru2---P2---C14 156.68 (11) C50---C51---C52---C53 0.8 (5) C66---Ru2---P2---C13 −128.13 (14) C51---C52---C53---C54 −3.7 (5) C67---Ru2---P2---C13 140.25 (13) C51---C52---C53---C56 174.6 (3) C65---Ru2---P2---C13 −37.88 (12) C52---C53---C54---C55 3.4 (5) Ru3---Ru2---P2---C13 61.70 (11) C56---C53---C54---C55 −174.9 (3) Ru1---Ru2---P2---C13 43.63 (10) C53---C54---C55---C50 −0.4 (5) C7---P1---C1---C2 −110.8 (3) C51---C50---C55---C54 −2.6 (5) C13---P1---C1---C2 −6.0 (3) As1---C50---C55---C54 178.3 (3) Ru1---P1---C1---C2 119.5 (3) C52---C53---C56---C57 −25.7 (5) C7---P1---C1---C6 70.9 (3) C54---C53---C56---C57 152.6 (3) C13---P1---C1---C6 175.7 (3) C52---C53---C56---C61 153.6 (3) Ru1---P1---C1---C6 −58.8 (3) C54---C53---C56---C61 −28.2 (5) C6---C1---C2---C3 −1.8 (5) C61---C56---C57---C58 0.3 (5) P1---C1---C2---C3 179.9 (3) C53---C56---C57---C58 179.6 (3) C1---C2---C3---C4 −0.7 (6) C56---C57---C58---C59 0.8 (5) C2---C3---C4---C5 2.7 (6) C57---C58---C59---C60 −1.1 (5) C3---C4---C5---C6 −2.1 (6) C58---C59---C60---C61 0.3 (5) C4---C5---C6---C1 −0.4 (6) C59---C60---C61---C56 0.8 (5) C2---C1---C6---C5 2.4 (5) C57---C56---C61---C60 −1.1 (5) P1---C1---C6---C5 −179.2 (3) C53---C56---C61---C60 179.6 (3) C1---P1---C7---C8 45.4 (3) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e7638 .table-wrap} ---------------------------------------------------------------------------------------- Cg1 and Cg2 are the centroids of the C7--C12 and C26--C31 benzene rings, respectively. ---------------------------------------------------------------------------------------- ::: ::: {#d1e7642 .table-wrap} ---------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C46---H46A···O9^i^ 0.93 2.56 3.249 (4) 131 C21---H21A···Cg1 0.93 2.95 3.707 (4) 139 C24---H24A···Cg2^ii^ 0.93 2.92 3.582 (4) 129 ---------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) *x*+1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 and *Cg*2 are the centroids of the C7--C12 and C26--C31 benzene rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ --------- ------- ----------- ------------- C46---H46*A*⋯O9^i^ 0.93 2.56 3.249 (4) 131 C21---H21*A*⋯*Cg*1 0.93 2.95 3.707 (4) 139 C24---H24*A*⋯*Cg*2^ii^ 0.93 2.92 3.582 (4) 129 Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia. [^2]: § Thomson Reuters ResearcherID: E-2833-2010. Current address: Department of Chemistry, Gokhale Centenary College, Ankola 5813 14, NK, Karnataka, India. [^3]: ¶ Thomson Reuters ResearcherID: A-5523-2009 [^4]: ‡‡ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: [email protected]
PubMed Central
2024-06-05T04:04:16.828584
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051758/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m216-m217", "authors": [ { "first": "Omar bin", "last": "Shawkataly" }, { "first": "Imthyaz Ahmed", "last": "Khan" }, { "first": "Siti Syaida", "last": "Sirat" }, { "first": "Chin Sing", "last": "Yeap" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3051759
Related literature {#sec1} ================== For general background to hydrazones, see: Rasras *et al.* (2010[@bb7]); Pyta *et al.* (2010[@bb6]); Angelusiu *et al.* (2010[@bb3]). For related structures, see: Fun *et al.* (2008[@bb5]); Singh & Singh (2010[@bb10]); Ahmad *et al.* (2010[@bb1]); Tang (2010[@bb11]). For reference bond-length data, see: Allen *et al.* (1987[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~15~N~3~O*M* *~r~* = 253.30Orthorhombic,*a* = 19.296 (3) Å*b* = 8.1417 (18) Å*c* = 17.294 (3) Å*V* = 2716.8 (9) Å^3^*Z* = 8Mo *K*α radiationμ = 0.08 mm^−1^*T* = 298 K0.20 × 0.20 × 0.18 mm ### Data collection {#sec2.1.2} Bruker SMART CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb8]) *T* ~min~ = 0.984, *T* ~max~ = 0.98613661 measured reflections2966 independent reflections1539 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.069 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.056*wR*(*F* ^2^) = 0.158*S* = 1.022966 reflections177 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e400} Data collection: *SMART* (Bruker, 2002[@bb4]); cell refinement: *SAINT* (Bruker, 2002[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb9]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810054267/sj5083sup1.cif](http://dx.doi.org/10.1107/S1600536810054267/sj5083sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054267/sj5083Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054267/sj5083Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5083&file=sj5083sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5083sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5083&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5083](http://scripts.iucr.org/cgi-bin/sendsup?sj5083)). Financial support from the Jiaying University research fund is gratefully acknowledged. Comment ======= Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras *et al.*, 2010; Pyta *et al.*, 2010; Angelusiu *et al.*, 2010; Fun *et al.*, 2008; Singh & Singh, 2010; Ahmad *et al.*, 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1). In the title compound, the dihedral angle between the pyridine and the benzene rings is 36.3 (2)°. The torsion angles C1---C8---N1---N2, C8---N1---N2---C9, and N1---N2---C9---C10 are 7.8 (2), 3.6 (2), and 1.5 (2)°, respectively. Bond lengths in the molecules are normal (Allen *et al.*, 1987) and comparable to those in the similar compound the author reported recently (Tang, 2010). In the crystal structure, molecules are linked through intermolecular N---H···O hydrogen bonds (Table 1), forming chains along the *b* axis (Fig. 2). Experimental {#experimental} ============ 2-Acetylpyridine (0.1 mmol, 12.1 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days. Refinement {#refinement} ========== The amino H atom was located in a difference Fourier map and refined isotropically, with the N---H distances restrained to 0.90 (1) Å \[*U*~iso~(H) = 0.08 Å^2^\]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp^2^---H = 0.93 Å, and C(methyl)---H = 0.96 Å; *U*~iso~(H) = 1.2*U*~eq~(C) and 1.5*U*~eq~(C~methyl~). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. ::: ![](e-67-0o271-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Molecular packing of the title compound, with hydrogen bonds shown as dashed lines. ::: ![](e-67-0o271-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e150 .table-wrap} ----------------------- --------------------------------------- C~15~H~15~N~3~O *D*~x~ = 1.239 Mg m^−3^ *M~r~* = 253.30 Mo *K*α radiation, λ = 0.71073 Å Orthorhombic, *Pbcn* Cell parameters from 1243 reflections *a* = 19.296 (3) Å θ = 2.5--24.6° *b* = 8.1417 (18) Å µ = 0.08 mm^−1^ *c* = 17.294 (3) Å *T* = 298 K *V* = 2716.8 (9) Å^3^ Block, colourless *Z* = 8 0.20 × 0.20 × 0.18 mm *F*(000) = 1072 ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e271 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD area-detector diffractometer 2966 independent reflections Radiation source: fine-focus sealed tube 1539 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.069 ω scans θ~max~ = 27.0°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −24→24 *T*~min~ = 0.984, *T*~max~ = 0.986 *k* = −10→10 13661 measured reflections *l* = −13→22 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e385 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.056 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.158 H atoms treated by a mixture of independent and constrained refinement *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0493*P*)^2^ + 0.5475*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2966 reflections (Δ/σ)~max~ \< 0.001 177 parameters Δρ~max~ = 0.17 e Å^−3^ 1 restraint Δρ~min~ = −0.17 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e542 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e587 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.26051 (10) 0.9439 (2) 0.05651 (11) 0.0451 (5) N2 0.28738 (9) 1.0589 (2) 0.00578 (11) 0.0450 (5) N3 0.43437 (11) 1.1437 (2) −0.10682 (12) 0.0623 (6) O1 0.17755 (8) 1.12421 (19) 0.09416 (11) 0.0613 (5) C1 0.16962 (11) 0.8519 (3) 0.14164 (13) 0.0423 (5) C2 0.10054 (12) 0.8104 (3) 0.12641 (14) 0.0513 (6) C3 0.07187 (15) 0.6857 (4) 0.17027 (18) 0.0751 (9) H3 0.0266 0.6531 0.1602 0.090\* C4 0.10778 (18) 0.6085 (4) 0.22804 (19) 0.0832 (10) H4 0.0866 0.5263 0.2569 0.100\* C5 0.17470 (16) 0.6520 (3) 0.24329 (16) 0.0689 (8) H5 0.1990 0.6005 0.2829 0.083\* C6 0.20621 (13) 0.7725 (3) 0.19965 (14) 0.0536 (6) H6 0.2521 0.8007 0.2092 0.064\* C7 0.05886 (13) 0.8927 (4) 0.06421 (16) 0.0682 (8) H7A 0.0192 0.8263 0.0520 0.102\* H7B 0.0870 0.9060 0.0188 0.102\* H7C 0.0437 0.9984 0.0820 0.102\* C8 0.20235 (11) 0.9857 (3) 0.09561 (13) 0.0423 (5) C9 0.34432 (13) 1.0263 (3) −0.02897 (14) 0.0508 (6) C10 0.36834 (13) 1.1545 (3) −0.08374 (13) 0.0499 (6) C11 0.32524 (14) 1.2794 (3) −0.10794 (15) 0.0644 (7) H11 0.2792 1.2825 −0.0921 0.077\* C12 0.35119 (18) 1.3991 (4) −0.15583 (18) 0.0836 (10) H12 0.3231 1.4851 −0.1723 0.100\* C13 0.41887 (19) 1.3901 (4) −0.17897 (18) 0.0831 (10) H13 0.4377 1.4695 −0.2114 0.100\* C14 0.45800 (16) 1.2616 (4) −0.15322 (16) 0.0735 (9) H14 0.5040 1.2561 −0.1690 0.088\* C15 0.38792 (17) 0.8767 (4) −0.0182 (2) 0.1043 (13) H15A 0.4022 0.8692 0.0349 0.156\* H15B 0.4281 0.8838 −0.0508 0.156\* H15C 0.3615 0.7810 −0.0317 0.156\* H1 0.2784 (13) 0.8410 (17) 0.0589 (16) 0.080\* ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1062 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0503 (11) 0.0302 (10) 0.0547 (12) 0.0008 (9) 0.0072 (10) 0.0072 (10) N2 0.0514 (11) 0.0343 (10) 0.0492 (12) −0.0062 (9) 0.0018 (10) 0.0042 (9) N3 0.0678 (14) 0.0579 (14) 0.0611 (14) −0.0096 (11) 0.0209 (11) −0.0052 (11) O1 0.0568 (10) 0.0342 (9) 0.0930 (14) 0.0044 (8) 0.0086 (9) 0.0081 (9) C1 0.0511 (14) 0.0319 (12) 0.0438 (13) −0.0001 (10) 0.0069 (11) −0.0016 (10) C2 0.0489 (14) 0.0517 (15) 0.0533 (15) −0.0068 (11) 0.0079 (12) −0.0033 (12) C3 0.0606 (17) 0.083 (2) 0.081 (2) −0.0229 (16) 0.0119 (16) 0.0115 (18) C4 0.090 (2) 0.078 (2) 0.082 (2) −0.0174 (18) 0.0242 (19) 0.0276 (18) C5 0.088 (2) 0.0617 (18) 0.0567 (17) 0.0042 (16) 0.0064 (15) 0.0158 (14) C6 0.0614 (15) 0.0422 (14) 0.0573 (16) 0.0013 (12) 0.0007 (13) 0.0023 (12) C7 0.0512 (15) 0.082 (2) 0.0719 (18) −0.0008 (14) −0.0049 (14) 0.0016 (16) C8 0.0439 (13) 0.0300 (12) 0.0531 (14) −0.0024 (10) −0.0038 (11) 0.0020 (11) C9 0.0557 (14) 0.0390 (14) 0.0576 (15) 0.0000 (11) 0.0078 (12) 0.0013 (12) C10 0.0613 (16) 0.0434 (14) 0.0450 (14) −0.0095 (12) 0.0070 (12) −0.0049 (11) C11 0.0624 (16) 0.0629 (17) 0.0678 (18) −0.0059 (14) −0.0004 (14) 0.0220 (15) C12 0.092 (2) 0.081 (2) 0.078 (2) −0.0112 (18) −0.0011 (18) 0.0332 (18) C13 0.105 (3) 0.081 (2) 0.0635 (19) −0.032 (2) 0.0128 (18) 0.0146 (17) C14 0.084 (2) 0.075 (2) 0.0621 (19) −0.0227 (18) 0.0271 (16) −0.0054 (17) C15 0.090 (2) 0.076 (2) 0.147 (3) 0.0296 (18) 0.052 (2) 0.046 (2) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1437 .table-wrap} ---------------- ------------- ------------------- ------------- N1---C8 1.354 (3) C6---H6 0.9300 N1---N2 1.384 (2) C7---H7A 0.9600 N1---H1 0.907 (10) C7---H7B 0.9600 N2---C9 1.280 (3) C7---H7C 0.9600 N3---C14 1.332 (3) C9---C10 1.484 (3) N3---C10 1.338 (3) C9---C15 1.492 (3) O1---C8 1.225 (2) C10---C11 1.379 (3) C1---C6 1.386 (3) C11---C12 1.374 (4) C1---C2 1.400 (3) C11---H11 0.9300 C1---C8 1.490 (3) C12---C13 1.368 (4) C2---C3 1.383 (3) C12---H12 0.9300 C2---C7 1.501 (3) C13---C14 1.365 (4) C3---C4 1.369 (4) C13---H13 0.9300 C3---H3 0.9300 C14---H14 0.9300 C4---C5 1.365 (4) C15---H15A 0.9600 C4---H4 0.9300 C15---H15B 0.9600 C5---C6 1.379 (3) C15---H15C 0.9600 C5---H5 0.9300 C8---N1---N2 117.17 (17) H7B---C7---H7C 109.5 C8---N1---H1 121.7 (17) O1---C8---N1 123.0 (2) N2---N1---H1 120.7 (18) O1---C8---C1 121.2 (2) C9---N2---N1 118.60 (19) N1---C8---C1 115.71 (19) C14---N3---C10 117.3 (2) N2---C9---C10 114.9 (2) C6---C1---C2 120.6 (2) N2---C9---C15 126.5 (2) C6---C1---C8 120.8 (2) C10---C9---C15 118.5 (2) C2---C1---C8 118.7 (2) N3---C10---C11 122.2 (2) C3---C2---C1 117.1 (2) N3---C10---C9 116.2 (2) C3---C2---C7 120.4 (2) C11---C10---C9 121.6 (2) C1---C2---C7 122.5 (2) C12---C11---C10 119.1 (3) C4---C3---C2 122.3 (3) C12---C11---H11 120.4 C4---C3---H3 118.8 C10---C11---H11 120.4 C2---C3---H3 118.8 C13---C12---C11 119.1 (3) C5---C4---C3 120.1 (3) C13---C12---H12 120.4 C5---C4---H4 120.0 C11---C12---H12 120.4 C3---C4---H4 120.0 C14---C13---C12 118.3 (3) C4---C5---C6 119.7 (3) C14---C13---H13 120.9 C4---C5---H5 120.1 C12---C13---H13 120.9 C6---C5---H5 120.1 N3---C14---C13 124.0 (3) C5---C6---C1 120.2 (2) N3---C14---H14 118.0 C5---C6---H6 119.9 C13---C14---H14 118.0 C1---C6---H6 119.9 C9---C15---H15A 109.5 C2---C7---H7A 109.5 C9---C15---H15B 109.5 C2---C7---H7B 109.5 H15A---C15---H15B 109.5 H7A---C7---H7B 109.5 C9---C15---H15C 109.5 C2---C7---H7C 109.5 H15A---C15---H15C 109.5 H7A---C7---H7C 109.5 H15B---C15---H15C 109.5 ---------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1874 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···O1^i^ 0.91 (1) 2.05 (1) 2.937 (2) 165 (3) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1/2, *y*−1/2, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- N1---H1⋯O1^i^ 0.91 (1) 2.05 (1) 2.937 (2) 165 (3) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.845644
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051759/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o271", "authors": [ { "first": "Chun-Bao", "last": "Tang" } ] }
PMC3051760
Related literature {#sec1} ================== For background to organotin(IV) chemistry, see: Evans & Karpel (1985[@bb4]); Kapoor *et al.* (2005[@bb10]); Zhang *et al.* (2006[@bb17]). For compounds containing the \[SnPh~2~Cl~4~\]^2−^ ion in the *cis* or *trans* configuration, see: Ouyang *et al.* (1998[@bb13]); Hazell *et al.* (1998[@bb9]); Fernandez *et al.* (2002[@bb7]); Venkatraman *et al.* (2004[@bb16]); Garcia-Seijo *et al.* (2001[@bb8]); Casas *et al.* (1996[@bb3]); Teoh *et al.* (1992[@bb15]). For related crystal structures, see: Casas *et al.* (1996[@bb3]); Ouyang *et al.* (1998[@bb13]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~3~H~10~N)~2~\[Sn(C~6~H~5~)~2~Cl~4~\]*M* *~r~* = 534.93Monoclinic,*a* = 9.0072 (2) Å*b* = 8.4125 (2) Å*c* = 14.9473 (4) Åβ = 96.046 (1)°*V* = 1126.30 (5) Å^3^*Z* = 2Mo *K*α radiationμ = 1.61 mm^−1^*T* = 150 K0.25 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Nonius KappaCCD diffractometerAbsorption correction: multi-scan (*SORTAV*; Blessing, 1995[@bb2]) *T* ~min~ = 0.689, *T* ~max~ = 0.73912905 measured reflections2571 independent reflections2219 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.048 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.029*wR*(*F* ^2^) = 0.072*S* = 1.082571 reflections122 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 2.36 e Å^−3^Δρ~min~ = −1.41 e Å^−3^ {#d5e537} Data collection: *COLLECT* (Nonius, 1998[@bb11]); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997[@bb12]); data reduction: *DENZO*/*SCALEPACK* (Otwinowski & Minor, 1997[@bb12]); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb14]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb5]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000870/su2238sup1.cif](http://dx.doi.org/10.1107/S1600536811000870/su2238sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000870/su2238Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000870/su2238Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?su2238&file=su2238sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?su2238sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?su2238&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SU2238](http://scripts.iucr.org/cgi-bin/sendsup?su2238)). Comment ======= Our interest for organotin(IV) compounds is related to the various applications found for this family of compounds (Evans & Karpel, 1985; Kapoor *et al.*, 2005; Zhang *et al.*, 2006). Many compounds containing the \[SnPh~2~Cl~4~\]^2-^ion in the *cis* or *trans* conformation have been reported (Ouyang *et al.*, 1998; Hazell *et al.*, 1998; Fernandez *et al.*, 2002; Venkatraman *et al.*, 2004; Garcia-Seijo *et al.*, 2001; Teoh *et al.*, 1992). In our search for new organotin(IV) compounds we have initiated here the study of the interactions between (CH~3~)~3~N.HCl and SnPh~2~Cl~2~, which has yielded the title compound. In the \[Ph~2~SnCl~4~\]^2-^anion, the tin atom is located on a centre of inversion and is bonded to four Cl atoms and two phenyl groups giving an octahedral geometry with the phenyl groups in *trans-* positions (Fig. 1). Consequently, the angle between the two *trans* groups is exactly 180 ° while the phenyl rings are almost perpendicular to the equitorial SnCl\~4\~ plane \[C1---Sn1---Cl1 = 89.39 (6)°, C1---Sn1---Cl2 = 90.86 (7)°\]. The two Sn---C (phenyl) bond distances are 2.149 (3) Å. The Sn---Cl bond distances \[2.5722 (6) and 2.5796 (6) Å\] are similar to those reported for \[Hthiamine\]\[SnPh~2~Cl~4~\]. H~2~O (Casas *et al.*, 1996), *i.e.* 2.573 (2) and 2.571 (2) Å. However, in 8-methoxyquinoliniumSnPh~2~Cl~4~ (Ouyang *et al.*, 1998) these two bond lengths are slightly different \[2.5727 (8) and 2.6099 (8) Å\]. In the crystal the anion and the cations are linked by N---H···Cl hydrogen bonds (Fig. 1) and C---H···Cl intermolecular interactions (Table 1). Experimental {#experimental} ============ The title compound was obtained as a white crystalline solid by reacting trimethylammonium chloride with diphenyltin dichloride in chloroform (2/1 ratio; *M*.p: 443 K). After slow evaporation of the solvent colourless crystals, suitable for X-ray diffraction analysis, were obtained. Refinement {#refinement} ========== The NH H-atom was located in a difference Fourier map and was freely refined. The C-bound H-atoms were included in calculated positions and treated as riding: C---H = 0.95 and 0.98 Å for CH and CH~3~ H-atoms, respectively, with *U*~iso~(H) = k × *U*~eq~(C), where k = 1.2 for CH H-atoms, and k = 1.5 for CH~3~ H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level \[the C-bound H-atoms have been omitted for clarity; symmetry code: (\') = -x + 1, -y + 1, -z + 1\]. ::: ![](e-67-0m203-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e214 .table-wrap} ----------------------------------------- --------------------------------------- (C~3~H~10~N)~2~\[Sn(C~6~H~5~)~2~Cl~4~\] *F*(000) = 540 *M~r~* = 534.93 *D*~x~ = 1.577 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 7261 reflections *a* = 9.0072 (2) Å θ = 2.9--27.5° *b* = 8.4125 (2) Å µ = 1.61 mm^−1^ *c* = 14.9473 (4) Å *T* = 150 K β = 96.046 (1)° Block, colourless *V* = 1126.30 (5) Å^3^ 0.25 × 0.25 × 0.20 mm *Z* = 2 ----------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e355 .table-wrap} -------------------------------------------------------------- -------------------------------------- Nonius KappaCCD diffractometer 2571 independent reflections Radiation source: fine-focus sealed tube 2219 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.048 142 2.0 degree images with \\v scans θ~max~ = 27.5°, θ~min~ = 3.3° Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) *h* = −11→11 *T*~min~ = 0.689, *T*~max~ = 0.739 *k* = −10→10 12905 measured reflections *l* = −19→19 -------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e467 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.029 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.072 H atoms treated by a mixture of independent and constrained refinement *S* = 1.08 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0339*P*)^2^ + 0.7419*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2571 reflections (Δ/σ)~max~ \< 0.001 122 parameters Δρ~max~ = 2.36 e Å^−3^ 0 restraints Δρ~min~ = −1.41 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e624 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. multi-scan from symmetry-related measurements Sortav (Blessing 1995) Geometry. Bond distances, angles *etc*. have been calculated using therounded fractional coordinates. All su\'s are estimatedfrom the variances of the (full) variance-covariance matrix.The cell e.s.d.\'s are taken into account in the estimation ofdistances, angles and torsion angles Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e740 .table-wrap} ----- ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 0.50000 0.50000 0.50000 0.0152 (1) Cl1 0.47692 (7) 0.31690 (7) 0.36079 (4) 0.0227 (2) Cl2 0.25333 (7) 0.63136 (8) 0.43640 (4) 0.0256 (2) C1 0.6252 (3) 0.6661 (3) 0.42855 (15) 0.0158 (7) C2 0.7359 (3) 0.6103 (3) 0.37812 (16) 0.0192 (7) C3 0.8137 (3) 0.7152 (3) 0.32797 (17) 0.0233 (8) C4 0.7807 (3) 0.8763 (3) 0.32840 (17) 0.0251 (8) C5 0.6730 (3) 0.9329 (3) 0.37967 (18) 0.0245 (8) C6 0.5941 (3) 0.8278 (3) 0.42938 (16) 0.0202 (7) N1 0.1432 (2) 0.2116 (3) 0.37059 (14) 0.0237 (7) C7 0.1802 (4) 0.0396 (4) 0.3674 (3) 0.0423 (10) C8 0.0931 (4) 0.2743 (4) 0.2800 (2) 0.0424 (10) C9 0.0323 (3) 0.2447 (4) 0.4350 (2) 0.0328 (9) H2 0.75850 0.50000 0.37790 0.0230\* H3 0.88900 0.67660 0.29360 0.0280\* H4 0.83220 0.94790 0.29340 0.0300\* H5 0.65260 1.04370 0.38110 0.0290\* H6 0.51900 0.86680 0.46380 0.0240\* H1 0.224 (3) 0.258 (3) 0.391 (2) 0.022 (7)\* H7A 0.09310 −0.01930 0.34000 0.0630\* H7B 0.20770 0.00040 0.42870 0.0630\* H7C 0.26400 0.02430 0.33160 0.0630\* H8A 0.16890 0.25150 0.23930 0.0640\* H8B 0.07840 0.38950 0.28350 0.0640\* H8C −0.00120 0.22340 0.25710 0.0640\* H9A 0.01660 0.35970 0.43870 0.0490\* H9B 0.06950 0.20380 0.49450 0.0490\* H9C −0.06240 0.19260 0.41420 0.0490\* ----- ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1120 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.0147 (1) 0.0171 (1) 0.0144 (1) −0.0006 (1) 0.0041 (1) 0.0010 (1) Cl1 0.0237 (3) 0.0258 (3) 0.0196 (3) −0.0035 (2) 0.0072 (2) −0.0058 (2) Cl2 0.0181 (3) 0.0304 (3) 0.0286 (3) 0.0049 (2) 0.0043 (2) 0.0089 (3) C1 0.0158 (11) 0.0185 (12) 0.0132 (11) −0.0032 (9) 0.0025 (8) 0.0009 (8) C2 0.0196 (12) 0.0212 (12) 0.0169 (12) −0.0013 (9) 0.0030 (9) 0.0000 (9) C3 0.0199 (12) 0.0335 (15) 0.0172 (12) −0.0030 (10) 0.0056 (9) 0.0014 (10) C4 0.0240 (13) 0.0290 (14) 0.0215 (13) −0.0092 (11) −0.0009 (10) 0.0070 (10) C5 0.0287 (14) 0.0166 (12) 0.0275 (13) −0.0034 (10) −0.0007 (11) 0.0033 (10) C6 0.0211 (12) 0.0191 (12) 0.0204 (12) 0.0005 (9) 0.0028 (9) −0.0018 (9) N1 0.0182 (11) 0.0313 (12) 0.0210 (11) −0.0051 (9) −0.0002 (9) −0.0037 (9) C7 0.0308 (16) 0.0350 (16) 0.060 (2) −0.0007 (13) −0.0005 (15) −0.0132 (15) C8 0.0371 (17) 0.068 (2) 0.0211 (15) −0.0077 (15) −0.0020 (13) 0.0081 (14) C9 0.0277 (15) 0.0436 (17) 0.0282 (15) −0.0044 (12) 0.0078 (12) −0.0067 (12) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1403 .table-wrap} ------------------------ -------------- -------------------- -------------- Sn1---Cl1 2.5796 (6) C5---C6 1.397 (4) Sn1---Cl2 2.5722 (6) C2---H2 0.9500 Sn1---C1 2.149 (3) C3---H3 0.9500 Sn1---Cl1^i^ 2.5796 (6) C4---H4 0.9500 Sn1---Cl2^i^ 2.5722 (6) C5---H5 0.9500 Sn1---C1^i^ 2.149 (3) C6---H6 0.9500 N1---C9 1.485 (3) C7---H7A 0.9800 N1---C7 1.487 (4) C7---H7B 0.9800 N1---C8 1.479 (4) C7---H7C 0.9800 N1---H1 0.85 (3) C8---H8A 0.9800 C1---C6 1.389 (4) C8---H8B 0.9800 C1---C2 1.393 (4) C8---H8C 0.9800 C2---C3 1.394 (4) C9---H9A 0.9800 C3---C4 1.388 (4) C9---H9B 0.9800 C4---C5 1.383 (4) C9---H9C 0.9800 Cl1---Sn1---Cl2 88.01 (2) C1---C2---H2 120.00 Cl1---Sn1---C1 89.39 (6) C3---C2---H2 120.00 Cl1---Sn1---Cl1^i^ 180.00 C2---C3---H3 120.00 Cl1---Sn1---Cl2^i^ 91.99 (2) C4---C3---H3 120.00 Cl1---Sn1---C1^i^ 90.61 (6) C5---C4---H4 120.00 Cl2---Sn1---C1 90.86 (7) C3---C4---H4 120.00 Cl1^i^---Sn1---Cl2 91.99 (2) C4---C5---H5 120.00 Cl2---Sn1---Cl2^i^ 180.00 C6---C5---H5 120.00 Cl2---Sn1---C1^i^ 89.14 (7) C5---C6---H6 120.00 Cl1^i^---Sn1---C1 90.61 (6) C1---C6---H6 120.00 Cl2^i^---Sn1---C1 89.14 (7) N1---C7---H7A 109.00 C1---Sn1---C1^i^ 180.00 N1---C7---H7B 109.00 Cl1^i^---Sn1---Cl2^i^ 88.01 (2) N1---C7---H7C 110.00 Cl1^i^---Sn1---C1^i^ 89.39 (6) H7A---C7---H7B 109.00 Cl2^i^---Sn1---C1^i^ 90.86 (7) H7A---C7---H7C 110.00 C7---N1---C8 111.4 (3) H7B---C7---H7C 109.00 C7---N1---C9 111.8 (2) N1---C8---H8A 109.00 C8---N1---C9 111.4 (2) N1---C8---H8B 109.00 C8---N1---H1 109.3 (19) N1---C8---H8C 109.00 C9---N1---H1 106.8 (19) H8A---C8---H8B 109.00 C7---N1---H1 105.7 (17) H8A---C8---H8C 109.00 C2---C1---C6 119.4 (2) H8B---C8---H8C 109.00 Sn1---C1---C2 119.52 (18) N1---C9---H9A 109.00 Sn1---C1---C6 121.02 (19) N1---C9---H9B 109.00 C1---C2---C3 120.4 (2) N1---C9---H9C 109.00 C2---C3---C4 119.7 (2) H9A---C9---H9B 109.00 C3---C4---C5 120.1 (2) H9A---C9---H9C 109.00 C4---C5---C6 120.2 (2) H9B---C9---H9C 110.00 C1---C6---C5 120.1 (2) Cl1---Sn1---C1---C2 −43.53 (19) Sn1---C1---C2---C3 177.05 (19) Cl1---Sn1---C1---C6 134.3 (2) C6---C1---C2---C3 −0.8 (4) Cl2---Sn1---C1---C2 −131.53 (19) Sn1---C1---C6---C5 −177.54 (19) Cl2---Sn1---C1---C6 46.3 (2) C2---C1---C6---C5 0.3 (4) Cl1^i^---Sn1---C1---C2 136.47 (19) C1---C2---C3---C4 0.1 (4) Cl1^i^---Sn1---C1---C6 −45.7 (2) C2---C3---C4---C5 1.2 (4) Cl2^i^---Sn1---C1---C2 48.47 (19) C3---C4---C5---C6 −1.7 (4) Cl2^i^---Sn1---C1---C6 −133.7 (2) C4---C5---C6---C1 1.0 (4) ------------------------ -------------- -------------------- -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1980 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1···Cl1 0.85 (3) 2.42 (3) 3.152 (2) 144 (3) C5---H5···Cl1^ii^ 0.95 2.79 3.678 (3) 156 ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (ii) *x*, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- ---------- ---------- ----------- ------------- N1---H1⋯Cl1 0.85 (3) 2.42 (3) 3.152 (2) 144 (3) C5---H5⋯Cl1^i^ 0.95 2.79 3.678 (3) 156 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.850469
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051760/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m203-m204", "authors": [ { "first": "Tidiane", "last": "Diop" }, { "first": "Libasse", "last": "Diop" }, { "first": "K. C. Kieran", "last": "Molloy" }, { "first": "Gabrielle", "last": "Kocioc-Köhn" } ] }
PMC3051761
Related literature {#sec1} ================== For the biological activity of organotin derivatives, see: Gielen *et al.* (1988[@bb1]). For a related structure, see: Teoh *et al.* (2002[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sn~4~(C~7~H~7~)~8~(C~2~H~2~ClO~2~)~4~O~2~\]*M* *~r~* = 1609.71Triclinic,*a* = 10.4377 (8) Å*b* = 13.0091 (9) Å*c* = 13.3920 (11) Åα = 104.920 (2)°β = 103.208 (1)°γ = 106.498 (1)°*V* = 1593.0 (2) Å^3^*Z* = 1Mo *K*α radiationμ = 1.77 mm^−1^*T* = 298 K0.20 × 0.13 × 0.08 mm ### Data collection {#sec2.1.2} Bruker SMART CCD diffractometerAbsorption correction: multi-scan (*SADABS*, Sheldrick, 1996[@bb2]) *T* ~min~ = 0.718, *T* ~max~ = 0.8718386 measured reflections5551 independent reflections4110 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.023 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.054*S* = 1.015551 reflections370 parametersH-atom parameters constrainedΔρ~max~ = 0.81 e Å^−3^Δρ~min~ = −0.59 e Å^−3^ {#d5e477} Data collection: *SMART* (Siemens, 1996[@bb4]); cell refinement: *SAINT* (Siemens, 1996[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb3]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb3]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810054000/rz2532sup1.cif](http://dx.doi.org/10.1107/S1600536810054000/rz2532sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054000/rz2532Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054000/rz2532Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rz2532&file=rz2532sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rz2532sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rz2532&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RZ2532](http://scripts.iucr.org/cgi-bin/sendsup?rz2532)). We acknowledge the National Natural Science Foundation of China (20771053), the National Basic Research Program (No. 2010CB234601) and the Natural Science Foundation of Shandong Province (Y2008B48) for financial support. Comment ======= Organotin derivatives of carboxylic acid ligands have been extensively studied due to their biological activities (Gielen *et al.*, 1988). In our ongoing studies on chloroacetic acid and organotin, the title compound has been synthesized and we report herein its crystal structure. The molecular structure of the tetranuclear title compound is shown in Fig. 1. Each Sn atom is five-coordinated by two carboxylic O atoms, an oxo O atom, and two C atoms of two benzyl anions into a distorted trigonal-bipyramidal geometry very similar to that observed in a related compound (Teoh *et al.*, 2002). The Sn---O distances are in the range 2.024 (2)--2.217 (2) Å. The conformation of the complex molecule is stabilized by a pair of C---H···O hydrogen bonds (Table 1). In the crystal (Fig. 2), complex molecules are connected along the \[110\] direction forming zigzag chains by C---H···O hydrogen bonds. Experimental {#experimental} ============ The reaction was carried out under nitrogen atmosphere. Chloroacetic acid (4 mmol) was added to a mixture of ethanol and benzene (1:3 *v*/*v*, 30 ml) with sodium ethoxide (4 mmol). The mixture was stirred for 0.5 h and then dichlorodibenzyltin (4 mmol) was added and the mixture was stirred at room temperature for 12 h. Crystals suitable for X-ray analysis were obtained by slow evaporation of a dichloromethane--petroleum ether (1:2 *v*/*v*) solution over a period of two weeks. Analysis, calculated for \[(C~6~H~5~CH~2~)~8~(C~2~H~2~ClO~2~)~4~O~2~Sn~4~\] (Mr = 1609.71): C 47.75, H 4.00%; found: C 47.82, H 3.95%. Refinement {#refinement} ========== All H atoms were positioned geometrically and refined as riding on their parent atoms, with C---H = 0.93--0.97 Å, and with *U*~iso~(H) = 1.2 *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry code: (A) 1-x, -y, -z. ::: ![](e-67-0m147-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound, showing a one-dimensional chain formed by C---H···O hydrogen bonds (dashed lines). ::: ![](e-67-0m147-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e157 .table-wrap} ----------------------------------------------- --------------------------------------- \[Sn~4~(C~7~H~7~)~8~(C~2~H~2~ClO~2~)~4~O~2~\] *Z* = 1 *M~r~* = 1609.71 *F*(000) = 796 Triclinic, *P*1 *D*~x~ = 1.678 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.4377 (8) Å Cell parameters from 3277 reflections *b* = 13.0091 (9) Å θ = 2.8--26.3° *c* = 13.3920 (11) Å µ = 1.77 mm^−1^ α = 104.920 (2)° *T* = 298 K β = 103.208 (1)° Block, colourless γ = 106.498 (1)° 0.20 × 0.13 × 0.08 mm *V* = 1593.0 (2) Å^3^ ----------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e310 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD diffractometer 5551 independent reflections Radiation source: fine-focus sealed tube 4110 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.023 phi and ω scans θ~max~ = 25.0°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*, Sheldrick, 1996) *h* = −12→12 *T*~min~ = 0.718, *T*~max~ = 0.871 *k* = −15→15 8386 measured reflections *l* = −11→15 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e425 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.054 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0103*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5551 reflections (Δ/σ)~max~ = 0.001 370 parameters Δρ~max~ = 0.81 e Å^−3^ 0 restraints Δρ~min~ = −0.59 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e581 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 0.64849 (3) 0.28126 (2) 0.12506 (2) 0.03004 (9) Sn2 0.42902 (3) −0.01234 (2) 0.09813 (2) 0.02829 (9) Cl1 0.36275 (18) 0.18206 (12) 0.44052 (12) 0.0831 (5) Cl2 0.8211 (2) 0.19683 (14) −0.20870 (14) 0.1118 (7) O1 0.5054 (3) 0.2782 (2) 0.2235 (2) 0.0383 (8) O2 0.4600 (3) 0.1147 (2) 0.2565 (2) 0.0392 (8) O3 0.7429 (3) 0.2483 (2) −0.0057 (2) 0.0379 (8) O4 0.8784 (4) 0.4294 (3) 0.0608 (3) 0.0715 (12) O5 0.5589 (3) 0.10884 (18) 0.0586 (2) 0.0285 (7) C1 0.4706 (4) 0.2167 (4) 0.2781 (3) 0.0315 (10) C2 0.4360 (5) 0.2750 (3) 0.3763 (3) 0.0454 (13) H2A 0.3700 0.3104 0.3532 0.055\* H2B 0.5217 0.3351 0.4291 0.055\* C3 0.8232 (5) 0.3343 (4) −0.0136 (4) 0.0457 (13) C4 0.8540 (6) 0.3327 (4) −0.1197 (4) 0.082 (2) H4A 0.9524 0.3793 −0.1021 0.098\* H4B 0.7970 0.3673 −0.1571 0.098\* C5 0.5445 (4) 0.3777 (3) 0.0550 (3) 0.0399 (12) H5A 0.5691 0.3829 −0.0096 0.048\* H5B 0.4430 0.3385 0.0327 0.048\* C6 0.5849 (5) 0.4954 (3) 0.1341 (4) 0.0417 (12) C7 0.5036 (6) 0.5190 (4) 0.1995 (4) 0.0570 (14) H7 0.4217 0.4615 0.1926 0.068\* C8 0.5428 (7) 0.6268 (5) 0.2745 (5) 0.0718 (18) H8 0.4860 0.6415 0.3165 0.086\* C9 0.6644 (7) 0.7124 (4) 0.2878 (5) 0.0757 (19) H9 0.6917 0.7842 0.3401 0.091\* C10 0.7446 (6) 0.6917 (4) 0.2242 (4) 0.0681 (17) H10 0.8261 0.7501 0.2318 0.082\* C11 0.7060 (5) 0.5837 (4) 0.1477 (4) 0.0536 (14) H11 0.7626 0.5706 0.1051 0.064\* C12 0.8304 (4) 0.3392 (4) 0.2657 (3) 0.0464 (13) H12A 0.8584 0.2747 0.2687 0.056\* H12B 0.9069 0.3945 0.2560 0.056\* C13 0.8156 (4) 0.3925 (4) 0.3739 (4) 0.0396 (12) C14 0.8072 (5) 0.3359 (4) 0.4463 (4) 0.0579 (14) H14 0.8108 0.2630 0.4278 0.069\* C15 0.7936 (6) 0.3835 (6) 0.5458 (5) 0.0804 (19) H15 0.7890 0.3431 0.5938 0.097\* C16 0.7869 (6) 0.4895 (6) 0.5742 (5) 0.082 (2) H16 0.7772 0.5218 0.6413 0.098\* C17 0.7944 (6) 0.5473 (5) 0.5041 (5) 0.080 (2) H17 0.7899 0.6198 0.5232 0.096\* C18 0.8088 (5) 0.5004 (4) 0.4042 (4) 0.0581 (14) H18 0.8140 0.5416 0.3569 0.070\* C19 0.5469 (4) −0.0892 (3) 0.1865 (4) 0.0439 (12) H19A 0.4798 −0.1469 0.2018 0.053\* H19B 0.5862 −0.1292 0.1374 0.053\* C20 0.6649 (5) −0.0187 (3) 0.2916 (4) 0.0375 (11) C21 0.6393 (6) 0.0059 (4) 0.3895 (4) 0.0545 (14) H21 0.5465 −0.0156 0.3897 0.065\* C22 0.7473 (8) 0.0612 (5) 0.4867 (5) 0.0797 (19) H22 0.7268 0.0766 0.5517 0.096\* C23 0.8841 (8) 0.0940 (5) 0.4894 (5) 0.087 (2) H23 0.9570 0.1303 0.5559 0.105\* C24 0.9137 (6) 0.0732 (5) 0.3939 (6) 0.0766 (18) H24 1.0070 0.0963 0.3948 0.092\* C25 0.8041 (5) 0.0174 (4) 0.2952 (4) 0.0532 (14) H25 0.8249 0.0041 0.2302 0.064\* C26 0.2178 (4) −0.0210 (3) 0.0304 (4) 0.0426 (12) H26A 0.1959 −0.0431 −0.0482 0.051\* H26B 0.1548 −0.0822 0.0445 0.051\* C27 0.1819 (4) 0.0827 (3) 0.0679 (4) 0.0348 (11) C28 0.1365 (4) 0.1037 (4) 0.1589 (4) 0.0433 (12) H28 0.1303 0.0535 0.1977 0.052\* C29 0.1008 (5) 0.1986 (4) 0.1918 (4) 0.0530 (14) H29 0.0704 0.2117 0.2524 0.064\* C30 0.1097 (5) 0.2725 (4) 0.1365 (4) 0.0578 (15) H30 0.0862 0.3363 0.1596 0.069\* C31 0.1532 (5) 0.2540 (4) 0.0466 (4) 0.0554 (14) H31 0.1588 0.3047 0.0085 0.066\* C32 0.1886 (4) 0.1591 (4) 0.0132 (4) 0.0473 (13) H32 0.2178 0.1466 −0.0480 0.057\* ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1535 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.03285 (19) 0.02216 (15) 0.02845 (19) 0.00660 (14) 0.00873 (15) 0.00303 (14) Sn2 0.03113 (18) 0.02562 (16) 0.02665 (19) 0.00911 (13) 0.01113 (15) 0.00652 (14) Cl1 0.1243 (14) 0.0792 (10) 0.0594 (10) 0.0315 (10) 0.0595 (10) 0.0254 (9) Cl2 0.1501 (17) 0.1002 (12) 0.0655 (12) 0.0180 (12) 0.0631 (12) 0.0037 (10) O1 0.0420 (19) 0.0355 (16) 0.0381 (19) 0.0139 (14) 0.0196 (16) 0.0084 (15) O2 0.059 (2) 0.0364 (17) 0.0247 (18) 0.0227 (15) 0.0155 (16) 0.0069 (15) O3 0.0494 (19) 0.0318 (16) 0.0343 (19) 0.0119 (15) 0.0240 (16) 0.0085 (15) O4 0.083 (3) 0.0391 (19) 0.072 (3) −0.0024 (19) 0.038 (2) 0.0014 (19) O5 0.0342 (16) 0.0197 (13) 0.0275 (16) 0.0057 (12) 0.0137 (13) 0.0026 (13) C1 0.022 (2) 0.041 (3) 0.027 (3) 0.013 (2) 0.003 (2) 0.008 (2) C2 0.053 (3) 0.045 (3) 0.033 (3) 0.017 (2) 0.020 (3) 0.002 (2) C3 0.049 (3) 0.041 (3) 0.061 (4) 0.019 (2) 0.034 (3) 0.024 (3) C4 0.105 (5) 0.062 (3) 0.072 (4) 0.001 (3) 0.054 (4) 0.024 (3) C5 0.042 (3) 0.035 (2) 0.039 (3) 0.013 (2) 0.010 (2) 0.010 (2) C6 0.056 (3) 0.033 (2) 0.039 (3) 0.022 (2) 0.012 (3) 0.013 (2) C7 0.070 (4) 0.050 (3) 0.058 (4) 0.031 (3) 0.025 (3) 0.017 (3) C8 0.109 (5) 0.064 (4) 0.064 (4) 0.054 (4) 0.041 (4) 0.018 (3) C9 0.133 (6) 0.039 (3) 0.051 (4) 0.036 (4) 0.022 (4) 0.010 (3) C10 0.091 (5) 0.038 (3) 0.060 (4) 0.010 (3) 0.018 (4) 0.015 (3) C11 0.067 (4) 0.038 (3) 0.054 (4) 0.020 (3) 0.015 (3) 0.017 (3) C12 0.037 (3) 0.056 (3) 0.041 (3) 0.017 (2) 0.011 (2) 0.009 (3) C13 0.029 (3) 0.043 (3) 0.028 (3) 0.008 (2) −0.005 (2) −0.001 (2) C14 0.063 (4) 0.059 (3) 0.049 (4) 0.024 (3) 0.013 (3) 0.017 (3) C15 0.077 (5) 0.114 (5) 0.048 (4) 0.029 (4) 0.017 (4) 0.033 (4) C16 0.060 (4) 0.108 (6) 0.037 (4) 0.015 (4) 0.007 (3) −0.015 (4) C17 0.079 (5) 0.062 (4) 0.071 (5) 0.027 (3) 0.014 (4) −0.015 (4) C18 0.065 (4) 0.051 (3) 0.045 (3) 0.019 (3) 0.008 (3) 0.007 (3) C19 0.044 (3) 0.034 (2) 0.043 (3) 0.014 (2) −0.001 (2) 0.011 (2) C20 0.052 (3) 0.031 (2) 0.031 (3) 0.019 (2) 0.008 (2) 0.012 (2) C21 0.070 (4) 0.048 (3) 0.048 (4) 0.018 (3) 0.020 (3) 0.022 (3) C22 0.126 (6) 0.067 (4) 0.038 (4) 0.036 (4) 0.011 (4) 0.018 (3) C23 0.108 (6) 0.059 (4) 0.056 (5) 0.023 (4) −0.028 (4) 0.015 (4) C24 0.052 (4) 0.069 (4) 0.088 (5) 0.016 (3) −0.004 (4) 0.024 (4) C25 0.059 (4) 0.050 (3) 0.055 (4) 0.023 (3) 0.020 (3) 0.020 (3) C26 0.032 (3) 0.040 (3) 0.039 (3) 0.009 (2) 0.003 (2) −0.001 (2) C27 0.020 (2) 0.033 (2) 0.039 (3) 0.0040 (19) 0.004 (2) 0.004 (2) C28 0.031 (3) 0.047 (3) 0.045 (3) 0.013 (2) 0.009 (2) 0.010 (2) C29 0.042 (3) 0.063 (3) 0.046 (3) 0.025 (3) 0.013 (3) 0.000 (3) C30 0.041 (3) 0.047 (3) 0.069 (4) 0.022 (3) 0.008 (3) −0.003 (3) C31 0.049 (3) 0.049 (3) 0.069 (4) 0.018 (3) 0.016 (3) 0.023 (3) C32 0.040 (3) 0.051 (3) 0.046 (3) 0.015 (2) 0.017 (3) 0.010 (3) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2217 .table-wrap} --------------------------- -------------- ------------------------- ------------ Sn1---O5 2.024 (2) C13---C14 1.363 (6) Sn1---C12 2.131 (4) C13---C18 1.384 (6) Sn1---C5 2.132 (4) C14---C15 1.376 (6) Sn1---O1 2.205 (3) C14---H14 0.9300 Sn1---O3 2.206 (2) C15---C16 1.359 (7) Sn2---O5 2.037 (2) C15---H15 0.9300 Sn2---C19 2.135 (4) C16---C17 1.348 (8) Sn2---C26 2.142 (4) C16---H16 0.9300 Sn2---O5^i^ 2.202 (2) C17---C18 1.381 (6) Sn2---O2 2.217 (2) C17---H17 0.9300 Cl1---C2 1.759 (4) C18---H18 0.9300 Cl2---C4 1.745 (5) C19---C20 1.497 (5) O1---C1 1.251 (4) C19---H19A 0.9700 O2---C1 1.249 (4) C19---H19B 0.9700 O3---C3 1.239 (4) C20---C21 1.372 (6) O4---C3 1.247 (5) C20---C25 1.380 (6) O5---Sn2^i^ 2.202 (2) C21---C22 1.367 (7) C1---C2 1.514 (5) C21---H21 0.9300 C2---H2A 0.9700 C22---C23 1.359 (8) C2---H2B 0.9700 C22---H22 0.9300 C3---C4 1.523 (6) C23---C24 1.361 (7) C4---H4A 0.9700 C23---H23 0.9300 C4---H4B 0.9700 C24---C25 1.388 (7) C5---C6 1.497 (5) C24---H24 0.9300 C5---H5A 0.9700 C25---H25 0.9300 C5---H5B 0.9700 C26---C27 1.495 (5) C6---C11 1.383 (6) C26---H26A 0.9700 C6---C7 1.389 (6) C26---H26B 0.9700 C7---C8 1.380 (6) C27---C32 1.374 (6) C7---H7 0.9300 C27---C28 1.397 (5) C8---C9 1.369 (7) C28---C29 1.384 (6) C8---H8 0.9300 C28---H28 0.9300 C9---C10 1.354 (7) C29---C30 1.352 (6) C9---H9 0.9300 C29---H29 0.9300 C10---C11 1.391 (6) C30---C31 1.369 (6) C10---H10 0.9300 C30---H30 0.9300 C11---H11 0.9300 C31---C32 1.383 (6) C12---C13 1.501 (5) C31---H31 0.9300 C12---H12A 0.9700 C32---H32 0.9300 C12---H12B 0.9700 O5---Sn1---C12 112.97 (14) Sn1---C12---H12A 108.1 O5---Sn1---C5 117.57 (13) C13---C12---H12B 108.1 C12---Sn1---C5 129.31 (16) Sn1---C12---H12B 108.1 O5---Sn1---O1 88.99 (9) H12A---C12---H12B 107.3 C12---Sn1---O1 92.54 (13) C14---C13---C18 117.3 (4) C5---Sn1---O1 84.79 (14) C14---C13---C12 121.1 (4) O5---Sn1---O3 79.27 (9) C18---C13---C12 121.6 (5) C12---Sn1---O3 100.37 (13) C13---C14---C15 121.8 (5) C5---Sn1---O3 92.56 (13) C13---C14---H14 119.1 O1---Sn1---O3 165.15 (10) C15---C14---H14 119.1 O5---Sn2---C19 110.68 (14) C16---C15---C14 120.2 (6) O5---Sn2---C26 107.18 (14) C16---C15---H15 119.9 C19---Sn2---C26 142.10 (17) C14---C15---H15 119.9 O5---Sn2---O5^i^ 76.12 (9) C17---C16---C15 119.2 (6) C19---Sn2---O5^i^ 92.46 (13) C17---C16---H16 120.4 C26---Sn2---O5^i^ 94.86 (13) C15---C16---H16 120.4 O5---Sn2---O2 91.45 (9) C16---C17---C18 121.1 (6) C19---Sn2---O2 88.45 (13) C16---C17---H17 119.5 C26---Sn2---O2 92.33 (13) C18---C17---H17 119.5 O5^i^---Sn2---O2 167.03 (9) C17---C18---C13 120.4 (5) C1---O1---Sn1 131.6 (3) C17---C18---H18 119.8 C1---O2---Sn2 129.1 (3) C13---C18---H18 119.8 C3---O3---Sn1 115.4 (3) C20---C19---Sn2 121.1 (3) Sn1---O5---Sn2 133.37 (12) C20---C19---H19A 107.1 Sn1---O5---Sn2^i^ 122.44 (11) Sn2---C19---H19A 107.1 Sn2---O5---Sn2^i^ 103.88 (9) C20---C19---H19B 107.1 O2---C1---O1 125.8 (4) Sn2---C19---H19B 107.1 O2---C1---C2 119.9 (4) H19A---C19---H19B 106.8 O1---C1---C2 114.3 (4) C21---C20---C25 117.2 (5) C1---C2---Cl1 113.8 (3) C21---C20---C19 121.0 (5) C1---C2---H2A 108.8 C25---C20---C19 121.6 (4) Cl1---C2---H2A 108.8 C22---C21---C20 121.5 (5) C1---C2---H2B 108.8 C22---C21---H21 119.2 Cl1---C2---H2B 108.8 C20---C21---H21 119.2 H2A---C2---H2B 107.7 C23---C22---C21 120.8 (6) O3---C3---O4 123.6 (4) C23---C22---H22 119.6 O3---C3---C4 121.5 (4) C21---C22---H22 119.6 O4---C3---C4 114.8 (4) C24---C23---C22 119.5 (6) C3---C4---Cl2 114.5 (3) C24---C23---H23 120.3 C3---C4---H4A 108.6 C22---C23---H23 120.3 Cl2---C4---H4A 108.6 C23---C24---C25 119.7 (6) C3---C4---H4B 108.6 C23---C24---H24 120.1 Cl2---C4---H4B 108.6 C25---C24---H24 120.1 H4A---C4---H4B 107.6 C20---C25---C24 121.3 (5) C6---C5---Sn1 111.6 (3) C20---C25---H25 119.4 C6---C5---H5A 109.3 C24---C25---H25 119.4 Sn1---C5---H5A 109.3 C27---C26---Sn2 119.1 (3) C6---C5---H5B 109.3 C27---C26---H26A 107.6 Sn1---C5---H5B 109.3 Sn2---C26---H26A 107.6 H5A---C5---H5B 108.0 C27---C26---H26B 107.6 C11---C6---C7 117.4 (4) Sn2---C26---H26B 107.6 C11---C6---C5 121.8 (4) H26A---C26---H26B 107.0 C7---C6---C5 120.8 (4) C32---C27---C28 117.5 (4) C8---C7---C6 120.8 (5) C32---C27---C26 121.7 (4) C8---C7---H7 119.6 C28---C27---C26 120.8 (4) C6---C7---H7 119.6 C29---C28---C27 120.4 (5) C9---C8---C7 120.7 (5) C29---C28---H28 119.8 C9---C8---H8 119.6 C27---C28---H28 119.8 C7---C8---H8 119.6 C30---C29---C28 120.5 (5) C10---C9---C8 119.5 (5) C30---C29---H29 119.8 C10---C9---H9 120.3 C28---C29---H29 119.8 C8---C9---H9 120.3 C29---C30---C31 120.5 (5) C9---C10---C11 120.5 (5) C29---C30---H30 119.7 C9---C10---H10 119.8 C31---C30---H30 119.7 C11---C10---H10 119.8 C30---C31---C32 119.3 (5) C6---C11---C10 121.1 (5) C30---C31---H31 120.4 C6---C11---H11 119.5 C32---C31---H31 120.4 C10---C11---H11 119.5 C27---C32---C31 121.8 (4) C13---C12---Sn1 116.7 (3) C27---C32---H32 119.1 C13---C12---H12A 108.1 C31---C32---H32 119.1 O5---Sn1---O1---C1 45.3 (3) C7---C8---C9---C10 2.0 (9) C12---Sn1---O1---C1 −67.7 (4) C8---C9---C10---C11 −1.5 (9) C5---Sn1---O1---C1 163.1 (4) C7---C6---C11---C10 0.2 (7) O3---Sn1---O1---C1 82.8 (6) C5---C6---C11---C10 −177.8 (5) O5---Sn2---O2---C1 38.0 (3) C9---C10---C11---C6 0.5 (8) C19---Sn2---O2---C1 148.6 (4) O5---Sn1---C12---C13 −108.9 (3) C26---Sn2---O2---C1 −69.3 (4) C5---Sn1---C12---C13 66.4 (4) O5^i^---Sn2---O2---C1 54.4 (7) O1---Sn1---C12---C13 −18.9 (3) O5---Sn1---O3---C3 178.8 (3) O3---Sn1---C12---C13 168.5 (3) C12---Sn1---O3---C3 −69.5 (4) Sn1---C12---C13---C14 106.5 (4) C5---Sn1---O3---C3 61.2 (3) Sn1---C12---C13---C18 −73.0 (5) O1---Sn1---O3---C3 140.5 (4) C18---C13---C14---C15 −0.5 (7) C12---Sn1---O5---Sn2 79.0 (2) C12---C13---C14---C15 −180.0 (5) C5---Sn1---O5---Sn2 −96.9 (2) C13---C14---C15---C16 0.6 (9) O1---Sn1---O5---Sn2 −13.3 (2) C14---C15---C16---C17 −0.3 (10) O3---Sn1---O5---Sn2 175.8 (2) C15---C16---C17---C18 0.0 (10) C12---Sn1---O5---Sn2^i^ −108.46 (17) C16---C17---C18---C13 0.1 (9) C5---Sn1---O5---Sn2^i^ 75.62 (19) C14---C13---C18---C17 0.1 (7) O1---Sn1---O5---Sn2^i^ 159.21 (15) C12---C13---C18---C17 179.6 (4) O3---Sn1---O5---Sn2^i^ −11.65 (14) O5---Sn2---C19---C20 58.2 (4) C19---Sn2---O5---Sn1 −99.1 (2) C26---Sn2---C19---C20 −124.6 (3) C26---Sn2---O5---Sn1 82.6 (2) O5^i^---Sn2---C19---C20 134.3 (4) O5^i^---Sn2---O5---Sn1 173.5 (3) O2---Sn2---C19---C20 −32.8 (4) O2---Sn2---O5---Sn1 −10.2 (2) Sn2---C19---C20---C21 86.8 (5) C19---Sn2---O5---Sn2^i^ 87.36 (15) Sn2---C19---C20---C25 −97.7 (5) C26---Sn2---O5---Sn2^i^ −90.86 (14) C25---C20---C21---C22 −1.7 (7) O5^i^---Sn2---O5---Sn2^i^ 0.0 C19---C20---C21---C22 174.0 (4) O2---Sn2---O5---Sn2^i^ 176.25 (12) C20---C21---C22---C23 0.1 (9) Sn2---O2---C1---O1 −21.5 (6) C21---C22---C23---C24 1.2 (9) Sn2---O2---C1---C2 156.7 (3) C22---C23---C24---C25 −1.0 (9) Sn1---O1---C1---O2 −32.2 (6) C21---C20---C25---C24 1.9 (7) Sn1---O1---C1---C2 149.5 (3) C19---C20---C25---C24 −173.7 (4) O2---C1---C2---Cl1 −7.2 (5) C23---C24---C25---C20 −0.7 (8) O1---C1---C2---Cl1 171.2 (3) O5---Sn2---C26---C27 −61.4 (4) Sn1---O3---C3---O4 18.4 (6) C19---Sn2---C26---C27 121.3 (4) Sn1---O3---C3---C4 −157.4 (4) O5^i^---Sn2---C26---C27 −138.4 (3) O3---C3---C4---Cl2 −21.1 (7) O2---Sn2---C26---C27 30.8 (4) O4---C3---C4---Cl2 162.7 (4) Sn2---C26---C27---C32 93.4 (5) O5---Sn1---C5---C6 157.5 (3) Sn2---C26---C27---C28 −88.4 (4) C12---Sn1---C5---C6 −17.6 (4) C32---C27---C28---C29 −0.3 (6) O1---Sn1---C5---C6 71.4 (3) C26---C27---C28---C29 −178.7 (4) O3---Sn1---C5---C6 −123.3 (3) C27---C28---C29---C30 −0.2 (7) Sn1---C5---C6---C11 84.2 (5) C28---C29---C30---C31 0.5 (8) Sn1---C5---C6---C7 −93.7 (5) C29---C30---C31---C32 −0.3 (7) C11---C6---C7---C8 0.3 (8) C28---C27---C32---C31 0.5 (6) C5---C6---C7---C8 178.2 (5) C26---C27---C32---C31 178.9 (4) C6---C7---C8---C9 −1.3 (9) C30---C31---C32---C27 −0.2 (7) --------------------------- -------------- ------------------------- ------------ ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3814 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C11---H11···O4 0.93 2.49 3.229 (6) 136 C4---H4A···O4^ii^ 0.97 2.44 3.291 (5) 146 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) −*x*+2, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- C11---H11⋯O4 0.93 2.49 3.229 (6) 136 C4---H4*A*⋯O4^i^ 0.97 2.44 3.291 (5) 146 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.853778
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051761/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):m147", "authors": [ { "first": "Jing", "last": "Li" }, { "first": "Handong", "last": "Yin" }, { "first": "Daqi", "last": "Wang" } ] }
PMC3051762
Related literature {#sec1} ================== For background and the biological activity of sulfonamide and its derivatives, see: Korolkovas (1988[@bb10]); Mandell & Sande (1992[@bb11]); Pandya *et al.* (2003[@bb12]); Supuran & Scozzafava (2001[@bb15]). For related structures, see: Aziz-ur-Rehman *et al.* (2010*a* [@bb2],**b*[@bb3],c* [@bb4]); Khan *et al.* (2010[@bb9]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~16~N~2~O~4~S*M* *~r~* = 320.37Orthorhombic,*a* = 15.7277 (4) Å*b* = 11.8351 (3) Å*c* = 16.5247 (4) Å*V* = 3075.89 (13) Å^3^*Z* = 8Mo *K*α radiationμ = 0.23 mm^−1^*T* = 296 K0.24 × 0.18 × 0.09 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometer15586 measured reflections3788 independent reflections2800 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.035 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.118*S* = 1.033788 reflections220 parameters2 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.35 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e493} Data collection: *APEX2* (Bruker, 2007[@bb6]); cell refinement: *SAINT* (Bruker, 2007[@bb6]); data reduction: *SAINT*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb1]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb13]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb7]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb8]) and *PLATON* (Spek, 2009[@bb14]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000432/hg2782sup1.cif](http://dx.doi.org/10.1107/S1600536811000432/hg2782sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000432/hg2782Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000432/hg2782Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2782&file=hg2782sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2782sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2782&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2782](http://scripts.iucr.org/cgi-bin/sendsup?hg2782)). The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore. Comment ======= Sulfonamides are very important because of their antibacterial and enzyme inhibitor properties as well as their extensive use in medicine (Pandya *et al.*, 2003). Sulfonamides also exhibit antimicrobial activity (Korolkovas, 1988; Mandell & Sande, 1992) and have their properties to inhibit the growth of tumor cells (Supuran & Scozzafava, 2001). As a contribution to a structural study of sulfonamide derivatives (Khan *et al.*, 2010; Aziz-ur-Rehman *et al.*, 2010*a*,*b*,*c*), we report here the title compound, *N*-{4-\[(2-methoxyphenyl)sulfamoyl\]phenyl}acetamide, (I). In the title molecule (I), (Fig. 1), the S atom has a distorted tetrahedral geometry \[maximum deviation: O1---S1---O2 = 118.25 (7) °\]. The molecule is twisted at the S atom, with a C1---S1---N2---C9 torsion angle of 56.88 (14) °. The dihedral angle formed between the benzene (C1--C6) and phenyl (C9--C14) rings in (I) is 62.67 (10)°. An intramolecular N2---HN2···O4 hydrogen bond contribute to the stabilization of the molecular conformation, forming an S(6) ring motif (Table 1; Bernstein *et al.*, 1995). In the crystal structure, the molecules of (I) are dimerized due to the intermolecular N---H···O hydrogen bonding (Table 1, Fig. 2) forming an *R*~2~^2^(8) ring motif (Table 1; Bernstein *et al.*, 1995) and these dimers are connected by N---H···O hydrogen bonds, generating a three-dimensional network (Table 1, Fig. 2). Experimental {#experimental} ============ 5 mmol of 2-methoxyaniline was dissolved in 20 ml of distilled water then 5 mmol of 4-acetamidobenzenesulfonyl chloride was addedd. The reaction mixture was stirred for about 2--3 h while the pH of the reaction mixture was maintained between 8--10 using 3% Na~2~CO~3~. The reaction was monitored by TLC. The precipitate formed was filtered, washed with distilled water, dried and recrystallized by using methanol. Refinement {#refinement} ========== The amino H atoms are located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically with C---H = 0.93 for aromatic H and C---H = 0.96 Å for methyl H and allowed to ride on their parent atoms, with *U*~iso~(H) = 1.2*U*~eq~(C~aromatic~) or 1.5*U*~eq~(C~methyl~). The oxygen atom in the acetamide group is disordered over two positions with a major and minor occupancy of 0.52 (5) and 0.48 (5), respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the major component of the disorder is shown. ::: ![](e-67-0o303-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### View of the dimeric N---H···O interactions between the molecules and the other hydrogen bonding interactions in the unit cell. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity and only the major component of the disorder is shown. ::: ![](e-67-0o303-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e162 .table-wrap} ------------------------- --------------------------------------- C~15~H~16~N~2~O~4~S *F*(000) = 1344 *M~r~* = 320.37 *D*~x~ = 1.384 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 4792 reflections *a* = 15.7277 (4) Å θ = 2.5--27.6° *b* = 11.8351 (3) Å µ = 0.23 mm^−1^ *c* = 16.5247 (4) Å *T* = 296 K *V* = 3075.89 (13) Å^3^ Block, colourless *Z* = 8 0.24 × 0.18 × 0.09 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e287 .table-wrap} ---------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 2800 reflections with *I* \> 2σ(*I*) Radiation source: sealed tube *R*~int~ = 0.035 graphite θ~max~ = 28.3°, θ~min~ = 3.4° φ and ω scans *h* = −17→20 15586 measured reflections *k* = −14→15 3788 independent reflections *l* = −22→19 ---------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e385 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.118 H atoms treated by a mixture of independent and constrained refinement *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0648*P*)^2^ + 0.4113*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3788 reflections (Δ/σ)~max~ \< 0.001 220 parameters Δρ~max~ = 0.35 e Å^−3^ 2 restraints Δρ~min~ = −0.28 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e542 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement on *F*^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The observed criterion of *F*^2^ \> σ(*F*^2^) is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e644 .table-wrap} ------ -------------- -------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) S1 0.56431 (2) 0.08868 (3) 0.10743 (2) 0.0342 (1) O1A 0.1823 (9) 0.3615 (19) 0.1605 (11) 0.071 (3) 0.52 (5) O2 0.52415 (8) −0.01701 (9) 0.09026 (8) 0.0464 (4) O3 0.63163 (8) 0.09054 (10) 0.16600 (8) 0.0464 (4) O4 0.52707 (9) 0.29215 (11) −0.06451 (9) 0.0603 (5) N1 0.30275 (9) 0.40934 (13) 0.22401 (10) 0.0439 (5) N2 0.60326 (9) 0.13213 (11) 0.02165 (8) 0.0354 (4) C1 0.48747 (10) 0.18646 (13) 0.13933 (9) 0.0336 (5) C2 0.50585 (11) 0.26178 (14) 0.20091 (11) 0.0436 (5) C3 0.44366 (11) 0.33454 (15) 0.22693 (12) 0.0472 (6) C4 0.36276 (10) 0.33370 (13) 0.19280 (10) 0.0367 (5) C5 0.34562 (11) 0.25968 (15) 0.12988 (11) 0.0462 (6) C6 0.40841 (12) 0.18647 (16) 0.10356 (11) 0.0453 (6) C7 0.21664 (12) 0.40990 (17) 0.21306 (12) 0.0521 (6) C8 0.17075 (13) 0.49861 (19) 0.26052 (14) 0.0639 (8) C9 0.64089 (10) 0.24249 (13) 0.01705 (10) 0.0374 (5) C10 0.60126 (13) 0.32392 (14) −0.03012 (12) 0.0474 (6) C11 0.64036 (18) 0.42861 (17) −0.03904 (15) 0.0696 (9) C12 0.71585 (18) 0.4507 (2) 0.00053 (17) 0.0790 (10) C13 0.75310 (15) 0.3717 (2) 0.04807 (14) 0.0687 (8) C14 0.71651 (12) 0.26592 (17) 0.05603 (12) 0.0511 (6) C15 0.4802 (2) 0.3729 (2) −0.10987 (18) 0.0967 (13) O1B 0.1793 (9) 0.326 (2) 0.1809 (15) 0.083 (3) 0.48 (5) HN1 0.3247 (12) 0.4533 (16) 0.2553 (11) 0.055 (6)\* HN2 0.5717 (11) 0.1143 (16) −0.0160 (11) 0.047 (6)\* H3 0.45580 0.38550 0.26820 0.0570\* H5 0.29230 0.25920 0.10550 0.0550\* H6 0.39710 0.13680 0.06130 0.0540\* H8A 0.20100 0.56890 0.25660 0.0960\* H8B 0.16740 0.47600 0.31620 0.0960\* H8C 0.11440 0.50790 0.23920 0.0960\* H10D 0.46860 0.43760 −0.07660 0.1450\* H10E 0.42760 0.33990 −0.12750 0.1450\* H10F 0.51290 0.39580 −0.15620 0.1450\* H11 0.61570 0.48360 −0.07160 0.0840\* H12 0.74150 0.52090 −0.00560 0.0950\* H13 0.80320 0.38860 0.07540 0.0820\* H14 0.74270 0.21090 0.08750 0.0610\* H2 0.55960 0.26310 0.22430 0.0520\* ------ -------------- -------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1176 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0362 (2) 0.0288 (2) 0.0376 (2) 0.0018 (2) −0.0030 (2) 0.0035 (2) O1A 0.037 (4) 0.095 (7) 0.082 (5) 0.008 (3) −0.019 (3) −0.040 (5) O2 0.0568 (8) 0.0291 (6) 0.0532 (7) −0.0046 (5) −0.0027 (6) 0.0050 (5) O3 0.0457 (7) 0.0455 (7) 0.0480 (7) 0.0078 (5) −0.0120 (6) 0.0032 (5) O4 0.0614 (9) 0.0490 (8) 0.0704 (10) 0.0066 (7) −0.0070 (7) 0.0153 (7) N1 0.0383 (8) 0.0469 (9) 0.0464 (8) 0.0019 (6) −0.0032 (6) −0.0141 (7) N2 0.0367 (7) 0.0320 (7) 0.0374 (7) −0.0013 (6) 0.0001 (6) −0.0036 (6) C1 0.0340 (8) 0.0343 (8) 0.0325 (8) −0.0002 (6) 0.0015 (6) 0.0006 (6) C2 0.0345 (8) 0.0467 (9) 0.0497 (10) −0.0020 (7) −0.0064 (7) −0.0103 (8) C3 0.0407 (9) 0.0509 (10) 0.0499 (10) −0.0020 (8) −0.0048 (8) −0.0192 (8) C4 0.0359 (8) 0.0394 (8) 0.0348 (8) −0.0011 (7) 0.0014 (6) −0.0026 (6) C5 0.0377 (9) 0.0560 (11) 0.0449 (9) 0.0068 (8) −0.0111 (7) −0.0119 (8) C6 0.0431 (9) 0.0524 (11) 0.0403 (9) 0.0058 (8) −0.0092 (7) −0.0143 (8) C7 0.0390 (9) 0.0689 (13) 0.0483 (10) 0.0050 (9) 0.0014 (8) −0.0119 (9) C8 0.0514 (12) 0.0760 (14) 0.0644 (13) 0.0240 (11) −0.0038 (10) −0.0101 (11) C9 0.0393 (8) 0.0345 (8) 0.0384 (8) −0.0053 (7) 0.0122 (7) −0.0070 (7) C10 0.0567 (11) 0.0363 (9) 0.0493 (10) −0.0026 (8) 0.0133 (9) −0.0009 (8) C11 0.1000 (19) 0.0387 (11) 0.0702 (14) −0.0098 (11) 0.0275 (13) 0.0028 (10) C12 0.102 (2) 0.0542 (13) 0.0809 (17) −0.0404 (14) 0.0384 (16) −0.0221 (13) C13 0.0634 (14) 0.0780 (15) 0.0647 (13) −0.0357 (12) 0.0228 (11) −0.0303 (13) C14 0.0432 (10) 0.0601 (12) 0.0499 (10) −0.0109 (9) 0.0097 (8) −0.0145 (9) C15 0.128 (3) 0.0751 (16) 0.087 (2) 0.0394 (18) −0.0316 (18) 0.0058 (14) O1B 0.050 (3) 0.091 (7) 0.109 (7) −0.021 (4) 0.023 (4) −0.047 (5) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1650 .table-wrap} ---------------------- -------------- ----------------------- -------------- S1---O2 1.4297 (12) C9---C14 1.381 (2) S1---O3 1.4347 (13) C9---C10 1.387 (2) S1---N2 1.6276 (14) C10---C11 1.391 (3) S1---C1 1.7543 (16) C11---C12 1.380 (4) O1A---C7 1.172 (19) C12---C13 1.355 (4) O1B---C7 1.27 (2) C13---C14 1.384 (3) O4---C15 1.421 (3) C2---H2 0.9300 O4---C10 1.351 (2) C3---H3 0.9300 N1---C4 1.399 (2) C5---H5 0.9300 N1---C7 1.366 (2) C6---H6 0.9300 N2---C9 1.436 (2) C8---H8A 0.9600 N1---HN1 0.811 (19) C8---H8B 0.9600 N2---HN2 0.823 (18) C8---H8C 0.9600 C1---C2 1.383 (2) C11---H11 0.9300 C1---C6 1.377 (2) C12---H12 0.9300 C2---C3 1.372 (2) C13---H13 0.9300 C3---C4 1.392 (2) C14---H14 0.9300 C4---C5 1.386 (2) C15---H10D 0.9600 C5---C6 1.384 (3) C15---H10E 0.9600 C7---C8 1.496 (3) C15---H10F 0.9600 S1···H14 3.1700 C8···H10E^ix^ 3.0800 S1···H3^i^ 3.1800 C11···H10F 2.8100 S1···H13^ii^ 3.2000 C11···H10D 2.7700 O1A···C5 2.882 (16) C11···H10D^xii^ 3.0200 O1A···C10^iii^ 3.33 (2) C13···H8B^xiii^ 2.8900 O1A···N2^iii^ 3.257 (18) C13···H5^vii^ 3.0400 O1A···C9^iii^ 3.248 (19) C13···H6^vii^ 2.9000 O1B···C5 2.858 (16) C14···H5^vii^ 2.9400 O1B···C10^iii^ 3.30 (2) C15···H11 2.5800 O2···N2^iv^ 3.0482 (18) HN1···H8A 2.3800 O2···O2^iv^ 3.1045 (19) HN1···O3^vi^ 2.191 (19) O3···N1^i^ 2.995 (2) HN1···H3 2.2200 O3···C14 3.065 (2) H2···O1B^xiii^ 2.5600 O4···N2 2.6551 (19) H2···O3 2.5300 O1A···H5 2.3000 HN2···O4 2.359 (19) O1B···H2^v^ 2.5600 HN2···O2^iv^ 2.259 (18) O1B···H5 2.3100 H3···S1^vi^ 3.1800 O2···H3^i^ 2.6300 H3···O2^vi^ 2.6300 O2···HN2^iv^ 2.259 (18) H3···HN1 2.2200 O2···H6 2.7500 H5···O1A 2.3000 O3···H14 2.6000 H5···C7 2.7800 O3···H2 2.5300 H5···O1B 2.3100 O3···HN1^i^ 2.191 (19) H5···C13^iii^ 3.0400 O4···HN2 2.359 (19) H5···C14^iii^ 2.9400 N1···O3^vi^ 2.995 (2) H6···C13^iii^ 2.9000 N2···O1A^vii^ 3.257 (18) H6···O2 2.7500 N2···O2^iv^ 3.0482 (18) H8A···HN1 2.3800 N2···O4 2.6551 (19) H8B···C13^v^ 2.8900 N2···H12^ii^ 2.8100 H10D···C11^xii^ 3.0200 C2···C15^viii^ 3.533 (3) H10D···C11 2.7700 C5···O1A 2.882 (16) H10D···H11 2.3800 C5···O1B 2.858 (16) H10E···C8^xi^ 3.0800 C6···C13^iii^ 3.566 (3) H10F···H11 2.3800 C8···C15^ix^ 3.541 (4) H10F···C2^x^ 3.0100 C9···O1A^vii^ 3.248 (19) H10F···C11 2.8100 C10···O1A^vii^ 3.33 (2) H11···C15 2.5800 C10···O1B^vii^ 3.30 (2) H11···H10D 2.3800 C13···C6^vii^ 3.566 (3) H11···H10F 2.3800 C14···O3 3.065 (2) H11···C4^xii^ 2.9700 C15···C2^x^ 3.533 (3) H12···N2^xiv^ 2.8100 C15···C8^xi^ 3.541 (4) H13···S1^xiv^ 3.2000 C2···H10F^viii^ 3.0100 H14···S1 3.1700 C4···H11^xii^ 2.9700 H14···O3 2.6000 C7···H5 2.7800 O2---S1---O3 118.25 (7) C9---C10---C11 118.66 (19) O2---S1---N2 105.66 (7) C10---C11---C12 119.9 (2) O2---S1---C1 109.42 (7) C11---C12---C13 121.1 (2) O3---S1---N2 107.75 (7) C12---C13---C14 120.0 (2) O3---S1---C1 107.19 (7) C9---C14---C13 119.70 (18) N2---S1---C1 108.21 (7) C1---C2---H2 120.00 C10---O4---C15 118.87 (16) C3---C2---H2 120.00 C4---N1---C7 128.52 (16) C2---C3---H3 119.00 S1---N2---C9 119.25 (11) C4---C3---H3 119.00 C4---N1---HN1 111.0 (13) C4---C5---H5 120.00 C7---N1---HN1 120.2 (13) C6---C5---H5 120.00 S1---N2---HN2 110.5 (13) C1---C6---H6 120.00 C9---N2---HN2 116.2 (13) C5---C6---H6 120.00 S1---C1---C6 119.55 (13) C7---C8---H8A 109.00 C2---C1---C6 120.30 (15) C7---C8---H8B 109.00 S1---C1---C2 120.14 (12) C7---C8---H8C 109.00 C1---C2---C3 119.07 (16) H8A---C8---H8B 109.00 C2---C3---C4 121.34 (17) H8A---C8---H8C 109.00 N1---C4---C3 117.56 (15) H8B---C8---H8C 109.00 C3---C4---C5 119.10 (15) C10---C11---H11 120.00 N1---C4---C5 123.34 (15) C12---C11---H11 120.00 C4---C5---C6 119.52 (16) C11---C12---H12 119.00 C1---C6---C5 120.64 (17) C13---C12---H12 120.00 O1B---C7---C8 123.0 (8) C12---C13---H13 120.00 O1A---C7---N1 123.5 (8) C14---C13---H13 120.00 O1A---C7---C8 120.6 (9) C9---C14---H14 120.00 N1---C7---C8 114.34 (17) C13---C14---H14 120.00 O1B---C7---N1 120.7 (8) O4---C15---H10D 109.00 N2---C9---C14 120.87 (15) O4---C15---H10E 109.00 C10---C9---C14 120.64 (16) O4---C15---H10F 109.00 N2---C9---C10 118.45 (15) H10D---C15---H10E 110.00 O4---C10---C9 115.53 (15) H10D---C15---H10F 109.00 O4---C10---C11 125.81 (18) H10E---C15---H10F 110.00 O2---S1---N2---C9 173.98 (12) S1---C1---C6---C5 177.38 (14) O3---S1---N2---C9 −58.72 (13) C6---C1---C2---C3 1.4 (3) C1---S1---N2---C9 56.88 (14) C1---C2---C3---C4 0.2 (3) O2---S1---C1---C2 141.15 (13) C2---C3---C4---C5 −1.7 (3) O3---S1---C1---C2 11.77 (15) C2---C3---C4---N1 178.84 (16) N2---S1---C1---C2 −104.20 (14) C3---C4---C5---C6 1.5 (3) O2---S1---C1---C6 −37.82 (16) N1---C4---C5---C6 −179.03 (16) O3---S1---C1---C6 −167.20 (13) C4---C5---C6---C1 0.1 (3) N2---S1---C1---C6 76.84 (15) N2---C9---C10---C11 −175.85 (18) C15---O4---C10---C9 176.41 (19) C14---C9---C10---O4 −179.16 (17) C15---O4---C10---C11 −4.5 (3) N2---C9---C14---C13 177.52 (17) C7---N1---C4---C5 15.0 (3) C10---C9---C14---C13 0.1 (3) C4---N1---C7---C8 175.71 (18) C14---C9---C10---C11 1.7 (3) C4---N1---C7---O1A −18.4 (13) N2---C9---C10---O4 3.3 (2) C7---N1---C4---C3 −165.53 (18) O4---C10---C11---C12 179.1 (2) S1---N2---C9---C14 68.93 (19) C9---C10---C11---C12 −1.8 (3) S1---N2---C9---C10 −113.58 (16) C10---C11---C12---C13 0.2 (4) C2---C1---C6---C5 −1.6 (3) C11---C12---C13---C14 1.6 (4) S1---C1---C2---C3 −177.52 (13) C12---C13---C14---C9 −1.7 (3) ---------------------- -------------- ----------------------- -------------- ::: Symmetry codes: (i) −*x*+1, *y*−1/2, −*z*+1/2; (ii) −*x*+3/2, *y*−1/2, *z*; (iii) *x*−1/2, −*y*+1/2, −*z*; (iv) −*x*+1, −*y*, −*z*; (v) *x*−1/2, *y*, −*z*+1/2; (vi) −*x*+1, *y*+1/2, −*z*+1/2; (vii) *x*+1/2, −*y*+1/2, −*z*; (viii) *x*, −*y*+1/2, *z*+1/2; (ix) −*x*+1/2, −*y*+1, *z*+1/2; (x) *x*, −*y*+1/2, *z*−1/2; (xi) −*x*+1/2, −*y*+1, *z*−1/2; (xii) −*x*+1, −*y*+1, −*z*; (xiii) *x*+1/2, *y*, −*z*+1/2; (xiv) −*x*+3/2, *y*+1/2, *z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3000 .table-wrap} ------------------------------------------ Cg2 is the centroid of the C9--C14 ring. ------------------------------------------ ::: ::: {#d1e3004 .table-wrap} -------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---HN1···O3^vi^ 0.811 (19) 2.191 (19) 2.995 (2) 171.0 (19) N2---HN2···O4 0.823 (18) 2.359 (19) 2.6551 (19) 102.0 (15) N2---HN2···O2^iv^ 0.823 (18) 2.259 (18) 3.0482 (18) 160.6 (18) C2---H2···O3 0.93 2.53 2.890 (2) 104 C5---H5···O1A 0.93 2.30 2.882 (16) 120 C5---H5···Cg2^iii^ 0.93 2.90 3.715 (2) 148 -------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (vi) −*x*+1, *y*+1/2, −*z*+1/2; (iv) −*x*+1, −*y*, −*z*; (iii) *x*−1/2, −*y*+1/2, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*2 is the centroid of the C9--C14 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- ------------ ------------ ------------- ------------- N1---H*N*1⋯O3^i^ 0.811 (19) 2.191 (19) 2.995 (2) 171.0 (19) N2---H*N*2⋯O4 0.823 (18) 2.359 (19) 2.6551 (19) 102.0 (15) N2---H*N*2⋯O2^ii^ 0.823 (18) 2.259 (18) 3.0482 (18) 160.6 (18) C5---H5⋯*Cg*2^iii^ 0.93 2.90 3.715 (2) 148 Symmetry codes: (i) ; (ii) ; (iii) . ::: [^1]: ‡ Additional correspondence author, e-mail: [email protected].
PubMed Central
2024-06-05T04:04:16.862104
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051762/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o303-o304", "authors": [ { "first": "Saba", "last": "Ahmad" }, { "first": "Muhammad Akhyar", "last": "Farrukh" }, { "first": "Fahim Ashraf", "last": "Qureshi" }, { "first": "Ahmad", "last": "Adnan" }, { "first": "Mehmet", "last": "Akkurt" } ] }
PMC3051763
Related literature {#sec1} ================== For general background to β-lactams, see: Jubie *et al.* (2009[@bb8]); Mehta *et al.* (2010[@bb10]); Vatmurge *et al.* (2008[@bb13]); Von Nussbaum *et al.* (2006[@bb14]). For related structures, see: Akkurt *et al.* (2006[@bb1]); Ercan *et al.* (1996*a* [@bb4],*b* [@bb5]); Kabak *et al.* (1999[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~18~N~2~O~5~*M* *~r~* = 390.38Triclinic,*a* = 7.7934 (4) Å*b* = 11.2813 (3) Å*c* = 11.8818 (2) Åα = 77.771 (4)°β = 80.948 (5)°γ = 71.052 (4)°*V* = 961.18 (6) Å^3^*Z* = 2Mo *K*α radiationμ = 0.10 mm^−1^*T* = 294 K0.20 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID-S diffractometerAbsorption correction: multi-scan (*SORTAV*; Blessing, 1995[@bb3]) *T* ~min~ = 0.981, *T* ~max~ = 0.9813928 measured reflections3928 independent reflections1872 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.104 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.059*wR*(*F* ^2^) = 0.155*S* = 1.013927 reflections265 parametersH-atom parameters constrainedΔρ~max~ = 0.14 e Å^−3^Δρ~min~ = −0.15 e Å^−3^ {#d5e514} Data collection: *CrystalClear* (Rigaku/MSC, 2005[@bb11]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999[@bb2]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb12]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb6]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003382/bv2175sup1.cif](http://dx.doi.org/10.1107/S1600536811003382/bv2175sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003382/bv2175Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003382/bv2175Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bv2175&file=bv2175sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bv2175sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bv2175&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BV2175](http://scripts.iucr.org/cgi-bin/sendsup?bv2175)). ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey for the research grant FBD-10--2949 and for support of the data collection at Atatürk University, Turkey. AJ and RH also thank the Shiraz University Research Council for financial support (grant No. 89-GR---SC-23). Comment ======= Azetidine-2-ones (β-lactams) were the first group of antibacterial natural products introduced as a therapeutic treatment of bacterial infections (Von Nussbaum *et al.*. 2006). The biological activity of β-lactams is mostly believed to be associated with the chemical reactivity of their β-lactam ring and on its substituents, especially at the nitrogen of the 2-azetidinone ring (Mehta *et al.* 2010). p-Anisidine derivatives have been found to be biologically interesting for many years (Jubie *et al.* 2009). Continuous change in the structures of known active compounds and the preparation of new types (Vatmurge *et al.* 2008) has been forced by the development of bacterial resistance to known compounds (Vatmurge *et al*. 2008). In the title compound (I), (Fig. 1), the β-lactam ring (N1/C8--C10) is nearly planar, with a maximum deviation of 0.023 (2)Å for N1. The bond lengths in the β-lactam ring are comparable with those found in previous similar studies (Akkurt *et al.* 2006; Ercan *et al.*, 1996*a*,*b*; Kabak *et al.*, 1999). Its mean plane makes dihedral angles of 11.61 (19), 74.5 (2) and 72.3 (2)°, respectively, with three aromatic rings (C1--C6), (C11--C16) and (C17--C22). The details of the dihedral angles between the planes of the rings are given in Table 2. A weak intramolecular C---H···O hydrogen bond contributes to the stability of the molecular configuration (Table 1). The crystal structure is stabilized by intermolecular C---H···O hydrogen-bonding (Table 1, Fig. 2) and C---H···π stacking interactions (Table 1). Furthermore, a π-π interaction \[*Cg*1···*Cg*3(*x*, *y*, *z*) = 3.6129 (19) Å, *Cg*1 and *Cg*3 are the centroids of the N1/C8--C10 β-lactam ring and the C11--CC16 benzene rings, respectively\] helps to stabilize the crystal structure. Experimental {#experimental} ============ A mixture of *N*-(3-nitrobenzylidene)-4-methoxybenzeneamine (1.28 g, 5.00 mmol) and triethylamine (2.53 g, 25.00 mmol), phenoxyacetic acid (1.14 g, 7.50 mmol) and tosyl chloride (1.43 g, 7.50 mmol) in CH~2~Cl~2~ (30 ml) was stirred at room temperature overnight. Then it was washed with HCl 1 N, saturated sodium bicarbonate solution and brine, dried with Na~2~SO~4~ and the solvent was evaporated to give the crude product as a white crystal which was then purified by recrystallization from ethyl acetate (Yield 47%). \[mp: 415° K\]. IR (KBr, cm^-1^): 1739.7 (CO β-lactam). ^1^H NMR (250 MHz, CDCl~3~) δ 3.75 (Me, s, 3H), 5.48 (H-8, d, 1H, J = 4.75), 5.63 (H-9, d, 1H, J = 4.75), 6.75--8.23 (ArH, m, 13H); ^13^C NMR (62.9 MHz, CDCl~3~) δ 55.46 (Me), 61.02 (C-8), 81.01 (C-9), 114.62--156.83 (aromatic carbons), 161.86 (CO β-lactam); GC---MS m/*z* =390 \[*M*+\]. Refinement {#refinement} ========== H atoms were placed in geometrically idealized positions \[*d*(C---H) = 0.93 - 0.98 Å\], and refined as riding with *U*~iso~(H) = 1.2 *U*~eq~(C) for methine and aromatic H atoms or 1.5*U*~eq~(C) for methyl H atoms. The reflection 6 0 2 was omitted in final refinement. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. ::: ![](e-67-0o537-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The packing diagram and the hydrogen bonding interactions of (I), viewing down the a axis. ::: ![](e-67-0o537-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e253 .table-wrap} ----------------------- --------------------------------------- C~22~H~18~N~2~O~5~ *Z* = 2 *M~r~* = 390.38 *F*(000) = 408 Triclinic, *P*1 *D*~x~ = 1.349 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.7934 (4) Å Cell parameters from 2243 reflections *b* = 11.2813 (3) Å θ = 2.4--26.4° *c* = 11.8818 (2) Å µ = 0.10 mm^−1^ α = 77.771 (4)° *T* = 294 K β = 80.948 (5)° Block, white γ = 71.052 (4)° 0.20 × 0.20 × 0.20 mm *V* = 961.18 (6) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e389 .table-wrap} -------------------------------------------------------------- -------------------------------------- Rigaku R-AXIS RAPID-S diffractometer 3928 independent reflections Radiation source: Sealed Tube 1872 reflections with *I* \> 2σ(*I*) Graphite Monochromator *R*~int~ = 0.104 Detector resolution: 10.0000 pixels mm^-1^ θ~max~ = 26.4°, θ~min~ = 2.4° dtprofit.ref scans *h* = −9→8 Absorption correction: multi-scan (*SORTAV*; Blessing, 1995) *k* = −14→14 *T*~min~ = 0.981, *T*~max~ = 0.981 *l* = −14→14 3928 measured reflections -------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e507 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.059 H-atom parameters constrained *wR*(*F*^2^) = 0.155 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0375*P*)^2^ + 0.1692*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.01 (Δ/σ)~max~ \< 0.001 3927 reflections Δρ~max~ = 0.14 e Å^−3^ 265 parameters Δρ~min~ = −0.15 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), FC^\*^=KFC\[1+0.001XFC^2^Λ^3^/SIN(2Θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.011 (2) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e688 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su\'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.\'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement on *F*^2^ for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The observed criterion of *F*^2^ \> σ(*F*^2^) is used only for calculating -*R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e790 .table-wrap} ----- ------------ -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.3243 (3) 0.0941 (2) 0.8790 (2) 0.0917 (11) O2 0.1966 (3) 0.7038 (2) 0.9341 (2) 0.0857 (10) O3 0.4720 (3) 0.83418 (19) 0.77456 (17) 0.0652 (8) O4 1.1375 (4) 0.6731 (3) 0.5285 (3) 0.1139 (15) O5 1.0633 (4) 0.6949 (3) 0.3578 (2) 0.1081 (12) N1 0.4469 (3) 0.5569 (2) 0.85135 (19) 0.0577 (9) N2 1.0324 (4) 0.6750 (3) 0.4631 (3) 0.0780 (12) C1 0.2353 (4) 0.4324 (3) 0.8902 (2) 0.0624 (11) C2 0.2021 (4) 0.3172 (3) 0.8986 (2) 0.0647 (12) C3 0.3412 (5) 0.2117 (3) 0.8731 (3) 0.0666 (12) C4 0.5155 (4) 0.2219 (3) 0.8378 (3) 0.0671 (12) C5 0.5496 (4) 0.3360 (3) 0.8297 (2) 0.0610 (11) C6 0.4099 (4) 0.4414 (3) 0.8569 (2) 0.0553 (11) C7 0.1492 (5) 0.0772 (4) 0.9103 (4) 0.1053 (17) C8 0.6129 (4) 0.5948 (3) 0.8068 (2) 0.0558 (11) C9 0.5111 (4) 0.7211 (3) 0.8556 (3) 0.0615 (11) C10 0.3500 (5) 0.6679 (3) 0.8888 (3) 0.0644 (11) C11 0.6576 (4) 0.6108 (3) 0.6781 (2) 0.0508 (10) C12 0.8247 (4) 0.6260 (3) 0.6300 (2) 0.0540 (11) C13 0.8581 (4) 0.6524 (3) 0.5124 (3) 0.0581 (11) C14 0.7338 (4) 0.6619 (3) 0.4389 (3) 0.0670 (11) C15 0.5691 (4) 0.6437 (3) 0.4861 (3) 0.0686 (14) C16 0.5310 (4) 0.6203 (3) 0.6038 (2) 0.0587 (11) C17 0.6128 (5) 0.8875 (3) 0.7357 (3) 0.0613 (11) C18 0.7756 (5) 0.8490 (3) 0.7842 (3) 0.0723 (14) C19 0.9081 (5) 0.9080 (4) 0.7365 (3) 0.0854 (17) C20 0.8791 (6) 1.0018 (4) 0.6426 (4) 0.0912 (17) C21 0.7173 (6) 1.0394 (4) 0.5945 (3) 0.0921 (19) C22 0.5827 (5) 0.9832 (3) 0.6415 (3) 0.0776 (14) H1 0.14070 0.50350 0.90690 0.0750\* H2 0.08510 0.31120 0.92160 0.0780\* H4 0.60970 0.15120 0.81950 0.0800\* H5 0.66640 0.34220 0.80600 0.0730\* H7A 0.10340 0.09920 0.98540 0.1580\* H7B 0.15800 −0.01000 0.91200 0.1580\* H7C 0.06770 0.13100 0.85450 0.1580\* H8 0.71820 0.54210 0.84860 0.0670\* H9 0.56390 0.72760 0.92280 0.0740\* H12 0.91340 0.61820 0.67740 0.0650\* H14 0.75970 0.68020 0.35910 0.0800\* H15 0.48370 0.64740 0.43790 0.0820\* H16 0.41810 0.61050 0.63460 0.0700\* H18 0.79670 0.78430 0.84820 0.0870\* H19 1.01790 0.88290 0.76940 0.1020\* H20 0.96880 1.04030 0.61090 0.1100\* H21 0.69770 1.10320 0.52980 0.1110\* H22 0.47220 1.01030 0.60930 0.0930\* ----- ------------ -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1396 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0952 (19) 0.0874 (18) 0.110 (2) −0.0523 (15) 0.0269 (15) −0.0420 (15) O2 0.0738 (17) 0.0895 (18) 0.0920 (18) −0.0269 (13) 0.0240 (14) −0.0320 (14) O3 0.0733 (15) 0.0599 (14) 0.0622 (14) −0.0235 (11) −0.0041 (11) −0.0064 (11) O4 0.0638 (18) 0.150 (3) 0.132 (3) −0.0557 (18) −0.0014 (17) −0.002 (2) O5 0.100 (2) 0.125 (2) 0.093 (2) −0.0523 (17) 0.0469 (16) −0.0176 (17) N1 0.0566 (16) 0.0636 (17) 0.0527 (15) −0.0266 (13) 0.0096 (12) −0.0074 (13) N2 0.066 (2) 0.073 (2) 0.089 (2) −0.0289 (16) 0.0230 (18) −0.0109 (18) C1 0.061 (2) 0.068 (2) 0.0576 (19) −0.0229 (17) 0.0046 (15) −0.0116 (16) C2 0.060 (2) 0.082 (2) 0.058 (2) −0.0335 (19) 0.0078 (15) −0.0154 (18) C3 0.078 (2) 0.073 (2) 0.058 (2) −0.040 (2) 0.0147 (17) −0.0195 (17) C4 0.071 (2) 0.074 (2) 0.060 (2) −0.0284 (18) 0.0115 (16) −0.0220 (17) C5 0.059 (2) 0.072 (2) 0.0531 (18) −0.0277 (17) 0.0127 (15) −0.0139 (16) C6 0.062 (2) 0.063 (2) 0.0427 (17) −0.0280 (16) 0.0036 (14) −0.0046 (14) C7 0.109 (3) 0.104 (3) 0.129 (3) −0.072 (3) 0.032 (3) −0.045 (3) C8 0.0566 (18) 0.064 (2) 0.0481 (17) −0.0249 (16) −0.0026 (14) −0.0034 (15) C9 0.073 (2) 0.066 (2) 0.0484 (17) −0.0280 (17) −0.0021 (15) −0.0074 (16) C10 0.067 (2) 0.071 (2) 0.0538 (19) −0.0251 (18) 0.0074 (16) −0.0105 (17) C11 0.0441 (16) 0.0544 (18) 0.0525 (17) −0.0175 (14) 0.0017 (13) −0.0069 (14) C12 0.0482 (18) 0.0548 (18) 0.0591 (19) −0.0182 (14) −0.0016 (14) −0.0084 (15) C13 0.0485 (18) 0.0530 (18) 0.068 (2) −0.0188 (14) 0.0132 (15) −0.0084 (16) C14 0.068 (2) 0.075 (2) 0.0521 (19) −0.0229 (18) 0.0069 (16) −0.0058 (16) C15 0.064 (2) 0.090 (3) 0.056 (2) −0.0313 (19) −0.0026 (16) −0.0112 (18) C16 0.0503 (18) 0.072 (2) 0.0570 (19) −0.0273 (16) 0.0007 (14) −0.0085 (16) C17 0.074 (2) 0.057 (2) 0.0542 (19) −0.0249 (17) 0.0033 (16) −0.0115 (16) C18 0.087 (3) 0.072 (2) 0.065 (2) −0.036 (2) −0.0066 (19) −0.0086 (18) C19 0.092 (3) 0.086 (3) 0.087 (3) −0.044 (2) 0.000 (2) −0.013 (2) C20 0.109 (3) 0.081 (3) 0.089 (3) −0.049 (3) 0.020 (3) −0.016 (2) C21 0.120 (4) 0.067 (3) 0.075 (3) −0.030 (3) 0.014 (3) 0.004 (2) C22 0.093 (3) 0.067 (2) 0.061 (2) −0.018 (2) −0.0005 (19) −0.0004 (18) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2008 .table-wrap} --------------------- ------------ ----------------------- ------------ O1---C3 1.361 (4) C15---C16 1.370 (4) O1---C7 1.420 (5) C17---C18 1.377 (6) O2---C10 1.208 (5) C17---C22 1.371 (5) O3---C9 1.403 (4) C18---C19 1.390 (6) O3---C17 1.390 (5) C19---C20 1.356 (6) O4---N2 1.207 (5) C20---C21 1.369 (7) O5---N2 1.223 (4) C21---C22 1.383 (6) N1---C6 1.410 (4) C1---H1 0.9300 N1---C8 1.478 (4) C2---H2 0.9300 N1---C10 1.361 (4) C4---H4 0.9300 N2---C13 1.471 (5) C5---H5 0.9300 C1---C2 1.386 (5) C7---H7A 0.9600 C1---C6 1.386 (5) C7---H7B 0.9600 C2---C3 1.377 (5) C7---H7C 0.9600 C3---C4 1.392 (5) C8---H8 0.9800 C4---C5 1.378 (5) C9---H9 0.9800 C5---C6 1.384 (5) C12---H12 0.9300 C8---C9 1.571 (5) C14---H14 0.9300 C8---C11 1.500 (3) C15---H15 0.9300 C9---C10 1.525 (5) C16---H16 0.9300 C11---C12 1.386 (5) C18---H18 0.9300 C11---C16 1.389 (4) C19---H19 0.9300 C12---C13 1.367 (4) C20---H20 0.9300 C13---C14 1.368 (5) C21---H21 0.9300 C14---C15 1.378 (5) C22---H22 0.9300 O1···O3^i^ 3.219 (3) C5···H9^vii^ 2.9400 O1···C17^i^ 3.234 (4) C5···H8 3.0800 O1···C22^i^ 3.414 (4) C6···H16 2.9200 O2···O3 3.155 (3) C6···H9^vii^ 2.8900 O2···C1 3.125 (4) C7···H2 2.5500 O3···C16 3.348 (4) C8···H18 3.0900 O3···O1^ii^ 3.219 (3) C8···H5 2.7400 O3···O2 3.155 (3) C9···H18 2.5300 O3···N1 3.129 (3) C10···H1 2.8000 O4···C15^iii^ 3.239 (5) C11···H5 3.0700 O4···C16^iii^ 3.164 (5) C15···H21^ix^ 2.9200 O5···C12^iv^ 3.414 (5) C18···H9 2.6400 O2···H7A^v^ 2.8500 C18···H12 2.9500 O2···H19^vi^ 2.6800 C20···H4^ii^ 3.0800 O2···H2^v^ 2.5900 C21···H4^ii^ 3.0800 O2···H1 2.5300 C22···H22^ix^ 3.0600 O4···H12 2.4100 H1···O2 2.5300 O4···H16^iii^ 2.5200 H1···C10 2.8000 O4···H15^iii^ 2.6900 H2···C7 2.5500 O5···H14 2.4200 H2···H7A 2.3200 O5···H5^iv^ 2.6200 H2···H7C 2.3800 N1···O3 3.129 (3) H2···O2^v^ 2.5900 N1···H16 2.5500 H4···C20^i^ 3.0800 C1···O2 3.125 (4) H4···C21^i^ 3.0800 C5···C10^vii^ 3.541 (4) H5···C8 2.7400 C5···C11 3.524 (4) H5···C11 3.0700 C6···C9^vii^ 3.562 (4) H5···H8 2.5800 C6···C16 3.432 (4) H5···O5^iv^ 2.6200 C6···C10^vii^ 3.585 (5) H7A···C2 2.7600 C7···C7^viii^ 3.533 (6) H7A···H2 2.3200 C8···C18 3.440 (5) H7A···O2^v^ 2.8500 C9···C6^vii^ 3.562 (4) H7A···H7B^viii^ 2.5800 C10···C6^vii^ 3.585 (5) H7B···H7A^viii^ 2.5800 C10···C5^vii^ 3.541 (4) H7C···C2 2.8000 C10···C16 3.539 (4) H7C···H2 2.3800 C11···C17 3.234 (5) H8···C5 3.0800 C11···C5 3.524 (4) H8···H5 2.5800 C12···C18 3.307 (5) H8···H12 2.5100 C12···C17 3.280 (5) H9···C18 2.6400 C12···O5^iv^ 3.414 (5) H9···H18 2.1200 C13···C13^iv^ 3.477 (5) H9···C1^vii^ 2.8600 C15···C21^ix^ 3.567 (5) H9···C2^vii^ 2.8700 C15···O4^vi^ 3.239 (5) H9···C3^vii^ 2.9100 C16···O3 3.348 (4) H9···C4^vii^ 2.9500 C16···C6 3.432 (4) H9···C5^vii^ 2.9400 C16···C10 3.539 (4) H9···C6^vii^ 2.8900 C16···O4^vi^ 3.164 (5) H12···O4 2.4100 C17···C12 3.280 (5) H12···C18 2.9500 C17···O1^ii^ 3.234 (4) H12···H8 2.5100 C17···C11 3.234 (5) H14···O5 2.4200 C18···C8 3.440 (5) H14···C2^x^ 3.0200 C18···C12 3.307 (5) H14···C3^x^ 2.8900 C21···C15^ix^ 3.567 (5) H15···O4^vi^ 2.6900 C22···O1^ii^ 3.414 (4) H16···O4^vi^ 2.5200 C1···H9^vii^ 2.8600 H16···N1 2.5500 C2···H7C 2.8000 H16···C6 2.9200 C2···H18^vii^ 2.9800 H18···C8 3.0900 C2···H14^x^ 3.0200 H18···C9 2.5300 C2···H9^vii^ 2.8700 H18···H9 2.1200 C2···H7A 2.7600 H18···C2^vii^ 2.9800 C3···H14^x^ 2.8900 H19···O2^iii^ 2.6800 C3···H9^vii^ 2.9100 H21···C15^ix^ 2.9200 C4···H9^vii^ 2.9500 H22···C22^ix^ 3.0600 C3---O1---C7 118.6 (3) C19---C20---C21 119.7 (4) C9---O3---C17 116.9 (3) C20---C21---C22 120.5 (4) C6---N1---C8 130.9 (2) C17---C22---C21 119.8 (4) C6---N1---C10 133.3 (3) C2---C1---H1 120.00 C8---N1---C10 95.8 (2) C6---C1---H1 120.00 O4---N2---O5 123.3 (4) C1---C2---H2 120.00 O4---N2---C13 118.4 (3) C3---C2---H2 120.00 O5---N2---C13 118.2 (3) C3---C4---H4 120.00 C2---C1---C6 119.9 (3) C5---C4---H4 120.00 C1---C2---C3 120.4 (3) C4---C5---H5 120.00 O1---C3---C2 125.4 (3) C6---C5---H5 120.00 O1---C3---C4 115.2 (3) O1---C7---H7A 109.00 C2---C3---C4 119.4 (3) O1---C7---H7B 109.00 C3---C4---C5 120.5 (3) O1---C7---H7C 109.00 C4---C5---C6 119.9 (3) H7A---C7---H7B 109.00 N1---C6---C1 120.6 (3) H7A---C7---H7C 110.00 N1---C6---C5 119.6 (3) H7B---C7---H7C 109.00 C1---C6---C5 119.9 (3) N1---C8---H8 112.00 N1---C8---C9 86.1 (2) C9---C8---H8 112.00 N1---C8---C11 115.7 (2) C11---C8---H8 112.00 C9---C8---C11 115.3 (3) O3---C9---H9 113.00 O3---C9---C8 116.7 (3) C8---C9---H9 113.00 O3---C9---C10 112.6 (3) C10---C9---H9 113.00 C8---C9---C10 85.8 (2) C11---C12---H12 120.00 O2---C10---N1 131.9 (3) C13---C12---H12 120.00 O2---C10---C9 135.9 (3) C13---C14---H14 121.00 N1---C10---C9 92.2 (3) C15---C14---H14 121.00 C8---C11---C12 119.8 (3) C14---C15---H15 120.00 C8---C11---C16 121.9 (3) C16---C15---H15 120.00 C12---C11---C16 118.2 (2) C11---C16---H16 119.00 C11---C12---C13 119.5 (3) C15---C16---H16 119.00 N2---C13---C12 118.7 (3) C17---C18---H18 120.00 N2---C13---C14 118.7 (3) C19---C18---H18 120.00 C12---C13---C14 122.5 (3) C18---C19---H19 120.00 C13---C14---C15 118.3 (3) C20---C19---H19 120.00 C14---C15---C16 120.2 (3) C19---C20---H20 120.00 C11---C16---C15 121.4 (3) C21---C20---H20 120.00 O3---C17---C18 124.4 (3) C20---C21---H21 120.00 O3---C17---C22 115.6 (3) C22---C21---H21 120.00 C18---C17---C22 120.0 (4) C17---C22---H22 120.00 C17---C18---C19 119.3 (3) C21---C22---H22 120.00 C18---C19---C20 120.7 (4) C7---O1---C3---C4 −177.8 (3) C4---C5---C6---N1 178.3 (3) C7---O1---C3---C2 2.1 (5) C9---C8---C11---C12 92.0 (4) C17---O3---C9---C10 −177.7 (3) N1---C8---C11---C16 15.1 (4) C9---O3---C17---C22 168.1 (3) N1---C8---C11---C12 −169.7 (3) C17---O3---C9---C8 −80.8 (3) N1---C8---C9---O3 −116.3 (3) C9---O3---C17---C18 −10.9 (4) N1---C8---C9---C10 −3.0 (2) C6---N1---C10---O2 −4.2 (6) C9---C8---C11---C16 −83.2 (4) C6---N1---C8---C9 −173.9 (3) C11---C8---C9---O3 0.4 (4) C10---N1---C8---C9 3.4 (2) C11---C8---C9---C10 113.7 (3) C8---N1---C6---C1 −172.3 (2) C8---C9---C10---N1 3.2 (2) C8---N1---C10---O2 178.7 (4) C8---C9---C10---O2 −179.0 (4) C8---N1---C10---C9 −3.4 (2) O3---C9---C10---N1 120.5 (3) C8---N1---C6---C5 8.2 (4) O3---C9---C10---O2 −61.8 (5) C10---N1---C8---C11 −113.0 (3) C12---C11---C16---C15 0.2 (5) C6---N1---C8---C11 69.8 (4) C16---C11---C12---C13 1.5 (5) C10---N1---C6---C5 −168.0 (3) C8---C11---C16---C15 175.4 (3) C6---N1---C10---C9 173.7 (3) C8---C11---C12---C13 −173.9 (3) C10---N1---C6---C1 11.5 (4) C11---C12---C13---N2 176.8 (3) O5---N2---C13---C12 177.9 (3) C11---C12---C13---C14 −1.5 (5) O4---N2---C13---C14 176.2 (3) N2---C13---C14---C15 −178.4 (3) O5---N2---C13---C14 −3.8 (5) C12---C13---C14---C15 −0.2 (5) O4---N2---C13---C12 −2.2 (5) C13---C14---C15---C16 1.8 (5) C2---C1---C6---N1 −178.1 (2) C14---C15---C16---C11 −1.8 (5) C2---C1---C6---C5 1.4 (4) O3---C17---C18---C19 178.8 (3) C6---C1---C2---C3 −0.6 (4) C22---C17---C18---C19 −0.1 (5) C1---C2---C3---O1 179.6 (3) O3---C17---C22---C21 −178.1 (3) C1---C2---C3---C4 −0.5 (5) C18---C17---C22---C21 1.0 (5) O1---C3---C4---C5 −179.4 (3) C17---C18---C19---C20 −0.6 (6) C2---C3---C4---C5 0.8 (5) C18---C19---C20---C21 0.4 (6) C3---C4---C5---C6 0.1 (5) C19---C20---C21---C22 0.5 (6) C4---C5---C6---C1 −1.2 (4) C20---C21---C22---C17 −1.2 (6) --------------------- ------------ ----------------------- ------------ ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1, *y*, *z*; (iv) −*x*+2, −*y*+1, −*z*+1; (v) −*x*, −*y*+1, −*z*+2; (vi) *x*−1, *y*, *z*; (vii) −*x*+1, −*y*+1, −*z*+2; (viii) −*x*, −*y*, −*z*+2; (ix) −*x*+1, −*y*+2, −*z*+1; (x) −*x*+1, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3787 .table-wrap} --------------------------------------------------------------------------------------- Cg2 and Cg4 are the centroids of the C1--C6 and C17--C22 benzene rings, respectively. --------------------------------------------------------------------------------------- ::: ::: {#d1e3791 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1···O2 0.93 2.53 3.125 (4) 122 C2---H2···O2^v^ 0.93 2.59 3.464 (4) 156 C16---H16···O4^vi^ 0.93 2.52 3.164 (5) 126 C16---H16···N1 0.93 2.55 2.898 (3) 103 C4---H4···Cg4^i^ 0.93 2.89 3.716 (4) 149 C9---H9···Cg2^vii^ 0.98 2.55 3.463 (4) 154 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (v) −*x*, −*y*+1, −*z*+2; (vi) *x*−1, *y*, *z*; (i) *x*, *y*−1, *z*; (vii) −*x*+1, −*y*+1, −*z*+2. Table 2 The dihedral angles (°) between the mean planes of the rings in (I) {#d1e3949} =========================================================================== ::: {#d1e3961 .table-wrap} -------- ------------ ------------ ------------ Ring 2 Ring 3 Ring 4 Ring 1 11.61 (19) 74.5 (2) 72.3 (2) Ring 2 84.98 (15) 60.96 (16) Ring 3 36.22 (17) -------- ------------ ------------ ------------ ::: Ring 1 is the N1/C8--C10 β-lactam ring, Ring 2 is the C1--C6 benzene ring, Ring 3 is the C11--C16 benzene ring and Ring 4 is the C17--C22 benzene ring. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*2 and *Cg*4 are the centroids of the C1--C6 and C17--C22 benzene rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C1---H1⋯O2 0.93 2.53 3.125 (4) 122 C2---H2⋯O2^i^ 0.93 2.59 3.464 (4) 156 C16---H16⋯O4^ii^ 0.93 2.52 3.164 (5) 126 C4---H4⋯*Cg*4^iii^ 0.93 2.89 3.716 (4) 149 C9---H9⋯*Cg*2^iv^ 0.98 2.55 3.463 (4) 154 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:16.868605
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051763/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):o537-o538", "authors": [ { "first": "Zeliha", "last": "Baktır" }, { "first": "Mehmet", "last": "Akkurt" }, { "first": "Aliasghar", "last": "Jarrahpour" }, { "first": "Roghaye", "last": "Heiran" } ] }
PMC3051764
Related literature {#sec1} ================== For general background to and applications of the title complex, see: Fun *et al.* (2008[@bb2]); Zhou *et al.* (2005[@bb6]). For related structures, see: Fun *et al.* (2008[@bb2]); Goswami *et al.* (2009[@bb3]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986)[@bb7]. Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[CuBr~2~(C~6~H~4~N~2~Se)~2~\]*M* *~r~* = 589.50Triclinic,*a* = 8.3406 (1) Å*b* = 9.5853 (1) Å*c* = 10.2908 (1) Åα = 94.627 (1)°β = 109.640 (1)°γ = 102.690 (1)°*V* = 745.17 (1) Å^3^*Z* = 2Mo *K*α radiationμ = 11.71 mm^−1^*T* = 100 K0.52 × 0.11 × 0.06 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb1]) *T* ~min~ = 0.064, *T* ~max~ = 0.55047530 measured reflections9041 independent reflections6854 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.048 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.030*wR*(*F* ^2^) = 0.066*S* = 1.029041 reflections190 parametersH-atom parameters constrainedΔρ~max~ = 0.96 e Å^−3^Δρ~min~ = −1.28 e Å^−3^ {#d5e554} Data collection: *APEX2* (Bruker, 2009[@bb1]); cell refinement: *SAINT* (Bruker, 2009[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681005422X/sj5081sup1.cif](http://dx.doi.org/10.1107/S160053681005422X/sj5081sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681005422X/sj5081Isup2.hkl](http://dx.doi.org/10.1107/S160053681005422X/sj5081Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5081&file=sj5081sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5081sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5081&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5081](http://scripts.iucr.org/cgi-bin/sendsup?sj5081)). HKF and JHG thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST, Government of India \[SR/S1/OC-13/2005\] for financial support. ACM thanks the UGC, Goverment of India, for a fellowship. Comment ======= The design and synthesis of metal-organic framework (MOF) materials are an interesting area nowadays. The coordination chemistry of 2,1,3-benzoselenadiazole (bsd) has been sparingly explored (Zhou *et al.*, 2005). Recently we have shown that 2,1,3-bsd is capable of forming coordination networks with Zn(II) metal (Fun *et al.*, 2008). In the present work, we report the coordination networks for Cu^II^ complex containing bsd. Reaction of 2,1,3-bsd with CuBr~2~ results in the formation of the title copper complex. The title complex comprises a neutral CuBr~2~*L*~2~ molecule (*L* = 2,1,3-bsd ligand). The Cu^II^ ion is tetra-coordinated by two Br^-^ ions and two *L* ligand-N atoms in a distorted square planar geometry, as indicated by angles of N1--Cu1--N3 = 172.82 (6)°, Br1--Cu1--Br2 = 170.661 (12)° and range of N--Cu--Br = 87.91 (5)--91.11 (5)°. The two ligands \[(C1--C6/N1/N2/Se1) and (C6--C12/N3/N4/Se2)\] are essentially planar, with maximum deviations of -0.012 (2) Å at atom C2 and 0.030 (2) Å at atom N3, respectively. These two ligands are approximately coplanar to one another, forming an interplanar angle of 6.14 (6)°. Selected bond lengths are listed in Table 1. All other bond lengths and angles are consistent to those observed in closely related structures (Fun *et al.*, 2008; Goswami *et al.*, 2009). The interesting feature of the crystal packing is the observation of intermolecular short Se1···Br1, Se2···N2 and N2···N4 interactions (Table 1), as observed in the reported ZnCl~2~*L*~2~ structure (Fun *et al.*, 2008). The title complex is interconnected into two-dimensional arrays lying parallel with the *ac* plane *via* these short interactions as well as intermolecular C2---H2···Br2 and C8---H8···Br1 hydrogen bonds (Table 2). Experimental {#experimental} ============ A mixture of 2,1,3-bsd (1 g, 5.4 mol) and anhydrous copper bromide (606 mg, 2.72 mmol) in dry methanol (20 ml) was heated at 343--353 K for 2 h. After completion of the reaction, the mixture was allowed to cool to room temperature and the precipitate was collected by filtration. Recrystallization from methanol (25 %) in chloroform afforded brown microcrystalline solids of the title compound. Refinement {#refinement} ========== All aromatic-H atoms were placed in their calculated positions, with C---H = 0.93 Å, and refined using a riding model with *U*~iso~ = 1.2 *U*~eq~(C). The highest residual electron density peak is located at 0.71 Å from C11 and the deepest hole is located at 0.46 Å from Br2. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title complex, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. ::: ![](e-67-0m181-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal structure of the title complex, viewed along the b axis, showing a two-dimensional array parallel with the ac plane. Intermolecular interactions are shown as dashed lines. ::: ![](e-67-0m181-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e169 .table-wrap} -------------------------------- --------------------------------------- \[CuBr~2~(C~6~H~4~N~2~Se)~2~\] *Z* = 2 *M~r~* = 589.50 *F*(000) = 550 Triclinic, *P*1 *D*~x~ = 2.627 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.3406 (1) Å Cell parameters from 9451 reflections *b* = 9.5853 (1) Å θ = 2.1--39.8° *c* = 10.2908 (1) Å µ = 11.71 mm^−1^ α = 94.627 (1)° *T* = 100 K β = 109.640 (1)° Block, red γ = 102.690 (1)° 0.52 × 0.11 × 0.06 mm *V* = 745.17 (1) Å^3^ -------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e309 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 9041 independent reflections Radiation source: fine-focus sealed tube 6854 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.048 φ and ω scans θ~max~ = 39.8°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −14→14 *T*~min~ = 0.064, *T*~max~ = 0.550 *k* = −17→17 47530 measured reflections *l* = −18→18 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e426 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.030 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.066 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.025*P*)^2^ + 0.1897*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 9041 reflections (Δ/σ)~max~ = 0.003 190 parameters Δρ~max~ = 0.96 e Å^−3^ 0 restraints Δρ~min~ = −1.28 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e583 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e634 .table-wrap} ----- ------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.76323 (3) 0.96053 (2) 0.46923 (2) 0.01342 (4) Se1 0.76418 (3) 1.00702 (2) 0.790290 (19) 0.01462 (4) Se2 0.76370 (3) 0.96029 (2) 0.148426 (18) 0.01419 (4) Br1 0.50628 (3) 0.76430 (2) 0.346275 (19) 0.01659 (4) Br2 0.99180 (3) 1.18054 (2) 0.602981 (19) 0.01630 (4) N1 0.7843 (2) 0.89074 (17) 0.65184 (16) 0.0145 (3) N2 0.7949 (2) 0.87760 (18) 0.90445 (16) 0.0157 (3) N3 0.7309 (2) 1.05001 (17) 0.29546 (16) 0.0145 (3) N4 0.7204 (2) 1.10188 (18) 0.05009 (16) 0.0156 (3) C1 0.8108 (2) 0.7679 (2) 0.69755 (18) 0.0141 (3) C2 0.8325 (3) 0.6474 (2) 0.6210 (2) 0.0168 (3) H2 0.8267 0.6476 0.5292 0.020\* C3 0.8621 (3) 0.5318 (2) 0.6854 (2) 0.0188 (3) H3 0.8784 0.4535 0.6365 0.023\* C4 0.8690 (3) 0.5269 (2) 0.8263 (2) 0.0188 (3) H4 0.8888 0.4456 0.8660 0.023\* C5 0.8472 (3) 0.6385 (2) 0.9022 (2) 0.0180 (3) H5 0.8509 0.6343 0.9931 0.022\* C6 0.8185 (2) 0.7628 (2) 0.83934 (19) 0.0149 (3) C7 0.6893 (2) 1.1727 (2) 0.26414 (18) 0.0139 (3) C8 0.6457 (3) 1.2712 (2) 0.34984 (19) 0.0168 (3) H8 0.6437 1.2531 0.4368 0.020\* C9 0.6071 (3) 1.3927 (2) 0.3011 (2) 0.0188 (3) H9 0.5777 1.4572 0.3560 0.023\* C10 0.6102 (3) 1.4242 (2) 0.1680 (2) 0.0199 (4) H10 0.5866 1.5097 0.1401 0.024\* C11 0.6472 (3) 1.3311 (2) 0.0817 (2) 0.0181 (3) H11 0.6471 1.3515 −0.0052 0.022\* C12 0.6860 (2) 1.2015 (2) 0.12748 (18) 0.0147 (3) ----- ------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1022 .table-wrap} ----- -------------- -------------- ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.01609 (10) 0.01305 (10) 0.01093 (9) 0.00325 (8) 0.00478 (7) 0.00314 (7) Se1 0.01835 (8) 0.01413 (8) 0.01224 (7) 0.00580 (6) 0.00550 (6) 0.00300 (6) Se2 0.01791 (8) 0.01411 (8) 0.01127 (7) 0.00550 (6) 0.00527 (6) 0.00277 (6) Br1 0.01675 (8) 0.01600 (8) 0.01488 (7) 0.00238 (6) 0.00416 (6) 0.00318 (6) Br2 0.01769 (8) 0.01514 (8) 0.01563 (8) 0.00415 (6) 0.00532 (6) 0.00391 (6) N1 0.0175 (7) 0.0141 (7) 0.0120 (6) 0.0036 (5) 0.0058 (5) 0.0027 (5) N2 0.0185 (7) 0.0179 (7) 0.0124 (6) 0.0071 (6) 0.0059 (5) 0.0043 (5) N3 0.0179 (7) 0.0137 (7) 0.0120 (6) 0.0041 (5) 0.0057 (5) 0.0023 (5) N4 0.0186 (7) 0.0175 (7) 0.0128 (6) 0.0071 (6) 0.0065 (5) 0.0050 (5) C1 0.0147 (7) 0.0142 (7) 0.0134 (7) 0.0039 (6) 0.0048 (6) 0.0039 (6) C2 0.0196 (8) 0.0158 (8) 0.0155 (7) 0.0042 (7) 0.0076 (7) 0.0016 (6) C3 0.0209 (9) 0.0156 (8) 0.0191 (8) 0.0053 (7) 0.0062 (7) 0.0010 (6) C4 0.0200 (9) 0.0163 (8) 0.0194 (8) 0.0059 (7) 0.0048 (7) 0.0067 (7) C5 0.0220 (9) 0.0176 (8) 0.0157 (7) 0.0069 (7) 0.0065 (7) 0.0072 (6) C6 0.0154 (7) 0.0158 (8) 0.0140 (7) 0.0044 (6) 0.0053 (6) 0.0036 (6) C7 0.0145 (7) 0.0136 (7) 0.0130 (7) 0.0037 (6) 0.0041 (6) 0.0024 (6) C8 0.0189 (8) 0.0191 (9) 0.0129 (7) 0.0064 (7) 0.0056 (6) 0.0017 (6) C9 0.0198 (9) 0.0196 (9) 0.0175 (8) 0.0080 (7) 0.0061 (7) 0.0014 (7) C10 0.0230 (9) 0.0178 (9) 0.0204 (8) 0.0086 (7) 0.0072 (7) 0.0060 (7) C11 0.0221 (9) 0.0179 (8) 0.0160 (7) 0.0076 (7) 0.0069 (7) 0.0061 (6) C12 0.0159 (7) 0.0153 (8) 0.0131 (7) 0.0042 (6) 0.0052 (6) 0.0034 (6) ----- -------------- -------------- ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1383 .table-wrap} ---------------------- -------------- ---------------------- -------------- Cu1---N3 2.0077 (15) C3---C4 1.437 (3) Cu1---N1 2.0106 (15) C3---H3 0.9300 Cu1---Br1 2.3987 (3) C4---C5 1.354 (3) Cu1---Br2 2.4449 (3) C4---H4 0.9300 Se1---N2 1.7768 (15) C5---C6 1.429 (3) Se1---N1 1.8131 (16) C5---H5 0.9300 Se2---N4 1.7854 (15) C7---C8 1.426 (3) Se2---N3 1.8097 (15) C7---C12 1.448 (2) N1---C1 1.339 (2) C8---C9 1.365 (3) N2---C6 1.328 (2) C8---H8 0.9300 N3---C7 1.331 (2) C9---C10 1.433 (3) N4---C12 1.334 (2) C9---H9 0.9300 C1---C2 1.424 (3) C10---C11 1.363 (3) C1---C6 1.444 (2) C10---H10 0.9300 C2---C3 1.362 (3) C11---C12 1.428 (3) C2---H2 0.9300 C11---H11 0.9300 Cu1···N3 2.0077 (15) Se2···N4 1.7854 (15) Cu1···N1 2.0106 (15) Se2···N3 1.8097 (15) Cu1···Br1 2.3987 (3) Se1···Br1^i^ 3.5223 (3) Cu1···Br2 2.4449 (3) Se2···N2^ii^ 2.6848 (16) Se1···N2 1.7768 (15) N2···N4^iii^ 2.819 (2) Se1···N1 1.8131 (16) N3---Cu1---N1 172.82 (6) C5---C4---H4 119.4 N3---Cu1---Br1 90.80 (5) C3---C4---H4 119.4 N1---Cu1---Br1 91.11 (5) C4---C5---C6 118.41 (17) N3---Cu1---Br2 89.08 (5) C4---C5---H5 120.8 N1---Cu1---Br2 87.91 (5) C6---C5---H5 120.8 Br1---Cu1---Br2 170.661 (12) N2---C6---C5 123.19 (17) N2---Se1---N1 92.13 (7) N2---C6---C1 116.30 (16) N4---Se2---N3 92.13 (7) C5---C6---C1 120.50 (17) C1---N1---Se1 108.34 (12) N3---C7---C8 126.26 (16) C1---N1---Cu1 132.71 (13) N3---C7---C12 114.19 (16) Se1---N1---Cu1 118.95 (8) C8---C7---C12 119.53 (16) C6---N2---Se1 108.82 (12) C9---C8---C7 118.33 (17) C7---N3---Se2 108.91 (12) C9---C8---H8 120.8 C7---N3---Cu1 131.38 (13) C7---C8---H8 120.8 Se2---N3---Cu1 119.70 (8) C8---C9---C10 122.20 (18) C12---N4---Se2 108.23 (12) C8---C9---H9 118.9 N1---C1---C2 126.44 (16) C10---C9---H9 118.9 N1---C1---C6 114.38 (16) C11---C10---C9 121.24 (18) C2---C1---C6 119.18 (16) C11---C10---H10 119.4 C3---C2---C1 118.50 (17) C9---C10---H10 119.4 C3---C2---H2 120.7 C10---C11---C12 118.52 (17) C1---C2---H2 120.7 C10---C11---H11 120.7 C2---C3---C4 122.18 (18) C12---C11---H11 120.7 C2---C3---H3 118.9 N4---C12---C11 123.37 (17) C4---C3---H3 118.9 N4---C12---C7 116.52 (16) C5---C4---C3 121.22 (18) C11---C12---C7 120.11 (17) N2---Se1---N1---C1 0.24 (14) Se1---N2---C6---C1 −1.1 (2) N2---Se1---N1---Cu1 179.82 (10) C4---C5---C6---N2 179.72 (19) Br1---Cu1---N1---C1 61.95 (18) C4---C5---C6---C1 0.7 (3) Br2---Cu1---N1---C1 −127.35 (18) N1---C1---C6---N2 1.3 (3) Br1---Cu1---N1---Se1 −117.52 (8) C2---C1---C6---N2 −179.12 (17) Br2---Cu1---N1---Se1 53.19 (8) N1---C1---C6---C5 −179.62 (18) N1---Se1---N2---C6 0.48 (14) C2---C1---C6---C5 −0.1 (3) N4---Se2---N3---C7 0.87 (14) Se2---N3---C7---C8 177.08 (16) N4---Se2---N3---Cu1 −178.25 (10) Cu1---N3---C7---C8 −3.9 (3) Br1---Cu1---N3---C7 112.79 (17) Se2---N3---C7---C12 −1.4 (2) Br2---Cu1---N3---C7 −57.87 (17) Cu1---N3---C7---C12 177.57 (13) Br1---Cu1---N3---Se2 −68.31 (9) N3---C7---C8---C9 179.67 (19) Br2---Cu1---N3---Se2 121.03 (9) C12---C7---C8---C9 −1.9 (3) N3---Se2---N4---C12 −0.07 (14) C7---C8---C9---C10 −0.4 (3) Se1---N1---C1---C2 179.64 (16) C8---C9---C10---C11 2.0 (3) Cu1---N1---C1---C2 0.1 (3) C9---C10---C11---C12 −1.0 (3) Se1---N1---C1---C6 −0.9 (2) Se2---N4---C12---C11 179.34 (16) Cu1---N1---C1---C6 179.63 (13) Se2---N4---C12---C7 −0.7 (2) N1---C1---C2---C3 178.66 (19) C10---C11---C12---N4 178.62 (19) C6---C1---C2---C3 −0.8 (3) C10---C11---C12---C7 −1.3 (3) C1---C2---C3---C4 1.1 (3) N3---C7---C12---N4 1.5 (3) C2---C3---C4---C5 −0.4 (3) C8---C7---C12---N4 −177.12 (17) C3---C4---C5---C6 −0.5 (3) N3---C7---C12---C11 −178.57 (18) Se1---N2---C6---C5 179.91 (16) C8---C7---C12---C11 2.8 (3) ---------------------- -------------- ---------------------- -------------- ::: Symmetry codes: (i) −*x*+1, −*y*+2, −*z*+1; (ii) *x*, *y*, *z*−1; (iii) *x*, *y*, *z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2150 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C2---H2···Br2^iv^ 0.93 2.74 3.464 (2) 135 C8---H8···Br1^i^ 0.93 2.90 3.762 (2) 154 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (iv) −*x*+2, −*y*+2, −*z*+1; (i) −*x*+1, −*y*+2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected interatomic distances (Å) ::: ------------ ------------- Cu1---N3 2.0077 (15) Cu1---N1 2.0106 (15) Cu1---Br1 2.3987 (3) Cu1---Br2 2.4449 (3) Se1⋯N2 1.7768 (15) Se1⋯N1 1.8131 (16) Se2⋯N4 1.7854 (15) Se2⋯N3 1.8097 (15) Se1⋯Br1^i^ 3.5223 (3) Se2⋯N2^ii^ 2.6848 (16) N2⋯N4^iii^ 2.819 (2) ------------ ------------- Symmetry codes: (i) ; (ii) ; (iii) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------- --------- ------- ----------- ------------- C2---H2⋯Br2^iv^ 0.93 2.74 3.464 (2) 135 C8---H8⋯Br1^i^ 0.93 2.90 3.762 (2) 154 Symmetry codes: (i) ; (iv) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009. [^2]: § Thomson Reuters ResearcherID: C-7576-2009.
PubMed Central
2024-06-05T04:04:16.877007
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051764/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m181-m182", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Jia Hao", "last": "Goh" }, { "first": "Annada C.", "last": "Maity" }, { "first": "Shyamaprosad", "last": "Goswami" } ] }
PMC3051765
Related literature {#sec1} ================== For applications of dithio­carbamate compounds, see: Tiekink (2008[@bb15]); Zhao *et al.* (2005[@bb16]). For the synthesis of the Mo^IV^ precursor, \[MoO(S~2~CNEt~2~)~2~\], see: Jowitt & Mitchell (1969[@bb9]). For the synthesis of unsolvated \[Mo(μ-O)O(S~2~CNEt~2~)\]~2~, see: Ricard *et al.* (1975[@bb11]). For previous reports on dithio­carbamate compounds from our research groups, see: Drew *et al.* (1998[@bb8]); Romão & Royo (2002[@bb12]); Almeida Paz *et al.* (2003[@bb10]). For molybdenum dimers with long Mo---O~THF~ bonds, see: Cotton *et al.* (1978[@bb5], 1992[@bb6]); Cotton & Su (1995[@bb7]). For a description of the Cambridge Structural Database, see: Allen (2002[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Mo~2~(C~5~H~10~NS~2~)~2~O~4~\]·C~4~H~8~O*M* *~r~* = 624.50Monoclinic,*a* = 12.8695 (7) Å*b* = 12.6025 (7) Å*c* = 14.4579 (8) Åβ = 94.184 (3)°*V* = 2338.6 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 1.46 mm^−1^*T* = 150 K0.12 × 0.12 × 0.08 mm ### Data collection {#sec2.1.2} Bruker X8 KappaCCD APEXII diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1998[@bb13]) *T* ~min~ = 0.845, *T* ~max~ = 0.89348139 measured reflections5649 independent reflections4661 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.033 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.024*wR*(*F* ^2^) = 0.054*S* = 1.035649 reflections149 parameters5 restraintsH-atom parameters constrainedΔρ~max~ = 0.74 e Å^−3^Δρ~min~ = −0.96 e Å^−3^ {#d5e638} Data collection: *APEX2* (Bruker, 2006[@bb4]); cell refinement: *SAINT-Plus* (Bruker, 2005[@bb3]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb14]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg, 2009[@bb2]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003187/pk2294sup1.cif](http://dx.doi.org/10.1107/S1600536811003187/pk2294sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003187/pk2294Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003187/pk2294Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pk2294&file=pk2294sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pk2294sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pk2294&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PK2294](http://scripts.iucr.org/cgi-bin/sendsup?pk2294)). We are grateful to the Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support, for the post-doctoral research grants Nos. SFRH/BPD/23461/2005 and SFRH/BPD/63736/2009 (to JAF) and for specific funding toward the purchase of the single-crystal diffractometer. Comment ======= Dithiocarbamates and their metal complexes have several applications in the treatment of some diseases (*e.g.*, Wilson\'s disease and alcoholism) and industry processes (*e.g.*, vulcanization of rubber and pesticides) (Tiekink, 2008). These molecules have already been used in the functionalization of gold nanoparticles (Zhao *et al.*, 2005). Following our interest in the preparation of dithiocarbamate metal complexes (Drew *et al.*, 1998; Romão *et al.*, 2002; Almeida Paz *et al.*, 2003), we attempted the preparation of a heterobimetallic compound from the reaction of \[MoO(S~2~CNEt~2~)~2~\] and \[ReMeO~3~\]. The sole product was an oxidation product whose structure we wish to report here: \[Mo(µ-O)O(S~2~CNEt~2~)\]~2~^.^THF. We note that the corresponding unsolvated compound, \[Mo(µ-O)O(S~2~CNEt~2~)\]~2~, was previously reported by Ricard *et al.* (1975). The title compound (see Scheme) is an axially symmetrical dimer of molybdenum(V) formed by way of two µ-oxido bridges, and with a short distance interaction with a tetrahydrofuran (THF) molecule, which was found to be disordered over two sites (symmetry-related by a twofold rotation axis). The asymmetric unit comprises one half of the molybdenum(V) dimer, and a half-occupied THF molecule (Figure 1). The coordination geometry around the metal centre can be envisaged as a highly distorted square pyramid (Table 1) with a terminal oxido ligand at the apex while the basal plane is occupied by two symmetry-equivalent µ-oxido bridges and a chelating dithiocarbamato ligand {MoO~3~S~2~}. The dimer also has a Mo---Mo direct bond with an intermetallic distance of 2.5591 (2) Å. A weakly-bonded THF molecule is *trans* to the apical oxido group. The disordered THF molecule interacts weakly with the metal centre with the measured Mo···O distance being considerably longer \[2.6213 (19) Å\] than those typically found in related structures. Nevertheless, from a survey in the Cambridge Structural Database (Allen, 2002) we found 4 structures which have longer Mo---O~THF~ bonds than those of the title compound. These compounds correspond to isostructural dimers, each with four bridging carboxylates or dithiocarboxylates, very short Mo---Mo distances, and with THF acting as an axial ligand (Cotton *et al.*, 1978, 1992, 1995). Individual \[Mo(µ-O)O(S~2~CNEt~2~)\]~2~^.^THF complexes close pack in the solid state driven by the need to effectively fill the available space (Figure 2). Some weak C---H···O interactions are present connecting the terminal oxido and neighbouring ---CH~3~ groups of an adjacent \[Mo(µ-O)O(S~2~CNEt~2~)\]~2~ entity (not shown; see Table 2 for geometrical details). Experimental {#experimental} ============ The precursor \[MoO(S~2~CNEt~2~)~2~\] (1) was prepared using a published method (Jowitt & Mitchell, 1969). \[ReMeO~3~\] (MTO) was purchased from Sigma-Aldrich (71--76% of Re content), and used without any further purification. All manipulations were carried out by using standard Schlenk line and drybox techniques in an atmosphere of N~2~. THF was distilled from Na/benzophenone. A solution of MTO (0.18 g, 0.73 mmol) in THF (10 ml) was added to a solution of 1 (0.30 g, 0.73 mmol) in THF (15 ml). After stirring magnetically for 5 h at ambient temperature, a green solution and a green solid were obtained. The volume of the mixture was reduced to half by vacuum evaporation and further precipitation was forced by cooling to -30 °C. The solid product was dissolved in the minimum amount of hot THF and submitted to slow cooling to -30 °C. Yellow crystals of the title compound suitable for single-crystal X-ray diffraction were directly isolated and preserved in N~2~ atmosphere prior to data collection. Refinement {#refinement} ========== Hydrogen atoms bound to carbon were placed in calculated positions and were included in the final structural model in riding-motion approximation with C---H = 0.99 (for the ---CH~2~ moieties) or 0.98 Å (for the terminal ---CH~3~ groups). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 or 1.5×*U*~eq~ of the respective parent carbon atom (for ---CH~2~--- and ---CH~3~, respectively). The C---C and C---O bonds of the disordered THF molecule (modeled with a fixed 50% rate of occupancy for each location) were restrained to common refineable distances in order to ensure a chemically reasonable geometry for this moiety. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular unit of the title compound showing all non-hydrogen atoms as thermal ellipsoids drawn at the 40% probability level and hydrogen atoms as small spheres with arbitrary radii. Atoms composing the asymmetric unit are highlighted by showing their respective label. The two possible locations for the disordered THF molecule are depicted with different colours for the bonds. For selected bond lengths see Table 1. Symmetry transformation used to generate equivalent atoms: (i) -x, y, 0.5 - z. ::: ![](e-67-0m288-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Crystal packing of the title compound viewed in perspective along the \[001\] direction of the unit cell. The two possible locations for the disordered THF molecule are depicted with different colours for the bonds (hydrogen atoms associated with these moieties have been omitted for clarity). ::: ![](e-67-0m288-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e251 .table-wrap} -------------------------------------------- --------------------------------------- \[Mo~2~(C~5~H~10~NS~2~)~2~O~4~\]·C~4~H~8~O *F*(000) = 1256 *M~r~* = 624.50 *D*~x~ = 1.774 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -C 2yc Cell parameters from 9063 reflections *a* = 12.8695 (7) Å θ = 2.6--35.3° *b* = 12.6025 (7) Å µ = 1.46 mm^−1^ *c* = 14.4579 (8) Å *T* = 150 K β = 94.184 (3)° Prism, yellow *V* = 2338.6 (2) Å^3^ 0.12 × 0.12 × 0.08 mm *Z* = 4 -------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e392 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker X8 KappaCCD APEXII diffractometer 5649 independent reflections Radiation source: fine-focus sealed tube 4661 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.033 ω and φ scans θ~max~ = 36.3°, θ~min~ = 3.5° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1998) *h* = −21→21 *T*~min~ = 0.845, *T*~max~ = 0.893 *k* = −20→20 48139 measured reflections *l* = −23→24 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e509 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.024 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.054 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0219*P*)^2^ + 2.1445*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5649 reflections (Δ/σ)~max~ = 0.001 149 parameters Δρ~max~ = 0.74 e Å^−3^ 5 restraints Δρ~min~ = −0.96 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e666 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e765 .table-wrap} ----- -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Mo1 0.081183 (8) 0.231212 (9) 0.203909 (7) 0.01717 (3) S1 0.25495 (3) 0.31525 (3) 0.23038 (2) 0.02555 (7) S2 0.11812 (3) 0.33069 (4) 0.06297 (2) 0.03297 (9) O1 −0.06648 (7) 0.24910 (7) 0.16391 (6) 0.02023 (17) O2 0.11161 (8) 0.10400 (8) 0.18310 (7) 0.0273 (2) N1 0.30133 (9) 0.43361 (9) 0.08463 (7) 0.0222 (2) C1 0.23528 (10) 0.36816 (11) 0.12027 (9) 0.0224 (2) C2 0.40421 (10) 0.45692 (12) 0.13224 (9) 0.0250 (3) H2A 0.3998 0.4513 0.2001 0.030\* H2B 0.4248 0.5304 0.1179 0.030\* C3 0.48586 (12) 0.38032 (14) 0.10190 (12) 0.0336 (3) H3A 0.4671 0.3078 0.1187 0.050\* H3B 0.5538 0.3986 0.1328 0.050\* H3C 0.4895 0.3850 0.0345 0.050\* C4 0.27763 (12) 0.48736 (12) −0.00497 (9) 0.0288 (3) H4A 0.2232 0.4471 −0.0420 0.035\* H4B 0.3409 0.4887 −0.0400 0.035\* C5 0.24037 (16) 0.59952 (15) 0.00879 (12) 0.0423 (4) H5A 0.1750 0.5980 0.0396 0.063\* H5B 0.2288 0.6345 −0.0516 0.063\* H5C 0.2931 0.6387 0.0473 0.063\* O3 0.02301 (17) 0.42667 (15) 0.23443 (16) 0.0298 (5) 0.50 C6 0.0064 (3) 0.5996 (3) 0.2983 (3) 0.0398 (8) 0.50 H6X 0.0481 0.6611 0.2799 0.048\* 0.50 H6Y −0.0215 0.6149 0.3589 0.048\* 0.50 C7 0.0722 (3) 0.4986 (3) 0.3034 (3) 0.0370 (9) 0.50 H7X 0.1447 0.5143 0.2891 0.044\* 0.50 H7Y 0.0732 0.4669 0.3661 0.044\* 0.50 C8 −0.0831 (4) 0.5757 (3) 0.2237 (3) 0.0552 (11) 0.50 H8X −0.1463 0.5508 0.2523 0.066\* 0.50 H8Y −0.1008 0.6391 0.1854 0.066\* 0.50 C9 −0.0384 (3) 0.4905 (3) 0.1677 (3) 0.0346 (8) 0.50 H9X −0.0943 0.4476 0.1353 0.042\* 0.50 H9Y 0.0058 0.5209 0.1211 0.042\* 0.50 ----- -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1248 .table-wrap} ----- -------------- -------------- -------------- --------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Mo1 0.01784 (5) 0.01611 (5) 0.01787 (5) −0.00165 (3) 0.00340 (3) 0.00016 (3) S1 0.02101 (13) 0.03126 (18) 0.02375 (14) −0.00642 (12) −0.00270 (11) 0.00826 (12) S2 0.02936 (16) 0.0438 (2) 0.02449 (15) −0.01877 (15) −0.00690 (12) 0.01249 (14) O1 0.0200 (4) 0.0193 (4) 0.0216 (4) −0.0037 (3) 0.0031 (3) −0.0016 (3) O2 0.0301 (5) 0.0201 (5) 0.0334 (5) −0.0007 (4) 0.0140 (4) −0.0024 (4) N1 0.0239 (5) 0.0239 (6) 0.0188 (4) −0.0081 (4) 0.0026 (4) −0.0002 (4) C1 0.0219 (5) 0.0235 (6) 0.0216 (5) −0.0054 (4) 0.0010 (4) 0.0027 (4) C2 0.0239 (6) 0.0270 (7) 0.0243 (6) −0.0102 (5) 0.0024 (4) −0.0024 (5) C3 0.0262 (6) 0.0337 (8) 0.0412 (8) −0.0055 (6) 0.0034 (6) −0.0031 (6) C4 0.0357 (7) 0.0315 (8) 0.0192 (5) −0.0125 (6) 0.0027 (5) 0.0032 (5) C5 0.0556 (11) 0.0344 (9) 0.0356 (8) −0.0022 (8) −0.0049 (7) 0.0071 (7) O3 0.0374 (15) 0.0189 (9) 0.0305 (13) 0.0046 (7) −0.0149 (9) −0.0052 (8) C6 0.0471 (19) 0.0201 (14) 0.054 (2) −0.0070 (13) 0.0157 (16) −0.0181 (13) C7 0.044 (2) 0.0296 (19) 0.036 (2) −0.0117 (16) −0.0057 (15) −0.0132 (16) C8 0.060 (3) 0.033 (2) 0.074 (3) 0.0083 (18) 0.005 (2) 0.0059 (19) C9 0.039 (2) 0.0247 (16) 0.038 (2) 0.0112 (15) −0.0093 (15) 0.0032 (15) ----- -------------- -------------- -------------- --------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1588 .table-wrap} --------------------------- -------------- --------------------------- -------------- Mo1---Mo1^i^ 2.5591 (2) C4---C5 1.510 (3) Mo1---S1 2.4788 (4) C4---H4A 0.9900 Mo1---S2 2.4680 (4) C4---H4B 0.9900 Mo1---O1 1.9586 (9) C5---H5A 0.9800 Mo1---O1^i^ 1.9472 (9) C5---H5B 0.9800 Mo1---O2 1.6826 (10) C5---H5C 0.9800 Mo1---O3 2.6213 (19) O3---C9 1.446 (4) S1---C1 1.7276 (13) O3---C7 1.457 (4) S2---C1 1.7322 (13) O3---Mo1^i^ 2.972 (2) O1---Mo1^i^ 1.9472 (9) C6---C7 1.527 (5) O2---Mo1^i^ 3.4621 (10) C6---C8 1.549 (5) N1---C1 1.3161 (16) C6---H6X 0.9900 N1---C4 1.4739 (17) C6---H6Y 0.9900 N1---C2 1.4766 (17) C7---H7X 0.9900 C2---C3 1.515 (2) C7---H7Y 0.9900 C2---H2A 0.9900 C8---C9 1.485 (5) C2---H2B 0.9900 C8---H8X 0.9900 C3---H3A 0.9800 C8---H8Y 0.9900 C3---H3B 0.9800 C9---H9X 0.9900 C3---H3C 0.9800 C9---H9Y 0.9900 O1^i^---Mo1---O1 96.59 (4) C5---C4---H4A 109.4 O1---Mo1---O3 70.04 (6) N1---C4---H4B 109.4 O1^i^---Mo1---O3 71.13 (6) C5---C4---H4B 109.4 O1---Mo1---S1 147.29 (3) H4A---C4---H4B 108.0 O1^i^---Mo1---S1 87.14 (3) C4---C5---H5A 109.5 O1---Mo1---S2 86.50 (3) C4---C5---H5B 109.5 O1^i^---Mo1---S2 142.17 (3) H5A---C5---H5B 109.5 O2---Mo1---O1 106.88 (5) C4---C5---H5C 109.5 O2---Mo1---O1^i^ 109.05 (5) H5A---C5---H5C 109.5 O2---Mo1---O3 176.86 (6) H5B---C5---H5C 109.5 O2---Mo1---S1 102.45 (4) C9---O3---C7 107.4 (2) O2---Mo1---S2 105.96 (4) C9---O3---Mo1 124.0 (2) S1---Mo1---O3 80.68 (5) C7---O3---Mo1 125.8 (2) S2---Mo1---O3 74.70 (5) C9---O3---Mo1^i^ 115.1 (2) S2---Mo1---S1 71.612 (11) C7---O3---Mo1^i^ 119.6 (2) O2---Mo1---Mo1^i^ 107.62 (3) Mo1---O3---Mo1^i^ 54.01 (4) O1^i^---Mo1---Mo1^i^ 49.26 (3) C7---C6---C8 104.6 (3) O1---Mo1---Mo1^i^ 48.87 (3) C7---C6---H6X 110.8 S2---Mo1---Mo1^i^ 130.072 (11) C8---C6---H6X 110.8 S1---Mo1---Mo1^i^ 132.947 (10) C7---C6---H6Y 110.8 Mo1^i^---Mo1---O3 70.02 (5) C8---C6---H6Y 110.8 C1---S1---Mo1 87.29 (4) H6X---C6---H6Y 108.9 C1---S2---Mo1 87.53 (4) O3---C7---C6 105.9 (3) Mo1^i^---O1---Mo1 81.87 (4) C6---C7---Mo1 141.2 (2) C1---N1---C4 122.27 (11) O3---C7---H7X 110.6 C1---N1---C2 121.66 (11) C6---C7---H7X 110.6 C4---N1---C2 116.06 (11) Mo1---C7---H7X 92.6 N1---C1---S1 123.18 (10) O3---C7---H7Y 110.6 N1---C1---S2 123.24 (10) C6---C7---H7Y 110.6 S1---C1---S2 113.54 (7) Mo1---C7---H7Y 89.4 N1---C1---Mo1 176.95 (11) H7X---C7---H7Y 108.7 S1---C1---Mo1 56.96 (4) C9---C8---C6 102.8 (3) S2---C1---Mo1 56.60 (4) C9---C8---H8X 111.2 N1---C2---C3 110.82 (11) C6---C8---H8X 111.2 N1---C2---H2A 109.5 C9---C8---H8Y 111.2 C3---C2---H2A 109.5 C6---C8---H8Y 111.2 N1---C2---H2B 109.5 H8X---C8---H8Y 109.1 C3---C2---H2B 109.5 O3---C9---C8 104.7 (3) H2A---C2---H2B 108.1 C8---C9---Mo1 138.4 (3) C2---C3---H3A 109.5 O3---C9---H9X 110.8 C2---C3---H3B 109.5 C8---C9---H9X 110.8 H3A---C3---H3B 109.5 Mo1---C9---H9X 82.1 C2---C3---H3C 109.5 O3---C9---H9Y 110.8 H3A---C3---H3C 109.5 C8---C9---H9Y 110.8 H3B---C3---H3C 109.5 Mo1---C9---H9Y 100.8 N1---C4---C5 111.21 (12) H9X---C9---H9Y 108.9 N1---C4---H4A 109.4 O2---Mo1---S1---C1 103.85 (6) O1^i^---Mo1---O3---C7 50.7 (3) O1^i^---Mo1---S1---C1 −147.26 (6) O1---Mo1---O3---C7 155.4 (3) O1---Mo1---S1---C1 −49.51 (7) S2---Mo1---O3---C7 −112.8 (3) S2---Mo1---S1---C1 0.95 (5) S1---Mo1---O3---C7 −39.4 (3) Mo1^i^---Mo1---S1---C1 −127.18 (5) Mo1^i^---Mo1---O3---C7 103.2 (3) O3---Mo1---S1---C1 −75.92 (7) O1^i^---Mo1---O3---Mo1^i^ −52.44 (3) O2---Mo1---S2---C1 −99.06 (6) O1---Mo1---O3---Mo1^i^ 52.22 (3) O1^i^---Mo1---S2---C1 58.14 (7) S2---Mo1---O3---Mo1^i^ 144.06 (3) O1---Mo1---S2---C1 154.38 (6) S1---Mo1---O3---Mo1^i^ −142.59 (3) S1---Mo1---S2---C1 −0.94 (5) C9---O3---C7---C6 21.9 (3) Mo1^i^---Mo1---S2---C1 130.25 (5) Mo1---O3---C7---C6 −176.6 (2) O3---Mo1---S2---C1 84.12 (7) Mo1^i^---O3---C7---C6 −111.7 (3) O2---Mo1---O1---Mo1^i^ 98.92 (4) C9---O3---C7---Mo1 −161.5 (3) O1^i^---Mo1---O1---Mo1^i^ −13.32 (5) Mo1^i^---O3---C7---Mo1 64.91 (18) S2---Mo1---O1---Mo1^i^ −155.46 (3) C8---C6---C7---O3 1.4 (4) S1---Mo1---O1---Mo1^i^ −108.31 (4) C8---C6---C7---Mo1 −1.7 (6) O3---Mo1---O1---Mo1^i^ −80.47 (6) O2---Mo1---C7---O3 −173.53 (19) O1^i^---Mo1---O2---Mo1^i^ 52.06 (3) O1^i^---Mo1---C7---O3 −122.3 (3) O1---Mo1---O2---Mo1^i^ −51.33 (3) O1---Mo1---C7---O3 −23.1 (3) S2---Mo1---O2---Mo1^i^ −142.50 (2) S2---Mo1---C7---O3 63.8 (3) S1---Mo1---O2---Mo1^i^ 143.34 (2) S1---Mo1---C7---O3 136.9 (3) C4---N1---C1---S1 −172.85 (11) Mo1^i^---Mo1---C7---O3 −71.1 (3) C2---N1---C1---S1 7.5 (2) O2---Mo1---C7---C6 −168.3 (3) C4---N1---C1---S2 4.7 (2) O1^i^---Mo1---C7---C6 −117.0 (5) C2---N1---C1---S2 −174.93 (10) O1---Mo1---C7---C6 −17.8 (4) Mo1---S1---C1---N1 176.36 (12) S2---Mo1---C7---C6 69.0 (4) Mo1---S1---C1---S2 −1.40 (7) S1---Mo1---C7---C6 142.1 (5) Mo1---S2---C1---N1 −176.35 (12) Mo1^i^---Mo1---C7---C6 −65.9 (4) Mo1---S2---C1---S1 1.40 (7) O3---Mo1---C7---C6 5.2 (3) O2---Mo1---C1---S1 −86.15 (6) C7---C6---C8---C9 −23.1 (5) O1^i^---Mo1---C1---S1 37.22 (6) C7---O3---C9---C8 −37.5 (4) O1---Mo1---C1---S1 152.10 (4) Mo1---O3---C9---C8 160.5 (2) S2---Mo1---C1---S1 −178.47 (8) Mo1^i^---O3---C9---C8 98.3 (3) Mo1^i^---Mo1---C1---S1 93.83 (5) C7---O3---C9---Mo1 161.9 (3) O3---Mo1---C1---S1 95.97 (7) Mo1^i^---O3---C9---Mo1 −62.18 (15) O2---Mo1---C1---S2 92.31 (6) C6---C8---C9---O3 36.8 (4) O1^i^---Mo1---C1---S2 −144.31 (4) C6---C8---C9---Mo1 54.3 (6) O1---Mo1---C1---S2 −29.43 (6) O2---Mo1---C9---O3 172.71 (17) S1---Mo1---C1---S2 178.47 (8) O1^i^---Mo1---C9---O3 27.7 (3) Mo1^i^---Mo1---C1---S2 −87.70 (6) O1---Mo1---C9---O3 126.7 (3) O3---Mo1---C1---S2 −85.56 (7) S2---Mo1---C9---O3 −128.3 (3) C1---N1---C2---C3 90.63 (16) S1---Mo1---C9---O3 −59.5 (3) C4---N1---C2---C3 −89.02 (15) Mo1^i^---Mo1---C9---O3 75.6 (3) C1---N1---C4---C5 98.86 (16) O2---Mo1---C9---C8 143.6 (4) C2---N1---C4---C5 −81.49 (16) O1^i^---Mo1---C9---C8 −1.4 (4) O1^i^---Mo1---O3---C9 −150.6 (3) O1---Mo1---C9---C8 97.6 (5) O1---Mo1---O3---C9 −46.0 (3) S2---Mo1---C9---C8 −157.4 (5) S2---Mo1---O3---C9 45.9 (3) S1---Mo1---C9---C8 −88.6 (5) S1---Mo1---O3---C9 119.2 (3) Mo1^i^---Mo1---C9---C8 46.5 (4) Mo1^i^---Mo1---O3---C9 −98.2 (3) O3---Mo1---C9---C8 −29.1 (4) --------------------------- -------------- --------------------------- -------------- ::: Symmetry codes: (i) −*x*, *y*, −*z*+1/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2948 .table-wrap} -------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C2---H2A···O2^ii^ 0.99 2.57 3.2687 (17) 127 C4---H4B···O2^iii^ 0.99 2.49 3.2443 (17) 133 -------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (ii) −*x*+1/2, *y*+1/2, −*z*+1/2; (iii) −*x*+1/2, −*y*+1/2, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: -------------- ------------- Mo1---Mo1^i^ 2.5591 (2) Mo1---S1 2.4788 (4) Mo1---S2 2.4680 (4) Mo1---O1 1.9586 (9) Mo1---O1^i^ 1.9472 (9) Mo1---O2 1.6826 (10) -------------- ------------- Symmetry code: (i) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ------------- ------------- C2---H2*A*⋯O2^ii^ 0.99 2.57 3.2687 (17) 127 C4---H4*B*⋯O2^iii^ 0.99 2.49 3.2443 (17) 133 Symmetry codes: (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.883178
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051765/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):m288-m289", "authors": [ { "first": "José A.", "last": "Fernandes" }, { "first": "Filipe A.", "last": "Almeida Paz" }, { "first": "Carlos C.", "last": "Romão" } ] }
PMC3051766
Related literature {#sec1} ================== For reviews of related metal amides, see: Holm *et al.* (1996[@bb6]); Kempe (2000[@bb7]). For the catalytic applications of related *N*--silylated analido--group 4 metal compounds towards olefin polymerization, see: Gibson *et al.* (1998[@bb4]); Hill & Hitchcock (2002[@bb5]); Yuan *et al.* (2010[@bb11]). For related organometallic compounds with analogous analido ligands, see: Schumann *et al.* (2000[@bb8]); Chen (2008[@bb2], 2009[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Co(C~12~H~21~N~2~Si)Cl(C~6~H~16~N~2~)\]*M* *~r~* = 431.99Monoclinic,*a* = 20.711 (2) Å*b* = 7.7110 (8) Å*c* = 29.844 (3) Åβ = 99.009 (2)°*V* = 4707.4 (8) Å^3^*Z* = 8Mo *K*α radiationμ = 0.90 mm^−1^*T* = 295 K0.30 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb9]) *T* ~min~ = 0.774, *T* ~max~ = 0.84013181 measured reflections4630 independent reflections3530 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.035 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.048*wR*(*F* ^2^) = 0.134*S* = 1.054630 reflections226 parametersH-atom parameters constrainedΔρ~max~ = 0.58 e Å^−3^Δρ~min~ = −0.35 e Å^−3^ {#d5e410} Data collection: *SMART* (Bruker, 2000[@bb1]); cell refinement: *SAINT* (Bruker, 2000[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb10]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002959/rk2258sup1.cif](http://dx.doi.org/10.1107/S1600536811002959/rk2258sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002959/rk2258Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002959/rk2258Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rk2258&file=rk2258sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rk2258sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rk2258&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RK2258](http://scripts.iucr.org/cgi-bin/sendsup?rk2258)). This work was supported by grants from the Natural Science Foundation of China (20702029) and the Natural Science Foundation of Shanxi Province (2008011024). Comment ======= Metal amides were important substitutes for cyclopentadienyl derivatives. They were found having valuable applications in various industrial and biological processes (Holm *et al.*, 1996; Kempe, 2000). Group 4 metal amides supported with the *N*--silylated anilido ligands were active catalysts for olefin polymerization (Gibson *et al.*, 1998; Hill & Hitchcock, 2002). Moreover, a class of monoionic *N*--silylated anilido--ligands bearing a pendant amino--group were paid much attentions. It was presumed that the empty *d*--orbitals on silicon would interact with the lone--pair electrons on the *p*--orbital of nitrogen center through *d---pπ* interaction throughout the N---Si---N motif. Analogous compounds with different metals including Zn (Schumann *et al.*, 2000), Zr (Chen, 2009) and Fe (Chen, 2008) have been synthesized. A group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan *et al.*, 2010). Here, the synthesis and crystal structure of a new cobalt(II) anilido--complex will be described. The title compound was prepared by a one--pot reaction of *n*--*Bu*Li, *N*--\[(diethylamino)dimethylsilyl\]aniline, 1,2--bis(dimethylamino)ethane (*tmeda*) and CoCl~2~. The suitable for X--ray investigation single--crystal of the title compound was obtained by recrystallization in toluene. Its molecular structure is shown in Fig. 1. In the monomeric molecular structure of title compound, the metal Co center is coordinated by a chlorine atom, a chelating *tmeda* molecule and the anilido--ligand. The neutral donor molecule coordinates metal center in *N*,*N\'*--chelating mode. Though the anilido--ligand has a pendant amino group, exhibting an N---Si---N chelating moiety, it connects Co(II) only with a σ--bond, Co---N~anilido~ being 1.931 (2)Å. It suggests the less affinity between the pendant amino--group and the metal center in comparing with *tmeda*. The angle of N1---Si1---N2 is 110.18 (12)°. The four--coordinate Co atom demonstrates a slightly distorted tetrahedral geometry. In the cases of N1---Si1---N1 biting metal center, the angles were constrained to less than 100°. Experimental {#experimental} ============ A solution of *n*--*Bu*Li (1.6 *M*, 1.9 ml, 3.1 mmol) in hexane was slowly added into a mixture of *N*--\[(diethylamino)dimethylsilyl\]aniline (0.69 g, 3.1 mmol) and *tmeda* (0.36 g, 3.1 mmol) in *Et*~2~O (20 ml) at 273 K by syringe. The mixture was stirred at room temperature for two hours and then added to a stirring suspension of CoCl~2~ (0.41 g, 3.1 mmol) in *Et*~2~O (20 ml) at 273 K. The resulting mixture was stirred at room temperature for 8 h. Then all the volatiles were removed under vacuum. The residue was extracted with toluene (25 ml). The filtrate was concentrated to give the title compound as green crystals (yield 0.52 g, 39%). M.p.: 390--391 K. MS (EI, 70 eV): *m/z* 431 \[*M*\]^+^. Anal. Calc. for C~18~H~37~ClCoN~4~Si: C, 50.05; H, 8.63; N, 12.97%.Found: C, 49.20; H, 8.37; N, 12.59%. Refinement {#refinement} ========== The methyl H atoms were constrained to an ideal geometry, with C---H distances of 0.96Å and *U*~iso~(H) = 1.5*U*~eq~(C), but each group was allowed to rotate freely about its C---C, C---N and C---Si bonds. The methylene H atoms were constrained with C---H distances of 0.97Å and *U*~iso~(H) = 1.2*U*~eq~(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C---H distances in the range 0.93Å and *U*~iso~(H) = 1.2*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure, showing the atom--numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius. ::: ![](e-67-0m273-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e234 .table-wrap} ------------------------------------------- --------------------------------------- \[Co(C~12~H~21~N~2~Si)Cl(C~6~H~16~N~2~)\] *F*(000) = 1848 *M~r~* = 431.99 *D*~x~ = 1.219 Mg m^−3^ Monoclinic, *C*2/*c* Melting point = 390--391 K Hall symbol: -C 2yc Mo *K*α radiation, λ = 0.71073 Å *a* = 20.711 (2) Å Cell parameters from 2838 reflections *b* = 7.7110 (8) Å θ = 2.6--27.3° *c* = 29.844 (3) Å µ = 0.90 mm^−1^ β = 99.009 (2)° *T* = 295 K *V* = 4707.4 (8) Å^3^ Block, green *Z* = 8 0.30 × 0.25 × 0.20 mm ------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e370 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART CCD diffractometer 4630 independent reflections Radiation source: fine-focus sealed tube 3530 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.035 φ and ω scans θ~max~ = 26.0°, θ~min~ = 1.4° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −25→19 *T*~min~ = 0.774, *T*~max~ = 0.840 *k* = −9→9 13181 measured reflections *l* = −33→36 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e487 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.048 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.134 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0786*P*)^2^ + 0.8817*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4630 reflections (Δ/σ)~max~ = 0.002 226 parameters Δρ~max~ = 0.58 e Å^−3^ 0 restraints Δρ~min~ = −0.35 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e644 .table-wrap} --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*--factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*--factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*--factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*--factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*--factors based on ALL data will be even larger. --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e743 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Co1 0.409198 (18) 0.55218 (5) 0.588284 (12) 0.04797 (15) Si1 0.37709 (4) 0.69888 (11) 0.68265 (3) 0.0512 (2) Cl1 0.44296 (5) 0.76779 (12) 0.54620 (3) 0.0749 (3) N1 0.35134 (11) 0.6003 (3) 0.63160 (8) 0.0499 (6) N2 0.32211 (13) 0.8549 (4) 0.69276 (8) 0.0615 (7) N3 0.48921 (13) 0.3793 (4) 0.60883 (10) 0.0685 (7) N4 0.37541 (12) 0.3566 (3) 0.53954 (8) 0.0561 (6) C1 0.28473 (13) 0.5721 (4) 0.61545 (10) 0.0514 (7) C2 0.25669 (16) 0.6353 (5) 0.57293 (11) 0.0669 (9) H2A 0.2818 0.7003 0.5558 0.080\* C3 0.1910 (2) 0.6013 (6) 0.55597 (15) 0.0862 (13) H3A 0.1733 0.6430 0.5275 0.103\* C4 0.15266 (19) 0.5085 (6) 0.5803 (2) 0.0968 (16) H4A 0.1092 0.4859 0.5685 0.116\* C5 0.17918 (19) 0.4492 (5) 0.62229 (17) 0.0860 (12) H5A 0.1532 0.3871 0.6394 0.103\* C6 0.24433 (16) 0.4799 (5) 0.63991 (13) 0.0668 (9) H6A 0.2612 0.4380 0.6686 0.080\* C7 0.45913 (16) 0.7966 (5) 0.67824 (12) 0.0706 (9) H7A 0.4551 0.8725 0.6525 0.106\* H7B 0.4897 0.7058 0.6747 0.106\* H7C 0.4745 0.8612 0.7053 0.106\* C8 0.3881 (2) 0.5524 (5) 0.73357 (12) 0.0802 (11) H8A 0.3468 0.5024 0.7371 0.120\* H8B 0.4048 0.6182 0.7602 0.120\* H8C 0.4184 0.4617 0.7294 0.120\* C9 0.3114 (2) 0.9125 (5) 0.73794 (13) 0.0838 (11) H9A 0.3172 0.8142 0.7585 0.101\* H9B 0.2665 0.9515 0.7360 0.101\* C10 0.3563 (3) 1.0566 (7) 0.75764 (17) 0.134 (2) H10A 0.3466 1.0873 0.7870 0.201\* H10B 0.3501 1.1558 0.7380 0.201\* H10C 0.4009 1.0183 0.7604 0.201\* C11 0.29799 (18) 0.9767 (5) 0.65620 (12) 0.0687 (9) H11A 0.3144 0.9416 0.6289 0.082\* H11B 0.3153 1.0912 0.6645 0.082\* C12 0.2238 (2) 0.9869 (6) 0.64612 (17) 0.1019 (14) H12A 0.2110 1.0683 0.6220 0.153\* H12B 0.2072 1.0242 0.6728 0.153\* H12C 0.2063 0.8746 0.6372 0.153\* C13 0.4960 (2) 0.3208 (6) 0.65667 (14) 0.1036 (15) H13A 0.5329 0.2443 0.6631 0.155\* H13B 0.4571 0.2606 0.6614 0.155\* H13C 0.5025 0.4196 0.6764 0.155\* C14 0.55074 (19) 0.4609 (7) 0.6014 (2) 0.1199 (19) H14A 0.5864 0.3826 0.6106 0.180\* H14B 0.5575 0.5656 0.6189 0.180\* H14C 0.5486 0.4878 0.5698 0.180\* C15 0.4741 (2) 0.2226 (5) 0.57985 (15) 0.0912 (13) H15A 0.5147 0.1658 0.5759 0.109\* H15B 0.4488 0.1418 0.5950 0.109\* C16 0.43702 (18) 0.2672 (5) 0.53474 (13) 0.0784 (11) H16A 0.4634 0.3417 0.5187 0.094\* H16B 0.4273 0.1622 0.5171 0.094\* C17 0.3459 (2) 0.4245 (5) 0.49423 (11) 0.0786 (10) H17A 0.3319 0.3292 0.4744 0.118\* H17B 0.3779 0.4916 0.4817 0.118\* H17C 0.3091 0.4964 0.4974 0.118\* C18 0.32867 (18) 0.2356 (5) 0.55483 (13) 0.0760 (10) H18A 0.3153 0.1516 0.5315 0.114\* H18B 0.2911 0.2986 0.5612 0.114\* H18C 0.3490 0.1775 0.5818 0.114\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1528 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Co1 0.0462 (2) 0.0454 (2) 0.0532 (2) 0.00471 (16) 0.01055 (16) 0.00056 (16) Si1 0.0552 (5) 0.0527 (5) 0.0444 (4) −0.0009 (4) 0.0040 (3) 0.0029 (3) Cl1 0.0905 (6) 0.0578 (5) 0.0813 (6) −0.0065 (4) 0.0282 (5) 0.0086 (4) N1 0.0457 (12) 0.0546 (14) 0.0501 (13) 0.0050 (11) 0.0091 (10) −0.0031 (11) N2 0.0739 (17) 0.0605 (17) 0.0522 (14) 0.0004 (13) 0.0162 (13) −0.0043 (12) N3 0.0522 (15) 0.0673 (18) 0.0827 (19) 0.0155 (13) 0.0004 (14) −0.0027 (15) N4 0.0575 (15) 0.0519 (15) 0.0607 (14) 0.0012 (12) 0.0146 (12) −0.0068 (12) C1 0.0471 (15) 0.0502 (17) 0.0565 (16) 0.0123 (13) 0.0072 (13) −0.0146 (13) C2 0.066 (2) 0.070 (2) 0.0608 (18) 0.0201 (17) 0.0009 (16) −0.0090 (16) C3 0.076 (2) 0.082 (3) 0.089 (3) 0.035 (2) −0.024 (2) −0.032 (2) C4 0.049 (2) 0.091 (3) 0.143 (4) 0.015 (2) −0.006 (3) −0.061 (3) C5 0.058 (2) 0.083 (3) 0.120 (3) −0.0094 (19) 0.024 (2) −0.039 (3) C6 0.0573 (18) 0.065 (2) 0.080 (2) 0.0011 (16) 0.0160 (17) −0.0139 (17) C7 0.066 (2) 0.073 (2) 0.071 (2) −0.0095 (18) 0.0050 (17) −0.0026 (18) C8 0.100 (3) 0.075 (3) 0.061 (2) 0.001 (2) −0.0007 (19) 0.0179 (18) C9 0.110 (3) 0.079 (3) 0.069 (2) 0.004 (2) 0.033 (2) −0.0084 (19) C10 0.208 (7) 0.112 (4) 0.084 (3) −0.037 (4) 0.032 (4) −0.038 (3) C11 0.082 (2) 0.057 (2) 0.067 (2) 0.0101 (17) 0.0106 (18) −0.0003 (16) C12 0.091 (3) 0.093 (3) 0.116 (3) 0.031 (3) 0.000 (3) −0.007 (3) C13 0.114 (3) 0.088 (3) 0.097 (3) 0.037 (3) −0.019 (3) 0.013 (2) C14 0.048 (2) 0.122 (4) 0.189 (6) 0.014 (2) 0.018 (3) 0.004 (4) C15 0.079 (3) 0.069 (3) 0.123 (4) 0.032 (2) 0.009 (2) −0.016 (2) C16 0.073 (2) 0.075 (3) 0.091 (3) 0.0126 (19) 0.024 (2) −0.021 (2) C17 0.096 (3) 0.082 (3) 0.0575 (19) 0.002 (2) 0.0097 (18) −0.0130 (18) C18 0.085 (2) 0.060 (2) 0.086 (2) −0.0138 (18) 0.022 (2) −0.0144 (18) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2008 .table-wrap} ---------------------- ------------- ---------------------- ------------ Co1---N1 1.931 (2) C8---H8B 0.9600 Co1---N4 2.136 (2) C8---H8C 0.9600 Co1---N3 2.140 (3) C9---C10 1.508 (6) Co1---Cl1 2.2595 (9) C9---H9A 0.9700 Si1---N1 1.711 (2) C9---H9B 0.9700 Si1---N2 1.715 (3) C10---H10A 0.9600 Si1---C8 1.878 (3) C10---H10B 0.9600 Si1---C7 1.882 (3) C10---H10C 0.9600 N1---C1 1.405 (4) C11---C12 1.521 (5) N2---C11 1.467 (4) C11---H11A 0.9700 N2---C9 1.469 (4) C11---H11B 0.9700 N3---C14 1.469 (5) C12---H12A 0.9600 N3---C13 1.483 (5) C12---H12B 0.9600 N3---C15 1.491 (5) C12---H12C 0.9600 N4---C18 1.468 (4) C13---H13A 0.9600 N4---C16 1.477 (4) C13---H13B 0.9600 N4---C17 1.489 (4) C13---H13C 0.9600 C1---C6 1.389 (5) C14---H14A 0.9600 C1---C2 1.398 (4) C14---H14B 0.9600 C2---C3 1.399 (5) C14---H14C 0.9600 C2---H2A 0.9300 C15---C16 1.482 (5) C3---C4 1.360 (7) C15---H15A 0.9700 C3---H3A 0.9300 C15---H15B 0.9700 C4---C5 1.367 (7) C16---H16A 0.9700 C4---H4A 0.9300 C16---H16B 0.9700 C5---C6 1.390 (5) C17---H17A 0.9600 C5---H5A 0.9300 C17---H17B 0.9600 C6---H6A 0.9300 C17---H17C 0.9600 C7---H7A 0.9600 C18---H18A 0.9600 C7---H7B 0.9600 C18---H18B 0.9600 C7---H7C 0.9600 C18---H18C 0.9600 C8---H8A 0.9600 N1---Co1---N4 114.84 (10) N2---C9---C10 114.1 (3) N1---Co1---N3 117.50 (11) N2---C9---H9A 108.7 N4---Co1---N3 84.94 (10) C10---C9---H9A 108.7 N1---Co1---Cl1 120.61 (8) N2---C9---H9B 108.7 N4---Co1---Cl1 103.76 (7) C10---C9---H9B 108.7 N3---Co1---Cl1 108.92 (9) H9A---C9---H9B 107.6 N1---Si1---N2 110.18 (12) C9---C10---H10A 109.5 N1---Si1---C8 115.75 (16) C9---C10---H10B 109.5 N2---Si1---C8 106.22 (16) H10A---C10---H10B 109.5 N1---Si1---C7 105.93 (14) C9---C10---H10C 109.5 N2---Si1---C7 111.30 (16) H10A---C10---H10C 109.5 C8---Si1---C7 107.49 (18) H10B---C10---H10C 109.5 C1---N1---Si1 121.77 (18) N2---C11---C12 113.3 (3) C1---N1---Co1 114.80 (18) N2---C11---H11A 108.9 Si1---N1---Co1 122.79 (13) C12---C11---H11A 108.9 C11---N2---C9 114.0 (3) N2---C11---H11B 108.9 C11---N2---Si1 118.4 (2) C12---C11---H11B 108.9 C9---N2---Si1 125.0 (3) H11A---C11---H11B 107.7 C14---N3---C13 108.7 (4) C11---C12---H12A 109.5 C14---N3---C15 111.6 (3) C11---C12---H12B 109.5 C13---N3---C15 107.0 (3) H12A---C12---H12B 109.5 C14---N3---Co1 110.0 (3) C11---C12---H12C 109.5 C13---N3---Co1 114.7 (2) H12A---C12---H12C 109.5 C15---N3---Co1 104.9 (2) H12B---C12---H12C 109.5 C18---N4---C16 110.8 (3) N3---C13---H13A 109.5 C18---N4---C17 108.0 (3) N3---C13---H13B 109.5 C16---N4---C17 108.3 (3) H13A---C13---H13B 109.5 C18---N4---Co1 113.51 (19) N3---C13---H13C 109.5 C16---N4---Co1 101.5 (2) H13A---C13---H13C 109.5 C17---N4---Co1 114.5 (2) H13B---C13---H13C 109.5 C6---C1---C2 117.2 (3) N3---C14---H14A 109.5 C6---C1---N1 122.6 (3) N3---C14---H14B 109.5 C2---C1---N1 120.2 (3) H14A---C14---H14B 109.5 C1---C2---C3 120.3 (4) N3---C14---H14C 109.5 C1---C2---H2A 119.8 H14A---C14---H14C 109.5 C3---C2---H2A 119.8 H14B---C14---H14C 109.5 C4---C3---C2 121.4 (4) C16---C15---N3 111.7 (3) C4---C3---H3A 119.3 C16---C15---H15A 109.3 C2---C3---H3A 119.3 N3---C15---H15A 109.3 C3---C4---C5 118.7 (4) C16---C15---H15B 109.3 C3---C4---H4A 120.6 N3---C15---H15B 109.3 C5---C4---H4A 120.6 H15A---C15---H15B 107.9 C4---C5---C6 121.1 (4) N4---C16---C15 110.7 (3) C4---C5---H5A 119.4 N4---C16---H16A 109.5 C6---C5---H5A 119.4 C15---C16---H16A 109.5 C1---C6---C5 121.2 (4) N4---C16---H16B 109.5 C1---C6---H6A 119.4 C15---C16---H16B 109.5 C5---C6---H6A 119.4 H16A---C16---H16B 108.1 Si1---C7---H7A 109.5 N4---C17---H17A 109.5 Si1---C7---H7B 109.5 N4---C17---H17B 109.5 H7A---C7---H7B 109.5 H17A---C17---H17B 109.5 Si1---C7---H7C 109.5 N4---C17---H17C 109.5 H7A---C7---H7C 109.5 H17A---C17---H17C 109.5 H7B---C7---H7C 109.5 H17B---C17---H17C 109.5 Si1---C8---H8A 109.5 N4---C18---H18A 109.5 Si1---C8---H8B 109.5 N4---C18---H18B 109.5 H8A---C8---H8B 109.5 H18A---C18---H18B 109.5 Si1---C8---H8C 109.5 N4---C18---H18C 109.5 H8A---C8---H8C 109.5 H18A---C18---H18C 109.5 H8B---C8---H8C 109.5 H18B---C18---H18C 109.5 N2---Si1---N1---C1 −34.7 (3) N1---Co1---N4---C16 −142.6 (2) C8---Si1---N1---C1 85.8 (3) N3---Co1---N4---C16 −24.6 (2) C7---Si1---N1---C1 −155.2 (2) Cl1---Co1---N4---C16 83.7 (2) N2---Si1---N1---Co1 135.65 (16) N1---Co1---N4---C17 101.0 (2) C8---Si1---N1---Co1 −103.8 (2) N3---Co1---N4---C17 −141.0 (2) C7---Si1---N1---Co1 15.2 (2) Cl1---Co1---N4---C17 −32.7 (2) N4---Co1---N1---C1 −29.3 (2) Si1---N1---C1---C6 −56.6 (4) N3---Co1---N1---C1 −126.8 (2) Co1---N1---C1---C6 132.4 (2) Cl1---Co1---N1---C1 96.0 (2) Si1---N1---C1---C2 124.4 (3) N4---Co1---N1---Si1 159.74 (14) Co1---N1---C1---C2 −46.6 (3) N3---Co1---N1---Si1 62.2 (2) C6---C1---C2---C3 −1.7 (4) Cl1---Co1---N1---Si1 −74.92 (17) N1---C1---C2---C3 177.3 (3) N1---Si1---N2---C11 −46.8 (3) C1---C2---C3---C4 0.8 (5) C8---Si1---N2---C11 −172.9 (3) C2---C3---C4---C5 0.5 (6) C7---Si1---N2---C11 70.4 (3) C3---C4---C5---C6 −1.0 (6) N1---Si1---N2---C9 152.6 (3) C2---C1---C6---C5 1.3 (5) C8---Si1---N2---C9 26.5 (3) N1---C1---C6---C5 −177.7 (3) C7---Si1---N2---C9 −90.2 (3) C4---C5---C6---C1 0.1 (5) N1---Co1---N3---C14 −127.3 (3) C11---N2---C9---C10 −74.0 (5) N4---Co1---N3---C14 117.3 (3) Si1---N2---C9---C10 87.3 (5) Cl1---Co1---N3---C14 14.5 (3) C9---N2---C11---C12 −69.9 (4) N1---Co1---N3---C13 −4.4 (3) Si1---N2---C11---C12 127.4 (3) N4---Co1---N3---C13 −119.8 (3) C14---N3---C15---C16 −87.8 (4) Cl1---Co1---N3---C13 137.4 (3) C13---N3---C15---C16 153.4 (3) N1---Co1---N3---C15 112.6 (3) Co1---N3---C15---C16 31.2 (4) N4---Co1---N3---C15 −2.8 (3) C18---N4---C16---C15 −71.2 (4) Cl1---Co1---N3---C15 −105.6 (2) C17---N4---C16---C15 170.5 (3) N1---Co1---N4---C18 −23.7 (3) Co1---N4---C16---C15 49.7 (4) N3---Co1---N4---C18 94.3 (2) N3---C15---C16---N4 −58.0 (5) Cl1---Co1---N4---C18 −157.4 (2) ---------------------- ------------- ---------------------- ------------ :::
PubMed Central
2024-06-05T04:04:16.895214
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051766/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):m273", "authors": [ { "first": "Sheng-Di", "last": "Bai" }, { "first": "Min", "last": "Hu" } ] }
PMC3051767
Related literature {#sec1} ================== For general background to pyrazolo­nes, see: Casas *et al.* (2007[@bb2]). For the anti­bacterial activity of pyrazolone Schiff bases, see: Zhang *et al.* (2008[@bb10]); Li *et al.* (2000[@bb6]). For our previous work in this area, see: Zhu *et al.* (2010*a* [@bb11],*b* [@bb12]). For related structures, see: Shi *et al.* (2005[@bb9]); Goh *et al.* (2009[@bb5]). For disordered thienyl rings, see: Crundwell *et al.* (2003[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~26~H~23~N~5~O~2~S*M* *~r~* = 469.55Monoclinic,*a* = 27.098 (3) Å*b* = 7.9045 (8) Å*c* = 22.308 (2) Åβ = 99.011 (8)°*V* = 4719.4 (9) Å^3^*Z* = 8Mo *K*α radiationμ = 0.17 mm^−1^*T* = 293 K0.42 × 0.36 × 0.34 mm ### Data collection {#sec2.1.2} Rigaku Saturn diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2008[@bb7]) *T* ~min~ = 0.932, *T* ~max~ = 0.94422080 measured reflections5570 independent reflections3806 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.037 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.144*S* = 1.025570 reflections322 parameters22 restraintsH-atom parameters constrainedΔρ~max~ = 0.23 e Å^−3^Δρ~min~ = −0.25 e Å^−3^ {#d5e458} Data collection: *CrystalClear* (Rigaku, 2008[@bb7]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996[@bb1]) and *ORTEP-3 for Windows* (Farrugia, 1997[@bb4]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002467/dn2653sup1.cif](http://dx.doi.org/10.1107/S1600536811002467/dn2653sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002467/dn2653Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002467/dn2653Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?dn2653&file=dn2653sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?dn2653sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?dn2653&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [DN2653](http://scripts.iucr.org/cgi-bin/sendsup?dn2653)). The authors are grateful for financial support from the Spark Program Foundation of Science and Technology Department of China (research Nos. 09ZHXHNC07900 and 2010 GA610009). The authors also thank the Technical Staff Serving Enterprise Action Committee of the Science and Technology Department of China for financial support (research No. 2009 GJ A10022). Comment ======= Pyrazolones form a very important class of heterocycles due to their properties and applications (Casas *et al.*, 2007). Schiff-bases derived from 1-phenyl-3-methyl-4-acyl-5-pyrazolone have found extensive application in coordination chemistry (Shi *et al.*, 2005)and in antibacterial activation (Zhang *et al.*, 2008; Li *et al.*, 2000). In continuation of our studies on pyrazolone schiff bases (Zhu *et al.*, 2010*a*,*b*), we herein report the crystal structure of the title pyrazole compound. The molecular structure of the title compound is shown in Fig. 1. An intramolecular N---H···O interaction generates a six- membered ring, producing an S(6) ring (O2 N3 C12 C17 C18), which stablizing the enamine--keto form of the compound. The S(6) ring and pyrazole ring (N4 N5 C17 C18 C19) are essentially planar,with the maximum deviations of -0.0270 (14) and 0.0195 (15) Å, respectively, at atoms C12 and C17.The two rings are coplanar to one another, as indicated by the dihedral angle formed between them of 3.94 (6)°. The S(6) ring makes dihedral angles of 23.79 (6)°,78.53 (6)° and 67.91 (6)° with the benzene ring of pyrazolone, the pyrazole ring and benzene ring of antipyrine,respectively. The bond lengths and angles agree well with those closely related pyrazole structures (Goh *et al.*, 2009) The structure exhibits a thienyl-ring flip disorder with the occupancy factors in the ratio 82/18. Experimental {#experimental} ============ The title compound was synthesized by refluxing the mixture of 1-phenyl-3-methyl-4-(2-thenoyl)pyrazolone-5 (HPMTP) (15*m* mol) and 4-antipyrine (15*m* mol) in ethanol (100 ml) over a steam bath for about 4 h, then the solution was cooled down to room temperature. After seven days, pale yellow block was obtained and dried in air. The product was recrystallized from ethanol which afforded pale yellow and acerate crystals suitable for *X*--ray analysis. Refinement {#refinement} ========== During refinement, the thienyl ring showed evidence of ring-flip disorder which is common for unsubstituted 2- and 3-thienyl rings (Crundwell *et al.*, 2003). After finding three of the flipped disordered atoms in the difference map, the rest of the ring was generated and modeled. The occupancy factors of the disordered thienyl ring were first refine restraining the sum of the occupancy factore to be equal to 1.0. Once stabilised, the occupancy factors were fixed and not refined anymore. The final model suggested that the thienyl ring disorder was in the ratio 82/18. The disordered model was refined using the tools available in SHELXL-97 (Sheldrick, 2008): SADI for restraining distances, FLAT for constraining the thienyl rings to be planar, EXYZ for linking atoms occupying the same site and EADP to correlate anisotropic thermal parameters for related disordered atoms. All H atoms were geometrically positioned and treated as riding on their parent atoms, with C---H = 0.93 Å for the aromatic, 0.96 Å for the methyl and N-H= 0.86 Å with *U*~iso~(H)= 1.2 *U*~eq~(Caromatic, N) or, 1.5*U*~eq~(Cmethyl). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radii. Only the major component of the disordered thienyl ring is represented for the sake of clarity. ::: ![](e-67-0o476-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e146 .table-wrap} ----------------------- --------------------------------------- C~26~H~23~N~5~O~2~S *F*(000) = 1968 *M~r~* = 469.55 *D*~x~ = 1.322 Mg m^−3^ Monoclinic, *C*2/*c* Mo *K*α radiation, λ = 0.71075 Å Hall symbol: -C 2yc Cell parameters from 5913 reflections *a* = 27.098 (3) Å θ = 2.6--27.9° *b* = 7.9045 (8) Å µ = 0.17 mm^−1^ *c* = 22.308 (2) Å *T* = 293 K β = 99.011 (8)° Prism, colourless *V* = 4719.4 (9) Å^3^ 0.42 × 0.36 × 0.34 mm *Z* = 8 ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e274 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku Saturn diffractometer 5570 independent reflections Radiation source: rotating anode 3806 reflections with *I* \> 2σ(*I*) multilayer *R*~int~ = 0.037 Detector resolution: 7.31 pixels mm^-1^ θ~max~ = 27.9°, θ~min~ = 2.6° ω scans *h* = −35→35 Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) *k* = −10→8 *T*~min~ = 0.932, *T*~max~ = 0.944 *l* = −29→29 22080 measured reflections ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e394 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.144 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0825*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5570 reflections (Δ/σ)~max~ = 0.003 322 parameters Δρ~max~ = 0.23 e Å^−3^ 22 restraints Δρ~min~ = −0.25 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e548 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e647 .table-wrap} ------- -------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1 0.25433 (4) 1.02510 (13) 0.08661 (6) 0.0607 (3) O2 0.08792 (4) 0.72515 (16) −0.01432 (5) 0.0574 (3) N1 0.30507 (4) 0.78662 (15) 0.09168 (6) 0.0454 (3) N2 0.29718 (5) 0.61104 (15) 0.09307 (6) 0.0453 (3) N3 0.17055 (5) 0.75910 (17) 0.06681 (6) 0.0490 (3) H3 0.1558 0.7573 0.0298 0.059\* N4 0.01707 (5) 0.77052 (16) 0.03130 (6) 0.0483 (3) N5 0.00673 (5) 0.81903 (18) 0.08851 (7) 0.0531 (4) C1 0.25902 (6) 0.87031 (19) 0.08467 (7) 0.0440 (4) C2 0.22290 (5) 0.73667 (18) 0.07704 (7) 0.0418 (3) C3 0.24689 (6) 0.58580 (18) 0.07935 (7) 0.0431 (3) C4 0.22546 (7) 0.4148 (2) 0.06696 (9) 0.0652 (5) H4A 0.1900 0.4190 0.0665 0.098\* H4B 0.2402 0.3383 0.0981 0.098\* H4C 0.2323 0.3762 0.0283 0.098\* C5 0.35010 (6) 0.8549 (2) 0.12487 (7) 0.0473 (4) C6 0.36892 (6) 1.0029 (2) 0.10435 (8) 0.0560 (4) H6 0.3523 1.0563 0.0698 0.067\* C7 0.41249 (7) 1.0712 (3) 0.13541 (11) 0.0717 (6) H7 0.4250 1.1720 0.1223 0.086\* C8 0.43721 (8) 0.9902 (3) 0.18544 (12) 0.0836 (7) H8 0.4667 1.0357 0.2060 0.100\* C9 0.41887 (8) 0.8425 (3) 0.20554 (10) 0.0843 (6) H9 0.4363 0.7876 0.2392 0.101\* C10 0.37464 (7) 0.7747 (3) 0.17596 (9) 0.0655 (5) H10 0.3616 0.6765 0.1903 0.079\* C11 0.33387 (7) 0.4992 (2) 0.07232 (9) 0.0628 (5) H11A 0.3337 0.3918 0.0924 0.094\* H11B 0.3665 0.5489 0.0816 0.094\* H11C 0.3256 0.4832 0.0293 0.094\* C12 0.14164 (6) 0.78314 (18) 0.11001 (7) 0.0431 (4) S1 0.16071 (3) 0.63681 (8) 0.22363 (3) 0.0702 (2) 0.82 C13 0.16636 (6) 0.79831 (19) 0.17339 (7) 0.0468 (4) 0.82 C14 0.19533 (11) 0.9188 (3) 0.20297 (12) 0.0704 (8) 0.82 H14 0.2031 1.0169 0.1834 0.085\* 0.82 C15 0.21288 (18) 0.8917 (6) 0.26270 (14) 0.0765 (8) 0.82 H15 0.2330 0.9675 0.2874 0.092\* 0.82 C16 0.19767 (14) 0.7430 (5) 0.28143 (13) 0.0709 (9) 0.82 H16 0.2060 0.7018 0.3208 0.085\* 0.82 S1\' 0.20046 (19) 0.9710 (5) 0.1965 (2) 0.0702 (2) 0.18 C13\' 0.16636 (6) 0.79831 (19) 0.17339 (7) 0.0468 (4) 0.18 C14\' 0.1637 (5) 0.6894 (16) 0.2181 (5) 0.0704 (8) 0.18 H14\' 0.1463 0.5877 0.2123 0.085\* 0.18 C15\' 0.1879 (8) 0.738 (2) 0.2721 (6) 0.0765 (8) 0.18 H15\' 0.1895 0.6745 0.3075 0.092\* 0.18 C16\' 0.2097 (7) 0.889 (2) 0.2692 (6) 0.0709 (9) 0.18 H16\' 0.2278 0.9432 0.3025 0.085\* 0.18 C17 0.06744 (5) 0.75638 (19) 0.03103 (7) 0.0449 (4) C18 0.09039 (6) 0.78841 (18) 0.09237 (7) 0.0437 (4) C19 0.04936 (6) 0.8289 (2) 0.12425 (8) 0.0504 (4) C20 0.05032 (7) 0.8851 (3) 0.18855 (9) 0.0727 (6) H20A 0.0181 0.9285 0.1934 0.109\* H20B 0.0750 0.9721 0.1982 0.109\* H20C 0.0585 0.7907 0.2153 0.109\* C21 −0.02273 (6) 0.75001 (19) −0.01723 (7) 0.0468 (4) C22 −0.01595 (7) 0.6573 (2) −0.06807 (8) 0.0579 (4) H22 0.0149 0.6082 −0.0706 0.069\* C23 −0.05544 (7) 0.6384 (2) −0.11491 (9) 0.0648 (5) H23 −0.0511 0.5759 −0.1490 0.078\* C24 −0.10124 (7) 0.7112 (2) −0.11174 (9) 0.0650 (5) H24 −0.1276 0.6986 −0.1436 0.078\* C25 −0.10744 (7) 0.8021 (2) −0.06118 (9) 0.0618 (5) H25 −0.1383 0.8510 −0.0588 0.074\* C26 −0.06879 (6) 0.8225 (2) −0.01381 (9) 0.0540 (4) H26 −0.0735 0.8844 0.0203 0.065\* ------- -------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1527 .table-wrap} ------- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0648 (7) 0.0375 (6) 0.0805 (9) 0.0072 (5) 0.0132 (6) 0.0016 (5) O2 0.0493 (6) 0.0790 (8) 0.0465 (7) 0.0004 (6) 0.0160 (5) −0.0109 (6) N1 0.0438 (7) 0.0364 (7) 0.0564 (8) 0.0001 (5) 0.0095 (6) −0.0004 (5) N2 0.0477 (8) 0.0353 (7) 0.0541 (8) 0.0042 (5) 0.0122 (6) −0.0015 (5) N3 0.0451 (7) 0.0643 (8) 0.0390 (7) 0.0024 (6) 0.0108 (6) −0.0003 (6) N4 0.0422 (7) 0.0559 (8) 0.0494 (8) −0.0021 (6) 0.0152 (6) −0.0073 (6) N5 0.0494 (8) 0.0609 (9) 0.0531 (8) −0.0029 (6) 0.0206 (7) −0.0073 (6) C1 0.0466 (9) 0.0403 (8) 0.0462 (9) 0.0041 (7) 0.0108 (7) 0.0004 (6) C2 0.0427 (8) 0.0444 (8) 0.0395 (8) 0.0028 (6) 0.0100 (6) 0.0004 (6) C3 0.0506 (9) 0.0411 (8) 0.0393 (8) −0.0014 (7) 0.0122 (7) 0.0008 (6) C4 0.0727 (12) 0.0466 (10) 0.0756 (13) −0.0091 (9) 0.0088 (10) −0.0026 (8) C5 0.0449 (9) 0.0492 (9) 0.0496 (9) −0.0004 (7) 0.0132 (7) −0.0053 (7) C6 0.0548 (10) 0.0545 (10) 0.0615 (11) −0.0064 (8) 0.0180 (8) −0.0054 (8) C7 0.0580 (12) 0.0731 (13) 0.0879 (15) −0.0165 (10) 0.0234 (11) −0.0217 (11) C8 0.0542 (12) 0.1040 (18) 0.0905 (17) −0.0113 (12) 0.0047 (12) −0.0319 (14) C9 0.0697 (14) 0.1072 (18) 0.0688 (14) 0.0025 (13) −0.0116 (11) −0.0062 (13) C10 0.0655 (12) 0.0736 (13) 0.0562 (11) −0.0005 (10) 0.0059 (9) 0.0044 (9) C11 0.0650 (11) 0.0491 (10) 0.0797 (13) 0.0140 (8) 0.0277 (10) −0.0015 (9) C12 0.0502 (9) 0.0384 (8) 0.0426 (8) −0.0014 (6) 0.0134 (7) 0.0004 (6) S1 0.0933 (5) 0.0628 (5) 0.0532 (4) −0.0107 (4) 0.0077 (3) 0.0143 (3) C13 0.0493 (9) 0.0510 (9) 0.0418 (8) 0.0006 (7) 0.0129 (7) −0.0007 (7) C14 0.111 (2) 0.0564 (18) 0.0461 (14) −0.0152 (16) 0.0183 (13) 0.0058 (12) C15 0.0871 (19) 0.096 (2) 0.0469 (15) −0.0203 (15) 0.0134 (14) −0.0138 (14) C16 0.079 (2) 0.093 (2) 0.0389 (14) 0.0077 (16) 0.0025 (13) 0.0086 (14) S1\' 0.0933 (5) 0.0628 (5) 0.0532 (4) −0.0107 (4) 0.0077 (3) 0.0143 (3) C13\' 0.0493 (9) 0.0510 (9) 0.0418 (8) 0.0006 (7) 0.0129 (7) −0.0007 (7) C14\' 0.111 (2) 0.0564 (18) 0.0461 (14) −0.0152 (16) 0.0183 (13) 0.0058 (12) C15\' 0.0871 (19) 0.096 (2) 0.0469 (15) −0.0203 (15) 0.0134 (14) −0.0138 (14) C16\' 0.079 (2) 0.093 (2) 0.0389 (14) 0.0077 (16) 0.0025 (13) 0.0086 (14) C17 0.0441 (9) 0.0447 (8) 0.0481 (9) −0.0024 (7) 0.0144 (7) −0.0034 (6) C18 0.0440 (9) 0.0450 (8) 0.0447 (8) −0.0030 (6) 0.0149 (7) −0.0023 (6) C19 0.0507 (10) 0.0533 (9) 0.0509 (9) −0.0034 (7) 0.0197 (8) −0.0041 (7) C20 0.0693 (12) 0.0975 (16) 0.0566 (11) 0.0001 (10) 0.0262 (9) −0.0158 (10) C21 0.0442 (9) 0.0437 (8) 0.0537 (9) −0.0050 (7) 0.0113 (7) 0.0004 (7) C22 0.0509 (10) 0.0610 (11) 0.0621 (11) 0.0011 (8) 0.0097 (8) −0.0105 (8) C23 0.0668 (12) 0.0650 (12) 0.0613 (12) −0.0039 (9) 0.0056 (9) −0.0120 (9) C24 0.0592 (11) 0.0631 (12) 0.0688 (12) −0.0045 (9) −0.0019 (9) 0.0008 (9) C25 0.0492 (10) 0.0544 (11) 0.0810 (14) 0.0022 (8) 0.0077 (9) 0.0043 (9) C26 0.0488 (10) 0.0487 (9) 0.0660 (11) −0.0009 (7) 0.0138 (8) −0.0033 (8) ------- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2258 .table-wrap} ----------------------- -------------- ------------------------------ -------------- O1---C1 1.2316 (17) C12---C18 1.384 (2) O2---C17 1.2524 (16) C12---C13 1.472 (2) N1---C1 1.3994 (19) S1---C13 1.7213 (16) N1---N2 1.4054 (17) S1---C16 1.722 (3) N1---C5 1.430 (2) C13---C14 1.340 (3) N2---C3 1.3637 (19) C14---C15 1.360 (4) N2---C11 1.4590 (19) C14---H14 0.9300 N3---C12 1.3471 (18) C15---C16 1.335 (3) N3---C2 1.412 (2) C15---H15 0.9300 N3---H3 0.8600 C16---H16 0.9300 N4---C17 1.3703 (19) S1\'---C16\' 1.728 (10) N4---N5 1.4023 (17) C14\'---C15\' 1.336 (8) N4---C21 1.413 (2) C14\'---H14\' 0.9300 N5---C19 1.299 (2) C15\'---C16\' 1.336 (8) C1---C2 1.432 (2) C15\'---H15\' 0.9300 C2---C3 1.355 (2) C16\'---H16\' 0.9300 C3---C4 1.480 (2) C17---C18 1.434 (2) C4---H4A 0.9600 C18---C19 1.446 (2) C4---H4B 0.9600 C19---C20 1.498 (2) C4---H4C 0.9600 C20---H20A 0.9600 C5---C10 1.380 (2) C20---H20B 0.9600 C5---C6 1.383 (2) C20---H20C 0.9600 C6---C7 1.382 (3) C21---C26 1.386 (2) C6---H6 0.9300 C21---C22 1.387 (2) C7---C8 1.368 (3) C22---C23 1.382 (3) C7---H7 0.9300 C22---H22 0.9300 C8---C9 1.371 (3) C23---C24 1.380 (3) C8---H8 0.9300 C23---H23 0.9300 C9---C10 1.382 (3) C24---C25 1.370 (3) C9---H9 0.9300 C24---H24 0.9300 C10---H10 0.9300 C25---C26 1.376 (3) C11---H11A 0.9600 C25---H25 0.9300 C11---H11B 0.9600 C26---H26 0.9300 C11---H11C 0.9600 C1---N1---N2 109.46 (11) C18---C12---C13 123.81 (13) C1---N1---C5 123.58 (12) C13---S1---C16 91.47 (12) N2---N1---C5 118.79 (12) C14---C13---C12 132.40 (16) C3---N2---N1 106.84 (11) C14---C13---S1 108.14 (15) C3---N2---C11 123.14 (13) C12---C13---S1 119.45 (12) N1---N2---C11 118.55 (12) C13---C14---C15 117.3 (3) C12---N3---C2 125.74 (14) C13---C14---H14 121.3 C12---N3---H3 117.1 C15---C14---H14 121.3 C2---N3---H3 117.1 C16---C15---C14 111.6 (3) C17---N4---N5 111.56 (13) C16---C15---H15 124.2 C17---N4---C21 128.95 (13) C14---C15---H15 124.2 N5---N4---C21 119.43 (12) C15---C16---S1 111.5 (3) C19---N5---N4 106.83 (12) C15---C16---H16 124.2 O1---C1---N1 124.12 (14) S1---C16---H16 124.2 O1---C1---C2 131.66 (14) C15\'---C14\'---H14\' 122.8 N1---C1---C2 104.21 (12) C16\'---C15\'---C14\' 111.7 (12) C3---C2---N3 125.48 (14) C16\'---C15\'---H15\' 124.1 C3---C2---C1 109.25 (13) C14\'---C15\'---H15\' 124.1 N3---C2---C1 125.25 (13) C15\'---C16\'---S1\' 112.5 (11) C2---C3---N2 109.66 (13) C15\'---C16\'---H16\' 123.7 C2---C3---C4 128.65 (15) S1\'---C16\'---H16\' 123.7 N2---C3---C4 121.65 (14) O2---C17---N4 125.97 (15) C3---C4---H4A 109.5 O2---C17---C18 128.66 (14) C3---C4---H4B 109.5 N4---C17---C18 105.36 (12) H4A---C4---H4B 109.5 C12---C18---C17 122.15 (13) C3---C4---H4C 109.5 C12---C18---C19 132.96 (15) H4A---C4---H4C 109.5 C17---C18---C19 104.85 (13) H4B---C4---H4C 109.5 N5---C19---C18 111.29 (14) C10---C5---C6 120.45 (17) N5---C19---C20 119.07 (14) C10---C5---N1 121.06 (15) C18---C19---C20 129.57 (16) C6---C5---N1 118.48 (15) C19---C20---H20A 109.5 C7---C6---C5 119.67 (19) C19---C20---H20B 109.5 C7---C6---H6 120.2 H20A---C20---H20B 109.5 C5---C6---H6 120.2 C19---C20---H20C 109.5 C8---C7---C6 119.8 (2) H20A---C20---H20C 109.5 C8---C7---H7 120.1 H20B---C20---H20C 109.5 C6---C7---H7 120.1 C26---C21---C22 119.95 (16) C7---C8---C9 120.6 (2) C26---C21---N4 119.76 (15) C7---C8---H8 119.7 C22---C21---N4 120.29 (14) C9---C8---H8 119.7 C23---C22---C21 119.30 (16) C8---C9---C10 120.4 (2) C23---C22---H22 120.3 C8---C9---H9 119.8 C21---C22---H22 120.3 C10---C9---H9 119.8 C24---C23---C22 120.84 (18) C5---C10---C9 119.1 (2) C24---C23---H23 119.6 C5---C10---H10 120.5 C22---C23---H23 119.6 C9---C10---H10 120.5 C25---C24---C23 119.24 (18) N2---C11---H11A 109.5 C25---C24---H24 120.4 N2---C11---H11B 109.5 C23---C24---H24 120.4 H11A---C11---H11B 109.5 C24---C25---C26 121.12 (17) N2---C11---H11C 109.5 C24---C25---H25 119.4 H11A---C11---H11C 109.5 C26---C25---H25 119.4 H11B---C11---H11C 109.5 C25---C26---C21 119.55 (17) N3---C12---C18 118.10 (14) C25---C26---H26 120.2 N3---C12---C13 118.08 (14) C21---C26---H26 120.2 C1---N1---N2---C3 7.51 (15) N3---C12---C13---S1 −109.04 (14) C5---N1---N2---C3 157.23 (12) C18---C12---C13---S1 69.48 (18) C1---N1---N2---C11 152.10 (15) C16---S1---C13---C14 0.23 (16) C5---N1---N2---C11 −58.19 (19) C16---S1---C13---C12 179.22 (18) C17---N4---N5---C19 −2.41 (18) C12---C13---C14---C15 −179.3 (2) C21---N4---N5---C19 −179.86 (14) S1---C13---C14---C15 −0.51 (16) N2---N1---C1---O1 174.18 (15) C13---C14---C15---C16 0.6 (2) C5---N1---C1---O1 26.2 (2) C14---C15---C16---S1 −0.4 (2) N2---N1---C1---C2 −4.47 (15) C13---S1---C16---C15 0.1 (2) C5---N1---C1---C2 −152.43 (14) C14\'---C15\'---C16\'---S1\' −1.0 (5) C12---N3---C2---C3 97.57 (19) N5---N4---C17---O2 −175.43 (15) C12---N3---C2---C1 −84.5 (2) C21---N4---C17---O2 1.7 (3) O1---C1---C2---C3 −178.69 (17) N5---N4---C17---C18 3.33 (16) N1---C1---C2---C3 −0.18 (16) C21---N4---C17---C18 −179.53 (14) O1---C1---C2---N3 3.1 (3) N3---C12---C18---C17 4.9 (2) N1---C1---C2---N3 −178.36 (13) C13---C12---C18---C17 −173.64 (14) N3---C2---C3---N2 −176.91 (13) N3---C12---C18---C19 −172.35 (16) C1---C2---C3---N2 4.92 (17) C13---C12---C18---C19 9.1 (3) N3---C2---C3---C4 5.7 (3) O2---C17---C18---C12 −2.1 (3) C1---C2---C3---C4 −172.46 (16) N4---C17---C18---C12 179.21 (14) N1---N2---C3---C2 −7.60 (16) O2---C17---C18---C19 175.83 (16) C11---N2---C3---C2 −150.16 (14) N4---C17---C18---C19 −2.88 (16) N1---N2---C3---C4 170.00 (14) N4---N5---C19---C18 0.41 (18) C11---N2---C3---C4 27.4 (2) N4---N5---C19---C20 177.69 (15) C1---N1---C5---C10 117.51 (17) C12---C18---C19---N5 179.15 (16) N2---N1---C5---C10 −27.7 (2) C17---C18---C19---N5 1.57 (18) C1---N1---C5---C6 −63.0 (2) C12---C18---C19---C20 2.2 (3) N2---N1---C5---C6 151.78 (13) C17---C18---C19---C20 −175.35 (18) C10---C5---C6---C7 −0.2 (2) C17---N4---C21---C26 −158.43 (15) N1---C5---C6---C7 −179.70 (14) N5---N4---C21---C26 18.5 (2) C5---C6---C7---C8 1.3 (3) C17---N4---C21---C22 21.8 (2) C6---C7---C8---C9 −0.7 (3) N5---N4---C21---C22 −161.24 (15) C7---C8---C9---C10 −1.0 (3) C26---C21---C22---C23 0.1 (3) C6---C5---C10---C9 −1.4 (3) N4---C21---C22---C23 179.81 (15) N1---C5---C10---C9 178.03 (16) C21---C22---C23---C24 0.3 (3) C8---C9---C10---C5 2.0 (3) C22---C23---C24---C25 −0.4 (3) C2---N3---C12---C18 −174.54 (14) C23---C24---C25---C26 0.2 (3) C2---N3---C12---C13 4.1 (2) C24---C25---C26---C21 0.1 (3) N3---C12---C13---C14 69.7 (2) C22---C21---C26---C25 −0.2 (2) C18---C12---C13---C14 −111.8 (2) N4---C21---C26---C25 −179.99 (15) ----------------------- -------------- ------------------------------ -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3523 .table-wrap} --------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N3---H3···O2 0.86 1.96 2.6631 (18) 138 --------------- --------- --------- ------------- --------------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------- --------- ------- ------------- ------------- N3---H3⋯O2 0.86 1.96 2.6631 (18) 138 :::
PubMed Central
2024-06-05T04:04:16.903248
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051767/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o476-o477", "authors": [ { "first": "Hualing", "last": "Zhu" }, { "first": "Litong", "last": "Ban" }, { "first": "Pingping", "last": "Zhang" }, { "first": "Xinxin", "last": "Zhao" }, { "first": "Junjie", "last": "Ren" } ] }
PMC3051768
Related literature {#sec1} ================== For general background to 2,7-disubstituted diaza­pyrenium dications, see: Ashton *et al.* (1999[@bb1]); Yen *et al.* (2009[@bb13]); Steuerman *et al.* (2004[@bb12]); Lilienthal *et al.* (1996[@bb6]); Sindelar *et al.* (2005[@bb11]); Lin *et al.* (2006[@bb7]). For related structures, see: Blake *et al.* (1997[@bb2]); Dinolfo *et al.* (2004[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~14~N~2~ ^2+^·2PF~6~ ^−^*M* *~r~* = 524.23Monoclinic,*a* = 6.7654 (14) Å*b* = 10.653 (2) Å*c* = 13.422 (3) Åβ = 91.03 (3)°*V* = 967.2 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 0.35 mm^−1^*T* = 293 K0.31 × 0.31 × 0.19 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID diffractometerAbsorption correction: multi-scan (*ABSCOR*; Higashi, 1995[@bb4]) *T* ~min~ = 0.899, *T* ~max~ = 0.9377699 measured reflections1756 independent reflections1439 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.059*wR*(*F* ^2^) = 0.182*S* = 1.061756 reflections146 parametersH-atom parameters constrainedΔρ~max~ = 0.48 e Å^−3^Δρ~min~ = −0.34 e Å^−3^ {#d5e441} Data collection: *RAPID-AUTO* (Rigaku, 1998[@bb8]); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004[@bb9]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEPII* (Johnson, 1976[@bb5]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001978/bg2385sup1.cif](http://dx.doi.org/10.1107/S1600536811001978/bg2385sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001978/bg2385Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001978/bg2385Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bg2385&file=bg2385sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bg2385sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bg2385&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BG2385](http://scripts.iucr.org/cgi-bin/sendsup?bg2385)). This work was supported by the fund of Zhejiang Gongshang University (No. 10--3). Comment ======= 2,7-Disubstituted diazapyrenium dications, which combine the features of pyrene, methylviologen, and nucletic acid intercalators, are charming pi-electron deficient building blocks in supramolecular chemistry (Ashton *et al.*, 1999; Yen *et al.*, 2009). They have been widely used as the electron-acceptors for electron-donating units such as hydroquinones and aromatic carboxylates (Steuerman *et al.*, 2004; Lilienthal *et al.*, 1996). Furthermore, due to their luminescence properties, they have also been as fluorescence probes for ion detection (Sindelar *et al.*, 2005) and neurotransmition (Lin *et al.*, 2006). Herein, we report the crystal structure of one of these disubstituted diazapyrenium dications, the *N*,*N*\'-dimethyl-2,7-diazapyrenium, C~16~H~14~N~2~.2PF~6~, (*DM*-diaz). The cation lies on a crystallographic twofold rotation axes; diaz groups are nearly coplanar with a maximum deviation of 0.008 (3) Å. Unlike many structures that contain diaz (Blake *et al.*, 1997; Dinolfo *et al.*, 2004), Dm-diaz exhibits no face-to-face pi-pi interactions between diaz molecules in the structure. C---H···F interactions are observed between the methyl groups of the *DM*-diaz molecules and hexafluorophoshate counterions (Table 1), forming a two-dimensional lamellar framework parallel to (101) (Figure 2). Experimental {#experimental} ============ A solution of 2,7-diazapyrene (0.210 g, 1.03 mmol) and iodomethane (0.568 g, 4.02 mmol) in acetonitrile (15 ml) was stirred and refluxed for 3 h. After it was cooled to room temperature, a red solid was isolated on a filter and washed with ethyl ether (30 ml). The solid was dissolved with water (75 ml) and a saturated aqueous solution of NH~4~PF~6~ (2.44 g, 15.0 mmol) was added until no further precipitate was observed. The red solid was isolated on a filter, washed with water and dried under vacuum to afford the product (0.423 g, 78.4%). Red crystals were obtained by vapor diffusion of isopropyl ether into an acetonitrile solution over a period of 5 d. ^1^H NMR (500 MHz, CD~3~CN, 295 K) δ (p.p.m.) 9.88 (4*H*,s), 8.85 (4*H*, s), 5.14 (4*H*, t, J = 5.2 Hz), 3.45 (4*H*, m), 3.45 (2*H*, t, J = 5.5 Hz). Refinement {#refinement} ========== H atoms bonded to C atoms were palced in geometrically calculated positionand were refined using a riding model, with C---H~aromatic~ = 0.93 Å, *C*---H~methyl~ = 0.96 Å, and with *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### ORTEP view of the title compound. The dispalcement ellipsoids are drawn at 30% probability level. Symmetry code: (A) 2-x, 1-y, 1-z ::: ![](e-67-0o508-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The two-dimensional layer of the compound, parallel to (101). ::: ![](e-67-0o508-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e207 .table-wrap} ------------------------------ --------------------------------------- C~16~H~14~N~2~^2+^·2PF~6~^−^ *F*(000) = 524 *M~r~* = 524.23 *D*~x~ = 1.800 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 6424 reflections *a* = 6.7654 (14) Å θ = 3.0--27.5° *b* = 10.653 (2) Å µ = 0.35 mm^−1^ *c* = 13.422 (3) Å *T* = 293 K β = 91.03 (3)° Block, yellow *V* = 967.2 (3) Å^3^ 0.31 × 0.31 × 0.19 mm *Z* = 2 ------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e342 .table-wrap} ------------------------------------------------------------- -------------------------------------- Rigaku R-AXIS RAPID diffractometer 1756 independent reflections Radiation source: fine-focus sealed tube 1439 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.021 Detector resolution: 0 pixels mm^-1^ θ~max~ = 25.4°, θ~min~ = 3.0° ω scans *h* = −8→7 Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) *k* = −12→12 *T*~min~ = 0.899, *T*~max~ = 0.937 *l* = −16→16 7699 measured reflections ------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e462 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.059 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.182 H-atom parameters constrained *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.106*P*)^2^ + 0.7563*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 1756 reflections (Δ/σ)~max~ \< 0.001 146 parameters Δρ~max~ = 0.48 e Å^−3^ 0 restraints Δρ~min~ = −0.34 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e619 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e718 .table-wrap} ----- -------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ P1 0.73691 (12) 0.87716 (8) 0.67479 (6) 0.0486 (4) F1 0.7852 (5) 0.9813 (3) 0.7544 (3) 0.1277 (13) F2 0.7768 (4) 0.7779 (3) 0.7596 (2) 0.1015 (10) F3 0.5103 (3) 0.8793 (2) 0.7022 (2) 0.0842 (8) F4 0.7012 (5) 0.9817 (4) 0.5943 (3) 0.1329 (14) F5 0.9644 (3) 0.8750 (3) 0.6478 (2) 0.0953 (10) F6 0.6946 (4) 0.7712 (3) 0.5961 (2) 0.1071 (11) N1 1.1916 (4) 0.2419 (2) 0.61997 (19) 0.0458 (6) C1 1.0682 (4) 0.6661 (3) 0.4751 (2) 0.0399 (7) C2 1.2564 (4) 0.6724 (3) 0.5268 (2) 0.0459 (7) H2 1.3272 0.7472 0.5275 0.055\* C3 1.3308 (4) 0.5710 (3) 0.5740 (2) 0.0463 (7) H3 1.4527 0.5765 0.6068 0.056\* C4 1.2250 (4) 0.4551 (3) 0.5743 (2) 0.0390 (7) C5 1.0387 (4) 0.4467 (2) 0.52485 (19) 0.0360 (6) C6 1.2952 (4) 0.3482 (3) 0.6213 (2) 0.0459 (7) H6 1.4170 0.3505 0.6545 0.055\* C7 1.0142 (4) 0.2319 (3) 0.5739 (2) 0.0448 (7) H7 0.9465 0.1560 0.5750 0.054\* C8 1.2764 (7) 0.1282 (3) 0.6680 (3) 0.0680 (11) H8A 1.1728 0.0810 0.6984 0.102\* H8C 1.3721 0.1526 0.7180 0.102\* H8B 1.3392 0.0774 0.6187 0.102\* ----- -------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1032 .table-wrap} ---- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ P1 0.0456 (6) 0.0520 (6) 0.0482 (6) −0.0031 (3) −0.0017 (4) −0.0009 (4) F1 0.142 (3) 0.105 (2) 0.136 (3) −0.007 (2) −0.003 (2) −0.068 (2) F2 0.097 (2) 0.105 (2) 0.103 (2) 0.0185 (16) −0.0030 (16) 0.0420 (17) F3 0.0548 (14) 0.105 (2) 0.0938 (18) 0.0116 (12) 0.0153 (12) 0.0123 (14) F4 0.109 (2) 0.150 (3) 0.140 (3) −0.012 (2) −0.008 (2) 0.093 (2) F5 0.0494 (13) 0.125 (2) 0.112 (2) −0.0215 (13) 0.0103 (13) −0.0286 (17) F6 0.0775 (16) 0.143 (3) 0.101 (2) −0.0446 (17) 0.0222 (15) −0.0672 (19) N1 0.0497 (14) 0.0464 (14) 0.0414 (13) 0.0030 (11) 0.0029 (11) 0.0041 (11) C1 0.0359 (14) 0.0422 (15) 0.0418 (15) −0.0054 (12) 0.0052 (12) −0.0036 (12) C2 0.0366 (15) 0.0449 (17) 0.0561 (19) −0.0096 (12) −0.0002 (14) −0.0050 (14) C3 0.0322 (14) 0.0558 (18) 0.0509 (17) −0.0075 (13) −0.0040 (13) −0.0064 (14) C4 0.0323 (14) 0.0464 (16) 0.0381 (14) −0.0014 (11) −0.0005 (11) −0.0040 (12) C5 0.0325 (14) 0.0415 (15) 0.0341 (14) −0.0027 (11) 0.0043 (11) −0.0053 (11) C6 0.0409 (16) 0.0567 (18) 0.0399 (16) 0.0017 (13) −0.0031 (13) −0.0028 (13) C7 0.0461 (17) 0.0434 (16) 0.0451 (16) −0.0035 (13) 0.0076 (14) −0.0001 (13) C8 0.078 (3) 0.057 (2) 0.068 (2) 0.0077 (18) −0.015 (2) 0.0186 (18) ---- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1380 .table-wrap} -------------------- ------------- -------------------- ----------- P1---F4 1.567 (3) C2---C3 1.346 (4) P1---F6 1.568 (2) C2---H2 0.9300 P1---F1 1.570 (3) C3---C4 1.427 (4) P1---F2 1.574 (3) C3---H3 0.9300 P1---F3 1.583 (2) C4---C6 1.382 (4) P1---F5 1.587 (2) C4---C5 1.417 (4) N1---C6 1.332 (4) C5---C5^i^ 1.413 (5) N1---C7 1.344 (4) C6---H6 0.9300 N1---C8 1.483 (4) C7---H7 0.9300 C1---C7^i^ 1.382 (4) C8---H8A 0.9600 C1---C5^i^ 1.402 (4) C8---H8C 0.9600 C1---C2 1.440 (4) C8---H8B 0.9600 F4---P1---F6 91.3 (2) C1---C2---H2 119.7 F4---P1---F1 89.7 (2) C2---C3---C4 120.8 (3) F6---P1---F1 178.30 (18) C2---C3---H3 119.6 F4---P1---F2 176.9 (2) C4---C3---H3 119.6 F6---P1---F2 91.8 (2) C6---C4---C5 117.2 (3) F1---P1---F2 87.2 (2) C6---C4---C3 123.1 (3) F4---P1---F3 90.70 (16) C5---C4---C3 119.7 (3) F6---P1---F3 90.07 (15) C1^i^---C5---C5^i^ 120.2 (3) F1---P1---F3 91.28 (17) C1^i^---C5---C4 120.6 (3) F2---P1---F3 89.74 (15) C5^i^---C5---C4 119.3 (3) F4---P1---F5 89.51 (18) N1---C6---C4 121.2 (3) F6---P1---F5 90.11 (14) N1---C6---H6 119.4 F1---P1---F5 88.54 (17) C4---C6---H6 119.4 F2---P1---F5 90.04 (17) N1---C7---C1^i^ 120.4 (3) F3---P1---F5 179.73 (16) N1---C7---H7 119.8 C6---N1---C7 122.6 (3) C1^i^---C7---H7 119.8 C6---N1---C8 119.3 (3) N1---C8---H8A 109.5 C7---N1---C8 118.1 (3) N1---C8---H8C 109.5 C7^i^---C1---C5^i^ 118.0 (3) H8A---C8---H8C 109.5 C7^i^---C1---C2 122.6 (3) N1---C8---H8B 109.5 C5^i^---C1---C2 119.4 (3) H8A---C8---H8B 109.5 C3---C2---C1 120.6 (3) H8C---C8---H8B 109.5 C3---C2---H2 119.7 -------------------- ------------- -------------------- ----------- ::: Symmetry codes: (i) −*x*+2, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1763 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C6---H6···F2^ii^ 0.93 2.48 3.367 (4) 160 C7---H7···F4^iii^ 0.93 2.51 3.418 (5) 167 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) −*x*+5/2, *y*−1/2, −*z*+3/2; (iii) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- C6---H6⋯F2^i^ 0.93 2.48 3.367 (4) 160 C7---H7⋯F4^ii^ 0.93 2.51 3.418 (5) 167 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.911746
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051768/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):o508", "authors": [ { "first": "Li", "last": "Ang" } ] }
PMC3051769
Related literature {#sec1} ================== For background to metal complexes with Schiff bases derived from amino acids, see: Basu Baul *et al.* (2007[@bb1]); Casella & Guillotti (1983[@bb3]); Ganguly *et al.* (2008[@bb5]); Parekh *et al.* (2006[@bb6]); Vigato & Tamburini (2004[@bb9]); Zhao *et al.* (2008[@bb11], 2009[@bb12]). For synthetic details, see: Plesch *et al.* (1997[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cu(C~13~H~15~NO~3~)(C~5~H~8~N~2~)\]·CH~4~O*M* *~r~* = 424.98Orthorhombic,*a* = 14.12 (2) Å*b* = 15.44 (2) Å*c* = 21.25 (3) Å*V* = 4634 (11) Å^3^*Z* = 8Mo *K*α radiationμ = 0.97 mm^−1^*T* = 296 K0.25 × 0.21 × 0.17 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2008[@bb2]) *T* ~min~ = 0.794, *T* ~max~ = 0.85323421 measured reflections8496 independent reflections4724 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.071 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.054*wR*(*F* ^2^) = 0.130*S* = 1.018496 reflections496 parameters2 restraintsH-atom parameters constrainedΔρ~max~ = 0.49 e Å^−3^Δρ~min~ = −0.31 e Å^−3^Absolute structure: Flack (1983[@bb4]), 4318 Friedel pairsFlack parameter: −0.012 (18) {#d5e610} Data collection: *APEX2* (Bruker, 2008[@bb2]); cell refinement: *SAINT* (Bruker, 2008[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb8]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000304/wm2441sup1.cif](http://dx.doi.org/10.1107/S1600536811000304/wm2441sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000304/wm2441Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000304/wm2441Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?wm2441&file=wm2441sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?wm2441sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?wm2441&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [WM2441](http://scripts.iucr.org/cgi-bin/sendsup?wm2441)). This research was supported by the National Sciences Foundation of China (Nos. 20676057 and 20877036) and the Top-class Foundation of Pingdingshan University (No. 2008010). Comment ======= In the past decades, significant progress has been achieved in understanding the chemistry of transition metal complexes with Schiff base ligands composed of salicylaldehyde, 2-formylpyridine or their analogues, and α-amino acids (Vigato & Tamburini, 2004; Ganguly *et al.*, 2008; Casella & Guillotti, 1983). A few stuctural studies have been performed on Schiff base complexes derived from 2-hydroxyacetophenone and animo acids (Basu Baul *et al.*, 2007; Parekh *et al.*, 2006; Zhao *et al.*, 2008, 2009). We report here the crystal structure of the title Cu^II^ complex, \[Cu(C~13~H~15~NO~3~)(C~5~H~8~N~2~)\].CH~3~OH. The asymmetric unit of the polymeric title compound consists of two Cu^II^ complex molecules and two solvate methanol molecules (Fig. 1). Each of the two Cu^II^ ions has a square-pyramidal coordination where the four basal positions are occupied by an O,N,O, donor set from the tridentate Schiff base ligand and the fourth position occupied by one N atom from the 3,5-dimethylpyrazole ligand. The apical position is occupied by a carboxylate O atom from the adjacent tridentate Schiff base ligand. The apical Cu···O bonds are much longer than the basal Cu···O and Cu···N bonds (Table 1). The closest distance between neighbouring Cu^II^ ions are 5.803 (6) Å and 5.890 (6) Å, respectively. The crystal structure is stabilized by intermolecular N---H···O hydrogen bonds between the pyrazole N---H groups as donors and the carboxylate O atoms as acceptors. Additional O---H···O hydrogen bonding involving the methanol solvent molecules is also observed (Table 2 and Fig. 2). Experimental {#experimental} ============ The title compound was synthesized as described in the literature (Plesch *et al.*, 1997). To L-valine (1.00 mmol) and potassium hydroxide (1.00 mmol) in 10 ml of methanol was added 2-hydroxyacetophenone (1.00 mmol in 10 ml of methanol) dropwise. The yellow solution was stirred for 2.0 h at 333 K. The resultant mixture was added dropwise to copper(II) acetate monohydrate (1.00 mmol) and 3,5-dimethylpyrazole (1.00 mmol) in an aqueous methanolic solution (20 ml, 1:1 *v*/*v*), and heated with stirring for 2.0 h at 333 K. The dark blue solution was filtered and left for several days. Blue crystals had formed that were filtered off, washed with water, and dried under vacuum. Refinement {#refinement} ========== All H atoms were positioned geometrically and refined as riding atoms, with C---H = 0.93 or 0.98 Å (CH) and *U*~iso~(H) = 1.2*U*~eq~(C), C---H = 0.96 Å (CH~3~) and *U*~iso~(H) = 1.5*U*~eq~(C), with N---H = 0.86 Å and *U*~iso~(H) = 1.2*U*~eq~(N), and with O---H = 0.82 Å and 0.85 Å and *U*~iso~(H) = 1.5*U*~eq~(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. ::: ![](e-67-0m173-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view of the crystal packing viewed along the a axis. ::: ![](e-67-0m173-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e206 .table-wrap} ---------------------------------------------- --------------------------------------- \[Cu(C~13~H~15~NO~3~)(C~5~H~8~N~2~)\]·CH~4~O *F*(000) = 1784 *M~r~* = 424.98 *D*~x~ = 1.218 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2ac 2ab Cell parameters from 3320 reflections *a* = 14.12 (2) Å θ = 2.3--17.8° *b* = 15.44 (2) Å µ = 0.97 mm^−1^ *c* = 21.25 (3) Å *T* = 296 K *V* = 4634 (11) Å^3^ Block, blue *Z* = 8 0.25 × 0.21 × 0.17 mm ---------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e344 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD diffractometer 8496 independent reflections Radiation source: fine-focus sealed tube 4724 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.071 φ and ω scans θ~max~ = 25.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *h* = −17→17 *T*~min~ = 0.794, *T*~max~ = 0.853 *k* = −18→16 23421 measured reflections *l* = −25→25 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e461 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.054 H-atom parameters constrained *wR*(*F*^2^) = 0.130 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0525*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.01 (Δ/σ)~max~ = 0.001 8496 reflections Δρ~max~ = 0.49 e Å^−3^ 496 parameters Δρ~min~ = −0.31 e Å^−3^ 2 restraints Absolute structure: Flack (1983), 4318 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: −0.012 (18) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e623 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e722 .table-wrap} ------ ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.25158 (5) 0.08464 (4) 0.09864 (3) 0.0529 (2) Cu2 0.00319 (5) 0.39015 (4) 0.11651 (3) 0.0523 (2) O1 0.3151 (3) −0.0237 (3) 0.1022 (2) 0.0763 (14) O2 0.1746 (2) 0.1914 (2) 0.11032 (19) 0.0536 (10) O3 0.0238 (3) 0.2396 (3) 0.1001 (2) 0.0641 (12) O4 0.0751 (3) 0.4047 (3) 0.1923 (2) 0.0670 (13) O5 −0.0818 (2) 0.3982 (3) 0.04239 (17) 0.0548 (11) O6 −0.2349 (3) 0.3840 (3) 0.01337 (19) 0.0655 (12) O8 0.4396 (9) 0.9321 (8) 0.2125 (4) 0.249 (5) H8D 0.4058 0.9581 0.1874 0.374\* O7 0.2448 (12) 0.5282 (14) 0.1852 (6) 0.441 (13) H7 0.1976 0.4942 0.1873 0.662\* N1 0.1280 (3) 0.0283 (3) 0.0830 (2) 0.0484 (13) N2 −0.1155 (3) 0.3732 (3) 0.1645 (2) 0.0488 (13) N3 0.1192 (3) 0.4188 (3) 0.0654 (2) 0.0579 (14) N4 0.1979 (3) 0.3673 (3) 0.0691 (2) 0.0573 (15) H4E 0.2001 0.3200 0.0904 0.069\* N5 0.3720 (3) 0.1457 (3) 0.1255 (3) 0.0578 (14) N6 0.4471 (3) 0.1506 (3) 0.0852 (2) 0.0589 (15) H6E 0.4478 0.1298 0.0476 0.071\* C1 0.2882 (5) −0.0935 (5) 0.0706 (3) 0.0666 (19) C2 0.3572 (5) −0.1620 (6) 0.0619 (4) 0.096 (3) H2 0.4172 −0.1566 0.0795 0.115\* C3 0.3344 (7) −0.2360 (6) 0.0273 (6) 0.120 (4) H3 0.3806 −0.2783 0.0219 0.144\* C4 0.2467 (8) −0.2491 (6) 0.0009 (5) 0.114 (3) H4 0.2342 −0.2984 −0.0228 0.136\* C5 0.1762 (6) −0.1862 (5) 0.0105 (4) 0.086 (2) H5 0.1161 −0.1959 −0.0059 0.103\* C6 0.1934 (5) −0.1082 (4) 0.0445 (3) 0.0621 (18) C7 0.1147 (4) −0.0466 (4) 0.0553 (3) 0.0505 (16) C8 0.0473 (4) 0.0867 (4) 0.0983 (3) 0.0473 (14) H8 0.0013 0.0834 0.0639 0.057\* C9 0.0830 (4) 0.1800 (4) 0.1027 (3) 0.0526 (16) C10 −0.0032 (5) 0.0571 (4) 0.1607 (3) 0.0592 (16) H10 −0.0113 −0.0058 0.1580 0.071\* C11 0.0586 (5) 0.0748 (5) 0.2189 (3) 0.084 (2) H11A 0.0705 0.1358 0.2223 0.127\* H11B 0.1177 0.0445 0.2147 0.127\* H11C 0.0263 0.0550 0.2559 0.127\* C12 −0.1034 (4) 0.0967 (5) 0.1674 (4) 0.091 (2) H12A −0.1301 0.0800 0.2072 0.137\* H12B −0.1430 0.0759 0.1340 0.137\* H12C −0.0992 0.1587 0.1653 0.137\* C13 0.0147 (4) −0.0743 (4) 0.0329 (3) 0.077 (2) H13A −0.0319 −0.0367 0.0511 0.115\* H13B 0.0027 −0.1329 0.0458 0.115\* H13C 0.0114 −0.0706 −0.0122 0.115\* C14 0.0568 (5) 0.3587 (5) 0.2436 (3) 0.065 (2) C15 0.1329 (5) 0.3434 (5) 0.2870 (4) 0.077 (2) H15 0.1914 0.3690 0.2792 0.092\* C16 0.1225 (7) 0.2919 (6) 0.3399 (4) 0.093 (3) H16 0.1747 0.2812 0.3654 0.111\* C17 0.0353 (7) 0.2557 (6) 0.3556 (4) 0.092 (3) H17 0.0280 0.2214 0.3912 0.111\* C18 −0.0402 (5) 0.2732 (5) 0.3158 (4) 0.080 (2) H18 −0.0986 0.2492 0.3261 0.096\* C19 −0.0355 (5) 0.3254 (4) 0.2598 (3) 0.0561 (18) C20 −0.1224 (5) 0.3417 (4) 0.2217 (3) 0.0562 (17) C21 −0.2190 (4) 0.3199 (5) 0.2517 (3) 0.084 (2) H21A −0.2687 0.3462 0.2275 0.126\* H21B −0.2208 0.3417 0.2940 0.126\* H21C −0.2276 0.2582 0.2522 0.126\* C22 −0.2019 (4) 0.3908 (4) 0.1250 (3) 0.0514 (16) H22 −0.2482 0.3446 0.1322 0.062\* C23 −0.1728 (4) 0.3904 (4) 0.0544 (3) 0.0483 (16) C24 −0.2478 (5) 0.4798 (4) 0.1436 (3) 0.0593 (17) H24 −0.2498 0.4818 0.1896 0.071\* C25 −0.1882 (5) 0.5574 (5) 0.1217 (4) 0.085 (2) H25A −0.1244 0.5508 0.1364 0.127\* H25B −0.2146 0.6098 0.1385 0.127\* H25C −0.1885 0.5600 0.0766 0.127\* C26 −0.3513 (5) 0.4860 (5) 0.1202 (4) 0.098 (3) H26A −0.3761 0.5423 0.1298 0.147\* H26B −0.3889 0.4425 0.1407 0.147\* H26C −0.3530 0.4769 0.0755 0.147\* C27 0.3314 (5) 0.1887 (6) 0.2353 (3) 0.105 (3) H27A 0.2788 0.2261 0.2263 0.157\* H27B 0.3655 0.2107 0.2710 0.157\* H27C 0.3085 0.1316 0.2445 0.157\* C28 0.3973 (5) 0.1852 (5) 0.1781 (3) 0.070 (2) C29 0.4918 (5) 0.2168 (5) 0.1726 (3) 0.083 (2) H29 0.5264 0.2470 0.2027 0.100\* C30 0.5211 (4) 0.1931 (4) 0.1128 (4) 0.0708 (19) C31 0.6134 (5) 0.2107 (6) 0.0764 (4) 0.116 (3) H31A 0.6236 0.2720 0.0735 0.174\* H31B 0.6087 0.1866 0.0349 0.174\* H31C 0.6656 0.1844 0.0982 0.174\* C32 0.0749 (6) 0.5596 (5) 0.0159 (5) 0.119 (3) H32A 0.0122 0.5356 0.0136 0.178\* H32B 0.0905 0.5862 −0.0236 0.178\* H32C 0.0773 0.6023 0.0487 0.178\* C33 0.1462 (5) 0.4871 (5) 0.0302 (4) 0.077 (2) C34 0.2404 (5) 0.4760 (5) 0.0111 (4) 0.094 (3) H34 0.2756 0.5138 −0.0137 0.113\* C35 0.2713 (5) 0.3982 (5) 0.0360 (4) 0.078 (2) C36 0.3655 (5) 0.3518 (5) 0.0341 (5) 0.116 (3) H36A 0.3769 0.3244 0.0740 0.174\* H36B 0.4150 0.3927 0.0256 0.174\* H36C 0.3644 0.3086 0.0016 0.174\* C37 0.3268 (13) 0.5866 (11) 0.1693 (9) 0.362 (15) H37A 0.3451 0.5776 0.1263 0.544\* H37B 0.3793 0.5735 0.1964 0.544\* H37C 0.3083 0.6459 0.1751 0.544\* C38 0.5428 (9) 0.9492 (12) 0.1950 (9) 0.341 (15) H38A 0.5767 0.9684 0.2316 0.512\* H38B 0.5455 0.9932 0.1631 0.512\* H38C 0.5709 0.8969 0.1794 0.512\* ------ ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2169 .table-wrap} ----- ------------ ------------ ------------ -------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.0443 (4) 0.0502 (4) 0.0643 (5) −0.0002 (4) −0.0002 (4) −0.0025 (4) Cu2 0.0433 (4) 0.0560 (4) 0.0576 (4) −0.0004 (4) 0.0002 (4) 0.0002 (4) O1 0.065 (3) 0.055 (3) 0.109 (4) 0.011 (2) −0.011 (3) −0.009 (3) O2 0.046 (2) 0.046 (2) 0.068 (3) −0.0055 (18) 0.004 (2) −0.002 (2) O3 0.059 (3) 0.043 (2) 0.090 (3) 0.010 (2) 0.000 (2) 0.006 (2) O4 0.051 (2) 0.092 (4) 0.058 (3) −0.007 (3) −0.006 (2) 0.001 (3) O5 0.044 (2) 0.068 (3) 0.052 (2) 0.006 (2) 0.0053 (18) 0.004 (2) O6 0.050 (2) 0.087 (3) 0.059 (3) −0.006 (3) −0.009 (2) −0.003 (2) O8 0.336 (14) 0.283 (13) 0.128 (7) −0.032 (13) −0.011 (8) 0.050 (8) O7 0.420 (19) 0.72 (3) 0.182 (11) −0.36 (2) 0.066 (11) −0.203 (16) N1 0.053 (3) 0.039 (3) 0.053 (3) −0.001 (2) 0.007 (3) 0.001 (3) N2 0.047 (3) 0.046 (3) 0.053 (3) −0.002 (2) −0.004 (2) −0.002 (3) N3 0.052 (3) 0.046 (3) 0.076 (4) 0.003 (3) 0.006 (3) 0.009 (3) N4 0.051 (3) 0.055 (4) 0.066 (4) 0.002 (3) 0.005 (3) 0.020 (3) N5 0.050 (3) 0.067 (4) 0.057 (4) −0.004 (3) 0.002 (3) −0.007 (3) N6 0.046 (3) 0.074 (4) 0.057 (4) −0.009 (3) −0.006 (3) 0.001 (3) C1 0.068 (4) 0.047 (5) 0.084 (5) 0.009 (4) 0.021 (4) 0.014 (4) C2 0.069 (5) 0.081 (6) 0.138 (8) 0.014 (5) 0.033 (5) 0.024 (6) C3 0.112 (8) 0.052 (6) 0.195 (12) 0.018 (6) 0.058 (8) −0.017 (7) C4 0.123 (7) 0.072 (5) 0.146 (8) −0.005 (6) 0.062 (8) −0.027 (5) C5 0.098 (6) 0.061 (5) 0.099 (6) −0.025 (5) 0.036 (5) −0.032 (5) C6 0.073 (4) 0.046 (4) 0.068 (4) −0.006 (4) 0.029 (4) 0.004 (4) C7 0.053 (4) 0.043 (4) 0.055 (4) −0.004 (3) 0.009 (3) 0.008 (3) C8 0.045 (3) 0.044 (4) 0.053 (4) −0.002 (3) −0.002 (3) 0.002 (4) C9 0.063 (4) 0.047 (4) 0.048 (4) 0.004 (3) 0.004 (3) 0.006 (4) C10 0.059 (4) 0.054 (4) 0.065 (4) −0.013 (4) 0.006 (4) 0.000 (3) C11 0.099 (6) 0.094 (6) 0.061 (5) −0.005 (5) 0.010 (4) 0.005 (5) C12 0.067 (5) 0.096 (6) 0.110 (6) 0.010 (5) 0.037 (4) 0.002 (6) C13 0.072 (5) 0.069 (4) 0.089 (5) −0.021 (4) −0.006 (4) −0.010 (4) C14 0.072 (5) 0.071 (5) 0.051 (5) 0.021 (4) −0.012 (4) −0.007 (4) C15 0.053 (4) 0.092 (6) 0.085 (6) 0.015 (4) −0.017 (4) −0.017 (5) C16 0.106 (7) 0.092 (7) 0.080 (6) 0.046 (6) −0.028 (6) −0.006 (6) C17 0.113 (7) 0.085 (7) 0.079 (6) 0.037 (6) −0.021 (6) 0.003 (5) C18 0.078 (5) 0.077 (6) 0.085 (6) 0.009 (4) 0.007 (5) −0.008 (5) C19 0.062 (4) 0.058 (5) 0.048 (4) 0.011 (3) −0.004 (3) 0.000 (4) C20 0.070 (5) 0.054 (4) 0.044 (4) 0.005 (4) 0.000 (3) −0.004 (3) C21 0.061 (5) 0.113 (6) 0.077 (5) −0.003 (4) 0.011 (4) 0.026 (5) C22 0.041 (3) 0.060 (4) 0.053 (4) −0.004 (3) −0.002 (3) 0.006 (4) C23 0.050 (4) 0.041 (4) 0.054 (4) 0.001 (3) 0.007 (3) −0.001 (4) C24 0.060 (4) 0.056 (4) 0.062 (4) 0.014 (4) −0.011 (4) −0.009 (3) C25 0.091 (5) 0.072 (5) 0.091 (6) 0.011 (4) −0.006 (5) −0.006 (5) C26 0.057 (4) 0.123 (7) 0.113 (7) 0.038 (4) −0.011 (5) −0.010 (6) C27 0.096 (6) 0.147 (8) 0.071 (5) −0.009 (6) 0.014 (5) −0.035 (6) C28 0.060 (4) 0.097 (6) 0.052 (5) −0.011 (4) 0.001 (4) −0.013 (4) C29 0.075 (5) 0.102 (6) 0.071 (5) −0.013 (5) −0.016 (5) −0.031 (4) C30 0.053 (4) 0.079 (5) 0.081 (5) −0.012 (3) −0.005 (4) −0.014 (5) C31 0.067 (5) 0.151 (9) 0.130 (8) −0.042 (5) 0.015 (5) −0.062 (7) C32 0.087 (6) 0.092 (7) 0.177 (9) 0.024 (5) 0.025 (6) 0.060 (7) C33 0.058 (4) 0.057 (5) 0.115 (7) 0.005 (4) 0.006 (4) 0.017 (5) C34 0.063 (5) 0.073 (5) 0.147 (7) −0.006 (5) 0.029 (6) 0.039 (5) C35 0.065 (5) 0.061 (5) 0.109 (6) −0.009 (4) 0.019 (4) 0.034 (5) C36 0.066 (5) 0.113 (7) 0.170 (9) 0.016 (5) 0.037 (5) 0.059 (7) C37 0.61 (5) 0.23 (2) 0.25 (2) 0.16 (3) −0.13 (3) −0.019 (18) C38 0.29 (2) 0.246 (19) 0.49 (3) −0.122 (17) −0.29 (2) 0.06 (2) ----- ------------ ------------ ------------ -------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3182 .table-wrap} -------------------- ------------- ------------------- ------------ Cu1---O1 1.899 (5) C13---H13B 0.9600 Cu1---N1 1.978 (5) C13---H13C 0.9600 Cu1---O2 1.989 (4) C14---C15 1.435 (9) Cu1---N5 2.027 (6) C14---C19 1.443 (9) Cu1---O6^i^ 2.437 (6) C15---C16 1.386 (10) Cu2---O4 1.917 (5) C15---H15 0.9300 Cu2---N2 1.979 (5) C16---C17 1.392 (11) Cu2---O5 1.984 (4) C16---H16 0.9300 Cu2---N3 2.014 (5) C17---C18 1.388 (9) Cu2---O3 2.369 (5) C17---H17 0.9300 O1---C1 1.327 (8) C18---C19 1.438 (10) O2---C9 1.316 (7) C18---H18 0.9300 O3---C9 1.244 (7) C19---C20 1.492 (9) O4---C14 1.328 (8) C20---C21 1.543 (9) O5---C23 1.316 (6) C21---H21A 0.9600 O6---C23 1.241 (7) C21---H21B 0.9600 O6---Cu1^ii^ 2.437 (6) C21---H21C 0.9600 O8---C38 1.526 (9) C22---C23 1.555 (8) O8---H8D 0.8200 C22---C24 1.568 (8) O7---C37 1.506 (10) C22---H22 0.9800 O7---H7 0.8495 C24---C25 1.536 (9) N1---C7 1.311 (7) C24---C26 1.546 (9) N1---C8 1.488 (7) C24---H24 0.9800 N2---C20 1.314 (7) C25---H25A 0.9600 N2---C22 1.506 (7) C25---H25B 0.9600 N3---C33 1.349 (8) C25---H25C 0.9600 N3---N4 1.369 (7) C26---H26A 0.9600 N4---C35 1.341 (7) C26---H26B 0.9600 N4---H4E 0.8600 C26---H26C 0.9600 N5---C28 1.324 (8) C27---C28 1.533 (9) N5---N6 1.365 (7) C27---H27A 0.9600 N6---C30 1.366 (7) C27---H27B 0.9600 N6---H6E 0.8600 C27---H27C 0.9600 C1---C2 1.451 (10) C28---C29 1.426 (9) C1---C6 1.467 (9) C29---C30 1.384 (9) C2---C3 1.396 (12) C29---H29 0.9300 C2---H2 0.9300 C30---C31 1.541 (9) C3---C4 1.376 (13) C31---H31A 0.9600 C3---H3 0.9300 C31---H31B 0.9600 C4---C5 1.405 (11) C31---H31C 0.9600 C4---H4 0.9300 C32---C33 1.535 (10) C5---C6 1.425 (9) C32---H32A 0.9600 C5---H5 0.9300 C32---H32B 0.9600 C6---C7 1.480 (9) C32---H32C 0.9600 C7---C13 1.551 (8) C33---C34 1.402 (10) C8---C9 1.529 (8) C34---C35 1.382 (9) C8---C10 1.574 (8) C34---H34 0.9300 C8---H8 0.9800 C35---C36 1.512 (9) C10---C11 1.537 (9) C36---H36A 0.9600 C10---C12 1.548 (9) C36---H36B 0.9600 C10---H10 0.9800 C36---H36C 0.9600 C11---H11A 0.9600 C37---H37A 0.9600 C11---H11B 0.9600 C37---H37B 0.9600 C11---H11C 0.9600 C37---H37C 0.9600 C12---H12A 0.9600 C38---H38A 0.9600 C12---H12B 0.9600 C38---H38B 0.9600 C12---H12C 0.9600 C38---H38C 0.9600 C13---H13A 0.9600 O1---Cu1---N1 92.1 (2) C16---C15---H15 118.8 O1---Cu1---O2 169.2 (2) C14---C15---H15 118.8 N1---Cu1---O2 84.4 (2) C15---C16---C17 121.2 (8) O1---Cu1---N5 90.1 (2) C15---C16---H16 119.4 N1---Cu1---N5 172.9 (2) C17---C16---H16 119.4 O2---Cu1---N5 92.2 (2) C18---C17---C16 117.1 (8) O1---Cu1---O6^i^ 100.21 (19) C18---C17---H17 121.4 N1---Cu1---O6^i^ 89.58 (17) C16---C17---H17 121.4 O2---Cu1---O6^i^ 90.00 (16) C17---C18---C19 125.3 (7) N5---Cu1---O6^i^ 96.69 (19) C17---C18---H18 117.4 O4---Cu2---N2 91.8 (2) C19---C18---H18 117.4 O4---Cu2---O5 168.51 (19) C18---C19---C14 116.0 (6) N2---Cu2---O5 84.5 (2) C18---C19---C20 120.4 (6) O4---Cu2---N3 89.8 (2) C14---C19---C20 123.6 (6) N2---Cu2---N3 174.5 (2) N2---C20---C19 120.3 (6) O5---Cu2---N3 92.9 (2) N2---C20---C21 121.9 (6) O4---Cu2---O3 100.00 (19) C19---C20---C21 117.8 (6) N2---Cu2---O3 92.86 (17) C20---C21---H21A 109.5 O5---Cu2---O3 91.09 (17) C20---C21---H21B 109.5 N3---Cu2---O3 92.08 (19) H21A---C21---H21B 109.5 C1---O1---Cu1 124.0 (4) C20---C21---H21C 109.5 C9---O2---Cu1 114.3 (4) H21A---C21---H21C 109.5 C9---O3---Cu2 143.2 (4) H21B---C21---H21C 109.5 C14---O4---Cu2 121.6 (4) N2---C22---C23 108.8 (4) C23---O5---Cu2 115.5 (4) N2---C22---C24 110.7 (5) C23---O6---Cu1^ii^ 136.6 (4) C23---C22---C24 110.9 (5) C38---O8---H8D 108.2 N2---C22---H22 108.8 C37---O7---H7 170.2 C23---C22---H22 108.8 C7---N1---C8 121.5 (5) C24---C22---H22 108.8 C7---N1---Cu1 126.1 (4) O6---C23---O5 124.1 (5) C8---N1---Cu1 111.9 (4) O6---C23---C22 119.5 (5) C20---N2---C22 121.5 (5) O5---C23---C22 116.5 (5) C20---N2---Cu2 126.1 (4) C25---C24---C26 111.8 (5) C22---N2---Cu2 112.1 (4) C25---C24---C22 112.4 (5) C33---N3---N4 104.8 (5) C26---C24---C22 111.3 (5) C33---N3---Cu2 134.5 (4) C25---C24---H24 107.0 N4---N3---Cu2 120.2 (4) C26---C24---H24 107.0 C35---N4---N3 113.0 (5) C22---C24---H24 107.0 C35---N4---H4E 123.5 C24---C25---H25A 109.5 N3---N4---H4E 123.5 C24---C25---H25B 109.5 C28---N5---N6 107.2 (5) H25A---C25---H25B 109.5 C28---N5---Cu1 132.7 (4) C24---C25---H25C 109.5 N6---N5---Cu1 120.1 (4) H25A---C25---H25C 109.5 N5---N6---C30 110.5 (5) H25B---C25---H25C 109.5 N5---N6---H6E 124.7 C24---C26---H26A 109.5 C30---N6---H6E 124.7 C24---C26---H26B 109.5 O1---C1---C2 117.7 (7) H26A---C26---H26B 109.5 O1---C1---C6 125.4 (6) C24---C26---H26C 109.5 C2---C1---C6 116.9 (8) H26A---C26---H26C 109.5 C3---C2---C1 120.6 (8) H26B---C26---H26C 109.5 C3---C2---H2 119.7 C28---C27---H27A 109.5 C1---C2---H2 119.7 C28---C27---H27B 109.5 C4---C3---C2 122.8 (9) H27A---C27---H27B 109.5 C4---C3---H3 118.6 C28---C27---H27C 109.5 C2---C3---H3 118.6 H27A---C27---H27C 109.5 C3---C4---C5 118.5 (9) H27B---C27---H27C 109.5 C3---C4---H4 120.8 N5---C28---C29 109.9 (6) C5---C4---H4 120.8 N5---C28---C27 121.5 (6) C4---C5---C6 122.5 (8) C29---C28---C27 128.5 (6) C4---C5---H5 118.7 C30---C29---C28 105.4 (6) C6---C5---H5 118.7 C30---C29---H29 127.3 C5---C6---C1 118.5 (7) C28---C29---H29 127.3 C5---C6---C7 119.6 (7) N6---C30---C29 107.1 (6) C1---C6---C7 121.8 (6) N6---C30---C31 121.1 (7) N1---C7---C6 121.9 (6) C29---C30---C31 131.8 (7) N1---C7---C13 120.8 (5) C30---C31---H31A 109.5 C6---C7---C13 117.3 (6) C30---C31---H31B 109.5 N1---C8---C9 109.4 (4) H31A---C31---H31B 109.5 N1---C8---C10 110.8 (5) C30---C31---H31C 109.5 C9---C8---C10 111.8 (5) H31A---C31---H31C 109.5 N1---C8---H8 108.2 H31B---C31---H31C 109.5 C9---C8---H8 108.2 C33---C32---H32A 109.5 C10---C8---H8 108.2 C33---C32---H32B 109.5 O3---C9---O2 124.6 (6) H32A---C32---H32B 109.5 O3---C9---C8 118.2 (5) C33---C32---H32C 109.5 O2---C9---C8 117.2 (5) H32A---C32---H32C 109.5 C11---C10---C12 112.0 (6) H32B---C32---H32C 109.5 C11---C10---C8 111.6 (5) N3---C33---C34 109.5 (6) C12---C10---C8 112.2 (5) N3---C33---C32 119.6 (6) C11---C10---H10 106.9 C34---C33---C32 130.9 (7) C12---C10---H10 106.9 C35---C34---C33 107.2 (6) C8---C10---H10 106.9 C35---C34---H34 126.4 C10---C11---H11A 109.5 C33---C34---H34 126.4 C10---C11---H11B 109.5 N4---C35---C34 105.5 (6) H11A---C11---H11B 109.5 N4---C35---C36 121.6 (6) C10---C11---H11C 109.5 C34---C35---C36 132.8 (6) H11A---C11---H11C 109.5 C35---C36---H36A 109.5 H11B---C11---H11C 109.5 C35---C36---H36B 109.5 C10---C12---H12A 109.5 H36A---C36---H36B 109.5 C10---C12---H12B 109.5 C35---C36---H36C 109.5 H12A---C12---H12B 109.5 H36A---C36---H36C 109.5 C10---C12---H12C 109.5 H36B---C36---H36C 109.5 H12A---C12---H12C 109.5 O7---C37---H37A 109.5 H12B---C12---H12C 109.5 O7---C37---H37B 109.5 C7---C13---H13A 109.5 H37A---C37---H37B 109.5 C7---C13---H13B 109.5 O7---C37---H37C 109.5 H13A---C13---H13B 109.5 H37A---C37---H37C 109.5 C7---C13---H13C 109.5 H37B---C37---H37C 109.5 H13A---C13---H13C 109.5 O8---C38---H38A 109.5 H13B---C13---H13C 109.5 O8---C38---H38B 109.5 O4---C14---C15 118.0 (7) H38A---C38---H38B 109.5 O4---C14---C19 124.3 (6) O8---C38---H38C 109.5 C15---C14---C19 117.7 (7) H38A---C38---H38C 109.5 C16---C15---C14 122.4 (8) H38B---C38---H38C 109.5 -------------------- ------------- ------------------- ------------ ::: Symmetry codes: (i) *x*+1/2, −*y*+1/2, −*z*; (ii) *x*−1/2, −*y*+1/2, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e4710 .table-wrap} -------------------- --------- --------- ------------ --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N6---H6E···O5^i^ 0.86 2.01 2.843 (8) 164 N4---H4E···O2 0.86 2.06 2.873 (8) 157 O7---H7···O4 0.85 2.22 3.066 (14) 179 O8---H8D···O1^iii^ 0.82 2.24 3.009 (12) 157 -------------------- --------- --------- ------------ --------------- ::: Symmetry codes: (i) *x*+1/2, −*y*+1/2, −*z*; (iii) *x*, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ------------- ----------- Cu1---O1 1.899 (5) Cu1---N1 1.978 (5) Cu1---O2 1.989 (4) Cu1---N5 2.027 (6) Cu1---O6^i^ 2.437 (6) Cu2---O4 1.917 (5) Cu2---N2 1.979 (5) Cu2---O5 1.984 (4) Cu2---N3 2.014 (5) Cu2---O3 2.369 (5) ------------- ----------- Symmetry code: (i) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ------------ ------------- N6---H6*E*⋯O5^i^ 0.86 2.01 2.843 (8) 164 N4---H4*E*⋯O2 0.86 2.06 2.873 (8) 157 O7---H7⋯O4 0.85 2.22 3.066 (14) 179 O8---H8*D*⋯O1^ii^ 0.82 2.24 3.009 (12) 157 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.916058
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051769/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m173-m174", "authors": [ { "first": "Gan-Qing", "last": "Zhao" }, { "first": "Xu-Dong", "last": "Li" }, { "first": "Yong-Jun", "last": "Han" }, { "first": "Ling-Wei", "last": "Xue" }, { "first": "Qin-Long", "last": "Peng" } ] }
PMC3051770
Related literature {#sec1} ================== For the structure of Cr~23~C~6~, see: Westgren (1933[@bb10]). For other examples of τ-borides, which have more than 80 representatives, see: Villars & Calvert (1985[@bb9]). For ternary ordered variants, see: Hillebrecht & Ade (1998[@bb5]) for *M* ~20~ *M*′~3~B~6~; Veremchuk *et al.* (2009[@bb8]) for *M* ~21~ *M*′~2~B~6~. For isotypic cobalt-containing solid solutions Co~23-~ *~x~M*'~*x*~B~6~, see: Kotzott *et al.* (2009[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} Ni~20.56~Bi~2.44~B~6~*M* *~r~* = 1780.35Cubic,*a* = 10.575 (5) Å*V* = 1182.6 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 67.81 mm^−1^*T* = 293 K0.10 × 0.08 × 0.06 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 1999[@bb2]) *T* ~min~ = 0.010, *T* ~max~ = 0.0676672 measured reflections236 independent reflections235 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.044 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.020*wR*(*F* ^2^) = 0.045*S* = 1.16236 reflections15 parametersΔρ~max~ = 2.18 e Å^−3^Δρ~min~ = −2.22 e Å^−3^ {#d5e425} Data collection: *SMART* (Bruker, 1999[@bb2]); cell refinement: *SAINT-Plus* (Bruker, 1999[@bb2]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *DIAMOND* (Brandenburg, 2005[@bb1]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb4]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000894/mg2107sup1.cif](http://dx.doi.org/10.1107/S1600536811000894/mg2107sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000894/mg2107Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000894/mg2107Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?mg2107&file=mg2107sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?mg2107sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?mg2107&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [MG2107](http://scripts.iucr.org/cgi-bin/sendsup?mg2107)). This work was supported in part by a grant from AOARD (AOARD 104144). Comment ======= Ni~23-~*~x~*Bi*~x~*B~6~ belongs to a class of metal-rich compounds known as τ-borides, which are interesting ceramic materials. It is isostructural to numerous related *M*~20~*M*\'~3~B~6~ and *M*~21~*M*\'~2~B~6~ (*M* = 3*d* metal; *M*\' = rare-earth, 4*d*, 5*d*, or main-group metal) phases, which adopt a ternary variant of the cubic Cr~23~C~6~-type structure (Westgren, 1933; Villars & Calvert, 1985; Hillebrecht & Ade, 1998; Veremchuk *et al.*, 2009). Of the four metal sites, two (32f and 48h) are occupied exclusively by Ni atoms giving a NaCl-type arrangement of Ni~8~ cubes and Ni~12~ cuboctahedra, and two (4a and 8c) are occupied by a mixture of Ni and Bi atoms, resulting in the composition Ni~20.56~Bi~2.44~B~6~ (Fig. 1). Mixed occupation of the 4a and 8c sites has also been previously reported in the Co-containing τ-borides Co~23-~*~x~M*\'*~x~*B~6~ (Kotzott *et al.*, 2009). Experimental {#experimental} ============ A mixture of Ni, Bi, and B powders with nominal composition Ni~20~Bi~3~B~12~ was pressed into a pellet and placed in an alumina crucible. It was melted under Ar gas at 1473 K for 6 h, cooled at 20 K h^-1^ to 1273 K, and further cooled at 300 K h^-1^ to room temperature. The sample contained crystals of the title compound, in the presence of binary nickel borides, as revealed by powder X-ray diffraction analysis. Refinement {#refinement} ========== Several models involving mixed occupancy of Ni and Bi atoms, or vacancies (or both) within the metal sites were considered. We concluded that all sites are fully occupied, but two of them (4a and 8c) were disordered with a mixture of Ni and Bi atoms. Only an isotropic displacement parameter was refined for the B atom. The highest peak and the deepest hole in the final difference map are located at 2.12 and 0.57 Å from Ni3 and Bi1, respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Structure of Ni23-xBixB6 highlighting the arrangement of Ni12 cuboctahedra (Ni3, 48 h) and Ni8 cubes (Ni2, 32f). Displacement ellipsoids are drawn at the 60% probability level. Symmetry codes are defined in the footnote of the table of geometric parameters. ::: ![](e-67-00i17-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e228 .table-wrap} ------------------------ -------------------------------------- B~6~Bi~2.44~Ni~20.56~ *D*~x~ = 9.999 Mg m^−3^ *M~r~* = 1780.35 Mo *K*α radiation, λ = 0.71073 Å Cubic, *Fm*3*m* Cell parameters from 834 reflections Hall symbol: -F 4 2 3 θ = 3.3--40.4° *a* = 10.575 (5) Å µ = 67.81 mm^−1^ *V* = 1182.6 (10) Å^3^ *T* = 293 K *Z* = 4 Prism, grey *F*(000) = 3231 0.10 × 0.08 × 0.06 mm ------------------------ -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e340 .table-wrap} ------------------------------------------------------------ ------------------------------------- Bruker SMART APEX CCD diffractometer 235 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.044 ω scans θ~max~ = 40.4°, θ~min~ = 3.3° Absorption correction: multi-scan (*SADABS*; Bruker, 1999) *h* = −19→19 *T*~min~ = 0.010, *T*~max~ = 0.067 *k* = −19→19 6672 measured reflections *l* = −17→19 236 independent reflections ------------------------------------------------------------ ------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e453 .table-wrap} ------------------------------------- -------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.020 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0165*P*)^2^ + 39.3966*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *wR*(*F*^2^) = 0.045 (Δ/σ)~max~ \< 0.001 *S* = 1.16 Δρ~max~ = 2.18 e Å^−3^ 236 reflections Δρ~min~ = −2.22 e Å^−3^ 15 parameters Extinction correction: *SHELXL97* (Sheldrick, 2008) 0 restraints Extinction coefficient: 0.00047 (4) ------------------------------------- -------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e613 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e712 .table-wrap} ----- ------------- ------------- ------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ni2 0.38433 (4) 0.38433 (4) 0.38433 (4) 0.00939 (16) Ni3 0 0.17150 (4) 0.17150 (4) 0.01007 (16) Ni4 0.25 0.25 0.25 0.01036 (13) 0.106 (6) Ni1 0 0 0 0.0092 (2) 0.349 (7) Bi1 0.25 0.25 0.25 0.01036 (13) 0.894 (6) Bi2 0 0 0 0.0092 (2) 0.650 (7) B 0 0.2663 (7) 0 0.0109 (11)\* ----- ------------- ------------- ------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e837 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ni2 0.00939 (16) 0.00939 (16) 0.00939 (16) 0.00036 (13) 0.00036 (13) 0.00036 (13) Ni3 0.0116 (3) 0.00930 (19) 0.00930 (19) 0 0 −0.00020 (16) Ni4 0.01036 (13) 0.01036 (13) 0.01036 (13) 0 0 0 Ni1 0.0092 (2) 0.0092 (2) 0.0092 (2) 0 0 0 Bi1 0.01036 (13) 0.01036 (13) 0.01036 (13) 0 0 0 Bi2 0.0092 (2) 0.0092 (2) 0.0092 (2) 0 0 0 ----- -------------- -------------- -------------- -------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e974 .table-wrap} ------------------------------ -------------- ------------------------------ -------------- Ni2---B^i^ 2.133 (5) Ni4---Ni3^xv^ 2.8927 (14) Ni2---B^ii^ 2.133 (5) Ni4---Ni3^xi^ 2.8927 (14) Ni2---B^iii^ 2.133 (5) Ni4---Ni3^x^ 2.8927 (14) Ni2---Ni2^iv^ 2.4465 (15) Ni4---Ni3^vii^ 2.8927 (14) Ni2---Ni2^v^ 2.4465 (15) Ni4---Ni3^ix^ 2.8927 (14) Ni2---Ni2^vi^ 2.4465 (15) Ni4---Ni3^viii^ 2.8927 (14) Ni2---Ni4 2.4604 (14) Ni4---Ni3^xvi^ 2.8927 (14) Ni2---Ni3^vii^ 2.6287 (13) Ni1---Ni3^xx^ 2.5648 (14) Ni2---Ni3^viii^ 2.6287 (13) Ni1---Ni3^xxi^ 2.5648 (14) Ni2---Ni3^ix^ 2.6287 (13) Ni1---Ni3^xv^ 2.5648 (14) Ni2---Ni3^x^ 2.6287 (13) Ni1---Ni3^xxii^ 2.5648 (14) Ni3---B 2.072 (4) Ni1---Ni3^xi^ 2.5648 (14) Ni3---B^xi^ 2.072 (4) Ni1---Ni3^xxiii^ 2.5648 (14) Ni3---Ni3^xii^ 2.3480 (17) Ni1---Ni3^xxiv^ 2.5648 (14) Ni3---Ni1 2.5648 (14) Ni1---Ni3^xxv^ 2.5648 (14) Ni3---Ni3^xiii^ 2.5648 (14) Ni1---Ni3^xiv^ 2.5648 (14) Ni3---Ni3^xiv^ 2.5648 (14) Ni1---Ni3^xxvi^ 2.5648 (14) Ni3---Ni3^xv^ 2.5648 (14) Ni1---Ni3^xiii^ 2.5648 (14) Ni3---Ni3^xi^ 2.5648 (14) B---Ni3^xiii^ 2.072 (4) Ni3---Ni2^xvi^ 2.6287 (13) B---Ni3^xxiv^ 2.072 (4) Ni3---Ni2^xvii^ 2.6287 (13) B---Ni3^xv^ 2.072 (4) Ni3---Ni2^xviii^ 2.6287 (13) B---Ni2^xvii^ 2.133 (5) Ni4---Ni2^xvii^ 2.4604 (14) B---Ni2^xxvii^ 2.133 (5) Ni4---Ni2^xix^ 2.4604 (14) B---Ni2^xxviii^ 2.133 (5) Ni4---Ni2^xvi^ 2.4604 (14) B---Ni2^xviii^ 2.133 (5) B^i^---Ni2---B^ii^ 110.02 (17) Ni3^xv^---Ni4---Ni3^x^ 146.645 (15) B^i^---Ni2---B^iii^ 110.02 (17) Ni3^xi^---Ni4---Ni3^x^ 116.245 (7) B^ii^---Ni2---B^iii^ 110.02 (17) Ni3---Ni4---Ni3^x^ 94.724 (4) B^i^---Ni2---Ni2^iv^ 55.01 (9) Ni2---Ni4---Ni3^vii^ 58.152 (3) B^ii^---Ni2---Ni2^iv^ 125.82 (17) Ni2^xvii^---Ni4---Ni3^vii^ 149.209 (11) B^iii^---Ni2---Ni2^iv^ 55.01 (9) Ni2^xix^---Ni4---Ni3^vii^ 58.152 (3) B^i^---Ni2---Ni2^v^ 125.82 (17) Ni2^xvi^---Ni4---Ni3^vii^ 101.320 (11) B^ii^---Ni2---Ni2^v^ 55.01 (9) Ni3^xv^---Ni4---Ni3^vii^ 116.245 (7) B^iii^---Ni2---Ni2^v^ 55.01 (9) Ni3^xi^---Ni4---Ni3^vii^ 94.724 (4) Ni2^iv^---Ni2---Ni2^v^ 90 Ni3---Ni4---Ni3^vii^ 146.645 (15) B^i^---Ni2---Ni2^vi^ 55.01 (9) Ni3^x^---Ni4---Ni3^vii^ 94.724 (4) B^ii^---Ni2---Ni2^vi^ 55.01 (9) Ni2---Ni4---Ni3^ix^ 58.152 (3) B^iii^---Ni2---Ni2^vi^ 125.82 (17) Ni2^xvii^---Ni4---Ni3^ix^ 149.209 (11) Ni2^iv^---Ni2---Ni2^vi^ 90 Ni2^xix^---Ni4---Ni3^ix^ 101.320 (11) Ni2^v^---Ni2---Ni2^vi^ 90 Ni2^xvi^---Ni4---Ni3^ix^ 58.152 (3) B^i^---Ni2---Ni4 108.92 (17) Ni3^xv^---Ni4---Ni3^ix^ 146.645 (15) B^ii^---Ni2---Ni4 108.92 (17) Ni3^xi^---Ni4---Ni3^ix^ 94.724 (4) B^iii^---Ni2---Ni4 108.92 (17) Ni3---Ni4---Ni3^ix^ 116.245 (7) Ni2^iv^---Ni2---Ni4 125.3 Ni3^x^---Ni4---Ni3^ix^ 47.89 (2) Ni2^v^---Ni2---Ni4 125.3 Ni3^vii^---Ni4---Ni3^ix^ 52.632 (19) Ni2^vi^---Ni2---Ni4 125.3 Ni2---Ni4---Ni3^viii^ 58.152 (3) B^i^---Ni2---Ni3^vii^ 153.13 (3) Ni2^xvii^---Ni4---Ni3^viii^ 58.152 (3) B^ii^---Ni2---Ni3^vii^ 95.32 (6) Ni2^xix^---Ni4---Ni3^viii^ 149.209 (11) B^iii^---Ni2---Ni3^vii^ 50.27 (13) Ni2^xvi^---Ni4---Ni3^viii^ 101.320 (11) Ni2^iv^---Ni2---Ni3^vii^ 102.978 (14) Ni3^xv^---Ni4---Ni3^viii^ 116.245 (7) Ni2^v^---Ni2---Ni3^vii^ 62.268 (15) Ni3^xi^---Ni4---Ni3^viii^ 146.645 (15) Ni2^vi^---Ni2---Ni3^vii^ 148.889 (13) Ni3---Ni4---Ni3^viii^ 94.724 (4) Ni4---Ni2---Ni3^vii^ 69.188 (17) Ni3^x^---Ni4---Ni3^viii^ 52.632 (19) B^i^---Ni2---Ni3^viii^ 50.27 (13) Ni3^vii^---Ni4---Ni3^viii^ 116.245 (7) B^ii^---Ni2---Ni3^viii^ 95.32 (6) Ni3^ix^---Ni4---Ni3^viii^ 94.724 (4) B^iii^---Ni2---Ni3^viii^ 153.12 (3) Ni2---Ni4---Ni3^xvi^ 58.152 (3) Ni2^iv^---Ni2---Ni3^viii^ 102.978 (14) Ni2^xvii^---Ni4---Ni3^xvi^ 101.320 (11) Ni2^v^---Ni2---Ni3^viii^ 148.889 (13) Ni2^xix^---Ni4---Ni3^xvi^ 58.152 (3) Ni2^vi^---Ni2---Ni3^viii^ 62.268 (15) Ni2^xvi^---Ni4---Ni3^xvi^ 149.209 (11) Ni4---Ni2---Ni3^viii^ 69.188 (17) Ni3^xv^---Ni4---Ni3^xvi^ 94.724 (4) Ni3^vii^---Ni2---Ni3^viii^ 138.28 (3) Ni3^xi^---Ni4---Ni3^xvi^ 116.245 (7) B^i^---Ni2---Ni3^ix^ 95.32 (6) Ni3---Ni4---Ni3^xvi^ 146.645 (15) B^ii^---Ni2---Ni3^ix^ 153.13 (3) Ni3^x^---Ni4---Ni3^xvi^ 116.245 (7) B^iii^---Ni2---Ni3^ix^ 50.27 (13) Ni3^vii^---Ni4---Ni3^xvi^ 47.89 (2) Ni2^iv^---Ni2---Ni3^ix^ 62.268 (15) Ni3^ix^---Ni4---Ni3^xvi^ 94.724 (4) Ni2^v^---Ni2---Ni3^ix^ 102.978 (14) Ni3^viii^---Ni4---Ni3^xvi^ 94.724 (4) Ni2^vi^---Ni2---Ni3^ix^ 148.889 (13) Ni3---Ni1---Ni3^xx^ 120 Ni4---Ni2---Ni3^ix^ 69.188 (17) Ni3---Ni1---Ni3^xxi^ 180.00 (3) Ni3^vii^---Ni2---Ni3^ix^ 58.40 (2) Ni3^xx^---Ni1---Ni3^xxi^ 60 Ni3^viii^---Ni2---Ni3^ix^ 108.098 (18) Ni3---Ni1---Ni3^xv^ 60 B^i^---Ni2---Ni3^x^ 50.27 (13) Ni3^xx^---Ni1---Ni3^xv^ 180.00 (3) B^ii^---Ni2---Ni3^x^ 153.13 (3) Ni3^xxi^---Ni1---Ni3^xv^ 120 B^iii^---Ni2---Ni3^x^ 95.32 (6) Ni3---Ni1---Ni3^xxii^ 120 Ni2^iv^---Ni2---Ni3^x^ 62.268 (15) Ni3^xx^---Ni1---Ni3^xxii^ 60 Ni2^v^---Ni2---Ni3^x^ 148.889 (13) Ni3^xxi^---Ni1---Ni3^xxii^ 60 Ni2^vi^---Ni2---Ni3^x^ 102.978 (14) Ni3^xv^---Ni1---Ni3^xxii^ 120 Ni4---Ni2---Ni3^x^ 69.188 (17) Ni3---Ni1---Ni3^xi^ 60 Ni3^vii^---Ni2---Ni3^x^ 108.098 (18) Ni3^xx^---Ni1---Ni3^xi^ 120 Ni3^viii^---Ni2---Ni3^x^ 58.40 (2) Ni3^xxi^---Ni1---Ni3^xi^ 120 Ni3^ix^---Ni2---Ni3^x^ 53.05 (2) Ni3^xv^---Ni1---Ni3^xi^ 60 B---Ni3---B^xi^ 147.8 (4) Ni3^xxii^---Ni1---Ni3^xi^ 180.00 (3) B---Ni3---Ni3^xii^ 106.08 (19) Ni3---Ni1---Ni3^xxiii^ 120 B^xi^---Ni3---Ni3^xii^ 106.08 (19) Ni3^xx^---Ni1---Ni3^xxiii^ 90 B---Ni3---Ni1 73.92 (19) Ni3^xxi^---Ni1---Ni3^xxiii^ 60 B^xi^---Ni3---Ni1 73.92 (19) Ni3^xv^---Ni1---Ni3^xxiii^ 90 Ni3^xii^---Ni3---Ni1 180.00 (3) Ni3^xxii^---Ni1---Ni3^xxiii^ 120 B---Ni3---Ni3^xiii^ 51.76 (8) Ni3^xi^---Ni1---Ni3^xxiii^ 60 B^xi^---Ni3---Ni3^xiii^ 110.00 (12) Ni3---Ni1---Ni3^xxiv^ 90 Ni3^xii^---Ni3---Ni3^xiii^ 120 Ni3^xx^---Ni1---Ni3^xxiv^ 120 Ni1---Ni3---Ni3^xiii^ 60 Ni3^xxi^---Ni1---Ni3^xxiv^ 90 B---Ni3---Ni3^xiv^ 110.00 (12) Ni3^xv^---Ni1---Ni3^xxiv^ 60 B^xi^---Ni3---Ni3^xiv^ 51.76 (8) Ni3^xxii^---Ni1---Ni3^xxiv^ 60 Ni3^xii^---Ni3---Ni3^xiv^ 120 Ni3^xi^---Ni1---Ni3^xxiv^ 120 Ni1---Ni3---Ni3^xiv^ 60 Ni3^xxiii^---Ni1---Ni3^xxiv^ 120 Ni3^xiii^---Ni3---Ni3^xiv^ 60 Ni3---Ni1---Ni3^xxv^ 90 B---Ni3---Ni3^xv^ 51.76 (8) Ni3^xx^---Ni1---Ni3^xxv^ 60 B^xi^---Ni3---Ni3^xv^ 110.00 (12) Ni3^xxi^---Ni1---Ni3^xxv^ 90 Ni3^xii^---Ni3---Ni3^xv^ 120 Ni3^xv^---Ni1---Ni3^xxv^ 120 Ni1---Ni3---Ni3^xv^ 60 Ni3^xxii^---Ni1---Ni3^xxv^ 120 Ni3^xiii^---Ni3---Ni3^xv^ 90 Ni3^xi^---Ni1---Ni3^xxv^ 60 Ni3^xiv^---Ni3---Ni3^xv^ 120 Ni3^xxiii^---Ni1---Ni3^xxv^ 60 B---Ni3---Ni3^xi^ 110.00 (12) Ni3^xxiv^---Ni1---Ni3^xxv^ 180.00 (3) B^xi^---Ni3---Ni3^xi^ 51.76 (8) Ni3---Ni1---Ni3^xiv^ 60 Ni3^xii^---Ni3---Ni3^xi^ 120 Ni3^xx^---Ni1---Ni3^xiv^ 60 Ni1---Ni3---Ni3^xi^ 60 Ni3^xxi^---Ni1---Ni3^xiv^ 120 Ni3^xiii^---Ni3---Ni3^xi^ 120 Ni3^xv^---Ni1---Ni3^xiv^ 120 Ni3^xiv^---Ni3---Ni3^xi^ 90 Ni3^xxii^---Ni1---Ni3^xiv^ 90 Ni3^xv^---Ni3---Ni3^xi^ 60 Ni3^xi^---Ni1---Ni3^xiv^ 90 B---Ni3---Ni2^xvi^ 149.09 (8) Ni3^xxiii^---Ni1---Ni3^xiv^ 120 B^xi^---Ni3---Ni2^xvi^ 52.37 (15) Ni3^xxiv^---Ni1---Ni3^xiv^ 120 Ni3^xii^---Ni3---Ni2^xvi^ 63.474 (12) Ni3^xxv^---Ni1---Ni3^xiv^ 60 Ni1---Ni3---Ni2^xvi^ 116.526 (12) Ni3---Ni1---Ni3^xxvi^ 120 Ni3^xiii^---Ni3---Ni2^xvi^ 159.139 (17) Ni3^xx^---Ni1---Ni3^xxvi^ 120 Ni3^xiv^---Ni3---Ni2^xvi^ 99.802 (17) Ni3^xxi^---Ni1---Ni3^xxvi^ 60 Ni3^xv^---Ni3---Ni2^xvi^ 106.043 (14) Ni3^xv^---Ni1---Ni3^xxvi^ 60 Ni3^xi^---Ni3---Ni2^xvi^ 60.801 (12) Ni3^xxii^---Ni1---Ni3^xxvi^ 90 B---Ni3---Ni2^xvii^ 52.37 (15) Ni3^xi^---Ni1---Ni3^xxvi^ 90 B^xi^---Ni3---Ni2^xvii^ 149.09 (8) Ni3^xxiii^---Ni1---Ni3^xxvi^ 60 Ni3^xii^---Ni3---Ni2^xvii^ 63.474 (12) Ni3^xxiv^---Ni1---Ni3^xxvi^ 60 Ni1---Ni3---Ni2^xvii^ 116.526 (12) Ni3^xxv^---Ni1---Ni3^xxvi^ 120 Ni3^xiii^---Ni3---Ni2^xvii^ 99.802 (17) Ni3^xiv^---Ni1---Ni3^xxvi^ 180.00 (3) Ni3^xiv^---Ni3---Ni2^xvii^ 159.139 (17) Ni3---Ni1---Ni3^xiii^ 60 Ni3^xv^---Ni3---Ni2^xvii^ 60.801 (12) Ni3^xx^---Ni1---Ni3^xiii^ 90 Ni3^xi^---Ni3---Ni2^xvii^ 106.043 (14) Ni3^xxi^---Ni1---Ni3^xiii^ 120 Ni2^xvi^---Ni3---Ni2^xvii^ 99.67 (3) Ni3^xv^---Ni1---Ni3^xiii^ 90 B---Ni3---Ni2^xviii^ 52.37 (15) Ni3^xxii^---Ni1---Ni3^xiii^ 60 B^xi^---Ni3---Ni2^xviii^ 149.09 (8) Ni3^xi^---Ni1---Ni3^xiii^ 120 Ni3^xii^---Ni3---Ni2^xviii^ 63.474 (12) Ni3^xxiii^---Ni1---Ni3^xiii^ 180.00 (3) Ni1---Ni3---Ni2^xviii^ 116.526 (12) Ni3^xxiv^---Ni1---Ni3^xiii^ 60 Ni3^xiii^---Ni3---Ni2^xviii^ 60.801 (12) Ni3^xxv^---Ni1---Ni3^xiii^ 120 Ni3^xiv^---Ni3---Ni2^xviii^ 106.043 (14) Ni3^xiv^---Ni1---Ni3^xiii^ 60 Ni3^xv^---Ni3---Ni2^xviii^ 99.802 (17) Ni3^xxvi^---Ni1---Ni3^xiii^ 120 Ni3^xi^---Ni3---Ni2^xviii^ 159.139 (17) Ni3^xiii^---B---Ni3^xxiv^ 76.47 (16) Ni2^xvi^---Ni3---Ni2^xviii^ 126.95 (2) Ni3^xiii^---B---Ni3 76.47 (16) Ni2^xvii^---Ni3---Ni2^xviii^ 55.46 (3) Ni3^xxiv^---B---Ni3 122.2 (4) Ni2---Ni4---Ni2^xvii^ 109.5 Ni3^xiii^---B---Ni3^xv^ 122.2 (4) Ni2---Ni4---Ni2^xix^ 109.5 Ni3^xxiv^---B---Ni3^xv^ 76.47 (16) Ni2^xvii^---Ni4---Ni2^xix^ 109.5 Ni3---B---Ni3^xv^ 76.47 (16) Ni2---Ni4---Ni2^xvi^ 109.5 Ni3^xiii^---B---Ni2^xvii^ 141.71 (6) Ni2^xvii^---Ni4---Ni2^xvi^ 109.5 Ni3^xxiv^---B---Ni2^xvii^ 141.71 (6) Ni2^xix^---Ni4---Ni2^xvi^ 109.5 Ni3---B---Ni2^xvii^ 77.36 (3) Ni2---Ni4---Ni3^xv^ 149.209 (11) Ni3^xv^---B---Ni2^xvii^ 77.36 (3) Ni2^xvii^---Ni4---Ni3^xv^ 58.152 (3) Ni3^xiii^---B---Ni2^xxvii^ 77.36 (3) Ni2^xix^---Ni4---Ni3^xv^ 58.152 (3) Ni3^xxiv^---B---Ni2^xxvii^ 77.36 (3) Ni2^xvi^---Ni4---Ni3^xv^ 101.320 (11) Ni3---B---Ni2^xxvii^ 141.71 (6) Ni2---Ni4---Ni3^xi^ 149.209 (11) Ni3^xv^---B---Ni2^xxvii^ 141.71 (6) Ni2^xvii^---Ni4---Ni3^xi^ 101.320 (11) Ni2^xvii^---B---Ni2^xxvii^ 108.4 (3) Ni2^xix^---Ni4---Ni3^xi^ 58.152 (3) Ni3^xiii^---B---Ni2^xxviii^ 141.71 (6) Ni2^xvi^---Ni4---Ni3^xi^ 58.152 (3) Ni3^xxiv^---B---Ni2^xxviii^ 77.36 (3) Ni3^xv^---Ni4---Ni3^xi^ 52.632 (19) Ni3---B---Ni2^xxviii^ 141.71 (6) Ni2---Ni4---Ni3 149.209 (11) Ni3^xv^---B---Ni2^xxviii^ 77.36 (3) Ni2^xvii^---Ni4---Ni3 58.152 (3) Ni2^xvii^---B---Ni2^xxviii^ 69.97 (17) Ni2^xix^---Ni4---Ni3 101.320 (11) Ni2^xxvii^---B---Ni2^xxviii^ 69.97 (17) Ni2^xvi^---Ni4---Ni3 58.152 (3) Ni3^xiii^---B---Ni2^xviii^ 77.36 (3) Ni3^xv^---Ni4---Ni3 52.632 (19) Ni3^xxiv^---B---Ni2^xviii^ 141.71 (6) Ni3^xi^---Ni4---Ni3 52.632 (19) Ni3---B---Ni2^xviii^ 77.36 (3) Ni2---Ni4---Ni3^x^ 58.152 (3) Ni3^xv^---B---Ni2^xviii^ 141.71 (6) Ni2^xvii^---Ni4---Ni3^x^ 101.320 (11) Ni2^xvii^---B---Ni2^xviii^ 69.97 (17) Ni2^xix^---Ni4---Ni3^x^ 149.209 (11) Ni2^xxvii^---B---Ni2^xviii^ 69.97 (17) Ni2^xvi^---Ni4---Ni3^x^ 58.152 (3) Ni2^xxviii^---B---Ni2^xviii^ 108.4 (3) ------------------------------ -------------- ------------------------------ -------------- ::: Symmetry codes: (i) *y*, *z*+1/2, *x*+1/2; (ii) *z*+1/2, *x*+1/2, *y*; (iii) *x*+1/2, *y*, *z*+1/2; (iv) *x*, *y*, −*z*+1; (v) −*x*+1, *y*, *z*; (vi) *x*, −*y*+1, *z*; (vii) *x*+1/2, *y*, −*z*+1/2; (viii) *z*, *x*+1/2, −*y*+1/2; (ix) −*y*+1/2, *z*, −*x*+1/2; (x) *y*, −*z*+1/2, *x*+1/2; (xi) *z*, *x*, *y*; (xii) −*x*, −*y*+1/2, −*z*+1/2; (xiii) −*y*, *z*, −*x*; (xiv) −*z*, −*x*, *y*; (xv) *y*, *z*, *x*; (xvi) −*x*+1/2, −*y*+1/2, *z*; (xvii) −*x*+1/2, *y*, −*z*+1/2; (xviii) *x*−1/2, *y*, −*z*+1/2; (xix) *x*, −*y*+1/2, −*z*+1/2; (xx) −*y*, −*z*, −*x*; (xxi) −*x*, −*y*, −*z*; (xxii) −*z*, −*x*, −*y*; (xxiii) *y*, −*z*, *x*; (xxiv) *x*, *y*, −*z*; (xxv) −*x*, −*y*, *z*; (xxvi) *z*, *x*, −*y*; (xxvii) *x*−1/2, *y*, *z*−1/2; (xxviii) −*x*+1/2, *y*, *z*−1/2.
PubMed Central
2024-06-05T04:04:16.927010
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051770/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):i17", "authors": [ { "first": "David", "last": "Berthebaud" }, { "first": "Akira", "last": "Sato" }, { "first": "Takao", "last": "Mori" } ] }
PMC3051771
Related literature {#sec1} ================== For the properties and applications of 1,3,4-oxadiazole derivatives, see: Hughes & Bryce (2005[@bb3]); Kim & Lee (2007[@bb4]); Kulkarni *et al.* (2004[@bb5]); Liang *et al.* (2003[@bb6]); Liou *et al.* (2006[@bb7]); Strukelj *et al.* (1995[@bb12]). For the biological activity of compounds containing the 1,3,4-oxadiazole moiety, see: Cacic *et al.* (2006[@bb2]); Mansour *et al.* (2003[@bb8]); Yar *et al.* (2007[@bb13]); Zhang *et al.* (2007[@bb14]). For synthesis of the inter­mediate, see Mashraqui *et al.* (2007[@bb9]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~20~N~2~O~2~*M* *~r~* = 308.37Monoclinic,*a* = 16.3958 (18) Å*b* = 6.0654 (7) Å*c* = 16.7206 (19) Åβ = 102.289 (2)°*V* = 1624.7 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.08 mm^−1^*T* = 185 K0.32 × 0.14 × 0.09 mm ### Data collection {#sec2.1.2} Bruker SMART APEX CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb10]) *T* ~min~ = 0.974, *T* ~max~ = 0.9938995 measured reflections2886 independent reflections1805 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.051 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.122*S* = 0.982886 reflections212 parametersH-atom parameters constrainedΔρ~max~ = 0.16 e Å^−3^Δρ~min~ = −0.14 e Å^−3^ {#d5e459} Data collection: *SMART* (Bruker, 2007[@bb1]); cell refinement: *SAINT* (Bruker, 2007[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb11]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810052967/pk2290sup1.cif](http://dx.doi.org/10.1107/S1600536810052967/pk2290sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810052967/pk2290Isup2.hkl](http://dx.doi.org/10.1107/S1600536810052967/pk2290Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pk2290&file=pk2290sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pk2290sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pk2290&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PK2290](http://scripts.iucr.org/cgi-bin/sendsup?pk2290)). This work was supported by the Natural Science Foundation of Gansu Province (096RJZA086) and the project of students' science and technology innovation funds (DXS2010--041) of Lanzhou Jiaotong University. Comment ======= It is well known that 1,3,4-oxadiazole derivatives have strong electron affinity and possess electron-transporting characteristics. They have been widely used as electroluminescent materials and as electron-transport materials in organic light-emitting diodes (OLEDs) (Strukelj *et al.*, 1995; Kulkarni *et al.*, 2004; Hughes & Bryce 2005). Due to its excellent electron transporting properties, the 1,3,4-oxadiazole unit has been embedded in larger compounds to improve the quantum efficiencies of OLEDs (Liang *et al.*, 2003; Liou *et al.*, 2006; Kim & Lee 2007). Moreover, the compounds containing 1,3,4-oxadiazole also exhibit beneficial biological activity, such as anti-inflammatory, antibacterial, anticancer, plant growth regulation, weed and worm killing, anti-HIV and other activities (Cacic *et al.*, 2006; Mansour *et al.*, 2003; Zhang *et al.*, 2007; Yar *et al.*, 2007). The molecular structure of the title compound is shown in Fig.1. Bond lengths and angles in the molecule are within normal ranges. The 1,3,4-oxadiazole ring is almost coplanar with two neighboring benzene rings (dihedral angles between the 1,3,4-oxadiazole ring and two benzene rings are 3.76 (4)° and 5.49 (4)°. The crystal structure is stabilized by intermolecular O---H···N hydrogen bonds (Fig. 2), to form chains parallel to the *c* axis. Experimental {#experimental} ============ The title compound was obtained by reacting 2-\[4-(bromomethyl)phenyl\]-5-(4-*tert*-butylphenyl)-1,3,4-oxadiazole and potassium hydroxide in *N*,*N*-dimethyllformamide. The intermediate, 2-\[4-(bromomethyl)phenyl\]-5-(4-*tert*-butylphenyl)-1,3,4-oxadiazole, was synthesized according to the method described by Mashraqui *et al.* (Mashraqui *et al.*, 2007). After dispersing potassium hydroxide (3.62 mmol) in *N*,*N*-dimethylformamide (30 ml) for 10 min, 2-\[4-(bromomethyl)phenyl\]-5-(4-*tert*-butylphenyl)- 1,3,4-oxadiazole (3.62 mmol) was added. The reaction vessel was refluxed for one day. Neutralization with saturated aqueous ammonium chloride (100 ml) followed by extraction with dichloromethane (100 ml) was performed, and the organic layer was dried over anhydrous magnesium sulfate. The concentrated crude product was purified with silica column chromatography to afford the title compound. m.p. 381--383 K. ^1^H-NMR (500 MHz, CDCl~3~): 8.12--8.05 (m, 4H, Ar---H), 7.56--7.52 (m, 4H, Ar---H), 4.81 (s, 2H, --CH~2~--), 2.31 (s, 1H, --OH), 1.41 (s, 9H, --CH~3~). Colourless single crystals were obtained by slow evaporation of a methanolic solution at room temperature. Refinement {#refinement} ========== H atoms were positioned geometrically and refined as riding atoms, with C---H = 0.95 (aromatic), 0.99 (CH~2~), 0.98 Å (CH~3~) and *U*~iso~(H) = 1.2(1.5 for methyl)*U*~eq~(C). The hydroxyl H atom was found in a difference Fourier map and refined as riding atom, with O---H = 0.84 Å and *U*~iso~(H) = 1.5*U*~eq~(O). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecule structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o251-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound showing the bc plane. Intermolecular O---H···N hydrogen bonds (dashed lines) form chains parallel to the c axis ::: ![](e-67-0o251-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e203 .table-wrap} ------------------------- --------------------------------------- C~19~H~20~N~2~O~2~ *F*(000) = 656 *M~r~* = 308.37 *D*~x~ = 1.261 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point = 381--383 K Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 16.3958 (18) Å Cell parameters from 1372 reflections *b* = 6.0654 (7) Å θ = 2.5--23.3° *c* = 16.7206 (19) Å µ = 0.08 mm^−1^ β = 102.289 (2)° *T* = 185 K *V* = 1624.7 (3) Å^3^ Block, colorless *Z* = 4 0.32 × 0.14 × 0.09 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e334 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART APEX CCD diffractometer 2886 independent reflections Radiation source: sealed tube 1805 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.051 φ and ω scans θ~max~ = 25.1°, θ~min~ = 2.5° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −14→19 *T*~min~ = 0.974, *T*~max~ = 0.993 *k* = −7→7 8995 measured reflections *l* = −19→19 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e451 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.122 H-atom parameters constrained *S* = 0.98 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0608*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2886 reflections (Δ/σ)~max~ \< 0.001 212 parameters Δρ~max~ = 0.16 e Å^−3^ 0 restraints Δρ~min~ = −0.14 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e605 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e704 .table-wrap} ------ -------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.11403 (11) −0.3479 (3) 0.77257 (10) 0.0481 (5) H1 0.1306 −0.2304 0.7974 0.072\* O2 0.21110 (9) 0.1173 (2) 0.41106 (9) 0.0363 (4) N1 0.12828 (12) 0.3966 (3) 0.42308 (11) 0.0396 (5) N2 0.16872 (13) 0.4399 (3) 0.35861 (11) 0.0405 (5) C1 0.04959 (16) −0.2996 (4) 0.70351 (14) 0.0423 (6) H1A 0.0045 −0.2187 0.7219 0.051\* H1B 0.0259 −0.4397 0.6784 0.051\* C2 0.07960 (15) −0.1632 (4) 0.63943 (13) 0.0358 (6) C3 0.13751 (15) −0.2496 (4) 0.59808 (14) 0.0388 (6) H3 0.1603 −0.3919 0.6119 0.047\* C4 0.16207 (15) −0.1294 (4) 0.53697 (13) 0.0375 (6) H4 0.2006 −0.1915 0.5081 0.045\* C5 0.13098 (15) 0.0811 (3) 0.51743 (13) 0.0334 (6) C6 0.07323 (15) 0.1692 (4) 0.55888 (13) 0.0373 (6) H6 0.0512 0.3127 0.5458 0.045\* C7 0.04808 (15) 0.0471 (4) 0.61911 (13) 0.0386 (6) H7 0.0086 0.1077 0.6471 0.046\* C8 0.15439 (14) 0.2058 (4) 0.45132 (13) 0.0335 (6) C9 0.21555 (15) 0.2722 (4) 0.35340 (13) 0.0346 (6) C10 0.26874 (14) 0.2326 (4) 0.29488 (13) 0.0338 (6) C11 0.30966 (17) 0.0348 (4) 0.29253 (16) 0.0514 (7) H11 0.3055 −0.0775 0.3311 0.062\* C12 0.35681 (17) −0.0006 (4) 0.23410 (16) 0.0546 (8) H12 0.3847 −0.1377 0.2336 0.066\* C13 0.36454 (15) 0.1577 (4) 0.17643 (14) 0.0366 (6) C14 0.32332 (15) 0.3538 (4) 0.18029 (14) 0.0422 (6) H14 0.3276 0.4666 0.1420 0.051\* C15 0.27591 (15) 0.3921 (4) 0.23804 (14) 0.0424 (6) H15 0.2481 0.5293 0.2386 0.051\* C16 0.41390 (15) 0.1098 (4) 0.10994 (14) 0.0393 (6) C17 0.49387 (17) −0.0160 (5) 0.14583 (17) 0.0589 (8) H17A 0.5287 0.0726 0.1890 0.088\* H17B 0.5245 −0.0455 0.1026 0.088\* H17C 0.4798 −0.1559 0.1689 0.088\* C18 0.4366 (2) 0.3210 (4) 0.06978 (19) 0.0703 (10) H18A 0.4693 0.4174 0.1117 0.105\* H18B 0.3854 0.3971 0.0427 0.105\* H18C 0.4696 0.2839 0.0292 0.105\* C19 0.35905 (17) −0.0327 (4) 0.04458 (15) 0.0532 (7) H19A 0.3890 −0.0653 0.0011 0.080\* H19B 0.3074 0.0466 0.0214 0.080\* H19C 0.3456 −0.1708 0.0693 0.080\* ------ -------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1297 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0561 (13) 0.0525 (10) 0.0353 (10) −0.0063 (9) 0.0085 (9) 0.0032 (8) O2 0.0408 (11) 0.0420 (9) 0.0285 (9) 0.0023 (7) 0.0127 (8) 0.0020 (7) N1 0.0450 (14) 0.0458 (12) 0.0301 (11) 0.0014 (10) 0.0128 (10) 0.0014 (9) N2 0.0427 (13) 0.0494 (12) 0.0323 (12) 0.0062 (10) 0.0144 (10) 0.0039 (9) C1 0.0477 (18) 0.0502 (15) 0.0292 (14) −0.0063 (12) 0.0088 (13) −0.0010 (11) C2 0.0388 (16) 0.0416 (14) 0.0275 (13) −0.0080 (11) 0.0084 (11) −0.0043 (10) C3 0.0436 (16) 0.0367 (13) 0.0373 (14) −0.0020 (11) 0.0114 (13) −0.0019 (11) C4 0.0393 (16) 0.0422 (13) 0.0340 (13) −0.0038 (11) 0.0146 (12) −0.0061 (11) C5 0.0374 (15) 0.0375 (13) 0.0252 (12) −0.0056 (11) 0.0067 (11) −0.0041 (10) C6 0.0421 (16) 0.0405 (13) 0.0298 (13) −0.0031 (11) 0.0090 (12) −0.0046 (10) C7 0.0427 (16) 0.0475 (14) 0.0282 (13) −0.0042 (12) 0.0134 (12) −0.0102 (11) C8 0.0345 (15) 0.0411 (13) 0.0252 (13) −0.0011 (11) 0.0074 (11) −0.0064 (10) C9 0.0385 (16) 0.0407 (13) 0.0255 (13) −0.0017 (12) 0.0085 (12) 0.0040 (10) C10 0.0326 (15) 0.0410 (13) 0.0281 (13) 0.0004 (11) 0.0068 (11) 0.0021 (10) C11 0.067 (2) 0.0444 (15) 0.0515 (17) 0.0111 (13) 0.0313 (16) 0.0150 (12) C12 0.071 (2) 0.0421 (14) 0.0606 (19) 0.0167 (14) 0.0354 (17) 0.0115 (13) C13 0.0366 (15) 0.0410 (13) 0.0342 (14) −0.0008 (11) 0.0119 (12) 0.0010 (11) C14 0.0444 (17) 0.0446 (14) 0.0416 (15) 0.0044 (12) 0.0180 (13) 0.0120 (12) C15 0.0427 (16) 0.0417 (13) 0.0456 (15) 0.0108 (12) 0.0156 (13) 0.0097 (12) C16 0.0382 (16) 0.0424 (13) 0.0411 (14) 0.0012 (12) 0.0166 (13) −0.0005 (11) C17 0.0458 (19) 0.0787 (19) 0.0555 (18) 0.0067 (15) 0.0181 (15) −0.0091 (15) C18 0.096 (3) 0.0512 (17) 0.085 (2) −0.0044 (16) 0.066 (2) 0.0018 (15) C19 0.0552 (19) 0.0661 (18) 0.0408 (16) 0.0017 (14) 0.0158 (14) −0.0035 (13) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1735 .table-wrap} ----------------- ------------- ------------------- ------------- O1---C1 1.420 (3) C10---C15 1.379 (3) O1---H1 0.8400 C11---C12 1.386 (3) O2---C9 1.359 (2) C11---H11 0.9500 O2---C8 1.368 (2) C12---C13 1.386 (3) N1---C8 1.288 (3) C12---H12 0.9500 N1---N2 1.405 (2) C13---C14 1.377 (3) N2---C9 1.289 (3) C13---C16 1.536 (3) C1---C2 1.516 (3) C14---C15 1.382 (3) C1---H1A 0.9900 C14---H14 0.9500 C1---H1B 0.9900 C15---H15 0.9500 C2---C7 1.391 (3) C16---C17 1.525 (3) C2---C3 1.391 (3) C16---C19 1.527 (3) C3---C4 1.383 (3) C16---C18 1.528 (3) C3---H3 0.9500 C17---H17A 0.9800 C4---C5 1.388 (3) C17---H17B 0.9800 C4---H4 0.9500 C17---H17C 0.9800 C5---C6 1.394 (3) C18---H18A 0.9800 C5---C8 1.457 (3) C18---H18B 0.9800 C6---C7 1.382 (3) C18---H18C 0.9800 C6---H6 0.9500 C19---H19A 0.9800 C7---H7 0.9500 C19---H19B 0.9800 C9---C10 1.463 (3) C19---H19C 0.9800 C10---C11 1.379 (3) C1---O1---H1 109.5 C10---C11---H11 119.9 C9---O2---C8 102.87 (16) C12---C11---H11 119.9 C8---N1---N2 105.96 (17) C11---C12---C13 122.1 (2) C9---N2---N1 106.82 (17) C11---C12---H12 119.0 O1---C1---C2 113.0 (2) C13---C12---H12 119.0 O1---C1---H1A 109.0 C14---C13---C12 116.6 (2) C2---C1---H1A 109.0 C14---C13---C16 122.48 (19) O1---C1---H1B 109.0 C12---C13---C16 120.9 (2) C2---C1---H1B 109.0 C13---C14---C15 122.2 (2) H1A---C1---H1B 107.8 C13---C14---H14 118.9 C7---C2---C3 118.78 (19) C15---C14---H14 118.9 C7---C2---C1 120.89 (19) C10---C15---C14 120.4 (2) C3---C2---C1 120.3 (2) C10---C15---H15 119.8 C4---C3---C2 120.4 (2) C14---C15---H15 119.8 C4---C3---H3 119.8 C17---C16---C19 108.9 (2) C2---C3---H3 119.8 C17---C16---C18 108.8 (2) C3---C4---C5 120.6 (2) C19---C16---C18 108.7 (2) C3---C4---H4 119.7 C17---C16---C13 110.55 (19) C5---C4---H4 119.7 C19---C16---C13 107.72 (18) C4---C5---C6 119.35 (19) C18---C16---C13 111.99 (18) C4---C5---C8 120.90 (19) C16---C17---H17A 109.5 C6---C5---C8 119.7 (2) C16---C17---H17B 109.5 C7---C6---C5 119.8 (2) H17A---C17---H17B 109.5 C7---C6---H6 120.1 C16---C17---H17C 109.5 C5---C6---H6 120.1 H17A---C17---H17C 109.5 C6---C7---C2 121.1 (2) H17B---C17---H17C 109.5 C6---C7---H7 119.4 C16---C18---H18A 109.5 C2---C7---H7 119.4 C16---C18---H18B 109.5 N1---C8---O2 112.30 (18) H18A---C18---H18B 109.5 N1---C8---C5 128.60 (19) C16---C18---H18C 109.5 O2---C8---C5 119.09 (19) H18A---C18---H18C 109.5 N2---C9---O2 112.03 (17) H18B---C18---H18C 109.5 N2---C9---C10 128.56 (19) C16---C19---H19A 109.5 O2---C9---C10 119.41 (19) C16---C19---H19B 109.5 C11---C10---C15 118.5 (2) H19A---C19---H19B 109.5 C11---C10---C9 121.64 (19) C16---C19---H19C 109.5 C15---C10---C9 119.8 (2) H19A---C19---H19C 109.5 C10---C11---C12 120.2 (2) H19B---C19---H19C 109.5 ----------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2308 .table-wrap} ----------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···N2^i^ 0.84 2.07 2.906 (3) 179 ----------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ----------- ------------- O1---H1⋯N2^i^ 0.84 2.07 2.906 (3) 179 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:16.931390
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051771/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o251", "authors": [ { "first": "Yu-Ling", "last": "Zhao" }, { "first": "Zhe", "last": "Lv" }, { "first": "Bin", "last": "Tian" }, { "first": "Zhe", "last": "Hou" }, { "first": "Zhong-Rong", "last": "Geng" } ] }
PMC3051772
Related literature {#sec1} ================== For the importance of copper(II) carboxyl­ate complexes in biology, see: Lippard & Berg (1994[@bb9]). For coordination properties of carboxyl­ates, see: Deacon & Phillips (1980[@bb6]). For a similar structure, see: Li *et al.* (2009[@bb8]). For bond lengths in related copper complexes, see: Cui *et al.* (2009[@bb5]); Zaleski *et al.* (2005[@bb10]). For graph-set motifs, see: Bernstein *et al.* (1995[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cu(C~2~H~3~O~2~)~2~(C~7~H~10~N~2~)~2~\]*M* *~r~* = 425.98Triclinic,*a* = 7.6930 (2) Å*b* = 7.8331 (2) Å*c* = 8.2206 (2) Åα = 90.701 (2)°β = 96.992 (2)°γ = 92.949 (2)°*V* = 490.95 (2) Å^3^*Z* = 1Mo *K*α radiationμ = 1.14 mm^−1^*T* = 180 K0.48 × 0.37 × 0.12 mm ### Data collection {#sec2.1.2} Agilent Xcalibur Eos Gemini-ultra diffractometerAbsorption correction: multi-scan \[ABSPACK in *CrysAlis PRO* (Agilent Technologies, 2010[@bb1])\] *T* ~min~ = 0.608, *T* ~max~ = 0.87210140 measured reflections2362 independent reflections2307 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.027*wR*(*F* ^2^) = 0.115*S* = 1.112362 reflections124 parametersH-atom parameters constrainedΔρ~max~ = 0.40 e Å^−3^Δρ~min~ = −0.36 e Å^−3^ {#d5e502} Data collection: *CrysAlis PRO* (Agilent Technologies, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994[@bb2]); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003[@bb4]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb7]); software used to prepare material for publication: *CRYSTALS*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811002017/su2247sup1.cif](http://dx.doi.org/10.1107/S1600536811002017/su2247sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002017/su2247Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002017/su2247Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?su2247&file=su2247sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?su2247sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?su2247&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SU2247](http://scripts.iucr.org/cgi-bin/sendsup?su2247)). This work was supported by Mentouri-Constantine University, Algeria. Comment ======= Lewis based coordinated Cu^II^ carboxylate complexes are an important class of coordination compounds due to their relevance as structural and functional models for biologically important metalloenzymes (Lippard & Berg,1994). Anionic carboxylates are highly flexible and versatile O-donor ligands since a range of substituents may be introduced on the alkyl chain to modulate their reactivity and coordination propensity, and result in a variety of coordination modes such as monodentate, bidentate bridging, chelating, monoatomic bridging and chelating bridging (Deacon & Phillips, 1980). The Lewis base 4-Dimethylaminopyridine (DMAP) is a derivative of pyridine that is widely used in hypernucleophilic acylation for a variety of reactions, such as esterifications with anhydrides. We report herein on the molecular structure of a novel compound, namely bis(acetate-*κ^2^O,O\'*)bis(4-dimethylaminepyridine-*κN*)\] Copper(II). In the title complex the Cu^II^ cation lies on an inversion centre, as a consequence of which the asymmetric unit comprises one half-molecule (Fig. 1). The Cu^II^ ion is octahedrally coordinated by two (DMAP) ligands and two acetate units. It adopts a Jahn-Teller-distorted *trans*-CuO~4~N~2~ octahedral coordination similar to our previously reported Cu^II^ compound with the 4-(pyridine-4-yl)pyrimidine-2-sulfonate ligand (Li *et al.*, 2009). The four O atoms \[O2, O4, and the symmetry-related atoms, O2^I^, O4^I^ (symmetry code: (I) -*x* + 1,-*y* + 1,-*z* + 1)\] are located in the equatorial plane while the two N atoms of the (DMAP) ligands (N6, N6^I^) are in the axial positions. The Cu1---N6 bond length of 2.0095 (13) Å agrees well with that reported for related copper complexes (Cui *et al.*, 2009, Zaleski *et al.*, 2005), while the Cu1---O2 and Cu1---O4 bond lengths are 1.9715 (11) and 2.5932 (13) Å, respectively. The dihedral angles formed between the mean planes through the four O atoms and the pyridine ring is 88.59 (1)°. In the crystal, the packing is consolidated by C---H···O interactions involving aromatic H-atoms (Table 1, Fig 2), in which *R*~4~^2^(10) (Bernstein *et al.*,1995) hydrogen-bonded rings are formed, generating a two-dimensional layer-like structure. Experimental {#experimental} ============ To a solution of Cu(CH~3~CO~2~)~2~.H~2~O (0.2 g, 1 mmol) in methanol (40 cm^3^) at room temperature was added solid 4-(Dimethylamino)pyridine (DMAP) (0.122 g, 1 mmol) in small portions under constant stirring. the mixture was then filtered and the filtrate allowed to stand for 20 days, after which small blue block-like crystals of the title complex were obtained. They were filtered and dried under vacuum. Refinement {#refinement} ========== All the C-bound H-atoms were located in difference Fourier maps but were treated as riding on their parent atoms: C-H = 0.917 - 0.974 Å with *U*~iso~(H) = 1.2*U*~eq~(C-aromatic) or *U*~iso~(H) = 1.5*U*~eq~(C-methyl). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitary radius \[Symmetry code: (I) = -x + 1,-y + 1,-z + 1\]. ::: ![](e-67-0m235-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A view along the a-axis of the crystal structure of the title compound showing the formation of R42(10) rings. The C-H···O hydrogen bonds are shown as dashed lines; H-atoms no involved in the C-H..O interactions have been omitted for clarity. ::: ![](e-67-0m235-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e223 .table-wrap} ------------------------------------------- ---------------------------------------- \[Cu(C~2~H~3~O~2~)~2~(C~7~H~10~N~2~)~2~\] *Z* = 1 *M~r~* = 425.98 *F*(000) = 223 Triclinic, *P*1 *D*~x~ = 1.441 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.6930 (2) Å Cell parameters from 10054 reflections *b* = 7.8331 (2) Å θ = 3.4--29.0° *c* = 8.2206 (2) Å µ = 1.14 mm^−1^ α = 90.701 (2)° *T* = 180 K β = 96.992 (2)° Plate, blue γ = 92.949 (2)° 0.48 × 0.37 × 0.12 mm *V* = 490.95 (2) Å^3^ ------------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e373 .table-wrap} ---------------------------------------------------------------------------------------------- -------------------------------------- Agilent Xcalibur Eos Gemini-ultra diffractometer 2362 independent reflections Radiation source: Enhance (Mo) X-ray Source 2307 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.018 Detector resolution: 16.1978 pixels mm^-1^ θ~max~ = 29.1°, θ~min~ = 3.4° ω scans *h* = −10→10 Absorption correction: multi-scan \[ABSPACK in *CrysAlis PRO* (Agilent Technologies, 2010)\] *k* = −10→10 *T*~min~ = 0.608, *T*~max~ = 0.872 *l* = −11→11 10140 measured reflections ---------------------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e493 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.027 H-atom parameters constrained *wR*(*F*^2^) = 0.115 Method = Modified Sheldrick *w* = 1/\[σ^2^(*F*^2^) + (0.1*P*)^2^ + 0.0*P*\], where *P* = p(6)\*max(*F*~o~^2^,0) + (1-p(6))*F*~c~^2^ *S* = 1.11 (Δ/σ)~max~ = 0.001 2362 reflections Δρ~max~ = 0.40 e Å^−3^ 124 parameters Δρ~min~ = −0.36 e Å^−3^ 0 restraints ------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e649 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.5000 0.5000 0.5000 0.0192 O2 0.44954 (15) 0.32890 (15) 0.66419 (14) 0.0229 C3 0.5609 (2) 0.3691 (2) 0.79019 (19) 0.0222 O4 0.67659 (17) 0.48560 (17) 0.78860 (16) 0.0321 C5 0.5412 (3) 0.2708 (3) 0.9440 (2) 0.0328 N6 0.32934 (17) 0.65325 (17) 0.58644 (16) 0.0204 C7 0.1803 (2) 0.5914 (2) 0.6416 (2) 0.0244 C8 0.0597 (2) 0.6918 (2) 0.6986 (2) 0.0247 C9 0.0888 (2) 0.8714 (2) 0.70624 (18) 0.0217 C10 0.2452 (2) 0.9354 (2) 0.64866 (19) 0.0226 C11 0.3565 (2) 0.8244 (2) 0.59137 (19) 0.0228 N12 −0.0240 (2) 0.9759 (2) 0.7651 (2) 0.0320 C13 −0.1935 (3) 0.9125 (3) 0.8063 (3) 0.0419 C14 0.0055 (3) 1.1609 (2) 0.7637 (2) 0.0338 H51 0.6487 0.2899 1.0188 0.0450\* H53 0.4473 0.3138 0.9949 0.0447\* H52 0.5228 0.1509 0.9233 0.0442\* H71 0.1609 0.4749 0.6399 0.0287\* H81 −0.0432 0.6385 0.7331 0.0283\* H101 0.2738 1.0521 0.6478 0.0252\* H111 0.4575 0.8681 0.5535 0.0258\* H132 −0.2467 0.9992 0.8633 0.0610\* H131 −0.1792 0.8177 0.8754 0.0606\* H133 −0.2691 0.8797 0.7128 0.0611\* H142 −0.0664 1.2144 0.8370 0.0514\* H141 0.1245 1.1930 0.8012 0.0513\* H143 −0.0217 1.1993 0.6517 0.0513\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1027 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.02144 (19) 0.01507 (18) 0.02130 (19) −0.00171 (11) 0.00403 (11) 0.00410 (11) O2 0.0263 (6) 0.0200 (5) 0.0222 (5) −0.0024 (4) 0.0037 (4) 0.0049 (4) C3 0.0243 (7) 0.0201 (7) 0.0236 (7) 0.0039 (6) 0.0072 (5) 0.0023 (6) O4 0.0290 (6) 0.0317 (7) 0.0348 (7) −0.0083 (5) 0.0055 (5) −0.0006 (5) C5 0.0434 (10) 0.0332 (10) 0.0233 (8) 0.0038 (8) 0.0085 (7) 0.0068 (7) N6 0.0203 (6) 0.0167 (6) 0.0245 (6) −0.0022 (5) 0.0047 (5) 0.0027 (5) C7 0.0250 (8) 0.0176 (7) 0.0305 (8) −0.0049 (6) 0.0043 (6) 0.0045 (6) C8 0.0206 (7) 0.0203 (7) 0.0331 (8) −0.0051 (5) 0.0053 (6) 0.0035 (6) C9 0.0213 (7) 0.0203 (7) 0.0226 (7) −0.0017 (5) 0.0001 (5) 0.0024 (6) C10 0.0243 (7) 0.0170 (7) 0.0258 (7) −0.0040 (5) 0.0030 (6) 0.0019 (6) C11 0.0225 (7) 0.0196 (8) 0.0259 (8) −0.0049 (6) 0.0035 (6) 0.0037 (6) N12 0.0270 (7) 0.0237 (7) 0.0470 (9) −0.0012 (6) 0.0119 (6) 0.0003 (7) C13 0.0266 (9) 0.0430 (11) 0.0583 (12) −0.0011 (8) 0.0158 (8) 0.0032 (9) C14 0.0341 (9) 0.0229 (8) 0.0446 (10) 0.0044 (7) 0.0050 (7) 0.0000 (7) ----- -------------- -------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1306 .table-wrap} --------------------- ------------- ------------------- ------------- Cu1---O2 1.9715 (11) C7---H71 0.917 Cu1---C3 2.6076 (16) C8---C9 1.413 (2) Cu1---O4 2.5932 (13) C8---H81 0.951 Cu1---N6 2.0095 (13) C9---C10 1.416 (2) Cu1---O4^i^ 2.5932 (13) C9---N12 1.350 (2) Cu1---C3^i^ 2.6076 (16) C10---C11 1.370 (2) Cu1---N6^i^ 2.0095 (13) C10---H101 0.929 Cu1---O2^i^ 1.9715 (11) C11---H111 0.923 O2---C3 1.286 (2) N12---C13 1.451 (2) C3---O4 1.243 (2) N12---C14 1.455 (2) C3---C5 1.507 (2) C13---H132 0.958 C5---H51 0.972 C13---H131 0.943 C5---H53 0.951 C13---H133 0.931 C5---H52 0.953 C14---H142 0.972 N6---C7 1.353 (2) C14---H141 0.950 N6---C11 1.3452 (19) C14---H143 0.974 C7---C8 1.367 (2) O4^i^---Cu1---C3^i^ 27.66 (5) H51---C5---H53 108.3 O4^i^---Cu1---N6^i^ 91.06 (5) C3---C5---H52 112.4 C3^i^---Cu1---N6^i^ 89.28 (5) H51---C5---H52 108.0 O4^i^---Cu1---O2^i^ 56.16 (4) H53---C5---H52 110.7 C3^i^---Cu1---O2^i^ 28.54 (5) Cu1---N6---C7 122.31 (11) N6^i^---Cu1---O2^i^ 89.50 (5) Cu1---N6---C11 121.62 (10) O4^i^---Cu1---O2 123.84 (4) C7---N6---C11 116.07 (13) C3^i^---Cu1---O2 151.46 (5) N6---C7---C8 123.95 (14) N6^i^---Cu1---O2 90.50 (5) N6---C7---H71 116.8 O2^i^---Cu1---O2 179.994 C8---C7---H71 119.2 O4^i^---Cu1---C3 152.34 (5) C7---C8---C9 120.21 (14) C3^i^---Cu1---C3 179.996 C7---C8---H81 118.9 N6^i^---Cu1---C3 90.72 (5) C9---C8---H81 120.9 O2^i^---Cu1---C3 151.46 (5) C8---C9---C10 115.59 (14) O2---Cu1---C3 28.54 (5) C8---C9---N12 122.54 (14) O4^i^---Cu1---O4 179.996 C10---C9---N12 121.87 (14) C3^i^---Cu1---O4 152.34 (5) C9---C10---C11 119.82 (14) N6^i^---Cu1---O4 88.94 (5) C9---C10---H101 121.3 O2^i^---Cu1---O4 123.84 (4) C11---C10---H101 118.9 O2---Cu1---O4 56.16 (4) C10---C11---N6 124.35 (14) O4^i^---Cu1---N6 88.94 (5) C10---C11---H111 118.8 C3^i^---Cu1---N6 90.72 (5) N6---C11---H111 116.8 N6^i^---Cu1---N6 179.994 C9---N12---C13 121.83 (16) O2^i^---Cu1---N6 90.50 (5) C9---N12---C14 121.12 (15) O2---Cu1---N6 89.50 (5) C13---N12---C14 116.23 (16) C3---Cu1---O4 27.66 (5) N12---C13---H132 110.3 C3---Cu1---N6 89.28 (5) N12---C13---H131 109.8 O4---Cu1---N6 91.06 (5) H132---C13---H131 108.1 Cu1---O2---C3 104.37 (9) N12---C13---H133 111.4 Cu1---C3---O2 47.09 (7) H132---C13---H133 108.3 Cu1---C3---O4 75.53 (10) H131---C13---H133 109.0 O2---C3---O4 122.50 (15) N12---C14---H142 110.0 Cu1---C3---C5 162.83 (12) N12---C14---H141 110.5 O2---C3---C5 116.55 (14) H142---C14---H141 107.5 O4---C3---C5 120.92 (15) N12---C14---H143 108.7 Cu1---O4---C3 76.82 (9) H142---C14---H143 111.3 C3---C5---H51 108.2 H141---C14---H143 108.8 C3---C5---H53 109.2 --------------------- ------------- ------------------- ------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1923 .table-wrap} ---------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C8---H81···O4^ii^ 0.95 2.51 3.452 (2) 173 C10---H101···O2^iii^ 0.93 2.49 3.381 (2) 161 C11---H111···O2^i^ 0.92 2.54 2.9946 (19) 111 ---------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (ii) *x*−1, *y*, *z*; (iii) *x*, *y*+1, *z*; (i) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- --------- ------- ----------- ------------- C8---H81⋯O4^i^ 0.95 2.51 3.452 (2) 173 C10---H101⋯O2^ii^ 0.93 2.49 3.381 (2) 161 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.937414
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051772/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m235", "authors": [ { "first": "Meriem", "last": "Benslimane" }, { "first": "Hocine", "last": "Merazig" }, { "first": "Jean-Claude", "last": "Daran" } ] }
PMC3051773
Related literature {#sec1} ================== For examples of the biological activity of piperazines: Brockunier *et al.* (2004[@bb4]); Bogatcheva *et al.* (2006[@bb3]). For the crystal structures of simple piperidinium picrates, see: Fun *et al.* (2010[@bb6]); Li *et al.* (2009[@bb7]); Verdonk *et al.* (1997[@bb11]); Wang & Jia (2008[@bb12]). For a description of the Cambridge Structural Database, see: Allen (2002[@bb1]). For asymmetry parameters, see: Duax & Norton (1975[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~5~H~14~N~2~ ^2+^·2C~6~H~2~N~3~O~7~ ^−^*M* *~r~* = 558.39Triclinic,*a* = 8.2001 (12) Å*b* = 10.1780 (15) Å*c* = 13.7399 (18) Åα = 89.798 (12)°β = 78.130 (11)°γ = 81.558 (12)°*V* = 1109.6 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 0.15 mm^−1^*T* = 295 K0.4 × 0.15 × 0.07 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Eos diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009[@bb8]) *T* ~min~ = 0.936, *T* ~max~ = 1.00021056 measured reflections4891 independent reflections3624 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.021 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.123*S* = 0.954891 reflections424 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.24 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e696} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb8]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993[@bb2]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb9]); molecular graphics: *Stereochemical Workstation Operation Manual* (Siemens, 1989[@bb10]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811001024/fl2330sup1.cif](http://dx.doi.org/10.1107/S1600536811001024/fl2330sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001024/fl2330Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001024/fl2330Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fl2330&file=fl2330sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fl2330sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fl2330&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FL2330](http://scripts.iucr.org/cgi-bin/sendsup?fl2330)). SS thanks Mangalore University for the research facilities. Comment ======= Piperazines are among the most important building blocks in today\'s drug discovery. They are found in biologically active compounds across a number of different therapeutic areas such as antifungal, antibacterial, antimalarial, antipsychotic, antidepressant and antitumour activity against colon, prostate, breast, lung and leukemia tumors (for instance, Brockunier *et al.*, 2004, Bogatcheva *et al.*, 2006). A small number of piperazinium picrates or piperazinediium dipicrates have been structurally characterized, however generally the cations were heavily substituted. On the other hand, picric acid (p*K*~a~=0.38) has been studied for its ability to form salts which display wide spectrum of intermolecular interactions, for instance hydrogen bonds of different strengths and/or π···π stacking interactions. In the course of our studies of picrates of simple organic cations we have determined the crystal and molecular structure of the title compound (I: 1-methylpiprazinediium di(2,4,6-trinitrophenolate), Scheme 1). In the CSD (Allen, 2002; Version 5.31 of Nov. 2009, updated August 2010) there are only a few picrates of simple piperazinium derivatives, for instance 4-(4-carboxybenzyl)-1-methylpiperazin-1-ium picrate (Li *et al.*, 2009), 1-(2-methoxyphenyl)piperazinium picrate (Verdonk *et al.*, 1997) or piperazine-1,4-diium--dipicrate piperazine complex (Wang & Jia, 2008). Also some more complicated structures were reported, for instance 4-(3-Carboxy-1-ethyl-6-fluoro-4-oxo-1,4- dihydro-7-quinolyl)-1-methylpiperazinium picrate (Fun *et al.*, 2010). In the crystal structure I there are two picrate anions and 1-methylpiperidinediium dication (Fig. 1); the presence of ionic species is supported by the successful location and refinement of the hydrogen atoms at both nitrogen atoms in the piperidine ring as well as by inspection of the pattern of bond distances and angles. The piperazine ring adopts an almost ideal chair conformation; the values of asymmetry parameters (Duax & Norton, 1975), which measure the deviations from the ideal symmetry (in the case *D~3~~d~*), are very small, less than 1.6°. The methyl substituent is in the equatorial position as can be seen from the torsion angles C13---C12---C11---C11A: 176.60 (15)° and C15---C16---C11---C11A: -176.72 (14)°. Both aromatic rings are in a good approximation planar, maximum deviation from the least-squares plane calculated by the six ring atoms is 0.0248 (11)Å in the anion A and 0.0297 (10)Å in anion B. The nitro groups are twisted with respect to the ring planes, for the groups *ortho* with respect to the C---O^-^ group (at C2 and C6) this twist is of course significantly larger (ranging from 28.76 (13)° to 39.84 (11)°) than for the groups in *para* positions, at C4 (15.23 (9)° in anion A, only 3.92 (14)° in B). In the crystal structure the building block is made up of a centrosymetric pair of hydrogen bonded ionic components: two dications and four anions (Table 1, Fig. 2). Using graph set notation one can identify - taking into account the primary interactions only - the centrosymmetric ring *R*^2^~4~(8) and dimeric D motifs. Interestingly no strong hydrogen bonds are observed between these structures; besides the coulombic interactions only weak C---H···O and some stacking between picrates (Fig. 3) organize the crystal packing. Experimental {#experimental} ============ 1-Methyl piperazine (1.00 g, 0.01 mol) was dissolved in 20 ml of alcohol. Picric acid (4.58 g, 0.02 mol) was dissolved in 50 ml of water. Both the solutions were mixed and to this, 5 ml of 3*M* HCl was added and stirred for few minutes. The formed complex was filtered and dried, crystals appropriate for X-ray data collection were found without further recrystallization (m. p. \>523 K). Composition: Found (Calculated): C: 36.48 (36.57); H: 3.20 (3.25); N:19.98 (20.07). Refinement {#refinement} ========== Hydrogen atoms were located in difference Fourier maps and isotropically refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Anisotropic ellipsoid representation of the ionic components of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii; hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o390-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The centrosymmetric dimer of salt I; hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x,1 - y,1 - z. ::: ![](e-67-0o390-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The crystal packing as seen approximately along y-direction. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o390-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e186 .table-wrap} ---------------------------------------- ---------------------------------------- C~5~H~14~N~2~^2+^·2C~6~H~2~N~3~O~7~^−^ *Z* = 2 *M~r~* = 558.39 *F*(000) = 576 Triclinic, *P*1 *D*~x~ = 1.671 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 8.2001 (12) Å Cell parameters from 12041 reflections *b* = 10.1780 (15) Å θ = 3.0--28.0° *c* = 13.7399 (18) Å µ = 0.15 mm^−1^ α = 89.798 (12)° *T* = 295 K β = 78.130 (11)° Block, yellow γ = 81.558 (12)° 0.4 × 0.15 × 0.07 mm *V* = 1109.6 (3) Å^3^ ---------------------------------------- ---------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e337 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Eos diffractometer 4891 independent reflections Radiation source: Enhance (Mo) X-ray Source 3624 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.021 Detector resolution: 16.1544 pixels mm^-1^ θ~max~ = 28.0°, θ~min~ = 3.0° ω scans *h* = −10→10 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) *k* = −13→12 *T*~min~ = 0.936, *T*~max~ = 1.000 *l* = −18→18 21056 measured reflections ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e457 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.123 H atoms treated by a mixture of independent and constrained refinement *S* = 0.95 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0725*P*)^2^ + 0.3607*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4891 reflections (Δ/σ)~max~ \< 0.001 424 parameters Δρ~max~ = 0.24 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e614 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All s.u.\'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.\'s are taken into account individually in the estimation of s.u.\'s in distances, angles and torsion angles; correlations between s.u.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.\'s is used for estimating s.u.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e713 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1A −0.10838 (19) 0.86643 (15) 0.10686 (11) 0.0303 (3) O1A −0.02003 (16) 0.75573 (12) 0.08429 (10) 0.0469 (3) C2A −0.04660 (18) 0.98367 (16) 0.13439 (12) 0.0309 (3) N2A 0.12392 (16) 0.97199 (15) 0.15030 (11) 0.0394 (3) O21A 0.19522 (16) 1.07010 (15) 0.13867 (13) 0.0601 (4) O22A 0.18805 (16) 0.86647 (14) 0.17951 (12) 0.0568 (4) C3A −0.1404 (2) 1.10787 (16) 0.14843 (12) 0.0314 (3) H3A −0.091 (3) 1.179 (2) 0.1651 (16) 0.052 (6)\* C4A −0.30793 (18) 1.12289 (14) 0.14285 (11) 0.0284 (3) N4A −0.40990 (18) 1.25160 (13) 0.16554 (10) 0.0350 (3) O41A −0.56396 (15) 1.25745 (13) 0.18252 (10) 0.0474 (3) O42A −0.33873 (18) 1.34906 (12) 0.16819 (12) 0.0566 (4) C5A −0.38244 (19) 1.01553 (15) 0.12063 (11) 0.0288 (3) H5A −0.495 (2) 1.0237 (18) 0.1186 (13) 0.036 (5)\* C6A −0.28521 (19) 0.89319 (14) 0.10388 (11) 0.0294 (3) N6A −0.36772 (18) 0.78285 (13) 0.08081 (11) 0.0370 (3) O61A −0.3268 (2) 0.67315 (13) 0.11180 (13) 0.0662 (5) O62A −0.47823 (18) 0.80553 (14) 0.03359 (11) 0.0557 (4) C1B 0.29112 (18) 0.24867 (15) 0.41703 (11) 0.0270 (3) O1B 0.19899 (13) 0.35763 (11) 0.44572 (8) 0.0353 (3) C2B 0.23173 (18) 0.13264 (16) 0.38650 (12) 0.0299 (3) N2B 0.05928 (16) 0.14283 (15) 0.37308 (12) 0.0404 (3) O21B −0.00902 (16) 0.04406 (15) 0.38274 (15) 0.0690 (5) O22B −0.00859 (16) 0.24821 (14) 0.34659 (12) 0.0576 (4) C3B 0.32794 (19) 0.00995 (16) 0.36639 (12) 0.0315 (3) H3B 0.279 (2) −0.0637 (19) 0.3481 (14) 0.040 (5)\* C4B 0.49633 (19) −0.00422 (15) 0.37139 (11) 0.0301 (3) N4B 0.59846 (18) −0.13327 (14) 0.34997 (11) 0.0389 (3) O41B 0.74541 (16) −0.14586 (14) 0.35957 (12) 0.0558 (4) O42B 0.53534 (19) −0.22459 (14) 0.32327 (14) 0.0652 (4) C5B 0.56874 (19) 0.10308 (16) 0.39575 (11) 0.0303 (3) H5B 0.681 (2) 0.0949 (17) 0.3956 (13) 0.033 (4)\* C6B 0.46974 (18) 0.22393 (16) 0.41531 (11) 0.0295 (3) N6B 0.55497 (17) 0.33587 (15) 0.43280 (12) 0.0414 (4) O61B 0.5170 (2) 0.44149 (14) 0.39533 (12) 0.0590 (4) O62B 0.66595 (18) 0.31520 (16) 0.47993 (14) 0.0699 (5) N11 0.16733 (15) 0.57565 (13) 0.16779 (10) 0.0291 (3) H11 0.114 (2) 0.6554 (18) 0.1567 (13) 0.030 (4)\* C11A 0.2986 (3) 0.5363 (2) 0.07575 (15) 0.0456 (5) H11C 0.346 (3) 0.450 (3) 0.0848 (19) 0.071 (7)\* H11B 0.243 (3) 0.539 (2) 0.024 (2) 0.068 (7)\* H11A 0.372 (3) 0.600 (3) 0.068 (2) 0.079 (8)\* C12 0.2433 (2) 0.58588 (17) 0.25660 (13) 0.0348 (4) H12B 0.300 (2) 0.498 (2) 0.2664 (14) 0.041 (5)\* H12A 0.322 (3) 0.647 (2) 0.2416 (16) 0.053 (6)\* C13 0.1088 (2) 0.63356 (18) 0.34660 (13) 0.0387 (4) H13B 0.054 (2) 0.7194 (19) 0.3366 (13) 0.035 (5)\* H13A 0.157 (2) 0.636 (2) 0.4042 (16) 0.049 (5)\* N14 −0.02066 (18) 0.54247 (15) 0.36518 (11) 0.0361 (3) H14B −0.100 (3) 0.576 (2) 0.4161 (16) 0.044 (5)\* H14A 0.031 (3) 0.460 (2) 0.3783 (15) 0.048 (5)\* C15 −0.0961 (2) 0.52998 (19) 0.27659 (13) 0.0364 (4) H15B −0.153 (2) 0.616 (2) 0.2644 (15) 0.042 (5)\* H15A −0.171 (3) 0.471 (2) 0.2906 (15) 0.047 (5)\* C16 0.0398 (2) 0.48330 (17) 0.18685 (13) 0.0338 (3) H16B 0.098 (2) 0.3954 (19) 0.1948 (14) 0.036 (5)\* H16A −0.012 (3) 0.481 (2) 0.1283 (17) 0.056 (6)\* ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1494 .table-wrap} ------ ------------- ------------- ------------- ------------- -------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1A 0.0339 (8) 0.0278 (8) 0.0286 (8) 0.0045 (6) −0.0116 (6) 0.0010 (6) O1A 0.0507 (7) 0.0349 (6) 0.0543 (8) 0.0144 (5) −0.0239 (6) −0.0092 (6) C2A 0.0257 (7) 0.0361 (8) 0.0310 (8) −0.0019 (6) −0.0081 (6) 0.0030 (6) N2A 0.0275 (7) 0.0450 (8) 0.0462 (9) −0.0034 (6) −0.0097 (6) −0.0010 (7) O21A 0.0355 (7) 0.0566 (9) 0.0925 (12) −0.0161 (6) −0.0166 (7) 0.0067 (8) O22A 0.0422 (7) 0.0511 (8) 0.0820 (11) 0.0035 (6) −0.0320 (7) 0.0070 (7) C3A 0.0342 (8) 0.0290 (8) 0.0324 (8) −0.0068 (6) −0.0088 (6) 0.0024 (6) C4A 0.0311 (7) 0.0244 (7) 0.0284 (8) 0.0010 (6) −0.0072 (6) 0.0014 (6) N4A 0.0435 (8) 0.0274 (7) 0.0324 (7) 0.0029 (6) −0.0099 (6) −0.0003 (5) O41A 0.0381 (7) 0.0415 (7) 0.0571 (8) 0.0112 (5) −0.0094 (6) −0.0042 (6) O42A 0.0646 (9) 0.0267 (6) 0.0792 (11) −0.0052 (6) −0.0174 (8) −0.0055 (6) C5A 0.0280 (7) 0.0307 (8) 0.0287 (8) −0.0012 (6) −0.0102 (6) 0.0027 (6) C6A 0.0357 (8) 0.0260 (7) 0.0289 (8) −0.0037 (6) −0.0130 (6) 0.0011 (6) N6A 0.0453 (8) 0.0307 (7) 0.0387 (8) −0.0068 (6) −0.0163 (6) −0.0020 (6) O61A 0.0923 (11) 0.0293 (7) 0.0920 (12) −0.0132 (7) −0.0508 (10) 0.0087 (7) O62A 0.0606 (8) 0.0531 (8) 0.0682 (9) −0.0181 (7) −0.0407 (8) 0.0056 (7) C1B 0.0256 (7) 0.0315 (8) 0.0221 (7) 0.0001 (6) −0.0036 (5) −0.0009 (6) O1B 0.0338 (6) 0.0350 (6) 0.0336 (6) 0.0054 (5) −0.0061 (5) −0.0059 (5) C2B 0.0227 (7) 0.0359 (8) 0.0308 (8) −0.0032 (6) −0.0055 (6) 0.0006 (6) N2B 0.0265 (7) 0.0434 (8) 0.0523 (9) −0.0043 (6) −0.0108 (6) −0.0032 (7) O21B 0.0357 (7) 0.0529 (9) 0.1243 (15) −0.0158 (6) −0.0236 (8) 0.0045 (9) O22B 0.0400 (7) 0.0510 (8) 0.0875 (11) 0.0010 (6) −0.0315 (7) 0.0076 (7) C3B 0.0312 (8) 0.0310 (8) 0.0331 (8) −0.0061 (6) −0.0070 (6) −0.0003 (6) C4B 0.0288 (7) 0.0312 (8) 0.0278 (8) 0.0027 (6) −0.0050 (6) −0.0014 (6) N4B 0.0388 (8) 0.0355 (8) 0.0370 (8) 0.0050 (6) −0.0031 (6) −0.0023 (6) O41B 0.0365 (7) 0.0511 (8) 0.0751 (10) 0.0147 (6) −0.0155 (6) −0.0074 (7) O42B 0.0597 (9) 0.0352 (7) 0.0992 (13) 0.0017 (6) −0.0186 (8) −0.0210 (8) C5B 0.0227 (7) 0.0402 (9) 0.0264 (8) 0.0003 (6) −0.0053 (6) −0.0026 (6) C6B 0.0273 (7) 0.0349 (8) 0.0264 (7) −0.0051 (6) −0.0056 (6) −0.0037 (6) N6B 0.0318 (7) 0.0453 (9) 0.0462 (9) −0.0065 (6) −0.0052 (6) −0.0166 (7) O61B 0.0718 (9) 0.0448 (8) 0.0644 (9) −0.0235 (7) −0.0133 (8) 0.0015 (7) O62B 0.0495 (8) 0.0688 (10) 0.0995 (13) 0.0001 (7) −0.0399 (9) −0.0343 (9) N11 0.0286 (6) 0.0248 (6) 0.0310 (7) 0.0034 (5) −0.0047 (5) −0.0002 (5) C11A 0.0464 (10) 0.0415 (11) 0.0383 (10) 0.0077 (9) 0.0055 (8) 0.0011 (8) C12 0.0280 (8) 0.0350 (9) 0.0423 (9) −0.0012 (7) −0.0122 (7) −0.0009 (7) C13 0.0431 (9) 0.0357 (9) 0.0386 (9) 0.0020 (7) −0.0169 (8) −0.0092 (7) N14 0.0343 (7) 0.0384 (8) 0.0289 (7) 0.0082 (6) −0.0010 (6) −0.0024 (6) C15 0.0271 (8) 0.0411 (9) 0.0403 (9) −0.0024 (7) −0.0073 (7) 0.0020 (7) C16 0.0376 (8) 0.0309 (8) 0.0342 (9) −0.0054 (7) −0.0104 (7) −0.0033 (7) ------ ------------- ------------- ------------- ------------- -------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2289 .table-wrap} ------------------------ -------------- ------------------------ -------------- C1A---O1A 1.2494 (18) N4B---O42B 1.220 (2) C1A---C2A 1.443 (2) N4B---O41B 1.2271 (19) C1A---C6A 1.445 (2) C5B---C6B 1.365 (2) C2A---C3A 1.372 (2) C5B---H5B 0.913 (18) C2A---N2A 1.4470 (19) C6B---N6B 1.466 (2) N2A---O21A 1.2233 (19) N6B---O62B 1.215 (2) N2A---O22A 1.2283 (19) N6B---O61B 1.217 (2) C3A---C4A 1.378 (2) N11---C16 1.490 (2) C3A---H3A 0.93 (2) N11---C12 1.490 (2) C4A---C5A 1.391 (2) N11---C11A 1.495 (2) C4A---N4A 1.4445 (19) N11---H11 0.892 (18) N4A---O42A 1.2267 (19) C11A---H11C 0.93 (3) N4A---O41A 1.2291 (18) C11A---H11B 0.92 (3) C5A---C6A 1.369 (2) C11A---H11A 0.94 (3) C5A---H5A 0.917 (19) C12---C13 1.505 (2) C6A---N6A 1.4605 (19) C12---H12B 0.97 (2) N6A---O62A 1.2144 (18) C12---H12A 0.96 (2) N6A---O61A 1.2190 (19) C13---N14 1.493 (2) C1B---O1B 1.2612 (18) C13---H13B 0.946 (19) C1B---C2B 1.437 (2) C13---H13A 0.96 (2) C1B---C6B 1.445 (2) N14---C15 1.488 (2) C2B---C3B 1.372 (2) N14---H14B 0.88 (2) C2B---N2B 1.4521 (19) N14---H14A 0.92 (2) N2B---O21B 1.215 (2) C15---C16 1.507 (2) N2B---O22B 1.2238 (19) C15---H15B 0.96 (2) C3B---C4B 1.383 (2) C15---H15A 0.92 (2) C3B---H3B 0.959 (19) C16---H16B 0.965 (18) C4B---C5B 1.390 (2) C16---H16A 0.99 (2) C4B---N4B 1.446 (2) O1A---C1A---C2A 124.85 (14) C5B---C6B---C1B 124.82 (14) O1A---C1A---C6A 123.25 (15) C5B---C6B---N6B 116.40 (13) C2A---C1A---C6A 111.84 (13) C1B---C6B---N6B 118.76 (13) C3A---C2A---C1A 124.24 (13) O62B---N6B---O61B 123.87 (16) C3A---C2A---N2A 116.59 (14) O62B---N6B---C6B 117.52 (16) C1A---C2A---N2A 119.16 (13) O61B---N6B---C6B 118.50 (14) O21A---N2A---O22A 122.68 (14) C16---N11---C12 110.14 (13) O21A---N2A---C2A 118.32 (14) C16---N11---C11A 111.97 (14) O22A---N2A---C2A 118.91 (14) C12---N11---C11A 111.84 (14) C2A---C3A---C4A 119.12 (15) C16---N11---H11 107.5 (11) C2A---C3A---H3A 118.9 (13) C12---N11---H11 109.0 (11) C4A---C3A---H3A 121.8 (13) C11A---N11---H11 106.2 (11) C3A---C4A---C5A 121.40 (14) N11---C11A---H11C 106.1 (16) C3A---C4A---N4A 119.07 (14) N11---C11A---H11B 106.3 (15) C5A---C4A---N4A 119.46 (13) H11C---C11A---H11B 110 (2) O42A---N4A---O41A 123.36 (14) N11---C11A---H11A 106.9 (17) O42A---N4A---C4A 118.51 (14) H11C---C11A---H11A 116 (2) O41A---N4A---C4A 118.12 (14) H11B---C11A---H11A 111 (2) C6A---C5A---C4A 118.49 (14) N11---C12---C13 110.48 (13) C6A---C5A---H5A 119.2 (11) N11---C12---H12B 106.7 (11) C4A---C5A---H5A 122.3 (11) C13---C12---H12B 110.9 (11) C5A---C6A---C1A 124.74 (14) N11---C12---H12A 107.2 (13) C5A---C6A---N6A 116.96 (13) C13---C12---H12A 110.5 (13) C1A---C6A---N6A 118.30 (13) H12B---C12---H12A 110.9 (16) O62A---N6A---O61A 122.69 (14) N14---C13---C12 110.29 (14) O62A---N6A---C6A 118.18 (13) N14---C13---H13B 107.8 (11) O61A---N6A---C6A 119.09 (13) C12---C13---H13B 110.5 (11) O1B---C1B---C2B 124.76 (13) N14---C13---H13A 108.6 (12) O1B---C1B---C6B 123.54 (14) C12---C13---H13A 110.3 (12) C2B---C1B---C6B 111.65 (13) H13B---C13---H13A 109.3 (16) C3B---C2B---C1B 124.68 (13) C15---N14---C13 111.26 (14) C3B---C2B---N2B 115.96 (14) C15---N14---H14B 109.5 (13) C1B---C2B---N2B 119.34 (13) C13---N14---H14B 107.5 (13) O21B---N2B---O22B 122.20 (14) C15---N14---H14A 108.4 (13) O21B---N2B---C2B 118.69 (14) C13---N14---H14A 108.3 (12) O22B---N2B---C2B 118.96 (14) H14B---N14---H14A 111.8 (18) C2B---C3B---C4B 118.77 (15) N14---C15---C16 110.20 (13) C2B---C3B---H3B 120.1 (11) N14---C15---H15B 108.1 (12) C4B---C3B---H3B 121.1 (11) C16---C15---H15B 109.3 (12) C3B---C4B---C5B 121.27 (14) N14---C15---H15A 108.0 (13) C3B---C4B---N4B 119.00 (14) C16---C15---H15A 110.7 (13) C5B---C4B---N4B 119.73 (13) H15B---C15---H15A 110.4 (16) O42B---N4B---O41B 122.89 (14) N11---C16---C15 110.70 (13) O42B---N4B---C4B 118.86 (14) N11---C16---H16B 108.1 (10) O41B---N4B---C4B 118.24 (14) C15---C16---H16B 112.1 (11) C6B---C5B---C4B 118.58 (14) N11---C16---H16A 108.9 (13) C6B---C5B---H5B 120.0 (11) C15---C16---H16A 108.8 (13) C4B---C5B---H5B 121.3 (11) H16B---C16---H16A 108.2 (16) O1A---C1A---C2A---C3A 172.55 (16) C3B---C2B---N2B---O21B 27.4 (2) C6A---C1A---C2A---C3A −4.8 (2) C1B---C2B---N2B---O21B −153.91 (17) O1A---C1A---C2A---N2A −8.5 (2) C3B---C2B---N2B---O22B −148.21 (17) C6A---C1A---C2A---N2A 174.11 (14) C1B---C2B---N2B---O22B 30.5 (2) C3A---C2A---N2A---O21A −26.5 (2) C1B---C2B---C3B---C4B −2.8 (2) C1A---C2A---N2A---O21A 154.53 (16) N2B---C2B---C3B---C4B 175.80 (14) C3A---C2A---N2A---O22A 150.03 (16) C2B---C3B---C4B---C5B −0.3 (2) C1A---C2A---N2A---O22A −29.0 (2) C2B---C3B---C4B---N4B −179.82 (14) C1A---C2A---C3A---C4A 4.6 (2) C3B---C4B---N4B---O42B 3.6 (2) N2A---C2A---C3A---C4A −174.39 (14) C5B---C4B---N4B---O42B −175.90 (16) C2A---C3A---C4A---C5A −1.8 (2) C3B---C4B---N4B---O41B −176.40 (15) C2A---C3A---C4A---N4A 175.04 (14) C5B---C4B---N4B---O41B 4.1 (2) C3A---C4A---N4A---O42A 15.4 (2) C3B---C4B---C5B---C6B 0.3 (2) C5A---C4A---N4A---O42A −167.73 (15) N4B---C4B---C5B---C6B 179.78 (14) C3A---C4A---N4A---O41A −163.68 (14) C4B---C5B---C6B---C1B 2.9 (2) C5A---C4A---N4A---O41A 13.2 (2) C4B---C5B---C6B---N6B −175.30 (14) C3A---C4A---C5A---C6A −0.2 (2) O1B---C1B---C6B---C5B 172.05 (15) N4A---C4A---C5A---C6A −177.01 (14) C2B---C1B---C6B---C5B −5.4 (2) C4A---C5A---C6A---C1A −0.4 (2) O1B---C1B---C6B---N6B −9.8 (2) C4A---C5A---C6A---N6A 179.97 (13) C2B---C1B---C6B---N6B 172.77 (14) O1A---C1A---C6A---C5A −174.70 (15) C5B---C6B---N6B---O62B −38.6 (2) C2A---C1A---C6A---C5A 2.7 (2) C1B---C6B---N6B---O62B 143.11 (16) O1A---C1A---C6A---N6A 4.9 (2) C5B---C6B---N6B---O61B 137.68 (16) C2A---C1A---C6A---N6A −177.70 (13) C1B---C6B---N6B---O61B −40.6 (2) C5A---C6A---N6A---O62A 33.9 (2) C16---N11---C12---C13 −58.20 (17) C1A---C6A---N6A---O62A −145.77 (16) C11A---N11---C12---C13 176.60 (15) C5A---C6A---N6A---O61A −144.12 (17) N11---C12---C13---N14 57.33 (18) C1A---C6A---N6A---O61A 36.3 (2) C12---C13---N14---C15 −56.74 (18) O1B---C1B---C2B---C3B −172.05 (15) C13---N14---C15---C16 56.51 (19) C6B---C1B---C2B---C3B 5.3 (2) C12---N11---C16---C15 58.16 (17) O1B---C1B---C2B---N2B 9.4 (2) C11A---N11---C16---C15 −176.72 (14) C6B---C1B---C2B---N2B −173.25 (14) N14---C15---C16---N11 −57.15 (19) ------------------------ -------------- ------------------------ -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3370 .table-wrap} ------------------------- ------------ ------------ ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N11---H11···O1A 0.892 (18) 1.831 (18) 2.6305 (17) 148.1 (16) N11---H11···O22A 0.892 (18) 2.356 (18) 2.996 (2) 128.8 (14) N14---H14B···O1B^i^ 0.88 (2) 1.98 (2) 2.8181 (19) 157.3 (17) N14---H14A···O1B 0.92 (2) 1.99 (2) 2.7962 (18) 146.4 (18) N14---H14A···O22B 0.92 (2) 2.28 (2) 2.992 (2) 133.9 (16) C5A---H5A···O21A^ii^ 0.917 (19) 2.476 (19) 3.383 (2) 170.3 (16) C5B---H5B···O21B^iii^ 0.913 (18) 2.487 (18) 3.394 (2) 172.3 (15) C11A---H11C···O41A^iv^ 0.93 (3) 2.48 (3) 3.345 (2) 155 (2) C11A---H11A···O62A^iii^ 0.94 (3) 2.57 (3) 3.496 (3) 168 (2) C12---H12A···O22A 0.96 (2) 2.56 (2) 3.046 (2) 111.6 (15) C13---H13A···O62B^v^ 0.96 (2) 2.46 (2) 3.386 (2) 162.9 (17) ------------------------- ------------ ------------ ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*+1; (ii) *x*−1, *y*, *z*; (iii) *x*+1, *y*, *z*; (iv) *x*+1, *y*−1, *z*; (v) −*x*+1, −*y*+1, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------------- ------------ ------------ ------------- ------------- N11---H11⋯O1*A* 0.892 (18) 1.831 (18) 2.6305 (17) 148.1 (16) N11---H11⋯O22*A* 0.892 (18) 2.356 (18) 2.996 (2) 128.8 (14) N14---H14*B*⋯O1*B*^i^ 0.88 (2) 1.98 (2) 2.8181 (19) 157.3 (17) N14---H14*A*⋯O1*B* 0.92 (2) 1.99 (2) 2.7962 (18) 146.4 (18) N14---H14*A*⋯O22*B* 0.92 (2) 2.28 (2) 2.992 (2) 133.9 (16) C5*A*---H5*A*⋯O21*A*^ii^ 0.917 (19) 2.476 (19) 3.383 (2) 170.3 (16) C5*B*---H5*B*⋯O21*B*^iii^ 0.913 (18) 2.487 (18) 3.394 (2) 172.3 (15) C11*A*---H11*C*⋯O41*A*^iv^ 0.93 (3) 2.48 (3) 3.345 (2) 155 (2) C11*A*---H11*A*⋯O62*A*^iii^ 0.94 (3) 2.57 (3) 3.496 (3) 168 (2) C13---H13*A*⋯O62*B*^v^ 0.96 (2) 2.46 (2) 3.386 (2) 162.9 (17) Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:16.941635
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051773/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o390-o391", "authors": [ { "first": "Grzegorz", "last": "Dutkiewicz" }, { "first": "S.", "last": "Samshuddin" }, { "first": "B.", "last": "Narayana" }, { "first": "H. S.", "last": "Yathirajan" }, { "first": "Maciej", "last": "Kubicki" } ] }
PMC3051774
Related literature {#sec1} ================== For crystal structure of the free ligand, see: Gündüz *et al.* (1985[@bb4]). For structures of transition metal complexes of H~3~saltren, see: Steinhauser *et al.* (2004[@bb6]); Elerman *et al.* (1994[@bb3], 1995[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ca(C~27~H~30~N~4~O~3~)~2~\](ClO~4~)~2~·2C~2~H~3~N*M* *~r~* = 1238.19Orthorhombic,*a* = 11.3469 (7) Å*b* = 19.5307 (12) Å*c* = 27.3178 (16) Å*V* = 6054.0 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 0.27 mm^−1^*T* = 150 K0.12 × 0.10 × 0.09 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2008[@bb5]) *T* ~min~ = 0.662, *T* ~max~ = 0.74655467 measured reflections6915 independent reflections5810 reflections with *I* \> 2.0σ(*I*)*R* ~int~ = 0.030 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.110*S* = 1.056915 reflections398 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.60 e Å^−3^Δρ~min~ = −0.39 e Å^−3^ {#d5e643} Data collection: *APEX2* (Bruker, 2008[@bb1]); cell refinement: *SAINT* (Bruker, 2008[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb5]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810053961/pv2371sup1.cif](http://dx.doi.org/10.1107/S1600536810053961/pv2371sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053961/pv2371Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053961/pv2371Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2371&file=pv2371sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2371sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2371&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2371](http://scripts.iucr.org/cgi-bin/sendsup?pv2371)). We are grateful to the Turkish Government for the award of a postgraduate scholarship (to MK). Comment ======= The crystal structures and coordination chemistry of transition metal complexes of H~3~saltren, tris(2-hydroxybenzoylaminoethyl)amine (*L*), a tripodal ligand, have been described in detail (Steinhauser *et al.*, 2004; Elerman *et al.*, 1994); Elerman *et al.*, 1995). Here, we report the first example of an earth alkaline metal (Ca^+2^) complex of H~3~saltren. The crystal structure of the title complex contains centrosymmetric (Ca*L~2~*)^+2^ cations, uncoordinated perchlorate anions and acetonitrile molecules (Fig. 1). Each calcium ion is six-coordinated, bonded to all phenoxy O atoms from two saltren molecules. There are strong intramolecular hydrogen bonds of the type N---H···O between protonated imine and deprotonated phenol-oxygen atoms (Table 1). The cations are linked into chains *via* intermolecular C---H···O and C---H··· N type weak hydrogen bonds and C---H···π interactions (Tab. 1 and Fig. 2). There is evidence of π-π stacking in the crystal structure; C16 is stacked with C16^\*^ and C15^\*^ of an adjacent molecule (^\*^ = 2 - *x*, -*y*, 1 - *z*) with separation of 3.306 (3) and 3.415 (3) Å, respectively (Fig. 2). Protonated imine distances (C═N distances) (mean 1.300 (2) Å) are longer than the corresponding C═N distances reported in the neutral ligand (mean 1.267 Å) (Gündüz *et al.*, 1985). The longer C═N distances were also determined by IR spectroscopy; while C═N stretch is observed at 1633 cm^-1^ in the neutral ligand, by protonation of imine, C═N stretch shifts to 1654 cm^-1^. Experimental {#experimental} ============ H~3~Saltren (0.508 g, 1.11 mmol) was dissolved in methanol (50 ml) followed by addition of Ca(ClO~4~)~2~.3H~2~O (0.185 g, 0.63 mmol) in methanol (20 ml). The reaction mixture was stirred at room temperature for two hours. Yellow precipitate was collected and washed with methanol (5 ml) and diethylether (20 ml) (yield 0.506 g, 0.44 mmol, 69.6%). X-ray quality crystals were obtained from acetonitrile solution of the title complex by slow evaporation. Refinement {#refinement} ========== H atoms bonded to C were inserted at calculated positions with C---H distances of 0.95, 0.98 and 0.99 Å for aryl, methyl and methylene H atoms, respectively, and refined using a riding model with *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). The H-atoms bonded to N-atoms were taken from the difference Fourier maps and were refined isotropically. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Perspective view of centrosymmetric calcium complex \[Ca(C27H30N4O3)2\](ClO4)2(CH3CN)2; displacement ellipsoids are drawn at the 50% probability level and hydrogen atoms are omitted for clarity (Symmetry code (i) -x + 1, -y, -z + 1). ::: ![](e-67-0m149-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram viewed perpendicular to b, showing intramolecular hydrogen bonds and π-π (phenyl-phenyl) interactions. ::: ![](e-67-0m149-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e250 .table-wrap} ----------------------------------------------------- --------------------------------------- \[Ca(C~27~H~30~N~4~O~3~)~2~\](ClO~4~)~2~·2C~2~H~3~N *F*(000) = 2600 *M~r~* = 1238.19 *D*~x~ = 1.358 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 9950 reflections *a* = 11.3469 (7) Å θ = 2.2--27.4° *b* = 19.5307 (12) Å µ = 0.27 mm^−1^ *c* = 27.3178 (16) Å *T* = 150 K *V* = 6054.0 (6) Å^3^ Block, yellow *Z* = 4 0.12 × 0.10 × 0.09 mm ----------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e391 .table-wrap} ------------------------------------------------------------ ---------------------------------------- Bruker APEXII CCD diffractometer 6915 independent reflections Radiation source: fine-focus sealed tube 5810 reflections with *I* \> 2.0σ(*I*) graphite *R*~int~ = 0.030 φ and ω scans θ~max~ = 27.5°, θ~min~ = 1.5° Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *h* = −14→14 *T*~min~ = 0.662, *T*~max~ = 0.746 *k* = −25→25 55467 measured reflections *l* = −34→35 ------------------------------------------------------------ ---------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e508 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.110 H atoms treated by a mixture of independent and constrained refinement *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0538*P*)^2^ + 3.4246*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6915 reflections (Δ/σ)~max~ = 0.002 398 parameters Δρ~max~ = 0.60 e Å^−3^ 0 restraints Δρ~min~ = −0.39 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e665 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e764 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ca1 0.5000 0.0000 0.5000 0.01901 (10) O1 0.38283 (10) 0.08611 (5) 0.53706 (4) 0.0260 (2) C1 0.32707 (13) 0.13534 (8) 0.51499 (5) 0.0224 (3) C2 0.25547 (15) 0.12409 (8) 0.47327 (6) 0.0291 (3) H2 0.2438 0.0786 0.4619 0.035\* C3 0.20240 (16) 0.17746 (10) 0.44891 (7) 0.0349 (4) H3 0.1557 0.1680 0.4208 0.042\* C4 0.21547 (17) 0.24547 (9) 0.46452 (7) 0.0395 (4) H4 0.1795 0.2818 0.4469 0.047\* C5 0.28043 (16) 0.25839 (9) 0.50526 (7) 0.0340 (4) H5 0.2879 0.3042 0.5166 0.041\* C6 0.33725 (13) 0.20497 (8) 0.53117 (6) 0.0239 (3) C7 0.40674 (14) 0.22286 (8) 0.57213 (5) 0.0247 (3) H7 0.4066 0.2695 0.5821 0.030\* N1 0.47075 (12) 0.18036 (7) 0.59710 (5) 0.0243 (3) C8 0.53399 (15) 0.19940 (8) 0.64171 (6) 0.0277 (3) H8A 0.5444 0.2497 0.6429 0.033\* H8B 0.6130 0.1779 0.6418 0.033\* C9 0.46415 (15) 0.17550 (8) 0.68610 (6) 0.0264 (3) H9A 0.5005 0.1939 0.7163 0.032\* H9B 0.3825 0.1931 0.6840 0.032\* N2 0.46228 (11) 0.10039 (6) 0.68827 (5) 0.0228 (3) C10 0.56302 (15) 0.07362 (9) 0.71617 (6) 0.0290 (3) H10A 0.5388 0.0659 0.7505 0.035\* H10B 0.6271 0.1080 0.7162 0.035\* C11 0.60888 (15) 0.00683 (9) 0.69464 (6) 0.0307 (4) H11A 0.6682 −0.0133 0.7170 0.037\* H11B 0.5431 −0.0261 0.6913 0.037\* N3 0.66223 (12) 0.01909 (7) 0.64666 (5) 0.0283 (3) C12 0.77320 (14) 0.03357 (9) 0.64084 (6) 0.0303 (3) H12 0.8224 0.0329 0.6690 0.036\* C13 0.82570 (14) 0.05027 (8) 0.59528 (6) 0.0282 (3) C14 0.94893 (15) 0.06200 (9) 0.59374 (7) 0.0362 (4) H14 0.9933 0.0605 0.6232 0.043\* C15 1.00481 (16) 0.07539 (9) 0.55058 (8) 0.0385 (4) H15 1.0872 0.0841 0.5499 0.046\* C16 0.93896 (16) 0.07617 (9) 0.50724 (7) 0.0353 (4) H16 0.9780 0.0844 0.4770 0.042\* C17 0.81902 (16) 0.06529 (8) 0.50726 (6) 0.0313 (4) H17 0.7772 0.0660 0.4771 0.038\* C18 0.75700 (14) 0.05306 (7) 0.55146 (6) 0.0253 (3) O2 0.64376 (10) 0.04299 (6) 0.55239 (4) 0.0287 (2) C19 0.34878 (15) 0.07321 (8) 0.70527 (6) 0.0280 (3) H19A 0.3107 0.1072 0.7270 0.034\* H19B 0.3626 0.0311 0.7246 0.034\* C20 0.26672 (14) 0.05700 (8) 0.66278 (6) 0.0287 (3) H20A 0.1863 0.0484 0.6754 0.034\* H20B 0.2630 0.0968 0.6404 0.034\* N4 0.30786 (12) −0.00316 (6) 0.63575 (5) 0.0241 (3) C21 0.29327 (13) −0.06510 (8) 0.65229 (6) 0.0252 (3) H21 0.2469 −0.0706 0.6810 0.030\* C22 0.34110 (13) −0.12487 (8) 0.63089 (6) 0.0233 (3) C23 0.31923 (15) −0.18869 (8) 0.65401 (6) 0.0308 (4) H23 0.2708 −0.1903 0.6824 0.037\* C24 0.36664 (16) −0.24768 (9) 0.63612 (7) 0.0361 (4) H24 0.3526 −0.2901 0.6521 0.043\* C25 0.43665 (16) −0.24480 (9) 0.59373 (7) 0.0376 (4) H25 0.4690 −0.2859 0.5809 0.045\* C26 0.45932 (16) −0.18409 (9) 0.57042 (7) 0.0341 (4) H26 0.5066 −0.1842 0.5417 0.041\* C27 0.41389 (13) −0.12088 (8) 0.58811 (5) 0.0231 (3) O3 0.43711 (10) −0.06298 (6) 0.56747 (4) 0.0285 (3) C28 0.8355 (2) 0.24381 (14) 0.68889 (8) 0.0537 (6) C29 0.85639 (19) 0.31612 (11) 0.68130 (9) 0.0505 (5) H29A 0.9341 0.3283 0.6943 0.076\* H29B 0.7955 0.3427 0.6982 0.076\* H29C 0.8538 0.3263 0.6462 0.076\* N5 0.8201 (3) 0.18674 (14) 0.69423 (9) 0.0870 (9) H4A 0.3474 (18) −0.0002 (10) 0.6103 (8) 0.034 (5)\* H3A 0.6222 (19) 0.0209 (11) 0.6199 (8) 0.040 (6)\* H1A 0.4716 (19) 0.1395 (12) 0.5863 (8) 0.046 (6)\* Cl1 0.96706 (4) 0.89879 (2) 0.698669 (15) 0.03209 (11) O4 1.04850 (18) 0.84563 (10) 0.70855 (9) 0.0828 (6) O5 1.02963 (14) 0.96257 (8) 0.69527 (6) 0.0547 (4) O6 0.88221 (16) 0.90508 (10) 0.73665 (7) 0.0743 (6) O7 0.90949 (18) 0.88552 (10) 0.65378 (6) 0.0699 (5) ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1752 .table-wrap} ----- ------------- -------------- -------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ca1 0.0219 (2) 0.01807 (19) 0.01709 (19) 0.00034 (15) 0.00046 (15) 0.00076 (14) O1 0.0295 (6) 0.0200 (5) 0.0285 (6) 0.0045 (4) −0.0004 (4) 0.0005 (4) C1 0.0202 (7) 0.0226 (7) 0.0243 (7) 0.0021 (6) 0.0052 (6) 0.0012 (6) C2 0.0294 (8) 0.0270 (8) 0.0309 (8) 0.0006 (6) −0.0015 (7) −0.0034 (6) C3 0.0317 (9) 0.0410 (10) 0.0321 (9) 0.0026 (7) −0.0085 (7) 0.0006 (7) C4 0.0426 (10) 0.0326 (9) 0.0432 (10) 0.0087 (8) −0.0118 (8) 0.0084 (8) C5 0.0383 (9) 0.0225 (8) 0.0413 (10) 0.0049 (7) −0.0063 (7) 0.0016 (7) C6 0.0253 (7) 0.0219 (7) 0.0245 (7) 0.0019 (6) 0.0014 (6) 0.0013 (6) C7 0.0284 (8) 0.0207 (7) 0.0251 (7) −0.0012 (6) 0.0041 (6) 0.0001 (6) N1 0.0290 (7) 0.0219 (6) 0.0219 (6) −0.0040 (5) 0.0004 (5) 0.0009 (5) C8 0.0337 (8) 0.0272 (8) 0.0222 (7) −0.0086 (6) −0.0027 (6) 0.0023 (6) C9 0.0342 (8) 0.0238 (7) 0.0211 (7) −0.0018 (6) 0.0006 (6) −0.0010 (6) N2 0.0250 (6) 0.0220 (6) 0.0214 (6) −0.0021 (5) 0.0007 (5) 0.0024 (5) C10 0.0324 (9) 0.0321 (8) 0.0224 (7) 0.0001 (7) −0.0039 (6) 0.0022 (6) C11 0.0312 (8) 0.0319 (8) 0.0290 (8) 0.0031 (7) −0.0017 (7) 0.0065 (6) N3 0.0261 (7) 0.0308 (7) 0.0279 (7) 0.0026 (6) −0.0029 (6) 0.0001 (6) C12 0.0266 (8) 0.0315 (8) 0.0326 (8) 0.0039 (6) −0.0062 (6) −0.0042 (7) C13 0.0246 (8) 0.0255 (7) 0.0344 (8) 0.0007 (6) −0.0018 (6) −0.0045 (6) C14 0.0257 (8) 0.0388 (10) 0.0442 (10) −0.0014 (7) −0.0047 (7) −0.0077 (8) C15 0.0254 (8) 0.0340 (9) 0.0561 (12) −0.0043 (7) 0.0050 (8) −0.0066 (8) C16 0.0367 (9) 0.0250 (8) 0.0442 (10) −0.0025 (7) 0.0113 (8) −0.0018 (7) C17 0.0355 (9) 0.0232 (8) 0.0352 (9) −0.0019 (6) 0.0016 (7) 0.0001 (6) C18 0.0266 (7) 0.0164 (7) 0.0330 (8) −0.0008 (6) −0.0011 (6) −0.0029 (6) O2 0.0248 (6) 0.0308 (6) 0.0304 (6) −0.0023 (4) −0.0034 (4) −0.0008 (5) C19 0.0309 (8) 0.0266 (8) 0.0265 (8) −0.0046 (6) 0.0083 (6) −0.0034 (6) C20 0.0237 (8) 0.0246 (8) 0.0377 (9) 0.0013 (6) 0.0047 (6) −0.0053 (6) N4 0.0224 (6) 0.0230 (6) 0.0269 (7) −0.0008 (5) 0.0023 (5) −0.0025 (5) C21 0.0216 (7) 0.0280 (8) 0.0262 (7) −0.0026 (6) 0.0026 (6) −0.0006 (6) C22 0.0226 (7) 0.0227 (7) 0.0245 (7) −0.0018 (6) 0.0009 (6) 0.0010 (6) C23 0.0315 (8) 0.0283 (8) 0.0328 (9) −0.0072 (6) 0.0058 (7) 0.0050 (7) C24 0.0385 (9) 0.0211 (8) 0.0486 (10) −0.0063 (7) 0.0035 (8) 0.0059 (7) C25 0.0402 (10) 0.0217 (8) 0.0509 (11) −0.0003 (7) 0.0077 (8) −0.0063 (7) C26 0.0387 (9) 0.0281 (8) 0.0356 (9) −0.0017 (7) 0.0125 (7) −0.0049 (7) C27 0.0241 (7) 0.0236 (7) 0.0217 (7) −0.0019 (6) −0.0004 (6) 0.0009 (6) O3 0.0356 (6) 0.0242 (6) 0.0257 (6) −0.0002 (5) 0.0054 (5) 0.0050 (4) C28 0.0484 (12) 0.0695 (15) 0.0431 (11) −0.0228 (11) −0.0127 (9) 0.0133 (10) C29 0.0410 (11) 0.0524 (13) 0.0582 (13) 0.0026 (9) 0.0053 (10) 0.0008 (10) N5 0.105 (2) 0.0817 (17) 0.0743 (16) −0.0495 (15) −0.0320 (14) 0.0278 (13) Cl1 0.0298 (2) 0.0318 (2) 0.0346 (2) −0.00051 (15) −0.00320 (16) −0.00806 (16) O4 0.0778 (13) 0.0586 (11) 0.1119 (17) 0.0288 (10) −0.0151 (12) 0.0028 (11) O5 0.0497 (9) 0.0468 (9) 0.0675 (10) −0.0183 (7) 0.0038 (7) −0.0143 (7) O6 0.0635 (11) 0.0894 (13) 0.0702 (12) −0.0249 (10) 0.0329 (9) −0.0277 (10) O7 0.0905 (13) 0.0724 (11) 0.0469 (9) −0.0234 (10) −0.0246 (9) −0.0098 (8) ----- ------------- -------------- -------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2577 .table-wrap} --------------------- ------------- ------------------- ------------- Ca1---O2^i^ 2.3269 (11) C13---C18 1.430 (2) Ca1---O2 2.3269 (11) C14---C15 1.364 (3) Ca1---O3^i^ 2.3279 (11) C14---H14 0.9500 Ca1---O3 2.3279 (11) C15---C16 1.400 (3) Ca1---O1^i^ 2.3709 (10) C15---H15 0.9500 Ca1---O1 2.3709 (10) C16---C17 1.377 (3) O1---C1 1.2993 (18) C16---H16 0.9500 C1---C2 1.417 (2) C17---C18 1.418 (2) C1---C6 1.435 (2) C17---H17 0.9500 C2---C3 1.375 (2) C18---O2 1.3001 (19) C2---H2 0.9500 C19---C20 1.522 (2) C3---C4 1.403 (3) C19---H19A 0.9900 C3---H3 0.9500 C19---H19B 0.9900 C4---C5 1.358 (3) C20---N4 1.4642 (19) C4---H4 0.9500 C20---H20A 0.9900 C5---C6 1.416 (2) C20---H20B 0.9900 C5---H5 0.9500 N4---C21 1.302 (2) C6---C7 1.413 (2) N4---H4A 0.83 (2) C7---N1 1.297 (2) C21---C22 1.414 (2) C7---H7 0.9500 C21---H21 0.9500 N1---C8 1.462 (2) C22---C23 1.419 (2) N1---H1A 0.85 (2) C22---C27 1.433 (2) C8---C9 1.522 (2) C23---C24 1.362 (2) C8---H8A 0.9900 C23---H23 0.9500 C8---H8B 0.9900 C24---C25 1.405 (3) C9---N2 1.4684 (19) C24---H24 0.9500 C9---H9A 0.9900 C25---C26 1.370 (2) C9---H9B 0.9900 C25---H25 0.9500 N2---C19 1.468 (2) C26---C27 1.422 (2) N2---C10 1.470 (2) C26---H26 0.9500 C10---C11 1.523 (2) C27---O3 1.2908 (18) C10---H10A 0.9900 C28---N5 1.138 (3) C10---H10B 0.9900 C28---C29 1.447 (3) C11---N3 1.463 (2) C29---H29A 0.9800 C11---H11A 0.9900 C29---H29B 0.9800 C11---H11B 0.9900 C29---H29C 0.9800 N3---C12 1.300 (2) Cl1---O7 1.4135 (16) N3---H3A 0.86 (2) Cl1---O4 1.4158 (18) C12---C13 1.418 (2) Cl1---O6 1.4209 (16) C12---H12 0.9500 Cl1---O5 1.4368 (15) C13---C14 1.418 (2) O2^i^---Ca1---O2 180.00 (4) N3---C12---H12 117.8 O2^i^---Ca1---O3^i^ 85.33 (4) C13---C12---H12 117.8 O2---Ca1---O3^i^ 94.67 (4) C14---C13---C12 118.54 (16) O2^i^---Ca1---O3 94.67 (4) C14---C13---C18 120.45 (16) O2---Ca1---O3 85.33 (4) C12---C13---C18 120.98 (14) O3^i^---Ca1---O3 180.0 C15---C14---C13 121.02 (17) O2^i^---Ca1---O1^i^ 82.79 (4) C15---C14---H14 119.5 O2---Ca1---O1^i^ 97.21 (4) C13---C14---H14 119.5 O3^i^---Ca1---O1^i^ 82.23 (4) C14---C15---C16 119.01 (16) O3---Ca1---O1^i^ 97.77 (4) C14---C15---H15 120.5 O2^i^---Ca1---O1 97.21 (4) C16---C15---H15 120.5 O2---Ca1---O1 82.79 (4) C17---C16---C15 121.68 (17) O3^i^---Ca1---O1 97.77 (4) C17---C16---H16 119.2 O3---Ca1---O1 82.23 (4) C15---C16---H16 119.2 O1^i^---Ca1---O1 180.00 (5) C16---C17---C18 121.11 (17) C1---O1---Ca1 126.86 (9) C16---C17---H17 119.4 O1---C1---C2 122.54 (14) C18---C17---H17 119.4 O1---C1---C6 121.28 (14) O2---C18---C17 122.19 (15) C2---C1---C6 116.17 (13) O2---C18---C13 121.11 (14) C3---C2---C1 121.52 (15) C17---C18---C13 116.68 (15) C3---C2---H2 119.2 C18---O2---Ca1 137.34 (10) C1---C2---H2 119.2 N2---C19---C20 111.75 (13) C2---C3---C4 121.61 (16) N2---C19---H19A 109.3 C2---C3---H3 119.2 C20---C19---H19A 109.3 C4---C3---H3 119.2 N2---C19---H19B 109.3 C5---C4---C3 118.83 (16) C20---C19---H19B 109.3 C5---C4---H4 120.6 H19A---C19---H19B 107.9 C3---C4---H4 120.6 N4---C20---C19 110.89 (13) C4---C5---C6 121.31 (16) N4---C20---H20A 109.5 C4---C5---H5 119.3 C19---C20---H20A 109.5 C6---C5---H5 119.3 N4---C20---H20B 109.5 C7---C6---C5 117.89 (14) C19---C20---H20B 109.5 C7---C6---C1 121.57 (14) H20A---C20---H20B 108.0 C5---C6---C1 120.51 (14) C21---N4---C20 122.02 (14) N1---C7---C6 124.81 (14) C21---N4---H4A 115.1 (13) N1---C7---H7 117.6 C20---N4---H4A 122.6 (14) C6---C7---H7 117.6 N4---C21---C22 125.08 (14) C7---N1---C8 123.40 (14) N4---C21---H21 117.5 C7---N1---H1A 115.1 (15) C22---C21---H21 117.5 C8---N1---H1A 121.5 (15) C21---C22---C23 118.28 (14) N1---C8---C9 109.29 (13) C21---C22---C27 120.90 (14) N1---C8---H8A 109.8 C23---C22---C27 120.76 (14) C9---C8---H8A 109.8 C24---C23---C22 120.93 (15) N1---C8---H8B 109.8 C24---C23---H23 119.5 C9---C8---H8B 109.8 C22---C23---H23 119.5 H8A---C8---H8B 108.3 C23---C24---C25 119.02 (16) N2---C9---C8 110.25 (13) C23---C24---H24 120.5 N2---C9---H9A 109.6 C25---C24---H24 120.5 C8---C9---H9A 109.6 C26---C25---C24 121.57 (16) N2---C9---H9B 109.6 C26---C25---H25 119.2 C8---C9---H9B 109.6 C24---C25---H25 119.2 H9A---C9---H9B 108.1 C25---C26---C27 121.68 (16) C19---N2---C9 112.74 (12) C25---C26---H26 119.2 C19---N2---C10 112.92 (12) C27---C26---H26 119.2 C9---N2---C10 111.41 (12) O3---C27---C26 122.55 (14) N2---C10---C11 111.72 (13) O3---C27---C22 121.43 (14) N2---C10---H10A 109.3 C26---C27---C22 116.02 (14) C11---C10---H10A 109.3 C27---O3---Ca1 150.62 (10) N2---C10---H10B 109.3 N5---C28---C29 178.9 (3) C11---C10---H10B 109.3 C28---C29---H29A 109.5 H10A---C10---H10B 107.9 C28---C29---H29B 109.5 N3---C11---C10 110.31 (13) H29A---C29---H29B 109.5 N3---C11---H11A 109.6 C28---C29---H29C 109.5 C10---C11---H11A 109.6 H29A---C29---H29C 109.5 N3---C11---H11B 109.6 H29B---C29---H29C 109.5 C10---C11---H11B 109.6 O7---Cl1---O4 109.43 (13) H11A---C11---H11B 108.1 O7---Cl1---O6 109.65 (12) C12---N3---C11 123.08 (15) O4---Cl1---O6 111.50 (14) C12---N3---H3A 113.4 (14) O7---Cl1---O5 109.34 (11) C11---N3---H3A 123.3 (14) O4---Cl1---O5 109.00 (12) N3---C12---C13 124.35 (15) O6---Cl1---O5 107.88 (10) --------------------- ------------- ------------------- ------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3672 .table-wrap} ----------------------------------------- Cg1 is the centroid of the C1--C6 ring. ----------------------------------------- ::: ::: {#d1e3676 .table-wrap} ---------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1A···O1 0.85 (2) 1.98 (2) 2.6597 (17) 136 (2) N3---H3A···O2 0.86 (2) 1.91 (2) 2.6256 (18) 140 (2) N4---H4A···O3 0.83 (2) 1.98 (2) 2.6449 (17) 137 (2) C3---H3···O7^ii^ 0.95 2.41 3.316 (2) 160 C20---H20A···O5^iii^ 0.99 2.50 3.380 (2) 148 C10---H10A···O5^iv^ 0.99 2.50 3.271 (2) 134 C21---H21···O5^iii^ 0.95 2.58 3.259 (2) 129 C29---H29B···O6^v^ 0.98 2.58 3.555 (3) 173 C26---H26···Cg1^i^ 0.95 2.68 3.489 (2) 143 ---------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (ii) −*x*+1, −*y*+1, −*z*+1; (iii) *x*−1, *y*−1, *z*; (iv) *x*−1/2, *y*−1, −*z*+3/2; (v) −*x*+3/2, *y*−1/2, *z*; (i) −*x*+1, −*y*, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C1--C6 ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- ---------- ---------- ------------- ------------- N1---H1*A*⋯O1 0.85 (2) 1.98 (2) 2.6597 (17) 136 (2) N3---H3*A*⋯O2 0.86 (2) 1.91 (2) 2.6256 (18) 140 (2) N4---H4*A*⋯O3 0.83 (2) 1.98 (2) 2.6449 (17) 137 (2) C3---H3⋯O7^i^ 0.95 2.41 3.316 (2) 160 C20---H20*A*⋯O5^ii^ 0.99 2.50 3.380 (2) 148 C10---H10*A*⋯O5^iii^ 0.99 2.50 3.271 (2) 134 C21---H21⋯O5^ii^ 0.95 2.58 3.259 (2) 129 C29---H29*B*⋯O6^iv^ 0.98 2.58 3.555 (3) 173 C26---H26⋯*Cg*1^v^ 0.95 2.68 3.489 (2) 143 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) ; (v) . :::
PubMed Central
2024-06-05T04:04:16.947699
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051774/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):m149", "authors": [ { "first": "Muhammet", "last": "Kose" }, { "first": "Vickie", "last": "McKee" } ] }
PMC3051775
Related literature {#sec1} ================== For the preparation, see: Song *et al.* (2007[@bb3]). For other lycoctonine-type diterpenoid alkaloids, see: Tashkhodjaev & Sultankhodjaev (2009[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~26~H~39~NO~7~*M* *~r~* = 477.58Orthorhombic,*a* = 8.9444 (16) Å*b* = 14.135 (3) Å*c* = 19.112 (3) Å*V* = 2416.4 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 133 K0.45 × 0.43 × 0.31 mm ### Data collection {#sec2.1.2} Rigaku AFC10/Saturn724+ diffractometer19113 measured reflections3122 independent reflections3020 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.034 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.080*S* = 1.003122 reflections312 parametersH-atom parameters constrainedΔρ~max~ = 0.24 e Å^−3^Δρ~min~ = −0.17 e Å^−3^ {#d5e350} Data collection: *CrystalClear* (Rigaku, 2002[@bb1]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb2]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb2]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb2]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811001346/bt5455sup1.cif](http://dx.doi.org/10.1107/S1600536811001346/bt5455sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001346/bt5455Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001346/bt5455Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5455&file=bt5455sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5455sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5455&checkcif=yes) Enhanced figure: [interactive version of Fig. 1](http://scripts.iucr.org/cgi-bin/cr.cgi?rm=fignum&cnor=bt5455&fignum=1) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5455](http://scripts.iucr.org/cgi-bin/sendsup?bt5455)). This work was supported by the Gangdong Provincial Natural Science Foundation of China (No. 8251064201000001). Comment ======= The title compound, Anthriscifolcine A. (Song *et al.*, 2007), C~26~H~39~NO~7~, is a norditerpenoid alkaloid and has a lycoctonine carbon skeleton. It contains four six-membered rings (A, B, D and E) and three five-membered rings (C, F and G). Its structure is similar with other lycoctonine-type diterpenoid alkaloids beside the appearance of new five-membered ring, which formed by a methylenedioxyl group at C-7 and C-8. (Tashkhodjaev & Sultankhodjaev, 2009). The rings A, B and E adopt a chair-conformation, while ring D adopts a boat-conformation with C-8, C-9, C-13 and C-16 in the same plane. The five-membered rings C and F adopt envelope conformations with C-9, C-10, C-12 and C-13 of ring C in the same plane, as well as C-5, C-6, C-7 and C-17 of ring F in the same plane. Ring G adopts a significant distorted five-membered ring. Since this type of norditerpenoid alkaloid is a well known skeleton mainly originated from Delphinium and Aconitum Linn with the absolute configuration of C(5) being R, the absolute structure of the chiral carbon centres of the title compound are identified as 1*S*, 4*R*, 5*R*, 6*S*, 7*S*, 8*R*, 9*R*, 10*R*, 11*S*, 13*R*, 14*S*, 16*S* and 17*S*. At first, through one-dimensional and two-dimensional NMR analysis, we supposed the title compound that was isolated from Delphinium anthriscifolium var. majus is an isomer of Anthriscifolcines A (Song *et al.*, 2007) for the strong 1*H*-^1^H COSY correlation of H-17 /H-5 seemingly indicative of the connection C(17)---C(5). On the other hand, comparison with the ^13^C NMR data reported by Dr Song, the chemical shift values of C-5, C-13, C-9 and C-10 differ from those of the one we got in D. A. var. majus. But X-ray crystal diffraction indicated that either the plane structure or its chirality was quite the same as Anthriscifolcine A as reported by Dr. Song. After detailed analysis of the HSQC and HMBC spectra, we found that the chemical shift values of C-5 with C-13, as well as C-9 with C-10 were wrongly exchanged in the literature. Experimental {#experimental} ============ The title compound was isolated from the EtOAc fraction of the leaves of D. A. var. majus by a known method (Song *et al.*, 2007). Colourless single crystals were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 485--487 K). Refinement {#refinement} ========== All H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of C*sp*^2^---H = 0.93 Å with *U*~iso~=1.2*U*~eq~(C), and C*sp*^3^---H = 0.96 or 0.97 Å with *U*~iso~=1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with the atom numbering, showing displacement ellipsoids at the 30% probability level. ::: ![](e-67-0o395-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e189 .table-wrap} ------------------------------- --------------------------------------- C~26~H~39~NO~7~ *D*~x~ = 1.313 Mg m^−3^ *M~r~* = 477.58 Mo *K*α radiation, λ = 0.71073 Å Orthorhombic, *P*2~1~2~1~2~1~ Cell parameters from 8028 reflections *a* = 8.9444 (16) Å θ = 3.1--27.5° *b* = 14.135 (3) Å µ = 0.09 mm^−1^ *c* = 19.112 (3) Å *T* = 133 K *V* = 2416.4 (7) Å^3^ Block, colorless *Z* = 4 0.45 × 0.43 × 0.31 mm *F*(000) = 1032 ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e312 .table-wrap} -------------------------------------------- -------------------------------------- Rigaku AFC10/Saturn724+ diffractometer 3020 reflections with *I* \> 2σ(*I*) Radiation source: Rotating Anode *R*~int~ = 0.034 graphite θ~max~ = 27.5°, θ~min~ = 3.1° Detector resolution: 28.5714 pixels mm^-1^ *h* = −11→11 φ and ω scans *k* = −18→18 19113 measured reflections *l* = −21→24 3122 independent reflections -------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e416 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.080 H-atom parameters constrained *S* = 1.00 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0431*P*)^2^ + 0.616*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3122 reflections (Δ/σ)~max~ \< 0.001 312 parameters Δρ~max~ = 0.24 e Å^−3^ 0 restraints Δρ~min~ = −0.17 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e573 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e672 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.30623 (14) 0.49917 (9) 0.71667 (6) 0.0201 (3) O2 0.44209 (14) 0.42792 (9) 0.62909 (7) 0.0203 (3) O3 0.72126 (15) 0.46178 (8) 0.91841 (6) 0.0199 (3) O4 0.36463 (14) 0.26667 (8) 0.70942 (7) 0.0195 (3) O5 0.13732 (16) 0.30454 (11) 0.66750 (8) 0.0329 (3) O7 0.77283 (14) 0.39651 (9) 0.59355 (6) 0.0194 (3) O8 0.85214 (15) 0.60530 (9) 0.65703 (7) 0.0232 (3) N1 0.37859 (17) 0.49307 (10) 0.87482 (8) 0.0191 (3) C1 0.6416 (2) 0.37444 (12) 0.90962 (9) 0.0197 (4) H1 0.7167 0.3220 0.9102 0.024\* C2 0.5383 (2) 0.36093 (14) 0.97290 (9) 0.0258 (4) H2A 0.5983 0.3382 1.0130 0.031\* H2B 0.4949 0.4229 0.9859 0.031\* C3 0.4122 (3) 0.29143 (15) 0.95935 (10) 0.0314 (5) H3A 0.3420 0.2917 0.9994 0.038\* H3B 0.4534 0.2268 0.9546 0.038\* C4 0.3289 (2) 0.31858 (13) 0.89248 (10) 0.0253 (4) H4 0.2426 0.2743 0.8867 0.030\* C5 0.4337 (2) 0.30608 (12) 0.82959 (9) 0.0196 (4) H5 0.4687 0.2391 0.8254 0.024\* C6 0.3504 (2) 0.33800 (12) 0.76349 (9) 0.0183 (4) H6 0.2420 0.3455 0.7752 0.022\* C7 0.4165 (2) 0.43769 (12) 0.74658 (9) 0.0162 (3) C8 0.53840 (19) 0.43831 (12) 0.69037 (9) 0.0158 (3) C9 0.6448 (2) 0.35546 (11) 0.70054 (8) 0.0158 (3) H9 0.5985 0.2951 0.6840 0.019\* C10 0.6892 (2) 0.34851 (12) 0.78001 (9) 0.0168 (3) H10 0.7135 0.2804 0.7886 0.020\* C11 0.5674 (2) 0.37552 (11) 0.83597 (9) 0.0164 (3) C12 0.84195 (19) 0.40274 (13) 0.78403 (9) 0.0195 (4) H12A 0.8383 0.4521 0.8207 0.023\* H12B 0.9244 0.3584 0.7950 0.023\* C13 0.8657 (2) 0.44761 (12) 0.71208 (9) 0.0172 (3) H13 0.9745 0.4553 0.7017 0.021\* C14 0.7952 (2) 0.37223 (12) 0.66496 (9) 0.0169 (3) H14 0.8562 0.3130 0.6676 0.020\* C15 0.6204 (2) 0.53451 (12) 0.68240 (9) 0.0176 (3) H15A 0.6172 0.5522 0.6323 0.021\* H15B 0.5617 0.5826 0.7082 0.021\* C16 0.7835 (2) 0.54252 (12) 0.70678 (9) 0.0174 (3) H16 0.7850 0.5735 0.7538 0.021\* C17 0.4825 (2) 0.46807 (12) 0.81829 (9) 0.0160 (3) H17 0.5558 0.5206 0.8112 0.019\* C19 0.2676 (2) 0.42064 (14) 0.89324 (11) 0.0254 (4) H19A 0.1831 0.4248 0.8600 0.030\* H19B 0.2282 0.4346 0.9405 0.030\* C21 0.3093 (2) 0.58623 (13) 0.86550 (10) 0.0239 (4) H21A 0.2231 0.5803 0.8333 0.029\* H21B 0.3826 0.6297 0.8437 0.029\* C22 0.2559 (3) 0.62839 (16) 0.93459 (11) 0.0325 (5) H22A 0.3375 0.6265 0.9688 0.049\* H22B 0.1710 0.5917 0.9522 0.049\* H22C 0.2250 0.6941 0.9272 0.049\* C23 0.8432 (2) 0.45474 (15) 0.96600 (10) 0.0280 (4) H23A 0.9164 0.4092 0.9480 0.042\* H23B 0.8064 0.4333 1.0116 0.042\* H23C 0.8907 0.5168 0.9711 0.042\* C24 0.3230 (2) 0.49072 (13) 0.64212 (9) 0.0222 (4) H24A 0.2297 0.4661 0.6211 0.027\* H24B 0.3448 0.5534 0.6213 0.027\* C25 0.9100 (2) 0.40192 (14) 0.55639 (9) 0.0235 (4) H25A 0.9603 0.3404 0.5580 0.035\* H25B 0.9741 0.4500 0.5779 0.035\* H25C 0.8902 0.4191 0.5076 0.035\* C26 0.9849 (2) 0.64858 (14) 0.68263 (12) 0.0309 (5) H26A 1.0587 0.5996 0.6938 0.046\* H26B 0.9618 0.6849 0.7249 0.046\* H26C 1.0256 0.6910 0.6468 0.046\* C27 0.2532 (2) 0.26281 (12) 0.66158 (10) 0.0217 (4) C28 0.2948 (3) 0.20041 (14) 0.60156 (10) 0.0290 (4) H28A 0.2156 0.2024 0.5662 0.043\* H28B 0.3074 0.1353 0.6182 0.043\* H28C 0.3888 0.2226 0.5809 0.043\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1590 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0192 (6) 0.0210 (6) 0.0201 (6) 0.0050 (5) −0.0024 (5) 0.0006 (5) O2 0.0209 (6) 0.0231 (6) 0.0169 (6) 0.0025 (5) −0.0042 (5) −0.0019 (5) O3 0.0232 (6) 0.0172 (6) 0.0192 (6) −0.0015 (5) −0.0048 (5) −0.0015 (5) O4 0.0214 (6) 0.0166 (6) 0.0205 (6) −0.0012 (5) −0.0026 (5) −0.0049 (5) O5 0.0222 (7) 0.0412 (8) 0.0355 (8) 0.0049 (7) −0.0078 (6) −0.0115 (7) O7 0.0208 (6) 0.0235 (6) 0.0139 (6) 0.0023 (5) −0.0001 (5) −0.0004 (5) O8 0.0231 (6) 0.0188 (6) 0.0277 (7) −0.0045 (6) 0.0002 (6) 0.0053 (5) N1 0.0202 (7) 0.0173 (7) 0.0196 (7) −0.0008 (6) 0.0042 (6) −0.0032 (6) C1 0.0277 (9) 0.0134 (7) 0.0180 (8) 0.0003 (7) −0.0022 (8) 0.0013 (6) C2 0.0372 (11) 0.0245 (9) 0.0157 (9) −0.0057 (9) 0.0001 (8) 0.0021 (7) C3 0.0460 (12) 0.0281 (10) 0.0200 (9) −0.0140 (10) 0.0045 (9) 0.0034 (8) C4 0.0310 (10) 0.0225 (9) 0.0223 (9) −0.0124 (8) 0.0046 (8) −0.0007 (7) C5 0.0260 (9) 0.0136 (8) 0.0191 (9) −0.0036 (7) −0.0001 (7) −0.0005 (6) C6 0.0199 (8) 0.0156 (8) 0.0194 (8) −0.0026 (7) 0.0002 (7) −0.0032 (7) C7 0.0157 (8) 0.0141 (7) 0.0187 (8) 0.0005 (7) −0.0007 (7) 0.0010 (6) C8 0.0187 (8) 0.0147 (8) 0.0140 (8) 0.0011 (7) −0.0021 (7) −0.0004 (6) C9 0.0184 (8) 0.0136 (7) 0.0154 (8) 0.0008 (7) −0.0009 (7) −0.0007 (6) C10 0.0203 (8) 0.0136 (7) 0.0166 (8) 0.0037 (7) −0.0008 (7) 0.0006 (6) C11 0.0212 (8) 0.0120 (7) 0.0159 (8) −0.0002 (7) −0.0002 (7) 0.0011 (6) C12 0.0184 (8) 0.0216 (8) 0.0185 (8) 0.0018 (7) −0.0024 (7) 0.0020 (7) C13 0.0183 (7) 0.0169 (8) 0.0166 (8) 0.0027 (7) −0.0007 (7) −0.0009 (6) C14 0.0195 (8) 0.0151 (8) 0.0160 (8) 0.0026 (7) −0.0003 (7) −0.0011 (6) C15 0.0196 (9) 0.0151 (8) 0.0181 (8) 0.0030 (7) 0.0006 (7) 0.0025 (6) C16 0.0203 (8) 0.0150 (8) 0.0171 (8) −0.0003 (7) 0.0012 (7) 0.0006 (6) C17 0.0181 (8) 0.0141 (7) 0.0158 (8) −0.0008 (7) 0.0019 (7) −0.0009 (6) C19 0.0255 (9) 0.0284 (10) 0.0223 (10) −0.0073 (8) 0.0071 (8) −0.0042 (7) C21 0.0242 (9) 0.0237 (9) 0.0240 (9) 0.0048 (8) 0.0002 (8) −0.0037 (7) C22 0.0350 (11) 0.0320 (11) 0.0304 (11) 0.0120 (9) 0.0020 (9) −0.0085 (8) C23 0.0269 (10) 0.0335 (10) 0.0237 (9) 0.0028 (9) −0.0071 (8) −0.0031 (8) C24 0.0216 (9) 0.0247 (9) 0.0204 (9) 0.0032 (8) −0.0043 (7) 0.0005 (7) C25 0.0234 (8) 0.0292 (10) 0.0180 (9) −0.0001 (8) 0.0025 (7) 0.0015 (7) C26 0.0256 (10) 0.0214 (9) 0.0457 (12) −0.0053 (8) −0.0010 (9) −0.0005 (9) C27 0.0228 (9) 0.0188 (8) 0.0236 (9) −0.0038 (8) −0.0021 (7) −0.0003 (7) C28 0.0353 (11) 0.0275 (10) 0.0242 (10) 0.0037 (9) −0.0070 (9) −0.0063 (8) ----- ------------- ------------- ------------- -------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2264 .table-wrap} ---------------------- -------------- ----------------------- -------------- O1---C7 1.433 (2) C10---C12 1.568 (2) O1---C24 1.438 (2) C10---C11 1.574 (2) O2---C24 1.409 (2) C10---H10 1.0000 O2---C8 1.461 (2) C11---C17 1.550 (2) O3---C23 1.424 (2) C12---C13 1.529 (2) O3---C1 1.435 (2) C12---H12A 0.9900 O4---C27 1.354 (2) C12---H12B 0.9900 O4---C6 1.449 (2) C13---C14 1.531 (2) O5---C27 1.198 (2) C13---C16 1.533 (2) O7---C25 1.419 (2) C13---H13 1.0000 O7---C14 1.422 (2) C14---H14 1.0000 O8---C26 1.422 (2) C15---C16 1.536 (2) O8---C16 1.438 (2) C15---H15A 0.9900 N1---C21 1.466 (2) C15---H15B 0.9900 N1---C17 1.468 (2) C16---H16 1.0000 N1---C19 1.469 (2) C17---H17 1.0000 C1---C2 1.534 (3) C19---H19A 0.9900 C1---C11 1.557 (2) C19---H19B 0.9900 C1---H1 1.0000 C21---C22 1.525 (3) C2---C3 1.518 (3) C21---H21A 0.9900 C2---H2A 0.9900 C21---H21B 0.9900 C2---H2B 0.9900 C22---H22A 0.9800 C3---C4 1.528 (3) C22---H22B 0.9800 C3---H3A 0.9900 C22---H22C 0.9800 C3---H3B 0.9900 C23---H23A 0.9800 C4---C5 1.534 (3) C23---H23B 0.9800 C4---C19 1.543 (3) C23---H23C 0.9800 C4---H4 1.0000 C24---H24A 0.9900 C5---C6 1.534 (2) C24---H24B 0.9900 C5---C11 1.552 (2) C25---H25A 0.9800 C5---H5 1.0000 C25---H25B 0.9800 C6---C7 1.562 (2) C25---H25C 0.9800 C6---H6 1.0000 C26---H26A 0.9800 C7---C8 1.531 (2) C26---H26B 0.9800 C7---C17 1.553 (2) C26---H26C 0.9800 C8---C9 1.522 (2) C27---C28 1.494 (3) C8---C15 1.552 (2) C28---H28A 0.9800 C9---C14 1.526 (2) C28---H28B 0.9800 C9---C10 1.573 (2) C28---H28C 0.9800 C9---H9 1.0000 C7---O1---C24 105.84 (13) C12---C13---C14 100.56 (14) C24---O2---C8 103.92 (13) C12---C13---C16 110.85 (14) C23---O3---C1 113.26 (14) C14---C13---C16 111.90 (14) C27---O4---C6 116.41 (14) C12---C13---H13 111.0 C25---O7---C14 111.81 (14) C14---C13---H13 111.0 C26---O8---C16 113.22 (15) C16---C13---H13 111.0 C21---N1---C17 113.23 (14) O7---C14---C9 109.93 (14) C21---N1---C19 111.68 (15) O7---C14---C13 117.06 (14) C17---N1---C19 115.87 (14) C9---C14---C13 102.05 (13) O3---C1---C2 108.29 (14) O7---C14---H14 109.1 O3---C1---C11 108.02 (13) C9---C14---H14 109.1 C2---C1---C11 117.18 (16) C13---C14---H14 109.1 O3---C1---H1 107.7 C16---C15---C8 118.92 (14) C2---C1---H1 107.7 C16---C15---H15A 107.6 C11---C1---H1 107.7 C8---C15---H15A 107.6 C3---C2---C1 113.19 (16) C16---C15---H15B 107.6 C3---C2---H2A 108.9 C8---C15---H15B 107.6 C1---C2---H2A 108.9 H15A---C15---H15B 107.0 C3---C2---H2B 108.9 O8---C16---C13 112.28 (14) C1---C2---H2B 108.9 O8---C16---C15 104.50 (14) H2A---C2---H2B 107.8 C13---C16---C15 114.26 (14) C2---C3---C4 110.01 (16) O8---C16---H16 108.5 C2---C3---H3A 109.7 C13---C16---H16 108.5 C4---C3---H3A 109.7 C15---C16---H16 108.5 C2---C3---H3B 109.7 N1---C17---C11 110.66 (14) C4---C3---H3B 109.7 N1---C17---C7 118.36 (14) H3A---C3---H3B 108.2 C11---C17---C7 98.35 (13) C3---C4---C5 109.20 (17) N1---C17---H17 109.6 C3---C4---C19 113.58 (17) C11---C17---H17 109.6 C5---C4---C19 109.38 (14) C7---C17---H17 109.6 C3---C4---H4 108.2 N1---C19---C4 114.17 (16) C5---C4---H4 108.2 N1---C19---H19A 108.7 C19---C4---H4 108.2 C4---C19---H19A 108.7 C4---C5---C6 108.35 (15) N1---C19---H19B 108.7 C4---C5---C11 109.64 (14) C4---C19---H19B 108.7 C6---C5---C11 104.64 (13) H19A---C19---H19B 107.6 C4---C5---H5 111.3 N1---C21---C22 112.21 (16) C6---C5---H5 111.3 N1---C21---H21A 109.2 C11---C5---H5 111.3 C22---C21---H21A 109.2 O4---C6---C5 109.86 (14) N1---C21---H21B 109.2 O4---C6---C7 116.54 (14) C22---C21---H21B 109.2 C5---C6---C7 104.58 (14) H21A---C21---H21B 107.9 O4---C6---H6 108.5 C21---C22---H22A 109.5 C5---C6---H6 108.5 C21---C22---H22B 109.5 C7---C6---H6 108.5 H22A---C22---H22B 109.5 O1---C7---C8 101.93 (13) C21---C22---H22C 109.5 O1---C7---C17 116.49 (14) H22A---C22---H22C 109.5 C8---C7---C17 110.30 (14) H22B---C22---H22C 109.5 O1---C7---C6 111.66 (14) O3---C23---H23A 109.5 C8---C7---C6 114.84 (14) O3---C23---H23B 109.5 C17---C7---C6 102.17 (13) H23A---C23---H23B 109.5 O2---C8---C9 113.19 (14) O3---C23---H23C 109.5 O2---C8---C7 98.17 (13) H23A---C23---H23C 109.5 C9---C8---C7 110.58 (14) H23B---C23---H23C 109.5 O2---C8---C15 106.73 (13) O2---C24---O1 107.87 (14) C9---C8---C15 113.04 (14) O2---C24---H24A 110.1 C7---C8---C15 114.22 (14) O1---C24---H24A 110.1 C8---C9---C14 112.02 (14) O2---C24---H24B 110.1 C8---C9---C10 109.23 (13) O1---C24---H24B 110.1 C14---C9---C10 102.55 (14) H24A---C24---H24B 108.4 C8---C9---H9 110.9 O7---C25---H25A 109.5 C14---C9---H9 110.9 O7---C25---H25B 109.5 C10---C9---H9 110.9 H25A---C25---H25B 109.5 C12---C10---C9 103.69 (13) O7---C25---H25C 109.5 C12---C10---C11 116.83 (14) H25A---C25---H25C 109.5 C9---C10---C11 117.78 (14) H25B---C25---H25C 109.5 C12---C10---H10 105.8 O8---C26---H26A 109.5 C9---C10---H10 105.8 O8---C26---H26B 109.5 C11---C10---H10 105.8 H26A---C26---H26B 109.5 C17---C11---C5 98.02 (14) O8---C26---H26C 109.5 C17---C11---C1 114.49 (14) H26A---C26---H26C 109.5 C5---C11---C1 113.19 (14) H26B---C26---H26C 109.5 C17---C11---C10 113.31 (13) O5---C27---O4 123.60 (17) C5---C11---C10 109.07 (13) O5---C27---C28 125.38 (18) C1---C11---C10 108.45 (14) O4---C27---C28 111.02 (16) C13---C12---C10 106.23 (14) C27---C28---H28A 109.5 C13---C12---H12A 110.5 C27---C28---H28B 109.5 C10---C12---H12A 110.5 H28A---C28---H28B 109.5 C13---C12---H12B 110.5 C27---C28---H28C 109.5 C10---C12---H12B 110.5 H28A---C28---H28C 109.5 H12A---C12---H12B 108.7 H28B---C28---H28C 109.5 C23---O3---C1---C2 78.45 (18) C2---C1---C11---C10 −157.24 (15) C23---O3---C1---C11 −153.71 (15) C12---C10---C11---C17 79.16 (18) O3---C1---C2---C3 160.33 (16) C9---C10---C11---C17 −45.3 (2) C11---C1---C2---C3 37.9 (2) C12---C10---C11---C5 −172.79 (14) C1---C2---C3---C4 −52.0 (2) C9---C10---C11---C5 62.72 (18) C2---C3---C4---C5 66.2 (2) C12---C10---C11---C1 −49.12 (18) C2---C3---C4---C19 −56.2 (2) C9---C10---C11---C1 −173.60 (14) C3---C4---C5---C6 −177.44 (15) C9---C10---C12---C13 7.26 (17) C19---C4---C5---C6 −52.58 (19) C11---C10---C12---C13 −124.09 (15) C3---C4---C5---C11 −63.79 (18) C10---C12---C13---C14 −34.41 (16) C19---C4---C5---C11 61.07 (19) C10---C12---C13---C16 84.09 (17) C27---O4---C6---C5 153.01 (15) C25---O7---C14---C9 −173.13 (14) C27---O4---C6---C7 −88.33 (19) C25---O7---C14---C13 71.10 (19) C4---C5---C6---O4 −130.98 (14) C8---C9---C14---O7 −53.00 (18) C11---C5---C6---O4 112.10 (15) C10---C9---C14---O7 −170.00 (13) C4---C5---C6---C7 103.22 (16) C8---C9---C14---C13 71.91 (16) C11---C5---C6---C7 −13.69 (17) C10---C9---C14---C13 −45.09 (15) C24---O1---C7---C8 28.66 (17) C12---C13---C14---O7 169.43 (15) C24---O1---C7---C17 148.75 (15) C16---C13---C14---O7 51.7 (2) C24---O1---C7---C6 −94.42 (16) C12---C13---C14---C9 49.40 (15) O4---C6---C7---O1 92.28 (17) C16---C13---C14---C9 −68.33 (17) C5---C6---C7---O1 −146.23 (14) O2---C8---C15---C16 −143.22 (15) O4---C6---C7---C8 −23.1 (2) C9---C8---C15---C16 −18.1 (2) C5---C6---C7---C8 98.38 (16) C7---C8---C15---C16 109.45 (17) O4---C6---C7---C17 −142.51 (15) C26---O8---C16---C13 −76.69 (18) C5---C6---C7---C17 −21.02 (16) C26---O8---C16---C15 158.94 (14) C24---O2---C8---C9 160.42 (14) C12---C13---C16---O8 153.62 (14) C24---O2---C8---C7 43.82 (15) C14---C13---C16---O8 −94.99 (17) C24---O2---C8---C15 −74.60 (16) C12---C13---C16---C15 −87.59 (18) O1---C7---C8---O2 −44.26 (15) C14---C13---C16---C15 23.8 (2) C17---C7---C8---O2 −168.60 (13) C8---C15---C16---O8 144.03 (15) C6---C7---C8---O2 76.63 (16) C8---C15---C16---C13 20.9 (2) O1---C7---C8---C9 −162.87 (13) C21---N1---C17---C11 172.51 (14) C17---C7---C8---C9 72.79 (17) C19---N1---C17---C11 −56.6 (2) C6---C7---C8---C9 −41.98 (19) C21---N1---C17---C7 −75.16 (19) O1---C7---C8---C15 68.29 (17) C19---N1---C17---C7 55.8 (2) C17---C7---C8---C15 −56.06 (18) C5---C11---C17---N1 69.33 (16) C6---C7---C8---C15 −170.82 (14) C1---C11---C17---N1 −50.74 (19) O2---C8---C9---C14 92.06 (17) C10---C11---C17---N1 −175.83 (14) C7---C8---C9---C14 −158.92 (14) C5---C11---C17---C7 −55.31 (14) C15---C8---C9---C14 −29.44 (19) C1---C11---C17---C7 −175.38 (14) O2---C8---C9---C10 −155.03 (14) C10---C11---C17---C7 59.53 (16) C7---C8---C9---C10 −46.01 (18) O1---C7---C17---N1 50.6 (2) C15---C8---C9---C10 83.48 (17) C8---C7---C17---N1 166.10 (14) C8---C9---C10---C12 −96.06 (16) C6---C7---C17---N1 −71.36 (17) C14---C9---C10---C12 22.92 (16) O1---C7---C17---C11 169.57 (14) C8---C9---C10---C11 34.7 (2) C8---C7---C17---C11 −74.93 (15) C14---C9---C10---C11 153.71 (14) C6---C7---C17---C11 47.61 (15) C4---C5---C11---C17 −73.03 (16) C21---N1---C19---C4 170.95 (16) C6---C5---C11---C17 43.00 (16) C17---N1---C19---C4 39.3 (2) C4---C5---C11---C1 48.02 (19) C3---C4---C19---N1 81.9 (2) C6---C5---C11---C1 164.04 (14) C5---C4---C19---N1 −40.3 (2) C4---C5---C11---C10 168.83 (14) C17---N1---C21---C22 −156.45 (16) C6---C5---C11---C10 −75.14 (16) C19---N1---C21---C22 70.6 (2) O3---C1---C11---C17 −47.39 (19) C8---O2---C24---O1 −28.12 (17) C2---C1---C11---C17 75.15 (19) C7---O1---C24---O2 −1.39 (18) O3---C1---C11---C5 −158.61 (14) C6---O4---C27---O5 −11.0 (3) C2---C1---C11---C5 −36.1 (2) C6---O4---C27---C28 168.90 (15) O3---C1---C11---C10 80.22 (16) ---------------------- -------------- ----------------------- -------------- :::
PubMed Central
2024-06-05T04:04:16.957226
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051775/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o395", "authors": [ { "first": "Zhi-Jun", "last": "Song" }, { "first": "Wei-Quan", "last": "Chen" }, { "first": "Xiao-Ying", "last": "Du" }, { "first": "Yun-Fei", "last": "Yuan" }, { "first": "Han-Hong", "last": "Xu" } ] }
PMC3051776
Related literature {#sec1} ================== For structures of Cd(II) polymers with related ligands, see: Liu *et al.* (2005[@bb4]); Huang *et al.* (2006[@bb2]). For the structures of isotypic analogues with I and Cl, see: Wang *et al.* (2008[@bb7], 2010[@bb8]). For the structure of the isotypic complex with Cu(II) and Cl, see: Li *et al.* (2009[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[CdBr~2~(C~8~H~8~N~4~)~2~\]*M* *~r~* = 592.59Monoclinic,*a* = 7.7802 (9) Å*b* = 16.7299 (16) Å*c* = 8.4684 (10) Åβ = 114.409 (5)°*V* = 1003.74 (19) Å^3^*Z* = 2Mo *K*α radiationμ = 5.09 mm^−1^*T* = 293 K0.65 × 0.60 × 0.55 mm ### Data collection {#sec2.1.2} Rigaku Mercury70 CCD diffractometerAbsorption correction: multi-scan (*ABSCOR*; Higashi, 1995[@bb1]) *T* ~min~ = 0.498, *T* ~max~ = 1.0007206 measured reflections2270 independent reflections2098 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.022 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.024*wR*(*F* ^2^) = 0.069*S* = 0.912270 reflections124 parametersH-atom parameters constrainedΔρ~max~ = 0.74 e Å^−3^Δρ~min~ = −0.51 e Å^−3^ {#d5e433} Data collection: *CrystalClear* (Rigaku/MSC, 2004[@bb5]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000535/bh2328sup1.cif](http://dx.doi.org/10.1107/S1600536811000535/bh2328sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000535/bh2328Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000535/bh2328Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bh2328&file=bh2328sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bh2328sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bh2328&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BH2328](http://scripts.iucr.org/cgi-bin/sendsup?bh2328)). The authors would like to thank the Fujian Provincial Science and Technology Innovation Foundation for financial support under grant No. 2007 F3038. Comment ======= Recently, our group has focused on the design and synthesis of some flexible unsymmetric ligands (Liu *et al.*, 2005; Huang *et al.*, 2006), one of which being the heterocyclic ligand pyta, *N*-(4-pyridylmethyl)-1,2,4-triazole. In order to explore the architectural styles and other features of this kind of ligands, we selected cadmium dibromide as a representative subject for stereoregular coordination. Among our attempts, a new polymer \[CdBr~2~(pyta)~2~\]*~n~* was obtained as crystals suitable for single-crystal X-ray analysis. The crystal structure of the title compound is isomorphous to other complexes we have reported with I or Cl in place of Br (Wang *et al.*, 2008, 2010) or with Cu(II) and Cl (Li *et al.*, 2009). The crystallographic analysis reveals that the title compound crystallizes in the monoclinic space group *P*2~1~/*c*. The asymmetric unit contains one cadmium atom, one bromide donor and one pyta bridging molecule, as shown in Fig. 1. The Cd(II) ion is placed on an inversion center, with an octahedral \[CdBr~2~N~4~\] environment, where the axial positions are occupied by two bromide ions and the equatorial positions occupied by two *trans* triazole N atoms and two *trans* pyridyl N atoms, each of which respectively belonging to four symmetry-related pyta ligands (Fig. 1). The bond angles about the Cd octahedron range from 85.88 (8) to 94.12 (8)° and deviate slightly from those of a perfect octahedron. Due to the existence of the ---CH~2~--- spacer between the triazole and the pyridyl ring, sufficient flexibility makes possible for pyta to be twisted in order to meet the requirement of coordination geometry of the metal center. The dihedral angle between the triazole and pyridyl rings in the ligand is 72.56 (13)°. As conveniently shown in Fig. 2, the title compound forms an infinite two-dimensional rhombohedral sheet containing 36-membered sandglass rings. The *sp*^3^ hybridization of C3 forces the pyta ligand to be non-linear, generating the nonlinear grid sides and thereby the sandglass grids. Every complementary four \[Cd~4~(pyta)~4~\] grids are connected together by sharing the cadmium apices to give the 4^4^ two-dimensional structure with a side length of 11.01 Å, and a diagonal measurement of about 14.31 × 16.73 Å^2^. Experimental {#experimental} ============ A solution of pyta (0.021 g, 0.10 mmol) in MeOH (5 ml) was carefully layered on a solution of CdBr~2~ (0.027 g, 0.10 mmol) in H~2~O (5 ml). Diffusion between the two phases over a period of two weeks produced colorless block crystals. Refinement {#refinement} ========== All H atoms were placed in calculated positions and refined using a riding model with C---H bond lengths fixed to 0.93 (aromatic) or 0.97 Å (methylene), and isotropic displacement parameters calculated as 1.2 times the equivalent displacement parameter of the carrier C atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A view of the structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity. Symmetry codes: (A) -x, -y + 1, -z; (B) -x + 1, y + 1/2, -z + 1/2; (C) x - 1, -y + 3/2, z - 1/2. ::: ![](e-67-0m190-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The two-dimensional structure of the title compound, constructed of rhombus-shaped grids. ::: ![](e-67-0m190-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e201 .table-wrap} ------------------------------ --------------------------------------- \[CdBr~2~(C~8~H~8~N~4~)~2~\] *F*(000) = 572 *M~r~* = 592.59 *D*~x~ = 1.961 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 2944 reflections *a* = 7.7802 (9) Å θ = 2.6--27.5° *b* = 16.7299 (16) Å µ = 5.09 mm^−1^ *c* = 8.4684 (10) Å *T* = 293 K β = 114.409 (5)° Block, yellow *V* = 1003.74 (19) Å^3^ 0.65 × 0.60 × 0.55 mm *Z* = 2 ------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e335 .table-wrap} ------------------------------------------------------------- -------------------------------------- Rigaku Mercury70 CCD diffractometer 2270 independent reflections Radiation source: fine-focus sealed tube 2098 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.022 Detector resolution: 14.6306 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 3.1° ω scans *h* = −10→10 Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) *k* = −21→19 *T*~min~ = 0.498, *T*~max~ = 1.000 *l* = −10→10 7206 measured reflections ------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e455 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.024 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.069 H-atom parameters constrained *S* = 0.91 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.048*P*)^2^ + 0.7729*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2270 reflections (Δ/σ)~max~ = 0.083 124 parameters Δρ~max~ = 0.74 e Å^−3^ 0 restraints Δρ~min~ = −0.51 e Å^−3^ 0 constraints ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e618 .table-wrap} ----- ------------- --------------- ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cd1 0.0000 0.5000 0.5000 0.02280 (9) Br1 0.19066 (4) 0.538566 (18) 0.30452 (4) 0.03501 (10) C1 0.2617 (4) 0.57653 (19) 0.8969 (4) 0.0371 (6) H1A 0.1582 0.5731 0.9248 0.044\* C2 0.4305 (4) 0.56459 (17) 0.7599 (4) 0.0303 (5) H2A 0.4757 0.5526 0.6768 0.036\* C3 0.7295 (4) 0.61998 (17) 0.9870 (4) 0.0380 (7) H3A 0.7919 0.5889 0.9293 0.046\* H3B 0.7836 0.6045 1.1082 0.046\* C4 0.7711 (4) 0.70758 (15) 0.9750 (4) 0.0297 (6) C5 0.6428 (4) 0.76858 (18) 0.9397 (5) 0.0404 (7) H5A 0.5176 0.7576 0.9173 0.048\* C6 0.7013 (4) 0.84676 (17) 0.9379 (4) 0.0388 (7) H6A 0.6129 0.8875 0.9146 0.047\* C7 1.0005 (4) 0.8062 (2) 1.0007 (5) 0.0458 (8) H7A 1.1243 0.8186 1.0204 0.055\* C8 0.9543 (5) 0.72732 (18) 1.0071 (5) 0.0439 (8) H8A 1.0458 0.6877 1.0329 0.053\* N1 0.5308 (3) 0.59953 (13) 0.9121 (3) 0.0299 (5) N2 0.4232 (4) 0.60782 (17) 1.0010 (3) 0.0421 (6) N3 0.2588 (3) 0.54957 (14) 0.7446 (3) 0.0293 (5) N4 0.8769 (3) 0.86608 (13) 0.9675 (3) 0.0327 (5) ----- ------------- --------------- ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e920 .table-wrap} ----- -------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cd1 0.02036 (14) 0.01935 (14) 0.02797 (15) 0.00065 (9) 0.00926 (11) −0.00225 (9) Br1 0.03130 (17) 0.04281 (18) 0.03652 (17) 0.00314 (12) 0.01962 (13) 0.00383 (11) C1 0.0407 (16) 0.0381 (15) 0.0380 (15) −0.0095 (13) 0.0219 (13) −0.0070 (12) C2 0.0263 (13) 0.0304 (13) 0.0339 (14) −0.0032 (11) 0.0120 (11) −0.0059 (11) C3 0.0299 (14) 0.0247 (13) 0.0469 (17) −0.0070 (11) 0.0033 (13) −0.0006 (12) C4 0.0316 (14) 0.0218 (12) 0.0318 (13) −0.0059 (10) 0.0092 (11) −0.0013 (10) C5 0.0278 (14) 0.0297 (14) 0.0595 (19) −0.0051 (11) 0.0138 (14) 0.0007 (13) C6 0.0298 (14) 0.0243 (13) 0.0595 (19) 0.0013 (11) 0.0157 (14) 0.0046 (12) C7 0.0329 (16) 0.0255 (15) 0.083 (3) −0.0035 (12) 0.0282 (17) −0.0032 (14) C8 0.0340 (15) 0.0234 (14) 0.075 (2) −0.0006 (12) 0.0227 (16) −0.0022 (13) N1 0.0309 (12) 0.0221 (10) 0.0320 (11) −0.0059 (9) 0.0083 (10) −0.0018 (8) N2 0.0496 (16) 0.0464 (15) 0.0362 (13) −0.0175 (13) 0.0235 (12) −0.0127 (11) N3 0.0257 (11) 0.0310 (12) 0.0297 (11) −0.0026 (9) 0.0100 (9) −0.0046 (9) N4 0.0328 (12) 0.0221 (11) 0.0449 (14) −0.0022 (9) 0.0177 (11) 0.0007 (9) ----- -------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1217 .table-wrap} ------------------------ ------------ ------------------- ------------- Cd1---N3 2.363 (2) C3---H3A 0.9700 Cd1---N3^i^ 2.363 (2) C3---H3B 0.9700 Cd1---N4^ii^ 2.407 (2) C4---C5 1.372 (4) Cd1---N4^iii^ 2.407 (2) C4---C8 1.376 (4) Cd1---Br1 2.7178 (4) C5---C6 1.387 (4) Cd1---Br1^i^ 2.7178 (3) C5---H5A 0.9300 C1---N2 1.310 (4) C6---N4 1.323 (4) C1---N3 1.358 (4) C6---H6A 0.9300 C1---H1A 0.9300 C7---N4 1.335 (4) C2---N3 1.312 (4) C7---C8 1.375 (4) C2---N1 1.334 (4) C7---H7A 0.9300 C2---H2A 0.9300 C8---H8A 0.9300 C3---N1 1.449 (4) N1---N2 1.345 (4) C3---C4 1.513 (4) N4---Cd1^iv^ 2.407 (2) N3---Cd1---N3^i^ 180.0 H3A---C3---H3B 107.6 N3---Cd1---N4^ii^ 85.88 (8) C5---C4---C8 117.8 (3) N3^i^---Cd1---N4^ii^ 94.12 (8) C5---C4---C3 125.3 (3) N3---Cd1---N4^iii^ 94.12 (8) C8---C4---C3 116.9 (3) N3^i^---Cd1---N4^iii^ 85.88 (8) C4---C5---C6 119.4 (3) N4^ii^---Cd1---N4^iii^ 180.0 C4---C5---H5A 120.3 N3---Cd1---Br1 88.21 (6) C6---C5---H5A 120.3 N3^i^---Cd1---Br1 91.79 (6) N4---C6---C5 123.1 (3) N4^ii^---Cd1---Br1 90.06 (6) N4---C6---H6A 118.4 N4^iii^---Cd1---Br1 89.94 (6) C5---C6---H6A 118.4 N3---Cd1---Br1^i^ 91.79 (6) N4---C7---C8 123.4 (3) N3^i^---Cd1---Br1^i^ 88.21 (6) N4---C7---H7A 118.3 N4^ii^---Cd1---Br1^i^ 89.94 (6) C8---C7---H7A 118.3 N4^iii^---Cd1---Br1^i^ 90.06 (6) C7---C8---C4 119.3 (3) Br1---Cd1---Br1^i^ 180.0 C7---C8---H8A 120.4 N2---C1---N3 114.0 (3) C4---C8---H8A 120.4 N2---C1---H1A 123.0 C2---N1---N2 109.6 (2) N3---C1---H1A 123.0 C2---N1---C3 128.3 (3) N3---C2---N1 110.2 (3) N2---N1---C3 121.9 (2) N3---C2---H2A 124.9 C1---N2---N1 103.2 (2) N1---C2---H2A 124.9 C2---N3---C1 103.0 (2) N1---C3---C4 114.7 (2) C2---N3---Cd1 128.17 (19) N1---C3---H3A 108.6 C1---N3---Cd1 128.52 (19) C4---C3---H3A 108.6 C6---N4---C7 117.0 (2) N1---C3---H3B 108.6 C6---N4---Cd1^iv^ 125.46 (19) C4---C3---H3B 108.6 C7---N4---Cd1^iv^ 117.12 (19) ------------------------ ------------ ------------------- ------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*+1; (ii) *x*−1, −*y*+3/2, *z*−1/2; (iii) −*x*+1, *y*−1/2, −*z*+3/2; (iv) −*x*+1, *y*+1/2, −*z*+3/2.
PubMed Central
2024-06-05T04:04:16.967157
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051776/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m190", "authors": [ { "first": "Xiu-Zhi", "last": "Xu" }, { "first": "Zhu-Lai", "last": "Li" }, { "first": "Wen-Jin", "last": "Yan" }, { "first": "Hui-Li", "last": "Chi" } ] }
PMC3051777
Related literature {#sec1} ================== For general background to quinoline derivatives, see: Katritzky *et al.* (1985[@bb8]); Ramana Reddy *et al.* (1990[@bb10]); Bhaskar *et al.* (2000[@bb3]). For the synthesis, see: Baliah & Rangarajan *et al.* (1954[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]). For puckering parameters, see: Cremer & Pople (1975[@bb5]). For asymmetry parameters, see: Nardelli (1983[@bb9]) Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~20~H~23~N~3~O~6~S*M* *~r~* = 433.47Orthorhombic,*a* = 20.7258 (13) Å*b* = 8.3921 (5) Å*c* = 24.4923 (15) Å*V* = 4260.0 (5) Å^3^*Z* = 8Mo *K*α radiationμ = 0.19 mm^−1^*T* = 293 K0.20 × 0.18 × 0.16 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2008[@bb4]) *T* ~min~ = 0.962, *T* ~max~ = 0.97022898 measured reflections9897 independent reflections7453 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.113*S* = 1.039897 reflections553 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.29 e Å^−3^Δρ~min~ = −0.17 e Å^−3^Absolute structure: Flack (1983[@bb7]), 4584 Friedel pairsFlack parameter: 0.14 (6) {#d5e579} Data collection: *APEX2* (Bruker, 2008[@bb4]); cell refinement: *SAINT* (Bruker, 2008[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb6]); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009[@bb12]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000444/bt5412sup1.cif](http://dx.doi.org/10.1107/S1600536811000444/bt5412sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000444/bt5412Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000444/bt5412Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5412&file=bt5412sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5412sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5412&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5412](http://scripts.iucr.org/cgi-bin/sendsup?bt5412)). The authors thank the TBI consultancy, University of Madras, India, for the data collection Comment ======= Tetrahydro-1,4-thiazine-1,1-dioxide derivatives possess antibacterial, antifungal and antihistaminic properties (Katritzky, 1985; Ramana Reddy *et al.*, 1990; Bhaskar *et al.* 2000). Against this background and to ascertain the structure of title compound, the crystallographic studies has been carried out. The *ORTEP* plot of the molecule is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. Both thiomorpholine ring systems adopt a chair conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: for molecule A, q~2~ = 0.029 (3) Å, q~3~ = 0.598 (3) Å, φ~2~ = 41 (5)° and Δ~s~(S1A & N1A)= 2.6 (2) °; for molecule B: q~2~ = 0.039 (3) Å, q~3~ = 0.599 (3) Å, φ~2~ = 305 (4)° and Δ~s~(S1B & N1B)= 3.5 (2)°. The sum of the bond angles around the atoms N1A (346.5°) and N1B (332.2°) of the thiomorphline ring in both the molecules are in accordance with *sp^3^* hybridization. The packing of the molecules in the crystal is stabilized by C---H···O interactions which form a three demensional network. Experimental {#experimental} ============ A mixture of diethyl 2,2\'-sulfonyldiacetate (1.0 mol), pyridine-2-aldehyde (2.0 mol), ammonium acetate (2.0 mol) and a few drops of alcohol were made as a homogeneous paste. Then it was stirred with 10 ml of water at room temperature for about 3 h and left overnight. The reaction mixture was diluted with excess of water. The solid that separated was filtered, washed with water and dried; crystallization from aqueous alcohol gave pure 2,6-dicarbethoxy-3,5-bis(pyridin-2-yl)tetrahydro-1,4-thiazine-1,1-dioxide (Baliah and Rangarajan, 1954). Refinement {#refinement} ========== H atoms were positioned geometrically (C---H=0.93--0.98 Å) and allowed to ride on their parent atoms,with *U*~iso~(H) = 1.5*U*~eq~(C) for methyl H 1.2*U*~eq~(C) for other H atoms. The amino H atoms were freely refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, showing just one of the two molecules in the asymmetric unit. The displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o305-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e150 .table-wrap} ------------------------- --------------------------------------- C~20~H~23~N~3~O~6~S *F*(000) = 1824 *M~r~* = 433.47 *D*~x~ = 1.352 Mg m^−3^ Orthorhombic, *Pna*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2n Cell parameters from 4535 reflections *a* = 20.7258 (13) Å θ = 1.7--28.3° *b* = 8.3921 (5) Å µ = 0.19 mm^−1^ *c* = 24.4923 (15) Å *T* = 293 K *V* = 4260.0 (5) Å^3^ Block, colourless *Z* = 8 0.20 × 0.18 × 0.16 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e276 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII area-detector diffractometer 9897 independent reflections Radiation source: fine-focus sealed tube 7453 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 ω and φ scans θ~max~ = 28.3°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *h* = −21→27 *T*~min~ = 0.962, *T*~max~ = 0.970 *k* = −10→11 22898 measured reflections *l* = −32→32 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e393 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.113 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0624*P*)^2^ + 0.0627*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.03 (Δ/σ)~max~ \< 0.001 9897 reflections Δρ~max~ = 0.29 e Å^−3^ 553 parameters Δρ~min~ = −0.17 e Å^−3^ 1 restraint Absolute structure: Flack (1983), 4584 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.14 (6) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e555 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e654 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1A 0.07796 (3) 0.29281 (10) 0.17383 (2) 0.03724 (14) O1A −0.08829 (9) 0.1886 (3) 0.18546 (9) 0.0567 (5) O2A −0.02641 (10) 0.0197 (3) 0.13848 (9) 0.0649 (6) O3A 0.05012 (9) 0.4478 (2) 0.16522 (8) 0.0481 (5) O4A 0.10104 (11) 0.2054 (3) 0.12711 (8) 0.0491 (5) O5A 0.17481 (10) 0.5395 (2) 0.26684 (9) 0.0538 (5) O6A 0.08102 (10) 0.4278 (3) 0.29336 (10) 0.0538 (6) N1A 0.10848 (11) 0.0586 (3) 0.27062 (12) 0.0374 (6) H1A 0.0979 (17) 0.092 (4) 0.3042 (15) 0.060 (11)\* C2A 0.05581 (12) 0.0218 (3) 0.23411 (11) 0.0368 (5) H2A 0.0731 −0.0398 0.2034 0.044\* C3A 0.02173 (12) 0.1721 (3) 0.21064 (10) 0.0347 (5) H3A 0.0037 0.2344 0.2409 0.042\* C4A 0.14360 (13) 0.3100 (3) 0.22123 (10) 0.0364 (6) H4A 0.1811 0.3493 0.2010 0.044\* C5A 0.16188 (12) 0.1416 (3) 0.24529 (11) 0.0351 (6) H5A 0.1774 0.0755 0.2150 0.042\* C6A 0.00661 (13) −0.0803 (3) 0.26320 (11) 0.0420 (6) C10A −0.04476 (19) −0.3286 (4) 0.27768 (18) 0.0736 (10) H10A −0.0497 −0.4367 0.2703 0.088\* C9A −0.0819 (2) −0.2545 (4) 0.3169 (3) 0.0729 (17) H9A −0.1135 −0.3112 0.3356 0.088\* C8A −0.07184 (18) −0.0963 (5) 0.32788 (15) 0.0717 (10) H8A −0.0965 −0.0486 0.3551 0.086\* N7A −0.02839 (13) −0.0069 (3) 0.30152 (10) 0.0577 (7) C12A −0.03341 (13) 0.1183 (3) 0.17295 (12) 0.0440 (6) C13A −0.14618 (16) 0.1198 (5) 0.16069 (16) 0.0735 (11) H13A −0.1359 0.0752 0.1252 0.088\* H13B −0.1789 0.2013 0.1559 0.088\* C14A −0.17102 (18) −0.0106 (5) 0.19873 (18) 0.0800 (11) H14A −0.1410 −0.0978 0.1991 0.120\* H14B −0.2122 −0.0475 0.1860 0.120\* H14C −0.1755 0.0314 0.2350 0.120\* C15A 0.12790 (15) 0.4312 (4) 0.26447 (14) 0.0424 (7) C16A 0.16830 (19) 0.6658 (4) 0.30708 (18) 0.0735 (11) H16A 0.1500 0.6239 0.3406 0.088\* H16B 0.1401 0.7489 0.2934 0.088\* C17A 0.2328 (3) 0.7300 (6) 0.3173 (3) 0.115 (2) H17A 0.2590 0.6500 0.3344 0.172\* H17B 0.2297 0.8211 0.3408 0.172\* H17C 0.2522 0.7611 0.2833 0.172\* C18A 0.21738 (12) 0.1620 (3) 0.28544 (10) 0.0354 (5) C19A 0.28099 (13) 0.1448 (3) 0.26942 (12) 0.0452 (6) H19A 0.2910 0.1166 0.2337 0.054\* C20A 0.32921 (14) 0.1699 (4) 0.30700 (13) 0.0557 (8) H20A 0.3722 0.1605 0.2967 0.067\* C21A 0.31343 (18) 0.2091 (5) 0.36023 (16) 0.0567 (8) H21A 0.3450 0.2258 0.3866 0.068\* C22A 0.24882 (18) 0.2220 (6) 0.3722 (2) 0.0659 (12) H22A 0.2376 0.2470 0.4080 0.079\* C11A −0.00059 (17) −0.2393 (4) 0.2500 (2) 0.0585 (13) H11A 0.0244 −0.2849 0.2226 0.070\* N23A 0.20096 (12) 0.2015 (4) 0.33639 (12) 0.0539 (6) S1B 0.16804 (3) 0.70742 (10) 0.10968 (2) 0.03664 (14) O1B 0.07041 (10) 0.4650 (2) 0.01390 (9) 0.0517 (5) O2B 0.16626 (10) 0.5726 (3) −0.00902 (9) 0.0503 (6) O3B 0.19608 (9) 0.5531 (2) 0.11852 (8) 0.0470 (5) O4B 0.14445 (11) 0.7948 (3) 0.15549 (8) 0.0495 (5) O5B 0.33391 (9) 0.8084 (3) 0.09752 (8) 0.0561 (5) O6B 0.27294 (11) 0.9824 (3) 0.14422 (9) 0.0645 (6) N1B 0.13666 (12) 0.9403 (3) 0.01219 (12) 0.0375 (6) H1B 0.1533 (11) 0.885 (3) −0.0151 (10) 0.016 (6)\* C2B 0.08363 (12) 0.8566 (3) 0.03772 (11) 0.0364 (6) H2B 0.0675 0.9231 0.0676 0.044\* C3B 0.10241 (12) 0.6909 (3) 0.06219 (11) 0.0350 (5) H3B 0.0649 0.6509 0.0824 0.042\* C4B 0.22467 (12) 0.8277 (3) 0.07248 (10) 0.0360 (5) H4B 0.2426 0.7655 0.0422 0.043\* C5B 0.18996 (12) 0.9771 (3) 0.04946 (10) 0.0368 (5) H5B 0.1725 1.0379 0.0803 0.044\* C6B 0.02908 (13) 0.8343 (3) −0.00298 (10) 0.0379 (6) N7B 0.04684 (13) 0.7879 (4) −0.05309 (11) 0.0515 (6) C8B −0.00031 (19) 0.7602 (4) −0.0897 (2) 0.0568 (11) H8B 0.0112 0.7298 −0.1249 0.068\* C9B −0.0645 (2) 0.7749 (5) −0.07749 (18) 0.0585 (10) H9B −0.0957 0.7527 −0.1037 0.070\* C10B −0.08203 (15) 0.8230 (4) −0.02585 (14) 0.0591 (8) H10B −0.1253 0.8341 −0.0166 0.071\* C11B −0.03454 (13) 0.8544 (4) 0.01173 (12) 0.0488 (7) H11B −0.0452 0.8888 0.0467 0.059\* C12B 0.11816 (14) 0.5696 (4) 0.01801 (13) 0.0367 (6) C13B 0.07553 (18) 0.3485 (4) −0.02997 (18) 0.0738 (11) H13C 0.1073 0.2679 −0.0208 0.089\* H13D 0.0886 0.4002 −0.0636 0.089\* C14B 0.0110 (2) 0.2750 (6) −0.0364 (2) 0.1052 (19) H14D −0.0049 0.2424 −0.0014 0.158\* H14E 0.0142 0.1838 −0.0600 0.158\* H14F −0.0181 0.3512 −0.0522 0.158\* C15B 0.27901 (12) 0.8812 (3) 0.10983 (11) 0.0425 (6) C16B 0.39240 (16) 0.8787 (5) 0.12212 (16) 0.0777 (12) H16C 0.4253 0.7975 0.1264 0.093\* H16D 0.3824 0.9215 0.1579 0.093\* C17B 0.41688 (19) 1.0101 (5) 0.08536 (18) 0.0843 (12) H17D 0.4262 0.9672 0.0499 0.126\* H17E 0.4554 1.0550 0.1007 0.126\* H17F 0.3846 1.0915 0.0822 0.126\* C18B 0.23894 (13) 1.0806 (3) 0.02030 (11) 0.0411 (6) N23B 0.27697 (14) 1.0074 (3) −0.01583 (10) 0.0572 (7) C22B 0.32086 (19) 1.0969 (4) −0.04148 (16) 0.0744 (10) H22B 0.3487 1.0465 −0.0658 0.089\* C21B 0.3276 (2) 1.2571 (5) −0.0344 (2) 0.0787 (17) H21B 0.3576 1.3150 −0.0545 0.094\* C20B 0.28872 (18) 1.3298 (4) 0.0032 (2) 0.0831 (13) H20B 0.2926 1.4386 0.0097 0.100\* C19B 0.24368 (18) 1.2407 (4) 0.0315 (2) 0.0593 (13) H19B 0.2172 1.2880 0.0575 0.071\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2097 .table-wrap} ------ ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1A 0.0374 (3) 0.0421 (3) 0.0323 (3) 0.0025 (3) −0.0030 (3) 0.0002 (4) O1A 0.0377 (11) 0.0668 (13) 0.0655 (14) 0.0079 (10) −0.0082 (10) −0.0139 (11) O2A 0.0520 (13) 0.0804 (15) 0.0622 (13) 0.0050 (12) −0.0126 (11) −0.0321 (12) O3A 0.0476 (11) 0.0430 (10) 0.0537 (12) 0.0053 (8) −0.0067 (9) 0.0093 (9) O4A 0.0532 (12) 0.0603 (11) 0.0337 (11) 0.0042 (12) 0.0014 (9) −0.0040 (11) O5A 0.0589 (13) 0.0410 (11) 0.0614 (12) −0.0130 (9) −0.0042 (10) −0.0063 (10) O6A 0.0538 (13) 0.0502 (13) 0.0574 (13) 0.0001 (10) 0.0068 (11) −0.0100 (11) N1A 0.0323 (12) 0.0400 (13) 0.0399 (14) −0.0009 (11) −0.0043 (11) −0.0006 (11) C2A 0.0352 (13) 0.0345 (13) 0.0408 (13) 0.0022 (11) −0.0021 (11) −0.0047 (11) C3A 0.0324 (13) 0.0374 (13) 0.0344 (12) 0.0013 (10) −0.0024 (10) −0.0018 (10) C4A 0.0323 (14) 0.0416 (16) 0.0352 (14) −0.0007 (12) −0.0001 (10) 0.0036 (12) C5A 0.0349 (14) 0.0346 (14) 0.0358 (13) 0.0015 (11) 0.0006 (11) −0.0025 (11) C6A 0.0368 (14) 0.0416 (14) 0.0475 (15) −0.0005 (12) −0.0081 (11) 0.0030 (12) C10A 0.065 (2) 0.0521 (19) 0.103 (3) −0.0119 (18) −0.005 (2) 0.013 (2) C9A 0.050 (2) 0.063 (3) 0.106 (4) −0.0172 (17) −0.009 (2) 0.035 (2) C8A 0.067 (2) 0.080 (2) 0.068 (2) 0.002 (2) 0.0171 (18) 0.0119 (19) N7A 0.0614 (17) 0.0557 (15) 0.0561 (15) −0.0071 (13) 0.0131 (13) −0.0039 (12) C12A 0.0407 (15) 0.0507 (15) 0.0405 (13) 0.0041 (12) −0.0055 (12) −0.0069 (13) C13A 0.0383 (17) 0.107 (3) 0.075 (2) 0.0097 (19) −0.0178 (16) −0.019 (2) C14A 0.050 (2) 0.093 (3) 0.097 (3) −0.012 (2) −0.016 (2) −0.020 (2) C15A 0.0462 (17) 0.0414 (16) 0.0396 (16) 0.0018 (14) −0.0072 (14) 0.0037 (13) C16A 0.082 (3) 0.0501 (19) 0.089 (3) −0.0045 (17) −0.019 (2) −0.0198 (18) C17A 0.092 (3) 0.075 (3) 0.177 (7) −0.033 (3) 0.002 (4) −0.051 (3) C18A 0.0331 (13) 0.0388 (12) 0.0343 (12) 0.0019 (11) −0.0024 (10) −0.0006 (10) C19A 0.0363 (14) 0.0587 (16) 0.0405 (14) 0.0039 (13) 0.0010 (11) −0.0047 (13) C20A 0.0342 (15) 0.077 (2) 0.0561 (18) 0.0046 (15) −0.0052 (13) −0.0026 (15) C21A 0.0467 (19) 0.073 (2) 0.050 (2) 0.0023 (18) −0.0194 (16) −0.0008 (19) C22A 0.055 (3) 0.102 (3) 0.040 (2) 0.0021 (19) −0.0054 (17) −0.0149 (19) C11A 0.054 (2) 0.039 (2) 0.082 (4) −0.0049 (13) −0.007 (2) −0.0010 (15) N23A 0.0359 (14) 0.0854 (18) 0.0403 (14) 0.0052 (15) −0.0017 (11) −0.0102 (16) S1B 0.0379 (4) 0.0414 (3) 0.0307 (3) 0.0043 (3) −0.0034 (3) 0.0005 (4) O1B 0.0532 (12) 0.0473 (12) 0.0547 (12) −0.0092 (9) 0.0001 (10) −0.0088 (10) O2B 0.0460 (13) 0.0588 (13) 0.0463 (12) 0.0013 (10) 0.0042 (10) −0.0114 (11) O3B 0.0485 (11) 0.0453 (10) 0.0472 (11) 0.0073 (8) −0.0081 (9) 0.0048 (9) O4B 0.0553 (13) 0.0604 (11) 0.0329 (10) 0.0066 (12) 0.0027 (9) −0.0046 (11) O5B 0.0375 (11) 0.0719 (14) 0.0589 (14) 0.0093 (11) −0.0105 (9) −0.0063 (11) O6B 0.0548 (13) 0.0805 (15) 0.0582 (12) 0.0028 (12) −0.0105 (10) −0.0314 (12) N1B 0.0380 (13) 0.0373 (13) 0.0374 (14) 0.0029 (11) −0.0031 (11) 0.0001 (11) C2B 0.0320 (13) 0.0415 (15) 0.0358 (14) 0.0041 (11) −0.0027 (11) −0.0024 (11) C3B 0.0305 (13) 0.0410 (16) 0.0335 (13) −0.0004 (12) 0.0005 (10) 0.0004 (11) C4B 0.0348 (14) 0.0408 (14) 0.0325 (12) 0.0037 (11) −0.0002 (10) −0.0062 (10) C5B 0.0364 (14) 0.0391 (13) 0.0351 (13) 0.0004 (11) −0.0025 (11) −0.0045 (11) C6B 0.0371 (14) 0.0376 (13) 0.0390 (13) 0.0024 (11) −0.0027 (11) 0.0065 (10) N7B 0.0429 (15) 0.0785 (16) 0.0332 (13) 0.0011 (14) −0.0019 (10) 0.0008 (14) C8B 0.057 (2) 0.082 (3) 0.032 (2) 0.0012 (15) −0.0099 (16) 0.0009 (13) C9B 0.049 (2) 0.077 (2) 0.050 (2) −0.0088 (18) −0.0166 (16) 0.0103 (18) C10B 0.0347 (16) 0.076 (2) 0.066 (2) 0.0028 (15) −0.0032 (15) 0.0044 (16) C11B 0.0404 (15) 0.0606 (18) 0.0454 (15) 0.0073 (13) −0.0001 (13) −0.0013 (13) C12B 0.0385 (15) 0.0351 (14) 0.0366 (14) 0.0026 (13) −0.0081 (13) 0.0010 (11) C13B 0.076 (3) 0.060 (2) 0.086 (3) −0.0058 (18) −0.011 (2) −0.0311 (19) C14B 0.095 (4) 0.110 (4) 0.111 (5) −0.034 (3) −0.005 (3) −0.047 (3) C15B 0.0384 (14) 0.0501 (15) 0.0390 (13) 0.0035 (11) −0.0026 (12) −0.0004 (13) C16B 0.0412 (18) 0.117 (3) 0.075 (2) 0.013 (2) −0.0250 (17) −0.020 (2) C17B 0.053 (2) 0.102 (3) 0.099 (3) −0.018 (2) −0.011 (2) −0.019 (3) C18B 0.0384 (14) 0.0385 (13) 0.0464 (15) −0.0006 (11) −0.0063 (12) −0.0011 (12) N23B 0.0644 (18) 0.0517 (14) 0.0557 (15) −0.0036 (13) 0.0154 (13) 0.0002 (12) C22B 0.073 (2) 0.072 (2) 0.079 (2) −0.002 (2) 0.026 (2) 0.015 (2) C21B 0.063 (3) 0.081 (4) 0.093 (4) −0.010 (2) 0.014 (3) 0.033 (2) C20B 0.059 (2) 0.0443 (18) 0.146 (4) −0.0100 (17) 0.003 (3) 0.014 (2) C19B 0.046 (2) 0.045 (2) 0.087 (4) 0.0008 (13) 0.002 (2) −0.0031 (15) ------ ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3255 .table-wrap} --------------------------- -------------- --------------------------- -------------- S1A---O3A 1.439 (2) S1B---O4B 1.427 (2) S1A---O4A 1.441 (2) S1B---O3B 1.4356 (19) S1A---C3A 1.788 (3) S1B---C3B 1.795 (3) S1A---C4A 1.794 (3) S1B---C4B 1.796 (3) O1A---C12A 1.318 (3) O1B---C12B 1.327 (3) O1A---C13A 1.463 (4) O1B---C13B 1.456 (4) O2A---C12A 1.191 (3) O2B---C12B 1.197 (3) O5A---C15A 1.332 (4) O5B---C15B 1.326 (3) O5A---C16A 1.454 (4) O5B---C16B 1.477 (4) O6A---C15A 1.202 (4) O6B---C15B 1.202 (3) N1A---C2A 1.445 (4) N1B---C2B 1.447 (4) N1A---C5A 1.447 (3) N1B---C5B 1.466 (4) N1A---H1A 0.90 (4) N1B---H1B 0.88 (2) C2A---C6A 1.511 (4) C2B---C6B 1.519 (4) C2A---C3A 1.556 (4) C2B---C3B 1.563 (4) C2A---H2A 0.9800 C2B---H2B 0.9800 C3A---C12A 1.537 (4) C3B---C12B 1.521 (4) C3A---H3A 0.9800 C3B---H3B 0.9800 C4A---C15A 1.504 (4) C4B---C15B 1.519 (4) C4A---C5A 1.577 (4) C4B---C5B 1.552 (4) C4A---H4A 0.9800 C4B---H4B 0.9800 C5A---C18A 1.523 (3) C5B---C18B 1.515 (4) C5A---H5A 0.9800 C5B---H5B 0.9800 C6A---N7A 1.337 (4) C6B---N7B 1.339 (4) C6A---C11A 1.381 (4) C6B---C11B 1.377 (4) C10A---C11A 1.364 (5) N7B---C8B 1.346 (5) C10A---C9A 1.379 (6) C8B---C9B 1.368 (5) C10A---H10A 0.9300 C8B---H8B 0.9300 C9A---C8A 1.371 (5) C9B---C10B 1.377 (6) C9A---H9A 0.9300 C9B---H9B 0.9300 C8A---N7A 1.338 (4) C10B---C11B 1.373 (4) C8A---H8A 0.9300 C10B---H10B 0.9300 C13A---C14A 1.527 (6) C11B---H11B 0.9300 C13A---H13A 0.9700 C13B---C14B 1.481 (5) C13A---H13B 0.9700 C13B---H13C 0.9700 C14A---H14A 0.9600 C13B---H13D 0.9700 C14A---H14B 0.9600 C14B---H14D 0.9600 C14A---H14C 0.9600 C14B---H14E 0.9600 C16A---C17A 1.464 (6) C14B---H14F 0.9600 C16A---H16A 0.9700 C16B---C17B 1.511 (6) C16A---H16B 0.9700 C16B---H16C 0.9700 C17A---H17A 0.9600 C16B---H16D 0.9700 C17A---H17B 0.9600 C17B---H17D 0.9600 C17A---H17C 0.9600 C17B---H17E 0.9600 C18A---N23A 1.335 (4) C17B---H17F 0.9600 C18A---C19A 1.383 (4) C18B---N23B 1.335 (4) C19A---C20A 1.375 (4) C18B---C19B 1.375 (4) C19A---H19A 0.9300 N23B---C22B 1.336 (4) C20A---C21A 1.384 (5) C22B---C21B 1.362 (5) C20A---H20A 0.9300 C22B---H22B 0.9300 C21A---C22A 1.375 (5) C21B---C20B 1.367 (6) C21A---H21A 0.9300 C21B---H21B 0.9300 C22A---N23A 1.335 (5) C20B---C19B 1.382 (5) C22A---H22A 0.9300 C20B---H20B 0.9300 C11A---H11A 0.9300 C19B---H19B 0.9300 O3A---S1A---O4A 118.48 (13) O4B---S1B---O3B 118.95 (13) O3A---S1A---C3A 108.96 (12) O4B---S1B---C3B 106.83 (13) O4A---S1A---C3A 109.18 (13) O3B---S1B---C3B 109.55 (13) O3A---S1A---C4A 109.05 (13) O4B---S1B---C4B 109.49 (13) O4A---S1A---C4A 107.63 (13) O3B---S1B---C4B 108.60 (12) C3A---S1A---C4A 102.32 (12) C3B---S1B---C4B 102.12 (12) C12A---O1A---C13A 115.8 (2) C12B---O1B---C13B 116.5 (2) C15A---O5A---C16A 117.4 (3) C15B---O5B---C16B 115.3 (2) C2A---N1A---C5A 114.5 (2) C2B---N1B---C5B 113.9 (2) C2A---N1A---H1A 117 (2) C2B---N1B---H1B 111.6 (15) C5A---N1A---H1A 115 (2) C5B---N1B---H1B 106.7 (15) N1A---C2A---C6A 109.8 (2) N1B---C2B---C6B 110.0 (2) N1A---C2A---C3A 113.5 (2) N1B---C2B---C3B 114.1 (2) C6A---C2A---C3A 109.1 (2) C6B---C2B---C3B 109.1 (2) N1A---C2A---H2A 108.1 N1B---C2B---H2B 107.8 C6A---C2A---H2A 108.1 C6B---C2B---H2B 107.8 C3A---C2A---H2A 108.1 C3B---C2B---H2B 107.8 C12A---C3A---C2A 108.8 (2) C12B---C3B---C2B 112.1 (2) C12A---C3A---S1A 110.37 (18) C12B---C3B---S1B 110.50 (18) C2A---C3A---S1A 110.48 (17) C2B---C3B---S1B 111.6 (2) C12A---C3A---H3A 109.1 C12B---C3B---H3B 107.5 C2A---C3A---H3A 109.1 C2B---C3B---H3B 107.5 S1A---C3A---H3A 109.1 S1B---C3B---H3B 107.5 C15A---C4A---C5A 113.3 (2) C15B---C4B---C5B 108.9 (2) C15A---C4A---S1A 110.23 (19) C15B---C4B---S1B 110.20 (18) C5A---C4A---S1A 110.61 (19) C5B---C4B---S1B 109.61 (17) C15A---C4A---H4A 107.5 C15B---C4B---H4B 109.4 C5A---C4A---H4A 107.5 C5B---C4B---H4B 109.4 S1A---C4A---H4A 107.5 S1B---C4B---H4B 109.4 N1A---C5A---C18A 110.8 (2) N1B---C5B---C18B 109.4 (2) N1A---C5A---C4A 114.1 (2) N1B---C5B---C4B 113.9 (2) C18A---C5A---C4A 108.8 (2) C18B---C5B---C4B 108.9 (2) N1A---C5A---H5A 107.7 N1B---C5B---H5B 108.1 C18A---C5A---H5A 107.7 C18B---C5B---H5B 108.1 C4A---C5A---H5A 107.7 C4B---C5B---H5B 108.1 N7A---C6A---C11A 123.4 (3) N7B---C6B---C11B 122.6 (3) N7A---C6A---C2A 115.9 (2) N7B---C6B---C2B 115.6 (2) C11A---C6A---C2A 120.7 (3) C11B---C6B---C2B 121.7 (2) C11A---C10A---C9A 118.2 (4) C6B---N7B---C8B 117.4 (3) C11A---C10A---H10A 120.9 N7B---C8B---C9B 123.0 (4) C9A---C10A---H10A 120.9 N7B---C8B---H8B 118.5 C8A---C9A---C10A 119.2 (4) C9B---C8B---H8B 118.5 C8A---C9A---H9A 120.4 C8B---C9B---C10B 118.9 (4) C10A---C9A---H9A 120.4 C8B---C9B---H9B 120.5 N7A---C8A---C9A 123.4 (4) C10B---C9B---H9B 120.5 N7A---C8A---H8A 118.3 C11B---C10B---C9B 118.9 (3) C9A---C8A---H8A 118.3 C11B---C10B---H10B 120.6 C6A---N7A---C8A 116.5 (3) C9B---C10B---H10B 120.6 O2A---C12A---O1A 125.5 (3) C10B---C11B---C6B 119.2 (3) O2A---C12A---C3A 122.6 (2) C10B---C11B---H11B 120.4 O1A---C12A---C3A 111.8 (2) C6B---C11B---H11B 120.4 O1A---C13A---C14A 107.9 (3) O2B---C12B---O1B 126.4 (3) O1A---C13A---H13A 110.1 O2B---C12B---C3B 123.9 (3) C14A---C13A---H13A 110.1 O1B---C12B---C3B 109.7 (2) O1A---C13A---H13B 110.1 O1B---C13B---C14B 107.0 (3) C14A---C13A---H13B 110.1 O1B---C13B---H13C 110.3 H13A---C13A---H13B 108.4 C14B---C13B---H13C 110.3 C13A---C14A---H14A 109.5 O1B---C13B---H13D 110.3 C13A---C14A---H14B 109.5 C14B---C13B---H13D 110.3 H14A---C14A---H14B 109.5 H13C---C13B---H13D 108.6 C13A---C14A---H14C 109.5 C13B---C14B---H14D 109.5 H14A---C14A---H14C 109.5 C13B---C14B---H14E 109.5 H14B---C14A---H14C 109.5 H14D---C14B---H14E 109.5 O6A---C15A---O5A 125.4 (3) C13B---C14B---H14F 109.5 O6A---C15A---C4A 125.0 (3) H14D---C14B---H14F 109.5 O5A---C15A---C4A 109.5 (3) H14E---C14B---H14F 109.5 O5A---C16A---C17A 107.4 (4) O6B---C15B---O5B 125.0 (3) O5A---C16A---H16A 110.2 O6B---C15B---C4B 123.6 (2) C17A---C16A---H16A 110.2 O5B---C15B---C4B 111.3 (2) O5A---C16A---H16B 110.2 O5B---C16B---C17B 108.9 (3) C17A---C16A---H16B 110.2 O5B---C16B---H16C 109.9 H16A---C16A---H16B 108.5 C17B---C16B---H16C 109.9 C16A---C17A---H17A 109.5 O5B---C16B---H16D 109.9 C16A---C17A---H17B 109.5 C17B---C16B---H16D 109.9 H17A---C17A---H17B 109.5 H16C---C16B---H16D 108.3 C16A---C17A---H17C 109.5 C16B---C17B---H17D 109.5 H17A---C17A---H17C 109.5 C16B---C17B---H17E 109.5 H17B---C17A---H17C 109.5 H17D---C17B---H17E 109.5 N23A---C18A---C19A 122.3 (2) C16B---C17B---H17F 109.5 N23A---C18A---C5A 116.0 (2) H17D---C17B---H17F 109.5 C19A---C18A---C5A 121.7 (2) H17E---C17B---H17F 109.5 C20A---C19A---C18A 119.1 (3) N23B---C18B---C19B 122.6 (3) C20A---C19A---H19A 120.4 N23B---C18B---C5B 116.4 (2) C18A---C19A---H19A 120.4 C19B---C18B---C5B 121.0 (3) C19A---C20A---C21A 119.7 (3) C18B---N23B---C22B 117.1 (3) C19A---C20A---H20A 120.2 N23B---C22B---C21B 124.4 (4) C21A---C20A---H20A 120.2 N23B---C22B---H22B 117.8 C22A---C21A---C20A 116.7 (4) C21B---C22B---H22B 117.8 C22A---C21A---H21A 121.6 C22B---C21B---C20B 117.8 (4) C20A---C21A---H21A 121.6 C22B---C21B---H21B 121.1 N23A---C22A---C21A 125.0 (4) C20B---C21B---H21B 121.1 N23A---C22A---H22A 117.5 C21B---C20B---C19B 119.6 (3) C21A---C22A---H22A 117.5 C21B---C20B---H20B 120.2 C10A---C11A---C6A 119.1 (4) C19B---C20B---H20B 120.2 C10A---C11A---H11A 120.4 C18B---C19B---C20B 118.5 (4) C6A---C11A---H11A 120.4 C18B---C19B---H19B 120.7 C18A---N23A---C22A 117.2 (3) C20B---C19B---H19B 120.7 C5A---N1A---C2A---C6A 173.6 (2) C5B---N1B---C2B---C6B 176.0 (2) C5A---N1A---C2A---C3A −63.9 (3) C5B---N1B---C2B---C3B −61.0 (3) N1A---C2A---C3A---C12A −179.6 (2) N1B---C2B---C3B---C12B −69.3 (3) C6A---C2A---C3A---C12A −56.7 (3) C6B---C2B---C3B---C12B 54.2 (3) N1A---C2A---C3A---S1A 59.1 (3) N1B---C2B---C3B---S1B 55.2 (3) C6A---C2A---C3A---S1A −178.03 (17) C6B---C2B---C3B---S1B 178.71 (17) O3A---S1A---C3A---C12A 74.7 (2) O4B---S1B---C3B---C12B −167.6 (2) O4A---S1A---C3A---C12A −56.1 (2) O3B---S1B---C3B---C12B −37.5 (2) C4A---S1A---C3A---C12A −169.94 (18) C4B---S1B---C3B---C12B 77.5 (2) O3A---S1A---C3A---C2A −164.99 (17) O4B---S1B---C3B---C2B 67.0 (2) O4A---S1A---C3A---C2A 64.2 (2) O3B---S1B---C3B---C2B −162.92 (17) C4A---S1A---C3A---C2A −49.63 (19) C4B---S1B---C3B---C2B −47.94 (19) O3A---S1A---C4A---C15A 37.0 (2) O4B---S1B---C4B---C15B 56.6 (2) O4A---S1A---C4A---C15A 166.8 (2) O3B---S1B---C4B---C15B −74.7 (2) C3A---S1A---C4A---C15A −78.3 (2) C3B---S1B---C4B---C15B 169.59 (18) O3A---S1A---C4A---C5A 163.07 (17) O4B---S1B---C4B---C5B −63.2 (2) O4A---S1A---C4A---C5A −67.2 (2) O3B---S1B---C4B---C5B 165.46 (16) C3A---S1A---C4A---C5A 47.8 (2) C3B---S1B---C4B---C5B 49.78 (19) C2A---N1A---C5A---C18A −174.9 (2) C2B---N1B---C5B---C18B −173.5 (2) C2A---N1A---C5A---C4A 62.0 (3) C2B---N1B---C5B---C4B 64.3 (3) C15A---C4A---C5A---N1A 68.8 (3) C15B---C4B---C5B---N1B 179.4 (2) S1A---C4A---C5A---N1A −55.5 (3) S1B---C4B---C5B---N1B −60.0 (2) C15A---C4A---C5A---C18A −55.4 (3) C15B---C4B---C5B---C18B 57.0 (3) S1A---C4A---C5A---C18A −179.67 (17) S1B---C4B---C5B---C18B 177.62 (17) N1A---C2A---C6A---N7A 71.3 (3) N1B---C2B---C6B---N7B 43.8 (3) C3A---C2A---C6A---N7A −53.7 (3) C3B---C2B---C6B---N7B −82.1 (3) N1A---C2A---C6A---C11A −108.8 (3) N1B---C2B---C6B---C11B −138.7 (3) C3A---C2A---C6A---C11A 126.3 (3) C3B---C2B---C6B---C11B 95.4 (3) C11A---C10A---C9A---C8A −2.2 (7) C11B---C6B---N7B---C8B −0.2 (5) C10A---C9A---C8A---N7A 1.7 (7) C2B---C6B---N7B---C8B 177.2 (3) C11A---C6A---N7A---C8A 0.5 (5) C6B---N7B---C8B---C9B −1.1 (5) C2A---C6A---N7A---C8A −179.5 (3) N7B---C8B---C9B---C10B 1.3 (6) C9A---C8A---N7A---C6A −0.8 (5) C8B---C9B---C10B---C11B −0.1 (5) C13A---O1A---C12A---O2A 10.4 (5) C9B---C10B---C11B---C6B −1.1 (5) C13A---O1A---C12A---C3A −166.5 (3) N7B---C6B---C11B---C10B 1.3 (4) C2A---C3A---C12A---O2A −48.3 (4) C2B---C6B---C11B---C10B −176.0 (3) S1A---C3A---C12A---O2A 73.0 (3) C13B---O1B---C12B---O2B −3.9 (5) C2A---C3A---C12A---O1A 128.7 (2) C13B---O1B---C12B---C3B 174.9 (3) S1A---C3A---C12A---O1A −109.9 (2) C2B---C3B---C12B---O2B 72.3 (4) C12A---O1A---C13A---C14A 88.6 (3) S1B---C3B---C12B---O2B −52.8 (4) C16A---O5A---C15A---O6A −1.1 (5) C2B---C3B---C12B---O1B −106.4 (3) C16A---O5A---C15A---C4A −179.2 (3) S1B---C3B---C12B---O1B 128.4 (2) C5A---C4A---C15A---O6A −68.7 (4) C12B---O1B---C13B---C14B −165.0 (4) S1A---C4A---C15A---O6A 55.8 (4) C16B---O5B---C15B---O6B −10.6 (4) C5A---C4A---C15A---O5A 109.4 (3) C16B---O5B---C15B---C4B 166.0 (3) S1A---C4A---C15A---O5A −126.1 (2) C5B---C4B---C15B---O6B 46.4 (3) C15A---O5A---C16A---C17A 158.4 (4) S1B---C4B---C15B---O6B −73.8 (3) N1A---C5A---C18A---N23A −41.2 (3) C5B---C4B---C15B---O5B −130.3 (2) C4A---C5A---C18A---N23A 84.9 (3) S1B---C4B---C15B---O5B 109.5 (2) N1A---C5A---C18A---C19A 140.5 (3) C15B---O5B---C16B---C17B −86.6 (3) C4A---C5A---C18A---C19A −93.4 (3) N1B---C5B---C18B---N23B −75.4 (3) N23A---C18A---C19A---C20A −0.4 (4) C4B---C5B---C18B---N23B 49.7 (3) C5A---C18A---C19A---C20A 177.8 (3) N1B---C5B---C18B---C19B 105.2 (4) C18A---C19A---C20A---C21A 1.1 (5) C4B---C5B---C18B---C19B −129.7 (3) C19A---C20A---C21A---C22A −0.5 (6) C19B---C18B---N23B---C22B 0.0 (5) C20A---C21A---C22A---N23A −0.8 (7) C5B---C18B---N23B---C22B −179.3 (3) C9A---C10A---C11A---C6A 1.9 (6) C18B---N23B---C22B---C21B −2.3 (6) N7A---C6A---C11A---C10A −1.1 (6) N23B---C22B---C21B---C20B 3.0 (8) C2A---C6A---C11A---C10A 179.0 (3) C22B---C21B---C20B---C19B −1.3 (7) C19A---C18A---N23A---C22A −0.9 (5) N23B---C18B---C19B---C20B 1.5 (6) C5A---C18A---N23A---C22A −179.2 (3) C5B---C18B---C19B---C20B −179.3 (3) C21A---C22A---N23A---C18A 1.5 (7) C21B---C20B---C19B---C18B −0.7 (7) --------------------------- -------------- --------------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e5358 .table-wrap} ------------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C4B---H4B···O2B 0.98 2.59 3.167 (3) 118 C2A---H2A···O4B^i^ 0.98 2.34 3.273 (3) 158 C19A---H19A···O6B^i^ 0.93 2.49 3.360 (4) 155 C5B---H5B···O4A^ii^ 0.98 2.34 3.269 (3) 157 C11B---H11B···O2A^ii^ 0.93 2.53 3.404 (4) 156 C17B---H17E···O3A^iii^ 0.96 2.52 3.402 (4) 153 C14A---H14B···O3B^iv^ 0.96 2.52 3.402 (4) 153 ------------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*+1/2, −*y*+3/2, *z*; (iv) *x*−1/2, −*y*+1/2, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------------- --------- ------- ----------- ------------- C4*B*---H4*B*⋯O2*B* 0.98 2.59 3.167 (3) 118 C2*A*---H2*A*⋯O4*B*^i^ 0.98 2.34 3.273 (3) 158 C19*A*---H19*A*⋯O6*B*^i^ 0.93 2.49 3.360 (4) 155 C5*B*---H5*B*⋯O4*A*^ii^ 0.98 2.34 3.269 (3) 157 C11*B*---H11*B*⋯O2*A*^ii^ 0.93 2.53 3.404 (4) 156 C17*B*---H17*E*⋯O3*A*^iii^ 0.96 2.52 3.402 (4) 153 C14*A*---H14*B*⋯O3*B*^iv^ 0.96 2.52 3.402 (4) 153 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:16.970852
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051777/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o305", "authors": [ { "first": "P.", "last": "Sugumar" }, { "first": "N.", "last": "Edayadulla" }, { "first": "P.", "last": "Ramesh" }, { "first": "P.", "last": "Ramesh" }, { "first": "M. N.", "last": "Ponnuswamy" } ] }
PMC3051778
Related literature {#sec1} ================== For the use of 1,10-phenanthroline (phen) in copper complexes, see: Wang *et al.* (2002[@bb8], 2003[@bb9]); Lan *et al.* (2007[@bb4]). For complexes involving five-coordinated copper atoms with 1,10-phen ligands, see: Gkioni *et al.* (2008[@bb2]); Mao *et al.* (2004[@bb6]); Ma *et al.* (2000[@bb5]); Hu *et al.* (2006[@bb3]). For mixed-valence copper complexes with 1,10-phen, see: Xu *et al.* (2007[@bb10]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[CuCl(C~12~H~8~N~2~)~2~\]·\[CuCl~2~\]*M* *~r~* = 593.84Monoclinic,*a* = 9.8137 (3) Å*b* = 17.8813 (6) Å*c* = 26.2679 (7) Åβ = 90.535 (1)°*V* = 4609.3 (2) Å^3^*Z* = 8Mo *K*α radiationμ = 2.21 mm^−1^*T* = 296 K0.18 × 0.15 × 0.02 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2001[@bb1]) *T* ~min~ = 0.691, *T* ~max~ = 0.95735792 measured reflections9043 independent reflections6276 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.032 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.038*wR*(*F* ^2^) = 0.090*S* = 1.019043 reflections595 parameters16 restraintsH-atom parameters constrainedΔρ~max~ = 0.65 e Å^−3^Δρ~min~ = −0.55 e Å^−3^ {#d5e494} Data collection: *APEX2* (Bruker, 2001[@bb1]); cell refinement: *SAINT* (Bruker, 2001[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb7]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810054073/jh2249sup1.cif](http://dx.doi.org/10.1107/S1600536810054073/jh2249sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054073/jh2249Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054073/jh2249Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2249&file=jh2249sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2249sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2249&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2249](http://scripts.iucr.org/cgi-bin/sendsup?jh2249)). We are grateful for financial support from the National Science Foundation of China (Nos. 20771089, 20873100). Comment ======= As bidentate diimine ligand, 1,10-phenanthroline (phen), has been widely used as the second ligand in prepare many kinds of metal-coordination complexes, especially in copper(II) complexes (Wang *et al.* 2003, Wang *et al.* 2002, Lan *et al.* 2007). Although many five-coordinated copper(II) complexes are well documented (Gkioni *et al.* 2008, Mao *et al.* 2004, Ma *et al.* 2000, Hu *et al.* 2006), the presence mixed-charge complexes have been rarely observed (Xu *et al.* 2007). Here we report a mixed-charge copper complex with 1,10-phenanthroline as coordinate ligand, this complex was constituted through π-π interactions. The Molecular structure of 1 showing 50% probability displacement ellipsoids was shown in Fig. 1. The coordinate environment of complex 1 shown in figure 2. The Packing diagram of 1 viewed down the *a-*axis was presented in Fig. 3. Selected band length and angle see table 1. Experimental {#experimental} ============ The complex 1 was synthesized by solvothermal reaction. A mixture of 1,10-Phenanthroline monohydrate(0.0198 g, 0.1 mmol), CuCl~2~.2H~2~O (0.0170 g, 0.1 mmol), L1 (L1 = HO-(Ph)---CH=N---Ph---O---Ph---N=CH-(Ph)---OH (0.0204 g, 0.05 mmol) and CH~3~CH~2~OH (3 ml) was sealed in a 6 ml glass tube and heated to 393 K for 72 h. After cooling to room temperature, green crystals were obtained concomitanted with a lot of brown precipitation. The color of solution is light-brown. The ligand of L1 could\'t coordinate with Cu. Refinement {#refinement} ========== H atoms were placed in calculated positions with C---H = 0.93 (aromatic) refined in riding mode, with *U*~iso~(H) = 1.2 *U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The Molecular structure of 1 showing 50% probability displacement ellipsoids ::: ![](e-67-0m226-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The coordinate environment of complex 1. ::: ![](e-67-0m226-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The Packing diagram of 1 viewed down the a-axis. ::: ![](e-67-0m226-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e183 .table-wrap} ---------------------------------------- --------------------------------------- \[CuCl(C~12~H~8~N~2~)~2~\]·\[CuCl~2~\] *F*(000) = 2376 *M~r~* = 593.84 char Monoclinic, *P*2~1~/*c* *D*~x~ = 1.711 Mg m^−3^ Hall symbol: -P 2ybc Mo *K*α radiation, λ = 0.71073 Å *a* = 9.8137 (3) Å Cell parameters from 8168 reflections *b* = 17.8813 (6) Å θ = 2.2--24.2° *c* = 26.2679 (7) Å µ = 2.21 mm^−1^ β = 90.535 (1)° *T* = 296 K *V* = 4609.3 (2) Å^3^ Rod, green *Z* = 8 0.18 × 0.15 × 0.02 mm ---------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e318 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD diffractometer 9043 independent reflections Radiation source: fine-focus sealed tube 6276 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.032 φ and ω scans θ~max~ = 26.0°, θ~min~ = 1.4° Absorption correction: multi-scan (*SADABS*; Bruker, 2001) *h* = −11→12 *T*~min~ = 0.691, *T*~max~ = 0.957 *k* = −17→22 35792 measured reflections *l* = −25→32 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e435 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.038 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.090 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.033*P*)^2^ + 3.6932*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 9043 reflections (Δ/σ)~max~ = 0.001 595 parameters Δρ~max~ = 0.65 e Å^−3^ 16 restraints Δρ~min~ = −0.55 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e592 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e691 .table-wrap} ----- -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cu1 0.45874 (4) 0.22779 (2) 0.434313 (15) 0.04415 (11) Cl1 0.30626 (8) 0.14861 (5) 0.47027 (3) 0.0552 (2) N1 0.6034 (3) 0.28987 (15) 0.47699 (10) 0.0445 (6) C1 0.5990 (4) 0.3590 (2) 0.49512 (13) 0.0584 (9) H1 0.5211 0.3875 0.4895 0.070\* Cu2 1.00137 (4) 0.30937 (2) 0.179368 (14) 0.04466 (11) Cl2 1.19064 (10) 0.33783 (7) 0.13718 (4) 0.0810 (3) N2 0.6088 (3) 0.15237 (15) 0.43836 (10) 0.0462 (7) C2 0.7070 (5) 0.3903 (3) 0.52226 (15) 0.0756 (12) H2 0.7011 0.4392 0.5340 0.091\* N3 0.3228 (3) 0.30996 (14) 0.42697 (10) 0.0446 (6) C3 0.8191 (5) 0.3503 (3) 0.53145 (14) 0.0751 (13) H3 0.8908 0.3714 0.5498 0.090\* Cu3 0.66098 (5) 0.03206 (3) 0.295513 (19) 0.06514 (14) Cl3 0.86153 (12) 0.06908 (8) 0.29074 (5) 0.0969 (4) N4 0.4840 (3) 0.25237 (14) 0.35664 (10) 0.0442 (6) C4 0.8298 (4) 0.2764 (3) 0.51359 (13) 0.0603 (10) Cu4 0.29958 (5) 0.03693 (3) 0.094280 (18) 0.06336 (14) Cl4 0.45844 (10) −0.00298 (6) 0.30242 (4) 0.0770 (3) N5 0.8859 (3) 0.37651 (15) 0.13714 (9) 0.0435 (6) C5 0.9433 (4) 0.2279 (3) 0.52143 (16) 0.0818 (15) H5 1.0179 0.2451 0.5402 0.098\* Cl5 0.48555 (11) −0.01769 (6) 0.09709 (5) 0.0866 (3) N6 0.8359 (3) 0.23407 (15) 0.16073 (9) 0.0437 (6) C6 0.9458 (4) 0.1586 (3) 0.50272 (16) 0.0775 (14) H6 1.0219 0.1287 0.5086 0.093\* Cl6 0.11371 (13) 0.09104 (9) 0.09723 (6) 0.1124 (5) N7 0.9086 (2) 0.34430 (14) 0.24817 (9) 0.0421 (6) C7 0.8333 (4) 0.1291 (2) 0.47356 (14) 0.0617 (10) N8 1.0928 (3) 0.23944 (15) 0.22782 (10) 0.0446 (6) C8 0.8270 (4) 0.0571 (3) 0.45286 (16) 0.0758 (13) H8 0.8997 0.0245 0.4577 0.091\* C9 0.7159 (5) 0.0342 (2) 0.42570 (17) 0.0742 (12) H9 0.7122 −0.0136 0.4118 0.089\* C10 0.6071 (4) 0.0841 (2) 0.41908 (14) 0.0600 (10) H10 0.5310 0.0687 0.4005 0.072\* C11 0.7192 (3) 0.1750 (2) 0.46529 (12) 0.0463 (8) C12 0.7172 (3) 0.2488 (2) 0.48574 (12) 0.0461 (8) C13 0.2456 (3) 0.3388 (2) 0.46311 (14) 0.0572 (9) H13 0.2535 0.3199 0.4960 0.069\* C14 0.1532 (4) 0.3962 (2) 0.45373 (17) 0.0640 (10) H14 0.1014 0.4157 0.4801 0.077\* C15 0.1390 (4) 0.4239 (2) 0.40545 (17) 0.0621 (10) H15 0.0774 0.4623 0.3988 0.074\* C16 0.2169 (3) 0.39434 (18) 0.36624 (14) 0.0492 (8) C17 0.2079 (4) 0.4176 (2) 0.31404 (16) 0.0607 (10) H17 0.1456 0.4545 0.3048 0.073\* C18 0.2868 (4) 0.3875 (2) 0.27856 (15) 0.0608 (10) H18 0.2770 0.4033 0.2450 0.073\* C19 0.3862 (3) 0.33160 (19) 0.29055 (13) 0.0507 (9) C20 0.4736 (4) 0.2995 (2) 0.25542 (14) 0.0652 (11) H20 0.4705 0.3141 0.2215 0.078\* C21 0.5636 (4) 0.2464 (2) 0.27123 (15) 0.0666 (11) H21 0.6231 0.2250 0.2481 0.080\* C22 0.5671 (3) 0.2238 (2) 0.32202 (13) 0.0542 (9) H22 0.6297 0.1875 0.3320 0.065\* C23 0.3104 (3) 0.33762 (17) 0.37899 (12) 0.0431 (8) C24 0.3956 (3) 0.30633 (18) 0.34118 (12) 0.0420 (8) C25 0.9155 (4) 0.4463 (2) 0.12439 (13) 0.0544 (9) H25 0.9975 0.4669 0.1356 0.065\* C26 0.8283 (4) 0.4896 (2) 0.09489 (13) 0.0597 (10) H26 0.8530 0.5380 0.0858 0.072\* C27 0.7073 (4) 0.4613 (2) 0.07935 (13) 0.0607 (10) H27 0.6484 0.4902 0.0597 0.073\* C28 0.6706 (3) 0.3883 (2) 0.09285 (12) 0.0497 (8) C29 0.5441 (4) 0.3539 (3) 0.07990 (14) 0.0646 (11) H29 0.4805 0.3806 0.0607 0.078\* C30 0.5142 (4) 0.2844 (3) 0.09460 (15) 0.0669 (12) H30 0.4295 0.2643 0.0863 0.080\* C31 0.6104 (3) 0.2402 (2) 0.12295 (13) 0.0522 (9) C32 0.5884 (4) 0.1665 (2) 0.13784 (15) 0.0667 (11) H32 0.5052 0.1436 0.1309 0.080\* C33 0.6896 (5) 0.1279 (2) 0.16269 (16) 0.0702 (11) H33 0.6762 0.0784 0.1724 0.084\* C34 0.8129 (4) 0.1636 (2) 0.17332 (13) 0.0567 (9) H34 0.8815 0.1368 0.1899 0.068\* C35 0.7650 (3) 0.34751 (18) 0.12166 (11) 0.0402 (7) C36 0.7365 (3) 0.27213 (19) 0.13576 (11) 0.0423 (8) C37 0.8161 (3) 0.3964 (2) 0.25723 (13) 0.0541 (9) H37 0.7864 0.4267 0.2306 0.065\* C38 0.7616 (4) 0.4072 (2) 0.30566 (15) 0.0624 (10) H38 0.6964 0.4442 0.3108 0.075\* C39 0.8038 (4) 0.3640 (2) 0.34499 (14) 0.0583 (10) H39 0.7675 0.3712 0.3772 0.070\* C40 0.9017 (3) 0.30851 (19) 0.33726 (12) 0.0459 (8) C41 0.9578 (4) 0.2616 (2) 0.37633 (13) 0.0537 (9) H41 0.9267 0.2665 0.4095 0.064\* C42 1.0537 (4) 0.2111 (2) 0.36625 (13) 0.0558 (10) H42 1.0886 0.1820 0.3927 0.067\* C43 1.1044 (3) 0.20054 (18) 0.31602 (13) 0.0459 (8) C44 1.2035 (3) 0.1481 (2) 0.30253 (15) 0.0575 (9) H44 1.2414 0.1170 0.3272 0.069\* C45 1.2443 (4) 0.1426 (2) 0.25349 (16) 0.0625 (10) H45 1.3101 0.1078 0.2445 0.075\* C46 1.1868 (3) 0.1895 (2) 0.21661 (14) 0.0564 (9) H46 1.2157 0.1854 0.1831 0.068\* C47 0.9501 (3) 0.30043 (17) 0.28771 (11) 0.0387 (7) C48 1.0511 (3) 0.24541 (17) 0.27680 (12) 0.0398 (7) ----- -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1917 .table-wrap} ----- ------------- ------------- ------------- -------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cu1 0.0394 (2) 0.0440 (2) 0.0491 (2) 0.00196 (17) 0.00003 (17) −0.00137 (19) Cl1 0.0434 (5) 0.0554 (5) 0.0668 (6) −0.0075 (4) −0.0009 (4) 0.0041 (4) N1 0.0449 (16) 0.0486 (18) 0.0398 (15) −0.0049 (13) −0.0012 (12) 0.0034 (13) C1 0.067 (2) 0.057 (2) 0.051 (2) −0.0112 (19) −0.0017 (18) −0.0041 (18) Cu2 0.0390 (2) 0.0559 (3) 0.0391 (2) 0.00291 (18) −0.00186 (16) 0.00489 (19) Cl2 0.0524 (6) 0.1023 (8) 0.0888 (8) 0.0072 (5) 0.0248 (5) 0.0270 (6) N2 0.0428 (16) 0.0421 (17) 0.0539 (17) 0.0044 (13) 0.0052 (13) 0.0034 (14) C2 0.084 (3) 0.080 (3) 0.063 (3) −0.029 (3) −0.004 (2) −0.017 (2) N3 0.0410 (15) 0.0433 (16) 0.0496 (17) 0.0006 (12) 0.0025 (13) −0.0045 (13) C3 0.067 (3) 0.113 (4) 0.045 (2) −0.044 (3) −0.004 (2) −0.011 (2) Cu3 0.0680 (3) 0.0568 (3) 0.0706 (3) −0.0075 (2) 0.0015 (2) −0.0070 (2) Cl3 0.0883 (8) 0.1114 (10) 0.0908 (8) −0.0490 (7) −0.0154 (6) 0.0199 (7) N4 0.0433 (15) 0.0428 (16) 0.0464 (16) −0.0045 (13) 0.0022 (13) −0.0046 (13) C4 0.044 (2) 0.102 (3) 0.0350 (19) −0.013 (2) 0.0008 (15) 0.014 (2) Cu4 0.0595 (3) 0.0590 (3) 0.0713 (3) 0.0020 (2) −0.0088 (2) 0.0022 (2) Cl4 0.0569 (6) 0.0804 (7) 0.0936 (8) 0.0065 (5) 0.0016 (5) −0.0047 (6) N5 0.0455 (16) 0.0484 (17) 0.0364 (15) −0.0012 (13) −0.0014 (12) 0.0034 (12) C5 0.040 (2) 0.151 (5) 0.054 (3) −0.011 (3) −0.0011 (18) 0.025 (3) Cl5 0.0622 (6) 0.0699 (7) 0.1278 (10) 0.0079 (5) 0.0014 (6) −0.0166 (7) N6 0.0498 (16) 0.0421 (17) 0.0391 (15) 0.0003 (13) 0.0017 (12) −0.0002 (13) C6 0.040 (2) 0.133 (4) 0.059 (3) 0.020 (3) 0.0087 (19) 0.039 (3) Cl6 0.0822 (8) 0.1347 (12) 0.1196 (11) 0.0435 (8) −0.0332 (7) −0.0131 (9) N7 0.0390 (14) 0.0478 (16) 0.0395 (15) 0.0042 (13) −0.0061 (11) −0.0019 (13) C7 0.049 (2) 0.086 (3) 0.051 (2) 0.016 (2) 0.0162 (18) 0.025 (2) N8 0.0398 (15) 0.0505 (17) 0.0434 (16) 0.0046 (13) −0.0029 (12) 0.0003 (13) C8 0.065 (3) 0.092 (3) 0.072 (3) 0.036 (2) 0.024 (2) 0.029 (2) C9 0.093 (3) 0.051 (2) 0.079 (3) 0.020 (2) 0.034 (3) 0.007 (2) C10 0.065 (2) 0.052 (2) 0.064 (2) 0.0036 (19) 0.0131 (19) 0.0041 (19) C11 0.0366 (18) 0.062 (2) 0.0403 (18) 0.0050 (16) 0.0079 (15) 0.0170 (17) C12 0.0387 (18) 0.064 (2) 0.0356 (18) −0.0078 (16) 0.0024 (14) 0.0086 (16) C13 0.054 (2) 0.061 (2) 0.056 (2) 0.0003 (19) 0.0058 (18) −0.0081 (19) C14 0.049 (2) 0.059 (3) 0.084 (3) 0.0069 (19) 0.011 (2) −0.016 (2) C15 0.046 (2) 0.044 (2) 0.096 (3) 0.0027 (17) −0.006 (2) 0.000 (2) C16 0.0405 (19) 0.0372 (19) 0.070 (2) −0.0045 (15) −0.0055 (17) 0.0009 (17) C17 0.052 (2) 0.045 (2) 0.084 (3) −0.0096 (17) −0.021 (2) 0.016 (2) C18 0.067 (3) 0.056 (2) 0.059 (2) −0.019 (2) −0.014 (2) 0.018 (2) C19 0.055 (2) 0.048 (2) 0.049 (2) −0.0159 (17) −0.0045 (17) 0.0062 (17) C20 0.080 (3) 0.071 (3) 0.045 (2) −0.021 (2) 0.006 (2) −0.001 (2) C21 0.075 (3) 0.070 (3) 0.055 (2) −0.009 (2) 0.020 (2) −0.010 (2) C22 0.054 (2) 0.053 (2) 0.056 (2) −0.0024 (17) 0.0065 (18) −0.0055 (18) C23 0.0390 (17) 0.0384 (19) 0.052 (2) −0.0093 (14) −0.0038 (15) 0.0011 (16) C24 0.0387 (17) 0.0399 (19) 0.047 (2) −0.0099 (15) −0.0012 (15) −0.0028 (15) C25 0.060 (2) 0.055 (2) 0.048 (2) −0.0041 (18) 0.0032 (17) 0.0029 (18) C26 0.082 (3) 0.047 (2) 0.050 (2) 0.009 (2) 0.011 (2) 0.0078 (18) C27 0.072 (3) 0.067 (3) 0.043 (2) 0.030 (2) 0.0002 (18) −0.0003 (18) C28 0.051 (2) 0.060 (2) 0.0385 (18) 0.0173 (18) −0.0006 (15) −0.0075 (17) C29 0.053 (2) 0.086 (3) 0.055 (2) 0.030 (2) −0.0111 (18) −0.019 (2) C30 0.038 (2) 0.099 (4) 0.065 (3) 0.003 (2) −0.0046 (18) −0.034 (2) C31 0.043 (2) 0.065 (3) 0.048 (2) −0.0019 (18) 0.0044 (16) −0.0218 (18) C32 0.057 (2) 0.075 (3) 0.068 (3) −0.019 (2) 0.011 (2) −0.028 (2) C33 0.085 (3) 0.053 (2) 0.073 (3) −0.019 (2) 0.015 (2) −0.010 (2) C34 0.067 (2) 0.055 (2) 0.048 (2) −0.0010 (19) 0.0045 (18) −0.0016 (18) C35 0.0394 (18) 0.051 (2) 0.0298 (16) 0.0074 (15) 0.0006 (13) −0.0039 (15) C36 0.0414 (18) 0.053 (2) 0.0322 (17) 0.0035 (16) 0.0033 (14) −0.0090 (15) C37 0.055 (2) 0.056 (2) 0.051 (2) 0.0104 (18) −0.0039 (17) −0.0012 (17) C38 0.059 (2) 0.068 (3) 0.060 (2) 0.014 (2) 0.0077 (19) −0.013 (2) C39 0.058 (2) 0.071 (3) 0.045 (2) −0.008 (2) 0.0093 (17) −0.010 (2) C40 0.0448 (18) 0.054 (2) 0.0386 (18) −0.0122 (16) 0.0005 (15) −0.0025 (16) C41 0.062 (2) 0.062 (2) 0.0377 (19) −0.016 (2) 0.0015 (17) 0.0062 (17) C42 0.061 (2) 0.061 (2) 0.046 (2) −0.0189 (19) −0.0127 (18) 0.0187 (18) C43 0.0428 (18) 0.044 (2) 0.051 (2) −0.0096 (15) −0.0097 (15) 0.0075 (16) C44 0.049 (2) 0.052 (2) 0.070 (3) −0.0036 (17) −0.0151 (19) 0.014 (2) C45 0.050 (2) 0.051 (2) 0.087 (3) 0.0133 (18) −0.007 (2) 0.001 (2) C46 0.049 (2) 0.062 (2) 0.058 (2) 0.0097 (18) 0.0015 (17) −0.0059 (19) C47 0.0348 (16) 0.0449 (19) 0.0361 (17) −0.0075 (14) −0.0035 (13) −0.0019 (14) C48 0.0353 (16) 0.0412 (19) 0.0428 (19) −0.0090 (14) −0.0060 (14) 0.0026 (15) ----- ------------- ------------- ------------- -------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3154 .table-wrap} ----------------- ------------- ----------------- ----------- Cu1---N3 1.992 (3) C15---H15 0.9300 Cu1---N2 1.999 (3) C16---C23 1.406 (4) Cu1---N4 2.104 (3) C16---C17 1.435 (5) Cu1---N1 2.115 (3) C17---C18 1.331 (5) Cu1---Cl1 2.2721 (9) C17---H17 0.9300 N1---C1 1.325 (4) C18---C19 1.430 (5) N1---C12 1.354 (4) C18---H18 0.9300 C1---C2 1.390 (5) C19---C20 1.390 (5) C1---H1 0.9300 C19---C24 1.407 (4) Cu2---N5 1.983 (3) C20---C21 1.358 (5) Cu2---N8 1.992 (3) C20---H20 0.9300 Cu2---N7 2.125 (2) C21---C22 1.394 (5) Cu2---N6 2.162 (3) C21---H21 0.9300 Cu2---Cl2 2.2306 (10) C22---H22 0.9300 N2---C10 1.321 (4) C23---C24 1.420 (4) N2---C11 1.350 (4) C25---C26 1.386 (5) C2---C3 1.332 (6) C25---H25 0.9300 C2---H2 0.9300 C26---C27 1.351 (5) N3---C13 1.325 (4) C26---H26 0.9300 N3---C23 1.358 (4) C27---C28 1.399 (5) C3---C4 1.406 (6) C27---H27 0.9300 C3---H3 0.9300 C28---C35 1.396 (4) Cu3---Cl3 2.0813 (12) C28---C29 1.424 (5) Cu3---Cl4 2.0936 (11) C29---C30 1.335 (6) N4---C22 1.329 (4) C29---H29 0.9300 N4---C24 1.357 (4) C30---C31 1.435 (5) C4---C12 1.409 (5) C30---H30 0.9300 C4---C5 1.426 (6) C31---C32 1.392 (5) Cu4---Cl6 2.0669 (13) C31---C36 1.401 (4) Cu4---Cl5 2.0706 (11) C32---C33 1.370 (6) N5---C25 1.326 (4) C32---H32 0.9300 N5---C35 1.354 (4) C33---C34 1.393 (5) C5---C6 1.334 (6) C33---H33 0.9300 C5---H5 0.9300 C34---H34 0.9300 N6---C34 1.323 (4) C35---C36 1.426 (4) N6---C36 1.354 (4) C37---C38 1.398 (5) C6---C7 1.438 (6) C37---H37 0.9300 C6---H6 0.9300 C38---C39 1.352 (5) N7---C37 1.324 (4) C38---H38 0.9300 N7---C47 1.361 (4) C39---C40 1.397 (5) C7---C8 1.397 (6) C39---H39 0.9300 C7---C11 1.404 (5) C40---C47 1.397 (4) N8---C46 1.319 (4) C40---C41 1.431 (5) N8---C48 1.358 (4) C41---C42 1.333 (5) C8---C9 1.361 (6) C41---H41 0.9300 C8---H8 0.9300 C42---C43 1.427 (5) C9---C10 1.401 (5) C42---H42 0.9300 C9---H9 0.9300 C43---C44 1.399 (5) C10---H10 0.9300 C43---C48 1.403 (4) C11---C12 1.424 (5) C44---C45 1.356 (5) C13---C14 1.391 (5) C44---H44 0.9300 C13---H13 0.9300 C45---C46 1.396 (5) C14---C15 1.367 (5) C45---H45 0.9300 C14---H14 0.9300 C46---H46 0.9300 C15---C16 1.393 (5) C47---C48 1.427 (4) N3---Cu1---N2 174.14 (11) C18---C17---H17 119.3 N3---Cu1---N4 80.62 (11) C16---C17---H17 119.3 N2---Cu1---N4 95.68 (11) C17---C18---C19 121.9 (4) N3---Cu1---N1 96.30 (11) C17---C18---H18 119.0 N2---Cu1---N1 80.52 (11) C19---C18---H18 119.0 N4---Cu1---N1 108.64 (10) C20---C19---C24 117.3 (3) N3---Cu1---Cl1 93.26 (8) C20---C19---C18 124.5 (4) N2---Cu1---Cl1 92.59 (8) C24---C19---C18 118.1 (3) N4---Cu1---Cl1 128.13 (7) C21---C20---C19 119.3 (4) N1---Cu1---Cl1 123.23 (7) C21---C20---H20 120.4 C1---N1---C12 118.3 (3) C19---C20---H20 120.4 C1---N1---Cu1 131.0 (2) C20---C21---C22 120.3 (4) C12---N1---Cu1 110.7 (2) C20---C21---H21 119.8 N1---C1---C2 122.2 (4) C22---C21---H21 119.8 N1---C1---H1 118.9 N4---C22---C21 122.2 (4) C2---C1---H1 118.9 N4---C22---H22 118.9 N5---Cu2---N8 171.56 (10) C21---C22---H22 118.9 N5---Cu2---N7 92.89 (10) N3---C23---C16 122.5 (3) N8---Cu2---N7 80.52 (10) N3---C23---C24 117.2 (3) N5---Cu2---N6 79.99 (10) C16---C23---C24 120.4 (3) N8---Cu2---N6 94.98 (10) N4---C24---C19 123.2 (3) N7---Cu2---N6 92.79 (9) N4---C24---C23 116.8 (3) N5---Cu2---Cl2 93.34 (8) C19---C24---C23 120.1 (3) N8---Cu2---Cl2 95.07 (8) N5---C25---C26 122.1 (3) N7---Cu2---Cl2 136.12 (8) N5---C25---H25 118.9 N6---Cu2---Cl2 131.05 (7) C26---C25---H25 118.9 C10---N2---C11 119.0 (3) C27---C26---C25 119.7 (4) C10---N2---Cu1 126.6 (3) C27---C26---H26 120.1 C11---N2---Cu1 114.4 (2) C25---C26---H26 120.1 C3---C2---C1 120.0 (4) C26---C27---C28 120.1 (3) C3---C2---H2 120.0 C26---C27---H27 120.0 C1---C2---H2 120.0 C28---C27---H27 120.0 C13---N3---C23 118.4 (3) C35---C28---C27 117.0 (3) C13---N3---Cu1 127.2 (2) C35---C28---C29 118.4 (3) C23---N3---Cu1 114.4 (2) C27---C28---C29 124.6 (3) C2---C3---C4 120.6 (4) C30---C29---C28 121.8 (4) C2---C3---H3 119.7 C30---C29---H29 119.1 C4---C3---H3 119.7 C28---C29---H29 119.1 Cl3---Cu3---Cl4 178.13 (6) C29---C30---C31 121.2 (3) C22---N4---C24 117.6 (3) C29---C30---H30 119.4 C22---N4---Cu1 131.4 (2) C31---C30---H30 119.4 C24---N4---Cu1 111.0 (2) C32---C31---C36 117.2 (3) C3---C4---C12 116.2 (4) C32---C31---C30 124.3 (4) C3---C4---C5 125.7 (4) C36---C31---C30 118.4 (4) C12---C4---C5 118.0 (4) C33---C32---C31 119.8 (4) Cl6---Cu4---Cl5 175.80 (6) C33---C32---H32 120.1 C25---N5---C35 118.6 (3) C31---C32---H32 120.1 C25---N5---Cu2 125.9 (2) C32---C33---C34 119.3 (4) C35---N5---Cu2 115.5 (2) C32---C33---H33 120.4 C6---C5---C4 121.9 (4) C34---C33---H33 120.4 C6---C5---H5 119.0 N6---C34---C33 122.4 (4) C4---C5---H5 119.0 N6---C34---H34 118.8 C34---N6---C36 118.4 (3) C33---C34---H34 118.8 C34---N6---Cu2 131.8 (2) N5---C35---C28 122.5 (3) C36---N6---Cu2 109.4 (2) N5---C35---C36 117.2 (3) C5---C6---C7 121.4 (4) C28---C35---C36 120.3 (3) C5---C6---H6 119.3 N6---C36---C31 122.9 (3) C7---C6---H6 119.3 N6---C36---C35 117.3 (3) C37---N7---C47 118.0 (3) C31---C36---C35 119.8 (3) C37---N7---Cu2 131.3 (2) N7---C37---C38 122.0 (3) C47---N7---Cu2 110.62 (19) N7---C37---H37 119.0 C8---C7---C11 116.5 (4) C38---C37---H37 119.0 C8---C7---C6 125.2 (4) C39---C38---C37 119.9 (3) C11---C7---C6 118.3 (4) C39---C38---H38 120.0 C46---N8---C48 118.8 (3) C37---C38---H38 120.0 C46---N8---Cu2 126.5 (2) C38---C39---C40 120.1 (3) C48---N8---Cu2 114.7 (2) C38---C39---H39 120.0 C9---C8---C7 120.9 (4) C40---C39---H39 120.0 C9---C8---H8 119.5 C47---C40---C39 116.7 (3) C7---C8---H8 119.5 C47---C40---C41 118.4 (3) C8---C9---C10 118.6 (4) C39---C40---C41 124.9 (3) C8---C9---H9 120.7 C42---C41---C40 121.5 (3) C10---C9---H9 120.7 C42---C41---H41 119.3 N2---C10---C9 122.2 (4) C40---C41---H41 119.3 N2---C10---H10 118.9 C41---C42---C43 121.8 (3) C9---C10---H10 118.9 C41---C42---H42 119.1 N2---C11---C7 122.7 (4) C43---C42---H42 119.1 N2---C11---C12 117.4 (3) C44---C43---C48 116.9 (3) C7---C11---C12 119.8 (3) C44---C43---C42 124.9 (3) N1---C12---C4 122.6 (3) C48---C43---C42 118.2 (3) N1---C12---C11 116.9 (3) C45---C44---C43 120.1 (3) C4---C12---C11 120.4 (3) C45---C44---H44 119.9 N3---C13---C14 122.5 (4) C43---C44---H44 119.9 N3---C13---H13 118.8 C44---C45---C46 119.6 (3) C14---C13---H13 118.8 C44---C45---H45 120.2 C15---C14---C13 119.5 (4) C46---C45---H45 120.2 C15---C14---H14 120.3 N8---C46---C45 122.0 (3) C13---C14---H14 120.3 N8---C46---H46 119.0 C14---C15---C16 119.8 (3) C45---C46---H46 119.0 C14---C15---H15 120.1 N7---C47---C40 123.3 (3) C16---C15---H15 120.1 N7---C47---C48 116.6 (3) C15---C16---C23 117.3 (3) C40---C47---C48 120.1 (3) C15---C16---C17 124.6 (3) N8---C48---C43 122.5 (3) C23---C16---C17 118.1 (3) N8---C48---C47 117.4 (3) C18---C17---C16 121.4 (4) C43---C48---C47 120.1 (3) ----------------- ------------- ----------------- ----------- ::: ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Selected bond lengths (Å) ::: ----------- ------------- Cu1---N3 1.992 (3) Cu1---N2 1.999 (3) Cu1---N4 2.104 (3) Cu1---N1 2.115 (3) Cu1---Cl1 2.2721 (9) Cu2---N5 1.983 (3) Cu2---N8 1.992 (3) Cu2---N7 2.125 (2) Cu2---N6 2.162 (3) Cu2---Cl2 2.2306 (10) Cu3---Cl3 2.0813 (12) Cu3---Cl4 2.0936 (11) Cu4---Cl6 2.0669 (13) Cu4---Cl5 2.0706 (11) ----------- ------------- :::
PubMed Central
2024-06-05T04:04:16.980465
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051778/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m226", "authors": [ { "first": "Qingfen", "last": "Meng" }, { "first": "Yanmei", "last": "Chen" }, { "first": "Bing", "last": "Li" }, { "first": "Sanping", "last": "Chen" }, { "first": "Shengli", "last": "Gao" } ] }
PMC3051779
Related literature {#sec1} ================== For related structures, see: Han & Zhao (2010[@bb3]); Mohd Lair *et al.* (2009[@bb4]); Raj *et al.* (2008[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~14~H~11~N~3~O~5~*M* *~r~* = 301.26Monoclinic,*a* = 8.0248 (1) Å*b* = 12.5674 (2) Å*c* = 12.8770 (2) Åβ = 96.732 (1)°*V* = 1289.70 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.12 mm^−1^*T* = 100 K0.21 × 0.15 × 0.08 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb6]) *T* ~min~ = 0.975, *T* ~max~ = 0.99010373 measured reflections2398 independent reflections2004 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.034*wR*(*F* ^2^) = 0.099*S* = 1.052398 reflections208 parameters3 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.22 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e488} Data collection: *APEX2* (Bruker, 2007[@bb2]); cell refinement: *SAINT* (Bruker, 2007[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010[@bb8]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811002224/is2667sup1.cif](http://dx.doi.org/10.1107/S1600536811002224/is2667sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002224/is2667Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002224/is2667Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2667&file=is2667sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2667sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2667&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2667](http://scripts.iucr.org/cgi-bin/sendsup?is2667)). The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B) Comment ======= The title compound is the product of the condensation reaction of 4-nitrobenzohydrazide and 4-hydroxysalicylaldehyde. In agreement with the structures of similar benzoylhydrazones (Han & Zhao, 2010; Mohd Lair *et al.*, 2009; Raj *et al.*, 2008), the molecular structure of the present molecule is almost planar, the r.m.s. deviation for the non-H atoms being 0.0832 Å. The crystal structure is stabilized by O---H···O, N---H···O and C---H···O intermolecular and also O---H···N intramolecular hydrogen bonding. Moreover, a π--π interaction occurs between the aromatic rings of pairs of molecules related by symmetry -*x*, -*y* + 1, -*z* + 2 with centroid-centroid separation of 3.5425 (8) Å. Experimental {#experimental} ============ A mixture of 4-nitrobenzohydrazide (0.54 g, 3 mmol) and 4-hydroxysalicylaldehyde (0.39 g, 3 mmol) in ethanol (50 ml) and in the presence of a few drops of acetic acid was refluxed for 5 hr. The solution was then left at room temperature. The crystals of the title compound were obtained in a few days. Refinement {#refinement} ========== The carbon-bound H atoms were placed at calculated positions (C---H = 0.95 Å) and treated as riding on their parent carbon atoms. The nitrogen- and oxygen-bound H atoms were located in a difference map and refined as free atoms, with N---H and O---H distances restrained to 0.88 (2) and 0.84 (2) Å, respectively. *U*~iso~(H) values were set to 1.2--1.5 *U*~eq~(carrier atom). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius ::: ![](e-67-0o459-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e120 .table-wrap} ------------------------- --------------------------------------- C~14~H~11~N~3~O~5~ *F*(000) = 624 *M~r~* = 301.26 *D*~x~ = 1.552 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3471 reflections *a* = 8.0248 (1) Å θ = 3.2--30.4° *b* = 12.5674 (2) Å µ = 0.12 mm^−1^ *c* = 12.8770 (2) Å *T* = 100 K β = 96.732 (1)° Block, orange *V* = 1289.70 (3) Å^3^ 0.21 × 0.15 × 0.08 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e250 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 2398 independent reflections Radiation source: fine-focus sealed tube 2004 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 φ and ω scans θ~max~ = 25.5°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −9→9 *T*~min~ = 0.975, *T*~max~ = 0.990 *k* = −15→12 10373 measured reflections *l* = −15→15 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e367 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.034 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.099 H atoms treated by a mixture of independent and constrained refinement *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0584*P*)^2^ + 0.2741*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2398 reflections (Δ/σ)~max~ = 0.001 208 parameters Δρ~max~ = 0.22 e Å^−3^ 3 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e524 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e623 .table-wrap} ----- --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.01817 (13) 0.64009 (9) 1.21087 (8) 0.0250 (3) H1 0.073 (2) 0.5985 (14) 1.1740 (14) 0.038\* O2 −0.25926 (12) 0.97321 (8) 1.19160 (8) 0.0200 (2) H2A −0.271 (2) 0.9547 (14) 1.2529 (12) 0.030\* O3 0.31162 (13) 0.40161 (8) 1.11922 (8) 0.0232 (3) O4 0.70514 (13) 0.04460 (8) 0.83143 (8) 0.0287 (3) O5 0.69197 (12) 0.15345 (9) 0.70111 (8) 0.0248 (3) N1 0.15626 (13) 0.57805 (9) 1.04095 (9) 0.0180 (3) N2 0.23932 (14) 0.50897 (9) 0.98041 (9) 0.0173 (3) H2B 0.2412 (19) 0.5289 (12) 0.9163 (11) 0.021\* N3 0.66607 (14) 0.13011 (10) 0.79089 (9) 0.0193 (3) C1 −0.02829 (16) 0.72791 (11) 1.15383 (11) 0.0170 (3) C2 −0.11597 (16) 0.80504 (11) 1.20227 (11) 0.0171 (3) H2 −0.1393 0.7950 1.2722 0.021\* C3 −0.16953 (16) 0.89687 (11) 1.14835 (11) 0.0168 (3) C4 −0.13465 (16) 0.91253 (11) 1.04548 (11) 0.0182 (3) H4 −0.1708 0.9756 1.0088 0.022\* C5 −0.04773 (16) 0.83605 (11) 0.99795 (11) 0.0178 (3) H5 −0.0243 0.8472 0.9282 0.021\* C6 0.00759 (16) 0.74153 (11) 1.04988 (11) 0.0165 (3) C7 0.09681 (16) 0.66335 (11) 0.99533 (11) 0.0178 (3) H7 0.1119 0.6752 0.9242 0.021\* C8 0.31525 (16) 0.42271 (11) 1.02595 (11) 0.0162 (3) C9 0.40734 (15) 0.35067 (11) 0.95936 (10) 0.0156 (3) C10 0.44714 (16) 0.37683 (11) 0.85999 (11) 0.0171 (3) H10 0.4134 0.4436 0.8299 0.020\* C11 0.53565 (16) 0.30596 (11) 0.80500 (11) 0.0178 (3) H11 0.5651 0.3237 0.7378 0.021\* C12 0.58004 (16) 0.20868 (11) 0.85038 (11) 0.0171 (3) C13 0.54399 (16) 0.18076 (11) 0.94917 (11) 0.0183 (3) H13 0.5776 0.1138 0.9788 0.022\* C14 0.45772 (16) 0.25303 (11) 1.00359 (11) 0.0174 (3) H14 0.4325 0.2359 1.0719 0.021\* ----- --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1078 .table-wrap} ----- ------------ ------------ ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0306 (6) 0.0227 (6) 0.0229 (6) 0.0100 (5) 0.0082 (4) 0.0054 (4) O2 0.0261 (5) 0.0173 (5) 0.0178 (5) 0.0037 (4) 0.0071 (4) −0.0005 (4) O3 0.0320 (6) 0.0225 (6) 0.0170 (5) 0.0004 (4) 0.0110 (4) 0.0007 (4) O4 0.0369 (6) 0.0231 (6) 0.0256 (6) 0.0117 (5) 0.0013 (5) −0.0019 (5) O5 0.0252 (5) 0.0326 (6) 0.0179 (5) 0.0014 (5) 0.0076 (4) −0.0044 (4) N1 0.0152 (5) 0.0186 (6) 0.0209 (6) −0.0013 (5) 0.0057 (5) −0.0055 (5) N2 0.0182 (6) 0.0190 (6) 0.0156 (6) 0.0005 (5) 0.0063 (5) −0.0032 (5) N3 0.0165 (6) 0.0231 (7) 0.0180 (6) 0.0001 (5) 0.0003 (5) −0.0053 (5) C1 0.0145 (6) 0.0173 (7) 0.0190 (7) −0.0017 (5) 0.0007 (5) 0.0010 (6) C2 0.0169 (6) 0.0207 (7) 0.0142 (7) −0.0020 (5) 0.0033 (5) −0.0001 (6) C3 0.0147 (6) 0.0165 (7) 0.0194 (7) −0.0025 (5) 0.0027 (5) −0.0030 (6) C4 0.0184 (6) 0.0165 (7) 0.0196 (7) −0.0003 (5) 0.0021 (5) 0.0027 (6) C5 0.0179 (7) 0.0221 (8) 0.0139 (7) −0.0035 (6) 0.0039 (5) 0.0001 (5) C6 0.0135 (6) 0.0182 (7) 0.0182 (7) −0.0028 (5) 0.0036 (5) −0.0020 (6) C7 0.0141 (6) 0.0212 (7) 0.0183 (7) −0.0040 (5) 0.0029 (5) −0.0021 (6) C8 0.0158 (6) 0.0166 (7) 0.0167 (7) −0.0056 (5) 0.0039 (5) −0.0020 (6) C9 0.0135 (6) 0.0163 (7) 0.0169 (7) −0.0038 (5) 0.0016 (5) −0.0029 (5) C10 0.0178 (6) 0.0162 (7) 0.0172 (7) −0.0016 (5) 0.0023 (5) 0.0004 (5) C11 0.0171 (6) 0.0220 (7) 0.0147 (7) −0.0029 (6) 0.0033 (5) −0.0014 (6) C12 0.0134 (6) 0.0193 (7) 0.0185 (7) −0.0008 (5) 0.0023 (5) −0.0062 (6) C13 0.0180 (7) 0.0180 (7) 0.0183 (7) −0.0006 (6) −0.0005 (5) −0.0009 (6) C14 0.0171 (7) 0.0208 (7) 0.0146 (7) −0.0030 (5) 0.0025 (5) −0.0008 (6) ----- ------------ ------------ ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1519 .table-wrap} --------------- ------------- ----------------- ------------- O1---C1 1.3537 (17) C4---C5 1.3729 (19) O1---H1 0.860 (15) C4---H4 0.9500 O2---C3 1.3576 (16) C5---C6 1.409 (2) O2---H2A 0.839 (14) C5---H5 0.9500 O3---C8 1.2336 (16) C6---C7 1.4454 (19) O4---N3 1.2196 (16) C7---H7 0.9500 O5---N3 1.2337 (15) C8---C9 1.4999 (18) N1---C7 1.2868 (19) C9---C14 1.3927 (19) N1---N2 1.3884 (16) C9---C10 1.3939 (19) N2---C8 1.3441 (19) C10---C11 1.3847 (19) N2---H2B 0.865 (13) C10---H10 0.9500 N3---C12 1.4705 (17) C11---C12 1.384 (2) C1---C2 1.3880 (19) C11---H11 0.9500 C1---C6 1.4121 (19) C12---C13 1.3825 (19) C2---C3 1.389 (2) C13---C14 1.3817 (19) C2---H2 0.9500 C13---H13 0.9500 C3---C4 1.3996 (19) C14---H14 0.9500 C1---O1---H1 108.8 (13) C1---C6---C7 123.09 (13) C3---O2---H2A 108.2 (12) N1---C7---C6 121.51 (13) C7---N1---N2 116.19 (12) N1---C7---H7 119.2 C8---N2---N1 118.83 (12) C6---C7---H7 119.2 C8---N2---H2B 126.4 (11) O3---C8---N2 122.48 (12) N1---N2---H2B 114.7 (11) O3---C8---C9 119.76 (13) O4---N3---O5 123.19 (12) N2---C8---C9 117.77 (12) O4---N3---C12 118.79 (12) C14---C9---C10 119.77 (12) O5---N3---C12 118.00 (12) C14---C9---C8 115.90 (12) O1---C1---C2 116.57 (12) C10---C9---C8 124.31 (13) O1---C1---C6 122.64 (12) C11---C10---C9 120.27 (13) C2---C1---C6 120.78 (13) C11---C10---H10 119.9 C1---C2---C3 119.94 (13) C9---C10---H10 119.9 C1---C2---H2 120.0 C12---C11---C10 118.33 (13) C3---C2---H2 120.0 C12---C11---H11 120.8 O2---C3---C2 122.02 (12) C10---C11---H11 120.8 O2---C3---C4 117.61 (12) C13---C12---C11 122.80 (13) C2---C3---C4 120.36 (12) C13---C12---N3 118.07 (13) C5---C4---C3 119.47 (13) C11---C12---N3 119.12 (12) C5---C4---H4 120.3 C14---C13---C12 118.11 (13) C3---C4---H4 120.3 C14---C13---H13 120.9 C4---C5---C6 121.79 (13) C12---C13---H13 120.9 C4---C5---H5 119.1 C13---C14---C9 120.69 (13) C6---C5---H5 119.1 C13---C14---H14 119.7 C5---C6---C1 117.65 (12) C9---C14---H14 119.7 C5---C6---C7 119.27 (13) --------------- ------------- ----------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1929 .table-wrap} -------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···N1 0.86 (2) 1.93 (2) 2.6818 (15) 146.(2) O2---H2A···O3^i^ 0.84 (1) 1.84 (2) 2.6759 (14) 173.(2) N2---H2B···O5^ii^ 0.87 (1) 2.28 (1) 3.0606 (16) 150.(1) C2---H2···O3^i^ 0.95 2.47 3.1730 (17) 131 C4---H4···O4^iii^ 0.95 2.54 3.3428 (17) 143 C7---H7···O5^ii^ 0.95 2.40 3.2082 (17) 143 C10---H10···O4^ii^ 0.95 2.52 3.3627 (18) 147 -------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) −*x*, *y*+1/2, −*z*+5/2; (ii) −*x*+1, *y*+1/2, −*z*+3/2; (iii) *x*−1, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ---------- ---------- ------------- ------------- O1---H1⋯N1 0.86 (2) 1.93 (2) 2.6818 (15) 146 (2) O2---H2*A*⋯O3^i^ 0.84 (1) 1.84 (2) 2.6759 (14) 173 (2) N2---H2*B*⋯O5^ii^ 0.87 (1) 2.28 (1) 3.0606 (16) 150 (1) C2---H2⋯O3^i^ 0.95 2.47 3.1730 (17) 131 C4---H4⋯O4^iii^ 0.95 2.54 3.3428 (17) 143 C7---H7⋯O5^ii^ 0.95 2.40 3.2082 (17) 143 C10---H10⋯O4^ii^ 0.95 2.52 3.3627 (18) 147 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:16.991054
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051779/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o459", "authors": [ { "first": "Nooraziah", "last": "Mohd Lair" }, { "first": "Hamid", "last": "Khaledi" }, { "first": "Hapipah", "last": "Mohd Ali" } ] }
PMC3051780
Related literature {#sec1} ================== For background to this study and a related structure, see: Mehrdad *et al.* (2011[@bb4]). For the Baeyer--Villiger oxidation of 1-alkyl-3-arylimino-2-indolinones, see: Jadidi *et al.* (2008[@bb3]); Azizian *et al.* (2010[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~18~BrN~3~O*M* *~r~* = 420.29Triclinic,*a* = 7.8676 (4) Å*b* = 8.9748 (4) Å*c* = 14.1353 (7) Åα = 83.090 (4)°β = 74.363 (4)°γ = 69.776 (4)°*V* = 901.49 (8) Å^3^*Z* = 2Mo *K*α radiationμ = 2.30 mm^−1^*T* = 298 K0.3 × 0.16 × 0.11 mm ### Data collection {#sec2.1.2} Stoe IPDS IIT diffractometerAbsorption correction: numerical \[shape of crystal determined optically (*X-RED* and *X-SHAPE*; Stoe & Cie, 2005[@bb6]) *T* ~min~ = 0.681, *T* ~max~ = 0.8059841 measured reflections4839 independent reflections4382 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.049 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.045*wR*(*F* ^2^) = 0.119*S* = 1.104839 reflections244 parametersH-atom parameters constrainedΔρ~max~ = 0.91 e Å^−3^Δρ~min~ = −1.10 e Å^−3^ {#d5e451} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb6]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb1]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb2]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000833/bt5458sup1.cif](http://dx.doi.org/10.1107/S1600536811000833/bt5458sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000833/bt5458Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000833/bt5458Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5458&file=bt5458sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5458sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5458&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5458](http://scripts.iucr.org/cgi-bin/sendsup?bt5458)). The authors thank the Vice President of Research Affairs at Shahid Beheshti University, General Campus, for financial support. Comment ======= The background to this study is set out in the preceding paper (Mehrdad *et al.*, 2011). In this paper, we report the structure of *N*-aryl-*N*-(2-arylamino-3*H*-indol-3-ylidene) amine N-oxide. The molecular structure of the title compound is shown in Fig. 1. In the molecules of the title compound, bond distances and angles are within normal ranges. The dihedral angles between the rings are A (C1---C7), B (C10---C16) and C (C17---C22/N3/C8/C9) are A/B = 59.89 (8)°, A/C = 3.46 (7)° and B/C = 61.97 (7)°. A packing diagram is shown in Fig. 2. Intermolecular C---H···N contacts and π--π interactions between 5-membered rings \[centroid···centroid distance = 3.476 (2) Å; symmetry operator 2-x,2-y,1-z\] stabilize the crystal structure. Experimental {#experimental} ============ The preparation of the title compound has been reported previously, except that the temperature was room temperature in place of -20°C (Mehrdad *et al.*, 2010). At -20°C (2Z)-N-(4-Methoxyphenyl)-2-(4-methoxyphenylimino)-2H-1,4-benzoxazin-3-amine was obtained, whereas at room temperature (*Z*)---*N*-(5-bromo-2-(*p*-tolylamino)-3*H*-indol-3- ylidene)-4-methylaniline oxide was obtained. It was isolated as a violet solid in 72% yield: m.p. = 183--184 C. Refinement {#refinement} ========== All H atoms were positioned geometrically, with N---H=0.86 Å, C---H=0.96Å and C---H=0.93Åfor N---H, aromatics and methyl hydrogen atoms respectively and constrained to ride on their parent atoms, with *U*~iso~(H)=1.2*U*~eq~. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o350-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e135 .table-wrap} ----------------------- --------------------------------------- C~22~H~18~BrN~3~O *Z* = 2 *M~r~* = 420.29 *F*(000) = 428 Triclinic, *P*1 *D*~x~ = 1.548 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 7.8676 (4) Å Cell parameters from 9841 reflections *b* = 8.9748 (4) Å θ = 2.4--29.1° *c* = 14.1353 (7) Å µ = 2.30 mm^−1^ α = 83.090 (4)° *T* = 298 K β = 74.363 (4)° Prism, red γ = 69.776 (4)° 0.3 × 0.16 × 0.11 mm *V* = 901.49 (8) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e269 .table-wrap} -------------------------------------------------------------------------------------------------------------------- -------------------------------------- Stoe IPDS IIT diffractometer 4839 independent reflections graphite 4382 reflections with *I* \> 2σ(*I*) Detector resolution: 0.15 mm pixels mm^-1^ *R*~int~ = 0.049 rotation method scans θ~max~ = 29.1°, θ~min~ = 2.4° Absorption correction: numerical \[shape of crystal determined optically (*X-RED* and *X-SHAPE*; Stoe & Cie, 2005) *h* = −10→10 *T*~min~ = 0.681, *T*~max~ = 0.805 *k* = −12→12 9841 measured reflections *l* = −19→14 -------------------------------------------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e386 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.045 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.119 H-atom parameters constrained *S* = 1.10 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0603*P*)^2^ + 1.2665*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4839 reflections (Δ/σ)~max~ = 0.008 244 parameters Δρ~max~ = 0.91 e Å^−3^ 0 restraints Δρ~min~ = −1.10 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e543 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e642 .table-wrap} ------ ------------- ------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 1.0280 (4) 0.6363 (3) 0.3135 (2) 0.0203 (5) H1 0.9265 0.7273 0.3328 0.024\* C2 1.0624 (4) 0.5714 (3) 0.2226 (2) 0.0219 (5) H2 0.9835 0.6211 0.1814 0.026\* C3 1.2118 (4) 0.4339 (3) 0.1920 (2) 0.0208 (5) C4 1.2539 (4) 0.3684 (4) 0.0918 (2) 0.0288 (6) H4A 1.2522 0.2611 0.099 0.035\* H4B 1.3751 0.3699 0.0548 0.035\* H4C 1.1613 0.4324 0.0581 0.035\* C5 1.3260 (4) 0.3607 (3) 0.2564 (2) 0.0219 (5) H5 1.4245 0.2673 0.2384 0.026\* C6 1.2958 (4) 0.4239 (3) 0.3460 (2) 0.0199 (5) H6 1.3745 0.3736 0.3873 0.024\* C7 1.1468 (3) 0.5638 (3) 0.37508 (19) 0.0173 (4) C8 0.9991 (3) 0.7513 (3) 0.51299 (19) 0.0162 (4) C9 1.0160 (3) 0.7961 (3) 0.60744 (19) 0.0167 (4) C10 1.1776 (3) 0.7865 (3) 0.73329 (19) 0.0169 (4) C11 1.1803 (4) 0.6950 (3) 0.8196 (2) 0.0196 (5) H11 1.1661 0.5956 0.8241 0.023\* C12 1.2048 (4) 0.7557 (3) 0.8991 (2) 0.0206 (5) H12 1.2046 0.6967 0.9579 0.025\* C13 1.2295 (4) 0.9033 (3) 0.89224 (19) 0.0195 (5) C14 1.2576 (4) 0.9686 (4) 0.9787 (2) 0.0268 (6) H14A 1.1625 1.0694 0.9953 0.032\* H14B 1.3783 0.9819 0.9616 0.032\* H14C 1.2499 0.8959 1.0341 0.032\* C15 1.2301 (4) 0.9902 (3) 0.8033 (2) 0.0194 (5) H15 1.2478 1.0884 0.7977 0.023\* C16 1.2046 (4) 0.9327 (3) 0.7233 (2) 0.0192 (5) H16 1.2056 0.991 0.6642 0.023\* C17 0.8539 (3) 0.9366 (3) 0.63666 (19) 0.0159 (4) C18 0.7762 (3) 1.0326 (3) 0.71857 (18) 0.0174 (5) H18 0.8311 1.0128 0.7714 0.021\* C19 0.6130 (3) 1.1593 (3) 0.71750 (19) 0.0171 (4) C20 0.5291 (4) 1.1944 (3) 0.6390 (2) 0.0190 (5) H20 0.4235 1.2832 0.64 0.023\* C21 0.6048 (4) 1.0953 (3) 0.55863 (19) 0.0189 (5) H21 0.5489 1.1161 0.5061 0.023\* C22 0.7650 (3) 0.9650 (3) 0.55820 (18) 0.0166 (4) N1 1.1289 (3) 0.6222 (3) 0.46644 (16) 0.0177 (4) H1B 1.2127 0.568 0.497 0.021\* N2 1.1553 (3) 0.7223 (2) 0.64904 (17) 0.0176 (4) N3 0.8540 (3) 0.8514 (2) 0.48464 (16) 0.0166 (4) O1 1.2865 (3) 0.5915 (2) 0.61671 (15) 0.0233 (4) Br1 0.49974 (4) 1.28997 (3) 0.82884 (2) 0.02254 (10) ------ ------------- ------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1222 .table-wrap} ----- -------------- -------------- -------------- -------------- --------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0190 (11) 0.0149 (11) 0.0265 (13) −0.0007 (9) −0.0084 (10) −0.0072 (9) C2 0.0230 (12) 0.0170 (11) 0.0264 (13) −0.0033 (10) −0.0090 (10) −0.0068 (10) C3 0.0185 (11) 0.0188 (11) 0.0251 (12) −0.0055 (9) −0.0030 (10) −0.0084 (10) C4 0.0300 (14) 0.0300 (14) 0.0257 (13) −0.0073 (12) −0.0032 (11) −0.0138 (11) C5 0.0164 (11) 0.0164 (11) 0.0292 (13) −0.0019 (9) −0.0014 (10) −0.0072 (10) C6 0.0166 (11) 0.0148 (11) 0.0255 (12) −0.0013 (9) −0.0046 (9) −0.0033 (9) C7 0.0163 (10) 0.0136 (10) 0.0218 (11) −0.0038 (9) −0.0036 (9) −0.0052 (9) C8 0.0172 (11) 0.0115 (10) 0.0200 (11) −0.0044 (8) −0.0041 (9) −0.0034 (8) C9 0.0162 (11) 0.0125 (10) 0.0211 (11) −0.0024 (8) −0.0063 (9) −0.0019 (8) C10 0.0149 (10) 0.0142 (10) 0.0208 (11) −0.0005 (8) −0.0075 (9) −0.0037 (8) C11 0.0207 (11) 0.0134 (10) 0.0250 (12) −0.0042 (9) −0.0083 (10) −0.0003 (9) C12 0.0210 (12) 0.0208 (12) 0.0193 (11) −0.0039 (10) −0.0078 (9) −0.0002 (9) C13 0.0158 (11) 0.0198 (11) 0.0205 (12) −0.0009 (9) −0.0041 (9) −0.0077 (9) C14 0.0275 (14) 0.0301 (14) 0.0241 (13) −0.0058 (11) −0.0096 (11) −0.0094 (11) C15 0.0189 (11) 0.0134 (10) 0.0252 (12) −0.0028 (9) −0.0064 (10) −0.0033 (9) C16 0.0205 (11) 0.0141 (10) 0.0215 (12) −0.0026 (9) −0.0065 (9) −0.0016 (9) C17 0.0148 (10) 0.0127 (10) 0.0205 (11) −0.0034 (8) −0.0054 (9) −0.0026 (8) C18 0.0182 (11) 0.0156 (11) 0.0178 (11) −0.0035 (9) −0.0053 (9) −0.0033 (8) C19 0.0154 (10) 0.0131 (10) 0.0207 (11) −0.0022 (8) −0.0013 (9) −0.0069 (8) C20 0.0175 (11) 0.0146 (10) 0.0241 (12) −0.0022 (9) −0.0071 (9) −0.0020 (9) C21 0.0191 (11) 0.0160 (11) 0.0215 (12) −0.0038 (9) −0.0075 (9) −0.0008 (9) C22 0.0178 (11) 0.0146 (10) 0.0184 (11) −0.0058 (9) −0.0051 (9) −0.0016 (8) N1 0.0170 (9) 0.0148 (9) 0.0209 (10) −0.0016 (8) −0.0069 (8) −0.0040 (8) N2 0.0165 (9) 0.0119 (9) 0.0234 (10) −0.0010 (7) −0.0070 (8) −0.0027 (8) N3 0.0175 (9) 0.0137 (9) 0.0180 (9) −0.0031 (8) −0.0048 (8) −0.0035 (7) O1 0.0207 (9) 0.0149 (8) 0.0308 (10) 0.0043 (7) −0.0107 (8) −0.0089 (7) Br1 0.02190 (14) 0.01708 (13) 0.02465 (15) −0.00021 (9) −0.00401 (10) −0.00834 (9) ----- -------------- -------------- -------------- -------------- --------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1834 .table-wrap} ----------------------- ------------ ----------------------- -------------- C1---C7 1.391 (4) C11---H11 0.93 C1---C2 1.396 (4) C12---C13 1.393 (4) C1---H1 0.93 C12---H12 0.93 C2---C3 1.394 (4) C13---C15 1.397 (4) C2---H2 0.93 C13---C14 1.515 (4) C3---C5 1.398 (4) C14---H14A 0.96 C3---C4 1.507 (4) C14---H14B 0.96 C4---H4A 0.96 C14---H14C 0.96 C4---H4B 0.96 C15---C16 1.385 (4) C4---H4C 0.96 C15---H15 0.93 C5---C6 1.378 (4) C16---H16 0.93 C5---H5 0.93 C17---C18 1.397 (3) C6---C7 1.403 (3) C17---C22 1.418 (3) C6---H6 0.93 C18---C19 1.393 (3) C7---N1 1.406 (3) C18---H18 0.93 C8---N3 1.312 (3) C19---C20 1.391 (4) C8---N1 1.349 (3) C19---Br1 1.901 (2) C8---C9 1.491 (3) C20---C21 1.395 (4) C9---N2 1.318 (3) C20---H20 0.93 C9---C17 1.455 (3) C21---C22 1.391 (3) C10---C16 1.385 (4) C21---H21 0.93 C10---C11 1.387 (4) C22---N3 1.407 (3) C10---N2 1.459 (3) N1---H1B 0.86 C11---C12 1.390 (4) N2---O1 1.300 (3) C7---C1---C2 119.5 (2) C12---C13---C14 121.1 (3) C7---C1---H1 120.2 C15---C13---C14 120.3 (2) C2---C1---H1 120.2 C13---C14---H14A 109.5 C3---C2---C1 121.7 (3) C13---C14---H14B 109.5 C3---C2---H2 119.1 H14A---C14---H14B 109.5 C1---C2---H2 119.1 C13---C14---H14C 109.5 C2---C3---C5 117.7 (2) H14A---C14---H14C 109.5 C2---C3---C4 121.6 (3) H14B---C14---H14C 109.5 C5---C3---C4 120.7 (2) C16---C15---C13 121.2 (2) C3---C4---H4A 109.5 C16---C15---H15 119.4 C3---C4---H4B 109.5 C13---C15---H15 119.4 H4A---C4---H4B 109.5 C15---C16---C10 118.5 (2) C3---C4---H4C 109.5 C15---C16---H16 120.8 H4A---C4---H4C 109.5 C10---C16---H16 120.8 H4B---C4---H4C 109.5 C18---C17---C22 120.8 (2) C6---C5---C3 121.5 (2) C18---C17---C9 135.5 (2) C6---C5---H5 119.2 C22---C17---C9 103.6 (2) C3---C5---H5 119.2 C19---C18---C17 117.0 (2) C5---C6---C7 120.1 (2) C19---C18---H18 121.5 C5---C6---H6 119.9 C17---C18---H18 121.5 C7---C6---H6 119.9 C20---C19---C18 123.1 (2) C1---C7---C6 119.4 (2) C20---C19---Br1 118.58 (18) C1---C7---N1 124.2 (2) C18---C19---Br1 118.31 (19) C6---C7---N1 116.4 (2) C19---C20---C21 119.5 (2) N3---C8---N1 128.1 (2) C19---C20---H20 120.3 N3---C8---C9 112.3 (2) C21---C20---H20 120.3 N1---C8---C9 119.6 (2) C22---C21---C20 119.1 (2) N2---C9---C17 130.5 (2) C22---C21---H21 120.5 N2---C9---C8 124.9 (2) C20---C21---H21 120.5 C17---C9---C8 104.6 (2) C21---C22---N3 125.9 (2) C16---C10---C11 122.1 (2) C21---C22---C17 120.4 (2) C16---C10---N2 119.2 (2) N3---C22---C17 113.7 (2) C11---C10---N2 118.6 (2) C8---N1---C7 129.2 (2) C10---C11---C12 118.4 (2) C8---N1---H1B 115.4 C10---C11---H11 120.8 C7---N1---H1B 115.4 C12---C11---H11 120.8 O1---N2---C9 123.3 (2) C11---C12---C13 121.2 (2) O1---N2---C10 114.8 (2) C11---C12---H12 119.4 C9---N2---C10 121.8 (2) C13---C12---H12 119.4 C8---N3---C22 105.6 (2) C12---C13---C15 118.7 (2) C7---C1---C2---C3 0.9 (4) C9---C17---C18---C19 −179.4 (3) C1---C2---C3---C5 1.0 (4) C17---C18---C19---C20 −1.3 (4) C1---C2---C3---C4 −177.1 (3) C17---C18---C19---Br1 178.59 (18) C2---C3---C5---C6 −1.7 (4) C18---C19---C20---C21 3.1 (4) C4---C3---C5---C6 176.3 (3) Br1---C19---C20---C21 −176.81 (19) C3---C5---C6---C7 0.7 (4) C19---C20---C21---C22 −1.3 (4) C2---C1---C7---C6 −1.9 (4) C20---C21---C22---N3 177.6 (2) C2---C1---C7---N1 177.7 (3) C20---C21---C22---C17 −2.2 (4) C5---C6---C7---C1 1.2 (4) C18---C17---C22---C21 4.0 (4) C5---C6---C7---N1 −178.5 (2) C9---C17---C22---C21 −178.0 (2) N3---C8---C9---N2 −175.3 (2) C18---C17---C22---N3 −175.8 (2) N1---C8---C9---N2 3.0 (4) C9---C17---C22---N3 2.2 (3) N3---C8---C9---C17 2.5 (3) N3---C8---N1---C7 2.1 (4) N1---C8---C9---C17 −179.2 (2) C9---C8---N1---C7 −175.9 (2) C16---C10---C11---C12 2.2 (4) C1---C7---N1---C8 1.4 (4) N2---C10---C11---C12 179.0 (2) C6---C7---N1---C8 −178.9 (3) C10---C11---C12---C13 −1.2 (4) C17---C9---N2---O1 176.1 (2) C11---C12---C13---C15 −0.2 (4) C8---C9---N2---O1 −6.7 (4) C11---C12---C13---C14 −179.5 (2) C17---C9---N2---C10 −6.7 (4) C12---C13---C15---C16 0.7 (4) C8---C9---N2---C10 170.5 (2) C14---C13---C15---C16 180.0 (2) C16---C10---N2---O1 115.9 (3) C13---C15---C16---C10 0.3 (4) C11---C10---N2---O1 −60.9 (3) C11---C10---C16---C15 −1.7 (4) C16---C10---N2---C9 −61.5 (3) N2---C10---C16---C15 −178.5 (2) C11---C10---N2---C9 121.7 (3) N2---C9---C17---C18 −7.4 (5) N1---C8---N3---C22 −179.3 (3) C8---C9---C17---C18 175.0 (3) C9---C8---N3---C22 −1.2 (3) N2---C9---C17---C22 175.1 (3) C21---C22---N3---C8 179.5 (3) C8---C9---C17---C22 −2.6 (3) C17---C22---N3---C8 −0.6 (3) C22---C17---C18---C19 −2.2 (4) ----------------------- ------------ ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2761 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1B···O1 0.86 1.99 2.677 (3) 137 C16---H16···N3^i^ 0.93 2.45 3.369 (3) 169 C20---H20···O1^ii^ 0.93 2.62 3.434 (3) 146 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*+2, −*z*+1; (ii) *x*−1, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N1---H1*B*⋯O1 0.86 1.99 2.677 (3) 137 C16---H16⋯N3^i^ 0.93 2.45 3.369 (3) 169 C20---H20⋯O1^ii^ 0.93 2.62 3.434 (3) 146 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:16.995660
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051780/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o350", "authors": [ { "first": "Davood", "last": "Asgri" }, { "first": "Mohammad", "last": "Ghanbari" }, { "first": "Morteza", "last": "Mehrdad" }, { "first": "Khosrow", "last": "Jadidi" }, { "first": "Hamid Reza", "last": "Khavasi" } ] }
PMC3051781
Related literature {#sec1} ================== The title compound is an inter­mediate for the synthesis of linezolid \[systematic name (*S*)-*N*{3-\[3-fluoro-4-(morpholin-4-yl)phen­yl\]-2-oxo-1,3-oxazolidin-5-yl}meth­yl)acetamide\], which is currently used in the treatment of serious multi-drug resistant Gram-positive bacterial infections caused by strains of staphylococci, streptococci and enterococci, see: Brickner *et al.* (1996[@bb1]); Perrault *et al.* (2002[@bb6]). For synthetic procedures, see: Imbordino *et al.* (2007[@bb4]); Zhao *et al.* (2006[@bb8]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~18~ClNO~4~*M* *~r~* = 287.73Orthorhombic,*a* = 6.5332 (12) Å*b* = 8.888 (2) Å*c* = 25.29 (3) Å*V* = 1468.7 (16) Å^3^*Z* = 4Mo *K*α radiationμ = 0.27 mm^−1^*T* = 296 K0.32 × 0.28 × 0.20 mm ### Data collection {#sec2.1.2} Xcalibur, Eos diffractometerAbsorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction 2009[@bb5]) *T* ~min~ = 0.760, *T* ~max~ = 1.03967 measured reflections2695 independent reflections1599 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.045 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.051*wR*(*F* ^2^) = 0.126*S* = 1.062695 reflections176 parametersH-atom parameters constrainedΔρ~max~ = 0.32 e Å^−3^Δρ~min~ = −0.21 e Å^−3^Absolute structure: Flack (1983[@bb3]), 931 Friedel pairsFlack parameter: 0.18 (13) {#d5e444} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2009[@bb5]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009[@bb2]); software used to prepare material for publication: *OLEX2*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810053420/rn2076sup1.cif](http://dx.doi.org/10.1107/S1600536810053420/rn2076sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053420/rn2076Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053420/rn2076Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?rn2076&file=rn2076sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?rn2076sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?rn2076&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [RN2076](http://scripts.iucr.org/cgi-bin/sendsup?rn2076)). The authors thank the NSFC (81072532) for financial support and Professor Zhihua Mao (Sichuan University) for the X-ray measurements. Comment ======= The optically active *S,Z*-1-chloro-3-(3,4,5-trimethoxybenzylideneamino) propan-2-ol is a key intermediate for synthesizing Linezolid. Linezolid is a potent, synthetic oxazolidinone, which is currently used in the treatment of serious multi-drug resistant Gram-positive bacterial infections caused by strains of staphylococci, streptococci, and enterococci (Brickner *et al.*, 1996; Perrault *et al.*, 2002). Our interests in synthesizing Linezolid prompted us to develop an efficient methodology for synthesizing *S,Z*-1-chloro-3-(3,4,5-trimethoxybenzylideneamino)propan-2-ol. In our synthetic work, we obtained the title compound, whose spectral data corresponds with that reported in the literature (Imbordino *et al.*, 2007; Zhao *et al.*, 2006). Its crystal structure is reported here. The two methoxy groups at the *meta* positions are approximately coplanar with the attached benzene ring, and the *C*(methoxy) atoms, C11 and C13, are -0.2672 (65) and -0.0588 (73) Å from the plane of benzene ring. Whereas the third methoxy group at the *para* position is not coplanar with the ring, and the distance of the *C*(methoxy) atom, C12, is -1.1003 (64) Å. An intermolecular O---H···N hydrogen bond is observed. The molecules are linked into a chain along the *a* axis by O---H···N hydrogen bonds. Experimental {#experimental} ============ To a stirred solution of 3,4,5-trimethoxybenzaldehyde (20.0 g,102 mmol) in 200 ml of methyl *tert*-butyl ether at room temperature was added concentrated ammonia water (12 ml,161 mmol). After 1 h, to this stirred solution at room temperature was added, dropwise over 20 min, the solution of *S*-2-(chloromethyl)oxirane (8 ml, 102 mmol) in 200 ml of methyl *tert*-butyl ether. After 24 h, the organic layer was separated and dried (MgSO~4~) and then concentrated under reduced pressure. The residue is dispersed in methyl *tert*-butyl ether, and left to crystallize 17.3 g (yield 58.8%) of *S,Z*-1-chloro-3-(3,4,5-trimethoxybenzylideneamino)propan-2-ol. Colourless crystals suitable for X-ray analysis were obtained by slow evaporation in methanol at room temperature. Refinement {#refinement} ========== All H atoms were positioned geometrically (C---H = 0.93--0.96 Å) and refined using a riding model, with *U*~iso~(H) = 1.2--1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. ::: ![](e-67-0o245-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A packing diagram for the title compound. ::: ![](e-67-0o245-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e158 .table-wrap} ------------------------------- -------------------------------------- C~13~H~18~ClNO~4~ *F*(000) = 608 *M~r~* = 287.73 *D*~x~ = 1.301 Mg m^−3^ Orthorhombic, *P*2~1~2~1~2~1~ Mo *K*α radiation, λ = 0.7107 Å Hall symbol: P 2ac 2ab Cell parameters from 699 reflections *a* = 6.5332 (12) Å θ = 3.1--29.2° *b* = 8.888 (2) Å µ = 0.27 mm^−1^ *c* = 25.29 (3) Å *T* = 296 K *V* = 1468.7 (16) Å^3^ Block, colourless *Z* = 4 0.32 × 0.28 × 0.20 mm ------------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e282 .table-wrap} ----------------------------------------------------------------------------- -------------------------------------- Xcalibur, Eos diffractometer 2695 independent reflections Radiation source: Enhance (Mo) X-ray Source 1599 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.045 Detector resolution: 16.0874 pixels mm^-1^ θ~max~ = 26.4°, θ~min~ = 3.2° ω scans *h* = −8→8 Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction 2009) *k* = −11→6 *T*~min~ = 0.760, *T*~max~ = 1.0 *l* = −20→31 3967 measured reflections ----------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e402 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.051 H-atom parameters constrained *wR*(*F*^2^) = 0.126 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0534*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.06 (Δ/σ)~max~ \< 0.001 2695 reflections Δρ~max~ = 0.32 e Å^−3^ 176 parameters Δρ~min~ = −0.21 e Å^−3^ 0 restraints Absolute structure: Flack (1983), 931 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.18 (13) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e563 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e662 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 1.17509 (19) 0.37018 (14) 0.54369 (7) 0.1140 (6) O1 0.8309 (4) 0.7058 (3) 0.49115 (10) 0.0664 (7) H1 0.9264 0.7436 0.4749 0.100\* O4 0.0299 (4) 0.9974 (3) 0.65900 (10) 0.0669 (8) O2 0.3609 (4) 0.7987 (3) 0.80796 (10) 0.0644 (7) O3 0.0912 (4) 0.9855 (3) 0.76403 (10) 0.0617 (7) N1 0.5915 (4) 0.6334 (3) 0.58064 (11) 0.0465 (7) C1 1.0430 (6) 0.4919 (4) 0.49923 (16) 0.0734 (12) H1B 1.1417 0.5473 0.4782 0.088\* H1A 0.9599 0.4322 0.4754 0.088\* C2 0.9080 (5) 0.6012 (4) 0.52862 (13) 0.0488 (8) H2 0.9893 0.6546 0.5553 0.059\* C3 0.7283 (5) 0.5258 (4) 0.55492 (15) 0.0522 (9) H3A 0.6519 0.4696 0.5286 0.063\* H3B 0.7783 0.4549 0.5811 0.063\* C4 0.5835 (5) 0.6308 (4) 0.63124 (14) 0.0488 (9) H4 0.6702 0.5640 0.6485 0.059\* C5 0.4496 (5) 0.7237 (3) 0.66425 (13) 0.0395 (8) C6 0.4721 (5) 0.7140 (4) 0.71966 (13) 0.0484 (9) H6 0.5707 0.6503 0.7339 0.058\* C7 0.3478 (5) 0.7990 (4) 0.75334 (14) 0.0472 (9) C8 0.2026 (5) 0.8932 (3) 0.73163 (14) 0.0465 (8) C9 0.1786 (5) 0.9004 (4) 0.67608 (14) 0.0466 (8) C10 0.3006 (5) 0.8172 (4) 0.64293 (14) 0.0467 (9) H10 0.2835 0.8234 0.6065 0.056\* C11 0.4771 (6) 0.6841 (5) 0.83311 (14) 0.0685 (11) H11C 0.4668 0.6952 0.8708 0.103\* H11B 0.6179 0.6924 0.8226 0.103\* H11A 0.4251 0.5874 0.8229 0.103\* C12 −0.0824 (6) 0.9189 (5) 0.78748 (19) 0.0875 (15) H12C −0.1499 0.9913 0.8096 0.131\* H12B −0.0407 0.8342 0.8084 0.131\* H12A −0.1748 0.8859 0.7603 0.131\* C13 −0.0084 (8) 1.0060 (6) 0.60329 (18) 0.0896 (15) H13C −0.1008 1.0875 0.5962 0.134\* H13A −0.0682 0.9133 0.5914 0.134\* H13B 0.1181 1.0230 0.5849 0.134\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1159 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0817 (7) 0.0840 (8) 0.1764 (16) 0.0268 (7) 0.0172 (9) 0.0122 (9) O1 0.0611 (14) 0.0825 (17) 0.0555 (17) 0.0065 (15) 0.0092 (14) 0.0266 (15) O4 0.0658 (15) 0.0730 (18) 0.0620 (19) 0.0251 (14) −0.0078 (15) 0.0007 (15) O2 0.0800 (18) 0.0735 (16) 0.0397 (16) 0.0194 (15) −0.0047 (14) −0.0117 (13) O3 0.0610 (15) 0.0594 (15) 0.0647 (17) 0.0101 (14) 0.0073 (14) −0.0150 (13) N1 0.0467 (14) 0.0528 (16) 0.0401 (18) 0.0021 (15) 0.0038 (14) 0.0074 (14) C1 0.067 (2) 0.070 (3) 0.083 (3) −0.005 (2) 0.023 (2) −0.007 (2) C2 0.0478 (17) 0.057 (2) 0.042 (2) −0.0037 (17) 0.0064 (17) −0.0005 (18) C3 0.055 (2) 0.055 (2) 0.046 (2) −0.0042 (18) 0.0125 (18) 0.0002 (18) C4 0.0481 (18) 0.051 (2) 0.047 (2) 0.0039 (18) 0.0028 (18) 0.0086 (18) C5 0.0405 (17) 0.0397 (17) 0.038 (2) −0.0011 (15) 0.0052 (16) 0.0014 (15) C6 0.0463 (18) 0.0483 (18) 0.051 (2) 0.0055 (17) −0.0026 (18) 0.0024 (18) C7 0.054 (2) 0.0466 (18) 0.041 (2) −0.0003 (18) −0.0017 (18) −0.0044 (17) C8 0.0449 (17) 0.0445 (18) 0.050 (2) −0.0021 (18) 0.0023 (18) −0.0055 (18) C9 0.0443 (17) 0.0461 (19) 0.049 (2) −0.0012 (19) −0.0062 (18) 0.0010 (17) C10 0.0470 (17) 0.0483 (18) 0.045 (2) 0.0022 (17) 0.0018 (17) 0.0001 (17) C11 0.072 (2) 0.087 (3) 0.047 (2) 0.008 (2) −0.002 (2) 0.007 (2) C12 0.060 (2) 0.103 (3) 0.100 (4) 0.011 (2) 0.022 (3) −0.005 (3) C13 0.094 (3) 0.104 (4) 0.071 (3) 0.039 (3) −0.022 (3) 0.002 (3) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1532 .table-wrap} -------------------- ------------ --------------------- ------------ Cl1---C1 1.783 (4) C4---C5 1.464 (5) O1---H1 0.8200 C5---C6 1.412 (5) O1---C2 1.420 (4) C5---C10 1.389 (5) O4---C9 1.369 (4) C6---H6 0.9300 O4---C13 1.433 (5) C6---C7 1.398 (5) O2---C7 1.384 (4) C7---C8 1.379 (5) O2---C11 1.420 (4) C8---C9 1.415 (5) O3---C8 1.369 (4) C9---C10 1.373 (5) O3---C12 1.410 (4) C10---H10 0.9300 N1---C3 1.462 (4) C11---H11C 0.9600 N1---C4 1.281 (4) C11---H11B 0.9600 C1---H1B 0.9700 C11---H11A 0.9600 C1---H1A 0.9700 C12---H12C 0.9600 C1---C2 1.508 (5) C12---H12B 0.9600 C2---H2 0.9800 C12---H12A 0.9600 C2---C3 1.507 (4) C13---H13C 0.9600 C3---H3A 0.9700 C13---H13A 0.9600 C3---H3B 0.9700 C13---H13B 0.9600 C4---H4 0.9300 Cl1---C1---H1B 109.4 C2---C3---H3B 109.1 Cl1---C1---H1A 109.4 C3---C2---C1 112.7 (3) O1---C2---C1 107.5 (3) C3---C2---H2 109.5 O1---C2---H2 109.5 H3A---C3---H3B 107.8 O1---C2---C3 108.0 (3) C4---N1---C3 117.2 (3) O4---C9---C8 114.9 (3) C5---C4---H4 117.1 O4---C9---C10 123.9 (3) C5---C6---H6 119.6 O4---C13---H13C 109.5 C5---C10---H10 120.3 O4---C13---H13A 109.5 C6---C5---C4 118.0 (3) O4---C13---H13B 109.5 C7---O2---C11 118.8 (3) O2---C7---C6 124.8 (3) C7---C6---C5 120.7 (3) O2---C11---H11C 109.5 C7---C6---H6 119.6 O2---C11---H11B 109.5 C7---C8---C9 119.9 (3) O2---C11---H11A 109.5 C8---O3---C12 115.3 (3) O3---C8---C7 119.4 (3) C8---C7---O2 116.2 (3) O3---C8---C9 120.6 (3) C8---C7---C6 119.0 (3) O3---C12---H12C 109.5 C9---O4---C13 117.9 (3) O3---C12---H12B 109.5 C9---C10---C5 119.5 (3) O3---C12---H12A 109.5 C9---C10---H10 120.3 N1---C3---C2 112.5 (3) C10---C5---C4 122.3 (3) N1---C3---H3A 109.1 C10---C5---C6 119.7 (3) N1---C3---H3B 109.1 C10---C9---C8 121.2 (3) N1---C4---H4 117.1 H11C---C11---H11B 109.5 N1---C4---C5 125.7 (3) H11C---C11---H11A 109.5 C1---C2---H2 109.5 H11B---C11---H11A 109.5 H1B---C1---H1A 108.0 H12C---C12---H12B 109.5 C2---O1---H1 109.5 H12C---C12---H12A 109.5 C2---C1---Cl1 111.3 (3) H12B---C12---H12A 109.5 C2---C1---H1B 109.4 H13C---C13---H13A 109.5 C2---C1---H1A 109.4 H13C---C13---H13B 109.5 C2---C3---H3A 109.1 H13A---C13---H13B 109.5 Cl1---C1---C2---O1 172.3 (2) C5---C6---C7---O2 −178.8 (3) Cl1---C1---C2---C3 −68.8 (4) C5---C6---C7---C8 −0.2 (5) O1---C2---C3---N1 −57.9 (4) C6---C5---C10---C9 0.8 (5) O4---C9---C10---C5 178.9 (3) C6---C7---C8---O3 −174.9 (3) O2---C7---C8---O3 3.9 (4) C6---C7---C8---C9 1.3 (5) O2---C7---C8---C9 −180.0 (3) C7---C8---C9---O4 179.9 (3) O3---C8---C9---O4 −4.0 (4) C7---C8---C9---C10 −1.4 (5) O3---C8---C9---C10 174.8 (3) C8---C9---C10---C5 0.3 (5) N1---C4---C5---C6 −175.3 (3) C10---C5---C6---C7 −0.9 (5) N1---C4---C5---C10 6.1 (5) C11---O2---C7---C6 −13.6 (5) C1---C2---C3---N1 −176.5 (3) C11---O2---C7---C8 167.7 (3) C3---N1---C4---C5 −176.9 (3) C12---O3---C8---C7 −84.2 (4) C4---N1---C3---C2 −111.9 (3) C12---O3---C8---C9 99.6 (4) C4---C5---C6---C7 −179.5 (3) C13---O4---C9---C8 −177.6 (4) C4---C5---C10---C9 179.4 (3) C13---O4---C9---C10 3.7 (5) -------------------- ------------ --------------------- ------------ ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2181 .table-wrap} ----------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O1---H1···N1^i^ 0.82 2.08 2.870 (4) 162 ----------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*+1/2, −*y*+3/2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ----------- ------------- O1---H1⋯N1^i^ 0.82 2.08 2.870 (4) 162 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.001906
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051781/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o245", "authors": [ { "first": "Yun", "last": "Ren" }, { "first": "Shan", "last": "Qian" }, { "first": "Li", "last": "Hai" }, { "first": "Wei", "last": "Fan" }, { "first": "Yong", "last": "Wu" } ] }
PMC3051782
Related literature {#sec1} ================== For a related structure, see: Li & Li (2011)[@bb3]. For reference bond lengths, see: Allen *et al.* (1987[@bb1]). For details of the synthesis, see: Zhu (2010[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~15~ClN~2~O~2~*M* *~r~* = 338.78Monoclinic,*a* = 12.181 (2) Å*b* = 16.953 (4) Å*c* = 8.5482 (15) Åβ = 109.446 (2)°*V* = 1664.5 (6) Å^3^*Z* = 4Mo *K*α radiationμ = 0.24 mm^−1^*T* = 298 K0.18 × 0.18 × 0.16 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb2]) *T* ~min~ = 0.958, *T* ~max~ = 0.9628964 measured reflections3586 independent reflections1624 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.067 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.060*wR*(*F* ^2^) = 0.147*S* = 1.003586 reflections221 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.19 e Å^−3^Δρ~min~ = −0.24 e Å^−3^ {#d5e388} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000924/cv5034sup1.cif](http://dx.doi.org/10.1107/S1600536811000924/cv5034sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000924/cv5034Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000924/cv5034Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?cv5034&file=cv5034sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?cv5034sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?cv5034&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [CV5034](http://scripts.iucr.org/cgi-bin/sendsup?cv5034)). Comment ======= In continuation of our structural study of naphthylidenebenzohydrazide derivatives (Li & Li, 2011) we present here the title compound (I). In (I) (Fig. 1),the dihedral angle between the benzene ring and the naphthyl bicycle is 69.0 (3)°. All the bond lengths are within normal values (Allen *et al.*, 1987). Intermolecular N---H···O hydrogen bonds (Table 1) link the molecules into chains along the *c* axis (Fig. 2). The crystal packing exhibits π-π interactions proved by short distances of 3.768 (3) Å between the centroids of naphthyl rings from the neighbouring molecules. Experimental {#experimental} ============ The compound was prepared and crystallized according to the literature method (Zhu, 2010). 2-Methoxy-1-naphthaldehyde (0.186 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml absolute methanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for eight days, yielding colorless block-shaped crystals, which were collected by filtration and washed with methanol. Refinement {#refinement} ========== The amino H atom was located from a difference Fourier map and refined isotropically, with the N---H distance restrained to 0.90 (1) Å. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C---H = 0.93--0.96 Å, and *U*~iso~(H) = 1.2*U*~eq~(C) or *U*~iso~(H) = 1.5*U*~eq~(C19). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. ::: ![](e-67-0o374-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### A portion of the crystal packing showing hydrogen bonds as dashed lines. ::: ![](e-67-0o374-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e130 .table-wrap} ------------------------- -------------------------------------- C~19~H~15~ClN~2~O~2~ *F*(000) = 704 *M~r~* = 338.78 *D*~x~ = 1.352 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å *a* = 12.181 (2) Å Cell parameters from 762 reflections *b* = 16.953 (4) Å θ = 2.5--24.3° *c* = 8.5482 (15) Å µ = 0.24 mm^−1^ β = 109.446 (2)° *T* = 298 K *V* = 1664.5 (6) Å^3^ Block, colourless *Z* = 4 0.18 × 0.18 × 0.16 mm ------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e256 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 3586 independent reflections Radiation source: fine-focus sealed tube 1624 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.067 ω scans θ~max~ = 27.0°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −14→15 *T*~min~ = 0.958, *T*~max~ = 0.962 *k* = −19→21 8964 measured reflections *l* = −10→10 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e370 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.060 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.147 H atoms treated by a mixture of independent and constrained refinement *S* = 1.00 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0386*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3586 reflections (Δ/σ)~max~ \< 0.001 221 parameters Δρ~max~ = 0.19 e Å^−3^ 1 restraint Δρ~min~ = −0.24 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e524 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e623 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.57105 (8) 0.10288 (6) 1.03193 (12) 0.0793 (4) N1 0.8646 (2) 0.28050 (15) 0.6055 (3) 0.0469 (7) N2 0.7753 (2) 0.24546 (15) 0.6487 (3) 0.0467 (7) O1 0.9252 (2) 0.49223 (13) 0.7763 (3) 0.0709 (7) O2 0.71701 (19) 0.17210 (12) 0.4129 (3) 0.0619 (7) C1 1.0045 (3) 0.38640 (17) 0.6734 (4) 0.0453 (8) C2 1.0122 (3) 0.46507 (19) 0.7236 (4) 0.0540 (9) C3 1.1046 (3) 0.5131 (2) 0.7182 (4) 0.0707 (11) H3 1.1088 0.5653 0.7527 0.085\* C4 1.1874 (3) 0.4831 (2) 0.6626 (5) 0.0753 (11) H4 1.2479 0.5157 0.6589 0.090\* C5 1.1857 (3) 0.4049 (2) 0.6107 (4) 0.0563 (9) C6 1.2739 (3) 0.3739 (2) 0.5573 (5) 0.0737 (11) H6 1.3347 0.4067 0.5556 0.088\* C7 1.2739 (3) 0.2977 (3) 0.5082 (5) 0.0751 (11) H7 1.3337 0.2785 0.4739 0.090\* C8 1.1819 (3) 0.2489 (2) 0.5103 (4) 0.0676 (10) H8 1.1807 0.1965 0.4773 0.081\* C9 1.0942 (3) 0.27685 (19) 0.5598 (4) 0.0549 (9) H9 1.0337 0.2431 0.5582 0.066\* C10 1.0917 (3) 0.35562 (17) 0.6136 (4) 0.0458 (8) C11 0.9075 (3) 0.34138 (18) 0.6916 (4) 0.0488 (8) H11 0.8752 0.3580 0.7703 0.059\* C12 0.7072 (3) 0.19108 (18) 0.5452 (4) 0.0463 (8) C13 0.6157 (3) 0.15628 (16) 0.6049 (4) 0.0418 (7) C14 0.6300 (2) 0.14888 (16) 0.7713 (4) 0.0433 (8) H14 0.6972 0.1682 0.8504 0.052\* C15 0.5463 (3) 0.11327 (18) 0.8211 (4) 0.0506 (8) C16 0.4458 (3) 0.0859 (2) 0.7070 (5) 0.0752 (11) H16 0.3886 0.0626 0.7417 0.090\* C17 0.4298 (3) 0.0930 (2) 0.5414 (5) 0.0840 (12) H17 0.3618 0.0743 0.4633 0.101\* C18 0.5144 (3) 0.1278 (2) 0.4901 (4) 0.0670 (10) H18 0.5031 0.1322 0.3774 0.080\* C19 0.9307 (4) 0.5719 (2) 0.8359 (5) 0.0905 (13) H19A 1.0029 0.5798 0.9245 0.136\* H19B 0.8669 0.5812 0.8758 0.136\* H19C 0.9260 0.6079 0.7471 0.136\* H2 0.757 (3) 0.265 (2) 0.736 (3) 0.109\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1130 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0826 (7) 0.1061 (8) 0.0635 (7) −0.0240 (6) 0.0433 (6) 0.0039 (5) N1 0.0513 (16) 0.0548 (16) 0.0406 (16) −0.0094 (13) 0.0231 (14) −0.0007 (13) N2 0.0505 (16) 0.0514 (16) 0.0461 (18) −0.0066 (13) 0.0267 (15) −0.0026 (13) O1 0.0942 (18) 0.0526 (15) 0.0704 (18) 0.0061 (13) 0.0333 (16) −0.0040 (12) O2 0.0833 (17) 0.0664 (15) 0.0490 (15) −0.0153 (12) 0.0392 (14) −0.0103 (11) C1 0.055 (2) 0.0434 (19) 0.0354 (19) −0.0063 (15) 0.0130 (17) 0.0031 (14) C2 0.066 (2) 0.050 (2) 0.041 (2) −0.0017 (18) 0.0120 (18) 0.0071 (16) C3 0.087 (3) 0.047 (2) 0.067 (3) −0.015 (2) 0.010 (2) −0.0055 (18) C4 0.070 (3) 0.067 (3) 0.081 (3) −0.030 (2) 0.015 (2) 0.002 (2) C5 0.054 (2) 0.065 (2) 0.047 (2) −0.0132 (17) 0.0121 (18) 0.0083 (18) C6 0.055 (2) 0.091 (3) 0.080 (3) −0.014 (2) 0.029 (2) 0.008 (2) C7 0.056 (2) 0.094 (3) 0.085 (3) 0.004 (2) 0.037 (2) 0.006 (2) C8 0.068 (2) 0.075 (2) 0.068 (3) −0.001 (2) 0.034 (2) −0.001 (2) C9 0.051 (2) 0.064 (2) 0.054 (2) −0.0092 (17) 0.0235 (19) 0.0010 (17) C10 0.053 (2) 0.0466 (19) 0.0367 (19) −0.0077 (15) 0.0138 (17) 0.0048 (15) C11 0.052 (2) 0.055 (2) 0.042 (2) −0.0037 (16) 0.0195 (17) 0.0020 (17) C12 0.053 (2) 0.0482 (19) 0.044 (2) 0.0026 (16) 0.0239 (18) 0.0015 (16) C13 0.0424 (19) 0.0426 (17) 0.042 (2) 0.0016 (14) 0.0169 (17) −0.0018 (15) C14 0.0440 (18) 0.0436 (17) 0.047 (2) −0.0031 (14) 0.0221 (17) −0.0027 (15) C15 0.048 (2) 0.058 (2) 0.055 (2) −0.0020 (16) 0.0298 (19) 0.0024 (17) C16 0.049 (2) 0.098 (3) 0.086 (3) −0.019 (2) 0.032 (2) 0.003 (2) C17 0.055 (2) 0.126 (4) 0.065 (3) −0.029 (2) 0.012 (2) −0.007 (3) C18 0.064 (2) 0.087 (3) 0.049 (2) −0.010 (2) 0.018 (2) 0.0005 (19) C19 0.141 (4) 0.059 (2) 0.065 (3) 0.024 (2) 0.025 (3) −0.007 (2) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1595 .table-wrap} ---------------- ----------- ------------------- ----------- Cl1---C15 1.735 (3) C7---H7 0.9300 N1---C11 1.274 (3) C8---C9 1.358 (4) N1---N2 1.392 (3) C8---H8 0.9300 N2---C12 1.354 (4) C9---C10 1.416 (4) N2---H2 0.91 (3) C9---H9 0.9300 O1---C2 1.362 (4) C11---H11 0.9300 O1---C19 1.437 (4) C12---C13 1.494 (4) O2---C12 1.219 (3) C13---C14 1.380 (4) C1---C2 1.394 (4) C13---C18 1.383 (4) C1---C10 1.422 (4) C14---C15 1.370 (4) C1---C11 1.458 (4) C14---H14 0.9300 C2---C3 1.402 (4) C15---C16 1.367 (4) C3---C4 1.349 (4) C16---C17 1.368 (5) C3---H3 0.9300 C16---H16 0.9300 C4---C5 1.395 (5) C17---C18 1.379 (5) C4---H4 0.9300 C17---H17 0.9300 C5---C6 1.402 (5) C18---H18 0.9300 C5---C10 1.425 (4) C19---H19A 0.9600 C6---C7 1.358 (5) C19---H19B 0.9600 C6---H6 0.9300 C19---H19C 0.9600 C7---C8 1.399 (5) C11---N1---N2 113.5 (2) C9---C10---C5 116.3 (3) C12---N2---N1 118.7 (2) C1---C10---C5 119.5 (3) C12---N2---H2 121 (2) N1---C11---C1 123.7 (3) N1---N2---H2 119 (2) N1---C11---H11 118.2 C2---O1---C19 119.1 (3) C1---C11---H11 118.2 C2---C1---C10 118.7 (3) O2---C12---N2 123.9 (3) C2---C1---C11 116.2 (3) O2---C12---C13 121.8 (3) C10---C1---C11 125.1 (3) N2---C12---C13 114.2 (3) O1---C2---C1 116.4 (3) C14---C13---C18 118.5 (3) O1---C2---C3 122.4 (3) C14---C13---C12 122.4 (3) C1---C2---C3 121.1 (3) C18---C13---C12 119.1 (3) C4---C3---C2 119.7 (3) C15---C14---C13 120.6 (3) C4---C3---H3 120.1 C15---C14---H14 119.7 C2---C3---H3 120.1 C13---C14---H14 119.7 C3---C4---C5 122.4 (3) C16---C15---C14 120.7 (3) C3---C4---H4 118.8 C16---C15---Cl1 120.8 (2) C5---C4---H4 118.8 C14---C15---Cl1 118.5 (3) C4---C5---C6 121.9 (3) C15---C16---C17 119.5 (3) C4---C5---C10 118.6 (3) C15---C16---H16 120.2 C6---C5---C10 119.5 (3) C17---C16---H16 120.2 C7---C6---C5 122.4 (3) C16---C17---C18 120.2 (3) C7---C6---H6 118.8 C16---C17---H17 119.9 C5---C6---H6 118.8 C18---C17---H17 119.9 C6---C7---C8 118.4 (3) C17---C18---C13 120.5 (3) C6---C7---H7 120.8 C17---C18---H18 119.7 C8---C7---H7 120.8 C13---C18---H18 119.7 C9---C8---C7 121.0 (3) O1---C19---H19A 109.5 C9---C8---H8 119.5 O1---C19---H19B 109.5 C7---C8---H8 119.5 H19A---C19---H19B 109.5 C8---C9---C10 122.3 (3) O1---C19---H19C 109.5 C8---C9---H9 118.9 H19A---C19---H19C 109.5 C10---C9---H9 118.9 H19B---C19---H19C 109.5 C9---C10---C1 124.2 (3) ---------------- ----------- ------------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2103 .table-wrap} ----------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···O2^i^ 0.91 (3) 2.04 (3) 2.937 (3) 170 (3) ----------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- ---------- ---------- ----------- ------------- N2---H2⋯O2^i^ 0.91 (3) 2.04 (3) 2.937 (3) 170 (3) Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.006571
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051782/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o374", "authors": [ { "first": "Tian-Yi", "last": "Li" }, { "first": "Yan-Xia", "last": "Ge" } ] }
PMC3051783
Related literature {#sec1} ================== For background and a similar distannoxane, see: Najafi *et al.* (2011[@bb3]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Sn~4~(C~4~H~9~)~8~(C~3~H~4~N~3~S)~2~(CH~3~O)~2~O~2~\]*M* *~r~* = 1254.03Triclinic,*a* = 12.3387 (3) Å*b* = 12.9885 (4) Å*c* = 16.7968 (5) Åα = 81.437 (3)°β = 83.636 (2)°γ = 88.474 (2)°*V* = 2645.33 (13) Å^3^*Z* = 2Mo *K*α radiationμ = 1.99 mm^−1^*T* = 100 K0.30 × 0.30 × 0.10 mm ### Data collection {#sec2.1.2} Agilent SuperNova Dual diffractometer with an Atlas detectorAbsorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010[@bb1]) *T* ~min~ = 0.587, *T* ~max~ = 0.82621047 measured reflections11731 independent reflections9170 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.038 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.037*wR*(*F* ^2^) = 0.078*S* = 1.0111731 reflections509 parametersH-atom parameters constrainedΔρ~max~ = 0.74 e Å^−3^Δρ~min~ = −0.99 e Å^−3^ {#d5e527} Data collection: *CrysAlis PRO* (Agilent Technologies, 2010[@bb1]); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb5]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001917/xu5142sup1.cif](http://dx.doi.org/10.1107/S1600536811001917/xu5142sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001917/xu5142Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001917/xu5142Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5142&file=xu5142sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5142sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5142&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5142](http://scripts.iucr.org/cgi-bin/sendsup?xu5142)). We thank Shahid Beheshti University and the University of Malaya for supporting this study. Comment ======= The preceding report on tetranuclear Sn~4~O~2~(CH~3~)~8~(CH~3~O)~2~(C~3~H~4~N~3~S)~2~ provides a short background to distannoxanes (Najafi *et al.*, 2011). Experimental {#experimental} ============ Dibutyltin diisothiocyanate (1 mmol), 4-methyl-4*H*-1,2,4-triazole-3-thiol (1 mmol) and 1,10-phenanthroline (1 mmol) were loaded into a convection tube; several drops of triethylamine were added. The tube was filled with dry methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions \[C---H 0.95 to 0.98 Å, *U*~iso~(H) 1.2 to 1.5*U*~eq~(C)\] and were included in the refinement in the riding model approximation. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of one of the two molecules of Sn4O2(C4H9)8(CH3O)2(C3H4N3S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m243-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of the second molecule of Sn4O2(C4H9)8(CH3O)2(C3H4N3S)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. ::: ![](e-67-0m243-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e210 .table-wrap} --------------------------------------------------------- --------------------------------------- \[Sn~4~(C~4~H~9~)~8~(C~3~H~4~N~3~S)~2~(CH~3~O)~2~O~2~\] *Z* = 2 *M~r~* = 1254.03 *F*(000) = 1264 Triclinic, *P*1 *D*~x~ = 1.574 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 12.3387 (3) Å Cell parameters from 9821 reflections *b* = 12.9885 (4) Å θ = 2.3--29.3° *c* = 16.7968 (5) Å µ = 1.99 mm^−1^ α = 81.437 (3)° *T* = 100 K β = 83.636 (2)° Block, colorless γ = 88.474 (2)° 0.30 × 0.30 × 0.10 mm *V* = 2645.33 (13) Å^3^ --------------------------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e369 .table-wrap} -------------------------------------------------------------------------------- -------------------------------------- Agilent SuperNova Dual diffractometer with an Atlas detector 11731 independent reflections Radiation source: SuperNova (Mo) X-ray Source 9170 reflections with *I* \> 2σ(*I*) Mirror *R*~int~ = 0.038 Detector resolution: 10.4041 pixels mm^-1^ θ~max~ = 27.5°, θ~min~ = 2.3° ω scans *h* = −12→15 Absorption correction: multi-scan (*CrysAlis PRO*; Agilent Technologies, 2010) *k* = −15→16 *T*~min~ = 0.587, *T*~max~ = 0.826 *l* = −21→18 21047 measured reflections -------------------------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e489 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.037 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.078 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0238*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 11731 reflections (Δ/σ)~max~ = 0.001 509 parameters Δρ~max~ = 0.74 e Å^−3^ 0 restraints Δρ~min~ = −0.99 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e645 .table-wrap} ------ --------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Sn1 1.18487 (2) 0.65276 (2) 0.542466 (16) 0.01418 (7) Sn2 0.923401 (19) 0.58941 (2) 0.448691 (16) 0.01371 (7) Sn3 0.42542 (2) 1.04369 (2) 0.077415 (16) 0.01592 (7) Sn4 0.68464 (2) 0.86991 (2) 0.098980 (16) 0.01738 (7) S1 1.24656 (8) 0.93891 (9) 0.47383 (6) 0.0213 (2) S2 0.76555 (8) 0.83236 (10) 0.30111 (7) 0.0273 (3) O1 1.2076 (2) 0.4984 (2) 0.60264 (16) 0.0183 (6) O2 1.05994 (19) 0.5716 (2) 0.51529 (15) 0.0147 (6) O3 0.2937 (2) 1.1489 (2) 0.02857 (16) 0.0211 (7) O4 0.56314 (19) 0.9523 (2) 0.04735 (15) 0.0165 (6) N1 1.0989 (2) 0.7869 (3) 0.47233 (18) 0.0150 (7) N2 0.9958 (2) 0.7772 (3) 0.44781 (19) 0.0170 (7) N3 1.0462 (2) 0.9402 (3) 0.41771 (18) 0.0148 (7) N4 0.5004 (2) 0.9605 (3) 0.2273 (2) 0.0184 (8) N5 0.6059 (2) 0.9205 (3) 0.21464 (19) 0.0174 (7) N6 0.5618 (2) 0.9086 (3) 0.3441 (2) 0.0193 (8) C1 1.1579 (3) 0.7243 (3) 0.6502 (2) 0.0195 (9) H1A 1.1695 0.8001 0.6350 0.023\* H1B 1.0807 0.7142 0.6726 0.023\* C2 1.2298 (3) 0.6839 (4) 0.7169 (3) 0.0272 (10) H2A 1.2053 0.7166 0.7655 0.033\* H2B 1.2198 0.6078 0.7316 0.033\* C3 1.3501 (3) 0.7055 (4) 0.6931 (3) 0.0323 (12) H3A 1.3744 0.6726 0.6446 0.039\* H3B 1.3913 0.6721 0.7376 0.039\* C4 1.3788 (4) 0.8210 (4) 0.6750 (3) 0.0340 (12) H4A 1.4575 0.8282 0.6594 0.051\* H4B 1.3581 0.8539 0.7234 0.051\* H4C 1.3392 0.8548 0.6305 0.051\* C5 1.3287 (3) 0.6515 (3) 0.4577 (2) 0.0200 (9) H5A 1.3856 0.6929 0.4752 0.024\* H5B 1.3563 0.5790 0.4597 0.024\* C6 1.3126 (3) 0.6940 (4) 0.3709 (2) 0.0246 (10) H6A 1.2975 0.7697 0.3668 0.029\* H6B 1.2480 0.6608 0.3559 0.029\* C7 1.4117 (3) 0.6757 (4) 0.3101 (3) 0.0282 (11) H7A 1.4036 0.7204 0.2579 0.034\* H7B 1.4784 0.6975 0.3305 0.034\* C8 1.4260 (3) 0.5649 (4) 0.2954 (3) 0.0287 (11) H8A 1.4907 0.5589 0.2568 0.043\* H8B 1.3615 0.5434 0.2731 0.043\* H8C 1.4351 0.5201 0.3465 0.043\* C9 0.7907 (3) 0.6298 (4) 0.5314 (3) 0.0233 (10) H9A 0.7286 0.6487 0.4993 0.028\* H9B 0.7700 0.5653 0.5687 0.028\* C10 0.7979 (3) 0.7133 (4) 0.5830 (3) 0.0239 (10) H10A 0.8094 0.7809 0.5474 0.029\* H10B 0.8623 0.6991 0.6134 0.029\* C11 0.6985 (3) 0.7221 (4) 0.6421 (3) 0.0275 (11) H11A 0.6870 0.6543 0.6774 0.033\* H11B 0.6343 0.7360 0.6114 0.033\* C12 0.7036 (3) 0.8056 (4) 0.6948 (3) 0.0332 (12) H12A 0.6360 0.8057 0.7315 0.050\* H12B 0.7123 0.8736 0.6607 0.050\* H12C 0.7657 0.7919 0.7266 0.050\* C13 1.0015 (3) 0.6182 (3) 0.3281 (2) 0.0167 (9) H13A 0.9519 0.6597 0.2931 0.020\* H13B 1.0679 0.6597 0.3274 0.020\* C14 1.0331 (3) 0.5177 (4) 0.2940 (3) 0.0279 (10) H14A 1.0724 0.4715 0.3338 0.033\* H14B 0.9656 0.4818 0.2872 0.033\* C15 1.1037 (3) 0.5336 (4) 0.2138 (3) 0.0267 (10) H15A 1.1717 0.5688 0.2203 0.032\* H15B 1.0648 0.5796 0.1736 0.032\* C16 1.1326 (4) 0.4311 (4) 0.1821 (3) 0.0396 (13) H16A 1.1790 0.4449 0.1305 0.059\* H16B 1.0656 0.3971 0.1739 0.059\* H16C 1.1717 0.3855 0.2215 0.059\* C17 1.3064 (3) 0.4541 (3) 0.6300 (3) 0.0243 (10) H17A 1.3014 0.3780 0.6386 0.036\* H17B 1.3179 0.4781 0.6810 0.036\* H17C 1.3677 0.4757 0.5892 0.036\* C18 0.9673 (3) 0.8695 (3) 0.4160 (2) 0.0186 (9) H18 0.9000 0.8858 0.3943 0.022\* C19 1.1290 (3) 0.8865 (3) 0.4538 (2) 0.0155 (8) C20 1.0447 (3) 1.0492 (3) 0.3845 (2) 0.0210 (9) H20A 1.0779 1.0895 0.4202 0.031\* H20B 0.9692 1.0726 0.3801 0.031\* H20C 1.0860 1.0595 0.3307 0.031\* C21 0.3130 (3) 0.9228 (3) 0.1234 (2) 0.0200 (9) H21A 0.2787 0.9035 0.0772 0.024\* H21B 0.3548 0.8613 0.1459 0.024\* C22 0.2224 (3) 0.9443 (4) 0.1879 (3) 0.0303 (11) H22A 0.1820 1.0080 0.1676 0.036\* H22B 0.2550 0.9574 0.2367 0.036\* C23 0.1424 (3) 0.8541 (4) 0.2114 (3) 0.0323 (11) H23A 0.1818 0.7922 0.2362 0.039\* H23B 0.0848 0.8730 0.2528 0.039\* C24 0.0888 (3) 0.8257 (4) 0.1400 (3) 0.0325 (12) H24A 0.0382 0.7682 0.1591 0.049\* H24B 0.1451 0.8045 0.0996 0.049\* H24C 0.0488 0.8863 0.1156 0.049\* C25 0.5035 (3) 1.1760 (3) 0.1050 (2) 0.0195 (9) H25A 0.4523 1.2125 0.1413 0.023\* H25B 0.5674 1.1527 0.1342 0.023\* C26 0.5408 (3) 1.2510 (3) 0.0292 (2) 0.0211 (9) H26A 0.5900 1.2132 −0.0075 0.025\* H26B 0.4764 1.2747 0.0010 0.025\* C27 0.5997 (4) 1.3458 (4) 0.0450 (3) 0.0326 (12) H27A 0.6646 1.3229 0.0730 0.039\* H27B 0.5508 1.3847 0.0811 0.039\* C28 0.6351 (5) 1.4174 (4) −0.0333 (3) 0.0491 (15) H28A 0.6736 1.4772 −0.0211 0.074\* H28B 0.5708 1.4418 −0.0603 0.074\* H28C 0.6839 1.3792 −0.0690 0.074\* C29 0.6387 (3) 0.7131 (3) 0.1474 (3) 0.0221 (10) H29A 0.6478 0.7026 0.2059 0.027\* H29B 0.5600 0.7066 0.1428 0.027\* C30 0.6977 (3) 0.6249 (4) 0.1109 (3) 0.0260 (10) H30A 0.6861 0.6325 0.0529 0.031\* H30B 0.6646 0.5584 0.1378 0.031\* C31 0.8193 (4) 0.6188 (4) 0.1174 (3) 0.0373 (13) H31A 0.8528 0.6859 0.0923 0.045\* H31B 0.8316 0.6076 0.1754 0.045\* C32 0.8748 (4) 0.5320 (5) 0.0768 (3) 0.0525 (16) H32A 0.9529 0.5311 0.0827 0.079\* H32B 0.8644 0.5436 0.0191 0.079\* H32C 0.8430 0.4652 0.1021 0.079\* C33 0.8267 (3) 0.9628 (4) 0.0912 (3) 0.0281 (11) H33A 0.8720 0.9331 0.1343 0.034\* H33B 0.8702 0.9600 0.0384 0.034\* C34 0.7995 (3) 1.0775 (4) 0.0999 (3) 0.0286 (11) H34A 0.7611 1.1092 0.0534 0.034\* H34B 0.7493 1.0797 0.1498 0.034\* C35 0.8997 (4) 1.1421 (4) 0.1035 (3) 0.0417 (14) H35A 0.8791 1.2168 0.0968 0.050\* H35B 0.9553 1.1312 0.0582 0.050\* C36 0.9487 (4) 1.1125 (5) 0.1842 (3) 0.0454 (14) H36A 1.0133 1.1549 0.1843 0.068\* H36B 0.9697 1.0387 0.1908 0.068\* H36C 0.8945 1.1251 0.2291 0.068\* C37 0.2228 (4) 1.2117 (4) 0.0713 (3) 0.0402 (13) H37A 0.1531 1.2185 0.0481 0.060\* H37B 0.2548 1.2807 0.0677 0.060\* H37C 0.2107 1.1800 0.1282 0.060\* C38 0.4776 (3) 0.9524 (3) 0.3048 (2) 0.0175 (9) H38 0.4106 0.9742 0.3310 0.021\* C39 0.6432 (3) 0.8887 (3) 0.2857 (2) 0.0190 (9) C40 0.5666 (3) 0.8864 (4) 0.4313 (2) 0.0273 (11) H40A 0.5887 0.8137 0.4461 0.041\* H40B 0.4945 0.8984 0.4595 0.041\* H40C 0.6197 0.9323 0.4470 0.041\* ------ --------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2407 .table-wrap} ----- -------------- -------------- -------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Sn1 0.01421 (14) 0.01295 (16) 0.01570 (15) −0.00106 (10) −0.00187 (10) −0.00278 (12) Sn2 0.01380 (13) 0.01229 (15) 0.01496 (15) 0.00039 (10) −0.00094 (10) −0.00233 (12) Sn3 0.01557 (14) 0.01792 (17) 0.01427 (15) 0.00026 (11) 0.00060 (10) −0.00407 (12) Sn4 0.01548 (14) 0.02056 (17) 0.01681 (16) 0.00184 (11) −0.00249 (10) −0.00484 (13) S1 0.0209 (5) 0.0181 (6) 0.0259 (6) −0.0052 (4) −0.0063 (4) −0.0023 (5) S2 0.0229 (6) 0.0362 (8) 0.0255 (6) 0.0081 (5) −0.0103 (4) −0.0089 (5) O1 0.0204 (14) 0.0151 (16) 0.0193 (16) 0.0000 (12) −0.0045 (11) −0.0004 (13) O2 0.0154 (13) 0.0092 (15) 0.0194 (15) −0.0022 (11) −0.0030 (11) −0.0003 (12) O3 0.0211 (14) 0.0259 (18) 0.0178 (16) 0.0060 (12) −0.0056 (11) −0.0070 (13) O4 0.0155 (13) 0.0186 (17) 0.0154 (15) 0.0044 (11) −0.0011 (10) −0.0033 (12) N1 0.0142 (16) 0.014 (2) 0.0162 (18) −0.0019 (13) −0.0031 (13) −0.0006 (15) N2 0.0147 (17) 0.019 (2) 0.0188 (19) −0.0002 (14) −0.0041 (13) −0.0052 (16) N3 0.0178 (17) 0.0121 (19) 0.0144 (18) 0.0004 (13) −0.0026 (13) −0.0013 (15) N4 0.0177 (17) 0.017 (2) 0.020 (2) 0.0032 (14) 0.0003 (13) −0.0044 (16) N5 0.0179 (17) 0.019 (2) 0.0164 (19) 0.0034 (14) 0.0003 (13) −0.0073 (15) N6 0.0202 (18) 0.020 (2) 0.018 (2) −0.0021 (15) −0.0029 (14) −0.0045 (16) C1 0.021 (2) 0.021 (2) 0.018 (2) −0.0003 (17) −0.0032 (16) −0.0038 (19) C2 0.039 (3) 0.024 (3) 0.020 (2) 0.004 (2) −0.0091 (19) −0.004 (2) C3 0.031 (3) 0.034 (3) 0.037 (3) 0.007 (2) −0.015 (2) −0.015 (2) C4 0.030 (3) 0.033 (3) 0.045 (3) 0.002 (2) −0.015 (2) −0.014 (2) C5 0.0114 (19) 0.024 (3) 0.024 (2) −0.0010 (17) −0.0012 (15) −0.002 (2) C6 0.030 (2) 0.022 (3) 0.018 (2) 0.0054 (19) 0.0037 (17) 0.002 (2) C7 0.030 (2) 0.029 (3) 0.022 (3) 0.001 (2) 0.0085 (18) 0.000 (2) C8 0.027 (2) 0.031 (3) 0.027 (3) 0.000 (2) 0.0041 (18) −0.006 (2) C9 0.014 (2) 0.031 (3) 0.027 (3) 0.0000 (18) 0.0031 (16) −0.014 (2) C10 0.024 (2) 0.027 (3) 0.022 (2) −0.0005 (18) 0.0010 (17) −0.009 (2) C11 0.024 (2) 0.030 (3) 0.030 (3) 0.0035 (19) 0.0030 (18) −0.012 (2) C12 0.031 (3) 0.035 (3) 0.035 (3) 0.001 (2) 0.004 (2) −0.013 (2) C13 0.017 (2) 0.019 (2) 0.013 (2) −0.0012 (16) 0.0015 (15) −0.0020 (18) C14 0.036 (3) 0.021 (3) 0.023 (3) 0.006 (2) 0.0043 (19) 0.000 (2) C15 0.029 (2) 0.030 (3) 0.021 (2) 0.002 (2) 0.0003 (18) −0.004 (2) C16 0.058 (3) 0.038 (3) 0.020 (3) 0.018 (3) 0.006 (2) −0.008 (2) C17 0.025 (2) 0.020 (3) 0.028 (3) 0.0044 (18) −0.0104 (18) 0.000 (2) C18 0.020 (2) 0.019 (2) 0.017 (2) −0.0004 (17) −0.0040 (16) −0.0048 (19) C19 0.020 (2) 0.014 (2) 0.012 (2) 0.0012 (16) 0.0025 (15) −0.0047 (17) C20 0.030 (2) 0.012 (2) 0.021 (2) 0.0033 (17) −0.0067 (17) −0.0032 (19) C21 0.024 (2) 0.019 (2) 0.017 (2) −0.0032 (17) 0.0007 (16) −0.0027 (19) C22 0.026 (2) 0.034 (3) 0.030 (3) −0.002 (2) 0.0050 (19) −0.006 (2) C23 0.031 (3) 0.030 (3) 0.032 (3) −0.003 (2) 0.004 (2) 0.004 (2) C24 0.028 (2) 0.028 (3) 0.039 (3) −0.005 (2) −0.005 (2) 0.004 (2) C25 0.022 (2) 0.020 (2) 0.020 (2) −0.0036 (17) −0.0036 (16) −0.0089 (19) C26 0.022 (2) 0.021 (3) 0.020 (2) −0.0012 (18) −0.0017 (16) −0.0041 (19) C27 0.040 (3) 0.027 (3) 0.032 (3) −0.010 (2) 0.002 (2) −0.012 (2) C28 0.076 (4) 0.027 (3) 0.043 (3) −0.024 (3) 0.004 (3) −0.005 (3) C29 0.024 (2) 0.022 (3) 0.021 (2) 0.0020 (18) −0.0060 (17) −0.002 (2) C30 0.029 (2) 0.026 (3) 0.023 (3) 0.0043 (19) −0.0042 (18) −0.004 (2) C31 0.035 (3) 0.052 (4) 0.028 (3) 0.015 (2) −0.013 (2) −0.013 (3) C32 0.056 (3) 0.066 (4) 0.040 (3) 0.036 (3) −0.019 (3) −0.020 (3) C33 0.017 (2) 0.039 (3) 0.029 (3) −0.0024 (19) −0.0024 (17) −0.007 (2) C34 0.030 (2) 0.031 (3) 0.026 (3) −0.003 (2) −0.0035 (19) −0.007 (2) C35 0.041 (3) 0.049 (4) 0.040 (3) −0.011 (3) −0.011 (2) −0.014 (3) C36 0.038 (3) 0.055 (4) 0.047 (3) −0.002 (3) −0.007 (2) −0.017 (3) C37 0.048 (3) 0.039 (3) 0.030 (3) 0.014 (2) 0.008 (2) −0.003 (3) C38 0.015 (2) 0.019 (2) 0.019 (2) −0.0005 (16) −0.0014 (15) −0.0047 (19) C39 0.020 (2) 0.017 (2) 0.021 (2) −0.0015 (17) −0.0031 (16) −0.0054 (19) C40 0.030 (2) 0.035 (3) 0.018 (2) 0.001 (2) −0.0061 (18) −0.007 (2) ----- -------------- -------------- -------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3516 .table-wrap} ----------------------------- -------------- -------------------------- ------------ Sn1---O2 2.020 (2) C12---H12B 0.9800 Sn1---O1 2.133 (3) C12---H12C 0.9800 Sn1---C1 2.144 (4) C13---C14 1.527 (6) Sn1---C5 2.150 (4) C13---H13A 0.9900 Sn1---N1 2.262 (3) C13---H13B 0.9900 Sn2---O2^i^ 2.100 (3) C14---C15 1.511 (6) Sn2---O2 2.113 (2) C14---H14A 0.9900 Sn2---C13 2.128 (4) C14---H14B 0.9900 Sn2---C9 2.133 (4) C15---C16 1.525 (6) Sn2---O1^i^ 2.315 (2) C15---H15A 0.9900 Sn2---N2 2.617 (4) C15---H15B 0.9900 Sn3---O4^ii^ 2.078 (2) C16---H16A 0.9800 Sn3---O4 2.106 (3) C16---H16B 0.9800 Sn3---C21 2.122 (4) C16---H16C 0.9800 Sn3---C25 2.126 (4) C17---H17A 0.9800 Sn3---O3 2.242 (3) C17---H17B 0.9800 Sn3---N4 2.830 (3) C17---H17C 0.9800 Sn4---O4 2.018 (3) C18---H18 0.9500 Sn4---C33 2.135 (4) C20---H20A 0.9800 Sn4---C29 2.144 (4) C20---H20B 0.9800 Sn4---O3^ii^ 2.179 (3) C20---H20C 0.9800 Sn4---N5 2.254 (3) C21---C22 1.519 (6) S1---C19 1.705 (4) C21---H21A 0.9900 S2---C39 1.689 (4) C21---H21B 0.9900 O1---C17 1.427 (4) C22---C23 1.529 (6) O1---Sn2^i^ 2.315 (2) C22---H22A 0.9900 O2---Sn2^i^ 2.100 (3) C22---H22B 0.9900 O3---C37 1.394 (5) C23---C24 1.527 (6) O3---Sn4^ii^ 2.179 (3) C23---H23A 0.9900 O4---Sn3^ii^ 2.078 (2) C23---H23B 0.9900 N1---C19 1.337 (5) C24---H24A 0.9800 N1---N2 1.394 (4) C24---H24B 0.9800 N2---C18 1.294 (5) C24---H24C 0.9800 N3---C18 1.361 (5) C25---C26 1.520 (5) N3---C19 1.367 (5) C25---H25A 0.9900 N3---C20 1.443 (5) C25---H25B 0.9900 N4---C38 1.290 (5) C26---C27 1.517 (5) N4---N5 1.394 (4) C26---H26A 0.9900 N5---C39 1.332 (5) C26---H26B 0.9900 N6---C38 1.359 (5) C27---C28 1.522 (6) N6---C39 1.371 (5) C27---H27A 0.9900 N6---C40 1.458 (5) C27---H27B 0.9900 C1---C2 1.529 (5) C28---H28A 0.9800 C1---H1A 0.9900 C28---H28B 0.9800 C1---H1B 0.9900 C28---H28C 0.9800 C2---C3 1.516 (6) C29---C30 1.511 (6) C2---H2A 0.9900 C29---H29A 0.9900 C2---H2B 0.9900 C29---H29B 0.9900 C3---C4 1.528 (6) C30---C31 1.516 (6) C3---H3A 0.9900 C30---H30A 0.9900 C3---H3B 0.9900 C30---H30B 0.9900 C4---H4A 0.9800 C31---C32 1.513 (7) C4---H4B 0.9800 C31---H31A 0.9900 C4---H4C 0.9800 C31---H31B 0.9900 C5---C6 1.513 (5) C32---H32A 0.9800 C5---H5A 0.9900 C32---H32B 0.9800 C5---H5B 0.9900 C32---H32C 0.9800 C6---C7 1.540 (6) C33---C34 1.542 (6) C6---H6A 0.9900 C33---H33A 0.9900 C6---H6B 0.9900 C33---H33B 0.9900 C7---C8 1.499 (6) C34---C35 1.524 (5) C7---H7A 0.9900 C34---H34A 0.9900 C7---H7B 0.9900 C34---H34B 0.9900 C8---H8A 0.9800 C35---C36 1.539 (6) C8---H8B 0.9800 C35---H35A 0.9900 C8---H8C 0.9800 C35---H35B 0.9900 C9---C10 1.495 (6) C36---H36A 0.9800 C9---H9A 0.9900 C36---H36B 0.9800 C9---H9B 0.9900 C36---H36C 0.9800 C10---C11 1.504 (5) C37---H37A 0.9800 C10---H10A 0.9900 C37---H37B 0.9800 C10---H10B 0.9900 C37---H37C 0.9800 C11---C12 1.505 (6) C38---H38 0.9500 C11---H11A 0.9900 C40---H40A 0.9800 C11---H11B 0.9900 C40---H40B 0.9800 C12---H12A 0.9800 C40---H40C 0.9800 O2---Sn1---O1 75.43 (10) C15---C14---C13 114.2 (4) O2---Sn1---C1 116.90 (13) C15---C14---H14A 108.7 O1---Sn1---C1 96.07 (14) C13---C14---H14A 108.7 O2---Sn1---C5 113.62 (13) C15---C14---H14B 108.7 O1---Sn1---C5 95.34 (14) C13---C14---H14B 108.7 C1---Sn1---C5 129.47 (14) H14A---C14---H14B 107.6 O2---Sn1---N1 82.26 (10) C14---C15---C16 112.2 (4) O1---Sn1---N1 157.41 (10) C14---C15---H15A 109.2 C1---Sn1---N1 90.76 (14) C16---C15---H15A 109.2 C5---Sn1---N1 96.85 (14) C14---C15---H15B 109.2 O2^i^---Sn2---O2 74.57 (10) C16---C15---H15B 109.2 O2^i^---Sn2---C13 105.27 (13) H15A---C15---H15B 107.9 O2---Sn2---C13 100.82 (12) C15---C16---H16A 109.5 O2^i^---Sn2---C9 102.41 (14) C15---C16---H16B 109.5 O2---Sn2---C9 105.39 (13) H16A---C16---H16B 109.5 C13---Sn2---C9 145.94 (17) C15---C16---H16C 109.5 O2^i^---Sn2---O1^i^ 70.12 (9) H16A---C16---H16C 109.5 O2---Sn2---O1^i^ 144.63 (10) H16B---C16---H16C 109.5 C13---Sn2---O1^i^ 86.71 (12) O1---C17---H17A 109.5 C9---Sn2---O1^i^ 84.39 (12) O1---C17---H17B 109.5 O4^ii^---Sn3---O4 74.11 (11) H17A---C17---H17B 109.5 O4^ii^---Sn3---C21 104.11 (13) O1---C17---H17C 109.5 O4---Sn3---C21 99.09 (14) H17A---C17---H17C 109.5 O4^ii^---Sn3---C25 109.68 (13) H17B---C17---H17C 109.5 O4---Sn3---C25 99.87 (13) N2---C18---N3 111.3 (3) C21---Sn3---C25 144.63 (15) N2---C18---H18 124.4 O4^ii^---Sn3---O3 71.26 (10) N3---C18---H18 124.4 O4---Sn3---O3 145.24 (10) N1---C19---N3 107.3 (3) C21---Sn3---O3 92.06 (14) N1---C19---S1 126.8 (3) C25---Sn3---O3 89.10 (13) N3---C19---S1 125.8 (3) O4^ii^---Sn3---N4 148.65 (10) N3---C20---H20A 109.5 O4---Sn3---N4 74.78 (10) N3---C20---H20B 109.5 C21---Sn3---N4 77.13 (12) H20A---C20---H20B 109.5 C25---Sn3---N4 79.44 (13) N3---C20---H20C 109.5 O3---Sn3---N4 139.97 (10) H20A---C20---H20C 109.5 O4---Sn4---C33 111.02 (15) H20B---C20---H20C 109.5 O4---Sn4---C29 112.53 (13) C22---C21---Sn3 117.8 (3) C33---Sn4---C29 136.45 (17) C22---C21---H21A 107.9 O4---Sn4---O3^ii^ 73.69 (10) Sn3---C21---H21A 107.9 C33---Sn4---O3^ii^ 94.32 (14) C22---C21---H21B 107.9 C29---Sn4---O3^ii^ 97.74 (14) Sn3---C21---H21B 107.9 O4---Sn4---N5 84.74 (11) H21A---C21---H21B 107.2 C33---Sn4---N5 95.20 (14) C21---C22---C23 112.6 (4) C29---Sn4---N5 88.63 (14) C21---C22---H22A 109.1 O3^ii^---Sn4---N5 158.35 (11) C23---C22---H22A 109.1 C17---O1---Sn1 126.7 (2) C21---C22---H22B 109.1 C17---O1---Sn2^i^ 125.6 (2) C23---C22---H22B 109.1 Sn1---O1---Sn2^i^ 100.70 (10) H22A---C22---H22B 107.8 Sn1---O2---Sn2^i^ 112.52 (11) C24---C23---C22 113.5 (4) Sn1---O2---Sn2 141.46 (14) C24---C23---H23A 108.9 Sn2^i^---O2---Sn2 105.43 (10) C22---C23---H23A 108.9 C37---O3---Sn4^ii^ 131.6 (3) C24---C23---H23B 108.9 C37---O3---Sn3 126.9 (3) C22---C23---H23B 108.9 Sn4^ii^---O3---Sn3 101.40 (11) H23A---C23---H23B 107.7 Sn4---O4---Sn3^ii^ 113.30 (12) C23---C24---H24A 109.5 Sn4---O4---Sn3 140.76 (13) C23---C24---H24B 109.5 Sn3^ii^---O4---Sn3 105.89 (11) H24A---C24---H24B 109.5 C19---N1---N2 108.7 (3) C23---C24---H24C 109.5 C19---N1---Sn1 128.6 (2) H24A---C24---H24C 109.5 N2---N1---Sn1 122.4 (2) H24B---C24---H24C 109.5 C18---N2---N1 106.2 (3) C26---C25---Sn3 111.9 (3) C18---N3---C19 106.5 (3) C26---C25---H25A 109.2 C18---N3---C20 126.6 (3) Sn3---C25---H25A 109.2 C19---N3---C20 126.9 (3) C26---C25---H25B 109.2 C38---N4---N5 105.8 (3) Sn3---C25---H25B 109.2 C38---N4---Sn3 143.7 (3) H25A---C25---H25B 107.9 N5---N4---Sn3 110.2 (2) C27---C26---C25 114.2 (3) C39---N5---N4 109.6 (3) C27---C26---H26A 108.7 C39---N5---Sn4 121.9 (3) C25---C26---H26A 108.7 N4---N5---Sn4 126.1 (2) C27---C26---H26B 108.7 C38---N6---C39 106.8 (3) C25---C26---H26B 108.7 C38---N6---C40 127.4 (4) H26A---C26---H26B 107.6 C39---N6---C40 125.8 (3) C26---C27---C28 111.5 (4) C2---C1---Sn1 115.7 (3) C26---C27---H27A 109.3 C2---C1---H1A 108.4 C28---C27---H27A 109.3 Sn1---C1---H1A 108.4 C26---C27---H27B 109.3 C2---C1---H1B 108.4 C28---C27---H27B 109.3 Sn1---C1---H1B 108.4 H27A---C27---H27B 108.0 H1A---C1---H1B 107.4 C27---C28---H28A 109.5 C3---C2---C1 113.7 (4) C27---C28---H28B 109.5 C3---C2---H2A 108.8 H28A---C28---H28B 109.5 C1---C2---H2A 108.8 C27---C28---H28C 109.5 C3---C2---H2B 108.8 H28A---C28---H28C 109.5 C1---C2---H2B 108.8 H28B---C28---H28C 109.5 H2A---C2---H2B 107.7 C30---C29---Sn4 118.6 (3) C2---C3---C4 114.5 (4) C30---C29---H29A 107.7 C2---C3---H3A 108.6 Sn4---C29---H29A 107.7 C4---C3---H3A 108.6 C30---C29---H29B 107.7 C2---C3---H3B 108.6 Sn4---C29---H29B 107.7 C4---C3---H3B 108.6 H29A---C29---H29B 107.1 H3A---C3---H3B 107.6 C29---C30---C31 114.9 (4) C3---C4---H4A 109.5 C29---C30---H30A 108.5 C3---C4---H4B 109.5 C31---C30---H30A 108.5 H4A---C4---H4B 109.5 C29---C30---H30B 108.5 C3---C4---H4C 109.5 C31---C30---H30B 108.5 H4A---C4---H4C 109.5 H30A---C30---H30B 107.5 H4B---C4---H4C 109.5 C32---C31---C30 112.5 (4) C6---C5---Sn1 114.9 (3) C32---C31---H31A 109.1 C6---C5---H5A 108.5 C30---C31---H31A 109.1 Sn1---C5---H5A 108.5 C32---C31---H31B 109.1 C6---C5---H5B 108.5 C30---C31---H31B 109.1 Sn1---C5---H5B 108.5 H31A---C31---H31B 107.8 H5A---C5---H5B 107.5 C31---C32---H32A 109.5 C5---C6---C7 113.4 (4) C31---C32---H32B 109.5 C5---C6---H6A 108.9 H32A---C32---H32B 109.5 C7---C6---H6A 108.9 C31---C32---H32C 109.5 C5---C6---H6B 108.9 H32A---C32---H32C 109.5 C7---C6---H6B 108.9 H32B---C32---H32C 109.5 H6A---C6---H6B 107.7 C34---C33---Sn4 112.9 (3) C8---C7---C6 113.9 (4) C34---C33---H33A 109.0 C8---C7---H7A 108.8 Sn4---C33---H33A 109.0 C6---C7---H7A 108.8 C34---C33---H33B 109.0 C8---C7---H7B 108.8 Sn4---C33---H33B 109.0 C6---C7---H7B 108.8 H33A---C33---H33B 107.8 H7A---C7---H7B 107.7 C35---C34---C33 113.5 (4) C7---C8---H8A 109.5 C35---C34---H34A 108.9 C7---C8---H8B 109.5 C33---C34---H34A 108.9 H8A---C8---H8B 109.5 C35---C34---H34B 108.9 C7---C8---H8C 109.5 C33---C34---H34B 108.9 H8A---C8---H8C 109.5 H34A---C34---H34B 107.7 H8B---C8---H8C 109.5 C34---C35---C36 111.6 (4) C10---C9---Sn2 122.8 (3) C34---C35---H35A 109.3 C10---C9---H9A 106.6 C36---C35---H35A 109.3 Sn2---C9---H9A 106.6 C34---C35---H35B 109.3 C10---C9---H9B 106.6 C36---C35---H35B 109.3 Sn2---C9---H9B 106.6 H35A---C35---H35B 108.0 H9A---C9---H9B 106.6 C35---C36---H36A 109.5 C9---C10---C11 113.8 (3) C35---C36---H36B 109.5 C9---C10---H10A 108.8 H36A---C36---H36B 109.5 C11---C10---H10A 108.8 C35---C36---H36C 109.5 C9---C10---H10B 108.8 H36A---C36---H36C 109.5 C11---C10---H10B 108.8 H36B---C36---H36C 109.5 H10A---C10---H10B 107.7 O3---C37---H37A 109.5 C10---C11---C12 114.9 (4) O3---C37---H37B 109.5 C10---C11---H11A 108.5 H37A---C37---H37B 109.5 C12---C11---H11A 108.5 O3---C37---H37C 109.5 C10---C11---H11B 108.5 H37A---C37---H37C 109.5 C12---C11---H11B 108.5 H37B---C37---H37C 109.5 H11A---C11---H11B 107.5 N4---C38---N6 111.3 (4) C11---C12---H12A 109.5 N4---C38---H38 124.3 C11---C12---H12B 109.5 N6---C38---H38 124.3 H12A---C12---H12B 109.5 N5---C39---N6 106.5 (3) C11---C12---H12C 109.5 N5---C39---S2 126.8 (3) H12A---C12---H12C 109.5 N6---C39---S2 126.7 (3) H12B---C12---H12C 109.5 N6---C40---H40A 109.5 C14---C13---Sn2 112.3 (3) N6---C40---H40B 109.5 C14---C13---H13A 109.1 H40A---C40---H40B 109.5 Sn2---C13---H13A 109.1 N6---C40---H40C 109.5 C14---C13---H13B 109.1 H40A---C40---H40C 109.5 Sn2---C13---H13B 109.1 H40B---C40---H40C 109.5 H13A---C13---H13B 107.9 O2---Sn1---O1---C17 159.7 (3) O3^ii^---Sn4---N5---C39 172.0 (3) C1---Sn1---O1---C17 −84.0 (3) O4---Sn4---N5---N4 16.6 (3) C5---Sn1---O1---C17 46.7 (3) C33---Sn4---N5---N4 127.3 (3) N1---Sn1---O1---C17 169.1 (3) C29---Sn4---N5---N4 −96.1 (3) O2---Sn1---O1---Sn2^i^ 8.03 (10) O3^ii^---Sn4---N5---N4 11.6 (5) C1---Sn1---O1---Sn2^i^ 124.30 (13) O2---Sn1---C1---C2 116.3 (3) C5---Sn1---O1---Sn2^i^ −105.01 (13) O1---Sn1---C1---C2 39.6 (3) N1---Sn1---O1---Sn2^i^ 17.4 (3) C5---Sn1---C1---C2 −62.4 (4) O1---Sn1---O2---Sn2^i^ −9.43 (11) N1---Sn1---C1---C2 −162.0 (3) C1---Sn1---O2---Sn2^i^ −98.89 (17) Sn1---C1---C2---C3 64.5 (4) C5---Sn1---O2---Sn2^i^ 80.07 (17) C1---C2---C3---C4 63.0 (5) N1---Sn1---O2---Sn2^i^ 174.20 (14) O2---Sn1---C5---C6 58.1 (3) O1---Sn1---O2---Sn2 −178.8 (2) O1---Sn1---C5---C6 134.6 (3) C1---Sn1---O2---Sn2 91.8 (2) C1---Sn1---C5---C6 −123.1 (3) C5---Sn1---O2---Sn2 −89.3 (2) N1---Sn1---C5---C6 −26.4 (3) N1---Sn1---O2---Sn2 4.9 (2) Sn1---C5---C6---C7 −170.6 (3) O2^i^---Sn2---O2---Sn1 169.8 (3) C5---C6---C7---C8 73.1 (5) C13---Sn2---O2---Sn1 66.7 (2) O2^i^---Sn2---C9---C10 125.7 (4) C9---Sn2---O2---Sn1 −91.3 (2) O2---Sn2---C9---C10 48.5 (4) O1^i^---Sn2---O2---Sn1 166.42 (16) C13---Sn2---C9---C10 −90.5 (4) O2^i^---Sn2---O2---Sn2^i^ 0.0 O1^i^---Sn2---C9---C10 −166.1 (4) C13---Sn2---O2---Sn2^i^ −103.03 (14) Sn2---C9---C10---C11 −174.8 (3) C9---Sn2---O2---Sn2^i^ 98.93 (15) C9---C10---C11---C12 180.0 (4) O1^i^---Sn2---O2---Sn2^i^ −3.3 (2) O2^i^---Sn2---C13---C14 8.8 (3) O4^ii^---Sn3---O3---C37 −173.1 (4) O2---Sn2---C13---C14 85.5 (3) O4---Sn3---O3---C37 −168.1 (3) C9---Sn2---C13---C14 −134.5 (3) C21---Sn3---O3---C37 82.7 (4) O1^i^---Sn2---C13---C14 −59.6 (3) C25---Sn3---O3---C37 −61.9 (4) Sn2---C13---C14---C15 −171.1 (3) N4---Sn3---O3---C37 10.4 (4) C13---C14---C15---C16 −179.8 (4) O4^ii^---Sn3---O3---Sn4^ii^ 4.21 (10) N1---N2---C18---N3 0.3 (4) O4---Sn3---O3---Sn4^ii^ 9.2 (2) C19---N3---C18---N2 −0.3 (4) C21---Sn3---O3---Sn4^ii^ −100.00 (14) C20---N3---C18---N2 177.0 (4) C25---Sn3---O3---Sn4^ii^ 115.37 (14) N2---N1---C19---N3 0.0 (4) N4---Sn3---O3---Sn4^ii^ −172.32 (10) Sn1---N1---C19---N3 −174.3 (2) C33---Sn4---O4---Sn3^ii^ 83.45 (17) N2---N1---C19---S1 178.1 (3) C29---Sn4---O4---Sn3^ii^ −96.67 (17) Sn1---N1---C19---S1 3.9 (5) O3^ii^---Sn4---O4---Sn3^ii^ −4.92 (11) C18---N3---C19---N1 0.2 (4) N5---Sn4---O4---Sn3^ii^ 177.01 (14) C20---N3---C19---N1 −177.2 (3) C33---Sn4---O4---Sn3 −93.7 (2) C18---N3---C19---S1 −177.9 (3) C29---Sn4---O4---Sn3 86.2 (2) C20---N3---C19---S1 4.7 (6) O3^ii^---Sn4---O4---Sn3 177.9 (2) O4^ii^---Sn3---C21---C22 −133.3 (3) N5---Sn4---O4---Sn3 −0.1 (2) O4---Sn3---C21---C22 150.9 (3) O4^ii^---Sn3---O4---Sn4 177.3 (3) C25---Sn3---C21---C22 29.2 (5) C21---Sn3---O4---Sn4 −80.5 (2) O3---Sn3---C21---C22 −62.2 (3) C25---Sn3---O4---Sn4 69.5 (2) N4---Sn3---C21---C22 78.9 (3) O3---Sn3---O4---Sn4 172.33 (16) Sn3---C21---C22---C23 175.9 (3) N4---Sn3---O4---Sn4 −6.64 (19) C21---C22---C23---C24 −57.6 (5) O4^ii^---Sn3---O4---Sn3^ii^ 0.0 O4^ii^---Sn3---C25---C26 5.8 (3) C21---Sn3---O4---Sn3^ii^ 102.18 (14) O4---Sn3---C25---C26 82.4 (3) C25---Sn3---O4---Sn3^ii^ −107.81 (14) C21---Sn3---C25---C26 −156.1 (3) O3---Sn3---O4---Sn3^ii^ −4.9 (2) O3---Sn3---C25---C26 −63.9 (3) N4---Sn3---O4---Sn3^ii^ 176.09 (13) N4---Sn3---C25---C26 154.7 (3) O2---Sn1---N1---C19 −177.4 (3) Sn3---C25---C26---C27 −178.6 (3) O1---Sn1---N1---C19 173.4 (3) C25---C26---C27---C28 179.8 (4) C1---Sn1---N1---C19 65.5 (3) O4---Sn4---C29---C30 115.8 (3) C5---Sn1---N1---C19 −64.4 (3) C33---Sn4---C29---C30 −64.4 (4) O2---Sn1---N1---N2 9.1 (3) O3^ii^---Sn4---C29---C30 40.3 (3) O1---Sn1---N1---N2 −0.1 (5) N5---Sn4---C29---C30 −160.5 (3) C1---Sn1---N1---N2 −108.0 (3) Sn4---C29---C30---C31 61.2 (5) C5---Sn1---N1---N2 122.1 (3) C29---C30---C31---C32 −177.6 (4) C19---N1---N2---C18 −0.2 (4) O4---Sn4---C33---C34 35.7 (3) Sn1---N1---N2---C18 174.5 (3) C29---Sn4---C33---C34 −144.1 (3) O4^ii^---Sn3---N4---C38 −165.9 (4) O3^ii^---Sn4---C33---C34 109.9 (3) O4---Sn3---N4---C38 −173.2 (5) N5---Sn4---C33---C34 −50.6 (3) C21---Sn3---N4---C38 −69.9 (4) Sn4---C33---C34---C35 173.9 (3) C25---Sn3---N4---C38 83.5 (4) C33---C34---C35---C36 −71.3 (5) O3---Sn3---N4---C38 7.7 (5) N5---N4---C38---N6 −0.5 (4) O4^ii^---Sn3---N4---N5 22.3 (3) Sn3---N4---C38---N6 −172.5 (3) O4---Sn3---N4---N5 15.0 (2) C39---N6---C38---N4 0.4 (5) C21---Sn3---N4---N5 118.3 (3) C40---N6---C38---N4 −179.8 (4) C25---Sn3---N4---N5 −88.4 (2) N4---N5---C39---N6 −0.2 (4) O3---Sn3---N4---N5 −164.1 (2) Sn4---N5---C39---N6 −163.5 (2) C38---N4---N5---C39 0.4 (4) N4---N5---C39---S2 178.5 (3) Sn3---N4---N5---C39 175.4 (2) Sn4---N5---C39---S2 15.2 (5) C38---N4---N5---Sn4 162.8 (3) C38---N6---C39---N5 −0.1 (4) Sn3---N4---N5---Sn4 −22.2 (3) C40---N6---C39---N5 −179.9 (4) O4---Sn4---N5---C39 177.0 (3) C38---N6---C39---S2 −178.8 (3) C33---Sn4---N5---C39 −72.3 (3) C40---N6---C39---S2 1.3 (6) C29---Sn4---N5---C39 64.3 (3) ----------------------------- -------------- -------------------------- ------------ ::: Symmetry codes: (i) −*x*+2, −*y*+1, −*z*+1; (ii) −*x*+1, −*y*+2, −*z*.
PubMed Central
2024-06-05T04:04:17.010321
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051783/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m243", "authors": [ { "first": "Ezzatollah", "last": "Najafi" }, { "first": "Mostafa M.", "last": "Amini" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3051784
Related literature {#sec1} ================== For Schiff base compounds, see: Bessy *et al.* (2006[@bb3]); Podyachev *et al.* (2007[@bb7]); Raj & Kurup (2007[@bb9]); Pouralimardan *et al.* (2007[@bb8]); Bacchi *et al.* (2006[@bb2]); Dinda *et al.* (2002[@bb5]). For reference bond lengths, see: Allen *et al.* (1987[@bb1]). The title compound was prepared by the method described in Zhu (2010[@bb11]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~15~ClN~2~O~3~·H~2~O*M* *~r~* = 336.77Orthorhombic,*a* = 4.631 (2) Å*b* = 13.558 (3) Å*c* = 25.478 (3) Å*V* = 1599.7 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.26 mm^−1^*T* = 298 K0.23 × 0.22 × 0.20 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2005[@bb4]) *T* ~min~ = 0.943, *T* ~max~ = 0.9508650 measured reflections3460 independent reflections1391 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.085 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.067*wR*(*F* ^2^) = 0.158*S* = 1.003460 reflections219 parameters4 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.20 e Å^−3^Δρ~min~ = −0.18 e Å^−3^Absolute structure: Flack (1983[@bb6]), 1399 Friedel pairsFlack parameter: 0.25 (16) {#d5e482} Data collection: *APEX2* (Bruker, 2005[@bb4]); cell refinement: *SAINT* (Bruker, 2005[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb10]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S160053681100122X/om2396sup1.cif](http://dx.doi.org/10.1107/S160053681100122X/om2396sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100122X/om2396Isup2.hkl](http://dx.doi.org/10.1107/S160053681100122X/om2396Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?om2396&file=om2396sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?om2396sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?om2396&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [OM2396](http://scripts.iucr.org/cgi-bin/sendsup?om2396)). Comment ======= In the last few years, a number of Schiff bases derived from the reaction of aldehydes with benzohydrazides were prepared and structurally characterized (Bessy *et al.*, 2006; Podyachev *et al.*, 2007; Raj & Kurup, 2007; Pouralimardan *et al.*, 2007; Bacchi *et al.*, 2006; Dinda *et al.*, 2002). As a continuation of the work, in the present paper, the title new Schiff base compound, Fig. 1, is reported. The compound contains a Schiff base molecule and a water molecule of crystallization. The water molecule is linked to the Schiff base molecule *via* intermolecular O---H···O hydrogen bonds (Table 1). In the Schiff base molecule, there is an O---H···N hydrogen bond, which contributes to the planarity of the molecule. The dihedral angle between the two benzene rings is 20.5 (5)°. All the bond lengths are within normal values (Allen *et al.*, 1987). The molecules are linked through intermolecular N---H···O and O---H···O hydrogen bonds (Table 1) to form two-dimensional layers along the *ab* plane (Fig. 2). Experimental {#experimental} ============ The compound was prepared and crystallized according to the literature method (Zhu, 2010). 3-Ethoxy-2-hydroxybenzaldehyde (0.166 g, 1 mmol) and 3-chlorobenzohydrazide (0.171 g, 1 mmol) were dissolved in 30 ml 95% ethanol. The mixture was stirred at reflux for 10 min, and cooled to room temperature. The clear colorless solution was left to slow evaporation in air for a week, yielding colorless block-shaped crystals, which were collected by filtration and washed with ethanol. Refinement {#refinement} ========== The amino and water H atoms were located from a difference Fourier map and refined isotropically, with the N---H, O---H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. The other H atoms were positioned geometrically and refined using the riding-model approximation, with C---H = 0.93--0.97 Å, and O---H = 0.82 Å, and *U*~iso~(H) = 1.2*U*~eq~(C) or *U*~iso~(H) = 1.5*U*~eq~(C8 and O2). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen bonds are drawn as dashed lines. ::: ![](e-67-0o377-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The molecular packing of the title compound. Hydrogen bonds are drawn as dashed lines. ::: ![](e-67-0o377-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e142 .table-wrap} ------------------------------- -------------------------------------- C~16~H~15~ClN~2~O~3~·H~2~O *D*~x~ = 1.398 Mg m^−3^ *M~r~* = 336.77 Mo *K*α radiation, λ = 0.71073 Å Orthorhombic, *P*2~1~2~1~2~1~ Cell parameters from 705 reflections *a* = 4.631 (2) Å θ = 2.6--24.5° *b* = 13.558 (3) Å µ = 0.26 mm^−1^ *c* = 25.478 (3) Å *T* = 298 K *V* = 1599.7 (8) Å^3^ Block, colorless *Z* = 4 0.23 × 0.22 × 0.20 mm *F*(000) = 704 ------------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e272 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 3460 independent reflections Radiation source: fine-focus sealed tube 1391 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.085 ω scans θ~max~ = 27.0°, θ~min~ = 2.2° Absorption correction: multi-scan (*SADABS*; Bruker, 2005) *h* = −5→5 *T*~min~ = 0.943, *T*~max~ = 0.950 *k* = −12→17 8650 measured reflections *l* = −32→29 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e386 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.067 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.158 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0181*P*)^2^\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.00 (Δ/σ)~max~ = 0.002 3460 reflections Δρ~max~ = 0.20 e Å^−3^ 219 parameters Δρ~min~ = −0.18 e Å^−3^ 4 restraints Absolute structure: Flack (1983), 1399 Friedel pairs Primary atom site location: structure-invariant direct methods Flack parameter: 0.25 (16) ---------------------------------------------------------------- ------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e545 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e644 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 −0.1754 (4) 0.65889 (10) 0.04444 (6) 0.1007 (7) N1 0.7745 (10) 0.8171 (3) 0.26638 (17) 0.0663 (13) N2 0.5846 (11) 0.8403 (3) 0.22645 (18) 0.0638 (13) O1 1.3750 (8) 0.6775 (2) 0.41318 (14) 0.0680 (10) O2 1.0189 (9) 0.6980 (2) 0.33554 (13) 0.0656 (10) H2A 0.8935 0.7128 0.3142 0.098\* O3 0.4905 (10) 0.6809 (3) 0.20923 (14) 0.0907 (13) O4 0.4271 (12) 0.5540 (2) 0.29094 (15) 0.0892 (14) C1 1.1199 (12) 0.8733 (4) 0.3283 (2) 0.0550 (14) C2 1.1601 (12) 0.7804 (4) 0.3510 (2) 0.0541 (13) C3 1.3572 (13) 0.7715 (4) 0.3925 (2) 0.0560 (14) C4 1.5152 (12) 0.8508 (4) 0.4093 (2) 0.0636 (14) H4 1.6523 0.8430 0.4357 0.076\* C5 1.4701 (14) 0.9427 (4) 0.3869 (2) 0.0714 (17) H5 1.5733 0.9970 0.3989 0.086\* C6 1.2753 (14) 0.9537 (4) 0.3474 (2) 0.0704 (17) H6 1.2452 1.0158 0.3329 0.085\* C7 1.5824 (12) 0.6631 (4) 0.4544 (2) 0.0704 (16) H7A 1.5512 0.7105 0.4823 0.084\* H7B 1.7767 0.6717 0.4409 0.084\* C8 1.5442 (15) 0.5608 (3) 0.4746 (2) 0.0836 (19) H8A 1.3503 0.5527 0.4873 0.125\* H8B 1.6777 0.5493 0.5028 0.125\* H8C 1.5801 0.5144 0.4469 0.125\* C9 0.9160 (13) 0.8890 (4) 0.2864 (2) 0.0655 (17) H9 0.8865 0.9525 0.2737 0.079\* C10 0.4512 (14) 0.7692 (4) 0.1998 (2) 0.0634 (16) C11 0.2476 (12) 0.7998 (4) 0.1579 (2) 0.0538 (13) C12 0.1420 (14) 0.7273 (4) 0.1251 (2) 0.0660 (16) H12 0.1992 0.6622 0.1297 0.079\* C13 −0.0471 (14) 0.7514 (4) 0.0857 (2) 0.0619 (16) C14 −0.1410 (12) 0.8456 (4) 0.0778 (2) 0.0639 (15) H14 −0.2718 0.8602 0.0512 0.077\* C15 −0.0362 (13) 0.9190 (4) 0.1104 (2) 0.0612 (15) H15 −0.0954 0.9839 0.1055 0.073\* C16 0.1542 (13) 0.8968 (3) 0.1499 (2) 0.0568 (14) H16 0.2222 0.9468 0.1716 0.068\* H2 0.569 (12) 0.9055 (11) 0.2203 (18) 0.080\* H4A 0.437 (12) 0.586 (3) 0.2626 (9) 0.080\* H4B 0.334 (10) 0.589 (3) 0.3130 (13) 0.080\* ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1175 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.1293 (16) 0.0775 (10) 0.0952 (12) −0.0177 (11) −0.0022 (11) −0.0238 (9) N1 0.062 (3) 0.088 (3) 0.049 (3) 0.024 (3) 0.009 (3) 0.009 (3) N2 0.065 (4) 0.066 (3) 0.060 (3) 0.015 (3) 0.004 (3) 0.008 (3) O1 0.066 (3) 0.062 (2) 0.076 (2) −0.006 (2) −0.018 (2) 0.0077 (19) O2 0.059 (3) 0.063 (2) 0.074 (3) 0.001 (2) −0.017 (2) −0.0018 (19) O3 0.124 (4) 0.061 (2) 0.086 (3) 0.020 (3) −0.003 (3) 0.018 (2) O4 0.138 (4) 0.055 (2) 0.075 (3) 0.009 (3) 0.017 (3) 0.004 (2) C1 0.040 (3) 0.061 (3) 0.064 (4) 0.011 (3) 0.012 (3) 0.006 (3) C2 0.041 (3) 0.063 (3) 0.058 (3) −0.002 (3) 0.008 (3) −0.005 (3) C3 0.054 (4) 0.051 (3) 0.063 (4) 0.001 (3) 0.001 (3) −0.004 (3) C4 0.055 (4) 0.076 (4) 0.060 (3) −0.006 (4) 0.007 (3) −0.007 (3) C5 0.068 (5) 0.057 (4) 0.089 (5) −0.003 (3) 0.017 (4) −0.011 (3) C6 0.071 (5) 0.058 (3) 0.083 (5) 0.010 (4) 0.021 (4) 0.006 (3) C7 0.063 (4) 0.079 (4) 0.069 (4) 0.001 (3) −0.022 (4) −0.003 (3) C8 0.095 (5) 0.069 (4) 0.087 (4) −0.007 (4) −0.028 (4) 0.011 (3) C9 0.056 (5) 0.076 (4) 0.064 (4) 0.016 (3) 0.012 (3) 0.010 (3) C10 0.071 (5) 0.060 (4) 0.060 (4) 0.007 (4) 0.015 (3) 0.007 (3) C11 0.058 (4) 0.051 (3) 0.053 (3) 0.001 (3) 0.008 (3) 0.002 (3) C12 0.073 (4) 0.056 (3) 0.069 (4) 0.012 (4) 0.013 (4) 0.005 (3) C13 0.070 (4) 0.052 (3) 0.063 (4) −0.013 (3) 0.008 (4) −0.008 (3) C14 0.064 (4) 0.065 (3) 0.063 (4) 0.006 (4) 0.001 (3) 0.003 (3) C15 0.066 (4) 0.051 (3) 0.067 (4) 0.000 (3) −0.008 (4) 0.003 (3) C16 0.066 (4) 0.049 (3) 0.055 (3) −0.002 (3) 0.007 (3) −0.005 (3) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1615 .table-wrap} ---------------- ------------ ----------------- ----------- Cl1---C13 1.741 (5) C5---H5 0.9300 N1---C9 1.281 (6) C6---H6 0.9300 N1---N2 1.381 (6) C7---C8 1.491 (6) N2---C10 1.331 (6) C7---H7A 0.9700 N2---H2 0.901 (10) C7---H7B 0.9700 O1---C3 1.381 (5) C8---H8A 0.9600 O1---C7 1.436 (5) C8---H8B 0.9600 O2---C2 1.354 (5) C8---H8C 0.9600 O2---H2A 0.8200 C9---H9 0.9300 O3---C10 1.234 (5) C10---C11 1.485 (7) O4---H4A 0.84 (3) C11---C12 1.379 (6) O4---H4B 0.85 (4) C11---C16 1.399 (6) C1---C6 1.394 (7) C12---C13 1.371 (7) C1---C2 1.399 (6) C12---H12 0.9300 C1---C9 1.440 (7) C13---C14 1.365 (6) C2---C3 1.402 (7) C14---C15 1.384 (6) C3---C4 1.369 (6) C14---H14 0.9300 C4---C5 1.386 (7) C15---C16 1.370 (7) C4---H4 0.9300 C15---H15 0.9300 C5---C6 1.360 (7) C16---H16 0.9300 C9---N1---N2 116.5 (5) C7---C8---H8A 109.5 C10---N2---N1 120.4 (4) C7---C8---H8B 109.5 C10---N2---H2 126 (3) H8A---C8---H8B 109.5 N1---N2---H2 114 (4) C7---C8---H8C 109.5 C3---O1---C7 116.4 (4) H8A---C8---H8C 109.5 C2---O2---H2A 109.5 H8B---C8---H8C 109.5 H4A---O4---H4B 108 (2) N1---C9---C1 121.2 (5) C6---C1---C2 119.3 (5) N1---C9---H9 119.4 C6---C1---C9 118.8 (5) C1---C9---H9 119.4 C2---C1---C9 121.8 (5) O3---C10---N2 122.4 (6) O2---C2---C1 123.9 (5) O3---C10---C11 120.3 (6) O2---C2---C3 117.6 (5) N2---C10---C11 117.3 (5) C1---C2---C3 118.5 (5) C12---C11---C16 118.1 (5) C4---C3---O1 125.0 (5) C12---C11---C10 117.5 (5) C4---C3---C2 121.1 (5) C16---C11---C10 124.4 (5) O1---C3---C2 113.9 (5) C13---C12---C11 120.0 (5) C3---C4---C5 119.8 (5) C13---C12---H12 120.0 C3---C4---H4 120.1 C11---C12---H12 120.0 C5---C4---H4 120.1 C14---C13---C12 122.3 (5) C6---C5---C4 120.2 (6) C14---C13---Cl1 118.4 (5) C6---C5---H5 119.9 C12---C13---Cl1 119.3 (4) C4---C5---H5 119.9 C13---C14---C15 118.2 (5) C5---C6---C1 121.1 (5) C13---C14---H14 120.9 C5---C6---H6 119.5 C15---C14---H14 120.9 C1---C6---H6 119.5 C16---C15---C14 120.6 (5) O1---C7---C8 107.5 (4) C16---C15---H15 119.7 O1---C7---H7A 110.2 C14---C15---H15 119.7 C8---C7---H7A 110.2 C15---C16---C11 120.8 (5) O1---C7---H7B 110.2 C15---C16---H16 119.6 C8---C7---H7B 110.2 C11---C16---H16 119.6 H7A---C7---H7B 108.5 ---------------- ------------ ----------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2097 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H2A···N1 0.82 1.95 2.645 (6) 142 N2---H2···O4^i^ 0.90 (1) 2.03 (1) 2.932 (5) 175 (5) O4---H4A···O3 0.84 (3) 1.89 (2) 2.717 (5) 167 (5) O4---H4B···O2^ii^ 0.85 (4) 2.16 (2) 2.945 (5) 154 (4) ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, *y*+1/2, −*z*+1/2; (ii) *x*−1, *y*, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ---------- ---------- ----------- ------------- O2---H2*A*⋯N1 0.82 1.95 2.645 (5) 142 N2---H2⋯O4^i^ 0.90 (1) 2.03 (1) 2.932 (5) 175 (5) O4---H4*A*⋯O3 0.84 (3) 1.89 (2) 2.717 (5) 167 (5) O4---H4*B*⋯O2^ii^ 0.85 (4) 2.16 (2) 2.945 (5) 154 (4) Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.023469
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051784/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o377", "authors": [ { "first": "Tian-Yi", "last": "Li" }, { "first": "Peng-Tao", "last": "Zeng" } ] }
PMC3051785
Related literature {#sec1} ================== For applications of the 4-*t*-butyl­pyridine and iodide/triiodide system in dye-sensitized solar cells see: Campbell *et al.* (2004[@bb2]); Lee *et al.* (2010[@bb7]); Wang *et al.* (2005[@bb9]). For related structures, see: Fialho *et al.* (1996[@bb5]); Kochel (2006[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~9~H~14~N^+^·I~3~ ^−^·C~9~H~13~N*M* *~r~* = 652.12Tetragonal,*a* = 11.6862 (4) Å*c* = 17.1665 (13) Å*V* = 2344.4 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 4.00 mm^−1^*T* = 293 K0.55 × 0.50 × 0.40 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2006[@bb1]) *T* ~min~ = 0.217, *T* ~max~ = 0.29823722 measured reflections2217 independent reflections1758 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.037*wR*(*F* ^2^) = 0.090*S* = 1.042217 reflections119 parameters1 restraintH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.80 e Å^−3^Δρ~min~ = −0.77 e Å^−3^ {#d5e444} Data collection: *APEX2* (Bruker, 2006[@bb1]); cell refinement: *SAINT* (Bruker, 2006[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb8]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb8]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008[@bb8]), *WinGX* (Farrugia, 1999[@bb4]) and *publCIF* (Westrip, 2010[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001371/sj5091sup1.cif](http://dx.doi.org/10.1107/S1600536811001371/sj5091sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001371/sj5091Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001371/sj5091Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5091&file=sj5091sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5091sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5091&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5091](http://scripts.iucr.org/cgi-bin/sendsup?sj5091)). This material is based upon work supported by the National Science Foundation/EPSCoR grant No. 0903804 and by the State of South Dakota. Comment ======= 4 - *t*-Butylpyridine is usually added into an iodide/triiodide electrolyte solution to enhance the photovoltaic performance of dye-sensitized solar cells. The solution is a mixture of iodide, lithium iodide, 4 - *t*-butylpyridine, and guanidinium thiocyanate (Campbell *et al.*, 2004; Lee *et al.*, 2010). Alternatively, the electrolyte can be prepared by the reaction between 2-hydroxypropionitrile and lithium iodide (Wang *et al.*, 2005). It was proposed that triiodide was produced during the reaction; however, no direct evidence was obtained. Reported here is the structure of the resulting compound. In the molecule of the title compound, three iodide atoms in triiodide ion are in a linear geometry (Fig. 1). The I1---I2 bond length is 2.9105 (4)Å and the I2---I1---I2 angle is 177.55 (3)°. The triiodide bond is almost parallel to the pyridyl ring. In each asymmetric unit cell, two pairs of triiodide ions are perpendicular to each other (Fig. 2 and Fig. 3). The cations assemble into dimeric forms by way of N---H···N hydrogen bonds (Fig. 4, Table 1). Experimental {#experimental} ============ 2-Hydroxypropionitrile (6.1 g) and lithium iodide (10 g) was added to a flask. The resulting mixture was heated to 120°C in a sealed high pressure tube for 30 minutes. When the temperature decreased to 70°C, silica powder with diameter 25 µm (1.3 g), 4 - *t*-butylpyridine (1.0 g), and ethanol (3 ml) were added. The mixture was stirred by a mechanical stirrer at 50°C for 30 minutes. Red crystals were obtained from the resulting mixture in one month. Refinement {#refinement} ========== The hydrogen that binds to N atom is refined and other hydrogen atoms are geometrically constrained and refined in riding mode as follows: methyl d(C---H) = 0.96 Å, Uĩso\~(H) = 1.5U\~eq\~(C); aromatic d(C---H) = 0.93 Å, Uĩso\~(H) = 1.2U\~eq\~(C). The butyl group on the pyridine ring is disordered and has been treated as a rigid rotator, modeled in three separate positions with 1/3,1/3, and 1/3 occupancies. All atoms involved have been refined isotropically. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering. ::: ![](e-67-0o434-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound, viewed down the a axis. ::: ![](e-67-0o434-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Packing diagram of the title compound, viewed down the c axis. ::: ![](e-67-0o434-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### Packing diagram of the title compound showing the hydrogen bonding. ::: ![](e-67-0o434-fig4) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e135 .table-wrap} ---------------------------------- --------------------------------------- C~9~H~14~N^+^·I~3~^−^·C~9~H~13~N *D*~x~ = 1.848 Mg m^−3^ *M~r~* = 652.12 Mo *K*α radiation, λ = 0.71073 Å Tetragonal, *P*4~2~/*n* Cell parameters from 9942 reflections Hall symbol: -P 4bc θ = 2.4--25.6° *a* = 11.6862 (4) Å µ = 4.00 mm^−1^ *c* = 17.1665 (13) Å *T* = 293 K *V* = 2344.4 (2) Å^3^ Block, red *Z* = 4 0.55 × 0.50 × 0.40 mm *F*(000) = 1232 ---------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e267 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII CCD area-detector diffractometer 2217 independent reflections Radiation source: fine-focus sealed tube 1758 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 φ and ω scans θ~max~ = 25.6°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Bruker, 2006) *h* = −14→14 *T*~min~ = 0.217, *T*~max~ = 0.298 *k* = −14→14 23722 measured reflections *l* = −20→20 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e384 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.037 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.090 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0303*P*)^2^ + 5.5874*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.04 (Δ/σ)~max~ \< 0.001 2217 reflections Δρ~max~ = 0.80 e Å^−3^ 119 parameters Δρ~min~ = −0.77 e Å^−3^ 1 restraint Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00208 (15) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e565 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e664 .table-wrap} ------- -------------- ------------- ------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) C1 0.0501 (4) 0.9717 (5) 0.3368 (3) 0.0641 (12) H1 0.0502 1.0414 0.3107 0.077\* C2 0.1482 (4) 0.9081 (6) 0.3407 (3) 0.0749 (15) H2 0.2140 0.9358 0.3169 0.090\* C3 0.0595 (5) 0.7687 (5) 0.4119 (3) 0.0694 (14) H3 0.0625 0.6988 0.4376 0.083\* C4 −0.0414 (4) 0.8291 (4) 0.4105 (3) 0.0608 (12) H4 −0.1055 0.8001 0.4360 0.073\* C5 −0.0485 (4) 0.9329 (4) 0.3715 (2) 0.0505 (10) C6 −0.1613 (4) 0.9989 (4) 0.3681 (3) 0.0590 (12) C7 −0.179 (2) 1.059 (2) 0.2943 (13) 0.099 (7)\* 0.33 H7A −0.1554 1.0099 0.2521 0.148\* 0.33 H7B −0.1338 1.1273 0.2937 0.148\* 0.33 H7C −0.2582 1.0775 0.2886 0.148\* 0.33 C8 −0.2650 (16) 0.9078 (16) 0.3731 (13) 0.077 (5)\* 0.33 H8A −0.2680 0.8641 0.3258 0.116\* 0.33 H8B −0.3359 0.9479 0.3801 0.116\* 0.33 H8C −0.2526 0.8573 0.4164 0.116\* 0.33 C9 −0.1911 (15) 1.0409 (17) 0.4482 (9) 0.051 (4)\* 0.33 H9A −0.1303 1.0882 0.4675 0.076\* 0.33 H9B −0.2017 0.9767 0.4823 0.076\* 0.33 H9C −0.2606 1.0847 0.4459 0.076\* 0.33 C7\' −0.144 (2) 1.125 (2) 0.3487 (17) 0.118 (8)\* 0.33 H7\'1 −0.1136 1.1639 0.3933 0.177\* 0.33 H7\'2 −0.2159 1.1584 0.3344 0.177\* 0.33 H7\'3 −0.0912 1.1316 0.3060 0.177\* 0.33 C8\' −0.230 (2) 0.953 (2) 0.3061 (13) 0.091 (7)\* 0.33 H8\'1 −0.3007 0.9947 0.3031 0.136\* 0.33 H8\'2 −0.2453 0.8739 0.3159 0.136\* 0.33 H8\'3 −0.1894 0.9609 0.2577 0.136\* 0.33 C9\' −0.2236 (18) 0.9924 (19) 0.4480 (12) 0.085 (6)\* 0.33 H9\'1 −0.1681 0.9934 0.4892 0.127\* 0.33 H9\'2 −0.2673 0.9230 0.4507 0.127\* 0.33 H9\'3 −0.2739 1.0569 0.4534 0.127\* 0.33 C8\" −0.2550 (14) 0.9235 (14) 0.3301 (12) 0.052 (3)\* 0.33 H8\"1 −0.3257 0.9653 0.3282 0.078\* 0.33 H8\"2 −0.2653 0.8553 0.3604 0.078\* 0.33 H8\"3 −0.2321 0.9033 0.2782 0.078\* 0.33 C7\" −0.1486 (14) 1.1071 (15) 0.3079 (11) 0.057 (4)\* 0.33 H7\"1 −0.0932 1.1602 0.3280 0.085\* 0.33 H7\"2 −0.2212 1.1449 0.3027 0.085\* 0.33 H7\"3 −0.1240 1.0798 0.2579 0.085\* 0.33 C9\" −0.1668 (19) 1.0791 (19) 0.4363 (13) 0.085 (7)\* 0.33 H9\"1 −0.0907 1.1022 0.4504 0.127\* 0.33 H9\"2 −0.2021 1.0410 0.4796 0.127\* 0.33 H9\"3 −0.2110 1.1452 0.4224 0.127\* 0.33 N1 0.1527 (4) 0.8086 (4) 0.3770 (3) 0.0699 (12) I1 0.2500 0.2500 0.38499 (3) 0.06646 (18) I2 0.05632 (4) 0.40649 (4) 0.38862 (3) 0.1013 (2) H99 0.220 (6) 0.772 (11) 0.381 (5) 0.09 (4)\* 0.50 ------- -------------- ------------- ------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1422 .table-wrap} ---- ------------ ------------ ------------ ------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.060 (3) 0.068 (3) 0.065 (3) −0.004 (2) 0.000 (2) 0.009 (2) C2 0.048 (3) 0.102 (4) 0.074 (4) −0.002 (3) 0.008 (3) −0.001 (3) C3 0.067 (3) 0.068 (3) 0.073 (3) 0.013 (3) −0.004 (3) 0.008 (3) C4 0.055 (3) 0.059 (3) 0.068 (3) 0.001 (2) 0.007 (2) 0.007 (2) C5 0.050 (2) 0.055 (3) 0.047 (2) 0.0031 (19) −0.0037 (19) −0.0077 (19) C6 0.057 (3) 0.060 (3) 0.061 (3) 0.014 (2) −0.006 (2) −0.010 (2) N1 0.053 (3) 0.091 (3) 0.066 (3) 0.020 (2) −0.005 (2) −0.011 (2) I1 0.0663 (3) 0.0676 (3) 0.0656 (3) 0.0000 (2) 0.000 0.000 I2 0.0790 (3) 0.1007 (4) 0.1243 (4) 0.0253 (2) −0.0064 (3) 0.0184 (3) ---- ------------ ------------ ------------ ------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1624 .table-wrap} ------------------ ------------ ---------------------- ------------ C1---C2 1.368 (7) C8---H8C 0.9600 C1---C5 1.375 (6) C9---H9A 0.9600 C1---H1 0.9300 C9---H9B 0.9600 C2---N1 1.320 (7) C9---H9C 0.9600 C2---H2 0.9300 C7\'---H7\'1 0.9600 C3---N1 1.327 (7) C7\'---H7\'2 0.9600 C3---C4 1.374 (7) C7\'---H7\'3 0.9600 C3---H3 0.9300 C8\'---H8\'1 0.9600 C4---C5 1.389 (6) C8\'---H8\'2 0.9600 C4---H4 0.9300 C8\'---H8\'3 0.9600 C5---C6 1.528 (6) C9\'---H9\'1 0.9600 C6---C8\' 1.44 (2) C9\'---H9\'2 0.9600 C6---C7 1.46 (2) C9\'---H9\'3 0.9600 C6---C9\" 1.50 (2) C8\"---H8\"1 0.9600 C6---C9 1.500 (16) C8\"---H8\"2 0.9600 C6---C7\' 1.52 (3) C8\"---H8\"3 0.9600 C6---C8\" 1.549 (16) C7\"---H7\"1 0.9600 C6---C9\' 1.55 (2) C7\"---H7\"2 0.9600 C6---C8 1.614 (19) C7\"---H7\"3 0.9600 C6---C7\" 1.641 (17) C9\"---H9\"1 0.9600 C7---H7A 0.9600 C9\"---H9\"2 0.9600 C7---H7B 0.9600 C9\"---H9\"3 0.9600 C7---H7C 0.9600 N1---H99 0.90 (2) C8---H8A 0.9600 I1---I2^i^ 2.9105 (4) C8---H8B 0.9600 I1---I2 2.9105 (4) C2---C1---C5 120.2 (5) H7A---C7---H7C 109.5 C2---C1---H1 119.9 H7B---C7---H7C 109.5 C5---C1---H1 119.9 C6---C8---H8A 109.5 N1---C2---C1 122.4 (5) C6---C8---H8B 109.5 N1---C2---H2 118.8 H8A---C8---H8B 109.5 C1---C2---H2 118.8 C6---C8---H8C 109.5 N1---C3---C4 121.1 (5) H8A---C8---H8C 109.5 N1---C3---H3 119.4 H8B---C8---H8C 109.5 C4---C3---H3 119.4 C6---C9---H9A 109.5 C3---C4---C5 120.5 (5) C6---C9---H9B 109.5 C3---C4---H4 119.7 H9A---C9---H9B 109.5 C5---C4---H4 119.7 C6---C9---H9C 109.5 C1---C5---C4 116.5 (4) H9A---C9---H9C 109.5 C1---C5---C6 122.8 (4) H9B---C9---H9C 109.5 C4---C5---C6 120.7 (4) C6---C7\'---H7\'1 109.5 C8\'---C6---C9\" 141.9 (13) C6---C7\'---H7\'2 109.5 C7---C6---C9\" 111.9 (14) H7\'1---C7\'---H7\'2 109.5 C8\'---C6---C9 132.2 (12) C6---C7\'---H7\'3 109.5 C7---C6---C9 127.3 (12) H7\'1---C7\'---H7\'3 109.5 C8\'---C6---C7\' 105.7 (14) H7\'2---C7\'---H7\'3 109.5 C9\"---C6---C7\' 64.7 (14) C6---C8\'---H8\'1 109.5 C9---C6---C7\' 85.2 (13) C6---C8\'---H8\'2 109.5 C8\'---C6---C5 108.8 (9) H8\'1---C8\'---H8\'2 109.5 C7---C6---C5 113.2 (10) C6---C8\'---H8\'3 109.5 C9\"---C6---C5 108.8 (9) H8\'1---C8\'---H8\'3 109.5 C9---C6---C5 109.3 (7) H8\'2---C8\'---H8\'3 109.5 C7\'---C6---C5 112.3 (11) C6---C9\'---H9\'1 109.5 C7---C6---C8\" 78.9 (12) C6---C9\'---H9\'2 109.5 C9\"---C6---C8\" 130.8 (11) H9\'1---C9\'---H9\'2 109.5 C9---C6---C8\" 114.0 (11) C6---C9\'---H9\'3 109.5 C7\'---C6---C8\" 123.5 (13) H9\'1---C9\'---H9\'3 109.5 C5---C6---C8\" 109.8 (6) H9\'2---C9\'---H9\'3 109.5 C8\'---C6---C9\' 112.1 (14) C6---C8\"---H8\"1 109.5 C7---C6---C9\' 136.4 (12) C6---C8\"---H8\"2 109.5 C7\'---C6---C9\' 107.7 (14) H8\"1---C8\"---H8\"2 109.5 C5---C6---C9\' 110.2 (8) C6---C8\"---H8\"3 109.5 C8\"---C6---C9\' 90.7 (11) H8\"1---C8\"---H8\"3 109.5 C7---C6---C8 104.9 (12) H8\"2---C8\"---H8\"3 109.5 C9\"---C6---C8 109.8 (12) C6---C7\"---H7\"1 109.5 C9---C6---C8 89.6 (11) C6---C7\"---H7\"2 109.5 C7\'---C6---C8 138.5 (13) H7\"1---C7\"---H7\"2 109.5 C5---C6---C8 108.2 (8) C6---C7\"---H7\"3 109.5 C9\'---C6---C8 64.5 (11) H7\"1---C7\"---H7\"3 109.5 C8\'---C6---C7\" 82.5 (11) H7\"2---C7\"---H7\"3 109.5 C9\"---C6---C7\" 90.8 (11) C6---C9\"---H9\"1 109.5 C9---C6---C7\" 110.2 (10) C6---C9\"---H9\"2 109.5 C5---C6---C7\" 109.6 (7) H9\"1---C9\"---H9\"2 109.5 C8\"---C6---C7\" 103.7 (10) C6---C9\"---H9\"3 109.5 C9\'---C6---C7\" 129.5 (10) H9\"1---C9\"---H9\"3 109.5 C8---C6---C7\" 127.6 (10) H9\"2---C9\"---H9\"3 109.5 C6---C7---H7A 109.5 C2---N1---C3 119.3 (4) C6---C7---H7B 109.5 C2---N1---H99 120 (9) H7A---C7---H7B 109.5 C3---N1---H99 121 (9) C6---C7---H7C 109.5 I2^i^---I1---I2 177.55 (3) ------------------ ------------ ---------------------- ------------ ::: Symmetry codes: (i) −*x*+1/2, −*y*+1/2, *z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2381 .table-wrap} ------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H99···N1^ii^ 0.90 1.76 2.655 (7) 172 ------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) −*x*+1/2, −*y*+3/2, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------- --------- ------- ----------- ------------- N1---H99⋯N1^i^ 0.90 1.76 2.655 (7) 172 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.028362
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051785/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o434", "authors": [ { "first": "Hongshan", "last": "He" }, { "first": "Andrew G.", "last": "Sykes" } ] }
PMC3051786
Related literature {#sec1} ================== For the biological activity of phenyl­hydrazone derivatives, see: Okabe *et al.* (1993[@bb6]). For related structures, see: Shan *et al.* (2003[@bb9]); Fan *et al.* (2005[@bb2]); Bolte & Dill (1998[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~9~Cl~3~N~2~*M* *~r~* = 299.57Monoclinic,*a* = 13.913 (6) Å*b* = 12.867 (5) Å*c* = 7.652 (3) Åβ = 98.739 (5)°*V* = 1353.9 (9) Å^3^*Z* = 4Mo *K*α radiationμ = 0.66 mm^−1^*T* = 295 K0.36 × 0.30 × 0.26 mm ### Data collection {#sec2.1.2} Rigaku R-AXIS RAPID IP diffractometerAbsorption correction: multi-scan (*ABSCOR*; Higashi, 1995[@bb5]) *T* ~min~ = 0.86, *T* ~max~ = 0.9211730 measured reflections2436 independent reflections1936 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.028 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.041*wR*(*F* ^2^) = 0.105*S* = 1.062436 reflections163 parametersH-atom parameters constrainedΔρ~max~ = 0.18 e Å^−3^Δρ~min~ = −0.32 e Å^−3^ {#d5e424} Data collection: *PROCESS-AUTO* (Rigaku, 1998[@bb7]); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002[@bb8]); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb10]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb10]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb4]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S160053681100328X/xu5149sup1.cif](http://dx.doi.org/10.1107/S160053681100328X/xu5149sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S160053681100328X/xu5149Isup2.hkl](http://dx.doi.org/10.1107/S160053681100328X/xu5149Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5149&file=xu5149sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5149sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5149&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5149](http://scripts.iucr.org/cgi-bin/sendsup?xu5149)). The work was supported by the Natural Science Foundation of Zhejiang Province of China (No. M203027). Comment ======= As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe *et al.*, 1993), a series of phenylhydrazone derivatives has been synthesized in our laboratory in order to investigate the structure/bioactivity relationship (Shan *et al.* 2003; Fan *et al.* 2005). The title molecule crystallizes in an E conformation, with the C1-phenyl ring and C8-benzene ring on opposite sides of the C7═N2 double bond. This agrees with the configuration commonly found in phenylhydrazone derivatives (Bolte & Dill, 1998). In the molecule, the phenyl ring is oriented with respect to the tricholorophenyl ring at a dihedral angle of 42.58 (12)°. In the crystal structure, the molecules are linked *via* N---H···N hydrogen bonds to form the supra-molecular chains running along the *c* axis. π-π stacking is present between parallel tricholorophenyl rings of adjacent molecules, the face-to-face distance being 3.369 (14) Å. Experimental {#experimental} ============ 2,4,6-Trichlorophenylhydrazine (0.21 g,1 mmol) was dissolved in ethanol (18 ml) and acetic acid (0.3 ml) was added slowly with stirring. The solution was heated at about 333 K for several minutes until it became clear. Benzaldehyde (0.11 g, 1 mmol) was added dropwise with continuous stirring, and the mixture solution was refluxed for 2 h. When the solution cooled to room temperature, microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with an absolute ethanol to obtain single crystals of the title compound. Refinement {#refinement} ========== Imino H atom was located a difference Fourier map and refined as riding in as-found relative position. Other H atoms were placed in calculated positions with C---H = 0.93 Å. *U*~iso~(H) = 1.2*U*~eq~(N,C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of (I) with 50% probability displacement ellipsoids. ::: ![](e-67-0o528-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e124 .table-wrap} ------------------------- --------------------------------------- C~13~H~9~Cl~3~N~2~ *F*(000) = 608 *M~r~* = 299.57 *D*~x~ = 1.470 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 4171 reflections *a* = 13.913 (6) Å θ = 2.8--26.3° *b* = 12.867 (5) Å µ = 0.66 mm^−1^ *c* = 7.652 (3) Å *T* = 295 K β = 98.739 (5)° Prism, colorless *V* = 1353.9 (9) Å^3^ 0.36 × 0.30 × 0.26 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e254 .table-wrap} ------------------------------------------------------------- -------------------------------------- Rigaku R-AXIS RAPID IP diffractometer 2436 independent reflections Radiation source: fine-focus sealed tube 1936 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.028 Detector resolution: 10.0 pixels mm^-1^ θ~max~ = 25.2°, θ~min~ = 3.0° ω scans *h* = −16→16 Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) *k* = −15→15 *T*~min~ = 0.86, *T*~max~ = 0.92 *l* = −9→9 11730 measured reflections ------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e374 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.041 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.105 H-atom parameters constrained *S* = 1.06 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0449*P*)^2^ + 0.4002*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2436 reflections (Δ/σ)~max~ = 0.001 163 parameters Δρ~max~ = 0.18 e Å^−3^ 0 restraints Δρ~min~ = −0.32 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e531 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e630 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.82868 (5) 0.03185 (5) 0.52523 (10) 0.0786 (2) Cl2 1.16441 (5) 0.21670 (7) 0.78646 (11) 0.0897 (3) Cl3 0.85826 (6) 0.45120 (5) 0.53336 (10) 0.0877 (3) N1 0.75114 (15) 0.24687 (17) 0.4714 (3) 0.0746 (6) H1N 0.7271 0.1962 0.3849 0.089\* N2 0.69094 (13) 0.30372 (14) 0.5622 (2) 0.0566 (5) C1 0.84849 (16) 0.24097 (18) 0.5442 (3) 0.0557 (6) C2 0.89458 (15) 0.14534 (18) 0.5762 (3) 0.0548 (5) C3 0.99117 (16) 0.13659 (19) 0.6484 (3) 0.0595 (6) H3 1.0203 0.0717 0.6674 0.071\* C4 1.04329 (16) 0.2259 (2) 0.6915 (3) 0.0612 (6) C5 1.00210 (17) 0.3222 (2) 0.6597 (3) 0.0638 (6) H5 1.0386 0.3821 0.6883 0.077\* C6 0.90617 (18) 0.32876 (19) 0.5850 (3) 0.0603 (6) C7 0.59985 (17) 0.29350 (17) 0.5147 (3) 0.0582 (6) H7 0.5769 0.2464 0.4258 0.070\* C8 0.53090 (15) 0.35459 (18) 0.5976 (3) 0.0535 (5) C9 0.56026 (17) 0.44135 (18) 0.6979 (3) 0.0561 (5) H9 0.6254 0.4608 0.7146 0.067\* C10 0.4942 (2) 0.4996 (2) 0.7737 (3) 0.0760 (7) H10 0.5151 0.5578 0.8411 0.091\* C11 0.3983 (2) 0.4720 (3) 0.7501 (4) 0.0934 (10) H11 0.3539 0.5115 0.8011 0.112\* C12 0.3676 (2) 0.3869 (3) 0.6520 (5) 0.0952 (10) H12 0.3022 0.3683 0.6369 0.114\* C13 0.43269 (18) 0.3272 (2) 0.5741 (4) 0.0758 (7) H13 0.4110 0.2694 0.5066 0.091\* ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e992 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0633 (4) 0.0709 (4) 0.1004 (5) −0.0018 (3) 0.0087 (4) −0.0148 (3) Cl2 0.0506 (4) 0.1110 (6) 0.1040 (6) −0.0073 (3) 0.0007 (3) 0.0177 (4) Cl3 0.0985 (5) 0.0642 (4) 0.0989 (5) 0.0182 (4) 0.0100 (4) 0.0040 (4) N1 0.0620 (12) 0.0951 (16) 0.0601 (12) 0.0270 (11) −0.0114 (10) −0.0335 (11) N2 0.0565 (11) 0.0629 (11) 0.0472 (10) 0.0140 (9) −0.0023 (9) −0.0060 (8) C1 0.0581 (13) 0.0691 (15) 0.0397 (11) 0.0130 (11) 0.0065 (10) −0.0078 (10) C2 0.0520 (12) 0.0631 (14) 0.0509 (12) 0.0030 (10) 0.0124 (10) −0.0055 (10) C3 0.0505 (13) 0.0658 (14) 0.0639 (14) 0.0065 (11) 0.0144 (11) 0.0089 (11) C4 0.0470 (12) 0.0816 (17) 0.0564 (13) 0.0007 (11) 0.0131 (11) 0.0108 (12) C5 0.0634 (15) 0.0684 (15) 0.0606 (14) −0.0047 (12) 0.0130 (12) −0.0005 (12) C6 0.0697 (15) 0.0612 (14) 0.0501 (12) 0.0092 (12) 0.0093 (11) −0.0009 (11) C7 0.0608 (14) 0.0596 (13) 0.0492 (12) 0.0031 (11) −0.0081 (11) −0.0046 (10) C8 0.0478 (12) 0.0649 (14) 0.0455 (11) 0.0044 (10) −0.0002 (9) 0.0120 (10) C9 0.0554 (13) 0.0670 (14) 0.0447 (11) 0.0102 (11) 0.0039 (10) 0.0081 (11) C10 0.0832 (19) 0.0897 (18) 0.0567 (15) 0.0249 (15) 0.0159 (14) 0.0066 (13) C11 0.077 (2) 0.130 (3) 0.081 (2) 0.030 (2) 0.0352 (17) 0.023 (2) C12 0.0486 (15) 0.136 (3) 0.104 (2) 0.0061 (17) 0.0195 (16) 0.042 (2) C13 0.0581 (15) 0.0892 (19) 0.0758 (17) −0.0089 (14) −0.0034 (13) 0.0176 (14) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1342 .table-wrap} --------------- ------------- ----------------- ----------- Cl1---C2 1.737 (2) C5---H5 0.9300 Cl2---C4 1.735 (2) C7---C8 1.458 (3) Cl3---C6 1.733 (2) C7---H7 0.9300 N1---N2 1.377 (3) C8---C9 1.381 (3) N1---C1 1.386 (3) C8---C13 1.396 (3) N1---H1N 0.9526 C9---C10 1.380 (3) N2---C7 1.271 (3) C9---H9 0.9300 C1---C2 1.392 (3) C10---C11 1.367 (4) C1---C6 1.393 (3) C10---H10 0.9300 C2---C3 1.378 (3) C11---C12 1.359 (5) C3---C4 1.372 (3) C11---H11 0.9300 C3---H3 0.9300 C12---C13 1.389 (4) C4---C5 1.372 (3) C12---H12 0.9300 C5---C6 1.372 (3) C13---H13 0.9300 N2---N1---C1 117.26 (18) N2---C7---C8 120.9 (2) N2---N1---H1N 122.5 N2---C7---H7 119.6 C1---N1---H1N 117.4 C8---C7---H7 119.6 C7---N2---N1 117.19 (19) C9---C8---C13 118.5 (2) N1---C1---C2 121.0 (2) C9---C8---C7 121.3 (2) N1---C1---C6 122.7 (2) C13---C8---C7 120.3 (2) C2---C1---C6 116.3 (2) C10---C9---C8 120.9 (2) C3---C2---C1 122.5 (2) C10---C9---H9 119.6 C3---C2---Cl1 118.09 (18) C8---C9---H9 119.6 C1---C2---Cl1 119.38 (18) C11---C10---C9 120.2 (3) C4---C3---C2 118.4 (2) C11---C10---H10 119.9 C4---C3---H3 120.8 C9---C10---H10 119.9 C2---C3---H3 120.8 C12---C11---C10 120.1 (3) C3---C4---C5 121.5 (2) C12---C11---H11 120.0 C3---C4---Cl2 119.22 (19) C10---C11---H11 120.0 C5---C4---Cl2 119.3 (2) C11---C12---C13 120.8 (3) C4---C5---C6 118.9 (2) C11---C12---H12 119.6 C4---C5---H5 120.6 C13---C12---H12 119.6 C6---C5---H5 120.6 C12---C13---C8 119.7 (3) C5---C6---C1 122.3 (2) C12---C13---H13 120.2 C5---C6---Cl3 117.8 (2) C8---C13---H13 120.2 C1---C6---Cl3 119.84 (18) --------------- ------------- ----------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1688 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N1---H1N···N2^i^ 0.95 2.44 3.183 (3) 134 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+1/2, *z*−1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N1---H1*N*⋯N2^i^ 0.95 2.44 3.183 (3) 134 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.033507
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051786/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):o528", "authors": [ { "first": "Yan-Lan", "last": "Huang" }, { "first": "Deng-Feng", "last": "Li" }, { "first": "Jian", "last": "Sun" }, { "first": "Jin-Hua", "last": "Gao" }, { "first": "Shang", "last": "Shan" } ] }
PMC3051787
Related literature {#sec1} ================== For the crystal structures of similar zinc complexes, see: Cai (2009[@bb4]); Chen *et al.* (2005[@bb5]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison *et al.* (1984[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn(NCS)~2~(C~13~H~19~N~3~O)\]*M* *~r~* = 414.84Triclinic,*a* = 9.9203 (2) Å*b* = 13.5659 (2) Å*c* = 14.6957 (2) Åα = 112.702 (1)°β = 91.471 (1)°γ = 94.356 (1)°*V* = 1815.97 (5) Å^3^*Z* = 4Mo *K*α radiationμ = 1.59 mm^−1^*T* = 100 K0.42 × 0.33 × 0.25 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb6]) *T* ~min~ = 0.554, *T* ~max~ = 0.69115347 measured reflections7111 independent reflections6171 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.020 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.027*wR*(*F* ^2^) = 0.072*S* = 1.027111 reflections435 parameters5 restraintsH-atom parameters constrainedΔρ~max~ = 0.63 e Å^−3^Δρ~min~ = −0.27 e Å^−3^ {#d5e468} Data collection: *APEX2* (Bruker, 2007[@bb3]); cell refinement: *SAINT* (Bruker, 2007[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *X-SEED* (Barbour, 2001[@bb2]); software used to prepare material for publication: *SHELXL97* and *publCIF* (Westrip, 2010[@bb8]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810053778/vm2068sup1.cif](http://dx.doi.org/10.1107/S1600536810053778/vm2068sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053778/vm2068Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053778/vm2068Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?vm2068&file=vm2068sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?vm2068sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?vm2068&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [VM2068](http://scripts.iucr.org/cgi-bin/sendsup?vm2068)). The authors thank the University of Malaya for funding this study (UMRG grant RG024/09BIO). Comment ======= 2-morpholino-*N*-\[1-(2-pyridyl)ethylidene\]ethanamine zinc is the condensation product of the reaction of 2-acetylpyridine and 4-(2-aminoethyl)morpholine. Owing to the presence of several donor atoms and the flexibility of the morpholine ring, this Schiff base can, in principle, show ambidentate coordination behavior toward metal ions. On the other hand, thiocyanate is known to bind metal ions in different modes: *N*-donor, *S*-donor or *N:S*-bridging mode. The title compound is a mixed-ligand zinc(II) complex with the two ambidentate ligands. In the crystal, two geometrically slightly different molecules exist. The weighted r.m.s. fit for the superposition of the non-H atoms in both molecules is 1.5267 Å. The Schiff base ligand in the molecules acts as an *N,N\',N\"*-tridentate chelate, along with the N atoms of two isothiocyanate ligands this makes penta-coordiante zinc(II) complexes. Similar coordination environment has been reported in related mixed-ligand zinc(II) complexes (Cai, 2009; Chen *et al.*, 2005). The geometry of the two present complexes can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramid τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison *et al.*,1984). The τ values in the two molecules are 0.14 for the Zn1 complex and 0.33 for the Zn2 complex, indicating distorted square-pyramidal geometries. The NCS groups are almost linear \[178.3 (2)° and 179.9 (3)° in the Zn1 complex; 179.1 (2)° and 179.1 (2)° in the Zn2 complex\], whereas the Zn---N---CS linkages are somewhat bent \[158.34 (19)° and 165.19 (18)° in the Zn1 complex; 145.54 (17)° and 169.54 (18)° in the Zn2 complex\]. The morpholine rings in both molecules adopt a chair conformation. The crystal structure is stabilized by intermolecular C---H···S and an intramolecular C---H···N hydrogen bond (Table 1). Experimental {#experimental} ============ A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of zinc(II) acetate dihydrate (0.36 g, 1.65 mmol) and sodium thiocyanate (0.134 g, 1.65 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a few days. Refinement {#refinement} ========== The hydrogen atoms were placed at calculated positions (H---C*~Ar~* = 0.95 Å; *H*---*C~Methyl~ =* 0.98 Å; *H*---*C~Methylene~ =* 0.99 Å) and were treated as riding on their parent atoms with *U*(H) set to 1.2--1.5 *Ueq*(C). Additional rigid-bond type restraints (DELU in *SHELXL97*) were placed on the displacement parameters of S1 and C14; S2 and C15; S3 and C29; S4 and C30; N10 and C3. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms have been omitted for clarity. ::: ![](e-67-0m131-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e164 .table-wrap} --------------------------------- --------------------------------------- \[Zn(NCS)~2~(C~13~H~19~N~3~O)\] *Z* = 4 *M~r~* = 414.84 *F*(000) = 856 Triclinic, *P*1 *D*~x~ = 1.517 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 9.9203 (2) Å Cell parameters from 7261 reflections *b* = 13.5659 (2) Å θ = 2.5--30.5° *c* = 14.6957 (2) Å µ = 1.59 mm^−1^ α = 112.702 (1)° *T* = 100 K β = 91.471 (1)° Block, yellow γ = 94.356 (1)° 0.42 × 0.33 × 0.25 mm *V* = 1815.97 (5) Å^3^ --------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e301 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII CCD diffractometer 7111 independent reflections Radiation source: fine-focus sealed tube 6171 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.020 φ and ω scans θ~max~ = 26.0°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −12→12 *T*~min~ = 0.554, *T*~max~ = 0.691 *k* = −16→16 15347 measured reflections *l* = −17→18 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e418 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.027 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.072 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0368*P*)^2^ + 0.8172*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7111 reflections (Δ/σ)~max~ = 0.001 435 parameters Δρ~max~ = 0.63 e Å^−3^ 5 restraints Δρ~min~ = −0.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e575 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e674 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Zn1 0.19481 (2) 0.410155 (19) 0.190924 (17) 0.01900 (7) S1 0.18204 (6) 0.44706 (5) 0.52312 (4) 0.03297 (15) S2 0.49821 (6) 0.67240 (5) 0.15470 (4) 0.02846 (13) O1 0.49220 (16) 0.27533 (15) 0.32934 (13) 0.0348 (4) N1 −0.00833 (17) 0.43646 (14) 0.15397 (12) 0.0199 (4) N2 0.15687 (17) 0.30747 (14) 0.04303 (12) 0.0203 (4) N3 0.37745 (17) 0.31359 (15) 0.16386 (13) 0.0220 (4) N4 0.15900 (18) 0.42921 (16) 0.32803 (13) 0.0258 (4) C1 −0.0848 (2) 0.50901 (18) 0.21249 (16) 0.0250 (5) H1 −0.0550 0.5474 0.2799 0.030\* C2 −0.2065 (2) 0.53031 (19) 0.17825 (18) 0.0295 (5) H2 −0.2585 0.5832 0.2213 0.035\* C3 −0.2508 (2) 0.47373 (19) 0.08096 (17) 0.0292 (5) H3 −0.3335 0.4873 0.0559 0.035\* C4 −0.1727 (2) 0.39631 (19) 0.01981 (17) 0.0257 (5) H4 −0.2022 0.3550 −0.0472 0.031\* C5 −0.0514 (2) 0.38077 (17) 0.05858 (15) 0.0203 (4) C6 0.0427 (2) 0.30383 (17) −0.00108 (15) 0.0207 (4) C7 −0.0008 (2) 0.2307 (2) −0.10502 (16) 0.0303 (5) H7A 0.0643 0.1770 −0.1305 0.045\* H7B −0.0046 0.2726 −0.1462 0.045\* H7C −0.0906 0.1945 −0.1065 0.045\* C8 0.2657 (2) 0.24304 (18) −0.00450 (16) 0.0251 (5) H8A 0.2741 0.2412 −0.0721 0.030\* H8B 0.2468 0.1685 −0.0090 0.030\* C9 0.3955 (2) 0.29495 (19) 0.05839 (16) 0.0260 (5) H9A 0.4692 0.2479 0.0337 0.031\* H9B 0.4218 0.3642 0.0529 0.031\* C10 0.3596 (2) 0.20758 (18) 0.17256 (17) 0.0258 (5) H10A 0.4307 0.1628 0.1369 0.031\* H10B 0.2706 0.1705 0.1409 0.031\* C11 0.3674 (2) 0.2191 (2) 0.27917 (17) 0.0292 (5) H11A 0.2912 0.2582 0.3134 0.035\* H11B 0.3584 0.1469 0.2815 0.035\* C12 0.5035 (2) 0.3799 (2) 0.32699 (18) 0.0331 (6) H12A 0.5884 0.4205 0.3637 0.040\* H12B 0.4266 0.4192 0.3599 0.040\* C13 0.5035 (2) 0.3728 (2) 0.22158 (18) 0.0290 (5) H13A 0.5125 0.4461 0.2219 0.035\* H13B 0.5823 0.3359 0.1896 0.035\* C14 0.1676 (2) 0.43803 (17) 0.41001 (16) 0.0214 (4) C15 0.3793 (2) 0.59693 (16) 0.17611 (15) 0.0194 (4) Zn2 0.30417 (2) 0.953591 (19) 0.691039 (17) 0.01820 (7) S3 0.65029 (6) 1.07952 (5) 0.92910 (4) 0.03050 (14) S4 0.05616 (6) 1.21315 (5) 0.63775 (4) 0.02613 (13) O2 0.06613 (17) 0.85681 (14) 0.89498 (12) 0.0358 (4) N5 0.29418 (19) 0.54316 (15) 0.19158 (14) 0.0279 (4) N6 0.49783 (18) 0.98236 (14) 0.63008 (13) 0.0220 (4) N7 0.31286 (18) 0.82075 (14) 0.56062 (12) 0.0213 (4) N8 0.12340 (17) 0.84559 (14) 0.69974 (13) 0.0222 (4) N9 0.40186 (18) 1.00133 (15) 0.82261 (13) 0.0241 (4) N10 0.19805 (19) 1.06809 (15) 0.68484 (14) 0.0261 (4) C16 0.5889 (2) 1.06648 (18) 0.67001 (16) 0.0268 (5) H16 0.5638 1.1284 0.7224 0.032\* C17 0.7190 (2) 1.0676 (2) 0.63832 (17) 0.0301 (5) H17 0.7814 1.1295 0.6675 0.036\* C18 0.7562 (2) 0.9774 (2) 0.56381 (17) 0.0333 (6) H18 0.8453 0.9755 0.5415 0.040\* C19 0.6615 (2) 0.8887 (2) 0.52143 (17) 0.0304 (5) H19 0.6847 0.8256 0.4695 0.036\* C20 0.5332 (2) 0.89417 (17) 0.55625 (15) 0.0215 (4) C21 0.4233 (2) 0.80383 (18) 0.51743 (15) 0.0232 (5) C22 0.4504 (3) 0.7028 (2) 0.43377 (17) 0.0346 (6) H22A 0.3674 0.6537 0.4134 0.052\* H22B 0.5214 0.6686 0.4551 0.052\* H22C 0.4801 0.7197 0.3780 0.052\* C23 0.1933 (2) 0.74271 (18) 0.53134 (16) 0.0274 (5) H23A 0.2126 0.6777 0.5428 0.033\* H23B 0.1678 0.7213 0.4603 0.033\* C24 0.0797 (2) 0.79550 (19) 0.59319 (16) 0.0279 (5) H24A 0.0490 0.8511 0.5714 0.033\* H24B 0.0022 0.7411 0.5831 0.033\* C25 0.0097 (2) 0.9010 (2) 0.75502 (17) 0.0299 (5) H25A −0.0732 0.8505 0.7369 0.036\* H25B −0.0076 0.9618 0.7362 0.036\* C26 0.0408 (3) 0.9423 (2) 0.86506 (18) 0.0344 (6) H26A 0.1213 0.9954 0.8837 0.041\* H26B −0.0366 0.9789 0.8999 0.041\* C27 0.1808 (2) 0.8079 (2) 0.84673 (17) 0.0297 (5) H27A 0.2018 0.7504 0.8690 0.036\* H27B 0.2601 0.8621 0.8656 0.036\* C28 0.1563 (2) 0.76110 (18) 0.73578 (16) 0.0257 (5) H28A 0.2382 0.7286 0.7048 0.031\* H28B 0.0805 0.7038 0.7163 0.031\* C29 0.5052 (2) 1.03434 (17) 0.86717 (15) 0.0221 (4) C30 0.1385 (2) 1.12873 (17) 0.66588 (15) 0.0195 (4) ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1799 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.01919 (13) 0.02094 (13) 0.01724 (13) −0.00064 (10) −0.00103 (9) 0.00842 (10) S1 0.0416 (3) 0.0372 (3) 0.0187 (3) −0.0095 (3) −0.0067 (2) 0.0122 (2) S2 0.0309 (3) 0.0258 (3) 0.0314 (3) 0.0019 (2) 0.0092 (2) 0.0139 (2) O1 0.0272 (9) 0.0481 (11) 0.0368 (10) 0.0044 (8) −0.0064 (7) 0.0254 (9) N1 0.0206 (9) 0.0204 (9) 0.0189 (9) −0.0010 (7) −0.0006 (7) 0.0085 (7) N2 0.0224 (9) 0.0217 (9) 0.0178 (9) 0.0009 (7) 0.0016 (7) 0.0090 (7) N3 0.0185 (9) 0.0266 (10) 0.0238 (9) 0.0001 (7) −0.0003 (7) 0.0135 (8) N4 0.0226 (9) 0.0338 (11) 0.0218 (10) 0.0031 (8) 0.0016 (8) 0.0115 (8) C1 0.0268 (11) 0.0226 (11) 0.0227 (11) 0.0014 (9) 0.0001 (9) 0.0060 (9) C2 0.0265 (12) 0.0270 (12) 0.0325 (13) 0.0050 (10) 0.0035 (10) 0.0085 (10) C3 0.0220 (11) 0.0356 (13) 0.0326 (13) 0.0024 (10) −0.0024 (10) 0.0166 (11) C4 0.0235 (11) 0.0305 (12) 0.0233 (11) −0.0014 (9) −0.0034 (9) 0.0116 (10) C5 0.0202 (10) 0.0220 (11) 0.0201 (11) −0.0032 (8) −0.0008 (8) 0.0107 (9) C6 0.0233 (11) 0.0231 (11) 0.0176 (10) −0.0007 (9) 0.0018 (8) 0.0104 (9) C7 0.0302 (12) 0.0398 (14) 0.0171 (11) 0.0030 (11) −0.0005 (9) 0.0070 (10) C8 0.0259 (11) 0.0291 (12) 0.0205 (11) 0.0062 (9) 0.0045 (9) 0.0091 (9) C9 0.0231 (11) 0.0328 (13) 0.0259 (12) 0.0058 (9) 0.0059 (9) 0.0146 (10) C10 0.0236 (11) 0.0276 (12) 0.0301 (12) 0.0033 (9) 0.0014 (9) 0.0154 (10) C11 0.0285 (12) 0.0334 (13) 0.0335 (13) 0.0038 (10) 0.0003 (10) 0.0216 (11) C12 0.0208 (11) 0.0426 (15) 0.0356 (14) −0.0012 (10) −0.0070 (10) 0.0163 (12) C13 0.0187 (11) 0.0347 (13) 0.0354 (13) 0.0004 (10) −0.0016 (9) 0.0162 (11) C14 0.0202 (10) 0.0221 (11) 0.0208 (9) −0.0014 (8) −0.0018 (8) 0.0080 (9) C15 0.0252 (10) 0.0166 (10) 0.0155 (10) 0.0041 (8) −0.0013 (8) 0.0050 (8) Zn2 0.01948 (13) 0.01887 (13) 0.01650 (12) 0.00159 (9) −0.00018 (9) 0.00725 (10) S3 0.0260 (3) 0.0318 (3) 0.0302 (3) −0.0036 (2) −0.0090 (2) 0.0100 (3) S4 0.0305 (3) 0.0271 (3) 0.0246 (3) 0.0090 (2) 0.0018 (2) 0.0131 (2) O2 0.0370 (9) 0.0446 (11) 0.0289 (9) −0.0068 (8) 0.0065 (7) 0.0194 (8) N5 0.0326 (11) 0.0255 (10) 0.0265 (10) −0.0047 (8) −0.0059 (8) 0.0130 (8) N6 0.0259 (9) 0.0223 (9) 0.0187 (9) 0.0026 (8) 0.0026 (7) 0.0089 (8) N7 0.0276 (10) 0.0198 (9) 0.0170 (9) 0.0005 (7) −0.0033 (7) 0.0086 (7) N8 0.0202 (9) 0.0255 (10) 0.0210 (9) −0.0024 (7) −0.0029 (7) 0.0102 (8) N9 0.0250 (10) 0.0276 (10) 0.0198 (9) −0.0015 (8) −0.0007 (8) 0.0101 (8) N10 0.0296 (10) 0.0273 (10) 0.0250 (10) 0.0069 (8) 0.0042 (8) 0.0132 (8) C16 0.0314 (12) 0.0253 (12) 0.0235 (11) 0.0001 (10) 0.0018 (9) 0.0098 (10) C17 0.0308 (12) 0.0376 (14) 0.0230 (12) −0.0053 (10) 0.0011 (10) 0.0146 (10) C18 0.0272 (12) 0.0524 (16) 0.0244 (12) 0.0039 (11) 0.0069 (10) 0.0190 (12) C19 0.0339 (13) 0.0380 (14) 0.0199 (11) 0.0090 (11) 0.0064 (10) 0.0106 (10) C20 0.0279 (11) 0.0256 (11) 0.0136 (10) 0.0071 (9) 0.0021 (8) 0.0095 (9) C21 0.0334 (12) 0.0245 (11) 0.0136 (10) 0.0073 (9) −0.0017 (9) 0.0089 (9) C22 0.0460 (15) 0.0313 (13) 0.0214 (12) 0.0067 (11) 0.0035 (11) 0.0040 (10) C23 0.0358 (13) 0.0253 (12) 0.0185 (11) −0.0049 (10) −0.0071 (9) 0.0077 (9) C24 0.0259 (11) 0.0317 (13) 0.0240 (12) −0.0073 (10) −0.0087 (9) 0.0112 (10) C25 0.0222 (11) 0.0342 (13) 0.0351 (13) −0.0021 (10) 0.0003 (10) 0.0166 (11) C26 0.0303 (13) 0.0373 (14) 0.0337 (13) −0.0030 (11) 0.0070 (10) 0.0123 (11) C27 0.0306 (12) 0.0352 (13) 0.0261 (12) −0.0081 (10) −0.0031 (10) 0.0172 (10) C28 0.0256 (11) 0.0265 (12) 0.0270 (12) −0.0061 (9) −0.0028 (9) 0.0144 (10) C29 0.0244 (10) 0.0232 (11) 0.0186 (10) 0.0015 (8) 0.0009 (8) 0.0084 (9) C30 0.0208 (10) 0.0203 (10) 0.0168 (10) 0.0005 (8) 0.0024 (8) 0.0067 (8) ----- -------------- -------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2656 .table-wrap} ------------------- ------------- ------------------- ------------- Zn1---N4 1.9752 (18) Zn2---N10 1.9702 (19) Zn1---N5 1.9858 (19) Zn2---N9 1.9847 (18) Zn1---N2 2.0851 (17) Zn2---N7 2.0724 (18) Zn1---N1 2.1647 (17) Zn2---N6 2.2113 (18) Zn1---N3 2.2698 (18) Zn2---N8 2.2662 (17) S1---C14 1.621 (2) S3---C29 1.626 (2) S2---C15 1.620 (2) S4---C30 1.625 (2) O1---C11 1.426 (3) O2---C27 1.424 (3) O1---C12 1.428 (3) O2---C26 1.426 (3) N1---C1 1.333 (3) N6---C16 1.328 (3) N1---C5 1.349 (3) N6---C20 1.346 (3) N2---C6 1.278 (3) N7---C21 1.272 (3) N2---C8 1.459 (3) N7---C23 1.464 (3) N3---C13 1.481 (3) N8---C25 1.484 (3) N3---C9 1.489 (3) N8---C24 1.483 (3) N3---C10 1.490 (3) N8---C28 1.489 (3) N4---C14 1.164 (3) N9---C29 1.162 (3) C1---C2 1.389 (3) N10---C30 1.160 (3) C1---H1 0.9500 C16---C17 1.384 (3) C2---C3 1.377 (3) C16---H16 0.9500 C2---H2 0.9500 C17---C18 1.374 (3) C3---C4 1.393 (3) C17---H17 0.9500 C3---H3 0.9500 C18---C19 1.392 (3) C4---C5 1.383 (3) C18---H18 0.9500 C4---H4 0.9500 C19---C20 1.380 (3) C5---C6 1.488 (3) C19---H19 0.9500 C6---C7 1.495 (3) C20---C21 1.497 (3) C7---H7A 0.9800 C21---C22 1.495 (3) C7---H7B 0.9800 C22---H22A 0.9800 C7---H7C 0.9800 C22---H22B 0.9800 C8---C9 1.518 (3) C22---H22C 0.9800 C8---H8A 0.9900 C23---C24 1.511 (3) C8---H8B 0.9900 C23---H23A 0.9900 C9---H9A 0.9900 C23---H23B 0.9900 C9---H9B 0.9900 C24---H24A 0.9900 C10---C11 1.513 (3) C24---H24B 0.9900 C10---H10A 0.9900 C25---C26 1.508 (3) C10---H10B 0.9900 C25---H25A 0.9900 C11---H11A 0.9900 C25---H25B 0.9900 C11---H11B 0.9900 C26---H26A 0.9900 C12---C13 1.514 (3) C26---H26B 0.9900 C12---H12A 0.9900 C27---C28 1.509 (3) C12---H12B 0.9900 C27---H27A 0.9900 C13---H13A 0.9900 C27---H27B 0.9900 C13---H13B 0.9900 C28---H28A 0.9900 C15---N5 1.158 (3) C28---H28B 0.9900 N4---Zn1---N5 109.20 (8) N10---Zn2---N7 116.72 (7) N4---Zn1---N2 144.10 (7) N9---Zn2---N7 132.79 (7) N5---Zn1---N2 106.50 (7) N10---Zn2---N6 103.26 (7) N4---Zn1---N1 94.84 (7) N9---Zn2---N6 88.45 (7) N5---Zn1---N1 99.47 (7) N7---Zn2---N6 74.79 (7) N2---Zn1---N1 75.52 (7) N10---Zn2---N8 95.58 (7) N4---Zn1---N3 101.50 (7) N9---Zn2---N8 104.11 (7) N5---Zn1---N3 95.61 (7) N7---Zn2---N8 78.69 (7) N2---Zn1---N3 78.47 (7) N6---Zn2---N8 152.32 (7) N1---Zn1---N3 152.73 (7) C27---O2---C26 108.42 (17) C11---O1---C12 108.95 (17) C15---N5---Zn1 158.34 (19) C1---N1---C5 118.96 (18) C16---N6---C20 118.93 (19) C1---N1---Zn1 126.23 (14) C16---N6---Zn2 126.84 (15) C5---N1---Zn1 114.37 (14) C20---N6---Zn2 112.82 (14) C6---N2---C8 123.61 (18) C21---N7---C23 123.23 (19) C6---N2---Zn1 119.77 (15) C21---N7---Zn2 120.06 (15) C8---N2---Zn1 116.62 (13) C23---N7---Zn2 116.11 (14) C13---N3---C9 107.76 (16) C25---N8---C24 108.46 (17) C13---N3---C10 108.19 (17) C25---N8---C28 108.55 (17) C9---N3---C10 108.54 (17) C24---N8---C28 109.78 (17) C13---N3---Zn1 114.89 (14) C25---N8---Zn2 115.82 (13) C9---N3---Zn1 99.80 (12) C24---N8---Zn2 98.72 (13) C10---N3---Zn1 116.86 (13) C28---N8---Zn2 114.90 (13) C14---N4---Zn1 165.19 (18) C29---N9---Zn2 145.54 (17) N1---C1---C2 122.2 (2) C30---N10---Zn2 169.54 (18) N1---C1---H1 118.9 N6---C16---C17 122.6 (2) C2---C1---H1 118.9 N6---C16---H16 118.7 C3---C2---C1 119.0 (2) C17---C16---H16 118.7 C3---C2---H2 120.5 C18---C17---C16 118.7 (2) C1---C2---H2 120.5 C18---C17---H17 120.6 C2---C3---C4 119.1 (2) C16---C17---H17 120.6 C2---C3---H3 120.5 C17---C18---C19 119.1 (2) C4---C3---H3 120.5 C17---C18---H18 120.4 C5---C4---C3 118.7 (2) C19---C18---H18 120.4 C5---C4---H4 120.7 C20---C19---C18 118.7 (2) C3---C4---H4 120.7 C20---C19---H19 120.6 N1---C5---C4 122.0 (2) C18---C19---H19 120.6 N1---C5---C6 114.78 (18) N6---C20---C19 121.9 (2) C4---C5---C6 123.18 (19) N6---C20---C21 114.45 (18) N2---C6---C5 115.26 (18) C19---C20---C21 123.7 (2) N2---C6---C7 125.6 (2) N7---C21---C22 125.4 (2) C5---C6---C7 119.15 (18) N7---C21---C20 115.53 (19) C6---C7---H7A 109.5 C22---C21---C20 119.0 (2) C6---C7---H7B 109.5 C21---C22---H22A 109.5 H7A---C7---H7B 109.5 C21---C22---H22B 109.5 C6---C7---H7C 109.5 H22A---C22---H22B 109.5 H7A---C7---H7C 109.5 C21---C22---H22C 109.5 H7B---C7---H7C 109.5 H22A---C22---H22C 109.5 N2---C8---C9 107.21 (18) H22B---C22---H22C 109.5 N2---C8---H8A 110.3 N7---C23---C24 107.55 (18) C9---C8---H8A 110.3 N7---C23---H23A 110.2 N2---C8---H8B 110.3 C24---C23---H23A 110.2 C9---C8---H8B 110.3 N7---C23---H23B 110.2 H8A---C8---H8B 108.5 C24---C23---H23B 110.2 N3---C9---C8 110.92 (17) H23A---C23---H23B 108.5 N3---C9---H9A 109.5 N8---C24---C23 111.46 (18) C8---C9---H9A 109.5 N8---C24---H24A 109.3 N3---C9---H9B 109.5 C23---C24---H24A 109.3 C8---C9---H9B 109.5 N8---C24---H24B 109.3 H9A---C9---H9B 108.0 C23---C24---H24B 109.3 N3---C10---C11 111.94 (19) H24A---C24---H24B 108.0 N3---C10---H10A 109.2 N8---C25---C26 111.31 (19) C11---C10---H10A 109.2 N8---C25---H25A 109.4 N3---C10---H10B 109.2 C26---C25---H25A 109.4 C11---C10---H10B 109.2 N8---C25---H25B 109.4 H10A---C10---H10B 107.9 C26---C25---H25B 109.4 O1---C11---C10 111.59 (18) H25A---C25---H25B 108.0 O1---C11---H11A 109.3 O2---C26---C25 111.0 (2) C10---C11---H11A 109.3 O2---C26---H26A 109.4 O1---C11---H11B 109.3 C25---C26---H26A 109.4 C10---C11---H11B 109.3 O2---C26---H26B 109.4 H11A---C11---H11B 108.0 C25---C26---H26B 109.4 O1---C12---C13 110.8 (2) H26A---C26---H26B 108.0 O1---C12---H12A 109.5 O2---C27---C28 111.75 (19) C13---C12---H12A 109.5 O2---C27---H27A 109.3 O1---C12---H12B 109.5 C28---C27---H27A 109.3 C13---C12---H12B 109.5 O2---C27---H27B 109.3 H12A---C12---H12B 108.1 C28---C27---H27B 109.3 N3---C13---C12 111.49 (18) H27A---C27---H27B 107.9 N3---C13---H13A 109.3 N8---C28---C27 110.69 (19) C12---C13---H13A 109.3 N8---C28---H28A 109.5 N3---C13---H13B 109.3 C27---C28---H28A 109.5 C12---C13---H13B 109.3 N8---C28---H28B 109.5 H13A---C13---H13B 108.0 C27---C28---H28B 109.5 N4---C14---S1 178.3 (2) H28A---C28---H28B 108.1 N5---C15---S2 179.9 (3) N9---C29---S3 179.5 (2) N10---Zn2---N9 109.96 (8) N10---C30---S4 179.1 (2) ------------------- ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3886 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C12---H12A···S1^i^ 0.99 2.84 3.826 (2) 175 C16---H16···S2^ii^ 0.95 2.74 3.670 (2) 168 C27---H27B···N9 0.99 2.55 3.421 (3) 147 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*+1, −*y*+1, −*z*+1; (ii) −*x*+1, −*y*+2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C12---H12*A*⋯S1^i^ 0.99 2.84 3.826 (2) 175 C16---H16⋯S2^ii^ 0.95 2.74 3.670 (2) 168 C27---H27*B*⋯N9 0.99 2.55 3.421 (3) 147 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.036760
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051787/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):m131", "authors": [ { "first": "Nura", "last": "Suleiman Gwaram" }, { "first": "Nurul Azimah", "last": "Ikmal Hisham" }, { "first": "Hamid", "last": "Khaledi" }, { "first": "Hapipah", "last": "Mohd Ali" } ] }
PMC3051788
Related literature {#sec1} ================== For general background and applications of semicarbazone derivatives, see: Chandra & Gupta (2005[@bb2]). For related structures, see: Fun *et al.* (2009*a* [@bb3],*b* [@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~9~H~11~N~3~O·CH~4~O*M* *~r~* = 209.25Monoclinic,*a* = 6.629 (3) Å*b* = 8.371 (4) Å*c* = 20.329 (9) Åβ = 99.181 (5)°*V* = 1113.6 (8) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 296 K0.24 × 0.22 × 0.18 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD diffractometer8148 measured reflections2057 independent reflections1617 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.128*S* = 1.072057 reflections140 parametersH-atom parameters constrainedΔρ~max~ = 0.26 e Å^−3^Δρ~min~ = −0.18 e Å^−3^ {#d5e452} Data collection: *APEX2* (Bruker, 2007[@bb1]); cell refinement: *SAINT* (Bruker, 2007[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000225/xu5132sup1.cif](http://dx.doi.org/10.1107/S1600536811000225/xu5132sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000225/xu5132Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000225/xu5132Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5132&file=xu5132sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5132sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5132&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5132](http://scripts.iucr.org/cgi-bin/sendsup?xu5132)). This work was supported by the Research Foundation of Educational Department of Jiangxi Province \[GJJ10421\] and the Natural Science Foundation of Jiangxi Agricultural University, China (09003321). Comment ======= The semicarbazone is a derivative of an aldehyde or ketone formed by a condensation between a ketone or aldehyde and semicarbazide. It is widely used in field of organometalics (Chandra & Gupta, 2005). Several crystal structures have recently reported by Fun *et al.*, 2009a,b. Here we report the crystal structure of the title compound, (I). In (I) (Fig. 1), the semicarbazone group is nearly planar, with the maximum deviation of 0.017 (2) Å. The mean plane of semicarbazone group and the benzene ring makes a dihedral angle of 29.40 (13)°. In the crystal structure there is also a methanol molecular which is stabilized by N---H···O hydrogen bond with the semicarbazone group. The methanol molecular further linked the semicarbazone group adjacent into a one-dimensional chain by N---H···O hydrogen bonds formed along the *b* axis. These chains are further linked *via* pairs of O---H···O hydrogen bonds involving the methanol O atoms and semicarbazone O atoms to a two-dimensional hydrogen bonds framework (Fig. 3). Experimental {#experimental} ============ Semicarbazide hydrochloride (11 g, 0.1 mol) was dissolved in water (100 ml), and sodium acetate (16.4 g, 0.2 mol) was added and dissolved by stirring at room temperature. To this, acetophenone (11.4 g, 0.095 mol) in ethanol (60 ml) was then added, and the mixture stirred well for 2 h at 323 K using a modified Vilsmeier-Haak reaction. The separated crystals were filtered, washed with cold water and recrystallized from methanol solution. Refinement {#refinement} ========== All H atoms were included in calculated positions and refined as riding atoms, with C---H = 0.93--0.96, O---H = 0.82 and N---H = 0.86 Å, with *U*~iso~(H) = 1.5 *U*~eq~(C,O) for methyl and hydroxyl H atoms and 1.2*U*~eq~(C,N) for the others. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. ::: ![](e-67-0o345-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I), showing a one-dimensional chain down the b axis; H-bonds are shown as dashed lines. ::: ![](e-67-0o345-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### The crystal packing of (I), showing a two-dimensional sheet; H-bonds are shown as dashed lines. ::: ![](e-67-0o345-fig3) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e131 .table-wrap} ------------------------- --------------------------------------- C~9~H~11~N~3~O·CH~4~O *F*(000) = 448 *M~r~* = 209.25 *D*~x~ = 1.248 Mg m^−3^ Monoclinic, *P*2~1~/*n* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2yn Cell parameters from 2808 reflections *a* = 6.629 (3) Å θ = 2.6--28.2° *b* = 8.371 (4) Å µ = 0.09 mm^−1^ *c* = 20.329 (9) Å *T* = 296 K β = 99.181 (5)° Block, colourless *V* = 1113.6 (8) Å^3^ 0.24 × 0.22 × 0.18 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e262 .table-wrap} ------------------------------------------ -------------------------------------- Bruker APEXII CCD diffractometer 1617 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.027 graphite θ~max~ = 25.5°, θ~min~ = 2.6° φ and ω scans *h* = −8→8 8148 measured reflections *k* = −9→10 2057 independent reflections *l* = −24→24 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e360 .table-wrap} ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 H-atom parameters constrained *wR*(*F*^2^) = 0.128 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0583*P*)^2^ + 0.3389*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.07 (Δ/σ)~max~ = 0.001 2057 reflections Δρ~max~ = 0.26 e Å^−3^ 140 parameters Δρ~min~ = −0.18 e Å^−3^ 0 restraints Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (4) ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e541 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e640 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ C1 0.0487 (3) 0.6825 (3) 0.73837 (11) 0.0636 (6) H1 0.0233 0.7479 0.7010 0.076\* C2 −0.0980 (3) 0.5772 (3) 0.75182 (11) 0.0630 (6) H2 −0.2233 0.5717 0.7238 0.076\* C3 −0.0590 (3) 0.4793 (3) 0.80720 (10) 0.0550 (6) H3 −0.1582 0.4076 0.8163 0.066\* C4 0.1262 (3) 0.4875 (2) 0.84901 (9) 0.0438 (5) H4 0.1504 0.4216 0.8863 0.053\* C5 0.2773 (2) 0.5931 (2) 0.83614 (8) 0.0371 (4) C6 0.2342 (3) 0.6916 (2) 0.78033 (10) 0.0521 (5) H6 0.3319 0.7645 0.7712 0.063\* C7 0.6059 (3) 0.7470 (2) 0.88452 (10) 0.0509 (5) H7A 0.6457 0.7752 0.9305 0.076\* H7B 0.5268 0.8322 0.8617 0.076\* H7C 0.7257 0.7294 0.8645 0.076\* C8 0.4800 (2) 0.5973 (2) 0.87964 (8) 0.0362 (4) C9 0.7858 (2) 0.3143 (2) 0.97715 (8) 0.0361 (4) C10 0.0959 (4) 0.0359 (3) 0.89062 (11) 0.0673 (6) H10A −0.0277 0.0967 0.8798 0.101\* H10B 0.0627 −0.0746 0.8957 0.101\* H10C 0.1762 0.0466 0.8555 0.101\* N1 0.5332 (2) 0.46585 (17) 0.91022 (7) 0.0362 (4) N2 0.7209 (2) 0.45770 (17) 0.95027 (7) 0.0398 (4) H8 0.7957 0.5416 0.9582 0.048\* O1 0.96431 (17) 0.30074 (14) 1.00688 (6) 0.0458 (4) N3 0.6552 (2) 0.19317 (18) 0.96944 (9) 0.0526 (5) H3A 0.6927 0.1007 0.9853 0.063\* H3B 0.5330 0.2071 0.9486 0.063\* O2 0.20857 (19) 0.09309 (17) 0.95077 (7) 0.0544 (4) H2A 0.1370 0.1538 0.9688 0.082\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1050 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ C1 0.0641 (14) 0.0727 (15) 0.0482 (12) 0.0140 (12) −0.0092 (10) 0.0110 (11) C2 0.0449 (11) 0.0791 (16) 0.0569 (13) 0.0150 (11) −0.0162 (10) −0.0122 (12) C3 0.0361 (10) 0.0651 (13) 0.0613 (13) −0.0020 (9) 0.0001 (9) −0.0118 (11) C4 0.0392 (9) 0.0484 (11) 0.0427 (10) 0.0015 (8) 0.0032 (8) 0.0004 (8) C5 0.0372 (9) 0.0385 (9) 0.0344 (9) 0.0060 (7) 0.0021 (7) −0.0030 (7) C6 0.0502 (11) 0.0547 (12) 0.0484 (11) 0.0029 (9) −0.0009 (9) 0.0092 (9) C7 0.0467 (10) 0.0442 (11) 0.0569 (12) −0.0038 (8) −0.0063 (9) 0.0047 (9) C8 0.0360 (9) 0.0400 (10) 0.0319 (9) 0.0005 (7) 0.0030 (7) 0.0003 (7) C9 0.0318 (8) 0.0383 (9) 0.0365 (9) −0.0005 (7) 0.0008 (7) 0.0000 (7) C10 0.0706 (14) 0.0675 (15) 0.0605 (14) −0.0034 (12) 0.0005 (12) −0.0025 (11) N1 0.0310 (7) 0.0409 (8) 0.0346 (8) −0.0004 (6) −0.0012 (6) 0.0024 (6) N2 0.0334 (7) 0.0370 (8) 0.0450 (9) −0.0043 (6) −0.0058 (6) 0.0042 (6) O1 0.0337 (7) 0.0422 (7) 0.0562 (8) 0.0000 (5) −0.0085 (6) 0.0011 (6) N3 0.0356 (8) 0.0401 (9) 0.0758 (12) −0.0042 (7) −0.0096 (8) 0.0125 (8) O2 0.0420 (7) 0.0510 (9) 0.0658 (9) 0.0044 (6) −0.0047 (6) −0.0037 (7) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1363 .table-wrap} ------------------- -------------- ------------------- -------------- C1---C2 1.372 (3) C7---H7C 0.9600 C1---C6 1.382 (3) C8---N1 1.285 (2) C1---H1 0.9300 C9---O1 1.2453 (19) C2---C3 1.383 (3) C9---N3 1.326 (2) C2---H2 0.9300 C9---N2 1.360 (2) C3---C4 1.379 (2) C10---O2 1.411 (2) C3---H3 0.9300 C10---H10A 0.9600 C4---C5 1.391 (3) C10---H10B 0.9600 C4---H4 0.9300 C10---H10C 0.9600 C5---C6 1.395 (3) N1---N2 1.3757 (18) C5---C8 1.486 (2) N2---H8 0.8600 C6---H6 0.9300 N3---H3A 0.8600 C7---C8 1.500 (3) N3---H3B 0.8600 C7---H7A 0.9600 O2---H2A 0.8200 C7---H7B 0.9600 C2---C1---C6 120.1 (2) H7A---C7---H7C 109.5 C2---C1---H1 120.0 H7B---C7---H7C 109.5 C6---C1---H1 120.0 N1---C8---C5 114.83 (15) C1---C2---C3 119.75 (18) N1---C8---C7 125.18 (15) C1---C2---H2 120.1 C5---C8---C7 119.98 (15) C3---C2---H2 120.1 O1---C9---N3 122.64 (15) C4---C3---C2 120.3 (2) O1---C9---N2 119.38 (15) C4---C3---H3 119.8 N3---C9---N2 117.96 (14) C2---C3---H3 119.8 O2---C10---H10A 109.5 C3---C4---C5 120.83 (18) O2---C10---H10B 109.5 C3---C4---H4 119.6 H10A---C10---H10B 109.5 C5---C4---H4 119.6 O2---C10---H10C 109.5 C4---C5---C6 117.92 (16) H10A---C10---H10C 109.5 C4---C5---C8 120.83 (15) H10B---C10---H10C 109.5 C6---C5---C8 121.22 (16) C8---N1---N2 118.77 (14) C1---C6---C5 121.1 (2) C9---N2---N1 118.67 (13) C1---C6---H6 119.5 C9---N2---H8 120.7 C5---C6---H6 119.5 N1---N2---H8 120.7 C8---C7---H7A 109.5 C9---N3---H3A 120.0 C8---C7---H7B 109.5 C9---N3---H3B 120.0 H7A---C7---H7B 109.5 H3A---N3---H3B 120.0 C8---C7---H7C 109.5 C10---O2---H2A 109.5 C6---C1---C2---C3 −0.5 (3) C6---C5---C8---N1 −152.23 (17) C1---C2---C3---C4 0.2 (3) C4---C5---C8---C7 −154.55 (18) C2---C3---C4---C5 −0.4 (3) C6---C5---C8---C7 27.1 (3) C3---C4---C5---C6 0.9 (3) C5---C8---N1---N2 178.39 (14) C3---C4---C5---C8 −177.47 (17) C7---C8---N1---N2 −0.9 (3) C2---C1---C6---C5 1.0 (3) O1---C9---N2---N1 171.57 (15) C4---C5---C6---C1 −1.2 (3) N3---C9---N2---N1 −7.4 (2) C8---C5---C6---C1 177.18 (18) C8---N1---N2---C9 −173.38 (16) C4---C5---C8---N1 26.1 (2) ------------------- -------------- ------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1821 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O2---H2A···O1^i^ 0.82 1.93 2.745 (2) 177 N2---H8···O1^ii^ 0.86 2.10 2.936 (2) 164 N3---H3A···O2^iii^ 0.86 2.12 2.953 (2) 164 N3---H3B···O2 0.86 2.36 3.042 (2) 137 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*−1, *y*, *z*; (ii) −*x*+2, −*y*+1, −*z*+2; (iii) −*x*+1, −*y*, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- O2---H2*A*⋯O1^i^ 0.82 1.93 2.745 (2) 177 N2---H8⋯O1^ii^ 0.86 2.10 2.936 (2) 164 N3---H3*A*⋯O2^iii^ 0.86 2.12 2.953 (2) 164 N3---H3*B*⋯O2 0.86 2.36 3.042 (2) 137 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.046084
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051788/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o345", "authors": [ { "first": "Guang-Bin", "last": "Liu" }, { "first": "Peng-Sheng", "last": "Chen" }, { "first": "Chang-Xiang", "last": "Liu" }, { "first": "Ling", "last": "Fu" }, { "first": "Xu-Liang", "last": "Nie" } ] }
PMC3051789
Related literature {#sec1} ================== For the synthesis of the cation, see: Hou *et al.* (2005[@bb3]). For a similar disordered tetrahalogenidocadmate, see: Liu *et al.* (2007[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} (C~18~H~26~N~2~)\[CdBr~2.375~Cl~1.625~\]*M* *~r~* = 630.20Monoclinic,*a* = 8.6969 (5) Å*b* = 16.6024 (10) Å*c* = 16.6881 (10) Åβ = 104.936 (1)°*V* = 2328.2 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 5.21 mm^−1^*T* = 100 K0.30 × 0.30 × 0.10 mm ### Data collection {#sec2.1.2} Bruker SMART APEX diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1996[@bb5]) *T* ~min~ = 0.304, *T* ~max~ = 0.62421634 measured reflections5354 independent reflections4487 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.045 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.031*wR*(*F* ^2^) = 0.078*S* = 1.025354 reflections234 parameters5 restraintsH-atom parameters constrainedΔρ~max~ = 1.49 e Å^−3^Δρ~min~ = −1.27 e Å^−3^ {#d5e378} Data collection: *APEX2* (Bruker, 2009[@bb2]); cell refinement: *SAINT* (Bruker, 2009[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000080/xu5137sup1.cif](http://dx.doi.org/10.1107/S1600536811000080/xu5137sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000080/xu5137Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000080/xu5137Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?xu5137&file=xu5137sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?xu5137sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?xu5137&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [XU5137](http://scripts.iucr.org/cgi-bin/sendsup?xu5137)). We thank the National Natural Science Foundation of China (Nos. J0830412, 20671083), Zhengzhou University and the University of Malaya for supporting this study. Comment ======= The class of 1,1\'-dialkyl-4,4\'-bipyridinium bromides represents a class of ammonium salts that are excellent directing regents for the construction of metal--organic architectures. In a previous study, the reaction of a similar salt, 1,1\'-(propane-1,3-diyl)dipyridinium dibromide, with cadmium dichloride, yielded the salt as a dibromidodichlorodocadmate; the halogen atoms are all disordered. In the present study, the reaction of 1,1\'-dibutyl-4,4\'-bipyridinium dibromide with cadmium dichloride yielded a similarly disordered cadmate counterion whose bromine:chloride ratio is 2.375:1.625 (Scheme I, Fig. 1). Experimental {#experimental} ============ 1,1\'-Dibutyl-4,4\'-bipyridinium dibromide was synthesized by using a literature method (Hou *et al.*, 2005). 1-Bromobutane (30 mmol, 4.11 g) and 4,4&prime;-bipyridyl (10 mmol, 1.56 g) were dissolved in acetonitrile (20 ml). The solution was heated at 343--353 K for 48 h. The yellow precipitate that formed was collected and recrystallized from a methanol/ether mixture to give a white powder (4.2 g, 90% yield.) A methanol solution (10 ml) of the dibromide salt (0.43 g, 1.0 mmol) was added to a solution of cadmium dichloride (0.184 g, 1.0 mmol) dissolved in an DMF/H~2~O (4:1) mixture (10 ml) to precipitiate a white solid. This dissolved when DMF was added. The solution was filtered and then set aside for the growth of colorless crystals (40% yield) after a week. The crystals are not soluble in common solvents. Refinement {#refinement} ========== Hydrogen atoms were placed in calculated positions (C---H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with *U*(H) set to 1.2--1.5*U*~eq~(C). Each halogen site is occupied by a mixture of chlorine and bromine atoms. For each site, the temperate factors for the major and minor occupants were restrained to be identical. As the total occupancy of the bromine atoms refined to nearly 2 3/8, the sum occupany was then fixed as exactly 2 3/8. The final difference Fourier had a peak at 1.83 Å from H2b and a hole at 0.88 ° from Cd1 Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of \[C18H26N2\]2+ \[Br2.375Cl1.625Cd\]2- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The halogen atoms are all disordered, and are represented as bromide atoms. ::: ![](e-67-0m158-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e128 .table-wrap} ------------------------------------------ --------------------------------------- (C~18~H~26~N~2~)\[CdBr~2.375~Cl~1.625~\] *F*(000) = 1227 *M~r~* = 630.20 *D*~x~ = 1.798 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 8220 reflections *a* = 8.6969 (5) Å θ = 2.4--28.3° *b* = 16.6024 (10) Å µ = 5.21 mm^−1^ *c* = 16.6881 (10) Å *T* = 100 K β = 104.936 (1)° Prism, colorless *V* = 2328.2 (2) Å^3^ 0.30 × 0.30 × 0.10 mm *Z* = 4 ------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e262 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker SMART APEX diffractometer 5354 independent reflections Radiation source: fine-focus sealed tube 4487 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.045 ω scans θ~max~ = 27.5°, θ~min~ = 1.8° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) *h* = −11→11 *T*~min~ = 0.304, *T*~max~ = 0.624 *k* = −21→21 21634 measured reflections *l* = −21→21 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e376 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.031 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.078 H-atom parameters constrained *S* = 1.02 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.037*P*)^2^ + 2.9972*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 5354 reflections (Δ/σ)~max~ = 0.001 234 parameters Δρ~max~ = 1.49 e Å^−3^ 5 restraints Δρ~min~ = −1.27 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e535 .table-wrap} ------ ------------- --------------- --------------- -------------------- ------------- *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Cd1 0.40196 (3) 0.424706 (15) 0.232277 (14) 0.01974 (7) Br1 0.22214 (4) 0.35248 (2) 0.10618 (2) 0.02326 (11) 0.9035 (17) Br2 0.23823 (5) 0.48953 (3) 0.32488 (2) 0.02183 (13) 0.6581 (18) Br3 0.62807 (6) 0.34583 (3) 0.32995 (3) 0.02465 (15) 0.4981 (19) Br4 0.53176 (7) 0.53958 (4) 0.17615 (3) 0.02306 (17) 0.3153 (19) Cl1 0.22214 (4) 0.35248 (2) 0.10618 (2) 0.02326 (11) 0.0965 (17) Cl2 0.23823 (5) 0.48953 (3) 0.32488 (2) 0.02183 (13) 0.3419 (18) Cl3 0.62807 (6) 0.34583 (3) 0.32995 (3) 0.02465 (15) 0.5019 (19) Cl4 0.53176 (7) 0.53958 (4) 0.17615 (3) 0.02306 (17) 0.6847 (19) N1 0.8621 (3) 0.47579 (17) 0.09803 (18) 0.0213 (6) N2 0.4249 (3) 0.11942 (17) 0.06874 (17) 0.0197 (6) C1 0.9057 (6) 0.7653 (3) 0.1760 (3) 0.0485 (12) H1A 0.9725 0.8134 0.1798 0.073\* H1B 0.8931 0.7519 0.2311 0.073\* H1C 0.8011 0.7758 0.1383 0.073\* C2 0.9844 (5) 0.6951 (2) 0.1432 (3) 0.0393 (10) H2A 0.9944 0.7081 0.0869 0.047\* H2B 1.0926 0.6866 0.1795 0.047\* C3 0.8885 (5) 0.6192 (2) 0.1401 (3) 0.0326 (9) H3A 0.7786 0.6288 0.1062 0.039\* H3B 0.8832 0.6049 0.1969 0.039\* C4 0.9603 (4) 0.5501 (2) 0.1036 (2) 0.0264 (8) H4A 0.9689 0.5651 0.0475 0.032\* H4B 1.0689 0.5393 0.1385 0.032\* C5 0.8900 (4) 0.4246 (2) 0.1624 (2) 0.0227 (7) H5 0.9711 0.4363 0.2113 0.027\* C6 0.8021 (4) 0.3558 (2) 0.1579 (2) 0.0222 (7) H6 0.8222 0.3202 0.2040 0.027\* C7 0.6840 (4) 0.3373 (2) 0.08722 (19) 0.0186 (7) C8 0.6557 (4) 0.3926 (2) 0.0221 (2) 0.0237 (7) H8 0.5749 0.3823 −0.0272 0.028\* C9 0.7442 (4) 0.4616 (2) 0.0293 (2) 0.0246 (7) H9 0.7222 0.4999 −0.0145 0.029\* C10 0.4928 (4) 0.1502 (2) 0.1435 (2) 0.0222 (7) H10 0.4818 0.1232 0.1919 0.027\* C11 0.5781 (4) 0.2205 (2) 0.1510 (2) 0.0199 (7) H11 0.6269 0.2416 0.2044 0.024\* C12 0.5935 (4) 0.26102 (19) 0.0800 (2) 0.0180 (6) C13 0.5245 (4) 0.2266 (2) 0.0037 (2) 0.0209 (7) H13 0.5354 0.2519 −0.0456 0.025\* C14 0.4404 (4) 0.1562 (2) −0.0009 (2) 0.0214 (7) H14 0.3927 0.1330 −0.0535 0.026\* C15 0.3217 (4) 0.0467 (2) 0.0626 (2) 0.0266 (8) H15A 0.3777 0.0048 0.1015 0.032\* H15B 0.2982 0.0246 0.0057 0.032\* C16 0.1663 (5) 0.0697 (2) 0.0838 (3) 0.0317 (8) H16A 0.1011 0.0205 0.0824 0.038\* H16B 0.1915 0.0912 0.1410 0.038\* C17 0.0703 (4) 0.1309 (2) 0.0261 (2) 0.0313 (8) H17A 0.0397 0.1083 −0.0307 0.038\* H17B 0.1372 0.1790 0.0252 0.038\* C18 −0.0791 (5) 0.1565 (3) 0.0506 (3) 0.0444 (11) H18A −0.1375 0.1961 0.0107 0.067\* H18B −0.0495 0.1805 0.1062 0.067\* H18C −0.1467 0.1093 0.0509 0.067\* ------ ------------- --------------- --------------- -------------------- ------------- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1265 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cd1 0.02436 (13) 0.01957 (13) 0.01644 (12) −0.00087 (9) 0.00734 (10) −0.00126 (9) Br1 0.0256 (2) 0.0214 (2) 0.02208 (19) 0.00007 (14) 0.00474 (15) −0.00461 (14) Br2 0.0222 (2) 0.0263 (2) 0.0179 (2) −0.00361 (16) 0.00688 (16) −0.00281 (16) Br3 0.0347 (3) 0.0242 (3) 0.0167 (2) 0.0036 (2) 0.0096 (2) −0.00047 (19) Br4 0.0288 (3) 0.0255 (3) 0.0168 (3) −0.0041 (2) 0.0094 (2) 0.0004 (2) Cl1 0.0256 (2) 0.0214 (2) 0.02208 (19) 0.00007 (14) 0.00474 (15) −0.00461 (14) Cl2 0.0222 (2) 0.0263 (2) 0.0179 (2) −0.00361 (16) 0.00688 (16) −0.00281 (16) Cl3 0.0347 (3) 0.0242 (3) 0.0167 (2) 0.0036 (2) 0.0096 (2) −0.00047 (19) Cl4 0.0288 (3) 0.0255 (3) 0.0168 (3) −0.0041 (2) 0.0094 (2) 0.0004 (2) N1 0.0219 (14) 0.0195 (15) 0.0245 (15) −0.0002 (11) 0.0099 (12) −0.0017 (12) N2 0.0199 (14) 0.0162 (14) 0.0226 (14) 0.0030 (11) 0.0050 (11) 0.0009 (11) C1 0.057 (3) 0.028 (2) 0.046 (3) 0.004 (2) −0.012 (2) −0.006 (2) C2 0.044 (2) 0.030 (2) 0.040 (2) −0.0057 (19) 0.004 (2) 0.0020 (18) C3 0.0293 (19) 0.029 (2) 0.042 (2) −0.0049 (16) 0.0124 (17) −0.0086 (18) C4 0.0270 (18) 0.0233 (19) 0.0318 (19) −0.0068 (14) 0.0126 (16) −0.0020 (15) C5 0.0216 (16) 0.0253 (19) 0.0212 (16) −0.0018 (14) 0.0059 (14) −0.0021 (14) C6 0.0228 (17) 0.0250 (19) 0.0195 (16) −0.0005 (14) 0.0071 (14) −0.0011 (14) C7 0.0197 (15) 0.0200 (17) 0.0174 (15) 0.0032 (13) 0.0073 (13) −0.0009 (13) C8 0.0242 (17) 0.0265 (19) 0.0207 (17) −0.0025 (14) 0.0061 (14) −0.0018 (14) C9 0.0270 (17) 0.0252 (19) 0.0230 (17) 0.0011 (15) 0.0092 (15) 0.0020 (14) C10 0.0277 (18) 0.0211 (18) 0.0177 (16) 0.0030 (14) 0.0053 (14) 0.0024 (13) C11 0.0211 (16) 0.0210 (17) 0.0173 (16) 0.0030 (13) 0.0047 (13) 0.0007 (13) C12 0.0183 (15) 0.0171 (16) 0.0196 (15) 0.0055 (12) 0.0067 (13) −0.0004 (13) C13 0.0207 (16) 0.0243 (18) 0.0190 (16) 0.0008 (13) 0.0077 (13) −0.0010 (14) C14 0.0221 (16) 0.0233 (18) 0.0186 (16) 0.0010 (14) 0.0048 (13) −0.0043 (13) C15 0.0301 (19) 0.0168 (17) 0.0313 (19) −0.0029 (14) 0.0048 (16) 0.0018 (15) C16 0.031 (2) 0.028 (2) 0.036 (2) −0.0106 (16) 0.0089 (17) 0.0005 (17) C17 0.0294 (19) 0.028 (2) 0.037 (2) −0.0022 (16) 0.0102 (17) −0.0013 (17) C18 0.028 (2) 0.046 (3) 0.062 (3) −0.0073 (19) 0.016 (2) −0.006 (2) ----- -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1820 .table-wrap} ---------------------- -------------- ----------------------- ------------ Cd1---Br4 2.5168 (6) C7---C8 1.394 (5) Cd1---Br3 2.5665 (6) C7---C12 1.479 (5) Cd1---Br1 2.5720 (4) C8---C9 1.369 (5) Cd1---Br2 2.5901 (5) C8---H8 0.9500 N1---C5 1.342 (4) C9---H9 0.9500 N1---C9 1.348 (5) C10---C11 1.370 (5) N1---C4 1.489 (4) C10---H10 0.9500 N2---C10 1.337 (4) C11---C12 1.398 (4) N2---C14 1.350 (4) C11---H11 0.9500 N2---C15 1.492 (4) C12---C13 1.384 (5) C1---C2 1.523 (6) C13---C14 1.371 (5) C1---H1A 0.9800 C13---H13 0.9500 C1---H1B 0.9800 C14---H14 0.9500 C1---H1C 0.9800 C15---C16 1.531 (5) C2---C3 1.505 (5) C15---H15A 0.9900 C2---H2A 0.9900 C15---H15B 0.9900 C2---H2B 0.9900 C16---C17 1.497 (5) C3---C4 1.507 (5) C16---H16A 0.9900 C3---H3A 0.9900 C16---H16B 0.9900 C3---H3B 0.9900 C17---C18 1.521 (5) C4---H4A 0.9900 C17---H17A 0.9900 C4---H4B 0.9900 C17---H17B 0.9900 C5---C6 1.366 (5) C18---H18A 0.9800 C5---H5 0.9500 C18---H18B 0.9800 C6---C7 1.385 (5) C18---H18C 0.9800 C6---H6 0.9500 Br4---Cd1---Br3 106.22 (2) C9---C8---C7 120.0 (3) Br4---Cd1---Br1 106.574 (18) C9---C8---H8 120.0 Br3---Cd1---Br1 119.113 (17) C7---C8---H8 120.0 Br4---Cd1---Br2 105.991 (18) N1---C9---C8 120.5 (3) Br3---Cd1---Br2 106.390 (16) N1---C9---H9 119.7 Br1---Cd1---Br2 111.718 (15) C8---C9---H9 119.7 C5---N1---C9 120.8 (3) N2---C10---C11 120.6 (3) C5---N1---C4 119.5 (3) N2---C10---H10 119.7 C9---N1---C4 119.7 (3) C11---C10---H10 119.7 C10---N2---C14 120.8 (3) C10---C11---C12 120.0 (3) C10---N2---C15 119.2 (3) C10---C11---H11 120.0 C14---N2---C15 119.9 (3) C12---C11---H11 120.0 C2---C1---H1A 109.5 C13---C12---C11 117.8 (3) C2---C1---H1B 109.5 C13---C12---C7 121.6 (3) H1A---C1---H1B 109.5 C11---C12---C7 120.6 (3) C2---C1---H1C 109.5 C14---C13---C12 120.2 (3) H1A---C1---H1C 109.5 C14---C13---H13 119.9 H1B---C1---H1C 109.5 C12---C13---H13 119.9 C3---C2---C1 110.9 (4) N2---C14---C13 120.5 (3) C3---C2---H2A 109.5 N2---C14---H14 119.8 C1---C2---H2A 109.5 C13---C14---H14 119.8 C3---C2---H2B 109.5 N2---C15---C16 109.5 (3) C1---C2---H2B 109.5 N2---C15---H15A 109.8 H2A---C2---H2B 108.0 C16---C15---H15A 109.8 C2---C3---C4 111.6 (3) N2---C15---H15B 109.8 C2---C3---H3A 109.3 C16---C15---H15B 109.8 C4---C3---H3A 109.3 H15A---C15---H15B 108.2 C2---C3---H3B 109.3 C17---C16---C15 113.5 (3) C4---C3---H3B 109.3 C17---C16---H16A 108.9 H3A---C3---H3B 108.0 C15---C16---H16A 108.9 N1---C4---C3 111.4 (3) C17---C16---H16B 108.9 N1---C4---H4A 109.3 C15---C16---H16B 108.9 C3---C4---H4A 109.3 H16A---C16---H16B 107.7 N1---C4---H4B 109.3 C16---C17---C18 112.9 (3) C3---C4---H4B 109.3 C16---C17---H17A 109.0 H4A---C4---H4B 108.0 C18---C17---H17A 109.0 N1---C5---C6 120.1 (3) C16---C17---H17B 109.0 N1---C5---H5 119.9 C18---C17---H17B 109.0 C6---C5---H5 119.9 H17A---C17---H17B 107.8 C5---C6---C7 121.0 (3) C17---C18---H18A 109.5 C5---C6---H6 119.5 C17---C18---H18B 109.5 C7---C6---H6 119.5 H18A---C18---H18B 109.5 C6---C7---C8 117.5 (3) C17---C18---H18C 109.5 C6---C7---C12 121.4 (3) H18A---C18---H18C 109.5 C8---C7---C12 121.1 (3) H18B---C18---H18C 109.5 C1---C2---C3---C4 177.1 (4) N2---C10---C11---C12 0.6 (5) C5---N1---C4---C3 −89.0 (4) C10---C11---C12---C13 −1.9 (5) C9---N1---C4---C3 89.4 (4) C10---C11---C12---C7 179.4 (3) C2---C3---C4---N1 −178.1 (3) C6---C7---C12---C13 −154.1 (3) C9---N1---C5---C6 2.2 (5) C8---C7---C12---C13 24.6 (4) C4---N1---C5---C6 −179.4 (3) C6---C7---C12---C11 24.5 (4) N1---C5---C6---C7 0.4 (5) C8---C7---C12---C11 −156.8 (3) C5---C6---C7---C8 −1.8 (5) C11---C12---C13---C14 1.8 (5) C5---C6---C7---C12 176.9 (3) C7---C12---C13---C14 −179.5 (3) C6---C7---C8---C9 0.7 (5) C10---N2---C14---C13 −0.9 (5) C12---C7---C8---C9 −178.1 (3) C15---N2---C14---C13 174.8 (3) C5---N1---C9---C8 −3.4 (5) C12---C13---C14---N2 −0.4 (5) C4---N1---C9---C8 178.2 (3) C10---N2---C15---C16 70.9 (4) C7---C8---C9---N1 1.9 (5) C14---N2---C15---C16 −104.9 (3) C14---N2---C10---C11 0.8 (5) N2---C15---C16---C17 61.5 (4) C15---N2---C10---C11 −174.9 (3) C15---C16---C17---C18 −176.9 (3) ---------------------- -------------- ----------------------- ------------ :::
PubMed Central
2024-06-05T04:04:17.050243
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051789/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):m158", "authors": [ { "first": "Wei-Juan", "last": "Wang" }, { "first": "Jun-Ming", "last": "Yue" }, { "first": "Yun-Yin", "last": "Niu" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3051790
Related literature {#sec1} ================== For bond-length data, see: Allen *et al.* (1987[@bb1]). For hydrogen-bond motifs, see: Bernstein *et al.* (1995[@bb2]) and for ring conformations, see: Cremer & Pople (1975[@bb4]). For background to Rutaceae plants, coumarins and their biological activity, see: Kongkathip *et al.* (2005[@bb6]); Laphookhieo *et al.* (2009[@bb7]); Maneerat *et al.* (2010[@bb8]); Huang *et al.* (1997[@bb5]); Su *et al.* (2009[@bb11]); Tangyuenyongwatthana *et al.* (1992[@bb12]); Yenjai *et al.* (2000[@bb13]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~19~H~20~O~5~*M* *~r~* = 328.35Monoclinic,*a* = 10.2239 (2) Å*b* = 11.3090 (3) Å*c* = 13.8764 (3) Åβ = 93.108 (1)°*V* = 1602.06 (6) Å^3^*Z* = 4Cu *K*α radiationμ = 0.81 mm^−1^*T* = 100 K0.43 × 0.43 × 0.33 mm ### Data collection {#sec2.1.2} Bruker APEX DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.721, *T* ~max~ = 0.77448432 measured reflections3114 independent reflections3088 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.047*wR*(*F* ^2^) = 0.147*S* = 1.293114 reflections234 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.71 e Å^−3^Δρ~min~ = −0.84 e Å^−3^ {#d5e541} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb9]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb10]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001565/bq2271sup1.cif](http://dx.doi.org/10.1107/S1600536811001565/bq2271sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001565/bq2271Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001565/bq2271Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bq2271&file=bq2271sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bq2271sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bq2271&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BQ2271](http://scripts.iucr.org/cgi-bin/sendsup?bq2271)). SL and TS are grateful to the Thailand Research Fund through the Royal Golden Jubilee PhD Program and Mae Fah Luang University for financial support. SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= Rutaceae plants are the rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from *Clausena* genus (Laphookhieo *et al.*, 2009; Maneerat *et al.*, 2010; Tangyuenyongwatthana *et al.*, 1992) and some of these compounds show interesting pharmacological activities (Yenjai *et al.*, 2000). During our on-going research on bioactive natural products from Thai medicinal plants, the title pyranocoumarin which known as clausenidin (Huang *et al.*, 1997) was isolated from the roots of *C. excavata* which were collected from Suratthani province in the southern part of Thailand. Previous reports have found that clausenidin displayed anti-HIV-1 activity in a syncytial assay (Kongkathip *et al.*, 2005) and cytotoxicity against four human cancer cell lines (A549, MCF7, KB and KB-VIN) (Su *et al.*, 2009). We report herein the crystal structure of the title pyranocoumarin (I). Fig. 1 shows that in the structure of (I), the pyran ring (C7--C11/O2) adopts an envelope conformation with the puckering atom C10 having deviation of 0.3279 (15) Å, and puckering parameters Q = 0.4648 (14) Å, θ = 123.32 (17)° and φ = 204.32° (Cremer & Pople, 1975). The benzene and dihydro-pyran ring system (C1--C7/C11-C12/O1) is planar with the *r.m.s*. 0.0190 (1) Å. The hydroxy group are planarly attached to the benzene ring. The orientation of the 2-methyl-but-3-enyl \[C13--C17\] side chain with respect to the benzene ring is indicated by the torsion angle of C12--C13--C14--C15 = 138.93 (16)°, indicating a (+)-anticlinal conformation (Fig. 1). Intramolecular O5---H1O5···O4 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein *et al.*, 1995). The bond distances in (I) are within normal ranges (Allen *et al.*, 1987). The crystal packing of (I) is stabilized by intermolecular C---H···O and C---H···π weak interactions (Table 1). The molecules are linked into chains along the *b* axis and these chains are stacked along the *a* axis (Fig. 2 and Table 1). π--π interactions with the Cg~1~···Cg~2~ distance = 3.7698 (7) Å (symmetry code: -x, 2-y, 2-z) are observed; Cg~1~ and Cg~2~ are the centroids of C1--C5/O1 and C1/C5--C7/C11-C12 rings, respectively. Experimental {#experimental} ============ The roots of *C. excavata* (3.98 Kg) were successively extracted with CH~2~Cl~2~ over the period of 3 days at room temperature to provide the crude CH~2~Cl~2~ extract which was subjected to quick column chromatography (QCC) over silica gel eluted with a gradient of hexane-EtOAc (100% hexane to 100% EtOAc) to provide twenty-one fractions (A-U). Fraction G (10.68 g) was further separated by QCC with a gradient of 10% EtOAc-hexane to 100% EtOAc to give seven subfractions (G1-G7). Subfraction G4 (1.82 g) was subjected to repeated column chromatography using 6% EtOAc-hexane to yield the yellow solid of the title compound (30.0 mg). Yellow block-shaped single crystals of the title compound suitable for *x*-ray structure determination were recrystallized from CH~2~Cl~2~/CH~3~OH (4:1 v/v) by the slow evaporation of the solvent at room temperature after several days, Mp. 410-411 K (decomposition). Refinement {#refinement} ========== Hydrogen atoms attached to C15 and hydroxyl H atom were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with (C---H) = 0.93 for aromatic and CH, 0.97 for CH~2~ and 0.96 Å for CH~3~ atoms. The *U*~iso~ values were constrained to be 1.5*U*~eq~ of the carrier atom for methyl H atoms and 1.2*U*~eq~ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.51 Å from H16C and the deepest hole is located at 1.43 Å from C11. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. O---H···O hydrogen bond is shown as dashed line. ::: ![](e-67-0o422-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I) viewed along the c axis, showing chains along the b axis. Hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o422-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e226 .table-wrap} ------------------------- --------------------------------------- C~19~H~20~O~5~ *F*(000) = 696 *M~r~* = 328.35 *D*~x~ = 1.361 Mg m^−3^ Monoclinic, *P*2~1~/*c* Melting point = 410--411 K Hall symbol: -P 2ybc Cu *K*α radiation, λ = 1.54178 Å *a* = 10.2239 (2) Å Cell parameters from 3114 reflections *b* = 11.3090 (3) Å θ = 5.8--72.0° *c* = 13.8764 (3) Å µ = 0.81 mm^−1^ β = 93.108 (1)° *T* = 100 K *V* = 1602.06 (6) Å^3^ Block, yellow *Z* = 4 0.43 × 0.43 × 0.33 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e354 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEX DUO CCD area-detector diffractometer 3114 independent reflections Radiation source: sealed tube 3088 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.027 φ and ω scans θ~max~ = 72.0°, θ~min~ = 5.8° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −12→12 *T*~min~ = 0.721, *T*~max~ = 0.774 *k* = −12→13 48432 measured reflections *l* = −16→16 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e471 .table-wrap} ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.047 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.147 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.085*P*)^2^ + 0.4129*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.29 (Δ/σ)~max~ = 0.001 3114 reflections Δρ~max~ = 0.71 e Å^−3^ 234 parameters Δρ~min~ = −0.84 e Å^−3^ 0 restraints Extinction correction: *SHELXTL* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.041 (2) ---------------------------------------------------------------- --------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e652 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e703 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O1 0.24205 (9) 1.16069 (8) 0.99936 (7) 0.0182 (3) O2 0.25452 (9) 0.76187 (8) 0.90044 (6) 0.0178 (3) O3 0.25906 (11) 1.34713 (9) 1.04469 (8) 0.0251 (3) O4 0.01977 (10) 0.66004 (9) 1.11316 (7) 0.0228 (3) O5 0.01904 (10) 0.87092 (9) 1.17530 (7) 0.0216 (3) H1O5 0.010 (2) 0.789 (2) 1.1695 (16) 0.046 (6)\* C1 0.20676 (12) 1.04507 (12) 1.01109 (9) 0.0155 (3) C2 0.21353 (13) 1.25150 (12) 1.06206 (10) 0.0188 (3) C3 0.13341 (13) 1.22145 (13) 1.14119 (10) 0.0201 (3) H3A 0.1083 1.2802 1.1833 0.024\* C4 0.09493 (13) 1.10932 (12) 1.15431 (10) 0.0186 (3) H4A 0.0440 1.0912 1.2059 0.022\* C5 0.13116 (12) 1.01699 (12) 1.09000 (9) 0.0164 (3) C6 0.09425 (12) 0.89887 (12) 1.10224 (9) 0.0165 (3) C7 0.13559 (12) 0.81207 (12) 1.03860 (9) 0.0162 (3) C8 0.09306 (12) 0.69006 (12) 1.04907 (10) 0.0180 (3) C9 0.13851 (13) 0.60284 (12) 0.97689 (10) 0.0194 (3) H9A 0.0724 0.5956 0.9244 0.023\* H9B 0.1490 0.5260 1.0074 0.023\* C10 0.26803 (14) 0.63988 (11) 0.93635 (10) 0.0183 (3) C11 0.21402 (12) 0.84528 (12) 0.96178 (9) 0.0154 (3) C12 0.25049 (12) 0.96284 (12) 0.94385 (9) 0.0154 (3) C13 0.33249 (13) 0.98950 (12) 0.85555 (9) 0.0176 (3) C14 0.45881 (13) 0.91792 (13) 0.86498 (10) 0.0211 (3) H14A 0.5002 0.9134 0.9262 0.025\* C15 0.51505 (15) 0.86207 (14) 0.79547 (11) 0.0258 (4) H15A 0.473 (2) 0.8581 (18) 0.7301 (16) 0.038 (5)\* H15B 0.598 (2) 0.8228 (18) 0.8085 (14) 0.034 (5)\* C16 0.24997 (13) 0.95973 (13) 0.76241 (9) 0.0204 (3) H16A 0.2977 0.9812 0.7073 0.031\* H16B 0.1691 1.0029 0.7614 0.031\* H16C 0.2318 0.8765 0.7605 0.031\* C17 0.37739 (16) 1.11907 (13) 0.84519 (11) 0.0273 (4) H17A 0.4288 1.1263 0.7896 0.041\* H17B 0.4293 1.1419 0.9019 0.041\* H17C 0.3020 1.1695 0.8377 0.041\* C18 0.29707 (16) 0.56754 (13) 0.84802 (11) 0.0252 (3) H18A 0.3768 0.5951 0.8222 0.038\* H18B 0.2263 0.5759 0.8001 0.038\* H18C 0.3065 0.4858 0.8658 0.038\* C19 0.38167 (14) 0.63524 (12) 1.01187 (10) 0.0213 (3) H19A 0.4603 0.6615 0.9837 0.032\* H19B 0.3932 0.5555 1.0345 0.032\* H19C 0.3631 0.6857 1.0650 0.032\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1271 .table-wrap} ----- ------------ ------------ ------------ ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0233 (5) 0.0130 (5) 0.0188 (5) −0.0003 (4) 0.0045 (4) −0.0003 (3) O2 0.0241 (5) 0.0126 (5) 0.0169 (5) 0.0009 (4) 0.0044 (4) −0.0005 (3) O3 0.0334 (6) 0.0144 (5) 0.0278 (6) −0.0006 (4) 0.0039 (4) −0.0006 (4) O4 0.0219 (5) 0.0208 (5) 0.0261 (5) −0.0027 (4) 0.0059 (4) 0.0046 (4) O5 0.0235 (5) 0.0213 (6) 0.0208 (5) −0.0009 (4) 0.0088 (4) 0.0018 (4) C1 0.0153 (6) 0.0140 (6) 0.0171 (6) 0.0002 (5) −0.0007 (5) 0.0011 (5) C2 0.0205 (7) 0.0156 (7) 0.0201 (7) 0.0024 (5) −0.0015 (5) −0.0020 (5) C3 0.0209 (7) 0.0203 (7) 0.0191 (7) 0.0042 (5) 0.0011 (5) −0.0048 (5) C4 0.0165 (6) 0.0225 (7) 0.0168 (6) 0.0024 (5) 0.0018 (5) −0.0015 (5) C5 0.0156 (6) 0.0183 (7) 0.0153 (6) 0.0013 (5) 0.0010 (5) 0.0002 (5) C6 0.0139 (6) 0.0210 (7) 0.0147 (6) 0.0006 (5) 0.0012 (5) 0.0019 (5) C7 0.0154 (6) 0.0164 (7) 0.0166 (6) 0.0001 (5) 0.0002 (5) 0.0019 (5) C8 0.0150 (6) 0.0183 (7) 0.0204 (7) 0.0003 (5) −0.0015 (5) 0.0033 (5) C9 0.0200 (7) 0.0138 (6) 0.0242 (7) −0.0017 (5) 0.0011 (5) 0.0014 (5) C10 0.0227 (7) 0.0120 (6) 0.0206 (7) 0.0008 (5) 0.0028 (5) 0.0009 (5) C11 0.0152 (6) 0.0161 (7) 0.0148 (6) 0.0014 (5) −0.0004 (5) −0.0009 (5) C12 0.0159 (6) 0.0157 (7) 0.0147 (6) 0.0003 (5) 0.0013 (5) 0.0007 (5) C13 0.0203 (7) 0.0170 (7) 0.0160 (6) 0.0000 (5) 0.0052 (5) −0.0003 (5) C14 0.0180 (7) 0.0267 (7) 0.0187 (7) −0.0006 (5) 0.0011 (5) 0.0007 (5) C15 0.0217 (7) 0.0305 (8) 0.0250 (8) 0.0060 (6) 0.0003 (6) −0.0025 (6) C16 0.0217 (7) 0.0233 (7) 0.0165 (7) 0.0032 (5) 0.0030 (5) 0.0028 (5) C17 0.0376 (9) 0.0201 (7) 0.0257 (7) −0.0052 (6) 0.0160 (6) −0.0010 (6) C18 0.0338 (8) 0.0174 (7) 0.0248 (7) 0.0017 (6) 0.0048 (6) −0.0037 (5) C19 0.0204 (7) 0.0199 (7) 0.0237 (7) 0.0020 (5) 0.0028 (5) 0.0017 (5) ----- ------------ ------------ ------------ ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1722 .table-wrap} ---------------------- -------------- ----------------------- -------------- O1---C1 1.3685 (16) C10---C18 1.5164 (19) O1---C2 1.3872 (16) C10---C19 1.5227 (19) O2---C11 1.3505 (16) C11---C12 1.4065 (19) O2---C10 1.4708 (15) C12---C13 1.5513 (17) O3---C2 1.2069 (18) C13---C14 1.5238 (19) O4---C8 1.2410 (17) C13---C16 1.5419 (18) O5---C6 1.3430 (16) C13---C17 1.5445 (18) O5---H1O5 0.93 (2) C14---C15 1.311 (2) C1---C12 1.4073 (19) C14---H14A 0.9300 C1---C5 1.4103 (18) C15---H15A 0.98 (2) C2---C3 1.4456 (19) C15---H15B 0.97 (2) C3---C4 1.343 (2) C16---H16A 0.9600 C3---H3A 0.9300 C16---H16B 0.9600 C4---C5 1.4352 (18) C16---H16C 0.9600 C4---H4A 0.9300 C17---H17A 0.9600 C5---C6 1.4009 (19) C17---H17B 0.9600 C6---C7 1.4009 (19) C17---H17C 0.9600 C7---C11 1.4189 (18) C18---H18A 0.9600 C7---C8 1.4564 (18) C18---H18B 0.9600 C8---C9 1.4975 (19) C18---H18C 0.9600 C9---C10 1.5253 (19) C19---H19A 0.9600 C9---H9A 0.9700 C19---H19B 0.9600 C9---H9B 0.9700 C19---H19C 0.9600 C1---O1---C2 124.55 (11) C12---C11---C7 123.30 (12) C11---O2---C10 117.90 (10) C11---C12---C1 114.24 (12) C6---O5---H1O5 103.0 (14) C11---C12---C13 118.90 (11) O1---C1---C12 117.21 (12) C1---C12---C13 126.86 (12) O1---C1---C5 117.81 (12) C14---C13---C16 112.25 (11) C12---C1---C5 124.97 (13) C14---C13---C17 104.91 (11) O3---C2---O1 116.21 (12) C16---C13---C17 106.32 (11) O3---C2---C3 127.09 (13) C14---C13---C12 108.70 (11) O1---C2---C3 116.70 (12) C16---C13---C12 108.97 (11) C4---C3---C2 120.48 (12) C17---C13---C12 115.72 (11) C4---C3---H3A 119.8 C15---C14---C13 126.59 (13) C2---C3---H3A 119.8 C15---C14---H14A 116.7 C3---C4---C5 121.02 (13) C13---C14---H14A 116.7 C3---C4---H4A 119.5 C14---C15---H15A 120.7 (12) C5---C4---H4A 119.5 C14---C15---H15B 120.0 (12) C6---C5---C1 118.12 (12) H15A---C15---H15B 119.3 (17) C6---C5---C4 122.55 (12) C13---C16---H16A 109.5 C1---C5---C4 119.32 (12) C13---C16---H16B 109.5 O5---C6---C7 121.03 (12) H16A---C16---H16B 109.5 O5---C6---C5 119.01 (12) C13---C16---H16C 109.5 C7---C6---C5 119.95 (12) H16A---C16---H16C 109.5 C6---C7---C11 119.36 (12) H16B---C16---H16C 109.5 C6---C7---C8 119.95 (12) C13---C17---H17A 109.5 C11---C7---C8 120.64 (12) C13---C17---H17B 109.5 O4---C8---C7 121.72 (13) H17A---C17---H17B 109.5 O4---C8---C9 121.36 (12) C13---C17---H17C 109.5 C7---C8---C9 116.89 (12) H17A---C17---H17C 109.5 C8---C9---C10 111.89 (11) H17B---C17---H17C 109.5 C8---C9---H9A 109.2 C10---C18---H18A 109.5 C10---C9---H9A 109.2 C10---C18---H18B 109.5 C8---C9---H9B 109.2 H18A---C18---H18B 109.5 C10---C9---H9B 109.2 C10---C18---H18C 109.5 H9A---C9---H9B 107.9 H18A---C18---H18C 109.5 O2---C10---C18 104.54 (11) H18B---C18---H18C 109.5 O2---C10---C19 108.64 (11) C10---C19---H19A 109.5 C18---C10---C19 111.23 (12) C10---C19---H19B 109.5 O2---C10---C9 108.37 (11) H19A---C19---H19B 109.5 C18---C10---C9 111.21 (12) C10---C19---H19C 109.5 C19---C10---C9 112.46 (11) H19A---C19---H19C 109.5 O2---C11---C12 117.10 (12) H19B---C19---H19C 109.5 O2---C11---C7 119.58 (12) C2---O1---C1---C12 −176.20 (11) C11---O2---C10---C19 −68.22 (14) C2---O1---C1---C5 2.95 (18) C11---O2---C10---C9 54.25 (14) C1---O1---C2---O3 175.33 (12) C8---C9---C10---O2 −52.54 (14) C1---O1---C2---C3 −4.33 (18) C8---C9---C10---C18 −166.91 (11) O3---C2---C3---C4 −176.61 (14) C8---C9---C10---C19 67.58 (14) O1---C2---C3---C4 3.01 (19) C10---O2---C11---C12 154.89 (11) C2---C3---C4---C5 −0.5 (2) C10---O2---C11---C7 −26.57 (16) O1---C1---C5---C6 179.76 (11) C6---C7---C11---O2 179.76 (11) C12---C1---C5---C6 −1.2 (2) C8---C7---C11---O2 −3.05 (18) O1---C1---C5---C4 −0.19 (18) C6---C7---C11---C12 −1.79 (19) C12---C1---C5---C4 178.89 (12) C8---C7---C11---C12 175.40 (11) C3---C4---C5---C6 179.13 (12) O2---C11---C12---C1 −179.17 (10) C3---C4---C5---C1 −0.9 (2) C7---C11---C12---C1 2.35 (19) C1---C5---C6---O5 −178.07 (11) O2---C11---C12---C13 0.61 (17) C4---C5---C6---O5 1.87 (19) C7---C11---C12---C13 −177.87 (11) C1---C5---C6---C7 1.80 (19) O1---C1---C12---C11 178.22 (10) C4---C5---C6---C7 −178.26 (11) C5---C1---C12---C11 −0.87 (19) O5---C6---C7---C11 179.45 (11) O1---C1---C12---C13 −1.54 (19) C5---C6---C7---C11 −0.42 (19) C5---C1---C12---C13 179.37 (12) O5---C6---C7---C8 2.24 (19) C11---C12---C13---C14 −57.89 (15) C5---C6---C7---C8 −177.63 (11) C1---C12---C13---C14 121.86 (14) C6---C7---C8---O4 0.37 (19) C11---C12---C13---C16 64.73 (15) C11---C7---C8---O4 −176.81 (12) C1---C12---C13---C16 −115.52 (14) C6---C7---C8---C9 178.52 (11) C11---C12---C13---C17 −175.57 (12) C11---C7---C8---C9 1.35 (18) C1---C12---C13---C17 4.2 (2) O4---C8---C9---C10 −154.56 (12) C16---C13---C14---C15 18.3 (2) C7---C8---C9---C10 27.28 (16) C17---C13---C14---C15 −96.71 (17) C11---O2---C10---C18 172.93 (11) C12---C13---C14---C15 138.93 (16) ---------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2636 .table-wrap} ------------------------------------------- Cg1 is the centroid of the C1--C5/O1ring. ------------------------------------------- ::: ::: {#d1e2640 .table-wrap} ----------------------- ---------- ---------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O5---H1O5···O4 0.93 (2) 1.66 (2) 2.5361 (14) 155 (2) C9---H9B···O3^i^ 0.97 2.36 3.2621 (17) 155 C16---H16B···O5^ii^ 0.96 2.59 3.4982 (17) 159 C16---H16C···O2 0.96 2.34 2.9441 (16) 121 C15---H15B···Cg1^iii^ 0.97 (2) 2.83 (2) 3.5908 (16) 136.7 (15) ----------------------- ---------- ---------- ------------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*; (ii) −*x*, −*y*+2, −*z*+2; (iii) −*x*+1, −*y*+2, −*z*+2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 is the centroid of the C1--C5/O1ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- ---------- ---------- ------------- ------------- O5---H1*O*5⋯O4 0.93 (2) 1.66 (2) 2.5361 (14) 155 (2) C9---H9*B*⋯O3^i^ 0.97 2.36 3.2621 (17) 155 C16---H16*B*⋯O5^ii^ 0.96 2.59 3.4982 (17) 159 C16---H16*C*⋯O2 0.96 2.34 2.9441 (16) 121 C15---H15*B*⋯*Cg*1^iii^ 0.97 (2) 2.83 (2) 3.5908 (16) 136.7 (15) Symmetry codes: (i) ; (ii) ; (iii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009. [^2]: § Additional correspondence author, e-mail: [email protected]. Thomson Reuters ResearcherID: A-5085-2009.
PubMed Central
2024-06-05T04:04:17.056424
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051790/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o422-o423", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Tawanun", "last": "Sripisut" }, { "first": "Surat", "last": "Laphookhieo" }, { "first": "Suchada", "last": "Chantrapromma" } ] }
PMC3051791
Related literature {#sec1} ================== For the design and synthesis of coordination compounds and complexes derived from pyridine-2,4-dicarb­oxy­lic acid, see: Aghabozorg *et al.* (2008[@bb1]); Noro *et al.* (2005[@bb4]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Cu(C~7~H~4~NO~4~)~2~\]·2C~2~H~6~OS*M* *~r~* = 552.05Triclinic,*a* = 6.8831 (14) Å*b* = 7.5218 (15) Å*c* = 11.719 (2) Åα = 102.95 (3)°β = 91.86 (3)°γ = 111.12 (3)°*V* = 547.3 (2) Å^3^*Z* = 1Mo *K*α radiationμ = 1.25 mm^−1^*T* = 298 K0.2 × 0.10 × 0.05 mm ### Data collection {#sec2.1.2} Stoe IPDS II diffractometer6125 measured reflections2928 independent reflections2428 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.034 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.092*S* = 1.082928 reflections157 parametersH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.38 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e508} Data collection: *X-AREA* (Stoe & Cie, 2005[@bb6]); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb5]); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997[@bb2]); software used to prepare material for publication: *WinGX* (Farrugia, 1999[@bb3]). Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811003424/bt5466sup1.cif](http://dx.doi.org/10.1107/S1600536811003424/bt5466sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003424/bt5466Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003424/bt5466Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5466&file=bt5466sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5466sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5466&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5466](http://scripts.iucr.org/cgi-bin/sendsup?bt5466)). We are grateful to the Islamic Azad University, North Tehran Branch, for financial support. Comment ======= Great interest has been focused on the rapidly expanding field of supramolecular chemistry and crystal engineering of the coordination compounds in recent years because of their intriguing network topologies as well as their potential application as functional materials in many areas (Aghabozorg *et al.*, 2008). Pyridine-2,4-dicarboxylic acid (2,4-pydcH~2~) is a good building block for constructing complexes. However, plenty of researches have focused on the supramolecular chemistry and coordination polymers which only include single carboxylic acid ligands, (Noro *et al.*, 2005). In this paper, we report the crystal structure of the title compound prepared from Cu(NO~3~)~2~.3H~2~O, 2,4-pydcH~2~ and acridine. The structure of title complex is shown in Fig. 1. In the complex, 2,4-pydcH ligands are bound to one Cu^II^ ion through pyridine N and deprotonated carboxylate O atoms at 2-positions, leading to a distorted square planar geometry around the metal ion. The carboxylic groups at the 4-position of 2,4-pydcH ligands are not coordinating. \[Cu(C~14~H~8~N~2~O~8~)\] complex is connected into two-dimensional layers through H-bonding interactions (Table 1). The crystal packing is additionally stabilized by π-π stacking interactions (Fig. 2). Experimental {#experimental} ============ A mixture of 2,4-pydcH~2~ (83 mg, 0.50 mmol), Cu(NO~3~)~2~.3H~2~O (120 mg, 0.50 mmol), acridine (179 mg, 1.0 mmol) in 18 ml me thanol/DMSO were heated and stirred for 2 hrs, and then cooled to room temperature. The reaction yielded purple plate crystals of the title compound after 2 months. Refinement {#refinement} ========== The hydrogen atoms of the carboxylic acid group was found in a difference Fourier map and refined isotropically without restraint. The C---H protons were positioned geometrically and refined as riding atoms with C---H = 0.93 Å and *U*iso(H) = 1.2 *U*eq(C) for aromatic C---H groups and C---H = 0.96 Å and *U*iso(H) = 1.5 *Ueq*(C) for the methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level (symmetry code: i: 1 - x,-y,1 - z). ::: ![](e-67-0m290-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound. The intermolecular O---H···O, and C---H···O hydrogen bonds and π···π contacts are shown as blue and orange dashed lines, respectively. ::: ![](e-67-0m290-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e180 .table-wrap} -------------------------------------- --------------------------------------- \[Cu(C~7~H~4~NO~4~)~2~\]·2C~2~H~6~OS *Z* = 1 *M~r~* = 552.05 *F*(000) = 283 Triclinic, *P*1 *D*~x~ = 1.675 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 6.8831 (14) Å Cell parameters from 2928 reflections *b* = 7.5218 (15) Å θ = 3.0--29.1° *c* = 11.719 (2) Å µ = 1.25 mm^−1^ α = 102.95 (3)° *T* = 298 K β = 91.86 (3)° Plate, purple γ = 111.12 (3)° 0.2 × 0.1 × 0.05 mm *V* = 547.3 (2) Å^3^ -------------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e324 .table-wrap} -------------------------------------------- -------------------------------------- Stoe IPDS II diffractometer 2428 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.034 graphite θ~max~ = 29.1°, θ~min~ = 3.0° Detector resolution: 0.15 mm pixels mm^-1^ *h* = −9→9 rotation method scans *k* = −10→10 6125 measured reflections *l* = −16→15 2928 independent reflections -------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e423 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.092 H atoms treated by a mixture of independent and constrained refinement *S* = 1.08 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0365*P*)^2^ + 0.2725*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2928 reflections (Δ/σ)~max~ = 0.002 157 parameters Δρ~max~ = 0.38 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e580 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e679 .table-wrap} ----- -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ O5 0.7477 (3) 0.7579 (3) 0.25725 (15) 0.0572 (5) S1 0.74093 (10) 0.67910 (10) 0.12483 (5) 0.04660 (16) Cu1 0.5000 0.0000 0.5000 0.03607 (12) O1 0.3689 (2) 0.0279 (3) 0.36230 (14) 0.0448 (4) C6 0.4947 (3) 0.1284 (4) 0.30111 (19) 0.0383 (5) C2 0.8846 (3) 0.3107 (3) 0.29424 (18) 0.0362 (4) H2 0.8551 0.3418 0.2249 0.043\* C1 0.7250 (3) 0.2025 (3) 0.34780 (18) 0.0339 (4) O2 0.4440 (3) 0.1668 (3) 0.21140 (16) 0.0540 (5) N1 0.7628 (3) 0.1553 (3) 0.44860 (15) 0.0331 (4) C7 1.2654 (4) 0.4892 (4) 0.28672 (19) 0.0387 (5) C5 0.9603 (3) 0.2151 (3) 0.49832 (18) 0.0358 (4) H5 0.9857 0.1825 0.5678 0.043\* C4 1.1283 (3) 0.3242 (3) 0.44914 (19) 0.0368 (4) H4 1.2648 0.3647 0.4853 0.044\* C3 1.0910 (3) 0.3727 (3) 0.34541 (19) 0.0355 (4) O3 1.4430 (3) 0.5841 (3) 0.35694 (15) 0.0481 (4) O4 1.2395 (3) 0.4936 (3) 0.18477 (15) 0.0526 (5) C8 0.6304 (5) 0.8138 (5) 0.0578 (2) 0.0612 (7) H8A 0.4882 0.7847 0.0744 0.092\* H8B 0.6323 0.7782 −0.0260 0.092\* H8C 0.7104 0.9522 0.0883 0.092\* C9 1.0046 (5) 0.7850 (6) 0.0982 (3) 0.0713 (9) H9A 1.0577 0.9246 0.1323 0.107\* H9B 1.0111 0.7597 0.0147 0.107\* H9C 1.0879 0.7280 0.1332 0.107\* H3 1.538 (6) 0.645 (5) 0.320 (3) 0.076 (11)\* ----- -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1043 .table-wrap} ----- -------------- ------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O5 0.0428 (9) 0.0775 (13) 0.0357 (9) 0.0011 (9) 0.0015 (7) 0.0208 (9) S1 0.0437 (3) 0.0481 (4) 0.0400 (3) 0.0059 (3) 0.0025 (2) 0.0150 (3) Cu1 0.03021 (19) 0.0481 (2) 0.03117 (19) 0.01310 (16) 0.00208 (14) 0.01565 (16) O1 0.0315 (8) 0.0623 (11) 0.0408 (8) 0.0127 (7) −0.0007 (6) 0.0226 (8) C6 0.0351 (11) 0.0454 (12) 0.0332 (10) 0.0140 (9) −0.0016 (8) 0.0110 (9) C2 0.0378 (11) 0.0411 (11) 0.0286 (9) 0.0131 (9) −0.0010 (8) 0.0105 (8) C1 0.0341 (10) 0.0378 (11) 0.0288 (9) 0.0133 (8) −0.0010 (8) 0.0077 (8) O2 0.0437 (9) 0.0719 (12) 0.0461 (10) 0.0140 (9) −0.0067 (7) 0.0293 (9) N1 0.0336 (8) 0.0394 (9) 0.0272 (8) 0.0142 (7) 0.0019 (6) 0.0096 (7) C7 0.0362 (11) 0.0479 (13) 0.0343 (10) 0.0167 (10) 0.0045 (8) 0.0134 (9) C5 0.0359 (10) 0.0437 (12) 0.0296 (9) 0.0161 (9) −0.0002 (8) 0.0117 (8) C4 0.0321 (10) 0.0452 (12) 0.0324 (10) 0.0149 (9) −0.0008 (8) 0.0089 (9) C3 0.0354 (10) 0.0402 (11) 0.0302 (9) 0.0146 (9) 0.0032 (8) 0.0072 (8) O3 0.0342 (8) 0.0658 (12) 0.0363 (8) 0.0073 (8) 0.0045 (7) 0.0169 (8) O4 0.0450 (10) 0.0746 (13) 0.0379 (9) 0.0159 (9) 0.0047 (7) 0.0249 (9) C8 0.0671 (18) 0.079 (2) 0.0426 (14) 0.0313 (16) 0.0007 (13) 0.0185 (14) C9 0.0473 (16) 0.109 (3) 0.0604 (18) 0.0251 (17) 0.0136 (14) 0.0325 (18) ----- -------------- ------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1358 .table-wrap} ----------------------- -------------- ----------------------- ------------- O5---S1 1.5247 (19) C7---O4 1.212 (3) S1---C8 1.760 (3) C7---O3 1.313 (3) S1---C9 1.770 (3) C7---C3 1.499 (3) Cu1---O1 1.9123 (16) C5---C4 1.384 (3) Cu1---O1^i^ 1.9123 (16) C5---H5 0.9300 Cu1---N1 1.9657 (19) C4---C3 1.387 (3) Cu1---N1^i^ 1.9657 (19) C4---H4 0.9300 O1---C6 1.284 (3) O3---H3 0.84 (4) C6---O2 1.223 (3) C8---H8A 0.9600 C6---C1 1.514 (3) C8---H8B 0.9600 C2---C1 1.376 (3) C8---H8C 0.9600 C2---C3 1.392 (3) C9---H9A 0.9600 C2---H2 0.9300 C9---H9B 0.9600 C1---N1 1.351 (3) C9---H9C 0.9600 N1---C5 1.334 (3) O5---S1---C8 105.52 (14) O3---C7---C3 113.21 (19) O5---S1---C9 104.03 (14) N1---C5---C4 121.70 (19) C8---S1---C9 99.68 (17) N1---C5---H5 119.2 O1---Cu1---O1^i^ 180.00 (5) C4---C5---H5 119.2 O1---Cu1---N1 84.57 (7) C5---C4---C3 119.3 (2) O1^i^---Cu1---N1 95.43 (7) C5---C4---H4 120.4 O1---Cu1---N1^i^ 95.43 (7) C3---C4---H4 120.4 O1^i^---Cu1---N1^i^ 84.57 (7) C4---C3---C2 118.7 (2) N1---Cu1---N1^i^ 180.0 C4---C3---C7 122.2 (2) C6---O1---Cu1 115.22 (14) C2---C3---C7 119.08 (19) O2---C6---O1 125.9 (2) C7---O3---H3 111 (2) O2---C6---C1 119.3 (2) S1---C8---H8A 109.5 O1---C6---C1 114.78 (18) S1---C8---H8B 109.5 C1---C2---C3 118.97 (19) H8A---C8---H8B 109.5 C1---C2---H2 120.5 S1---C8---H8C 109.5 C3---C2---H2 120.5 H8A---C8---H8C 109.5 N1---C1---C2 121.90 (19) H8B---C8---H8C 109.5 N1---C1---C6 114.33 (19) S1---C9---H9A 109.5 C2---C1---C6 123.77 (18) S1---C9---H9B 109.5 C5---N1---C1 119.41 (19) H9A---C9---H9B 109.5 C5---N1---Cu1 129.51 (15) S1---C9---H9C 109.5 C1---N1---Cu1 111.07 (14) H9A---C9---H9C 109.5 O4---C7---O3 124.8 (2) H9B---C9---H9C 109.5 O4---C7---C3 122.0 (2) N1---Cu1---O1---C6 −0.79 (18) O1^i^---Cu1---N1---C5 0.0 (2) N1^i^---Cu1---O1---C6 179.21 (18) O1---Cu1---N1---C1 −0.07 (15) Cu1---O1---C6---O2 −178.7 (2) O1^i^---Cu1---N1---C1 179.93 (15) Cu1---O1---C6---C1 1.4 (3) C1---N1---C5---C4 −0.1 (3) C3---C2---C1---N1 0.1 (3) Cu1---N1---C5---C4 179.81 (16) C3---C2---C1---C6 179.5 (2) N1---C5---C4---C3 −0.1 (3) O2---C6---C1---N1 178.6 (2) C5---C4---C3---C2 0.4 (3) O1---C6---C1---N1 −1.5 (3) C5---C4---C3---C7 −179.5 (2) O2---C6---C1---C2 −0.8 (4) C1---C2---C3---C4 −0.4 (3) O1---C6---C1---C2 179.2 (2) C1---C2---C3---C7 179.5 (2) C2---C1---N1---C5 0.1 (3) O4---C7---C3---C4 162.8 (2) C6---C1---N1---C5 −179.27 (19) O3---C7---C3---C4 −17.7 (3) C2---C1---N1---Cu1 −179.83 (17) O4---C7---C3---C2 −17.1 (4) C6---C1---N1---Cu1 0.8 (2) O3---C7---C3---C2 162.4 (2) O1---Cu1---N1---C5 180.0 (2) ----------------------- -------------- ----------------------- ------------- ::: Symmetry codes: (i) −*x*+1, −*y*, −*z*+1. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e1935 .table-wrap} ------------------- ---------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* O3---H3···O5^ii^ 0.84 (4) 1.68 (4) 2.518 (3) 173 (4) C4---H4···O3^iii^ 0.93 2.55 3.427 (3) 158 C5---H5···O5^iv^ 0.93 2.55 3.370 (3) 147 C8---H8B···O2^v^ 0.96 2.38 3.223 (3) 147 C9---H9C···O4 0.96 2.51 3.448 (4) 164 ------------------- ---------- ---------- ----------- --------------- ::: Symmetry codes: (ii) *x*+1, *y*, *z*; (iii) −*x*+3, −*y*+1, −*z*+1; (iv) −*x*+2, −*y*+1, −*z*+1; (v) −*x*+1, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------- ---------- ---------- ----------- ------------- O3---H3⋯O5^i^ 0.84 (4) 1.68 (4) 2.518 (3) 173 (4) C4---H4⋯O3^ii^ 0.93 2.55 3.427 (3) 158 C5---H5⋯O5^iii^ 0.93 2.55 3.370 (3) 147 C8---H8*B*⋯O2^iv^ 0.96 2.38 3.223 (3) 147 C9---H9*C*⋯O4 0.96 2.51 3.448 (4) 164 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . :::
PubMed Central
2024-06-05T04:04:17.062386
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051791/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):m290", "authors": [ { "first": "Hossein", "last": "Aghabozorg" }, { "first": "Saba", "last": "Goodarzi" }, { "first": "Masoud", "last": "Mirzaei" }, { "first": "Behrouz", "last": "Notash" } ] }
PMC3051792
Related literature {#sec1} ================== For the synthesis, see: Vernin *et al.* (1981[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~13~H~13~ClN~2~O*M* *~r~* = 248.70Monoclinic,*a* = 7.8831 (1) Å*b* = 15.2481 (3) Å*c* = 10.3593 (2) Åβ = 93.056 (1)°*V* = 1243.44 (4) Å^3^*Z* = 4Mo *K*α radiationμ = 0.29 mm^−1^*T* = 295 K0.35 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Bruker APEXII diffractometerAbsorption correction: multi-scan (*SADABS*; Sheldrick, 1997[@bb3]) *T* ~min~ = 0.905, *T* ~max~ = 0.94417723 measured reflections2858 independent reflections2230 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.033 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.049*wR*(*F* ^2^) = 0.156*S* = 1.032858 reflections154 parametersH-atom parameters constrainedΔρ~max~ = 0.98 e Å^−3^Δρ~min~ = −0.34 e Å^−3^ {#d5e356} Data collection: *APEX2* (Bruker, 2005[@bb2]); cell refinement: *SAINT* (Bruker, 2005[@bb2]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb4]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb4]); molecular graphics: *X-SEED* (Barbour, 2001[@bb1]); software used to prepare material for publication: *publCIF* (Westrip, 2010[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811003035/jh2259sup1.cif](http://dx.doi.org/10.1107/S1600536811003035/jh2259sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811003035/jh2259Isup2.hkl](http://dx.doi.org/10.1107/S1600536811003035/jh2259Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?jh2259&file=jh2259sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?jh2259sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?jh2259&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [JH2259](http://scripts.iucr.org/cgi-bin/sendsup?jh2259)). We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study. Comment ======= Tetraalkylammonium halides are used as phase-transfer catalyst in the synthesis of 1,3-dialkyl-1,2-benzimidazolones, butyltriethylammonium chloride being used in the synthesis of the 1,3-diallyl derivative (Vernin *et al.*, 1981). Thhis compound as well as its derivatives possess pharmalogically important properties. The title chlorine-substitutent compound (Scheme I) was synthesized for evaluation of such properties. The benzimidazolone part of the C~13~H~13~ClN~2~O molecule (Fig. 1) is planar (r.m.s. deviation 0.006 Å); its mean plane is aligned at 62.5 (1) and 78.0 (1) with respect to the mean planes of the allyl substituents. Experimental {#experimental} ============ To 5-chloro-1*H*-benzo\[*d*\]imidazol-2(3*H*)-one (0.2 g, 1.18 mmol), potassium carbonate (0.4 g, 2.8 mmol), and tetra-*n*-butylammonium bromide (0.08 g, 0.23 mmol) in DMF (15 ml) was added allyl-bromide (0.22 ml, 2.6 mmol). Stirring was continued at room temperature for 6 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate. Refinement {#refinement} ========== Carbon-bound H-atoms were placed in calculated positions (C---H 0.93--0.97 Å) and were included in the refinement in the riding model approximation, with *U*(H) set to 1.2--1.5*U*(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Thermal ellipsoid plot (Barbour, 2001) of C13H13ClN2O at the 50% probability level; hydrogen atoms are drawn as arbitrary radius. ::: ![](e-67-0o520-fig1) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e127 .table-wrap} ------------------------- --------------------------------------- C~13~H~13~ClN~2~O *F*(000) = 520 *M~r~* = 248.70 *D*~x~ = 1.329 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 4645 reflections *a* = 7.8831 (1) Å θ = 2.4--29.0° *b* = 15.2481 (3) Å µ = 0.29 mm^−1^ *c* = 10.3593 (2) Å *T* = 295 K β = 93.056 (1)° Block, colourless *V* = 1243.44 (4) Å^3^ 0.35 × 0.20 × 0.20 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e255 .table-wrap} --------------------------------------------------------------- -------------------------------------- Bruker APEXII diffractometer 2858 independent reflections Radiation source: fine-focus sealed tube 2230 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.033 φ and ω scans θ~max~ = 27.5°, θ~min~ = 2.4° Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) *h* = −10→10 *T*~min~ = 0.905, *T*~max~ = 0.944 *k* = −19→19 17723 measured reflections *l* = −12→13 --------------------------------------------------------------- -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e372 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.049 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.156 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0846*P*)^2^ + 0.6164*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 2858 reflections (Δ/σ)~max~ = 0.001 154 parameters Δρ~max~ = 0.98 e Å^−3^ 0 restraints Δρ~min~ = −0.34 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e531 .table-wrap} ------ ------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.25390 (9) 0.66457 (5) 0.19928 (6) 0.0609 (2) O1 0.6243 (2) 0.62064 (10) 0.86933 (14) 0.0468 (4) N1 0.5616 (2) 0.66732 (10) 0.65711 (15) 0.0341 (4) N2 0.4252 (2) 0.55197 (10) 0.72844 (15) 0.0340 (4) C1 0.4530 (2) 0.63903 (12) 0.55655 (17) 0.0304 (4) C2 0.4221 (2) 0.67167 (12) 0.43253 (18) 0.0346 (4) H2 0.4781 0.7208 0.4029 0.042\* C3 0.3021 (3) 0.62631 (14) 0.35525 (19) 0.0388 (5) C4 0.2168 (3) 0.55288 (14) 0.3964 (2) 0.0407 (5) H4 0.1391 0.5244 0.3403 0.049\* C5 0.2476 (2) 0.52151 (13) 0.5227 (2) 0.0371 (4) H5 0.1904 0.4728 0.5526 0.045\* C6 0.3663 (2) 0.56580 (12) 0.60094 (17) 0.0307 (4) C7 0.5461 (3) 0.61349 (12) 0.76399 (18) 0.0348 (4) C8 0.6889 (3) 0.73629 (13) 0.6498 (2) 0.0385 (5) H8A 0.7127 0.7607 0.7353 0.046\* H8B 0.6442 0.7829 0.5941 0.046\* C9 0.8507 (3) 0.70238 (14) 0.5983 (2) 0.0438 (5) H9 0.9055 0.6560 0.6414 0.053\* C10 0.9186 (3) 0.73440 (16) 0.4965 (3) 0.0548 (6) H10A 0.8664 0.7808 0.4516 0.066\* H10B 1.0192 0.7109 0.4687 0.066\* C11 0.3710 (3) 0.48204 (13) 0.8125 (2) 0.0410 (5) H11A 0.4544 0.4757 0.8842 0.049\* H11B 0.3681 0.4274 0.7645 0.049\* C12 0.2008 (3) 0.49716 (17) 0.8649 (2) 0.0561 (7) H12 0.1536 0.4507 0.9088 0.067\* C13 0.1120 (4) 0.5692 (2) 0.8550 (3) 0.0647 (8) H13A 0.1540 0.6174 0.8120 0.078\* H13B 0.0066 0.5723 0.8911 0.078\* ------ ------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e929 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0596 (4) 0.0792 (5) 0.0427 (3) −0.0024 (3) −0.0096 (3) 0.0139 (3) O1 0.0592 (10) 0.0442 (8) 0.0362 (7) −0.0043 (7) −0.0055 (7) 0.0002 (6) N1 0.0399 (9) 0.0296 (8) 0.0326 (8) −0.0039 (6) 0.0018 (7) −0.0010 (6) N2 0.0393 (9) 0.0291 (8) 0.0339 (8) −0.0015 (6) 0.0054 (6) 0.0019 (6) C1 0.0300 (9) 0.0290 (8) 0.0329 (9) 0.0024 (7) 0.0062 (7) −0.0024 (7) C2 0.0335 (10) 0.0357 (10) 0.0352 (9) 0.0027 (7) 0.0070 (8) 0.0034 (7) C3 0.0355 (10) 0.0477 (11) 0.0335 (9) 0.0087 (8) 0.0041 (8) 0.0005 (8) C4 0.0320 (10) 0.0473 (11) 0.0427 (11) −0.0002 (8) 0.0013 (8) −0.0081 (9) C5 0.0332 (10) 0.0350 (9) 0.0437 (10) −0.0031 (8) 0.0069 (8) −0.0039 (8) C6 0.0303 (9) 0.0288 (8) 0.0336 (9) 0.0028 (7) 0.0071 (7) −0.0023 (7) C7 0.0406 (10) 0.0288 (9) 0.0351 (9) 0.0020 (8) 0.0043 (8) −0.0014 (7) C8 0.0465 (12) 0.0300 (9) 0.0391 (10) −0.0081 (8) 0.0024 (8) −0.0036 (8) C9 0.0348 (11) 0.0325 (10) 0.0627 (13) −0.0023 (8) −0.0097 (9) 0.0045 (9) C10 0.0429 (13) 0.0474 (12) 0.0750 (17) −0.0005 (10) 0.0119 (11) −0.0051 (12) C11 0.0500 (12) 0.0313 (10) 0.0424 (11) 0.0032 (8) 0.0094 (9) 0.0089 (8) C12 0.0663 (16) 0.0553 (14) 0.0492 (13) 0.0046 (12) 0.0263 (12) 0.0163 (10) C13 0.0656 (17) 0.0776 (18) 0.0535 (14) 0.0202 (14) 0.0259 (13) 0.0098 (13) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1269 .table-wrap} -------------------- -------------- ---------------------- -------------- Cl1---C3 1.741 (2) C5---H5 0.9300 O1---C7 1.229 (2) C8---C9 1.501 (3) N1---C1 1.382 (2) C8---H8A 0.9700 N1---C7 1.389 (2) C8---H8B 0.9700 N1---C8 1.459 (2) C9---C10 1.303 (3) N2---C7 1.373 (3) C9---H9 0.9300 N2---C6 1.393 (2) C10---H10A 0.9300 N2---C11 1.455 (2) C10---H10B 0.9300 C1---C2 1.387 (3) C11---C12 1.492 (3) C1---C6 1.400 (3) C11---H11A 0.9700 C2---C3 1.390 (3) C11---H11B 0.9700 C2---H2 0.9300 C12---C13 1.303 (4) C3---C4 1.385 (3) C12---H12 0.9300 C4---C5 1.402 (3) C13---H13A 0.9300 C4---H4 0.9300 C13---H13B 0.9300 C5---C6 1.381 (3) C1---N1---C7 109.83 (16) N2---C7---N1 106.21 (16) C1---N1---C8 125.89 (16) N1---C8---C9 111.75 (16) C7---N1---C8 123.90 (17) N1---C8---H8A 109.3 C7---N2---C6 110.02 (15) C9---C8---H8A 109.3 C7---N2---C11 124.17 (17) N1---C8---H8B 109.3 C6---N2---C11 125.80 (17) C9---C8---H8B 109.3 N1---C1---C2 131.12 (17) H8A---C8---H8B 107.9 N1---C1---C6 107.17 (16) C10---C9---C8 123.5 (2) C2---C1---C6 121.71 (18) C10---C9---H9 118.2 C3---C2---C1 115.81 (18) C8---C9---H9 118.2 C3---C2---H2 122.1 C9---C10---H10A 120.0 C1---C2---H2 122.1 C9---C10---H10B 120.0 C4---C3---C2 123.46 (19) H10A---C10---H10B 120.0 C4---C3---Cl1 118.11 (17) N2---C11---C12 113.75 (17) C2---C3---Cl1 118.43 (16) N2---C11---H11A 108.8 C3---C4---C5 120.04 (19) C12---C11---H11A 108.8 C3---C4---H4 120.0 N2---C11---H11B 108.8 C5---C4---H4 120.0 C12---C11---H11B 108.8 C6---C5---C4 117.31 (18) H11A---C11---H11B 107.7 C6---C5---H5 121.3 C13---C12---C11 126.3 (2) C4---C5---H5 121.3 C13---C12---H12 116.9 C5---C6---N2 131.58 (17) C11---C12---H12 116.9 C5---C6---C1 121.65 (18) C12---C13---H13A 120.0 N2---C6---C1 106.76 (16) C12---C13---H13B 120.0 O1---C7---N2 127.35 (18) H13A---C13---H13B 120.0 O1---C7---N1 126.44 (18) C7---N1---C1---C2 179.23 (19) C2---C1---C6---C5 1.1 (3) C8---N1---C1---C2 −7.7 (3) N1---C1---C6---N2 0.17 (19) C7---N1---C1---C6 0.2 (2) C2---C1---C6---N2 −178.95 (16) C8---N1---C1---C6 173.33 (17) C6---N2---C7---O1 179.96 (19) N1---C1---C2---C3 −179.86 (18) C11---N2---C7---O1 −1.2 (3) C6---C1---C2---C3 −1.0 (3) C6---N2---C7---N1 0.6 (2) C1---C2---C3---C4 −0.1 (3) C11---N2---C7---N1 179.50 (16) C1---C2---C3---Cl1 178.90 (14) C1---N1---C7---O1 −179.86 (19) C2---C3---C4---C5 1.1 (3) C8---N1---C7---O1 6.9 (3) Cl1---C3---C4---C5 −177.91 (15) C1---N1---C7---N2 −0.5 (2) C3---C4---C5---C6 −1.0 (3) C8---N1---C7---N2 −173.81 (16) C4---C5---C6---N2 179.97 (18) C1---N1---C8---C9 −83.2 (2) C4---C5---C6---C1 −0.1 (3) C7---N1---C8---C9 88.9 (2) C7---N2---C6---C5 179.44 (19) N1---C8---C9---C10 122.9 (2) C11---N2---C6---C5 0.6 (3) C7---N2---C11---C12 104.9 (2) C7---N2---C6---C1 −0.5 (2) C6---N2---C11---C12 −76.4 (3) C11---N2---C6---C1 −179.34 (17) N2---C11---C12---C13 −9.0 (4) N1---C1---C6---C5 −179.79 (17) -------------------- -------------- ---------------------- -------------- :::
PubMed Central
2024-06-05T04:04:17.066415
2011-1-29
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051792/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 29; 67(Pt 2):o520", "authors": [ { "first": "Younes", "last": "Ouzidan" }, { "first": "Y.", "last": "Kandri Rodi" }, { "first": "Natalie", "last": "Saffon" }, { "first": "El Mokhtar", "last": "Essassi" }, { "first": "Seik Weng", "last": "Ng" } ] }
PMC3051793
Related literature {#sec1} ================== For related structures, see: Bruce *et al.* (1988[@bb1]); Churchill *et al.* (1977[@bb4]). For the synthesis, see: Bruce *et al.* (1987[@bb2]). For stability of the temperature controller used in data collection, see: Cosier & Glazer (1986[@bb5]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Ru~3~(C~6~H~15~O~3~P)(CO)~11~\]*M* *~r~* = 777.47Monoclinic,*a* = 12.8866 (3) Å*b* = 9.0955 (2) Å*c* = 21.7772 (5) Åβ = 99.589 (1)°*V* = 2516.84 (10) Å^3^*Z* = 4Mo *K*α radiationμ = 1.91 mm^−1^*T* = 100 K0.22 × 0.15 × 0.07 mm ### Data collection {#sec2.1.2} Bruker APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb3]) *T* ~min~ = 0.681, *T* ~max~ = 0.88048269 measured reflections13224 independent reflections10210 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.049 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.033*wR*(*F* ^2^) = 0.085*S* = 1.0513224 reflections319 parametersH-atom parameters constrainedΔρ~max~ = 1.01 e Å^−3^Δρ~min~ = −1.23 e Å^−3^ {#d5e462} Data collection: *APEX2* (Bruker, 2009[@bb3]); cell refinement: *SAINT* (Bruker, 2009[@bb3]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811001450/is2661sup1.cif](http://dx.doi.org/10.1107/S1600536811001450/is2661sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811001450/is2661Isup2.hkl](http://dx.doi.org/10.1107/S1600536811001450/is2661Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?is2661&file=is2661sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?is2661sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?is2661&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [IS2661](http://scripts.iucr.org/cgi-bin/sendsup?is2661)). We gratefully acknowledge the funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the University Research Grant 1001/PJJAUH/811115. MGA thanks USM for a Post-doctoral fellowship. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= Syntheses and crystallographic structures of substituted *triangulo*-triruthenium clusters have been of interest to researchers due to structural variation and catalytic activity. As part of our ongoing studies on phosphine substituted *triangulo*-triruthenium clusters, herein we report the structure of title compound, (I). In the title compound, the monodantate phosphine ligand has replaced a carbonyl group in the equatorial plane of the Ru~3~ triangle. The *triangulo*-triruthenium is bonded equatorially to a monodentate phosphine ligand. The Ru2---Ru3 bond is noticeably longer \[2.8605 (2) Å\] compared to the other two Ru---Ru bonds \[2.8348 (2) and 2.8436 (2) Å\]. The unusual increase in the length of Ru---Ru bond in comparison with those of Ru~3~(CO)~12~ structure (Churchill *et al.*, 1977) can be attributed to the steric effect induced by the bulky substituent. As observed in Ru~3~(CO)~12~, the bond from metal atoms to the axial CO groups in complex (I) are longer (Ru---C~ave~ = 1.941 Å) compared to the equatorial CO groups (Ru---C~ave~ = 1.917 Å). The equatorial Ru---C---O moieties are linear (average angle: 178.30°) whereas the axial Ru---C---O moieties are slightly bent (average angle: 174.14°). Similar observations were made by Bruce and co-workers for the range of monosubstituted complexes synthesized by them (Bruce *et al.*, 1988). In the crystal structure, the molecules are linked into dimers by intermolecular C12---H12A···O2 hydrogen bonds and stacked down the *b* axis (Fig. 2 and Table 1). Experimental {#experimental} ============ All the manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Shlenk technique. THF was dried over sodium wire and freshly distilled from sodium benzophenone ketyl solution. Radical anion method was used for the synthesis of complex (Bruce *et al.*, 1987). The title compound (I) was prepared by mixing Ru~3~(CO)~12~ (Aldrich) and P(O--CH~2~CH~3~)~3~ (BDH Chemicals Ltd. Poole England) in a 1:1 molar ratio in THF at 313 K. Separation of the product in pure form was done by column chromatography (Florisil, 100--200 mesh, eluant, dicholomethane: hexane). IR (cyclohexane): γ (CO) 2100, 2045, 2031 and 2015 cm^-1^. Crystals suitable for X-ray diffraction were grown from dichlomethane/methanol solution at 283 K. Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically and refined using a riding model, with C---H = 0.93--0.97 Å and *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). The maximum and minimum residual electron density peaks of 1.01 and -1.23 e Å^-3^ were located 0.74 and 0.69 Å from atoms C12 and Ru3, respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. ::: ![](e-67-0m220-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I), viewed down the b axis, showing the molecules are linked into dimers. Hydrogen atoms not involved in the hydrogen-bonding (dashed lines) have been omitted for clarity. ::: ![](e-67-0m220-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e181 .table-wrap} ----------------------------------- --------------------------------------- \[Ru~3~(C~6~H~15~O~3~P)(CO)~11~\] *F*(000) = 1504 *M~r~* = 777.47 *D*~x~ = 2.052 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 9999 reflections *a* = 12.8866 (3) Å θ = 2.8--37.4° *b* = 9.0955 (2) Å µ = 1.91 mm^−1^ *c* = 21.7772 (5) Å *T* = 100 K β = 99.589 (1)° Plate, orange *V* = 2516.84 (10) Å^3^ 0.22 × 0.15 × 0.07 mm *Z* = 4 ----------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e315 .table-wrap} ------------------------------------------------------------ --------------------------------------- Bruker APEXII DUO CCD area-detector diffractometer 13224 independent reflections Radiation source: fine-focus sealed tube 10210 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.049 φ and ω scans θ~max~ = 37.6°, θ~min~ = 2.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −22→22 *T*~min~ = 0.681, *T*~max~ = 0.880 *k* = −14→15 48269 measured reflections *l* = −37→36 ------------------------------------------------------------ --------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e432 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.033 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.085 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0375*P*)^2^ + 0.1586*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 13224 reflections (Δ/σ)~max~ = 0.001 319 parameters Δρ~max~ = 1.01 e Å^−3^ 0 restraints Δρ~min~ = −1.23 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e589 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e694 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Ru1 0.206479 (12) 0.525270 (18) 0.104476 (7) 0.01058 (3) Ru2 0.171824 (13) 0.403007 (18) 0.219080 (7) 0.01213 (4) Ru3 0.307938 (12) 0.651191 (18) 0.218302 (7) 0.01164 (4) P1 0.28271 (4) 0.65310 (6) 0.03363 (2) 0.01287 (9) O1 0.36303 (14) 0.2725 (2) 0.09811 (8) 0.0216 (3) O2 0.03380 (14) 0.3498 (2) 0.02588 (9) 0.0236 (4) O3 0.06213 (14) 0.7945 (2) 0.10448 (8) 0.0226 (3) O4 −0.03552 (14) 0.5757 (2) 0.18670 (9) 0.0234 (3) O5 0.05504 (19) 0.1252 (2) 0.16827 (11) 0.0359 (5) O6 0.38235 (15) 0.2370 (2) 0.24542 (10) 0.0292 (4) O7 0.15360 (16) 0.3907 (2) 0.35704 (9) 0.0281 (4) O8 0.11480 (15) 0.8168 (2) 0.24884 (10) 0.0301 (4) O9 0.39514 (19) 0.9359 (2) 0.17244 (10) 0.0331 (5) O10 0.40533 (17) 0.6511 (2) 0.35681 (9) 0.0302 (4) O11 0.49842 (13) 0.4816 (2) 0.18586 (8) 0.0208 (3) O12 0.26748 (14) 0.82648 (18) 0.02947 (8) 0.0176 (3) O13 0.40697 (13) 0.63666 (19) 0.04805 (8) 0.0186 (3) O14 0.24886 (15) 0.61629 (18) −0.03883 (7) 0.0194 (3) C1 0.30697 (17) 0.3662 (2) 0.10385 (10) 0.0147 (4) C2 0.09977 (17) 0.4158 (2) 0.05380 (10) 0.0155 (4) C3 0.11634 (17) 0.6941 (2) 0.10820 (10) 0.0156 (4) C4 0.04387 (17) 0.5178 (3) 0.19786 (10) 0.0168 (4) C5 0.0981 (2) 0.2289 (3) 0.18692 (11) 0.0207 (4) C6 0.30722 (19) 0.3036 (3) 0.23406 (11) 0.0193 (4) C7 0.16199 (19) 0.3959 (3) 0.30638 (11) 0.0190 (4) C8 0.18282 (19) 0.7500 (3) 0.23584 (11) 0.0196 (4) C9 0.36313 (19) 0.8289 (3) 0.18873 (11) 0.0201 (4) C10 0.36806 (19) 0.6518 (3) 0.30534 (11) 0.0193 (4) C11 0.42440 (17) 0.5392 (2) 0.19592 (10) 0.0153 (4) C12 0.1837 (2) 0.8957 (3) −0.01318 (11) 0.0199 (4) H12A 0.1198 0.8381 −0.0159 0.024\* H12B 0.2027 0.9010 −0.0544 0.024\* C13 0.1655 (2) 1.0469 (3) 0.00963 (12) 0.0241 (5) H13A 0.1096 1.0930 −0.0184 0.036\* H13B 0.2287 1.1040 0.0115 0.036\* H13C 0.1467 1.0410 0.0504 0.036\* C14 0.4751 (2) 0.7164 (3) 0.01137 (12) 0.0246 (5) H14A 0.4326 0.7588 −0.0253 0.029\* H14B 0.5248 0.6486 −0.0023 0.029\* C15 0.5331 (2) 0.8348 (3) 0.04981 (16) 0.0331 (6) H15A 0.5808 0.8820 0.0266 0.050\* H15B 0.5721 0.7930 0.0872 0.050\* H15C 0.4840 0.9058 0.0605 0.050\* C16 0.2421 (2) 0.4681 (3) −0.06278 (10) 0.0187 (4) H16A 0.1694 0.4357 −0.0706 0.022\* H16B 0.2820 0.4018 −0.0329 0.022\* C17 0.2865 (2) 0.4684 (3) −0.12234 (12) 0.0249 (5) H17A 0.2852 0.3703 −0.1387 0.037\* H17B 0.3577 0.5035 −0.1143 0.037\* H17C 0.2449 0.5317 −0.1521 0.037\* ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1364 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ru1 0.01067 (6) 0.01134 (7) 0.00955 (6) −0.00004 (5) 0.00112 (5) −0.00073 (5) Ru2 0.01260 (7) 0.01192 (7) 0.01229 (7) −0.00088 (5) 0.00334 (5) 0.00087 (5) Ru3 0.01155 (7) 0.01239 (7) 0.01087 (6) −0.00163 (5) 0.00152 (5) −0.00204 (5) P1 0.0155 (2) 0.0126 (2) 0.0107 (2) 0.00183 (18) 0.00276 (17) 0.00072 (17) O1 0.0209 (8) 0.0210 (8) 0.0220 (8) 0.0069 (6) 0.0007 (6) −0.0032 (7) O2 0.0208 (8) 0.0180 (8) 0.0288 (9) −0.0028 (6) −0.0056 (7) −0.0038 (7) O3 0.0234 (8) 0.0226 (9) 0.0229 (8) 0.0073 (7) 0.0066 (7) 0.0014 (7) O4 0.0166 (7) 0.0254 (9) 0.0290 (9) 0.0012 (7) 0.0062 (7) 0.0055 (7) O5 0.0462 (13) 0.0249 (10) 0.0380 (11) −0.0166 (9) 0.0112 (10) −0.0098 (9) O6 0.0238 (9) 0.0294 (10) 0.0353 (10) 0.0089 (8) 0.0075 (8) 0.0125 (8) O7 0.0357 (11) 0.0326 (10) 0.0172 (8) −0.0016 (8) 0.0075 (7) −0.0009 (7) O8 0.0245 (9) 0.0294 (10) 0.0372 (11) 0.0040 (8) 0.0076 (8) −0.0160 (8) O9 0.0475 (13) 0.0230 (9) 0.0294 (10) −0.0131 (9) 0.0081 (9) 0.0009 (8) O10 0.0352 (11) 0.0374 (11) 0.0158 (8) 0.0047 (9) −0.0026 (7) −0.0027 (8) O11 0.0152 (7) 0.0235 (8) 0.0233 (8) −0.0009 (6) 0.0018 (6) −0.0056 (7) O12 0.0223 (8) 0.0123 (7) 0.0173 (7) 0.0014 (6) 0.0005 (6) 0.0005 (5) O13 0.0146 (7) 0.0231 (8) 0.0195 (7) 0.0038 (6) 0.0064 (6) 0.0077 (6) O14 0.0314 (9) 0.0153 (7) 0.0109 (6) 0.0033 (6) 0.0015 (6) −0.0005 (5) C1 0.0141 (8) 0.0164 (9) 0.0130 (8) −0.0016 (7) 0.0004 (7) −0.0001 (7) C2 0.0157 (9) 0.0141 (9) 0.0159 (8) 0.0019 (7) 0.0003 (7) 0.0002 (7) C3 0.0169 (9) 0.0171 (9) 0.0140 (8) −0.0007 (7) 0.0058 (7) −0.0011 (7) C4 0.0154 (9) 0.0176 (10) 0.0177 (9) −0.0034 (8) 0.0041 (7) 0.0015 (8) C5 0.0246 (11) 0.0203 (10) 0.0180 (9) −0.0028 (9) 0.0062 (8) −0.0013 (8) C6 0.0196 (10) 0.0185 (10) 0.0202 (10) 0.0001 (8) 0.0048 (8) 0.0055 (8) C7 0.0200 (10) 0.0180 (10) 0.0191 (9) −0.0001 (8) 0.0042 (8) −0.0003 (8) C8 0.0199 (10) 0.0203 (11) 0.0181 (9) −0.0018 (8) 0.0021 (8) −0.0075 (8) C9 0.0229 (11) 0.0208 (11) 0.0164 (9) −0.0042 (8) 0.0025 (8) −0.0030 (8) C10 0.0207 (10) 0.0206 (11) 0.0169 (9) 0.0005 (8) 0.0043 (8) −0.0033 (8) C11 0.0143 (8) 0.0175 (9) 0.0135 (8) −0.0040 (7) 0.0002 (7) −0.0016 (7) C12 0.0238 (11) 0.0162 (10) 0.0175 (9) 0.0046 (8) −0.0033 (8) 0.0022 (8) C13 0.0307 (13) 0.0167 (10) 0.0248 (11) 0.0060 (9) 0.0041 (9) 0.0006 (9) C14 0.0213 (11) 0.0305 (13) 0.0247 (11) 0.0007 (10) 0.0120 (9) 0.0073 (10) C15 0.0271 (13) 0.0315 (15) 0.0424 (16) −0.0030 (11) 0.0109 (12) 0.0071 (12) C16 0.0248 (11) 0.0177 (10) 0.0138 (8) −0.0025 (8) 0.0036 (8) −0.0032 (7) C17 0.0323 (13) 0.0234 (12) 0.0222 (10) −0.0039 (10) 0.0134 (9) −0.0061 (9) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2021 .table-wrap} ----------------------- --------------- ----------------------- -------------- Ru1---C2 1.896 (2) O8---C8 1.140 (3) Ru1---C3 1.935 (2) O9---C9 1.136 (3) Ru1---C1 1.943 (2) O10---C10 1.144 (3) Ru1---P1 2.2808 (6) O11---C11 1.141 (3) Ru1---Ru2 2.8348 (2) O12---C12 1.446 (3) Ru1---Ru3 2.8436 (2) O13---C14 1.472 (3) Ru2---C5 1.918 (2) O14---C16 1.443 (3) Ru2---C7 1.927 (2) C12---C13 1.494 (3) Ru2---C4 1.941 (2) C12---H12A 0.9700 Ru2---C6 1.944 (2) C12---H12B 0.9700 Ru2---Ru3 2.8605 (2) C13---H13A 0.9600 Ru3---C9 1.920 (2) C13---H13B 0.9600 Ru3---C10 1.925 (2) C13---H13C 0.9600 Ru3---C8 1.939 (2) C14---C15 1.487 (4) Ru3---C11 1.942 (2) C14---H14A 0.9700 P1---O13 1.5867 (17) C14---H14B 0.9700 P1---O12 1.5899 (17) C15---H15A 0.9600 P1---O14 1.6011 (17) C15---H15B 0.9600 O1---C1 1.137 (3) C15---H15C 0.9600 O2---C2 1.132 (3) C16---C17 1.502 (3) O3---C3 1.144 (3) C16---H16A 0.9700 O4---C4 1.140 (3) C16---H16B 0.9700 O5---C5 1.134 (3) C17---H17A 0.9600 O6---C6 1.134 (3) C17---H17B 0.9600 O7---C7 1.127 (3) C17---H17C 0.9600 C2---Ru1---C3 93.38 (9) C12---O12---P1 122.72 (15) C2---Ru1---C1 91.40 (9) C14---O13---P1 121.31 (15) C3---Ru1---C1 175.12 (9) C16---O14---P1 122.81 (14) C2---Ru1---P1 103.08 (7) O1---C1---Ru1 174.12 (19) C3---Ru1---P1 87.31 (7) O2---C2---Ru1 176.8 (2) C1---Ru1---P1 90.70 (7) O3---C3---Ru1 173.60 (19) C2---Ru1---Ru2 95.80 (7) O4---C4---Ru2 174.5 (2) C3---Ru1---Ru2 95.20 (6) O5---C5---Ru2 179.4 (3) C1---Ru1---Ru2 85.24 (6) O6---C6---Ru2 174.3 (2) P1---Ru1---Ru2 160.779 (16) O7---C7---Ru2 178.2 (2) C2---Ru1---Ru3 154.49 (7) O8---C8---Ru3 174.2 (2) C3---Ru1---Ru3 80.55 (6) O9---C9---Ru3 178.3 (2) C1---Ru1---Ru3 95.50 (6) O10---C10---Ru3 178.8 (2) P1---Ru1---Ru3 101.362 (15) O11---C11---Ru3 174.12 (19) Ru2---Ru1---Ru3 60.497 (6) O12---C12---C13 109.20 (19) C5---Ru2---C7 102.86 (10) O12---C12---H12A 109.8 C5---Ru2---C4 90.43 (10) C13---C12---H12A 109.8 C7---Ru2---C4 93.44 (10) O12---C12---H12B 109.8 C5---Ru2---C6 93.06 (11) C13---C12---H12B 109.8 C7---Ru2---C6 91.35 (10) H12A---C12---H12B 108.3 C4---Ru2---C6 173.31 (10) C12---C13---H13A 109.5 C5---Ru2---Ru1 98.25 (7) C12---C13---H13B 109.5 C7---Ru2---Ru1 158.04 (7) H13A---C13---H13B 109.5 C4---Ru2---Ru1 80.31 (7) C12---C13---H13C 109.5 C6---Ru2---Ru1 93.53 (7) H13A---C13---H13C 109.5 C5---Ru2---Ru3 156.39 (7) H13B---C13---H13C 109.5 C7---Ru2---Ru3 99.99 (7) O13---C14---C15 109.9 (2) C4---Ru2---Ru3 94.11 (7) O13---C14---H14A 109.7 C6---Ru2---Ru3 80.44 (7) C15---C14---H14A 109.7 Ru1---Ru2---Ru3 59.903 (6) O13---C14---H14B 109.7 C9---Ru3---C10 102.53 (10) C15---C14---H14B 109.7 C9---Ru3---C8 92.44 (11) H14A---C14---H14B 108.2 C10---Ru3---C8 90.93 (10) C14---C15---H15A 109.5 C9---Ru3---C11 90.71 (10) C14---C15---H15B 109.5 C10---Ru3---C11 92.73 (9) H15A---C15---H15B 109.5 C8---Ru3---C11 174.55 (9) C14---C15---H15C 109.5 C9---Ru3---Ru1 100.89 (7) H15A---C15---H15C 109.5 C10---Ru3---Ru1 155.64 (7) H15B---C15---H15C 109.5 C8---Ru3---Ru1 94.69 (7) O14---C16---C17 107.56 (19) C11---Ru3---Ru1 80.35 (6) O14---C16---H16A 110.2 C9---Ru3---Ru2 158.16 (7) C17---C16---H16A 110.2 C10---Ru3---Ru2 98.23 (7) O14---C16---H16B 110.2 C8---Ru3---Ru2 80.43 (7) C17---C16---H16B 110.2 C11---Ru3---Ru2 95.04 (6) H16A---C16---H16B 108.5 Ru1---Ru3---Ru2 59.600 (6) C16---C17---H17A 109.5 O13---P1---O12 102.46 (9) C16---C17---H17B 109.5 O13---P1---O14 106.00 (10) H17A---C17---H17B 109.5 O12---P1---O14 98.07 (9) C16---C17---H17C 109.5 O13---P1---Ru1 110.63 (6) H17A---C17---H17C 109.5 O12---P1---Ru1 118.77 (7) H17B---C17---H17C 109.5 O14---P1---Ru1 118.86 (7) C2---Ru1---Ru2---C5 19.56 (10) C4---Ru2---Ru3---C9 −47.3 (2) C3---Ru1---Ru2---C5 113.51 (10) C6---Ru2---Ru3---C9 128.8 (2) C1---Ru1---Ru2---C5 −71.37 (10) Ru1---Ru2---Ru3---C9 29.0 (2) P1---Ru1---Ru2---C5 −149.73 (9) C5---Ru2---Ru3---C10 −145.0 (2) Ru3---Ru1---Ru2---C5 −170.44 (8) C7---Ru2---Ru3---C10 20.26 (10) C2---Ru1---Ru2---C7 −144.3 (2) C4---Ru2---Ru3---C10 114.49 (10) C3---Ru1---Ru2---C7 −50.4 (2) C6---Ru2---Ru3---C10 −69.43 (10) C1---Ru1---Ru2---C7 124.7 (2) Ru1---Ru2---Ru3---C10 −169.20 (7) P1---Ru1---Ru2---C7 46.4 (2) C5---Ru2---Ru3---C8 125.5 (2) Ru3---Ru1---Ru2---C7 25.66 (19) C7---Ru2---Ru3---C8 −69.29 (10) C2---Ru1---Ru2---C4 −69.46 (9) C4---Ru2---Ru3---C8 24.94 (10) C3---Ru1---Ru2---C4 24.49 (9) C6---Ru2---Ru3---C8 −158.98 (10) C1---Ru1---Ru2---C4 −160.39 (9) Ru1---Ru2---Ru3---C8 101.24 (7) P1---Ru1---Ru2---C4 121.25 (8) C5---Ru2---Ru3---C11 −51.5 (2) Ru3---Ru1---Ru2---C4 100.54 (7) C7---Ru2---Ru3---C11 113.76 (10) C2---Ru1---Ru2---C6 113.18 (10) C4---Ru2---Ru3---C11 −152.01 (9) C3---Ru1---Ru2---C6 −152.88 (10) C6---Ru2---Ru3---C11 24.07 (10) C1---Ru1---Ru2---C6 22.25 (10) Ru1---Ru2---Ru3---C11 −75.70 (6) P1---Ru1---Ru2---C6 −56.11 (9) C5---Ru2---Ru3---Ru1 24.24 (19) Ru3---Ru1---Ru2---C6 −76.82 (7) C7---Ru2---Ru3---Ru1 −170.54 (7) C2---Ru1---Ru2---Ru3 −170.00 (7) C4---Ru2---Ru3---Ru1 −76.31 (7) C3---Ru1---Ru2---Ru3 −76.06 (7) C6---Ru2---Ru3---Ru1 99.77 (7) C1---Ru1---Ru2---Ru3 99.07 (6) C2---Ru1---P1---O13 −130.84 (10) P1---Ru1---Ru2---Ru3 20.71 (5) C3---Ru1---P1---O13 136.31 (10) C2---Ru1---Ru3---C9 −145.78 (17) C1---Ru1---P1---O13 −39.24 (10) C3---Ru1---Ru3---C9 −67.89 (10) Ru2---Ru1---P1---O13 38.22 (10) C1---Ru1---Ru3---C9 109.23 (10) Ru3---Ru1---P1---O13 56.51 (8) P1---Ru1---Ru3---C9 17.40 (8) C2---Ru1---P1---O12 111.15 (10) Ru2---Ru1---Ru3---C9 −169.42 (8) C3---Ru1---P1---O12 18.30 (10) C2---Ru1---Ru3---C10 50.4 (2) C1---Ru1---P1---O12 −157.25 (10) C3---Ru1---Ru3---C10 128.24 (19) Ru2---Ru1---P1---O12 −79.79 (9) C1---Ru1---Ru3---C10 −54.64 (19) Ru3---Ru1---P1---O12 −61.50 (8) P1---Ru1---Ru3---C10 −146.47 (17) C2---Ru1---P1---O14 −7.90 (10) Ru2---Ru1---Ru3---C10 26.71 (17) C3---Ru1---P1---O14 −100.75 (10) C2---Ru1---Ru3---C8 −52.38 (17) C1---Ru1---P1---O14 83.71 (10) C3---Ru1---Ru3---C8 25.50 (10) Ru2---Ru1---P1---O14 161.16 (8) C1---Ru1---Ru3---C8 −157.38 (10) Ru3---Ru1---P1---O14 179.46 (8) P1---Ru1---Ru3---C8 110.80 (8) O13---P1---O12---C12 144.95 (18) Ru2---Ru1---Ru3---C8 −76.02 (8) O14---P1---O12---C12 36.5 (2) C2---Ru1---Ru3---C11 125.36 (16) Ru1---P1---O12---C12 −92.85 (18) C3---Ru1---Ru3---C11 −156.75 (9) O12---P1---O13---C14 −48.5 (2) C1---Ru1---Ru3---C11 20.36 (9) O14---P1---O13---C14 53.7 (2) P1---Ru1---Ru3---C11 −71.46 (7) Ru1---P1---O13---C14 −176.12 (17) Ru2---Ru1---Ru3---C11 101.72 (7) O13---P1---O14---C16 78.01 (19) C2---Ru1---Ru3---Ru2 23.64 (15) O12---P1---O14---C16 −176.48 (18) C3---Ru1---Ru3---Ru2 101.53 (6) Ru1---P1---O14---C16 −47.2 (2) C1---Ru1---Ru3---Ru2 −81.36 (6) P1---O12---C12---C13 158.87 (18) P1---Ru1---Ru3---Ru2 −173.181 (16) P1---O13---C14---C15 109.1 (2) C5---Ru2---Ru3---C9 53.2 (3) P1---O14---C16---C17 −139.24 (19) C7---Ru2---Ru3---C9 −141.5 (2) ----------------------- --------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3286 .table-wrap} -------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C12---H12A···O2^i^ 0.97 2.60 3.558 (3) 171 -------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C12---H12*A*⋯O2^i^ 0.97 2.60 3.558 (3) 171 Symmetry code: (i) . ::: [^1]: ‡ Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia. [^2]: § Thomson Reuters ResearcherID: A-5523-2009. [^3]: ¶ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: [email protected].
PubMed Central
2024-06-05T04:04:17.070789
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051793/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m220", "authors": [ { "first": "Omar bin", "last": "Shawkataly" }, { "first": "Mohd. Gulfam", "last": "Alam" }, { "first": "Chin Sing", "last": "Yeap" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3051794
Related literature {#sec1} ================== For the structure at 200 K, see: Seidel *et al.* (2010[@bb10]). For the 2-chloro­phenol solvate of cyclic tetra­meric ZnTPyP, see: Lipstman & Goldberg (2010[@bb8]). For a review article on structural motifs in coordination polymers of the 5,10,15,20-tetra­4-pyrid­ylporphyrin ligand, see: DeVries & Choe (2009[@bb5]). For the supra­molecular chemistry of ZnTPyP in the solid-state, see: Lipstman & Goldberg (2010[@bb8]); Seidel *et al.* (2010[@bb10]) and references cited therein. For a description of the IμS microfocus X-ray source used in the present study, see: Graf (2008[@bb7]); Schulz *et al.* (2009[@bb9]). For *PLATON* / *SQUEEZE*, see: van der Sluis & Spek (1990[@bb12]); Spek (2009[@bb13]). For a description of the program *COOT*, see: Emsley *et al.* (2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} \[Zn~4~(C~40~H~24~N~8~)~4~\]·8C~3~H~7~NO·3H~2~O*M* *~r~* = 3366.98Tetragonal,*a* = 23.6897 (5) Å*c* = 14.9876 (7) Å*V* = 8411.1 (5) Å^3^*Z* = 2Cu *K*α radiationμ = 1.24 mm^−1^*T* = 100 K0.16 × 0.04 × 0.02 mm ### Data collection {#sec2.1.2} Bruker X8 PROSPECTOR diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2008[@bb3]) *T* ~min~ = 0.827, *T* ~max~ = 0.97644415 measured reflections7723 independent reflections6768 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.018 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.042*wR*(*F* ^2^) = 0.108*S* = 1.047723 reflections442 parametersH-atom parameters constrainedΔρ~max~ = 0.59 e Å^−3^Δρ~min~ = −0.42 e Å^−3^ {#d5e709} Data collection: *APEX2* (Bruker, 2008[@bb3]); cell refinement: *SAINT* (Bruker, 2010[@bb4]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb11]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb11]); molecular graphics: *DIAMOND* (Brandenburg, 2010[@bb2]); software used to prepare material for publication: *enCIFer* (Allen *et al.*, 2004[@bb1]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811002054/bv2170sup1.cif](http://dx.doi.org/10.1107/S1600536811002054/bv2170sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002054/bv2170Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002054/bv2170Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bv2170&file=bv2170sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bv2170sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bv2170&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BV2170](http://scripts.iucr.org/cgi-bin/sendsup?bv2170)). The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for financial support. RWS is grateful to Professor William S. Sheldrick and Professor Christian W. Lehmann for generous support. Comment ======= 5,10,15,20-Tetra(4-pyridyl)porphyrin has been widely used as ligand for the construction of coordination polymers (DeVries & Choe, 2009). We and others have reported on the solid-state supramolecular chemistry of the self-complementary \[5,10,15,20-tetra(4-pyridyl)porphyrinato\]zinc(II) (ZnTPyP) building block (Lipstman & Goldberg, 2010; Seidel *et al.*, 2010 and references cited therein). Recently, we reported the title structure of \[ZnTPyP\]~4~. The small dark red plate-shaped crystals of the title compound were subjected to diffraction experiments using a Bruker AXS X8 PROSPECTOR diffractometer equipped with an INCOATEC microfocus X-ray source (IµS) for Cu radiation (Graf, 2008). Such microfocus X-ray sources use multilayer mirrors to focus the X-ray beam onto the crystal and, therefore, lead to a significant reduction of the background and an increase in diffracted intensities. It has already been demonstrated that the Mo IµS gives data of significantly higher quality than a 2 kW Mo fine focus sealed tube, when small crystals are examined (Schulz *et al.*, 2009). The data collection presented here, using the Cu IµS, resulted in intensity data of surprisingly good quality and, hence, indicated a re-refinement of the crystal structure. The crystals investigated in the original work were significantly larger than those examined in the present study and split on cooling to 100 K. For this reason, the data were collected at 200 K with a Cu rotating anode system at that time. Using small crystals has the advantage that these are less likely to split on flash cooling. The molecular structure of \[ZnTPyP\]~4~ is depicted in Fig. 1. The asymmetric unit contains one ZnTPyP unit (Fig 2.) and the *S*~4~ symmetric tetramer is generated by crystallographic fourfold rotoinversion symmetry. One peripheral pyridyl group binds to the central Zn atom of an adjacent symmetry related ZnTPyP unit. Zn1 is pentacoordinated and is displaced from the N~4~ mean plane by 0.3196 (9) Å. The coordination geometry parameters about Zn1 are given in Table 1. The three remaining pyridyl groups are non-coordinating. Even at 100 K, the pyridyl groups attached to C5 and C15 show elongated ellipsoids, which cause a checkCIF B level alert (Spek, 2009) due to large *U*~eq~(max)/*U*~eq~(min) ratio. This reveals that the disorder is rather of static than dynamic nature. Attempts were made to describe the electron density of the pyridyl ring attached to C15 (Fig. 3) by a split model. However, the refinement results could not be improved thereby. Thus, both pyridyl rings were finally described with large displacement parameters. In the crystal, the \[ZnTPyP\]~4~ entities are stacked into columns located at *x* = 1/4, *y* = 1/4 and *x* = 3/4, *y* = 3/4 (Fig 4). The stacking propagates *via* C~β~---H···N~py~ interactions (see Table 2) by translational symmetry in the *c* axis direction. Within a column, the distance between the centroids of the pyridyl rings attached to C5 and C15^iii^ is 4.0714 (1) Å. Adjacent columns of \[ZnTPyP\]~4~ are arranged with an offset of *c*/2 (*ca* 7.49 Å). Interstitial channels are formed parallel to the *c* axis direction centred at *x* = 1/4, *y* = 3/4 and *x* = 3/4, *y* = 1/4 (Fig 5). The potential solvent accessible void estimated with *PLATON* / *SOLV* (Spek, 2009) is 33.2% of the unit cell volume. On cooling to 100 K, the *a* lattice vector is shortened by approximately 0.27 Å in comparison to the tetragonal unit cell at 200 K (*a* = 23.958 (2) Å), whereas the length of *c* lattice vector remains relatively unaffected (*c* = 15.0646 (16) Å at 200 K; Seidel *et al.*, 2010). Despite intensive efforts, the disordered solvent molecules filling the voids within the columns of \[ZnTPyP\]~4~ and the interstitial channels could not be modeled reasonably with the data collected at 100 K. Nevertheless, residual electron density was visible in a difference Fourier synthesis calculated for the solvent regions (Fig. 6) with phases based on the model using *COOT* (Emsley *et al.*, 2010). For the visualization of the surface of the (difference) electron density using a three-dimensional mesh, the electron densities should be read into *COOT* in terms of structure factors. To obtain a structure factor (.fcf) file containg the informations necessary for the calculation of electron density maps and suitable for *COOT*, the LIST 6 instruction of *SHELXL-97* was used. The atomic model of the framework was read into *COOT* by means of the *SHELXL-97*. res file. The visual inspection of the difference electron density map indicates that four molecules of dimethylformamide (DMF) plus one water molecule are located within the voids in the columns approximately centred at (1/4,1/4,0), whereas another four molecules of DMF and two water molecules are clustered around the 4~2~ screw axes running through the interstitial channels parallel to the *c* axis direction. The compound can, therefore, probably best be described as \[ZnTPyP\]~4~. 8 DMF. 3 H~2~O. The compound was originally formulated as being a pure DMF solvate (Seidel *et al.*, 2010). To improve the fit of the model to the data and, hence, the precision of the main part of the structure, the contributions of the disordered solvent molecules were removed from the diffraction data with *PLATON* / *SQUEEZE* (van der Sluis & Spek, 1990; Spek, 2009). *SQUEEZE* estimated the electron counts in the voids within the columns and interstitial channels of \[ZnTPyP\]~4~ to be 182 and 207, respectively. These values are relatively close to those based on the proposed chemical formula (178 and 196). Experimental {#experimental} ============ Small dark red plate-shaped crystals of the title compound were obtained similarly as reported previously (Seidel *et al.*, 2010); 12 mg of ZnTPyP (Aldrich) and 11 mg of \[Pd(NO~3~)~2~(en)\] (en = 1,2-diaminoethane) were placed in an ampoule and 4 ml of DMF were added. The ampoule was sealed and placed in a heater. The sample was heated to 150 °C in 24 h and held for five days at this temperature. Subsequently, the sample was cooled down to room temperature in 100 h. Noteworthy, the crystals of the title compound were accompanied by crystals of the triclinic phase, containing a polymeric one-dimensional ladder structure of ZnTPyP, as observed previously (Seidel *et al.*, 2010). Refinement {#refinement} ========== For the final refinement, the contributions of severely disordered DMF and water molecules of crystallization were removed from the diffraction data with *PLATON* / *SQUEEZE* (van der Sluis & Spek, 1990; Spek, 2009), see comment. H atoms were placed at geometrically calculated positions and refined with constrained C---H bond length of 0.95 Å and *U*~iso~(H) = 1.2 *U*~eq~(C) allowing them to ride on the parent C atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of the title compound. H atoms are omitted for clarity. ::: ![](e-67-0m236-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Displacement ellipsoid plot of one repeat unit of cyclic \[ZnTPyP\]4 drawn at 50% probability. H atoms are omitted for clarity. Symmetry code: (i) y, -x + 1/2, -z + 1/2. ::: ![](e-67-0m236-fig2) ::: ::: {#Fap3 .fig} Fig. 3. ::: {.caption} ###### Contour plot of the Fo electron density map in the plane of the pyridyl group attached to C15, calculated with phases from Fc. Contours are drawn at 0.50 e Å-3 starting at 6.00 e Å-3. The contour plot was generated with PLATON (Spek, 2009). ::: ![](e-67-0m236-fig3) ::: ::: {#Fap4 .fig} Fig. 4. ::: {.caption} ###### Stacking of the \[ZnTPyP\]4 entities viewed along the a axis direction. H atoms are omitted for clarity. Cβ---H···Npy interactions are represented by dashed lines. ::: ![](e-67-0m236-fig4) ::: ::: {#Fap5 .fig} Fig. 5. ::: {.caption} ###### Packing diagram of the title compound projected along the c axis direction. H atoms are omitted for clarity. ::: ![](e-67-0m236-fig5) ::: ::: {#Fap6 .fig} Fig. 6. ::: {.caption} ###### The tetragonal unit cell of the title compound viewed approximately along the c axis direction showing the Fo-Fc map of the disordered solvent regions (contoured at 3.0σ level). The figure was created with COOT (Emsley et al., 2010) using Fo including the contributions of the disordered solvent with phases from Fc based on the model. ::: ![](e-67-0m236-fig6) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e401 .table-wrap} ------------------------------------------------- -------------------------------------- \[Zn~4~(C~40~H~24~N~8~)~4~\]·8C~3~H~7~NO·3H~2~O *D*~x~ = 1.329 Mg m^−3^ *M~r~* = 3366.98 Cu *K*α radiation, λ = 1.54178 Å Tetragonal, *P*4~2~/*n* Cell parameters from 130 reflections Hall symbol: -P 4bc θ = 3.5--31.5° *a* = 23.6897 (5) Å µ = 1.24 mm^−1^ *c* = 14.9876 (7) Å *T* = 100 K *V* = 8411.1 (5) Å^3^ Plate, dark red *Z* = 2 0.16 × 0.04 × 0.02 mm *F*(000) = 3500 ------------------------------------------------- -------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e536 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker X8 PROSPECTOR goniometer diffractometer 7723 independent reflections Radiation source: Incoatec IµS microfocus X-ray source 6768 reflections with *I* \> 2σ(*I*) Incoatec Quazar Multilayer Mirror *R*~int~ = 0.018 Detector resolution: 8.33 pixels mm^-1^ θ~max~ = 69.2°, θ~min~ = 2.6° ω scans *h* = −28→25 Absorption correction: multi-scan (*SADABS*; Bruker, 2008) *k* = −24→28 *T*~min~ = 0.827, *T*~max~ = 0.976 *l* = −17→14 44415 measured reflections ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e656 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.042 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.108 H-atom parameters constrained *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0472*P*)^2^ + 5.0454*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 7723 reflections (Δ/σ)~max~ \< 0.001 442 parameters Δρ~max~ = 0.59 e Å^−3^ 0 restraints Δρ~min~ = −0.42 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e813 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e912 .table-wrap} ------ --------------- --------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Zn1 0.350673 (11) 0.520064 (11) 0.185590 (16) 0.03823 (9) N21 0.38601 (8) 0.54998 (7) 0.06850 (10) 0.0433 (4) N22 0.27781 (7) 0.50134 (7) 0.11541 (10) 0.0404 (4) N23 0.41242 (7) 0.56428 (7) 0.25451 (10) 0.0404 (4) N24 0.30440 (7) 0.51392 (7) 0.30222 (10) 0.0377 (4) C1 0.46288 (9) 0.58336 (8) 0.22081 (13) 0.0420 (4) C2 0.50033 (10) 0.59793 (10) 0.29314 (14) 0.0532 (6) H2 0.5379 0.6115 0.2880 0.064\* C3 0.47175 (10) 0.58861 (10) 0.36945 (15) 0.0534 (6) H3 0.4853 0.5949 0.4283 0.064\* C4 0.41675 (9) 0.56739 (9) 0.34544 (13) 0.0428 (5) C5 0.37497 (9) 0.55138 (9) 0.40720 (13) 0.0442 (5) C6 0.32280 (9) 0.52641 (9) 0.38657 (12) 0.0411 (4) C7 0.28126 (9) 0.50864 (9) 0.45108 (13) 0.0451 (5) H7 0.2835 0.5130 0.5140 0.054\* C8 0.23852 (9) 0.48459 (9) 0.40491 (13) 0.0422 (4) H8 0.2052 0.4684 0.4292 0.051\* C9 0.25323 (8) 0.48825 (8) 0.31165 (12) 0.0362 (4) C10 0.21846 (8) 0.46994 (8) 0.24113 (12) 0.0360 (4) C11 0.22974 (8) 0.47834 (8) 0.14991 (12) 0.0376 (4) C12 0.19052 (9) 0.46543 (9) 0.07858 (13) 0.0460 (5) H12 0.1543 0.4486 0.0845 0.055\* C13 0.21544 (10) 0.48202 (10) 0.00230 (14) 0.0526 (6) H13 0.1998 0.4794 −0.0559 0.063\* C14 0.26979 (9) 0.50435 (10) 0.02480 (13) 0.0477 (5) C15 0.30923 (11) 0.52569 (10) −0.03612 (14) 0.0545 (6) C16 0.36281 (10) 0.54737 (10) −0.01508 (13) 0.0515 (5) C17 0.40164 (12) 0.57099 (11) −0.07905 (15) 0.0636 (7) H17 0.3959 0.5743 −0.1416 0.076\* C18 0.44735 (11) 0.58736 (10) −0.03328 (15) 0.0581 (6) H18 0.4801 0.6046 −0.0575 0.070\* C19 0.43790 (9) 0.57411 (9) 0.05937 (13) 0.0455 (5) C20 0.47569 (9) 0.58754 (8) 0.12914 (13) 0.0429 (5) N51 0.40921 (10) 0.58630 (15) 0.68340 (15) 0.0812 (8) C52 0.38597 (16) 0.62318 (17) 0.6300 (2) 0.0945 (11) H52 0.3762 0.6589 0.6542 0.113\* C53 0.37466 (15) 0.61389 (13) 0.54115 (18) 0.0816 (9) H53 0.3581 0.6429 0.5060 0.098\* C54 0.38735 (9) 0.56279 (11) 0.50349 (14) 0.0513 (5) C55 0.41194 (13) 0.52451 (15) 0.55825 (18) 0.0792 (8) H55 0.4222 0.4884 0.5360 0.095\* C56 0.42214 (14) 0.53814 (18) 0.6469 (2) 0.0885 (10) H56 0.4397 0.5105 0.6834 0.106\* N101 0.06117 (6) 0.38923 (7) 0.30189 (10) 0.0355 (3) C102 0.06574 (8) 0.44515 (8) 0.29549 (13) 0.0403 (4) H102 0.0327 0.4673 0.3038 0.048\* C103 0.11567 (8) 0.47254 (8) 0.27747 (13) 0.0406 (4) H103 0.1167 0.5126 0.2740 0.049\* C104 0.16441 (8) 0.44146 (8) 0.26451 (11) 0.0339 (4) C105 0.16034 (9) 0.38345 (9) 0.27246 (17) 0.0506 (5) H105 0.1928 0.3604 0.2652 0.061\* C106 0.10845 (9) 0.35925 (9) 0.29112 (16) 0.0490 (5) H106 0.1064 0.3194 0.2965 0.059\* N151 0.2660 (2) 0.5329 (2) −0.3142 (2) 0.1294 (17) C152 0.2458 (3) 0.5685 (2) −0.2569 (3) 0.155 (2) H152 0.2211 0.5972 −0.2780 0.185\* C153 0.2581 (2) 0.56707 (18) −0.1666 (2) 0.1290 (18) H153 0.2421 0.5945 −0.1278 0.155\* C154 0.29319 (12) 0.52625 (14) −0.13291 (16) 0.0729 (8) C155 0.31337 (15) 0.4886 (2) −0.19209 (18) 0.1009 (13) H155 0.3375 0.4591 −0.1726 0.121\* C156 0.29872 (18) 0.4931 (2) −0.2832 (2) 0.1174 (17) H156 0.3133 0.4659 −0.3237 0.141\* N201 0.63736 (10) 0.65387 (10) 0.05085 (15) 0.0695 (6) C202 0.60235 (13) 0.68222 (12) 0.1038 (2) 0.0742 (8) H202 0.6140 0.7184 0.1241 0.089\* C203 0.55016 (12) 0.66270 (10) 0.13114 (18) 0.0635 (7) H203 0.5271 0.6852 0.1689 0.076\* C204 0.53176 (10) 0.61002 (9) 0.10312 (14) 0.0474 (5) C205 0.56798 (10) 0.58046 (10) 0.04725 (15) 0.0548 (6) H205 0.5577 0.5442 0.0255 0.066\* C206 0.61911 (11) 0.60416 (12) 0.02354 (17) 0.0645 (7) H206 0.6429 0.5831 −0.0153 0.077\* ------ --------------- --------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1866 .table-wrap} ------ -------------- -------------- -------------- --------------- -------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Zn1 0.04778 (16) 0.04374 (16) 0.02318 (14) −0.00756 (11) 0.00168 (10) −0.00080 (10) N21 0.0579 (10) 0.0455 (9) 0.0266 (8) −0.0116 (8) 0.0027 (7) 0.0007 (7) N22 0.0485 (9) 0.0476 (9) 0.0251 (8) −0.0020 (7) −0.0005 (7) 0.0025 (7) N23 0.0531 (10) 0.0414 (9) 0.0266 (8) −0.0084 (7) 0.0028 (7) −0.0033 (6) N24 0.0438 (9) 0.0446 (9) 0.0247 (8) −0.0010 (7) 0.0004 (6) −0.0035 (6) C1 0.0521 (12) 0.0395 (10) 0.0342 (10) −0.0129 (9) 0.0034 (8) −0.0050 (8) C2 0.0581 (14) 0.0608 (14) 0.0408 (12) −0.0204 (11) 0.0039 (10) −0.0108 (10) C3 0.0599 (14) 0.0649 (14) 0.0354 (11) −0.0209 (11) −0.0001 (10) −0.0111 (10) C4 0.0522 (12) 0.0473 (11) 0.0290 (10) −0.0094 (9) 0.0010 (8) −0.0072 (8) C5 0.0520 (12) 0.0531 (12) 0.0275 (10) −0.0066 (9) −0.0019 (8) −0.0055 (8) C6 0.0479 (11) 0.0494 (11) 0.0259 (10) 0.0000 (9) 0.0024 (8) −0.0038 (8) C7 0.0494 (12) 0.0603 (13) 0.0256 (10) −0.0036 (10) 0.0010 (8) −0.0026 (9) C8 0.0458 (11) 0.0528 (12) 0.0279 (10) 0.0012 (9) 0.0035 (8) −0.0002 (8) C9 0.0410 (10) 0.0403 (10) 0.0274 (9) 0.0045 (8) 0.0019 (7) −0.0024 (7) C10 0.0421 (10) 0.0373 (10) 0.0286 (9) 0.0047 (8) 0.0014 (7) −0.0020 (7) C11 0.0428 (10) 0.0414 (10) 0.0287 (10) 0.0024 (8) −0.0018 (8) −0.0010 (8) C12 0.0457 (11) 0.0623 (13) 0.0300 (10) −0.0037 (10) −0.0036 (8) −0.0017 (9) C13 0.0565 (13) 0.0725 (15) 0.0289 (11) −0.0093 (11) −0.0068 (9) 0.0036 (10) C14 0.0566 (13) 0.0600 (13) 0.0264 (10) −0.0071 (10) −0.0044 (9) 0.0036 (9) C15 0.0687 (15) 0.0670 (15) 0.0279 (11) −0.0171 (12) −0.0035 (10) 0.0076 (9) C16 0.0697 (15) 0.0574 (13) 0.0273 (10) −0.0158 (11) 0.0024 (9) 0.0052 (9) C17 0.0816 (18) 0.0817 (17) 0.0276 (11) −0.0288 (14) 0.0023 (11) 0.0087 (11) C18 0.0723 (16) 0.0672 (15) 0.0347 (12) −0.0260 (12) 0.0053 (10) 0.0071 (10) C19 0.0595 (13) 0.0455 (11) 0.0314 (10) −0.0118 (9) 0.0050 (9) 0.0012 (8) C20 0.0570 (12) 0.0366 (10) 0.0351 (10) −0.0118 (9) 0.0066 (9) −0.0009 (8) N51 0.0633 (14) 0.145 (3) 0.0359 (12) −0.0305 (15) −0.0006 (10) −0.0144 (14) C52 0.126 (3) 0.113 (3) 0.0447 (17) −0.011 (2) −0.0056 (17) −0.0286 (17) C53 0.126 (3) 0.0787 (19) 0.0403 (14) −0.0017 (18) −0.0102 (15) −0.0181 (13) C54 0.0499 (12) 0.0755 (16) 0.0286 (11) −0.0147 (11) 0.0009 (9) −0.0067 (10) C55 0.096 (2) 0.100 (2) 0.0419 (15) 0.0139 (17) −0.0143 (14) −0.0037 (14) C56 0.082 (2) 0.135 (3) 0.0486 (17) 0.002 (2) −0.0152 (14) 0.0081 (18) N101 0.0379 (8) 0.0442 (9) 0.0244 (8) 0.0040 (7) −0.0013 (6) −0.0035 (6) C102 0.0418 (11) 0.0434 (11) 0.0358 (10) 0.0092 (8) 0.0059 (8) −0.0024 (8) C103 0.0466 (11) 0.0392 (10) 0.0360 (10) 0.0058 (8) 0.0063 (8) 0.0009 (8) C104 0.0386 (10) 0.0412 (10) 0.0218 (8) 0.0052 (8) −0.0005 (7) −0.0033 (7) C105 0.0376 (11) 0.0436 (12) 0.0707 (15) 0.0078 (9) 0.0018 (10) −0.0042 (10) C106 0.0422 (11) 0.0384 (11) 0.0665 (15) 0.0038 (9) −0.0002 (10) −0.0022 (10) N151 0.157 (4) 0.182 (4) 0.0499 (18) −0.092 (3) −0.022 (2) 0.029 (2) C152 0.267 (7) 0.130 (4) 0.067 (3) −0.043 (4) −0.074 (3) 0.028 (3) C153 0.218 (5) 0.105 (3) 0.064 (2) −0.016 (3) −0.068 (3) 0.026 (2) C154 0.0797 (18) 0.108 (2) 0.0312 (13) −0.0441 (16) −0.0058 (12) 0.0136 (13) C155 0.088 (2) 0.180 (4) 0.0349 (15) −0.029 (2) 0.0018 (13) −0.0193 (18) C156 0.098 (3) 0.210 (5) 0.0446 (19) −0.059 (3) 0.0097 (17) −0.011 (2) N201 0.0714 (14) 0.0754 (15) 0.0616 (13) −0.0299 (12) 0.0153 (11) −0.0022 (11) C202 0.0847 (19) 0.0592 (15) 0.0786 (19) −0.0325 (14) 0.0173 (16) −0.0085 (14) C203 0.0751 (17) 0.0495 (13) 0.0658 (16) −0.0190 (12) 0.0165 (13) −0.0104 (11) C204 0.0627 (13) 0.0454 (11) 0.0340 (11) −0.0135 (10) 0.0057 (9) 0.0004 (8) C205 0.0693 (15) 0.0540 (13) 0.0410 (12) −0.0153 (11) 0.0148 (10) −0.0076 (10) C206 0.0700 (16) 0.0752 (17) 0.0482 (14) −0.0173 (13) 0.0177 (12) −0.0064 (12) ------ -------------- -------------- -------------- --------------- -------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2828 .table-wrap} --------------------- ------------- ----------------------- ------------- Zn1---N24 2.0684 (15) C19---C20 1.413 (3) Zn1---N21 2.0695 (16) C20---C204 1.483 (3) Zn1---N22 2.0695 (17) N51---C56 1.302 (5) Zn1---N23 2.0747 (16) N51---C52 1.306 (5) Zn1---N101^i^ 2.1385 (16) C52---C53 1.376 (4) N21---C19 1.363 (3) C52---H52 0.9500 N21---C16 1.369 (3) C53---C54 1.369 (4) N22---C11 1.364 (3) C53---H53 0.9500 N22---C14 1.373 (2) C54---C55 1.355 (4) N23---C4 1.369 (3) C55---C56 1.389 (4) N23---C1 1.374 (3) C55---H55 0.9500 N24---C9 1.363 (3) C56---H56 0.9500 N24---C6 1.370 (2) N101---C102 1.333 (3) C1---C20 1.411 (3) N101---C106 1.336 (3) C1---C2 1.443 (3) N101---Zn1^ii^ 2.1385 (16) C2---C3 1.347 (3) C102---C103 1.376 (3) C2---H2 0.9500 C102---H102 0.9500 C3---C4 1.442 (3) C103---C104 1.383 (3) C3---H3 0.9500 C103---H103 0.9500 C4---C5 1.407 (3) C104---C105 1.383 (3) C5---C6 1.404 (3) C105---C106 1.385 (3) C5---C54 1.497 (3) C105---H105 0.9500 C6---C7 1.442 (3) C106---H106 0.9500 C7---C8 1.352 (3) N151---C152 1.294 (7) C7---H7 0.9500 N151---C156 1.307 (6) C8---C9 1.443 (3) C152---C153 1.385 (5) C8---H8 0.9500 C152---H152 0.9500 C9---C10 1.408 (3) C153---C154 1.372 (5) C10---C11 1.407 (3) C153---H153 0.9500 C10---C104 1.489 (3) C154---C155 1.345 (5) C11---C12 1.449 (3) C155---C156 1.413 (5) C12---C13 1.345 (3) C155---H155 0.9500 C12---H12 0.9500 C156---H156 0.9500 C13---C14 1.432 (3) N201---C206 1.320 (3) C13---H13 0.9500 N201---C202 1.330 (4) C14---C15 1.401 (3) C202---C203 1.382 (4) C15---C16 1.405 (3) C202---H202 0.9500 C15---C154 1.500 (3) C203---C204 1.387 (3) C16---C17 1.442 (3) C203---H203 0.9500 C17---C18 1.339 (3) C204---C205 1.388 (3) C17---H17 0.9500 C205---C206 1.382 (3) C18---C19 1.441 (3) C205---H205 0.9500 C18---H18 0.9500 C206---H206 0.9500 N24---Zn1---N21 162.77 (7) C17---C18---H18 126.1 N24---Zn1---N22 88.42 (6) C19---C18---H18 126.1 N21---Zn1---N22 88.84 (7) N21---C19---C20 126.29 (18) N24---Zn1---N23 89.34 (6) N21---C19---C18 109.15 (18) N21---Zn1---N23 87.94 (6) C20---C19---C18 124.46 (19) N22---Zn1---N23 161.70 (7) C1---C20---C19 124.66 (19) N24---Zn1---N101^i^ 95.10 (6) C1---C20---C204 118.30 (18) N21---Zn1---N101^i^ 102.11 (6) C19---C20---C204 116.97 (18) N22---Zn1---N101^i^ 102.00 (6) C56---N51---C52 115.3 (3) N23---Zn1---N101^i^ 96.29 (6) N51---C52---C53 124.6 (3) C19---N21---C16 106.82 (16) N51---C52---H52 117.7 C19---N21---Zn1 126.42 (13) C53---C52---H52 117.7 C16---N21---Zn1 126.72 (14) C54---C53---C52 119.8 (3) C11---N22---C14 106.27 (17) C54---C53---H53 120.1 C11---N22---Zn1 126.10 (13) C52---C53---H53 120.1 C14---N22---Zn1 127.37 (14) C55---C54---C53 115.9 (2) C4---N23---C1 106.45 (16) C55---C54---C5 123.2 (2) C4---N23---Zn1 125.15 (13) C53---C54---C5 120.9 (2) C1---N23---Zn1 126.61 (13) C54---C55---C56 119.9 (3) C9---N24---C6 106.48 (15) C54---C55---H55 120.0 C9---N24---Zn1 126.17 (12) C56---C55---H55 120.0 C6---N24---Zn1 126.59 (13) N51---C56---C55 124.4 (3) N23---C1---C20 124.64 (18) N51---C56---H56 117.8 N23---C1---C2 109.72 (17) C55---C56---H56 117.8 C20---C1---C2 125.64 (19) C102---N101---C106 116.85 (17) C3---C2---C1 106.8 (2) C102---N101---Zn1^ii^ 120.26 (13) C3---C2---H2 126.6 C106---N101---Zn1^ii^ 122.55 (14) C1---C2---H2 126.6 N101---C102---C103 123.56 (18) C2---C3---C4 107.42 (19) N101---C102---H102 118.2 C2---C3---H3 126.3 C103---C102---H102 118.2 C4---C3---H3 126.3 C102---C103---C104 119.61 (18) N23---C4---C5 126.00 (18) C102---C103---H103 120.2 N23---C4---C3 109.56 (18) C104---C103---H103 120.2 C5---C4---C3 124.42 (18) C105---C104---C103 117.31 (18) C6---C5---C4 125.98 (18) C105---C104---C10 122.03 (17) C6---C5---C54 117.43 (18) C103---C104---C10 120.65 (17) C4---C5---C54 116.59 (18) C104---C105---C106 119.38 (19) N24---C6---C5 125.05 (18) C104---C105---H105 120.3 N24---C6---C7 109.78 (17) C106---C105---H105 120.3 C5---C6---C7 125.15 (18) N101---C106---C105 123.3 (2) C8---C7---C6 106.91 (17) N101---C106---H106 118.4 C8---C7---H7 126.5 C105---C106---H106 118.4 C6---C7---H7 126.5 C152---N151---C156 117.0 (4) C7---C8---C9 106.83 (18) N151---C152---C153 123.7 (5) C7---C8---H8 126.6 N151---C152---H152 118.2 C9---C8---H8 126.6 C153---C152---H152 118.2 N24---C9---C10 125.42 (17) C154---C153---C152 120.3 (5) N24---C9---C8 110.00 (16) C154---C153---H153 119.9 C10---C9---C8 124.54 (18) C152---C153---H153 119.9 C11---C10---C9 125.06 (18) C155---C154---C153 116.1 (3) C11---C10---C104 117.12 (16) C155---C154---C15 122.8 (3) C9---C10---C104 117.77 (16) C153---C154---C15 121.1 (3) N22---C11---C10 125.68 (17) C154---C155---C156 120.0 (4) N22---C11---C12 109.87 (17) C154---C155---H155 120.0 C10---C11---C12 124.42 (18) C156---C155---H155 120.0 C13---C12---C11 106.50 (19) N151---C156---C155 122.9 (5) C13---C12---H12 126.7 N151---C156---H156 118.6 C11---C12---H12 126.7 C155---C156---H156 118.6 C12---C13---C14 107.59 (19) C206---N201---C202 115.6 (2) C12---C13---H13 126.2 N201---C202---C203 124.5 (2) C14---C13---H13 126.2 N201---C202---H202 117.8 N22---C14---C15 124.8 (2) C203---C202---H202 117.8 N22---C14---C13 109.76 (18) C202---C203---C204 119.5 (2) C15---C14---C13 125.41 (19) C202---C203---H203 120.3 C14---C15---C16 126.03 (19) C204---C203---H203 120.3 C14---C15---C154 117.7 (2) C203---C204---C205 116.2 (2) C16---C15---C154 116.28 (19) C203---C204---C20 121.7 (2) N21---C16---C15 125.76 (19) C205---C204---C20 122.07 (19) N21---C16---C17 109.5 (2) C206---C205---C204 119.5 (2) C15---C16---C17 124.7 (2) C206---C205---H205 120.3 C18---C17---C16 106.7 (2) C204---C205---H205 120.3 C18---C17---H17 126.6 N201---C206---C205 124.8 (2) C16---C17---H17 126.6 N201---C206---H206 117.6 C17---C18---C19 107.8 (2) C205---C206---H206 117.6 --------------------- ------------- ----------------------- ------------- ::: Symmetry codes: (i) *y*, −*x*+1/2, −*z*+1/2; (ii) −*y*+1/2, *x*, −*z*+1/2. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3951 .table-wrap} --------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C7---H7···N151^iii^ 0.95 2.65 3.583 (4) 167. C17---H17···N51^iv^ 0.95 2.66 3.583 (3) 165. --------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (iii) *x*, *y*, *z*+1; (iv) *x*, *y*, *z*−1. Table 1 ::: {.caption} ###### Selected geometric parameters (Å, °) ::: ::: {#d32e574 .table-wrap} --------------- ------------- Zn1---N24 2.0684 (15) Zn1---N21 2.0695 (16) Zn1---N22 2.0695 (17) Zn1---N23 2.0747 (16) Zn1---N101^i^ 2.1385 (16) --------------- ------------- ::: ::: {#d32e604 .table-wrap} --------------------- ------------ N24---Zn1---N21 162.77 (7) N24---Zn1---N22 88.42 (6) N21---Zn1---N22 88.84 (7) N24---Zn1---N23 89.34 (6) N21---Zn1---N23 87.94 (6) N22---Zn1---N23 161.70 (7) N24---Zn1---N101^i^ 95.10 (6) N21---Zn1---N101^i^ 102.11 (6) N22---Zn1---N101^i^ 102.00 (6) N23---Zn1---N101^i^ 96.29 (6) --------------------- ------------ Symmetry code: (i) . ::: ::: {#table2 .table-wrap} Table 2 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* -------------------- --------- ------- ----------- ------------- C7---H7⋯N151^ii^ 0.95 2.65 3.583 (4) 167 C17---H17⋯N51^iii^ 0.95 2.66 3.583 (3) 165 Symmetry codes: (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.077702
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051794/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):m236-m237", "authors": [ { "first": "Rüdiger W.", "last": "Seidel" }, { "first": "Jürgen", "last": "Graf" }, { "first": "Richard", "last": "Goddard" }, { "first": "Iris M.", "last": "Oppel" } ] }
PMC3051795
Related literature {#sec1} ================== For the related structure 1′,2′,3′,4′-tetra­hydro-1,3-diphenyl-4-*p*-tolyl­spiro­\[2-pyrazoline-5,2′-naph­thalen\]-1′-one, see: Krishna *et al.* (1999[@bb4]). For examples of the synthetic utility applied in the case of the title compound, see: Akama *et al.* (1996[@bb1]); Fahrni *et al.* (2003[@bb3]); Wei *et al.* (2007[@bb7]). For a description of the Cambridge Structural Database, see: Allen (2002[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~25~H~19~N~3~O~3~*M* *~r~* = 409.43Orthorhombic,*a* = 22.888 (5) Å*b* = 9.4031 (19) Å*c* = 8.9688 (18) Å*V* = 1930.3 (7) Å^3^*Z* = 4Mo *K*α radiationμ = 0.09 mm^−1^*T* = 293 K0.30 × 0.20 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku SCXmini diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb5]) *T* ~min~ = 0.962, *T* ~max~ = 0.98219272 measured reflections2352 independent reflections2131 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.062 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.039*wR*(*F* ^2^) = 0.097*S* = 1.072352 reflections288 parameters69 restraintsH atoms treated by a mixture of independent and constrained refinementΔρ~max~ = 0.17 e Å^−3^Δρ~min~ = −0.18 e Å^−3^ {#d5e494} Data collection: *CrystalClear* (Rigaku, 2005[@bb5]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL/PC*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536810053365/fb2230sup1.cif](http://dx.doi.org/10.1107/S1600536810053365/fb2230sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053365/fb2230Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053365/fb2230Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fb2230&file=fb2230sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fb2230sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fb2230&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FB2230](http://scripts.iucr.org/cgi-bin/sendsup?fb2230)). Comment ======= Pyrazoline derivatives are widely studied compounds. Some of them are capable of prototropic tautomerism (Akama *et al.*, 1996). Others show elevated fluorescence. Therefore they have been widely used as fluorescence probes in some elaborated chemosensors (Fahrni *et al.*, 2003) as well as hole-transport materials in electrophotography and electroluminescence (Wei *et al.*, 2007). Here we report the structure of the title compound, a new derivative of pyrazoline. In the pyrazoline ring, all the atoms are coplanar with the maximum deviation of 0.0258 (14)° for atom N1. The bond length of N2═C17 \[1.2865 (31) Å\] agrees with normal C═N bond (1.28 Å). The bond distance of N1---N2 \[1.3796 (25) Å\] conforms to the expected value (Krishna *et al.*, 1999), too. The mean plane of pyrazoline ring makes interplanar angles of 8.80 (15)° and 88.36 (5)° with 4-nitrophenyl ring and the anthryl fragment, respectively. The most interesting feature of the title structure is the distortion of the anthryl from planarity. The side rings of the anthryl fragment, *i. e.* the benzene rings C1\\C2\\C3\\C4\\C5\\C14 and C7\\C8\\C9\\C10\\C11\\C12, contain the angle 9.57 (8)°. In the anthryl fragment, the maximum deviation is 0.126 (3) Å from C4 atom to the mean plane of the ring. It can be related to the repulsion between the methine H15A and the anthryl H4A atoms (Fig. 1). The non-bonding distance between these two hydrogens equals to 1.95 Å. The attached atom H4A is also situated out of the plane of the ring. Fig. 2 was obtained from the search on the Cambridge Crystallographic Structure Database (Allen, 2002; version CSD 5.31 with the last upgrade from Sept. 1 2010) carried out on the structures with R-factor \< 0.05, with no disorder, no errors, with exclusion of the powder diffraction determinations and the polymeric structures or structures containing ions. This plot shows the correlation of the interplanar angle of the side anthryl rings with the C---C distance corresponding to C15---C6 (1.520 Å) in the title structure. It can be seen that the loss of planarity of the anthryl fragment is correlated to the lengthening of the bond by which is the anthryl attached to the the rest of the molecule. The present structure is situated at the extreme of the plot in Fig. 2. There are present only weak intermolecular interactions in the structure: C---H···N, C---H···π- electron ring interactions (Tab. 1). Moreover, there are also π-electron ring -π-electron ring interactions present in the structure: Between the pyrazoline ring N1\\N2\\C17\\C16\\C15 and the benzene C1\\C2\\C3\\C4\\C5\\C14 ring \[symmetry code: -*x*,1-*y*,1/2+*z*\] with the centroid-centroid distance equal to 3.7659 (17) Å; between the pyrazoline ring N1\\N2\\C17\\C16\\C15 and the benzene C5\\C6\\C7\\C12\\C13\\C14 ring \[symmetry code: *x*, *y*, *z*\] with the centroid-centroid distance equal to 3.9477 (15) Å and between the pyrazoline ring N1\\N2\\C17\\C16\\C15 and the benzene C5\\C6\\C7\\C12\\C13\\C14 ring \[symmetry code: *-x*, 1-*y*, 1/2+*z*\] with the centroid-centroid distance equal to 3.8972 (15) Å. Experimental {#experimental} ============ 3-(9-anthryl)-1-(4-nitrophenylprop)-2-en-1-one (3 mmol) and 0.6 g of hydrazine hydrate aqueous solution (1:1 *w*/*w*) were dissolved in 10 ml of glacial acetic acid. The mixture was stirred for 8 h at 391 K to give an orange solid. The product was then isolated and recrystallized from acetonitrile. The average size of light yellow single-crystals of the title structure equalled to 2.0 mm×1.0 mm×1.0 mm. Refinement {#refinement} ========== All the H atoms were discernible in the difference electron density map. Nevertheless all the H atoms except the atoms H4A and H15A the coordinates of which have been freely refined were fully constrained. (The atoms H4A and H15A are involved in the repulsion that plausibly results in the deformation of the anthryl fragment - see the comment section.) The values of the used constraints were following: C~aryl~---H~aryl~ = 0.93, C~methyl~---H~methyl~ = 0.96, C~methylene~---H~methylene~ = 0.97, C~methine~---H~methine~ = 0.98 Å; *U*~iso~H~aryl/methylene/methine~ = 1.2*U*~eq~C~aryl/methylene/methine~; *U*~iso~H~methyl~ = 1.5*U*~eq~C~methyl~. As there have been present no significant atomic scatterers in the experiment, 2058 Friedel pairs were merged. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The title molecule, showing the atom-numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. ::: ![](e-67-0o386-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The correlation between the interplanar angles of the side rings in the anthryl fragments retrieved from the Cambridge Crystallographic Database (Allen, 2002; version CSD 5.31 with the last upgrade from Sept. 1 2010) and the length of the bond by which the anthryl is attached to the rest of the molecule. (Cattached and Canthryl correspond to C15 and C6 atoms of the title molecule, respectively.) The title compound is indicated by a red large circle while the rest of the compounds by small black squares. ::: ![](e-67-0o386-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e233 .table-wrap} ------------------------- --------------------------------------- C~25~H~19~N~3~O~3~ *F*(000) = 856 *M~r~* = 409.43 *D*~x~ = 1.409 Mg m^−3^ Orthorhombic, *Pca*2~1~ Mo *K*α radiation, λ = 0.71073 Å Hall symbol: P 2c -2ac Cell parameters from 3824 reflections *a* = 22.888 (5) Å θ = 2.6--25.0° *b* = 9.4031 (19) Å µ = 0.09 mm^−1^ *c* = 8.9688 (18) Å *T* = 293 K *V* = 1930.3 (7) Å^3^ Prism, yellow *Z* = 4 0.30 × 0.20 × 0.20 mm ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e358 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku SCXmini diffractometer 2352 independent reflections Radiation source: fine-focus sealed tube 2131 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.062 φ and ω scans θ~max~ = 27.5°, θ~min~ = 3.3° Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *h* = −29→29 *T*~min~ = 0.962, *T*~max~ = 0.982 *k* = −12→12 19272 measured reflections *l* = −11→11 ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e475 .table-wrap} ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.039 H atoms treated by a mixture of independent and constrained refinement *wR*(*F*^2^) = 0.097 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0488*P*)^2^ + 0.2241*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.07 (Δ/σ)~max~ \< 0.001 2352 reflections Δρ~max~ = 0.17 e Å^−3^ 288 parameters Δρ~min~ = −0.18 e Å^−3^ 69 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc^\*^=kFc\[1+0.001xFc^2^λ^3^/sin(2θ)\]^-1/4^ Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.018 (2) ---------------------------------------------------------------- ---------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e656 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*- factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e755 .table-wrap} ------ --------------- ------------ ------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ N1 0.09343 (7) 0.5404 (2) 0.2678 (2) 0.0364 (4) C5 −0.06548 (9) 0.5860 (2) 0.2243 (2) 0.0319 (5) C6 −0.00794 (9) 0.6399 (2) 0.2175 (2) 0.0316 (4) N2 0.14083 (8) 0.6030 (2) 0.3366 (2) 0.0360 (4) C13 −0.09433 (10) 0.7481 (2) 0.0248 (3) 0.0410 (5) H13A −0.1228 0.7832 −0.0394 0.049\* C8 0.06219 (10) 0.8147 (2) 0.1055 (3) 0.0390 (5) H8A 0.0915 0.7868 0.1711 0.047\* C17 0.12204 (9) 0.6934 (2) 0.4330 (3) 0.0335 (5) C15 0.03652 (9) 0.5881 (2) 0.3311 (3) 0.0337 (5) H15A 0.0208 (10) 0.506 (3) 0.387 (3) 0.040\* C7 0.00641 (9) 0.7476 (2) 0.1140 (2) 0.0326 (5) C25 0.22213 (9) 0.7571 (3) 0.5197 (3) 0.0416 (5) H25A 0.2374 0.6845 0.4611 0.050\* C12 −0.03748 (10) 0.7977 (2) 0.0123 (3) 0.0355 (5) C23 0.23569 (10) 0.9475 (2) 0.6891 (3) 0.0405 (5) C20 0.16176 (9) 0.7811 (2) 0.5216 (3) 0.0344 (5) C1 −0.16961 (10) 0.6046 (3) 0.1484 (3) 0.0454 (6) H1A −0.1985 0.6480 0.0915 0.054\* O3 0.25365 (12) 1.1255 (2) 0.8605 (3) 0.0729 (7) C14 −0.10970 (9) 0.6478 (2) 0.1304 (3) 0.0368 (5) O1 0.05499 (8) 0.3576 (2) 0.1437 (3) 0.0563 (5) C22 0.17679 (11) 0.9742 (3) 0.6936 (3) 0.0453 (6) H22A 0.1620 1.0473 0.7523 0.054\* C4 −0.08379 (10) 0.4732 (3) 0.3199 (3) 0.0400 (5) H4A −0.0558 (12) 0.417 (3) 0.377 (3) 0.048\* C9 0.07371 (11) 0.9182 (3) 0.0041 (3) 0.0467 (6) H9A 0.1101 0.9621 0.0041 0.056\* C21 0.13977 (10) 0.8900 (3) 0.6090 (3) 0.0421 (6) H21A 0.0997 0.9068 0.6110 0.051\* C16 0.05649 (9) 0.7025 (3) 0.4436 (3) 0.0371 (5) H16A 0.0425 0.7960 0.4152 0.045\* H16B 0.0430 0.6808 0.5435 0.045\* C3 −0.14067 (10) 0.4332 (3) 0.3298 (3) 0.0463 (6) H3A −0.1510 0.3589 0.3929 0.056\* C11 −0.02261 (12) 0.9016 (3) −0.0966 (3) 0.0474 (6) H11A −0.0506 0.9297 −0.1659 0.057\* N3 0.27495 (10) 1.0378 (2) 0.7773 (3) 0.0515 (6) C24 0.25901 (10) 0.8402 (3) 0.6037 (3) 0.0449 (6) H24A 0.2991 0.8241 0.6027 0.054\* O2 0.32753 (9) 1.0208 (2) 0.7630 (3) 0.0698 (7) C18 0.09882 (10) 0.4194 (2) 0.1846 (3) 0.0397 (5) C2 −0.18442 (10) 0.5023 (3) 0.2462 (4) 0.0497 (6) H29A −0.2234 0.4772 0.2587 0.060\* C19 0.15940 (11) 0.3706 (3) 0.1485 (4) 0.0528 (7) H19A 0.1576 0.2937 0.0783 0.079\* H19B 0.1784 0.3389 0.2380 0.079\* H19C 0.1811 0.4480 0.1061 0.079\* C10 0.03117 (11) 0.9604 (3) −0.1016 (3) 0.0515 (7) H10A 0.0402 1.0280 −0.1737 0.062\* ------ --------------- ------------ ------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1437 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ N1 0.0253 (8) 0.0385 (10) 0.0455 (11) 0.0019 (7) −0.0063 (8) 0.0004 (9) C5 0.0279 (10) 0.0329 (10) 0.0349 (12) 0.0039 (8) −0.0028 (9) −0.0064 (9) C6 0.0271 (9) 0.0328 (10) 0.0348 (11) 0.0048 (8) −0.0054 (9) −0.0017 (9) N2 0.0266 (9) 0.0383 (10) 0.0430 (10) −0.0011 (7) −0.0073 (8) 0.0041 (9) C13 0.0389 (12) 0.0428 (12) 0.0412 (13) 0.0136 (10) −0.0119 (11) −0.0007 (11) C8 0.0350 (11) 0.0412 (11) 0.0408 (13) 0.0055 (9) 0.0004 (10) 0.0055 (10) C17 0.0275 (10) 0.0370 (11) 0.0361 (12) 0.0006 (8) −0.0023 (9) 0.0063 (10) C15 0.0259 (10) 0.0389 (11) 0.0362 (11) −0.0015 (9) −0.0042 (9) 0.0071 (10) C7 0.0335 (11) 0.0330 (10) 0.0312 (11) 0.0063 (8) −0.0004 (9) −0.0024 (9) C25 0.0313 (11) 0.0448 (13) 0.0486 (14) 0.0004 (9) −0.0041 (11) −0.0027 (12) C12 0.0376 (11) 0.0352 (10) 0.0336 (11) 0.0087 (9) −0.0035 (10) −0.0003 (10) C23 0.0437 (13) 0.0394 (11) 0.0382 (13) −0.0085 (10) −0.0099 (11) 0.0081 (10) C20 0.0305 (10) 0.0387 (11) 0.0340 (11) −0.0038 (8) −0.0028 (9) 0.0065 (10) C1 0.0283 (11) 0.0526 (14) 0.0553 (15) 0.0067 (10) −0.0114 (11) −0.0095 (13) O3 0.0843 (15) 0.0646 (12) 0.0698 (16) −0.0126 (13) −0.0163 (12) −0.0162 (13) C14 0.0304 (10) 0.0378 (11) 0.0421 (12) 0.0058 (9) −0.0055 (10) −0.0091 (10) O1 0.0478 (10) 0.0497 (10) 0.0713 (13) −0.0029 (8) −0.0149 (10) −0.0094 (10) C22 0.0483 (14) 0.0478 (13) 0.0399 (13) 0.0014 (11) −0.0015 (11) −0.0043 (11) C4 0.0316 (12) 0.0417 (13) 0.0468 (14) −0.0006 (9) −0.0033 (10) 0.0026 (11) C9 0.0414 (13) 0.0461 (13) 0.0527 (15) 0.0033 (10) 0.0076 (12) 0.0102 (12) C21 0.0316 (11) 0.0502 (13) 0.0445 (14) 0.0019 (10) −0.0047 (10) −0.0013 (11) C16 0.0287 (10) 0.0493 (13) 0.0333 (12) 0.0008 (9) −0.0025 (9) 0.0014 (10) C3 0.0358 (12) 0.0499 (14) 0.0531 (15) −0.0074 (10) 0.0019 (11) −0.0012 (12) C11 0.0510 (14) 0.0498 (13) 0.0413 (13) 0.0145 (11) −0.0051 (12) 0.0072 (11) N3 0.0599 (14) 0.0461 (12) 0.0487 (13) −0.0135 (10) −0.0163 (12) 0.0074 (11) C24 0.0304 (11) 0.0498 (13) 0.0546 (16) −0.0033 (10) −0.0073 (11) 0.0050 (12) O2 0.0491 (11) 0.0722 (13) 0.0881 (17) −0.0182 (10) −0.0255 (12) −0.0016 (13) C18 0.0392 (12) 0.0353 (11) 0.0446 (13) 0.0029 (9) −0.0087 (10) 0.0026 (11) C2 0.0269 (10) 0.0579 (15) 0.0642 (17) −0.0043 (10) −0.0019 (12) −0.0107 (14) C19 0.0482 (14) 0.0493 (14) 0.0609 (17) 0.0122 (11) −0.0046 (13) −0.0073 (14) C10 0.0572 (16) 0.0498 (14) 0.0476 (15) 0.0119 (12) 0.0084 (13) 0.0191 (12) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2059 .table-wrap} ------------------ ------------- ------------------- ------------- N1---C18 1.367 (3) C20---C21 1.384 (3) N1---N2 1.380 (3) C1---C2 1.345 (4) N1---C15 1.490 (3) C1---C14 1.439 (3) C5---C6 1.412 (3) C1---H1A 0.9300 C5---C4 1.427 (3) O3---N3 1.214 (3) C5---C14 1.440 (3) O1---C18 1.216 (3) C6---C7 1.413 (3) C22---C21 1.386 (3) C6---C15 1.520 (3) C22---H22A 0.9300 N2---C17 1.287 (3) C4---C3 1.358 (3) C13---C14 1.382 (4) C4---H4A 0.97 (3) C13---C12 1.387 (3) C9---C10 1.416 (4) C13---H13A 0.9300 C9---H9A 0.9300 C8---C9 1.358 (3) C21---H21A 0.9300 C8---C7 1.426 (3) C16---H16A 0.9700 C8---H8A 0.9300 C16---H16B 0.9700 C17---C20 1.462 (3) C3---C2 1.409 (4) C17---C16 1.506 (3) C3---H3A 0.9300 C15---C16 1.544 (3) C11---C10 1.350 (4) C15---H15A 0.99 (3) C11---H11A 0.9300 C7---C12 1.436 (3) N3---O2 1.221 (3) C25---C24 1.375 (3) C24---H24A 0.9300 C25---C20 1.400 (3) C18---C19 1.496 (3) C25---H25A 0.9300 C2---H29A 0.9300 C12---C11 1.423 (4) C19---H19A 0.9600 C23---C22 1.372 (3) C19---H19B 0.9600 C23---C24 1.374 (4) C19---H19C 0.9600 C23---N3 1.468 (3) C10---H10A 0.9300 C18---N1---N2 121.89 (18) C23---C22---C21 118.7 (2) C18---N1---C15 122.51 (18) C23---C22---H22A 120.6 N2---N1---C15 112.89 (18) C21---C22---H22A 120.6 C6---C5---C4 124.50 (19) C3---C4---C5 121.8 (2) C6---C5---C14 119.1 (2) C3---C4---H4A 116.5 (16) C4---C5---C14 116.45 (19) C5---C4---H4A 121.6 (16) C5---C6---C7 120.14 (18) C8---C9---C10 121.0 (2) C5---C6---C15 118.71 (19) C8---C9---H9A 119.5 C7---C6---C15 120.98 (18) C10---C9---H9A 119.5 C17---N2---N1 108.61 (17) C20---C21---C22 120.7 (2) C14---C13---C12 121.6 (2) C20---C21---H21A 119.7 C14---C13---H13A 119.2 C22---C21---H21A 119.7 C12---C13---H13A 119.2 C17---C16---C15 102.38 (18) C9---C8---C7 121.8 (2) C17---C16---H16A 111.3 C9---C8---H8A 119.1 C15---C16---H16A 111.3 C7---C8---H8A 119.1 C17---C16---H16B 111.3 N2---C17---C20 122.01 (19) C15---C16---H16B 111.3 N2---C17---C16 114.39 (19) H16A---C16---H16B 109.2 C20---C17---C16 123.6 (2) C4---C3---C2 121.3 (3) N1---C15---C6 115.24 (19) C4---C3---H3A 119.4 N1---C15---C16 101.51 (16) C2---C3---H3A 119.4 C6---C15---C16 114.36 (18) C10---C11---C12 121.4 (2) N1---C15---H15A 106.1 (14) C10---C11---H11A 119.3 C6---C15---H15A 110.3 (15) C12---C11---H11A 119.3 C16---C15---H15A 108.6 (16) O3---N3---O2 123.3 (2) C6---C7---C8 124.09 (19) O3---N3---C23 118.6 (2) C6---C7---C12 119.35 (19) O2---N3---C23 118.1 (2) C8---C7---C12 116.5 (2) C23---C24---C25 118.9 (2) C24---C25---C20 120.5 (2) C23---C24---H24A 120.5 C24---C25---H25A 119.7 C25---C24---H24A 120.5 C20---C25---H25A 119.7 O1---C18---N1 119.2 (2) C13---C12---C11 120.7 (2) O1---C18---C19 123.6 (2) C13---C12---C7 119.6 (2) N1---C18---C19 117.2 (2) C11---C12---C7 119.6 (2) C1---C2---C3 119.8 (2) C22---C23---C24 122.2 (2) C1---C2---H29A 120.1 C22---C23---N3 118.7 (2) C3---C2---H29A 120.1 C24---C23---N3 119.2 (2) C18---C19---H19A 109.5 C21---C20---C25 119.0 (2) C18---C19---H19B 109.5 C21---C20---C17 119.93 (19) H19A---C19---H19B 109.5 C25---C20---C17 121.1 (2) C18---C19---H19C 109.5 C2---C1---C14 121.0 (2) H19A---C19---H19C 109.5 C2---C1---H1A 119.5 H19B---C19---H19C 109.5 C14---C1---H1A 119.5 C11---C10---C9 119.4 (2) C13---C14---C1 120.8 (2) C11---C10---H10A 120.3 C13---C14---C5 119.8 (2) C9---C10---H10A 120.3 C1---C14---C5 119.3 (2) ------------------ ------------- ------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2741 .table-wrap} ------------------------------------------------------------------------------------------------------------ Cg1, Cg2 and Cg3 are the centroids of the N1,N2,C15--C17, C5--C7,C12--C14 and C7--C12 rings, respectively. ------------------------------------------------------------------------------------------------------------ ::: ::: {#d1e2745 .table-wrap} --------------------- --------- ---------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C8---H8A···N1 0.93 2.47 3.047 (3) 120. C8---H8A···N2 0.93 2.54 3.391 (3) 152. C8---H8A···Cg1 0.93 2.29 2.979 (3) 142 C15---H15A···Cg2^i^ 0.99 2.90 (3) 3.731 (3) 142 C4---H4A···Cg3^i^ 0.976 2.95 3.824 (3) 150 --------------------- --------- ---------- ----------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1, *Cg*2 and *Cg*3 are the centroids of the N1,N2,C15--C17, C5--C7,C12--C14 and C7--C12 rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------- --------- ---------- ----------- ------------- C8---H8*A*⋯N1 0.93 2.47 3.047 (3) 120 C8---H8*A*⋯N2 0.93 2.54 3.391 (3) 152 C8---H8*A*⋯*Cg*1 0.93 2.29 2.979 (3) 142 C15---H15*A*⋯*Cg*2^i^ 0.99 2.90 (3) 3.731 (3) 142 C4---H4*A*⋯*Cg*3^i^ 0.976 2.95 3.824 (3) 150 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.085292
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051795/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):o386", "authors": [ { "first": "Bao-Li", "last": "Dong" }, { "first": "Ming-Liang", "last": "Wang" }, { "first": "Yong-Hua", "last": "Li" } ] }
PMC3051796
Related literature {#sec1} ================== For applications of amides and amide derivatives in the pharmaceutical industry, see: Banihashemi & Firoozifar (2003[@bb2]); Mallakpour & Kowsari (2005[@bb3]); Saxena *et al.* (2003[@bb5]); Wang *et al.* (2008[@bb8]). For standard bond lengths, see: Allen *et al.* (1987[@bb1]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~16~H~14~N~2~O~5~*M* *~r~* = 314.29Triclinic,*a* = 6.9802 (3) Å*b* = 9.3570 (4) Å*c* = 12.5779 (5) Åα = 102.833 (4)°β = 94.296 (4)°γ = 107.567 (4)°*V* = 754.68 (6) Å^3^*Z* = 2Cu *K*α radiationμ = 0.88 mm^−1^*T* = 295 K0.52 × 0.48 × 0.24 mm ### Data collection {#sec2.1.2} Oxford Diffraction Xcalibur Ruby Gemini diffractometerAbsorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007[@bb4]) *T* ~min~ = 0.825, *T* ~max~ = 1.00010410 measured reflections10410 independent reflections9282 reflections with *I* \> 2σ(*I*) ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.157*S* = 1.0410410 reflections218 parameters25 restraintsH-atom parameters constrainedΔρ~max~ = 0.20 e Å^−3^Δρ~min~ = −0.21 e Å^−3^ {#d5e492} Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007[@bb4]); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2007[@bb4]); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *PLATON* (Spek, 2009[@bb7]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811002236/hg2769sup1.cif](http://dx.doi.org/10.1107/S1600536811002236/hg2769sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002236/hg2769Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002236/hg2769Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hg2769&file=hg2769sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hg2769sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hg2769&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HG2769](http://scripts.iucr.org/cgi-bin/sendsup?hg2769)). RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer. Comment ======= The development of heat-resistant, high performance polymers in the past decades has been quite dramatic and has drawn the attention of many polymer scientists all over the world. Wholly aromatic polymers such as polyamides and polyimides have already been noted for high temperature resistance and excellent physico-mechanical properties. Amides and amide derivatives have extensive applications in the pharmaceutical industry (Wang *et al.*, 2008) and in polymer chemistry (Saxena *et al.*, 2003; Banihashemi & Firoozifar, 2003; Mallakpour *et al.*, 2005). In the title compound, C~16~H~14~N~2~O~5~, a nonmerohedral twin, the dihedral angle between the mean planes of the two benzene rings is 4.0 (9)° (Fig. 1). The ethyl group is disordered (0.643 (14) & 0.357 (14) occupancy). The nitro group is twisted by 16.4 (4)° from the mean plane of the benzene ring and the mean plane of the carbonyl group is twisted from the mean planes of the two benzene rings by 4.5 (0)° and 4.7 (9)°, respectively. Bond distances and angles are in normal ranges (Allen *et al.*, 1987). Crystal packing is stabilized by intramolecular N---H···O, and weak C---H···O intermolecular hydrogen bond interactions (Fig. 2). Experimental {#experimental} ============ A mixture of 4-nitrobenzoyl chloride (0.01 mol) and ethyl-*p*-aminobenzoate (0.01 mol) was refluxed in anhydrous acetone (70 ml) for three hours. After cooling to room temperature, the mixture was poured into acidified cold water. The resulting yellow solid product was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal *x*-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate. Refinement {#refinement} ========== This structure has been refined as a nonmerohedral twin and the nonmerohedral twin matrix has been identified. The ethyl group carbon atoms are disordered with occupancies 0.643 (14) (C15A & C16A) and 0.357 (14) (C15B & C16B), respectively. All of the other H atoms were placed in their calculated positions and then refined using the riding model with Atom--H lengths of 0.93Å (CH), 0.97Å (CH~2~), or 0.96Å (CH~3~) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.19--1.20 (CH), 1.20 (CH~2~), 1.49 (CH~3~) or 1.20 (NH) times *U*~eq~ of the parent atom. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### Molecular structure of C16H14N2O5, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N---H···O intramolecular hydrogen bonding. C15A & C16A represent the major component (0.643 (14)) of the disordered ethyl group. ::: ![](e-67-0o465-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound viewed down the b axis. Dashed lined indicate N---H···O intramolecular hydrogen bonding. ::: ![](e-67-0o465-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e159 .table-wrap} ----------------------- --------------------------------------- C~16~H~14~N~2~O~5~ *Z* = 2 *M~r~* = 314.29 *F*(000) = 328 Triclinic, *P*1 *D*~x~ = 1.383 Mg m^−3^ Hall symbol: -P 1 Cu *K*α radiation, λ = 1.54178 Å *a* = 6.9802 (3) Å Cell parameters from 4228 reflections *b* = 9.3570 (4) Å θ = 5.1--73.9° *c* = 12.5779 (5) Å µ = 0.88 mm^−1^ α = 102.833 (4)° *T* = 295 K β = 94.296 (4)° Block, yellow γ = 107.567 (4)° 0.52 × 0.48 × 0.24 mm *V* = 754.68 (6) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e295 .table-wrap} ------------------------------------------------------------------------------ -------------------------------------- Oxford Diffraction Xcalibur Ruby Gemini diffractometer 10410 measured reflections Radiation source: Enhance (Cu) X-ray Source 10410 independent reflections graphite 9282 reflections with *I* \> 2σ(*I*) Detector resolution: 10.5081 pixels mm^-1^ θ~max~ = 74.5°, θ~min~ = 5.1° ω scans *h* = −8→8 Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2007) *k* = −11→11 *T*~min~ = 0.825, *T*~max~ = 1.000 *l* = −15→15 ------------------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e407 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.157 H-atom parameters constrained *S* = 1.04 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0935*P*)^2^ + 0.0632*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 10410 reflections (Δ/σ)~max~ \< 0.001 218 parameters Δρ~max~ = 0.20 e Å^−3^ 25 restraints Δρ~min~ = −0.21 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e564 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e663 .table-wrap} ------ --------------- -------------- -------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) O1 −0.18667 (13) 0.04273 (9) 0.01289 (7) 0.1014 (3) O2 0.02489 (16) 0.25940 (11) 0.00650 (7) 0.1088 (3) O3 0.12371 (18) 0.20254 (8) 0.56742 (8) 0.1132 (3) O4 0.40086 (11) 0.74605 (7) 0.55727 (5) 0.06973 (19) O5 0.52758 (10) 0.93554 (6) 0.71099 (5) 0.06630 (18) N1 −0.05477 (14) 0.16683 (10) 0.05611 (8) 0.0793 (3) N2 0.24927 (11) 0.45878 (8) 0.57997 (6) 0.06052 (19) H2 0.2733 0.5241 0.5401 0.073\* C1 0.11370 (12) 0.27848 (8) 0.40099 (8) 0.0583 (2) C2 0.01013 (15) 0.12590 (9) 0.34180 (9) 0.0697 (3) H2A −0.0232 0.0483 0.3789 0.084\* C3 −0.04350 (15) 0.08854 (10) 0.22924 (9) 0.0725 (3) H3A −0.1131 −0.0134 0.1900 0.087\* C4 0.00737 (13) 0.20403 (10) 0.17595 (8) 0.0637 (2) C5 0.11309 (14) 0.35587 (10) 0.23110 (8) 0.0653 (2) H5A 0.1488 0.4323 0.1930 0.078\* C6 0.16450 (14) 0.39178 (9) 0.34375 (8) 0.0634 (2) H6A 0.2347 0.4940 0.3822 0.076\* C7 0.16219 (14) 0.30877 (9) 0.52350 (8) 0.0657 (2) C8 0.30613 (12) 0.52356 (9) 0.69344 (7) 0.0574 (2) C9 0.26962 (16) 0.43559 (12) 0.77040 (9) 0.0753 (3) H9A 0.2068 0.3287 0.7464 0.090\* C10 0.32558 (18) 0.50539 (14) 0.88137 (10) 0.0870 (3) H10A 0.2980 0.4450 0.9315 0.104\* C11 0.42132 (18) 0.66243 (14) 0.91963 (9) 0.0817 (3) H11A 0.4610 0.7079 0.9949 0.098\* C12 0.45786 (14) 0.75151 (11) 0.84562 (8) 0.0656 (2) H12A 0.5215 0.8581 0.8714 0.079\* C13 0.40165 (12) 0.68549 (9) 0.73274 (7) 0.0541 (2) C14 0.44109 (12) 0.78829 (9) 0.65684 (7) 0.0544 (2) C15A 0.5896 (13) 1.0482 (9) 0.6489 (8) 0.0698 (11) 0.643 (14) H15A 0.4716 1.0511 0.6046 0.084\* 0.643 (14) H15B 0.6805 1.0202 0.5997 0.084\* 0.643 (14) C16A 0.6954 (13) 1.2037 (5) 0.7264 (5) 0.0928 (12) 0.643 (14) H16A 0.7493 1.2776 0.6850 0.139\* 0.643 (14) H16B 0.8043 1.1978 0.7747 0.139\* 0.643 (14) H16C 0.6005 1.2359 0.7693 0.139\* 0.643 (14) C15B 0.550 (2) 1.0505 (18) 0.6437 (16) 0.0698 (11) 0.357 (14) H15C 0.6508 1.0448 0.5953 0.084\* 0.357 (14) H15D 0.4216 1.0358 0.6001 0.084\* 0.357 (14) C16B 0.6185 (17) 1.1998 (11) 0.7309 (9) 0.0928 (12) 0.357 (14) H16D 0.6536 1.2847 0.6970 0.139\* 0.357 (14) H16E 0.7352 1.2045 0.7788 0.139\* 0.357 (14) H16F 0.5108 1.2062 0.7729 0.139\* 0.357 (14) ------ --------------- -------------- -------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1258 .table-wrap} ------ ------------ ------------ ------------- ------------- ------------- ------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ O1 0.0958 (5) 0.0834 (5) 0.0877 (5) 0.0130 (4) −0.0132 (4) −0.0212 (4) O2 0.1291 (7) 0.1025 (6) 0.0697 (5) 0.0111 (5) 0.0051 (5) 0.0127 (5) O3 0.1821 (9) 0.0505 (4) 0.0854 (5) 0.0055 (4) 0.0053 (5) 0.0245 (4) O4 0.0973 (5) 0.0501 (3) 0.0505 (3) 0.0120 (3) 0.0030 (3) 0.0100 (2) O5 0.0821 (4) 0.0482 (3) 0.0557 (3) 0.0088 (3) 0.0018 (3) 0.0079 (3) N1 0.0766 (5) 0.0723 (5) 0.0714 (5) 0.0212 (4) 0.0004 (4) −0.0088 (4) N2 0.0725 (4) 0.0454 (3) 0.0590 (4) 0.0133 (3) 0.0046 (3) 0.0141 (3) C1 0.0556 (4) 0.0421 (4) 0.0717 (5) 0.0131 (3) 0.0071 (4) 0.0085 (4) C2 0.0723 (6) 0.0429 (4) 0.0849 (7) 0.0114 (4) 0.0083 (5) 0.0103 (4) C3 0.0699 (5) 0.0444 (4) 0.0846 (7) 0.0095 (4) 0.0019 (5) −0.0045 (4) C4 0.0564 (5) 0.0568 (5) 0.0677 (5) 0.0178 (4) 0.0045 (4) −0.0015 (4) C5 0.0690 (5) 0.0524 (4) 0.0646 (5) 0.0122 (4) 0.0055 (4) 0.0075 (4) C6 0.0684 (5) 0.0415 (4) 0.0670 (5) 0.0073 (3) 0.0039 (4) 0.0048 (3) C7 0.0742 (5) 0.0443 (4) 0.0740 (6) 0.0128 (4) 0.0091 (4) 0.0159 (4) C8 0.0570 (4) 0.0561 (4) 0.0608 (5) 0.0187 (3) 0.0059 (4) 0.0190 (4) C9 0.0854 (6) 0.0668 (5) 0.0742 (6) 0.0189 (5) 0.0047 (5) 0.0303 (5) C10 0.1013 (8) 0.0948 (8) 0.0730 (7) 0.0277 (6) 0.0080 (5) 0.0454 (6) C11 0.0959 (7) 0.0933 (7) 0.0550 (5) 0.0294 (6) −0.0004 (5) 0.0236 (5) C12 0.0678 (5) 0.0696 (5) 0.0558 (5) 0.0210 (4) 0.0006 (4) 0.0137 (4) C13 0.0517 (4) 0.0554 (4) 0.0550 (4) 0.0185 (3) 0.0043 (3) 0.0137 (3) C14 0.0551 (4) 0.0501 (4) 0.0532 (4) 0.0144 (3) 0.0038 (3) 0.0092 (3) C15A 0.084 (3) 0.0519 (5) 0.0668 (10) 0.0134 (15) 0.0017 (19) 0.0182 (6) C16A 0.114 (3) 0.0528 (6) 0.0912 (10) 0.0040 (19) 0.005 (2) 0.0139 (6) C15B 0.084 (3) 0.0519 (5) 0.0668 (10) 0.0134 (15) 0.0017 (19) 0.0182 (6) C16B 0.114 (3) 0.0528 (6) 0.0912 (10) 0.0040 (19) 0.005 (2) 0.0139 (6) ------ ------------ ------------ ------------- ------------- ------------- ------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1692 .table-wrap} -------------------- -------------- ------------------------- ------------- O1---N1 1.2210 (11) C8---C13 1.4116 (12) O2---N1 1.2042 (12) C9---C10 1.3735 (16) O3---C7 1.2126 (11) C9---H9A 0.9300 O4---C14 1.2099 (10) C10---C11 1.3720 (17) O5---C14 1.3214 (10) C10---H10A 0.9300 O5---C15A 1.431 (12) C11---C12 1.3705 (14) O5---C15B 1.49 (2) C11---H11A 0.9300 N1---C4 1.4694 (13) C12---C13 1.3899 (13) N2---C7 1.3497 (11) C12---H12A 0.9300 N2---C8 1.3955 (12) C13---C14 1.4833 (12) N2---H2 0.8600 C15A---C16A 1.492 (6) C1---C6 1.3851 (12) C15A---H15A 0.9700 C1---C2 1.3926 (12) C15A---H15B 0.9700 C1---C7 1.4963 (13) C16A---H16A 0.9600 C2---C3 1.3742 (15) C16A---H16B 0.9600 C2---H2A 0.9300 C16A---H16C 0.9600 C3---C4 1.3670 (14) C15B---C16B 1.490 (12) C3---H3A 0.9300 C15B---H15C 0.9700 C4---C5 1.3773 (12) C15B---H15D 0.9700 C5---C6 1.3743 (14) C16B---H16D 0.9600 C5---H5A 0.9300 C16B---H16E 0.9600 C6---H6A 0.9300 C16B---H16F 0.9600 C8---C9 1.3943 (13) C14---O5---C15A 118.5 (3) C8---C9---H9A 119.7 C14---O5---C15B 116.1 (5) C11---C10---C9 121.27 (9) O2---N1---O1 123.88 (10) C11---C10---H10A 119.4 O2---N1---C4 118.86 (8) C9---C10---H10A 119.4 O1---N1---C4 117.26 (10) C12---C11---C10 119.23 (10) C7---N2---C8 129.57 (7) C12---C11---H11A 120.4 C7---N2---H2 115.2 C10---C11---H11A 120.4 C8---N2---H2 115.2 C11---C12---C13 121.24 (9) C6---C1---C2 118.55 (9) C11---C12---H12A 119.4 C6---C1---C7 124.29 (7) C13---C12---H12A 119.4 C2---C1---C7 117.16 (8) C12---C13---C8 119.45 (8) C3---C2---C1 120.87 (9) C12---C13---C14 118.76 (8) C3---C2---H2A 119.6 C8---C13---C14 121.78 (7) C1---C2---H2A 119.6 O4---C14---O5 122.72 (7) C4---C3---C2 118.78 (8) O4---C14---C13 125.49 (7) C4---C3---H3A 120.6 O5---C14---C13 111.79 (7) C2---C3---H3A 120.6 O5---C15A---C16A 109.2 (7) C3---C4---C5 122.19 (9) O5---C15A---H15A 109.8 C3---C4---N1 119.44 (8) C16A---C15A---H15A 109.8 C5---C4---N1 118.36 (9) O5---C15A---H15B 109.8 C6---C5---C4 118.41 (8) C16A---C15A---H15B 109.8 C6---C5---H5A 120.8 H15A---C15A---H15B 108.3 C4---C5---H5A 120.8 C16B---C15B---O5 101.6 (13) C5---C6---C1 121.18 (8) C16B---C15B---H15C 111.4 C5---C6---H6A 119.4 O5---C15B---H15C 111.4 C1---C6---H6A 119.4 C16B---C15B---H15D 111.4 O3---C7---N2 123.20 (9) O5---C15B---H15D 111.4 O3---C7---C1 120.67 (8) H15C---C15B---H15D 109.3 N2---C7---C1 116.13 (7) C15B---C16B---H16D 109.5 C9---C8---N2 122.86 (8) C15B---C16B---H16E 109.5 C9---C8---C13 118.22 (8) H16D---C16B---H16E 109.5 N2---C8---C13 118.91 (7) C15B---C16B---H16F 109.5 C10---C9---C8 120.58 (9) H16D---C16B---H16F 109.5 C10---C9---H9A 119.7 H16E---C16B---H16F 109.5 C6---C1---C2---C3 −1.00 (14) C13---C8---C9---C10 −0.03 (15) C7---C1---C2---C3 178.82 (9) C8---C9---C10---C11 −1.01 (18) C1---C2---C3---C4 0.25 (15) C9---C10---C11---C12 1.36 (18) C2---C3---C4---C5 1.01 (15) C10---C11---C12---C13 −0.66 (17) C2---C3---C4---N1 −177.99 (8) C11---C12---C13---C8 −0.36 (14) O2---N1---C4---C3 −164.54 (10) C11---C12---C13---C14 178.66 (9) O1---N1---C4---C3 15.94 (13) C9---C8---C13---C12 0.70 (13) O2---N1---C4---C5 16.42 (14) N2---C8---C13---C12 179.60 (8) O1---N1---C4---C5 −163.10 (9) C9---C8---C13---C14 −178.29 (8) C3---C4---C5---C6 −1.46 (15) N2---C8---C13---C14 0.62 (12) N1---C4---C5---C6 177.55 (8) C15A---O5---C14---O4 −4.7 (4) C4---C5---C6---C1 0.66 (14) C15B---O5---C14---O4 7.5 (7) C2---C1---C6---C5 0.53 (14) C15A---O5---C14---C13 175.3 (4) C7---C1---C6---C5 −179.27 (8) C15B---O5---C14---C13 −172.6 (7) C8---N2---C7---O3 −1.98 (17) C12---C13---C14---O4 179.61 (8) C8---N2---C7---C1 177.96 (8) C8---C13---C14---O4 −1.39 (14) C6---C1---C7---O3 −175.60 (10) C12---C13---C14---O5 −0.37 (11) C2---C1---C7---O3 4.60 (15) C8---C13---C14---O5 178.63 (7) C6---C1---C7---N2 4.46 (14) C14---O5---C15A---C16A −176.2 (3) C2---C1---C7---N2 −175.34 (8) C15B---O5---C15A---C16A 104 (5) C7---N2---C8---C9 −3.14 (15) C14---O5---C15B---C16B 171.2 (6) C7---N2---C8---C13 178.00 (8) C15A---O5---C15B---C16B −83 (4) N2---C8---C9---C10 −178.89 (10) -------------------- -------------- ------------------------- ------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2485 .table-wrap} ---------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···O4 0.86 1.95 2.6638 (9) 139 C2---H2A···O3^i^ 0.93 2.50 3.4069 (11) 166 C10---H10A···O2^ii^ 0.93 2.56 3.3716 (14) 146 C12---H12A···O1^iii^ 0.93 2.50 3.2554 (12) 138 ---------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*, −*z*+1; (ii) *x*, *y*, *z*+1; (iii) *x*+1, *y*+1, *z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ---------------------- --------- ------- ------------- ------------- N2---H2⋯O4 0.86 1.95 2.6638 (9) 139 C2---H2*A*⋯O3^i^ 0.93 2.50 3.4069 (11) 166 C10---H10*A*⋯O2^ii^ 0.93 2.56 3.3716 (14) 146 C12---H12*A*⋯O1^iii^ 0.93 2.50 3.2554 (12) 138 Symmetry codes: (i) ; (ii) ; (iii) . :::
PubMed Central
2024-06-05T04:04:17.091965
2011-1-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051796/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 22; 67(Pt 2):o465", "authors": [ { "first": "Sohail", "last": "Saeed" }, { "first": "Naghmana", "last": "Rashid" }, { "first": "Jerry P.", "last": "Jasinski" }, { "first": "Ray J.", "last": "Butcher" } ] }
PMC3051797
Related literature {#sec1} ================== For the biological activity of thia­zole derivatives, see: Guo *et al.* (2006[@bb2]); Karegoudar *et al.* (2008[@bb3]) Reddy *et al.* (1999[@bb5]);. For related structures, see: Mitsutaka *et al.* (2006[@bb4]); Takayuki *et al.* (2009[@bb7]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~22~H~23~FN~2~OS*M* *~r~* = 382.48Triclinic,*a* = 10.7565 (2) Å*b* = 10.8846 (2) Å*c* = 11.0179 (2) Åα = 67.035 (1)°β = 63.881 (1)°γ = 60.768 (1)°*V* = 985.16 (3) Å^3^*Z* = 2Mo *K*α radiationμ = 0.19 mm^−1^*T* = 296 K0.26 × 0.26 × 0.24 mm ### Data collection {#sec2.1.2} Bruker APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2007[@bb1]) *T* ~min~ = 0.659, *T* ~max~ = 0.74626568 measured reflections4674 independent reflections3614 reflections with *I* \> 2.0σ(*I*)*R* ~int~ = 0.035 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.040*wR*(*F* ^2^) = 0.110*S* = 1.054674 reflections245 parametersH-atom parameters constrainedΔρ~max~ = 0.16 e Å^−3^Δρ~min~ = −0.22 e Å^−3^ {#d5e441} Data collection: *APEX2* (Bruker, 2007[@bb1]); cell refinement: *SAINT-Plus* (Bruker, 2007[@bb1]); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb6]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb6]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb6]); software used to prepare material for publication: *SHELXTL*. Supplementary Material ====================== Crystal structure: contains datablocks Iloable, I. DOI: [10.1107/S1600536810054103/pv2365sup1.cif](http://dx.doi.org/10.1107/S1600536810054103/pv2365sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054103/pv2365Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054103/pv2365Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?pv2365&file=pv2365sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?pv2365sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?pv2365&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [PV2365](http://scripts.iucr.org/cgi-bin/sendsup?pv2365)). This work was supported by the National Natural Science Foundation of China (project No. 30873140), the Program for Excellent Talents of Beijing City (project No. 20071D0501600227) and the Beijing Municipal Commission of Education (project No. KM201010028011). Comment ======= Thiazole derivatives have a varity of physiological effects, such as antiinflammatory (Guo *et al.*, 2006) and antimicrobial (Karegoudar *et al.*, 2008). Herein, we report the crystal structure of a new thiazole compound. In the title compound (Fig. 1), the piperidine ring shows a chair confirmation. The thiazole fragment (S1/C9/N1/C8/C16) is essentially planar and it\'s mean plane makes dihedral angles of 29.2 (6) and 19.8 (1)°, with benzene rings C2---C7 and C10---C15, respectively, while the dihedral angle between the two phenyl rings is 17.0 (6)°. The molecular packing is stabilized by C---H···π interactions (Fig. 2). The C1---H1*A*···*Cg1* distances are 3.781 (2) Å and C1---H1*C*···*Cg2* 3.595 (2) Å, respectively (*Cg* 1 and 2 are is the centroids of the aromatic rings C10--C15 and C2--C7, respectively. All the C---H···π interactions have been listed in Table 1 and presented in Fig. 2. For related literature, see: Mitsutaka *et al.* (2006); Experimental {#experimental} ============ To a solution of piperidine (0.5 ml) in tetrahydrofuran (THF, 15 ml) was added a solution of 5-(bromomethyl)-2-(4-fluorophenyl)-4-(4-methoxyphenyl)thiazole (0.35 g, 0.92 mmol) in THF (10 ml), and the resulting mixture was stirred at 296 K for 1 h. The precipitate was filtered, the solvent was removed by rotary evaporation, the residue was dissolved in ethyl acetate, washed the organic phase with water and brine, dried over Na~2~SO~4~, filtered, and concentrated under reduced pressure to yield the title compound as a white powder (0.11 g, 32%). Crystals suitable for X-ray analysis were prepared by slow evaporation of a solution of the title compound in dichloromethane and methanol (*v*/*v* = 2:1) at room temperature in three days. Refinement {#refinement} ========== The H atoms were positioned in calculated positions with C---H = 0.93, 0.96 and 0.97 Å for aryl, methyl and methylene type H-atoms and were refined using a riding model, with *U*~iso~(H) = 1.5 *U*~eq~(C) for methyl H atoms and *U*~iso~ = 1.2*U*~eq~ for others. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The structure of the compound (I) showing 50% probability displacement ellipsoid and the atom numbering scheme. ::: ![](e-67-0o361-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The three-dimensional structure of the title compound, formed through C---H···π interactions; the dashed lines represent C---H···π interactions. ::: ![](e-67-0o361-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e171 .table-wrap} ----------------------- --------------------------------------- C~22~H~23~FN~2~OS *Z* = 2 *M~r~* = 382.48 *F*(000) = 404 Triclinic, *P*1 *D*~x~ = 1.289 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.7565 (2) Å Cell parameters from 7061 reflections *b* = 10.8846 (2) Å θ = 2.3--27.9° *c* = 11.0179 (2) Å µ = 0.19 mm^−1^ α = 67.035 (1)° *T* = 296 K β = 63.881 (1)° Block, colourless γ = 60.768 (1)° 0.26 × 0.26 × 0.24 mm *V* = 985.16 (3) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e305 .table-wrap} ------------------------------------------------------------ ---------------------------------------- Bruker APEXII CCD area-detector diffractometer 4674 independent reflections Radiation source: fine-focus sealed tube 3614 reflections with *I* \> 2.0σ(*I*) graphite *R*~int~ = 0.035 φ & ω scans θ~max~ = 27.9°, θ~min~ = 2.1° Absorption correction: multi-scan (*SADABS*; Bruker, 2007) *h* = −14→14 *T*~min~ = 0.659, *T*~max~ = 0.746 *k* = −14→14 26568 measured reflections *l* = −14→14 ------------------------------------------------------------ ---------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e422 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.040 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.110 H-atom parameters constrained *S* = 1.05 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0511*P*)^2^ + 0.1593*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 4674 reflections (Δ/σ)~max~ = 0.001 245 parameters Δρ~max~ = 0.16 e Å^−3^ 0 restraints Δρ~min~ = −0.22 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e579 .table-wrap} ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e680 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 0.33888 (5) 0.75870 (4) 0.04214 (4) 0.05238 (13) F1 0.59060 (15) 0.58770 (13) −0.56262 (10) 0.0869 (4) O1 0.17330 (14) 1.58657 (12) −0.00821 (13) 0.0640 (3) N1 0.36970 (13) 0.98214 (12) −0.14604 (12) 0.0442 (3) C17 0.22778 (19) 0.90522 (17) 0.24743 (15) 0.0535 (4) H17A 0.3087 0.8712 0.2844 0.064\* H17B 0.1614 1.0019 0.2622 0.064\* C1 0.1157 (2) 1.70549 (18) −0.1103 (2) 0.0711 (5) H1A 0.1916 1.7013 −0.1992 0.107\* H1B 0.0863 1.7941 −0.0869 0.107\* H1C 0.0302 1.7014 −0.1139 0.107\* C2 0.20949 (16) 1.45111 (16) −0.01833 (16) 0.0479 (3) C3 0.25260 (17) 1.33858 (17) 0.08932 (15) 0.0503 (3) H3 0.2557 1.3581 0.1627 0.060\* C4 0.29100 (16) 1.19791 (16) 0.08885 (15) 0.0471 (3) H4 0.3210 1.1236 0.1614 0.056\* C5 0.28547 (15) 1.16533 (15) −0.01895 (14) 0.0428 (3) C6 0.24580 (18) 1.27941 (16) −0.12758 (15) 0.0527 (4) H6 0.2446 1.2603 −0.2022 0.063\* C7 0.20801 (19) 1.42074 (17) −0.12818 (16) 0.0552 (4) H7 0.1817 1.4950 −0.2023 0.066\* C8 0.31552 (15) 1.01781 (15) −0.01896 (14) 0.0431 (3) C9 0.38848 (16) 0.84914 (15) −0.12873 (14) 0.0438 (3) C10 0.44413 (15) 0.77917 (15) −0.24329 (14) 0.0438 (3) C11 0.43754 (18) 0.86279 (17) −0.37501 (15) 0.0524 (4) H11 0.3992 0.9629 −0.3906 0.063\* C12 0.4874 (2) 0.79865 (19) −0.48320 (16) 0.0595 (4) H12 0.4839 0.8544 −0.5715 0.071\* C13 0.5419 (2) 0.65120 (19) −0.45685 (16) 0.0584 (4) C14 0.5508 (2) 0.56486 (18) −0.32943 (17) 0.0613 (4) H14 0.5890 0.4648 −0.3150 0.074\* C15 0.50171 (18) 0.63000 (16) −0.22271 (16) 0.0539 (4) H15 0.5073 0.5729 −0.1353 0.065\* C16 0.29129 (17) 0.90992 (15) 0.09436 (14) 0.0470 (3) N2 0.14491 (14) 0.80983 (13) 0.32118 (12) 0.0468 (3) C18 0.00257 (19) 0.87436 (18) 0.29190 (16) 0.0571 (4) H18A 0.0214 0.9003 0.1924 0.068\* H18B −0.0614 0.9618 0.3268 0.068\* C19 −0.0763 (2) 0.7702 (2) 0.35887 (19) 0.0665 (5) H19A −0.0150 0.6851 0.3199 0.080\* H19B −0.1707 0.8155 0.3394 0.080\* C20 −0.1053 (2) 0.7259 (2) 0.51460 (19) 0.0736 (5) H20A −0.1780 0.8084 0.5555 0.088\* H20B −0.1464 0.6517 0.5548 0.088\* C21 0.0389 (2) 0.6692 (2) 0.54608 (18) 0.0677 (5) H21A 0.1047 0.5777 0.5188 0.081\* H21B 0.0171 0.6521 0.6452 0.081\* C22 0.11816 (19) 0.77385 (18) 0.47077 (15) 0.0545 (4) H22A 0.0575 0.8615 0.5057 0.065\* H22B 0.2131 0.7310 0.4888 0.065\* ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1384 .table-wrap} ----- ------------- ------------- ------------- --------------- --------------- --------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.0689 (3) 0.0436 (2) 0.0398 (2) −0.02424 (18) −0.00998 (17) −0.00904 (15) F1 0.1297 (10) 0.0886 (8) 0.0513 (6) −0.0570 (7) −0.0035 (6) −0.0326 (5) O1 0.0744 (8) 0.0491 (6) 0.0779 (8) −0.0251 (6) −0.0247 (6) −0.0200 (6) N1 0.0470 (7) 0.0405 (6) 0.0400 (6) −0.0140 (5) −0.0111 (5) −0.0106 (5) C17 0.0668 (10) 0.0557 (9) 0.0420 (8) −0.0297 (8) −0.0106 (7) −0.0136 (7) C1 0.0652 (11) 0.0448 (9) 0.1013 (15) −0.0165 (8) −0.0290 (10) −0.0170 (9) C2 0.0450 (8) 0.0455 (8) 0.0561 (8) −0.0192 (6) −0.0107 (6) −0.0172 (7) C3 0.0542 (9) 0.0615 (9) 0.0483 (8) −0.0292 (7) −0.0146 (7) −0.0171 (7) C4 0.0491 (8) 0.0509 (8) 0.0458 (7) −0.0220 (7) −0.0186 (6) −0.0069 (6) C5 0.0397 (7) 0.0436 (7) 0.0421 (7) −0.0150 (6) −0.0086 (6) −0.0126 (6) C6 0.0681 (10) 0.0468 (8) 0.0445 (8) −0.0185 (7) −0.0199 (7) −0.0134 (6) C7 0.0687 (10) 0.0442 (8) 0.0498 (8) −0.0172 (7) −0.0239 (8) −0.0072 (6) C8 0.0427 (7) 0.0434 (7) 0.0406 (7) −0.0150 (6) −0.0111 (6) −0.0109 (6) C9 0.0446 (7) 0.0411 (7) 0.0401 (7) −0.0141 (6) −0.0106 (6) −0.0097 (6) C10 0.0440 (7) 0.0438 (7) 0.0405 (7) −0.0172 (6) −0.0083 (6) −0.0115 (6) C11 0.0627 (9) 0.0457 (8) 0.0460 (8) −0.0214 (7) −0.0145 (7) −0.0096 (6) C12 0.0754 (11) 0.0637 (10) 0.0414 (8) −0.0331 (9) −0.0155 (8) −0.0082 (7) C13 0.0689 (10) 0.0670 (10) 0.0452 (8) −0.0350 (9) −0.0023 (7) −0.0243 (7) C14 0.0758 (11) 0.0476 (9) 0.0529 (9) −0.0231 (8) −0.0083 (8) −0.0181 (7) C15 0.0654 (10) 0.0451 (8) 0.0428 (8) −0.0184 (7) −0.0124 (7) −0.0106 (6) C16 0.0524 (8) 0.0456 (8) 0.0412 (7) −0.0198 (7) −0.0102 (6) −0.0118 (6) N2 0.0540 (7) 0.0492 (7) 0.0366 (6) −0.0219 (6) −0.0106 (5) −0.0102 (5) C18 0.0599 (9) 0.0585 (9) 0.0471 (8) −0.0178 (8) −0.0179 (7) −0.0113 (7) C19 0.0593 (10) 0.0815 (12) 0.0655 (11) −0.0297 (9) −0.0174 (8) −0.0216 (9) C20 0.0693 (12) 0.0880 (14) 0.0620 (11) −0.0436 (10) −0.0075 (9) −0.0123 (10) C21 0.0751 (12) 0.0708 (11) 0.0480 (9) −0.0359 (10) −0.0140 (8) 0.0002 (8) C22 0.0633 (9) 0.0591 (9) 0.0391 (7) −0.0242 (8) −0.0135 (7) −0.0110 (7) ----- ------------- ------------- ------------- --------------- --------------- --------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1996 .table-wrap} ----------------------- -------------- ----------------------- -------------- S1---C16 1.7201 (15) C10---C15 1.388 (2) S1---C9 1.7264 (14) C10---C11 1.392 (2) F1---C13 1.3593 (17) C11---C12 1.385 (2) O1---C2 1.3665 (17) C11---H11 0.9300 O1---C1 1.421 (2) C12---C13 1.368 (2) N1---C9 1.3060 (18) C12---H12 0.9300 N1---C8 1.3912 (17) C13---C14 1.365 (2) C17---N2 1.4632 (19) C14---C15 1.379 (2) C17---C16 1.5054 (19) C14---H14 0.9300 C17---H17A 0.9700 C15---H15 0.9300 C17---H17B 0.9700 N2---C22 1.4634 (18) C1---H1A 0.9600 N2---C18 1.466 (2) C1---H1B 0.9600 C18---C19 1.512 (2) C1---H1C 0.9600 C18---H18A 0.9700 C2---C7 1.382 (2) C18---H18B 0.9700 C2---C3 1.385 (2) C19---C20 1.518 (3) C3---C4 1.379 (2) C19---H19A 0.9700 C3---H3 0.9300 C19---H19B 0.9700 C4---C5 1.3970 (19) C20---C21 1.510 (3) C4---H4 0.9300 C20---H20A 0.9700 C5---C6 1.389 (2) C20---H20B 0.9700 C5---C8 1.4751 (19) C21---C22 1.517 (2) C6---C7 1.384 (2) C21---H21A 0.9700 C6---H6 0.9300 C21---H21B 0.9700 C7---H7 0.9300 C22---H22A 0.9700 C8---C16 1.369 (2) C22---H22B 0.9700 C9---C10 1.4734 (19) C16---S1---C9 89.65 (7) C11---C12---H12 120.9 C2---O1---C1 117.72 (13) F1---C13---C14 118.51 (15) C9---N1---C8 110.92 (11) F1---C13---C12 118.50 (15) N2---C17---C16 111.16 (12) C14---C13---C12 122.99 (14) N2---C17---H17A 109.4 C13---C14---C15 118.20 (15) C16---C17---H17A 109.4 C13---C14---H14 120.9 N2---C17---H17B 109.4 C15---C14---H14 120.9 C16---C17---H17B 109.4 C14---C15---C10 121.25 (15) H17A---C17---H17B 108.0 C14---C15---H15 119.4 O1---C1---H1A 109.5 C10---C15---H15 119.4 O1---C1---H1B 109.5 C8---C16---C17 131.87 (13) H1A---C1---H1B 109.5 C8---C16---S1 110.02 (10) O1---C1---H1C 109.5 C17---C16---S1 118.06 (11) H1A---C1---H1C 109.5 C17---N2---C22 111.27 (12) H1B---C1---H1C 109.5 C17---N2---C18 111.22 (12) O1---C2---C7 124.48 (14) C22---N2---C18 110.21 (12) O1---C2---C3 116.31 (13) N2---C18---C19 110.86 (13) C7---C2---C3 119.20 (14) N2---C18---H18A 109.5 C4---C3---C2 120.72 (13) C19---C18---H18A 109.5 C4---C3---H3 119.6 N2---C18---H18B 109.5 C2---C3---H3 119.6 C19---C18---H18B 109.5 C3---C4---C5 120.99 (13) H18A---C18---H18B 108.1 C3---C4---H4 119.5 C18---C19---C20 110.67 (15) C5---C4---H4 119.5 C18---C19---H19A 109.5 C6---C5---C4 117.27 (13) C20---C19---H19A 109.5 C6---C5---C8 119.91 (12) C18---C19---H19B 109.5 C4---C5---C8 122.80 (13) C20---C19---H19B 109.5 C7---C6---C5 121.99 (14) H19A---C19---H19B 108.1 C7---C6---H6 119.0 C21---C20---C19 109.97 (15) C5---C6---H6 119.0 C21---C20---H20A 109.7 C2---C7---C6 119.77 (14) C19---C20---H20A 109.7 C2---C7---H7 120.1 C21---C20---H20B 109.7 C6---C7---H7 120.1 C19---C20---H20B 109.7 C16---C8---N1 114.69 (12) H20A---C20---H20B 108.2 C16---C8---C5 127.01 (13) C20---C21---C22 111.94 (15) N1---C8---C5 118.26 (12) C20---C21---H21A 109.2 N1---C9---C10 124.09 (12) C22---C21---H21A 109.2 N1---C9---S1 114.71 (10) C20---C21---H21B 109.2 C10---C9---S1 121.19 (10) C22---C21---H21B 109.2 C15---C10---C11 118.52 (13) H21A---C21---H21B 107.9 C15---C10---C9 121.36 (13) N2---C22---C21 111.09 (13) C11---C10---C9 120.11 (13) N2---C22---H22A 109.4 C12---C11---C10 120.77 (14) C21---C22---H22A 109.4 C12---C11---H11 119.6 N2---C22---H22B 109.4 C10---C11---H11 119.6 C21---C22---H22B 109.4 C13---C12---C11 118.27 (15) H22A---C22---H22B 108.0 C13---C12---H12 120.9 C1---O1---C2---C7 6.7 (2) C9---C10---C11---C12 −179.05 (14) C1---O1---C2---C3 −174.43 (14) C10---C11---C12---C13 0.6 (3) O1---C2---C3---C4 179.86 (13) C11---C12---C13---F1 179.83 (15) C7---C2---C3---C4 −1.2 (2) C11---C12---C13---C14 −0.8 (3) C2---C3---C4---C5 −0.9 (2) F1---C13---C14---C15 179.78 (15) C3---C4---C5---C6 2.5 (2) C12---C13---C14---C15 0.4 (3) C3---C4---C5---C8 −175.70 (13) C13---C14---C15---C10 0.2 (3) C4---C5---C6---C7 −2.2 (2) C11---C10---C15---C14 −0.4 (2) C8---C5---C6---C7 176.13 (14) C9---C10---C15---C14 178.63 (15) O1---C2---C7---C6 −179.58 (14) N1---C8---C16---C17 −176.66 (15) C3---C2---C7---C6 1.6 (2) C5---C8---C16---C17 1.1 (3) C5---C6---C7---C2 0.1 (3) N1---C8---C16---S1 0.64 (16) C9---N1---C8---C16 −1.13 (18) C5---C8---C16---S1 178.38 (12) C9---N1---C8---C5 −179.08 (12) N2---C17---C16---C8 146.91 (16) C6---C5---C8---C16 −148.99 (16) N2---C17---C16---S1 −30.21 (18) C4---C5---C8---C16 29.2 (2) C9---S1---C16---C8 −0.01 (12) C6---C5---C8---N1 28.7 (2) C9---S1---C16---C17 177.71 (13) C4---C5---C8---N1 −153.12 (13) C16---C17---N2---C22 164.61 (13) C8---N1---C9---C10 179.82 (13) C16---C17---N2---C18 −72.10 (16) C8---N1---C9---S1 1.11 (16) C17---N2---C18---C19 175.32 (13) C16---S1---C9---N1 −0.66 (12) C22---N2---C18---C19 −60.79 (17) C16---S1---C9---C10 −179.41 (12) N2---C18---C19---C20 58.33 (19) N1---C9---C10---C15 161.52 (15) C18---C19---C20---C21 −53.4 (2) S1---C9---C10---C15 −19.8 (2) C19---C20---C21---C22 52.2 (2) N1---C9---C10---C11 −19.5 (2) C17---N2---C22---C21 −177.25 (14) S1---C9---C10---C11 159.13 (12) C18---N2---C22---C21 58.89 (17) C15---C10---C11---C12 0.0 (2) C20---C21---C22---N2 −55.4 (2) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2986 .table-wrap} ---------------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C1---H1A···Cg1~C10-C15~^i^ 0.96 2.98 3.781 (2) 142 C1---H1C···Cg2~C2-C7~^ii^ 0.96 2.74 3.595 (2) 149 ---------------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*+1, *z*; (ii) −*x*, −*y*+3, −*z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------------ --------- ------- ----------- ------------- C1---H1*A*⋯*Cg*1~C10-C15~^i^ 0.96 2.98 3.781 (2) 142 C1---H1*C*⋯*Cg*2~C2-C7~^ii^ 0.96 2.74 3.595 (2) 149 Symmetry codes: (i) ; (ii) . :::
PubMed Central
2024-06-05T04:04:17.098377
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051797/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o361", "authors": [ { "first": "Chang-Bin", "last": "Guo" }, { "first": "Chao", "last": "Lv" }, { "first": "Wei", "last": "Wei" }, { "first": "Hua", "last": "Zhou" } ] }
PMC3051798
Related literature {#sec1} ================== For a related structure and background references to imidazo\[2,1-*b*\]-1,3,4-thia­diazole derivatives, see: Fun *et al.* (2011[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~15~H~17~N~3~OS*M* *~r~* = 287.38Triclinic,*a* = 5.7139 (1) Å*b* = 10.1795 (1) Å*c* = 12.9689 (2) Åα = 85.174 (1)°β = 85.164 (1)°γ = 80.690 (1)°*V* = 739.84 (2) Å^3^*Z* = 2Mo *K*α radiationμ = 0.22 mm^−1^*T* = 296 K0.43 × 0.31 × 0.17 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb1]) *T* ~min~ = 0.911, *T* ~max~ = 0.96423503 measured reflections6213 independent reflections3805 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.028 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.053*wR*(*F* ^2^) = 0.163*S* = 1.036213 reflections181 parametersH-atom parameters constrainedΔρ~max~ = 0.30 e Å^−3^Δρ~min~ = −0.28 e Å^−3^ {#d5e445} Data collection: *APEX2* (Bruker, 2009[@bb1]); cell refinement: *SAINT* (Bruker, 2009[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb4]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810053225/hb5778sup1.cif](http://dx.doi.org/10.1107/S1600536810053225/hb5778sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810053225/hb5778Isup2.hkl](http://dx.doi.org/10.1107/S1600536810053225/hb5778Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?hb5778&file=hb5778sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?hb5778sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?hb5778&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [HB5778](http://scripts.iucr.org/cgi-bin/sendsup?hb5778)). HKF and CSY thank Universiti Sains Malaysia (USM) for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= As part of our ongoing synthetic and structural studies of imidazo\[2,1-*b*\]-1,3,4-thiadiazole derivatives (Fun *et al.*, 2011), we now report the structure of the title compound, (I). The mean plane through the imidazo\[2,1-*b*\]-1,3,4-thiadiazole ring and the methoxyphenyl moiety is essentially planar with the maximum deviation of 0.045 Å for atom C2 (Fig. 1). The isobutyl is twisted away from this mean plane with torsion angles of C9--C11--C12--C13 = 64.3 (2)° and C9--C11--C12--C14 = -172.81 (17)°. In the crystal structure, the molecules are arranged into columns and stacked down *a* axis (Fig. 2). The molecules are stabilized by the weak *Cg*1···*Cg*2^i^ = 3.7088 (7) Å, *Cg*2···*Cg*2^i^ = 3.6053 (8) Å and C11--H11A···*Cg*3^i^ interactions \[*Cg*1, *Cg*2 and *Cg*3 are centroids of S1/C9/N1/N2/C10, N2/C8/C7/N3/C10 and C--C6 ring respectively; (i) 2 - *x*, 2 - *y*, 1 - *z*\]. Experimental {#experimental} ============ 5-Isobutyl-1,3,4-thiadiazol-2-amine (1 molar equivalent) and 4-methoxyphenacylbromide (1 molar equivalent) are refluxed with ethanol for 4 h. The solvent was then distilled and the reaction mass was poured onto the crushed ice. The resulting solid that separated out was filtered and dried. The compound was re-crystallized using ethanol and DMF mixture to yield colourless blocks of (I). M.P.: 118--122°C. Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically \[C--H = 0.93--0.98 Å\] and refined using a riding model, with *U*~iso~(H) = 1.2 or 1.5*U*~eq~(C). Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of (I) with 30% probability ellipsoids for non-H atoms. ::: ![](e-67-0o255-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of (I), viewed down the a axis, showing molecules stacked down a axis. ::: ![](e-67-0o255-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e169 .table-wrap} ----------------------- --------------------------------------- C~15~H~17~N~3~OS *Z* = 2 *M~r~* = 287.38 *F*(000) = 304 Triclinic, *P*1 *D*~x~ = 1.290 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 5.7139 (1) Å Cell parameters from 6150 reflections *b* = 10.1795 (1) Å θ = 2.5--30.1° *c* = 12.9689 (2) Å µ = 0.22 mm^−1^ α = 85.174 (1)° *T* = 296 K β = 85.164 (1)° Block, colourless γ = 80.690 (1)° 0.43 × 0.31 × 0.17 mm *V* = 739.84 (2) Å^3^ ----------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e303 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD diffractometer 6213 independent reflections Radiation source: fine-focus sealed tube 3805 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.028 φ and ω scans θ~max~ = 34.5°, θ~min~ = 1.6° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −9→9 *T*~min~ = 0.911, *T*~max~ = 0.964 *k* = −16→16 23503 measured reflections *l* = −20→20 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e420 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.053 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.163 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0765*P*)^2^ + 0.0748*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 6213 reflections (Δ/σ)~max~ \< 0.001 181 parameters Δρ~max~ = 0.30 e Å^−3^ 0 restraints Δρ~min~ = −0.28 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e577 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e676 .table-wrap} ------ -------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ S1 1.14439 (6) 1.02701 (4) 0.26563 (3) 0.05911 (14) O1 1.1085 (2) 0.33486 (12) 0.78317 (9) 0.0741 (3) N1 0.7031 (2) 1.05243 (12) 0.33719 (9) 0.0523 (3) N2 0.82991 (18) 0.94641 (11) 0.39100 (8) 0.0448 (2) N3 1.16801 (18) 0.81311 (11) 0.42311 (8) 0.0470 (2) C1 1.2380 (2) 0.58244 (13) 0.57132 (10) 0.0459 (3) H1A 1.3637 0.6030 0.5258 0.055\* C2 1.2769 (3) 0.47212 (13) 0.64264 (10) 0.0498 (3) H2A 1.4261 0.4199 0.6442 0.060\* C3 1.0917 (3) 0.44125 (14) 0.71078 (10) 0.0515 (3) C4 0.8704 (3) 0.52078 (17) 0.70788 (12) 0.0620 (4) H4A 0.7456 0.5008 0.7542 0.074\* C5 0.8345 (2) 0.62946 (16) 0.63658 (12) 0.0541 (3) H5A 0.6852 0.6817 0.6354 0.065\* C6 1.0186 (2) 0.66223 (12) 0.56621 (9) 0.0405 (2) C7 0.9808 (2) 0.77580 (12) 0.48936 (9) 0.0397 (2) C8 0.7710 (2) 0.85747 (13) 0.47028 (10) 0.0497 (3) H8A 0.6217 0.8533 0.5038 0.060\* C9 0.8461 (2) 1.10357 (13) 0.26920 (10) 0.0473 (3) C10 1.0665 (2) 0.91576 (13) 0.36590 (9) 0.0441 (3) C11 0.7678 (3) 1.22647 (14) 0.20133 (11) 0.0571 (4) H11A 0.8370 1.2992 0.2240 0.069\* H11B 0.5965 1.2493 0.2123 0.069\* C12 0.8305 (3) 1.21810 (16) 0.08633 (11) 0.0642 (4) H12A 1.0026 1.1905 0.0754 0.077\* C13 0.7083 (6) 1.1178 (2) 0.04179 (17) 0.1097 (9) H13A 0.7482 1.0322 0.0783 0.165\* H13B 0.7594 1.1119 −0.0303 0.165\* H13C 0.5393 1.1455 0.0489 0.165\* C14 0.7663 (6) 1.3557 (2) 0.03141 (17) 0.1117 (9) H14A 0.8461 1.4183 0.0607 0.167\* H14B 0.5975 1.3836 0.0400 0.167\* H14C 0.8148 1.3522 −0.0411 0.167\* C15 1.3354 (4) 0.25718 (19) 0.79377 (16) 0.0840 (6) H15A 1.3233 0.1863 0.8467 0.126\* H15B 1.4436 0.3125 0.8127 0.126\* H15C 1.3931 0.2200 0.7291 0.126\* ------ -------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1163 .table-wrap} ----- -------------- ------------- ------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ S1 0.04595 (19) 0.0694 (3) 0.0549 (2) −0.00092 (16) 0.00022 (14) 0.01745 (17) O1 0.0866 (8) 0.0673 (7) 0.0650 (7) −0.0162 (6) −0.0051 (6) 0.0229 (5) N1 0.0439 (6) 0.0567 (7) 0.0504 (6) 0.0074 (5) −0.0069 (5) 0.0047 (5) N2 0.0364 (5) 0.0504 (6) 0.0438 (5) 0.0022 (4) −0.0044 (4) 0.0022 (4) N3 0.0361 (5) 0.0551 (6) 0.0462 (6) −0.0009 (4) −0.0031 (4) 0.0060 (4) C1 0.0453 (6) 0.0489 (7) 0.0394 (6) 0.0004 (5) 0.0018 (5) 0.0001 (5) C2 0.0532 (7) 0.0483 (7) 0.0440 (6) 0.0019 (5) −0.0021 (5) −0.0004 (5) C3 0.0644 (8) 0.0468 (7) 0.0441 (6) −0.0126 (6) −0.0077 (6) 0.0034 (5) C4 0.0531 (8) 0.0731 (10) 0.0584 (8) −0.0177 (7) 0.0027 (6) 0.0119 (7) C5 0.0394 (6) 0.0654 (8) 0.0546 (7) −0.0063 (6) 0.0001 (5) 0.0060 (6) C6 0.0395 (6) 0.0448 (6) 0.0374 (5) −0.0054 (5) −0.0040 (4) −0.0050 (4) C7 0.0372 (5) 0.0445 (6) 0.0365 (5) −0.0023 (4) −0.0035 (4) −0.0050 (4) C8 0.0375 (6) 0.0565 (8) 0.0505 (7) −0.0008 (5) 0.0019 (5) 0.0051 (6) C9 0.0514 (7) 0.0489 (7) 0.0394 (6) 0.0027 (5) −0.0096 (5) −0.0042 (5) C10 0.0364 (6) 0.0528 (7) 0.0409 (6) −0.0022 (5) −0.0038 (4) 0.0010 (5) C11 0.0711 (9) 0.0495 (7) 0.0465 (7) 0.0050 (6) −0.0117 (6) 0.0006 (5) C12 0.0702 (10) 0.0673 (9) 0.0486 (8) 0.0017 (8) −0.0023 (7) 0.0078 (7) C13 0.175 (3) 0.0923 (15) 0.0672 (12) −0.0145 (17) −0.0461 (15) −0.0119 (11) C14 0.164 (3) 0.0872 (14) 0.0717 (13) −0.0059 (16) −0.0039 (14) 0.0319 (11) C15 0.1056 (16) 0.0615 (10) 0.0816 (12) −0.0074 (10) −0.0270 (11) 0.0232 (9) ----- -------------- ------------- ------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1575 .table-wrap} -------------------- -------------- ---------------------- -------------- S1---C10 1.7290 (13) C6---C7 1.4622 (16) S1---C9 1.7545 (14) C7---C8 1.3722 (17) O1---C3 1.3690 (16) C8---H8A 0.9300 O1---C15 1.416 (2) C9---C11 1.4966 (18) N1---C9 1.2864 (19) C11---C12 1.510 (2) N1---N2 1.3721 (14) C11---H11A 0.9700 N2---C10 1.3554 (16) C11---H11B 0.9700 N2---C8 1.3689 (16) C12---C13 1.503 (3) N3---C10 1.3133 (15) C12---C14 1.521 (2) N3---C7 1.3957 (16) C12---H12A 0.9800 C1---C6 1.3825 (17) C13---H13A 0.9600 C1---C2 1.3947 (17) C13---H13B 0.9600 C1---H1A 0.9300 C13---H13C 0.9600 C2---C3 1.379 (2) C14---H14A 0.9600 C2---H2A 0.9300 C14---H14B 0.9600 C3---C4 1.388 (2) C14---H14C 0.9600 C4---C5 1.381 (2) C15---H15A 0.9600 C4---H4A 0.9300 C15---H15B 0.9600 C5---C6 1.3967 (18) C15---H15C 0.9600 C5---H5A 0.9300 C10---S1---C9 88.40 (6) N3---C10---N2 112.76 (11) C3---O1---C15 117.66 (14) N3---C10---S1 138.85 (10) C9---N1---N2 108.55 (11) N2---C10---S1 108.39 (9) C10---N2---C8 107.69 (10) C9---C11---C12 116.36 (12) C10---N2---N1 118.51 (11) C9---C11---H11A 108.2 C8---N2---N1 133.79 (11) C12---C11---H11A 108.2 C10---N3---C7 103.73 (10) C9---C11---H11B 108.2 C6---C1---C2 122.09 (12) C12---C11---H11B 108.2 C6---C1---H1A 119.0 H11A---C11---H11B 107.4 C2---C1---H1A 119.0 C13---C12---C11 112.03 (16) C3---C2---C1 119.33 (13) C13---C12---C14 110.67 (17) C3---C2---H2A 120.3 C11---C12---C14 109.10 (15) C1---C2---H2A 120.3 C13---C12---H12A 108.3 O1---C3---C2 124.39 (14) C11---C12---H12A 108.3 O1---C3---C4 115.99 (14) C14---C12---H12A 108.3 C2---C3---C4 119.62 (13) C12---C13---H13A 109.5 C5---C4---C3 120.36 (14) C12---C13---H13B 109.5 C5---C4---H4A 119.8 H13A---C13---H13B 109.5 C3---C4---H4A 119.8 C12---C13---H13C 109.5 C4---C5---C6 121.14 (14) H13A---C13---H13C 109.5 C4---C5---H5A 119.4 H13B---C13---H13C 109.5 C6---C5---H5A 119.4 C12---C14---H14A 109.5 C1---C6---C5 117.46 (12) C12---C14---H14B 109.5 C1---C6---C7 121.12 (11) H14A---C14---H14B 109.5 C5---C6---C7 121.42 (11) C12---C14---H14C 109.5 C8---C7---N3 111.03 (11) H14A---C14---H14C 109.5 C8---C7---C6 127.62 (11) H14B---C14---H14C 109.5 N3---C7---C6 121.35 (10) O1---C15---H15A 109.5 N2---C8---C7 104.79 (11) O1---C15---H15B 109.5 N2---C8---H8A 127.6 H15A---C15---H15B 109.5 C7---C8---H8A 127.6 O1---C15---H15C 109.5 N1---C9---C11 122.38 (13) H15A---C15---H15C 109.5 N1---C9---S1 116.15 (10) H15B---C15---H15C 109.5 C11---C9---S1 121.36 (11) C9---N1---N2---C10 0.23 (17) C10---N2---C8---C7 0.06 (15) C9---N1---N2---C8 179.94 (14) N1---N2---C8---C7 −179.67 (13) C6---C1---C2---C3 −0.3 (2) N3---C7---C8---N2 0.03 (15) C15---O1---C3---C2 4.8 (2) C6---C7---C8---N2 −179.34 (11) C15---O1---C3---C4 −175.43 (15) N2---N1---C9---C11 −176.23 (11) C1---C2---C3---O1 179.30 (13) N2---N1---C9---S1 −0.04 (15) C1---C2---C3---C4 −0.4 (2) C10---S1---C9---N1 −0.10 (12) O1---C3---C4---C5 −179.11 (14) C10---S1---C9---C11 176.13 (11) C2---C3---C4---C5 0.7 (2) C7---N3---C10---N2 0.14 (15) C3---C4---C5---C6 −0.2 (2) C7---N3---C10---S1 −179.92 (13) C2---C1---C6---C5 0.7 (2) C8---N2---C10---N3 −0.13 (16) C2---C1---C6---C7 −178.73 (12) N1---N2---C10---N3 179.65 (11) C4---C5---C6---C1 −0.5 (2) C8---N2---C10---S1 179.92 (9) C4---C5---C6---C7 178.95 (13) N1---N2---C10---S1 −0.31 (15) C10---N3---C7---C8 −0.10 (14) C9---S1---C10---N3 −179.73 (16) C10---N3---C7---C6 179.31 (11) C9---S1---C10---N2 0.21 (10) C1---C6---C7---C8 175.00 (13) N1---C9---C11---C12 −129.32 (16) C5---C6---C7---C8 −4.5 (2) S1---C9---C11---C12 54.69 (18) C1---C6---C7---N3 −4.31 (18) C9---C11---C12---C13 64.3 (2) C5---C6---C7---N3 176.24 (12) C9---C11---C12---C14 −172.81 (17) -------------------- -------------- ---------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2311 .table-wrap} ------------------------------------------------- Cg3 is the centroid of the C1--C6 benzene ring. ------------------------------------------------- ::: ::: {#d1e2315 .table-wrap} --------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C11---H11A···Cg3^i^ 0.97 2.60 3.5063 (16) 155 --------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*+2, −*y*+2, −*z*+1. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*3 is the centroid of the C1--C6 benzene ring. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ----------------------- --------- ------- ------------- ------------- C11---H11*A*⋯*Cg*3^i^ 0.97 2.60 3.5063 (16) 155 Symmetry code: (i) . ::: [^1]: ‡ Thomson Reuters ResearcherID: A-3561-2009. [^2]: § Thomson Reuters ResearcherID: A-5523-2009.
PubMed Central
2024-06-05T04:04:17.105181
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051798/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o255", "authors": [ { "first": "Hoong-Kun", "last": "Fun" }, { "first": "Chin Sing", "last": "Yeap" }, { "first": "D. Jagadeesh", "last": "Prasad" }, { "first": "Prakash Anil", "last": "Castelino" }, { "first": "V. V.", "last": "Anitha" } ] }
PMC3051799
Related literature {#sec1} ================== For general background to ferroelectric metal-organic frameworks, see: Fu *et al.* (2009[@bb1]); Ye *et al.* (2006[@bb4]); Zhang *et al.* (2008[@bb5], 2010[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~7~H~15~ClN~2~ ^2+^·2PF~6~ ^−^*M* *~r~* = 452.6Orthorhombic,*a* = 14.414 (8) Å*b* = 12.976 (7) Å*c* = 16.115 (9) Å*V* = 3014 (3) Å^3^*Z* = 8Mo *K*α radiationμ = 0.60 mm^−1^*T* = 293 K0.30 × 0.25 × 0.20 mm ### Data collection {#sec2.1.2} Rigaku SCXmini diffractometerAbsorption correction: multi-scan (*CrystalClear*; Rigaku, 2005[@bb2]) *T* ~min~ = 0.836, *T* ~max~ = 0.88830798 measured reflections3447 independent reflections3197 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.050 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.056*wR*(*F* ^2^) = 0.146*S* = 1.243447 reflections217 parametersH-atom parameters constrainedΔρ~max~ = 0.58 e Å^−3^Δρ~min~ = −0.46 e Å^−3^ {#d5e430} Data collection: *CrystalClear* (Rigaku, 2005[@bb2]); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb3]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb3]); molecular graphics: *SHELXTL* (Sheldrick, 2008[@bb3]); software used to prepare material for publication: *SHELXL97*. Supplementary Material ====================== Crystal structure: contains datablocks I, global. DOI: [10.1107/S1600536811000390/fj2377sup1.cif](http://dx.doi.org/10.1107/S1600536811000390/fj2377sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000390/fj2377Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000390/fj2377Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?fj2377&file=fj2377sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?fj2377sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?fj2377&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [FJ2377](http://scripts.iucr.org/cgi-bin/sendsup?fj2377)). This work was supported by Southeast University. Comment ======= We synthesized the title compound to find ferroelectric material by dielectric measurements of compound as a function of temperature(Fu *et al.* 2009;Ye *et al.*2006; Zhang *et al.*2008; Zhang *et al.*2010). In the range from 190 K to near its melting point(m.p. \>452 K), no dielectric anomaly was observed. Single crystal of the title compound suitable for X-ray diffraction analysis were obtained by evaporating an water solution in 123.5 K. As Fig.1, the compound consists of one 1-(chloromethyl)-1,4- diazabicyclo\[2.2.2\]octane-1,4-diium cations and two hexafluorophosphate anions. The hydrogen bonds linked one 1-(chloromethyl)-1,4- diazabicyclo\[2.2.2\]octane-1,4-diium cations and two hexafluorophosphate anions of the another cell as showed in the Fig.2. Experimental {#experimental} ============ 1,4-Diazabicyclo\[2.2.2\]octane(5.6 g,0.05 mol)was dissolved in 20 ml of dichloromethane and the mixture solution was refluxed for 8 h. A white precipitate of 1-(chloromethyl)-1,4-diazabicyclo\[2.2.2\]octan-1-ium chloride were obtained. The title compound was synthesized by the mixed solution of 1-(chloromethyl)-1,4-diazabicyclo\[2.2.2\]octan-1-ium chloride(1.97 g, 10 mmol) and hexafluorophosphoric acid(20 mmol). After a few days, colorless block crystals of the title compound were obtained on slow evaporation of the solvent. Refinement {#refinement} ========== Positional parameter of all the H atoms except for H2 were calculated geometrically and the H atoms were set to ride on the C atoms to which they are bonded, with *U*~iso~(H) =1.2Ueq(C). The position of the H atom on N2 was determined from a difference Fourier map and was not refined. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### A partial packing diagram of the title compound, with displacement ellipsoids drawn at the 30% probability level. ::: ![](e-67-0o346-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### Packing diagram of the title compound, hydrogen bonds are shown as dashed lines. ::: ![](e-67-0o346-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e114 .table-wrap} ------------------------------- --------------------------------------- C~7~H~15~ClN~2~^2+^·2PF~6~^−^ *F*(000) = 1808 *M~r~* = 452.6 *D*~x~ = 1.995 Mg m^−3^ Orthorhombic, *Pbca* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ac 2ab Cell parameters from 6697 reflections *a* = 14.414 (8) Å θ = 2.5--27.5° *b* = 12.976 (7) Å µ = 0.60 mm^−1^ *c* = 16.115 (9) Å *T* = 293 K *V* = 3014 (3) Å^3^ Prism, colorless *Z* = 8 0.30 × 0.25 × 0.20 mm ------------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e243 .table-wrap} ------------------------------------------------------------------ -------------------------------------- Rigaku SCXmini diffractometer 3447 independent reflections Radiation source: fine-focus sealed tube 3197 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.050 CCD Profile fitting scans θ~max~ = 27.5°, θ~min~ = 2.5° Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) *h* = −18→18 *T*~min~ = 0.836, *T*~max~ = 0.888 *k* = −16→16 30798 measured reflections *l* = −20→20 ------------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e355 .table-wrap} ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Secondary atom site location: difference Fourier map Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.056 H-atom parameters constrained *wR*(*F*^2^) = 0.146 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0625*P*)^2^ + 3.8206*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 *S* = 1.24 (Δ/σ)~max~ \< 0.001 3447 reflections Δρ~max~ = 0.58 e Å^−3^ 217 parameters Δρ~min~ = −0.46 e Å^−3^ 0 restraints Extinction correction: *SHELXL97* (Sheldrick, 2008) Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0014 (1) ---------------------------------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e520 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e619 .table-wrap} ----- --------------- -------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ P1 0.10243 (5) 0.80778 (6) 0.38500 (5) 0.01982 (19) P2 0.25717 (5) 0.96221 (6) 0.14312 (5) 0.01997 (19) F8 0.19471 (13) 0.87588 (16) 0.38218 (13) 0.0359 (5) F9 0.06202 (13) 0.87478 (14) 0.30870 (11) 0.0293 (4) F11 0.05718 (12) 0.88833 (14) 0.44911 (11) 0.0268 (4) F10 0.00885 (13) 0.74127 (15) 0.38738 (13) 0.0331 (4) F7 0.14303 (13) 0.74224 (16) 0.46061 (11) 0.0343 (5) F12 0.14650 (13) 0.72793 (15) 0.32030 (12) 0.0322 (4) F3 0.15177 (12) 1.00058 (16) 0.15861 (13) 0.0347 (5) F1 0.23000 (15) 0.92628 (16) 0.05253 (11) 0.0363 (5) F4 0.28151 (16) 0.99851 (17) 0.23639 (13) 0.0430 (6) F2 0.36096 (14) 0.92349 (19) 0.13078 (16) 0.0479 (6) F5 0.22953 (16) 0.85130 (15) 0.17743 (14) 0.0421 (5) F6 0.28287 (17) 1.07397 (16) 0.11115 (15) 0.0465 (6) Cl1 0.09951 (6) 0.45726 (7) 0.44115 (7) 0.0419 (3) N1 0.05494 (16) 0.26975 (18) 0.37949 (15) 0.0189 (5) N2 0.11243 (16) 0.10322 (19) 0.31629 (15) 0.0206 (5) H2C 0.1332 0.0434 0.2933 0.025\* C5 −0.02655 (19) 0.2006 (2) 0.35656 (18) 0.0207 (6) H5A −0.0654 0.1896 0.4049 0.025\* H5B −0.0638 0.2336 0.3141 0.025\* C1 0.1107 (2) 0.2924 (2) 0.30230 (19) 0.0224 (6) H1A 0.1657 0.3316 0.3168 0.027\* H1B 0.0740 0.3333 0.2641 0.027\* C3 0.1568 (2) 0.1167 (2) 0.39967 (18) 0.0278 (7) H3A 0.2234 0.1239 0.3935 0.033\* H3B 0.1446 0.0569 0.4341 0.033\* C7 0.0138 (2) 0.3663 (2) 0.4162 (2) 0.0266 (6) H7A −0.0207 0.3486 0.4660 0.032\* H7B −0.0293 0.3964 0.3769 0.032\* C2 0.1390 (2) 0.1914 (2) 0.2609 (2) 0.0280 (7) H2A 0.1080 0.1847 0.2077 0.034\* H2B 0.2054 0.1908 0.2513 0.034\* C4 0.1162 (2) 0.2138 (2) 0.44068 (18) 0.0232 (6) H4A 0.0804 0.1946 0.4892 0.028\* H4B 0.1662 0.2588 0.4584 0.028\* C6 0.0090 (2) 0.0978 (3) 0.3247 (3) 0.0364 (8) H6A −0.0078 0.0434 0.3631 0.044\* H6B −0.0188 0.0825 0.2713 0.044\* ----- --------------- -------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1140 .table-wrap} ----- ------------- ------------- ------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ P1 0.0173 (4) 0.0238 (4) 0.0184 (4) 0.0025 (3) 0.0000 (3) 0.0006 (3) P2 0.0181 (4) 0.0220 (4) 0.0198 (4) −0.0001 (3) 0.0000 (3) −0.0018 (3) F8 0.0217 (9) 0.0451 (12) 0.0410 (11) −0.0067 (8) 0.0054 (8) −0.0014 (9) F9 0.0340 (10) 0.0322 (10) 0.0218 (9) 0.0108 (8) −0.0020 (7) 0.0035 (7) F11 0.0282 (9) 0.0286 (9) 0.0235 (9) 0.0024 (7) 0.0050 (7) −0.0028 (7) F10 0.0264 (9) 0.0311 (10) 0.0419 (11) −0.0074 (8) 0.0020 (8) −0.0041 (9) F7 0.0372 (10) 0.0422 (11) 0.0235 (9) 0.0133 (9) −0.0027 (8) 0.0073 (8) F12 0.0367 (10) 0.0335 (10) 0.0265 (10) 0.0142 (8) 0.0038 (8) −0.0031 (8) F3 0.0199 (9) 0.0403 (11) 0.0440 (11) 0.0016 (8) 0.0030 (8) −0.0162 (9) F1 0.0466 (12) 0.0429 (11) 0.0195 (9) 0.0112 (10) −0.0053 (8) −0.0082 (8) F4 0.0560 (14) 0.0420 (12) 0.0310 (11) 0.0127 (10) −0.0191 (10) −0.0121 (9) F2 0.0208 (10) 0.0539 (14) 0.0690 (16) 0.0064 (9) −0.0004 (10) −0.0187 (12) F5 0.0614 (14) 0.0256 (10) 0.0392 (11) −0.0020 (10) 0.0077 (10) 0.0035 (9) F6 0.0572 (14) 0.0280 (10) 0.0544 (14) −0.0099 (10) 0.0148 (11) 0.0055 (10) Cl1 0.0285 (4) 0.0331 (4) 0.0641 (6) −0.0071 (3) 0.0121 (4) −0.0250 (4) N1 0.0164 (11) 0.0205 (11) 0.0199 (11) −0.0001 (9) 0.0005 (9) −0.0011 (9) N2 0.0191 (12) 0.0200 (11) 0.0227 (12) 0.0001 (9) 0.0003 (9) −0.0010 (10) C5 0.0159 (13) 0.0237 (14) 0.0225 (14) −0.0027 (10) −0.0020 (10) −0.0003 (11) C1 0.0218 (14) 0.0202 (13) 0.0252 (14) −0.0011 (11) 0.0051 (11) 0.0007 (11) C3 0.0348 (17) 0.0266 (15) 0.0220 (14) 0.0078 (13) −0.0052 (12) 0.0007 (12) C7 0.0204 (14) 0.0213 (14) 0.0382 (17) 0.0025 (11) 0.0046 (12) −0.0076 (13) C2 0.0377 (17) 0.0239 (15) 0.0223 (15) 0.0035 (13) 0.0074 (13) 0.0043 (12) C4 0.0200 (13) 0.0294 (15) 0.0201 (13) 0.0005 (12) −0.0014 (11) −0.0014 (11) C6 0.0190 (15) 0.0282 (16) 0.062 (2) −0.0040 (13) −0.0030 (15) −0.0145 (16) ----- ------------- ------------- ------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1617 .table-wrap} ---------------- ------------- ---------------- ----------- P1---F7 1.597 (2) N2---C2 1.501 (4) P1---F8 1.598 (2) N2---H2C 0.9100 P1---F12 1.601 (2) C5---C6 1.518 (4) P1---F10 1.602 (2) C5---H5A 0.9700 P1---F11 1.6079 (19) C5---H5B 0.9700 P1---F9 1.6147 (19) C1---C2 1.527 (4) P2---F1 1.582 (2) C1---H1A 0.9700 P2---F6 1.583 (2) C1---H1B 0.9700 P2---F2 1.591 (2) C3---C4 1.538 (4) P2---F5 1.592 (2) C3---H3A 0.9700 P2---F4 1.614 (2) C3---H3B 0.9700 P2---F3 1.618 (2) C7---H7A 0.9700 Cl1---C7 1.756 (3) C7---H7B 0.9700 N1---C7 1.507 (4) C2---H2A 0.9700 N1---C4 1.510 (4) C2---H2B 0.9700 N1---C1 1.510 (4) C4---H4A 0.9700 N1---C5 1.524 (3) C4---H4B 0.9700 N2---C6 1.498 (4) C6---H6A 0.9700 N2---C3 1.498 (4) C6---H6B 0.9700 F7---P1---F8 90.65 (12) C6---C5---N1 109.8 (2) F7---P1---F12 90.40 (11) C6---C5---H5A 109.7 F8---P1---F12 90.53 (12) N1---C5---H5A 109.7 F7---P1---F10 90.19 (12) C6---C5---H5B 109.7 F8---P1---F10 178.98 (12) N1---C5---H5B 109.7 F12---P1---F10 90.06 (11) H5A---C5---H5B 108.2 F7---P1---F11 90.26 (11) N1---C1---C2 109.6 (2) F8---P1---F11 89.79 (11) N1---C1---H1A 109.8 F12---P1---F11 179.26 (11) C2---C1---H1A 109.8 F10---P1---F11 89.62 (11) N1---C1---H1B 109.8 F7---P1---F9 179.52 (13) C2---C1---H1B 109.8 F8---P1---F9 88.90 (11) H1A---C1---H1B 108.2 F12---P1---F9 89.75 (11) N2---C3---C4 108.6 (2) F10---P1---F9 90.26 (11) N2---C3---H3A 110.0 F11---P1---F9 89.59 (10) C4---C3---H3A 110.0 F1---P2---F6 91.58 (13) N2---C3---H3B 110.0 F1---P2---F2 91.39 (12) C4---C3---H3B 110.0 F6---P2---F2 91.64 (14) H3A---C3---H3B 108.3 F1---P2---F5 89.54 (12) N1---C7---Cl1 111.8 (2) F6---P2---F5 178.30 (13) N1---C7---H7A 109.3 F2---P2---F5 89.61 (13) Cl1---C7---H7A 109.3 F1---P2---F4 178.20 (13) N1---C7---H7B 109.3 F6---P2---F4 89.13 (13) Cl1---C7---H7B 109.3 F2---P2---F4 90.24 (13) H7A---C7---H7B 107.9 F5---P2---F4 89.71 (13) N2---C2---C1 109.1 (2) F1---P2---F3 90.03 (11) N2---C2---H2A 109.9 F6---P2---F3 89.32 (13) C1---C2---H2A 109.9 F2---P2---F3 178.26 (14) N2---C2---H2B 109.9 F5---P2---F3 89.40 (12) C1---C2---H2B 109.9 F4---P2---F3 88.32 (11) H2A---C2---H2B 108.3 C7---N1---C4 111.9 (2) N1---C4---C3 109.6 (2) C7---N1---C1 111.8 (2) N1---C4---H4A 109.8 C4---N1---C1 108.7 (2) C3---C4---H4A 109.8 C7---N1---C5 106.3 (2) N1---C4---H4B 109.8 C4---N1---C5 109.0 (2) C3---C4---H4B 109.8 C1---N1---C5 109.0 (2) H4A---C4---H4B 108.2 C6---N2---C3 110.4 (3) N2---C6---C5 109.0 (2) C6---N2---C2 110.1 (3) N2---C6---H6A 109.9 C3---N2---C2 109.6 (2) C5---C6---H6A 109.9 C6---N2---H2C 108.9 N2---C6---H6B 109.9 C3---N2---H2C 108.9 C5---C6---H6B 109.9 C2---N2---H2C 108.9 H6A---C6---H6B 108.3 ---------------- ------------- ---------------- ----------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2192 .table-wrap} ------------------ --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2C···F3^i^ 0.91 2.26 2.924 (3) 130 N2---H2C···F4^i^ 0.91 2.40 3.073 (3) 131 N2---H2C···F9^i^ 0.91 2.43 3.055 (3) 126 ------------------ --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------ --------- ------- ----------- ------------- N2---H2*C*⋯F3^i^ 0.91 2.26 2.924 (3) 130 N2---H2*C*⋯F4^i^ 0.91 2.40 3.073 (3) 131 N2---H2*C*⋯F9^i^ 0.91 2.43 3.055 (3) 126 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.110063
2011-1-12
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051799/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 12; 67(Pt 2):o346", "authors": [ { "first": "Run-Qiang", "last": "Zhu" } ] }
PMC3051800
Related literature {#sec1} ================== For general background to *triangulo*-triruthenium derivatives, see: Bruce *et al.* (1985[@bb4], 1988*a* [@bb1],*b* [@bb2]). For related structures, see: Shawkataly *et al.* (1998[@bb11], 2004[@bb10], 2010*a* [@bb8],*b* [@bb9]). For the synthesis of Ru~3~(CO)~10~(μ-Ph~2~PCH~2~PPh~2~), see: Bruce *et al.* (1983[@bb3]) and for that of 4-methyl­thio­phenyl­diphenylphosphine, see: Fuhr *et al.* (2002[@bb7]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} 2\[Ru~3~(C~25~H~22~P~2~)(C~19~H~17~PS)(CO)~9~\]·CH~2~Cl~2~*M* *~r~* = 2580.97Triclinic,*a* = 10.7125 (1) Å*b* = 12.4639 (1) Å*c* = 20.0660 (2) Åα = 96.260 (1)°β = 104.180 (1)°γ = 102.900 (1)°*V* = 2493.72 (4) Å^3^*Z* = 1Mo *K*α radiationμ = 1.15 mm^−1^*T* = 100 K0.22 × 0.18 × 0.11 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb5]) *T* ~min~ = 0.784, *T* ~max~ = 0.88287820 measured reflections21813 independent reflections17718 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.043 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.036*wR*(*F* ^2^) = 0.085*S* = 1.0121813 reflections640 parametersH-atom parameters constrainedΔρ~max~ = 2.74 e Å^−3^Δρ~min~ = −1.71 e Å^−3^ {#d5e686} Data collection: *APEX2* (Bruker, 2009[@bb5]); cell refinement: *SAINT* (Bruker, 2009[@bb5]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb12]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb13]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811000778/sj5089sup1.cif](http://dx.doi.org/10.1107/S1600536811000778/sj5089sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811000778/sj5089Isup2.hkl](http://dx.doi.org/10.1107/S1600536811000778/sj5089Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?sj5089&file=sj5089sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?sj5089sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?sj5089&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [SJ5089](http://scripts.iucr.org/cgi-bin/sendsup?sj5089)). The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research Grant 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= A large number of substituted derivatives of the type Ru~3~(CO)~12-n~*L*~n~ (*L* = group 15 ligand) have been reported (Bruce *et al.*, 1985, 1988*a*,*b*). As part of our study on the substitution of transition metal-carbonyl clusters with mixed-ligand complexes, we have published several structures of *triangulo*-triruthenium-carbonyl clusters containing mixed P/As and P/Sb ligands (Shawkataly *et al.*, 1998, 2004, 2010*a*,*b*). Herein we report the synthesis and structure of the title compound. The asymmetric unit of title compound consists of one molecule of *triangulo*-triruthenium complex and one half-molecule of dichloromethane solvent (Fig. 1). The dichloromethane solvent lies across a crystallographic inversion center (symmetry code: -*x*, 2 - *y*, -*z*) leading to disorder of this solvent molecule over two positions. The title compound is very similar to those found in related structures (Shawkataly *et al.*, 2010*a*, *b*) with comparable cell parameters and similarly disordered dichloromethane solvent. The bis(diphenylphosphanyl)methane ligand bridges the Ru1--Ru2 bond and the monodentate phosphane ligand bonds to the Ru3 atom. All phosphane ligands are equatorial with respect to the Ru~3~ triangle. Additionally, each Ru atom carries one equatorial and two axial terminal carbonyl ligands. The three phosphane-substituted benzene rings make dihedral angles (C26--C31/C32--C37, C26--C31/C38--C43 and C32--C37/C38--C43) of 87.18 (11), 59.59 (10) and 89.28 (11)° with each other respectively. The dihedral angles between the two benzene rings (C1--C6/C7--C12 and C14--C19/C20--C25) are 78.48 (11) and 87.58 (11)° for the two diphenylphosphanyl groups respectively. The torsion angle of the methylthio group (C44--S1--C41--C42) is -14.1 (2)°. In the crystal packing, the molecules are stacked along *a* axis (Fig. 2). Weak intermolecular C---H···π interactions (Table 1) stabilize the crystal structure. Experimental {#experimental} ============ All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen free nitrogen. 4-Methylthiophenyldiphenylphosphane (Fuhr *et al.*, 2002) and Ru~3~(CO)~10~(µ-Ph~2~PCH~2~PPh~2~) (Bruce *et al.*, 1983) was prepared by reported procedure. The title compound was obtained by refluxing equimolar quantities of Ru~3~(CO)~10~(µ-Ph~2~PCH~2~PPh~2~) and 4-methylthiophenyldiphenylphosphane in hexane under nitrogen atmosphere. Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH~3~OH into CH~2~Cl~2~. Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically and refined using a riding model with C---H = 0.93--0.97 Å and *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C). A rotating group model was applied for the methyl group. The maximum and minimum residual electron density peaks of 2.74 and -1.71 e Å^-3^ were located 0.66 Å and 0.36 Å from the Ru1 and Cl1 atoms, respectively. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. Atoms with suffix A are generated by the symmetry operation (-x, 2 - y, -z). ::: ![](e-67-0m218-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, viewed down the a axis, showing the molecules stacked down a axis. Solvent molecule have been omitted for clarity. ::: ![](e-67-0m218-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e240 .table-wrap} ------------------------------------------------------------ --------------------------------------- 2\[Ru~3~(C~25~H~22~P~2~)(C~19~H~17~PS)(CO)~9~\]·CH~2~Cl~2~ *Z* = 1 *M~r~* = 2580.97 *F*(000) = 1286 Triclinic, *P*1 *D*~x~ = 1.719 Mg m^−3^ Hall symbol: -P 1 Mo *K*α radiation, λ = 0.71073 Å *a* = 10.7125 (1) Å Cell parameters from 9836 reflections *b* = 12.4639 (1) Å θ = 2.3--38.1° *c* = 20.0660 (2) Å µ = 1.15 mm^−1^ α = 96.260 (1)° *T* = 100 K β = 104.180 (1)° Block, brown γ = 102.900 (1)° 0.22 × 0.18 × 0.11 mm *V* = 2493.72 (4) Å^3^ ------------------------------------------------------------ --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e392 .table-wrap} ------------------------------------------------------------ --------------------------------------- Bruker SMART APEXII CCD area-detector diffractometer 21813 independent reflections Radiation source: fine-focus sealed tube 17718 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.043 φ and ω scans θ~max~ = 35.0°, θ~min~ = 1.7° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −17→17 *T*~min~ = 0.784, *T*~max~ = 0.882 *k* = −20→20 87820 measured reflections *l* = −32→32 ------------------------------------------------------------ --------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e509 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.036 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.085 H-atom parameters constrained *S* = 1.01 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.033*P*)^2^ + 3.2031*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 21813 reflections (Δ/σ)~max~ = 0.004 640 parameters Δρ~max~ = 2.74 e Å^−3^ 0 restraints Δρ~min~ = −1.71 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e666 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e771 .table-wrap} ------ --------------- --------------- --------------- -------------------- ------------ *x* *y* *z* *U*~iso~\*/*U*~eq~ Occ. (\<1) Ru1 0.837948 (15) 1.157405 (12) 0.261089 (8) 0.01366 (3) Ru2 0.594161 (15) 0.998567 (12) 0.186830 (8) 0.01233 (3) Ru3 0.780393 (15) 0.930855 (12) 0.290459 (8) 0.01330 (3) P1 0.43487 (5) 0.83385 (4) 0.17996 (2) 0.01279 (8) P2 0.67393 (5) 0.74300 (4) 0.24661 (3) 0.01323 (8) P3 1.05584 (5) 1.26909 (4) 0.31731 (3) 0.01495 (9) S1 1.32009 (6) 1.43275 (5) 0.08033 (3) 0.02441 (11) O1 0.91609 (17) 1.10604 (14) 0.12550 (8) 0.0237 (3) O2 0.70316 (18) 1.32691 (14) 0.19956 (9) 0.0261 (3) O3 0.77257 (18) 1.20410 (15) 0.40045 (9) 0.0284 (4) O4 0.71518 (16) 0.87246 (14) 0.08966 (8) 0.0230 (3) O5 0.49337 (16) 1.14768 (13) 0.28241 (9) 0.0233 (3) O6 0.46309 (19) 1.09054 (16) 0.06142 (9) 0.0307 (4) O7 0.98385 (17) 0.92717 (15) 0.20611 (10) 0.0270 (3) O8 0.97139 (17) 0.88439 (15) 0.41640 (9) 0.0250 (3) O9 0.59365 (16) 0.97317 (13) 0.37958 (8) 0.0219 (3) C1 0.3005 (2) 0.78383 (16) 0.09879 (10) 0.0159 (3) C2 0.3332 (2) 0.78725 (18) 0.03562 (10) 0.0196 (4) H2A 0.4211 0.8169 0.0359 0.024\* C3 0.2361 (2) 0.74697 (19) −0.02733 (11) 0.0237 (4) H3A 0.2591 0.7485 −0.0691 0.028\* C4 0.1040 (2) 0.70415 (19) −0.02823 (12) 0.0258 (4) H4A 0.0385 0.6781 −0.0705 0.031\* C5 0.0704 (2) 0.7004 (2) 0.03363 (13) 0.0274 (5) H5A −0.0179 0.6714 0.0329 0.033\* C6 0.1681 (2) 0.73989 (19) 0.09747 (11) 0.0222 (4) H6A 0.1448 0.7369 0.1391 0.027\* C7 0.35137 (19) 0.82431 (16) 0.24873 (10) 0.0152 (3) C8 0.2855 (2) 0.90548 (17) 0.26281 (11) 0.0181 (3) H8A 0.2781 0.9593 0.2344 0.022\* C9 0.2311 (2) 0.90620 (19) 0.31900 (11) 0.0214 (4) H9A 0.1885 0.9611 0.3284 0.026\* C10 0.2401 (2) 0.8252 (2) 0.36132 (12) 0.0254 (4) H10A 0.2047 0.8266 0.3993 0.031\* C11 0.3017 (2) 0.7428 (2) 0.34666 (12) 0.0242 (4) H11A 0.3066 0.6879 0.3744 0.029\* C12 0.3567 (2) 0.74156 (17) 0.29038 (11) 0.0186 (4) H12A 0.3971 0.6853 0.2805 0.022\* C13 0.51207 (19) 0.71602 (15) 0.18003 (10) 0.0145 (3) H13A 0.5248 0.6977 0.1343 0.017\* H13B 0.4512 0.6514 0.1878 0.017\* C14 0.63549 (19) 0.64811 (16) 0.30693 (10) 0.0146 (3) C15 0.6455 (2) 0.68838 (17) 0.37605 (10) 0.0186 (4) H15A 0.6775 0.7647 0.3932 0.022\* C16 0.6080 (2) 0.61558 (18) 0.41975 (11) 0.0225 (4) H16A 0.6139 0.6435 0.4656 0.027\* C17 0.5619 (2) 0.50136 (18) 0.39500 (12) 0.0235 (4) H17A 0.5359 0.4528 0.4240 0.028\* C18 0.5550 (2) 0.45995 (18) 0.32651 (12) 0.0226 (4) H18A 0.5265 0.3833 0.3102 0.027\* C19 0.5903 (2) 0.53249 (17) 0.28256 (11) 0.0184 (3) H19A 0.5841 0.5043 0.2367 0.022\* C20 0.7655 (2) 0.66612 (16) 0.20189 (11) 0.0167 (3) C21 0.8994 (2) 0.67841 (17) 0.23616 (12) 0.0199 (4) H21A 0.9381 0.7256 0.2791 0.024\* C22 0.9748 (2) 0.62100 (19) 0.20680 (13) 0.0235 (4) H22A 1.0641 0.6303 0.2298 0.028\* C23 0.9174 (2) 0.54943 (19) 0.14297 (13) 0.0240 (4) H23A 0.9682 0.5108 0.1233 0.029\* C24 0.7849 (2) 0.53592 (19) 0.10887 (12) 0.0227 (4) H24A 0.7465 0.4880 0.0662 0.027\* C25 0.7084 (2) 0.59360 (17) 0.13801 (11) 0.0192 (4) H25A 0.6190 0.5838 0.1149 0.023\* C26 1.1750 (2) 1.21173 (16) 0.37579 (10) 0.0168 (3) C27 1.3092 (2) 1.22971 (18) 0.37581 (11) 0.0202 (4) H27A 1.3403 1.2721 0.3451 0.024\* C28 1.3962 (2) 1.18506 (19) 0.42107 (11) 0.0220 (4) H28A 1.4846 1.1975 0.4203 0.026\* C29 1.3514 (2) 1.12195 (19) 0.46744 (11) 0.0216 (4) H29A 1.4098 1.0923 0.4978 0.026\* C30 1.2194 (2) 1.10329 (18) 0.46837 (11) 0.0203 (4) H30A 1.1892 1.0606 0.4992 0.024\* C31 1.1317 (2) 1.14823 (17) 0.42321 (11) 0.0190 (4) H31A 1.0435 1.1359 0.4246 0.023\* C32 1.0630 (2) 1.40060 (16) 0.37212 (10) 0.0173 (3) C33 0.9553 (2) 1.4472 (2) 0.36079 (13) 0.0270 (5) H33A 0.8775 1.4100 0.3263 0.032\* C34 0.9608 (3) 1.5484 (2) 0.39975 (13) 0.0279 (5) H34A 0.8878 1.5788 0.3905 0.033\* C35 1.0748 (2) 1.60378 (18) 0.45236 (11) 0.0234 (4) H35A 1.0785 1.6708 0.4791 0.028\* C36 1.1832 (3) 1.5583 (2) 0.46469 (13) 0.0304 (5) H36A 1.2602 1.5953 0.4998 0.036\* C37 1.1781 (2) 1.45736 (19) 0.42489 (12) 0.0257 (4) H37A 1.2517 1.4278 0.4336 0.031\* C38 1.1454 (2) 1.31731 (16) 0.25485 (10) 0.0166 (3) C39 1.1601 (2) 1.42591 (17) 0.24096 (11) 0.0179 (3) H39A 1.1326 1.4773 0.2674 0.022\* C40 1.2153 (2) 1.45860 (17) 0.18801 (11) 0.0190 (4) H40A 1.2223 1.5308 0.1787 0.023\* C41 1.2601 (2) 1.38383 (17) 0.14886 (10) 0.0175 (3) C42 1.2494 (2) 1.27573 (17) 0.16348 (11) 0.0197 (4) H42A 1.2810 1.2256 0.1385 0.024\* C43 1.1912 (2) 1.24295 (17) 0.21545 (11) 0.0199 (4) H43A 1.1827 1.1703 0.2241 0.024\* C44 1.3978 (3) 1.3274 (2) 0.05386 (16) 0.0389 (7) H44A 1.4340 1.3473 0.0163 0.058\* H44B 1.3327 1.2566 0.0386 0.058\* H44C 1.4682 1.3224 0.0926 0.058\* C45 0.8849 (2) 1.11987 (16) 0.17560 (11) 0.0180 (3) C46 0.7595 (2) 1.26603 (17) 0.22321 (11) 0.0185 (4) C47 0.7932 (2) 1.17875 (18) 0.34831 (11) 0.0206 (4) C48 0.6764 (2) 0.92090 (17) 0.12839 (10) 0.0168 (3) C49 0.5344 (2) 1.09059 (16) 0.25009 (10) 0.0168 (3) C50 0.5111 (2) 1.05834 (17) 0.10979 (11) 0.0186 (4) C51 0.9068 (2) 0.93514 (17) 0.23563 (11) 0.0195 (4) C52 0.9029 (2) 0.90592 (17) 0.36893 (11) 0.0181 (3) C53 0.6593 (2) 0.95889 (16) 0.34399 (10) 0.0174 (3) Cl1 0.13190 (9) 1.00231 (8) 0.04461 (5) 0.0540 (2) C54 0.0346 (6) 1.0646 (4) −0.0049 (3) 0.0318 (10) 0.50 H54A 0.0745 1.0841 −0.0413 0.038\* 0.50 H54B 0.0376 1.1334 0.0229 0.038\* 0.50 ------ --------------- --------------- --------------- -------------------- ------------ ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e2179 .table-wrap} ----- ------------- -------------- -------------- -------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Ru1 0.01402 (7) 0.01148 (6) 0.01443 (6) 0.00121 (5) 0.00397 (5) 0.00218 (5) Ru2 0.01216 (6) 0.01174 (6) 0.01320 (6) 0.00280 (5) 0.00398 (5) 0.00220 (4) Ru3 0.01274 (6) 0.01153 (6) 0.01471 (6) 0.00227 (5) 0.00285 (5) 0.00247 (5) P1 0.0122 (2) 0.01268 (19) 0.01312 (19) 0.00267 (16) 0.00349 (16) 0.00181 (15) P2 0.0137 (2) 0.01182 (19) 0.0146 (2) 0.00328 (16) 0.00476 (16) 0.00251 (15) P3 0.0148 (2) 0.0129 (2) 0.0163 (2) 0.00181 (16) 0.00454 (17) 0.00195 (16) S1 0.0311 (3) 0.0224 (2) 0.0211 (2) 0.0038 (2) 0.0121 (2) 0.00478 (19) O1 0.0277 (8) 0.0232 (7) 0.0209 (7) 0.0041 (6) 0.0103 (6) 0.0039 (6) O2 0.0330 (9) 0.0218 (7) 0.0262 (8) 0.0120 (7) 0.0074 (7) 0.0068 (6) O3 0.0319 (9) 0.0285 (8) 0.0208 (7) −0.0019 (7) 0.0118 (7) −0.0032 (6) O4 0.0207 (7) 0.0258 (8) 0.0223 (7) 0.0060 (6) 0.0080 (6) −0.0011 (6) O5 0.0229 (8) 0.0203 (7) 0.0278 (8) 0.0061 (6) 0.0107 (6) −0.0011 (6) O6 0.0338 (10) 0.0336 (9) 0.0269 (8) 0.0132 (8) 0.0049 (7) 0.0139 (7) O7 0.0237 (8) 0.0314 (9) 0.0353 (9) 0.0136 (7) 0.0154 (7) 0.0159 (7) O8 0.0211 (8) 0.0320 (9) 0.0230 (7) 0.0097 (6) 0.0031 (6) 0.0099 (6) O9 0.0225 (8) 0.0237 (7) 0.0212 (7) 0.0060 (6) 0.0085 (6) 0.0049 (6) C1 0.0153 (8) 0.0147 (8) 0.0160 (8) 0.0033 (6) 0.0020 (6) 0.0014 (6) C2 0.0174 (9) 0.0244 (9) 0.0155 (8) 0.0050 (7) 0.0030 (7) 0.0011 (7) C3 0.0276 (11) 0.0250 (10) 0.0156 (8) 0.0087 (8) 0.0007 (8) 0.0005 (7) C4 0.0258 (11) 0.0223 (10) 0.0205 (9) 0.0015 (8) −0.0040 (8) 0.0000 (8) C5 0.0169 (10) 0.0306 (11) 0.0265 (11) −0.0029 (8) −0.0016 (8) 0.0070 (9) C6 0.0176 (9) 0.0251 (10) 0.0203 (9) −0.0005 (7) 0.0035 (7) 0.0062 (7) C7 0.0138 (8) 0.0159 (8) 0.0157 (8) 0.0019 (6) 0.0061 (6) 0.0014 (6) C8 0.0151 (8) 0.0185 (8) 0.0210 (9) 0.0045 (7) 0.0061 (7) 0.0019 (7) C9 0.0178 (9) 0.0235 (10) 0.0230 (9) 0.0058 (7) 0.0078 (8) −0.0009 (7) C10 0.0228 (10) 0.0343 (12) 0.0218 (10) 0.0071 (9) 0.0116 (8) 0.0041 (8) C11 0.0257 (11) 0.0292 (11) 0.0223 (10) 0.0076 (9) 0.0121 (8) 0.0106 (8) C12 0.0197 (9) 0.0170 (8) 0.0215 (9) 0.0051 (7) 0.0090 (7) 0.0050 (7) C13 0.0141 (8) 0.0132 (7) 0.0149 (7) 0.0033 (6) 0.0029 (6) 0.0007 (6) C14 0.0145 (8) 0.0139 (7) 0.0172 (8) 0.0054 (6) 0.0053 (6) 0.0045 (6) C15 0.0246 (10) 0.0146 (8) 0.0164 (8) 0.0047 (7) 0.0052 (7) 0.0029 (6) C16 0.0308 (11) 0.0201 (9) 0.0162 (8) 0.0052 (8) 0.0067 (8) 0.0041 (7) C17 0.0282 (11) 0.0199 (9) 0.0230 (10) 0.0031 (8) 0.0089 (8) 0.0088 (8) C18 0.0274 (11) 0.0143 (8) 0.0253 (10) 0.0009 (7) 0.0097 (8) 0.0044 (7) C19 0.0197 (9) 0.0160 (8) 0.0193 (8) 0.0033 (7) 0.0062 (7) 0.0027 (7) C20 0.0183 (9) 0.0141 (8) 0.0209 (9) 0.0055 (7) 0.0094 (7) 0.0044 (6) C21 0.0171 (9) 0.0175 (8) 0.0259 (10) 0.0047 (7) 0.0072 (8) 0.0040 (7) C22 0.0179 (9) 0.0203 (9) 0.0353 (12) 0.0075 (8) 0.0100 (9) 0.0063 (8) C23 0.0249 (10) 0.0208 (9) 0.0339 (11) 0.0108 (8) 0.0166 (9) 0.0063 (8) C24 0.0275 (11) 0.0220 (9) 0.0220 (9) 0.0106 (8) 0.0100 (8) 0.0025 (7) C25 0.0197 (9) 0.0195 (9) 0.0196 (9) 0.0080 (7) 0.0051 (7) 0.0029 (7) C26 0.0161 (8) 0.0156 (8) 0.0175 (8) 0.0029 (6) 0.0041 (7) 0.0016 (6) C27 0.0186 (9) 0.0218 (9) 0.0207 (9) 0.0046 (7) 0.0066 (7) 0.0049 (7) C28 0.0185 (9) 0.0263 (10) 0.0224 (9) 0.0064 (8) 0.0081 (8) 0.0028 (8) C29 0.0223 (10) 0.0253 (10) 0.0171 (8) 0.0091 (8) 0.0033 (7) 0.0030 (7) C30 0.0234 (10) 0.0217 (9) 0.0154 (8) 0.0036 (8) 0.0063 (7) 0.0047 (7) C31 0.0185 (9) 0.0178 (8) 0.0208 (9) 0.0029 (7) 0.0072 (7) 0.0038 (7) C32 0.0192 (9) 0.0140 (8) 0.0181 (8) 0.0016 (7) 0.0063 (7) 0.0025 (6) C33 0.0205 (10) 0.0242 (10) 0.0306 (11) 0.0054 (8) 0.0020 (9) −0.0067 (8) C34 0.0273 (11) 0.0229 (10) 0.0326 (12) 0.0091 (9) 0.0085 (9) −0.0041 (9) C35 0.0337 (12) 0.0157 (9) 0.0192 (9) 0.0032 (8) 0.0089 (8) −0.0005 (7) C36 0.0333 (13) 0.0224 (10) 0.0260 (11) 0.0054 (9) −0.0033 (9) −0.0056 (8) C37 0.0239 (11) 0.0212 (10) 0.0262 (10) 0.0075 (8) −0.0017 (8) −0.0034 (8) C38 0.0157 (8) 0.0149 (8) 0.0174 (8) 0.0010 (6) 0.0046 (7) 0.0020 (6) C39 0.0177 (9) 0.0157 (8) 0.0211 (9) 0.0036 (7) 0.0068 (7) 0.0038 (7) C40 0.0193 (9) 0.0158 (8) 0.0224 (9) 0.0037 (7) 0.0069 (7) 0.0047 (7) C41 0.0159 (8) 0.0178 (8) 0.0164 (8) 0.0012 (7) 0.0033 (7) 0.0024 (6) C42 0.0222 (10) 0.0170 (8) 0.0197 (9) 0.0038 (7) 0.0079 (7) 0.0004 (7) C43 0.0225 (10) 0.0153 (8) 0.0215 (9) 0.0029 (7) 0.0071 (8) 0.0032 (7) C44 0.0583 (19) 0.0320 (13) 0.0376 (14) 0.0156 (13) 0.0303 (14) 0.0062 (11) C45 0.0181 (9) 0.0137 (8) 0.0204 (9) 0.0018 (7) 0.0043 (7) 0.0029 (6) C46 0.0194 (9) 0.0172 (8) 0.0177 (8) 0.0020 (7) 0.0058 (7) 0.0022 (7) C47 0.0178 (9) 0.0184 (9) 0.0224 (9) −0.0010 (7) 0.0052 (7) 0.0023 (7) C48 0.0140 (8) 0.0175 (8) 0.0170 (8) 0.0022 (6) 0.0029 (6) 0.0026 (6) C49 0.0155 (8) 0.0160 (8) 0.0183 (8) 0.0031 (6) 0.0043 (7) 0.0036 (6) C50 0.0176 (9) 0.0174 (8) 0.0209 (9) 0.0042 (7) 0.0058 (7) 0.0034 (7) C51 0.0170 (9) 0.0185 (9) 0.0231 (9) 0.0038 (7) 0.0044 (7) 0.0087 (7) C52 0.0164 (9) 0.0162 (8) 0.0216 (9) 0.0035 (7) 0.0059 (7) 0.0029 (7) C53 0.0183 (9) 0.0134 (8) 0.0185 (8) 0.0027 (7) 0.0026 (7) 0.0033 (6) Cl1 0.0426 (4) 0.0467 (4) 0.0630 (5) 0.0157 (3) 0.0052 (4) −0.0177 (4) C54 0.038 (3) 0.025 (2) 0.036 (3) 0.007 (2) 0.019 (2) 0.0016 (19) ----- ------------- -------------- -------------- -------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e3331 .table-wrap} ----------------------- --------------- ----------------------- -------------- Ru1---C46 1.880 (2) C15---C16 1.392 (3) Ru1---C47 1.931 (2) C15---H15A 0.9300 Ru1---C45 1.941 (2) C16---C17 1.389 (3) Ru1---P3 2.3612 (5) C16---H16A 0.9300 Ru1---Ru2 2.8463 (2) C17---C18 1.392 (3) Ru1---Ru3 2.9093 (2) C17---H17A 0.9300 Ru2---C50 1.900 (2) C18---C19 1.387 (3) Ru2---C48 1.931 (2) C18---H18A 0.9300 Ru2---C49 1.935 (2) C19---H19A 0.9300 Ru2---P1 2.3248 (5) C20---C21 1.396 (3) Ru2---Ru3 2.8493 (2) C20---C25 1.396 (3) Ru3---C52 1.891 (2) C21---C22 1.382 (3) Ru3---C51 1.939 (2) C21---H21A 0.9300 Ru3---C53 1.940 (2) C22---C23 1.391 (3) Ru3---P2 2.3288 (5) C22---H22A 0.9300 P1---C7 1.8198 (19) C23---C24 1.380 (3) P1---C1 1.828 (2) C23---H23A 0.9300 P1---C13 1.8392 (19) C24---C25 1.392 (3) P2---C20 1.830 (2) C24---H24A 0.9300 P2---C14 1.8364 (19) C25---H25A 0.9300 P2---C13 1.847 (2) C26---C31 1.401 (3) P3---C38 1.830 (2) C26---C27 1.404 (3) P3---C26 1.837 (2) C27---C28 1.389 (3) P3---C32 1.847 (2) C27---H27A 0.9300 S1---C41 1.765 (2) C28---C29 1.387 (3) S1---C44 1.803 (3) C28---H28A 0.9300 O1---C45 1.142 (3) C29---C30 1.386 (3) O2---C46 1.144 (3) C29---H29A 0.9300 O3---C47 1.147 (3) C30---C31 1.395 (3) O4---C48 1.144 (2) C30---H30A 0.9300 O5---C49 1.140 (2) C31---H31A 0.9300 O6---C50 1.140 (3) C32---C33 1.386 (3) O7---C51 1.142 (3) C32---C37 1.396 (3) O8---C52 1.148 (3) C33---C34 1.390 (3) O9---C53 1.145 (3) C33---H33A 0.9300 C1---C6 1.395 (3) C34---C35 1.384 (3) C1---C2 1.398 (3) C34---H34A 0.9300 C2---C3 1.384 (3) C35---C36 1.384 (4) C2---H2A 0.9300 C35---H35A 0.9300 C3---C4 1.391 (3) C36---C37 1.397 (3) C3---H3A 0.9300 C36---H36A 0.9300 C4---C5 1.377 (3) C37---H37A 0.9300 C4---H4A 0.9300 C38---C39 1.394 (3) C5---C6 1.398 (3) C38---C43 1.400 (3) C5---H5A 0.9300 C39---C40 1.393 (3) C6---H6A 0.9300 C39---H39A 0.9300 C7---C8 1.398 (3) C40---C41 1.393 (3) C7---C12 1.399 (3) C40---H40A 0.9300 C8---C9 1.390 (3) C41---C42 1.396 (3) C8---H8A 0.9300 C42---C43 1.393 (3) C9---C10 1.393 (3) C42---H42A 0.9300 C9---H9A 0.9300 C43---H43A 0.9300 C10---C11 1.381 (3) C44---H44A 0.9600 C10---H10A 0.9300 C44---H44B 0.9600 C11---C12 1.396 (3) C44---H44C 0.9600 C11---H11A 0.9300 Cl1---C54 1.643 (6) C12---H12A 0.9300 Cl1---C54^i^ 1.734 (6) C13---H13A 0.9700 C54---C54^i^ 1.671 (10) C13---H13B 0.9700 C54---Cl1^i^ 1.734 (6) C14---C15 1.392 (3) C54---H54A 0.9600 C14---C19 1.403 (3) C54---H54B 0.9600 C46---Ru1---C47 95.35 (9) C14---C15---H15A 119.7 C46---Ru1---C45 90.57 (9) C17---C16---C15 120.16 (19) C47---Ru1---C45 173.67 (9) C17---C16---H16A 119.9 C46---Ru1---P3 99.89 (6) C15---C16---H16A 119.9 C47---Ru1---P3 89.12 (6) C16---C17---C18 119.66 (19) C45---Ru1---P3 92.08 (6) C16---C17---H17A 120.2 C46---Ru1---Ru2 86.49 (6) C18---C17---H17A 120.2 C47---Ru1---Ru2 96.00 (6) C19---C18---C17 120.26 (19) C45---Ru1---Ru2 82.10 (6) C19---C18---H18A 119.9 P3---Ru1---Ru2 171.443 (15) C17---C18---H18A 119.9 C46---Ru1---Ru3 143.73 (6) C18---C19---C14 120.40 (19) C47---Ru1---Ru3 78.03 (6) C18---C19---H19A 119.8 C45---Ru1---Ru3 95.87 (6) C14---C19---H19A 119.8 P3---Ru1---Ru3 115.437 (14) C21---C20---C25 118.95 (18) Ru2---Ru1---Ru3 59.332 (5) C21---C20---P2 116.83 (15) C50---Ru2---C48 90.33 (9) C25---C20---P2 124.17 (16) C50---Ru2---C49 91.23 (9) C22---C21---C20 120.5 (2) C48---Ru2---C49 172.45 (8) C22---C21---H21A 119.7 C50---Ru2---P1 102.20 (6) C20---C21---H21A 119.7 C48---Ru2---P1 90.72 (6) C21---C22---C23 120.2 (2) C49---Ru2---P1 96.16 (6) C21---C22---H22A 119.9 C50---Ru2---Ru1 107.96 (6) C23---C22---H22A 119.9 C48---Ru2---Ru1 93.64 (6) C24---C23---C22 119.9 (2) C49---Ru2---Ru1 78.85 (6) C24---C23---H23A 120.1 P1---Ru2---Ru1 149.487 (14) C22---C23---H23A 120.1 C50---Ru2---Ru3 164.65 (6) C23---C24---C25 120.3 (2) C48---Ru2---Ru3 79.85 (6) C23---C24---H24A 119.8 C49---Ru2---Ru3 97.03 (6) C25---C24---H24A 119.8 P1---Ru2---Ru3 89.791 (13) C24---C25---C20 120.2 (2) Ru1---Ru2---Ru3 61.435 (5) C24---C25---H25A 119.9 C52---Ru3---C51 91.69 (9) C20---C25---H25A 119.9 C52---Ru3---C53 92.83 (9) C31---C26---C27 118.04 (19) C51---Ru3---C53 168.20 (8) C31---C26---P3 119.12 (16) C52---Ru3---P2 95.90 (6) C27---C26---P3 122.83 (15) C51---Ru3---P2 93.45 (6) C28---C27---C26 121.00 (19) C53---Ru3---P2 96.92 (6) C28---C27---H27A 119.5 C52---Ru3---Ru2 170.80 (6) C26---C27---H27A 119.5 C51---Ru3---Ru2 93.48 (6) C29---C28---C27 120.2 (2) C53---Ru3---Ru2 80.69 (6) C29---C28---H28A 119.9 P2---Ru3---Ru2 91.383 (14) C27---C28---H28A 119.9 C52---Ru3---Ru1 115.11 (6) C30---C29---C28 119.8 (2) C51---Ru3---Ru1 74.82 (6) C30---C29---H29A 120.1 C53---Ru3---Ru1 93.40 (6) C28---C29---H29A 120.1 P2---Ru3---Ru1 146.748 (14) C29---C30---C31 120.33 (19) Ru2---Ru3---Ru1 59.233 (5) C29---C30---H30A 119.8 C7---P1---C1 104.73 (9) C31---C30---H30A 119.8 C7---P1---C13 105.47 (9) C30---C31---C26 120.67 (19) C1---P1---C13 99.66 (9) C30---C31---H31A 119.7 C7---P1---Ru2 117.89 (6) C26---C31---H31A 119.7 C1---P1---Ru2 117.46 (7) C33---C32---C37 118.1 (2) C13---P1---Ru2 109.54 (6) C33---C32---P3 120.83 (16) C20---P2---C14 99.53 (9) C37---C32---P3 121.07 (17) C20---P2---C13 102.11 (9) C32---C33---C34 121.6 (2) C14---P2---C13 102.64 (9) C32---C33---H33A 119.2 C20---P2---Ru3 115.33 (7) C34---C33---H33A 119.2 C14---P2---Ru3 119.45 (6) C35---C34---C33 120.0 (2) C13---P2---Ru3 115.15 (6) C35---C34---H34A 120.0 C38---P3---C26 102.93 (9) C33---C34---H34A 120.0 C38---P3---C32 103.06 (9) C36---C35---C34 119.2 (2) C26---P3---C32 102.38 (9) C36---C35---H35A 120.4 C38---P3---Ru1 112.00 (7) C34---C35---H35A 120.4 C26---P3---Ru1 120.02 (7) C35---C36---C37 120.7 (2) C32---P3---Ru1 114.46 (7) C35---C36---H36A 119.7 C41---S1---C44 103.48 (12) C37---C36---H36A 119.7 C6---C1---C2 118.96 (18) C32---C37---C36 120.4 (2) C6---C1---P1 122.73 (15) C32---C37---H37A 119.8 C2---C1---P1 118.28 (15) C36---C37---H37A 119.8 C3---C2---C1 120.7 (2) C39---C38---C43 118.14 (18) C3---C2---H2A 119.7 C39---C38---P3 121.15 (15) C1---C2---H2A 119.7 C43---C38---P3 120.49 (15) C2---C3---C4 120.0 (2) C40---C39---C38 120.94 (19) C2---C3---H3A 120.0 C40---C39---H39A 119.5 C4---C3---H3A 120.0 C38---C39---H39A 119.5 C5---C4---C3 119.9 (2) C39---C40---C41 120.48 (19) C5---C4---H4A 120.0 C39---C40---H40A 119.8 C3---C4---H4A 120.0 C41---C40---H40A 119.8 C4---C5---C6 120.4 (2) C40---C41---C42 119.17 (18) C4---C5---H5A 119.8 C40---C41---S1 116.22 (15) C6---C5---H5A 119.8 C42---C41---S1 124.54 (16) C1---C6---C5 120.0 (2) C43---C42---C41 119.97 (19) C1---C6---H6A 120.0 C43---C42---H42A 120.0 C5---C6---H6A 120.0 C41---C42---H42A 120.0 C8---C7---C12 118.82 (18) C42---C43---C38 121.26 (19) C8---C7---P1 119.05 (15) C42---C43---H43A 119.4 C12---C7---P1 122.05 (15) C38---C43---H43A 119.4 C9---C8---C7 120.3 (2) S1---C44---H44A 109.5 C9---C8---H8A 119.8 S1---C44---H44B 109.5 C7---C8---H8A 119.8 H44A---C44---H44B 109.5 C8---C9---C10 120.4 (2) S1---C44---H44C 109.5 C8---C9---H9A 119.8 H44A---C44---H44C 109.5 C10---C9---H9A 119.8 H44B---C44---H44C 109.5 C11---C10---C9 119.7 (2) O1---C45---Ru1 174.94 (18) C11---C10---H10A 120.2 O2---C46---Ru1 175.11 (19) C9---C10---H10A 120.2 O3---C47---Ru1 172.24 (19) C10---C11---C12 120.3 (2) O4---C48---Ru2 174.34 (18) C10---C11---H11A 119.9 O5---C49---Ru2 174.10 (19) C12---C11---H11A 119.9 O6---C50---Ru2 176.5 (2) C11---C12---C7 120.43 (19) O7---C51---Ru3 172.32 (18) C11---C12---H12A 119.8 O8---C52---Ru3 175.55 (18) C7---C12---H12A 119.8 O9---C53---Ru3 174.99 (18) P1---C13---P2 114.17 (10) C54---Cl1---C54^i^ 59.2 (3) P1---C13---H13A 108.7 Cl1---C54---C54^i^ 63.1 (4) P2---C13---H13A 108.7 Cl1---C54---Cl1^i^ 120.8 (3) P1---C13---H13B 108.7 C54^i^---C54---Cl1^i^ 57.7 (3) P2---C13---H13B 108.7 Cl1---C54---H54A 106.9 H13A---C13---H13B 107.6 C54^i^---C54---H54A 126.1 C15---C14---C19 118.86 (17) Cl1^i^---C54---H54A 107.0 C15---C14---P2 121.51 (15) Cl1---C54---H54B 107.2 C19---C14---P2 119.60 (15) C54^i^---C54---H54B 126.8 C16---C15---C14 120.63 (19) Cl1^i^---C54---H54B 107.3 C16---C15---H15A 119.7 H54A---C54---H54B 107.0 C46---Ru1---Ru2---C50 24.83 (9) C7---P1---C1---C2 176.39 (16) C47---Ru1---Ru2---C50 119.85 (9) C13---P1---C1---C2 −74.67 (18) C45---Ru1---Ru2---C50 −66.23 (9) Ru2---P1---C1---C2 43.42 (18) Ru3---Ru1---Ru2---C50 −167.90 (7) C6---C1---C2---C3 −0.5 (3) C46---Ru1---Ru2---C48 116.36 (9) P1---C1---C2---C3 177.81 (17) C47---Ru1---Ru2---C48 −148.62 (9) C1---C2---C3---C4 1.0 (3) C45---Ru1---Ru2---C48 25.30 (9) C2---C3---C4---C5 −1.0 (4) C46---Ru1---Ru2---C49 −62.83 (9) C3---C4---C5---C6 0.3 (4) C47---Ru1---Ru2---C49 32.19 (9) C2---C1---C6---C5 −0.2 (3) C45---Ru1---Ru2---C49 −153.89 (9) P1---C1---C6---C5 −178.36 (18) Ru3---Ru1---Ru2---C49 104.44 (6) C4---C5---C6---C1 0.2 (4) C46---Ru1---Ru2---P1 −146.01 (7) C1---P1---C7---C8 −77.05 (17) C47---Ru1---Ru2---P1 −50.99 (7) C13---P1---C7---C8 178.31 (16) C45---Ru1---Ru2---P1 122.93 (7) Ru2---P1---C7---C8 55.69 (18) Ru3---Ru1---Ru2---P1 21.26 (3) C1---P1---C7---C12 106.28 (18) C46---Ru1---Ru2---Ru3 −167.27 (6) C13---P1---C7---C12 1.63 (19) C47---Ru1---Ru2---Ru3 −72.25 (7) Ru2---P1---C7---C12 −120.99 (16) C45---Ru1---Ru2---Ru3 101.67 (6) C12---C7---C8---C9 2.6 (3) C50---Ru2---Ru3---C51 −21.1 (2) P1---C7---C8---C9 −174.22 (16) C48---Ru2---Ru3---C51 29.81 (9) C7---C8---C9---C10 −0.9 (3) C49---Ru2---Ru3---C51 −143.23 (9) C8---C9---C10---C11 −0.9 (3) P1---Ru2---Ru3---C51 120.58 (6) C9---C10---C11---C12 1.0 (4) Ru1---Ru2---Ru3---C51 −70.03 (6) C10---C11---C12---C7 0.7 (3) C50---Ru2---Ru3---C53 148.5 (2) C8---C7---C12---C11 −2.5 (3) C48---Ru2---Ru3---C53 −160.52 (8) P1---C7---C12---C11 174.19 (17) C49---Ru2---Ru3---C53 26.44 (8) C7---P1---C13---P2 −82.10 (12) P1---Ru2---Ru3---C53 −69.75 (6) C1---P1---C13---P2 169.55 (10) Ru1---Ru2---Ru3---C53 99.64 (6) Ru2---P1---C13---P2 45.71 (11) C50---Ru2---Ru3---P2 −114.7 (2) C20---P2---C13---P1 −145.16 (10) C48---Ru2---Ru3---P2 −63.73 (6) C14---P2---C13---P1 112.03 (11) C49---Ru2---Ru3---P2 123.23 (6) Ru3---P2---C13---P1 −19.42 (12) P1---Ru2---Ru3---P2 27.042 (17) C20---P2---C14---C15 138.44 (18) Ru1---Ru2---Ru3---P2 −163.569 (13) C13---P2---C14---C15 −116.75 (18) C50---Ru2---Ru3---Ru1 48.9 (2) Ru3---P2---C14---C15 12.1 (2) C48---Ru2---Ru3---Ru1 99.84 (6) C20---P2---C14---C19 −43.90 (18) C49---Ru2---Ru3---Ru1 −73.20 (6) C13---P2---C14---C19 60.91 (18) P1---Ru2---Ru3---Ru1 −169.389 (13) Ru3---P2---C14---C19 −170.27 (14) C46---Ru1---Ru3---C52 −149.96 (12) C19---C14---C15---C16 −1.7 (3) C47---Ru1---Ru3---C52 −67.31 (10) P2---C14---C15---C16 176.00 (17) C45---Ru1---Ru3---C52 111.01 (9) C14---C15---C16---C17 0.9 (4) P3---Ru1---Ru3---C52 15.90 (7) C15---C16---C17---C18 0.8 (4) Ru2---Ru1---Ru3---C52 −171.78 (7) C16---C17---C18---C19 −1.8 (4) C46---Ru1---Ru3---C51 125.40 (12) C17---C18---C19---C14 1.0 (3) C47---Ru1---Ru3---C51 −151.95 (10) C15---C14---C19---C18 0.7 (3) C45---Ru1---Ru3---C51 26.37 (9) P2---C14---C19---C18 −177.03 (17) P3---Ru1---Ru3---C51 −68.75 (7) C14---P2---C20---C21 −80.89 (17) Ru2---Ru1---Ru3---C51 103.57 (7) C13---P2---C20---C21 173.86 (15) C46---Ru1---Ru3---C53 −55.23 (12) Ru3---P2---C20---C21 48.24 (17) C47---Ru1---Ru3---C53 27.42 (9) C14---P2---C20---C25 96.33 (18) C45---Ru1---Ru3---C53 −154.26 (9) C13---P2---C20---C25 −8.92 (19) P3---Ru1---Ru3---C53 110.62 (6) Ru3---P2---C20---C25 −134.54 (16) Ru2---Ru1---Ru3---C53 −77.06 (6) C25---C20---C21---C22 1.0 (3) C46---Ru1---Ru3---P2 52.87 (11) P2---C20---C21---C22 178.35 (16) C47---Ru1---Ru3---P2 135.52 (7) C20---C21---C22---C23 −0.6 (3) C45---Ru1---Ru3---P2 −46.16 (7) C21---C22---C23---C24 0.1 (3) P3---Ru1---Ru3---P2 −141.27 (3) C22---C23---C24---C25 0.0 (3) Ru2---Ru1---Ru3---P2 31.04 (3) C23---C24---C25---C20 0.3 (3) C46---Ru1---Ru3---Ru2 21.83 (10) C21---C20---C25---C24 −0.8 (3) C47---Ru1---Ru3---Ru2 104.47 (7) P2---C20---C25---C24 −178.00 (16) C45---Ru1---Ru3---Ru2 −77.20 (6) C38---P3---C26---C31 −168.44 (16) P3---Ru1---Ru3---Ru2 −172.320 (16) C32---P3---C26---C31 84.83 (17) C50---Ru2---P1---C7 −112.21 (10) Ru1---P3---C26---C31 −43.23 (18) C48---Ru2---P1---C7 157.30 (10) C38---P3---C26---C27 12.31 (19) C49---Ru2---P1---C7 −19.60 (10) C32---P3---C26---C27 −94.41 (18) Ru1---Ru2---P1---C7 58.87 (8) Ru1---P3---C26---C27 137.52 (15) Ru3---Ru2---P1---C7 77.45 (8) C31---C26---C27---C28 0.6 (3) C50---Ru2---P1---C1 14.61 (10) P3---C26---C27---C28 179.80 (17) C48---Ru2---P1---C1 −75.89 (9) C26---C27---C28---C29 −0.3 (3) C49---Ru2---P1---C1 107.22 (9) C27---C28---C29---C30 0.2 (3) Ru1---Ru2---P1---C1 −174.31 (7) C28---C29---C30---C31 −0.4 (3) Ru3---Ru2---P1---C1 −155.74 (7) C29---C30---C31---C26 0.7 (3) C50---Ru2---P1---C13 127.26 (9) C27---C26---C31---C30 −0.8 (3) C48---Ru2---P1---C13 36.77 (9) P3---C26---C31---C30 179.95 (16) C49---Ru2---P1---C13 −140.13 (9) C38---P3---C32---C33 99.6 (2) Ru1---Ru2---P1---C13 −61.65 (7) C26---P3---C32---C33 −153.73 (19) Ru3---Ru2---P1---C13 −43.08 (6) Ru1---P3---C32---C33 −22.2 (2) C52---Ru3---P2---C20 −76.67 (10) C38---P3---C32---C37 −78.7 (2) C51---Ru3---P2---C20 15.39 (10) C26---P3---C32---C37 27.9 (2) C53---Ru3---P2---C20 −170.26 (10) Ru1---P3---C32---C37 159.44 (16) Ru2---Ru3---P2---C20 108.95 (7) C37---C32---C33---C34 0.9 (4) Ru1---Ru3---P2---C20 82.64 (8) P3---C32---C33---C34 −177.5 (2) C52---Ru3---P2---C14 41.86 (10) C32---C33---C34---C35 −1.4 (4) C51---Ru3---P2---C14 133.92 (10) C33---C34---C35---C36 1.1 (4) C53---Ru3---P2---C14 −51.73 (9) C34---C35---C36---C37 −0.3 (4) Ru2---Ru3---P2---C14 −132.51 (7) C33---C32---C37---C36 −0.1 (4) Ru1---Ru3---P2---C14 −158.83 (7) P3---C32---C37---C36 178.3 (2) C52---Ru3---P2---C13 164.73 (9) C35---C36---C37---C32 −0.2 (4) C51---Ru3---P2---C13 −103.21 (9) C26---P3---C38---C39 −127.87 (18) C53---Ru3---P2---C13 71.14 (9) C32---P3---C38---C39 −21.7 (2) Ru2---Ru3---P2---C13 −9.64 (7) Ru1---P3---C38---C39 101.86 (17) Ru1---Ru3---P2---C13 −35.96 (8) C26---P3---C38---C43 57.53 (19) C46---Ru1---P3---C38 −68.34 (10) C32---P3---C38---C43 163.74 (17) C47---Ru1---P3---C38 −163.62 (10) Ru1---P3---C38---C43 −72.75 (18) C45---Ru1---P3---C38 22.60 (9) C43---C38---C39---C40 1.8 (3) Ru3---Ru1---P3---C38 120.10 (7) P3---C38---C39---C40 −172.90 (17) C46---Ru1---P3---C26 170.85 (10) C38---C39---C40---C41 −1.6 (3) C47---Ru1---P3---C26 75.57 (10) C39---C40---C41---C42 −0.1 (3) C45---Ru1---P3---C26 −98.21 (10) C39---C40---C41---S1 176.83 (17) Ru3---Ru1---P3---C26 −0.72 (8) C44---S1---C41---C40 169.09 (19) C46---Ru1---P3---C32 48.50 (9) C44---S1---C41---C42 −14.1 (2) C47---Ru1---P3---C32 −46.77 (10) C40---C41---C42---C43 1.6 (3) C45---Ru1---P3---C32 139.44 (9) S1---C41---C42---C43 −175.09 (17) Ru3---Ru1---P3---C32 −123.06 (7) C41---C42---C43---C38 −1.4 (3) C7---P1---C1---C6 −5.4 (2) C39---C38---C43---C42 −0.3 (3) C13---P1---C1---C6 103.55 (19) P3---C38---C43---C42 174.42 (17) Ru2---P1---C1---C6 −138.36 (16) ----------------------- --------------- ----------------------- -------------- ::: Symmetry codes: (i) −*x*, −*y*+2, −*z*. Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e6134 .table-wrap} ------------------------------------------------------------------------------------------------------- Cg1, Cg2 and Cg3 are the centroids of the C26--C31, C14--C19 and C7--C12 benzene rings, respectively. ------------------------------------------------------------------------------------------------------- ::: ::: {#d1e6138 .table-wrap} ----------------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C9---H9A···Cg1^ii^ 0.93 2.83 3.550 (2) 135 C12---H12A···Cg2 0.93 2.98 3.743 (2) 140 C16---H16A···Cg1^iii^ 0.93 2.90 3.696 (2) 145 C22---H22A···Cg3^iv^ 0.93 2.99 3.708 (3) 136 C34---H34A···Cg2^v^ 0.93 2.98 3.850 (3) 156 ----------------------- --------- --------- ----------- --------------- ::: Symmetry codes: (ii) *x*−1, *y*, *z*; (iii) −*x*+2, −*y*+2, −*z*+1; (iv) *x*+1, *y*, *z*; (v) *x*, *y*+1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1, *Cg*2 and *Cg*3 are the centroids of the C26--C31, C14--C19 and C7--C12 benzene rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------- --------- ------- ----------- ------------- C9---H9*A*⋯*Cg*1^i^ 0.93 2.83 3.550 (2) 135 C12---H12*A*⋯*Cg*2 0.93 2.98 3.743 (2) 140 C16---H16*A*⋯*Cg*1^ii^ 0.93 2.90 3.696 (2) 145 C22---H22*A*⋯*Cg*3^iii^ 0.93 2.99 3.708 (3) 136 C34---H34*A*⋯*Cg*2^iv^ 0.93 2.98 3.850 (3) 156 Symmetry codes: (i) ; (ii) ; (iii) ; (iv) . ::: [^1]: ‡ Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia. [^2]: § Thomson Reuters ResearcherID: E-2833-2010. Current address: Department of Chemistry, Gokhale Centenary College, Ankola 581 314, NK, Karnataka, India. [^3]: ¶ Thomson Reuters ResearcherID: A-5523-2009. [^4]: ‡‡ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: [email protected].
PubMed Central
2024-06-05T04:04:17.114493
2011-1-15
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051800/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 15; 67(Pt 2):m218-m219", "authors": [ { "first": "Omar bin", "last": "Shawkataly" }, { "first": "Imthyaz Ahmed", "last": "Khan" }, { "first": "H. A.", "last": "Hafiz Malik" }, { "first": "Chin Sing", "last": "Yeap" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3051801
Related literature {#sec1} ================== For related structures, see: Filby *et al.* (2006[@bb3]); Lumbreras *et al.* (2010[@bb4]). For the synthesis of bis­(di-*o*-tolyl­phosphino)methane, see: Filby *et al.* (2006[@bb3]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[@bb2]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~29~H~30~P~2~*M* *~r~* = 440.47Monoclinic,*a* = 8.2991 (5) Å*b* = 7.4050 (5) Å*c* = 40.782 (3) Åβ = 95.189 (1)°*V* = 2496.0 (3) Å^3^*Z* = 4Mo *K*α radiationμ = 0.19 mm^−1^*T* = 100 K0.43 × 0.42 × 0.10 mm ### Data collection {#sec2.1.2} Bruker APEXII DUO CCD area-detector diffractometerAbsorption correction: multi-scan (*SADABS*; Bruker, 2009[@bb1]) *T* ~min~ = 0.924, *T* ~max~ = 0.98127134 measured reflections10066 independent reflections8035 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.041 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.054*wR*(*F* ^2^) = 0.137*S* = 1.0710066 reflections284 parametersH-atom parameters constrainedΔρ~max~ = 0.36 e Å^−3^Δρ~min~ = −0.23 e Å^−3^ {#d5e462} Data collection: *APEX2* (Bruker, 2009[@bb1]); cell refinement: *SAINT* (Bruker, 2009[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008[@bb5]); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009[@bb6]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536810054279/ng5093sup1.cif](http://dx.doi.org/10.1107/S1600536810054279/ng5093sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536810054279/ng5093Isup2.hkl](http://dx.doi.org/10.1107/S1600536810054279/ng5093Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?ng5093&file=ng5093sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?ng5093sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?ng5093&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [NG5093](http://scripts.iucr.org/cgi-bin/sendsup?ng5093)). The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant 1001/PJJAUH/811115. IAK is grateful to USM for a Visiting Researcher position. HKF and CSY thank USM for the Research University Grant No. 1001/PFIZIK/811160. Comment ======= Diphosphines are an important class of ligands that finds widespread use in transition metal chemistry and catalysis. A subclass of these is small bite-angle diphosphines in which the two phosphorus centers are separated only by a single atom linker unit. The small bite-angle ligand bis(di-*o*-tolylphosphino)methane is used in the synthesis of palladium complexes (Filby *et al.*, 2006; Lumbreras *et al.*, 2010). The dihedral angles between the two substituted benzene rings (C1--C6/C7--C12 and C14--C19/C20--C25) to the same phosphine atom (P1 and P2) are 88.39 (7) and 83.88 (9)° respectively (Fig. 1). In the crystal packing, the molecules are arranged into columns and stacked down *b* axis. (Fig. 2). Weak intermolecular C---H···π interactions (Table 1) further stabilize the crystal structure. Experimental {#experimental} ============ All manipulations were performed under a dry oxygen-free nitrogen atmosphere using standard Schlenk techniques. All solvents were dried over sodium and distilled from sodium benzophenone ketyl under dry oxygen free nitrogen. Bis(di-*o*-tolylphosphino)methane was prepared by reported procedure (Filby *et al.*, 2006). Crystals suitable for X-ray diffraction were grown by slow solvent / solvent diffusion of CH~3~OH into CHCl~3~. Refinement {#refinement} ========== All hydrogen atoms were positioned geometrically and refined using a riding model with C---H = 0.93--0.97 Å and *U*~iso~(H) = 1.2 or 1.5 *U*~eq~(C). Rotating group model was applied for the methyl groups. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms. ::: ![](e-67-0o289-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound, viewed down the b axis, showing the molecules stacked down the b axis. ::: ![](e-67-0o289-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e140 .table-wrap} ------------------------- --------------------------------------- C~29~H~30~P~2~ *F*(000) = 936 *M~r~* = 440.47 *D*~x~ = 1.172 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 6549 reflections *a* = 8.2991 (5) Å θ = 4.6--33.8° *b* = 7.4050 (5) Å µ = 0.19 mm^−1^ *c* = 40.782 (3) Å *T* = 100 K β = 95.189 (1)° Plate, colourless *V* = 2496.0 (3) Å^3^ 0.43 × 0.42 × 0.10 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e267 .table-wrap} ------------------------------------------------------------ -------------------------------------- Bruker APEXII DUO CCD area-detector diffractometer 10066 independent reflections Radiation source: fine-focus sealed tube 8035 reflections with *I* \> 2σ(*I*) graphite *R*~int~ = 0.041 φ and ω scans θ~max~ = 34.0°, θ~min~ = 4.3° Absorption correction: multi-scan (*SADABS*; Bruker, 2009) *h* = −13→12 *T*~min~ = 0.924, *T*~max~ = 0.981 *k* = −11→11 27134 measured reflections *l* = −51→64 ------------------------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e384 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------- Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.054 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.137 H-atom parameters constrained *S* = 1.07 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.0572*P*)^2^ + 0.7579*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 10066 reflections (Δ/σ)~max~ \< 0.001 284 parameters Δρ~max~ = 0.36 e Å^−3^ 0 restraints Δρ~min~ = −0.23 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------- ::: Special details {#specialdetails} =============== ::: {#d1e541 .table-wrap} ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. Geometry. All e.s.d.\'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.\'s are taken into account individually in the estimation of e.s.d.\'s in distances, angles and torsion angles; correlations between e.s.d.\'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.\'s is used for estimating e.s.d.\'s involving l.s. planes. Refinement. Refinement of *F*^2^ against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on *F*^2^, conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative *F*^2^. The threshold expression of *F*^2^ \> σ(*F*^2^) is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*^2^ are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e646 .table-wrap} ------ --------------- --------------- -------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ P1 0.18382 (3) 0.27891 (4) 0.086016 (7) 0.01724 (7) P2 0.16377 (4) 0.13495 (5) 0.154290 (8) 0.02634 (8) C1 0.23722 (13) 0.48860 (15) 0.06551 (3) 0.01841 (19) C2 0.29605 (15) 0.64220 (16) 0.08257 (3) 0.0230 (2) H2A 0.2991 0.6448 0.1054 0.028\* C3 0.35022 (16) 0.79130 (18) 0.06591 (4) 0.0285 (3) H3A 0.3887 0.8928 0.0776 0.034\* C4 0.34666 (19) 0.7880 (2) 0.03197 (4) 0.0342 (3) H4A 0.3834 0.8870 0.0207 0.041\* C5 0.2885 (2) 0.6374 (2) 0.01471 (4) 0.0361 (3) H5A 0.2860 0.6367 −0.0081 0.043\* C6 0.23309 (16) 0.48582 (19) 0.03092 (3) 0.0267 (2) C7 −0.03857 (13) 0.28696 (17) 0.08034 (3) 0.0217 (2) C8 −0.11985 (17) 0.4501 (2) 0.08482 (4) 0.0320 (3) H8A −0.0605 0.5535 0.0907 0.038\* C9 −0.28755 (19) 0.4594 (3) 0.08063 (5) 0.0438 (4) H9A −0.3406 0.5678 0.0838 0.053\* C10 −0.37401 (17) 0.3062 (3) 0.07174 (5) 0.0467 (5) H10A −0.4864 0.3115 0.0689 0.056\* C11 −0.29677 (17) 0.1445 (3) 0.06704 (4) 0.0399 (4) H11A −0.3579 0.0428 0.0608 0.048\* C12 −0.12682 (15) 0.13087 (19) 0.07148 (3) 0.0273 (2) C13 0.21569 (16) 0.33585 (17) 0.13027 (3) 0.0245 (2) H13A 0.1475 0.4370 0.1352 0.029\* H13B 0.3277 0.3695 0.1360 0.029\* C14 0.34812 (18) −0.00360 (18) 0.15611 (3) 0.0282 (3) C15 0.48803 (19) 0.0451 (2) 0.14168 (4) 0.0352 (3) H15A 0.4921 0.1566 0.1313 0.042\* C16 0.6214 (2) −0.0687 (3) 0.14243 (5) 0.0464 (4) H16A 0.7136 −0.0331 0.1328 0.056\* C17 0.6162 (3) −0.2354 (3) 0.15766 (5) 0.0492 (5) H17A 0.7045 −0.3128 0.1581 0.059\* C18 0.4799 (3) −0.2860 (2) 0.17213 (4) 0.0451 (4) H18A 0.4779 −0.3978 0.1825 0.054\* C19 0.3439 (2) −0.17399 (19) 0.17171 (4) 0.0344 (3) C20 0.1778 (2) 0.23619 (19) 0.19566 (4) 0.0360 (3) C21 0.3219 (3) 0.2361 (2) 0.21606 (4) 0.0495 (5) H21A 0.4140 0.1830 0.2089 0.059\* C22 0.3289 (4) 0.3153 (3) 0.24723 (5) 0.0738 (8) H22A 0.4254 0.3143 0.2607 0.089\* C23 0.1940 (5) 0.3944 (3) 0.25798 (5) 0.0817 (10) H23A 0.1989 0.4464 0.2788 0.098\* C24 0.0516 (4) 0.3970 (2) 0.23803 (6) 0.0698 (8) H24A −0.0386 0.4528 0.2455 0.084\* C25 0.0383 (3) 0.3179 (2) 0.20667 (5) 0.0476 (5) C26 0.1731 (2) 0.3240 (2) 0.01096 (4) 0.0415 (4) H26A 0.2340 0.2192 0.0184 0.062\* H26B 0.1865 0.3450 −0.0119 0.062\* H26C 0.0607 0.3047 0.0136 0.062\* C27 −0.04883 (19) −0.0484 (2) 0.06702 (5) 0.0401 (4) H27A 0.0148 −0.0813 0.0869 0.060\* H27B 0.0197 −0.0410 0.0493 0.060\* H27C −0.1309 −0.1380 0.0619 0.060\* C28 0.1983 (3) −0.2342 (2) 0.18810 (5) 0.0504 (5) H28A 0.2161 −0.3540 0.1967 0.076\* H28B 0.1051 −0.2339 0.1723 0.076\* H28C 0.1806 −0.1532 0.2058 0.076\* C29 −0.1195 (3) 0.3245 (3) 0.18557 (7) 0.0634 (6) H29A −0.2006 0.3789 0.1977 0.095\* H29B −0.1521 0.2041 0.1793 0.095\* H29C −0.1067 0.3948 0.1662 0.095\* ------ --------------- --------------- -------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1489 .table-wrap} ----- -------------- -------------- -------------- --------------- -------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ P1 0.01554 (12) 0.01656 (13) 0.01936 (13) 0.00128 (9) 0.00012 (8) 0.00058 (9) P2 0.03679 (18) 0.02088 (15) 0.02149 (15) −0.00247 (12) 0.00350 (12) 0.00215 (11) C1 0.0162 (4) 0.0182 (5) 0.0208 (5) 0.0014 (4) 0.0018 (3) 0.0014 (4) C2 0.0241 (5) 0.0201 (5) 0.0250 (5) 0.0002 (4) 0.0038 (4) −0.0015 (4) C3 0.0270 (6) 0.0205 (5) 0.0387 (7) −0.0026 (5) 0.0059 (5) 0.0002 (5) C4 0.0359 (7) 0.0275 (6) 0.0403 (8) −0.0046 (5) 0.0103 (6) 0.0096 (6) C5 0.0486 (8) 0.0351 (7) 0.0249 (6) −0.0052 (6) 0.0059 (6) 0.0076 (5) C6 0.0310 (6) 0.0281 (6) 0.0209 (5) −0.0033 (5) 0.0013 (4) 0.0020 (4) C7 0.0164 (4) 0.0253 (5) 0.0237 (5) 0.0036 (4) 0.0039 (4) 0.0058 (4) C8 0.0289 (6) 0.0316 (7) 0.0370 (7) 0.0123 (5) 0.0106 (5) 0.0081 (5) C9 0.0287 (7) 0.0541 (10) 0.0511 (10) 0.0221 (7) 0.0167 (6) 0.0190 (8) C10 0.0181 (6) 0.0732 (12) 0.0503 (10) 0.0098 (7) 0.0111 (6) 0.0275 (9) C11 0.0209 (6) 0.0554 (10) 0.0430 (8) −0.0091 (6) 0.0004 (5) 0.0179 (7) C12 0.0188 (5) 0.0326 (6) 0.0299 (6) −0.0043 (5) 0.0000 (4) 0.0079 (5) C13 0.0326 (6) 0.0202 (5) 0.0204 (5) −0.0005 (4) 0.0000 (4) 0.0021 (4) C14 0.0431 (7) 0.0218 (5) 0.0191 (5) 0.0004 (5) −0.0008 (5) 0.0007 (4) C15 0.0389 (7) 0.0363 (7) 0.0293 (7) 0.0043 (6) −0.0023 (5) 0.0083 (6) C16 0.0424 (8) 0.0562 (11) 0.0395 (9) 0.0122 (8) −0.0021 (7) 0.0064 (8) C17 0.0603 (11) 0.0460 (10) 0.0387 (9) 0.0228 (9) −0.0105 (8) −0.0021 (7) C18 0.0782 (13) 0.0264 (7) 0.0279 (7) 0.0123 (8) −0.0111 (7) −0.0009 (5) C19 0.0600 (9) 0.0202 (5) 0.0222 (6) 0.0001 (6) −0.0007 (6) −0.0011 (4) C20 0.0657 (10) 0.0208 (6) 0.0225 (6) −0.0005 (6) 0.0102 (6) 0.0035 (5) C21 0.0885 (14) 0.0334 (8) 0.0243 (7) 0.0016 (8) −0.0067 (8) −0.0027 (6) C22 0.147 (3) 0.0442 (10) 0.0264 (8) −0.0001 (13) −0.0151 (11) −0.0057 (8) C23 0.183 (3) 0.0383 (10) 0.0264 (8) 0.0056 (14) 0.0223 (14) −0.0045 (8) C24 0.144 (2) 0.0280 (8) 0.0453 (11) 0.0098 (11) 0.0530 (14) 0.0054 (7) C25 0.0845 (14) 0.0230 (6) 0.0401 (9) 0.0046 (8) 0.0322 (9) 0.0090 (6) C26 0.0633 (10) 0.0380 (8) 0.0220 (6) −0.0137 (7) −0.0022 (6) −0.0033 (6) C27 0.0320 (7) 0.0270 (7) 0.0599 (11) −0.0073 (6) −0.0030 (6) −0.0035 (7) C28 0.0842 (14) 0.0236 (7) 0.0458 (10) −0.0068 (8) 0.0188 (9) 0.0061 (6) C29 0.0702 (14) 0.0477 (11) 0.0785 (16) 0.0154 (10) 0.0405 (12) 0.0136 (10) ----- -------------- -------------- -------------- --------------- -------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e2065 .table-wrap} ----------------------- -------------- ----------------------- -------------- P1---C1 1.8368 (12) C15---C16 1.389 (2) P1---C7 1.8402 (11) C15---H15A 0.9300 P1---C13 1.8491 (13) C16---C17 1.384 (3) P2---C14 1.8380 (15) C16---H16A 0.9300 P2---C20 1.8404 (15) C17---C18 1.375 (3) P2---C13 1.8532 (13) C17---H17A 0.9300 C1---C2 1.3981 (17) C18---C19 1.399 (2) C1---C6 1.4080 (17) C18---H18A 0.9300 C2---C3 1.3922 (18) C19---C28 1.500 (3) C2---H2A 0.9300 C20---C21 1.394 (3) C3---C4 1.382 (2) C20---C25 1.415 (3) C3---H3A 0.9300 C21---C22 1.396 (3) C4---C5 1.382 (2) C21---H21A 0.9300 C4---H4A 0.9300 C22---C23 1.371 (4) C5---C6 1.4013 (19) C22---H22A 0.9300 C5---H5A 0.9300 C23---C24 1.373 (4) C6---C26 1.508 (2) C23---H23A 0.9300 C7---C12 1.3982 (19) C24---C25 1.402 (3) C7---C8 1.4037 (18) C24---H24A 0.9300 C8---C9 1.388 (2) C25---C29 1.502 (4) C8---H8A 0.9300 C26---H26A 0.9600 C9---C10 1.374 (3) C26---H26B 0.9600 C9---H9A 0.9300 C26---H26C 0.9600 C10---C11 1.380 (3) C27---H27A 0.9600 C10---H10A 0.9300 C27---H27B 0.9600 C11---C12 1.4093 (18) C27---H27C 0.9600 C11---H11A 0.9300 C28---H28A 0.9600 C12---C27 1.495 (2) C28---H28B 0.9600 C13---H13A 0.9700 C28---H28C 0.9600 C13---H13B 0.9700 C29---H29A 0.9600 C14---C15 1.396 (2) C29---H29B 0.9600 C14---C19 1.4150 (19) C29---H29C 0.9600 C1---P1---C7 101.29 (5) C17---C16---C15 119.57 (18) C1---P1---C13 103.45 (5) C17---C16---H16A 120.2 C7---P1---C13 99.71 (6) C15---C16---H16A 120.2 C14---P2---C20 101.95 (7) C18---C17---C16 119.76 (17) C14---P2---C13 103.71 (6) C18---C17---H17A 120.1 C20---P2---C13 99.16 (6) C16---C17---H17A 120.1 C2---C1---C6 119.09 (11) C17---C18---C19 121.80 (16) C2---C1---P1 123.29 (9) C17---C18---H18A 119.1 C6---C1---P1 117.30 (9) C19---C18---H18A 119.1 C3---C2---C1 121.06 (12) C18---C19---C14 118.78 (16) C3---C2---H2A 119.5 C18---C19---C28 119.95 (15) C1---C2---H2A 119.5 C14---C19---C28 121.27 (15) C4---C3---C2 119.74 (13) C21---C20---C25 119.57 (16) C4---C3---H3A 120.1 C21---C20---P2 121.78 (14) C2---C3---H3A 120.1 C25---C20---P2 118.65 (15) C5---C4---C3 119.95 (13) C20---C21---C22 120.4 (2) C5---C4---H4A 120.0 C20---C21---H21A 119.8 C3---C4---H4A 120.0 C22---C21---H21A 119.8 C4---C5---C6 121.37 (14) C23---C22---C21 120.2 (3) C4---C5---H5A 119.3 C23---C22---H22A 119.9 C6---C5---H5A 119.3 C21---C22---H22A 119.9 C5---C6---C1 118.79 (12) C22---C23---C24 120.04 (19) C5---C6---C26 119.24 (13) C22---C23---H23A 120.0 C1---C6---C26 121.97 (12) C24---C23---H23A 120.0 C12---C7---C8 119.90 (12) C23---C24---C25 121.8 (2) C12---C7---P1 120.11 (9) C23---C24---H24A 119.1 C8---C7---P1 119.99 (10) C25---C24---H24A 119.1 C9---C8---C7 120.98 (16) C24---C25---C20 118.0 (2) C9---C8---H8A 119.5 C24---C25---C29 120.1 (2) C7---C8---H8A 119.5 C20---C25---C29 121.89 (17) C10---C9---C8 119.04 (15) C6---C26---H26A 109.5 C10---C9---H9A 120.5 C6---C26---H26B 109.5 C8---C9---H9A 120.5 H26A---C26---H26B 109.5 C9---C10---C11 121.03 (13) C6---C26---H26C 109.5 C9---C10---H10A 119.5 H26A---C26---H26C 109.5 C11---C10---H10A 119.5 H26B---C26---H26C 109.5 C10---C11---C12 121.08 (16) C12---C27---H27A 109.5 C10---C11---H11A 119.5 C12---C27---H27B 109.5 C12---C11---H11A 119.5 H27A---C27---H27B 109.5 C7---C12---C11 117.96 (14) C12---C27---H27C 109.5 C7---C12---C27 122.89 (11) H27A---C27---H27C 109.5 C11---C12---C27 119.14 (14) H27B---C27---H27C 109.5 P1---C13---P2 108.26 (7) C19---C28---H28A 109.5 P1---C13---H13A 110.0 C19---C28---H28B 109.5 P2---C13---H13A 110.0 H28A---C28---H28B 109.5 P1---C13---H13B 110.0 C19---C28---H28C 109.5 P2---C13---H13B 110.0 H28A---C28---H28C 109.5 H13A---C13---H13B 108.4 H28B---C28---H28C 109.5 C15---C14---C19 118.38 (14) C25---C29---H29A 109.5 C15---C14---P2 124.06 (11) C25---C29---H29B 109.5 C19---C14---P2 117.48 (12) H29A---C29---H29B 109.5 C16---C15---C14 121.71 (15) C25---C29---H29C 109.5 C16---C15---H15A 119.1 H29A---C29---H29C 109.5 C14---C15---H15A 119.1 H29B---C29---H29C 109.5 C7---P1---C1---C2 106.29 (10) C14---P2---C13---P1 82.71 (7) C13---P1---C1---C2 3.31 (11) C20---P2---C13---P1 −172.51 (8) C7---P1---C1---C6 −80.18 (10) C20---P2---C14---C15 −102.79 (13) C13---P1---C1---C6 176.84 (9) C13---P2---C14---C15 −0.14 (14) C6---C1---C2---C3 −0.01 (18) C20---P2---C14---C19 80.55 (12) P1---C1---C2---C3 173.42 (10) C13---P2---C14---C19 −176.80 (10) C1---C2---C3---C4 −0.3 (2) C19---C14---C15---C16 −0.2 (2) C2---C3---C4---C5 0.4 (2) P2---C14---C15---C16 −176.83 (13) C3---C4---C5---C6 −0.3 (2) C14---C15---C16---C17 0.4 (3) C4---C5---C6---C1 0.1 (2) C15---C16---C17---C18 −0.6 (3) C4---C5---C6---C26 −179.09 (16) C16---C17---C18---C19 0.6 (3) C2---C1---C6---C5 0.10 (18) C17---C18---C19---C14 −0.4 (2) P1---C1---C6---C5 −173.72 (11) C17---C18---C19---C28 −179.46 (17) C2---C1---C6---C26 179.24 (14) C15---C14---C19---C18 0.2 (2) P1---C1---C6---C26 5.43 (18) P2---C14---C19---C18 177.07 (11) C1---P1---C7---C12 137.48 (10) C15---C14---C19---C28 179.22 (15) C13---P1---C7---C12 −116.57 (11) P2---C14---C19---C28 −3.92 (19) C1---P1---C7---C8 −42.34 (12) C14---P2---C20---C21 15.95 (15) C13---P1---C7---C8 63.60 (11) C13---P2---C20---C21 −90.27 (14) C12---C7---C8---C9 0.1 (2) C14---P2---C20---C25 −164.84 (11) P1---C7---C8---C9 179.92 (12) C13---P2---C20---C25 88.93 (12) C7---C8---C9---C10 −0.5 (2) C25---C20---C21---C22 0.3 (3) C8---C9---C10---C11 0.1 (3) P2---C20---C21---C22 179.50 (15) C9---C10---C11---C12 0.6 (3) C20---C21---C22---C23 −0.2 (3) C8---C7---C12---C11 0.59 (19) C21---C22---C23---C24 −0.4 (4) P1---C7---C12---C11 −179.24 (11) C22---C23---C24---C25 0.9 (3) C8---C7---C12---C27 −178.62 (14) C23---C24---C25---C20 −0.9 (3) P1---C7---C12---C27 1.55 (19) C23---C24---C25---C29 −179.73 (19) C10---C11---C12---C7 −0.9 (2) C21---C20---C25---C24 0.2 (2) C10---C11---C12---C27 178.31 (16) P2---C20---C25---C24 −178.99 (12) C1---P1---C13---P2 179.41 (6) C21---C20---C25---C29 179.07 (16) C7---P1---C13---P2 75.22 (7) P2---C20---C25---C29 −0.1 (2) ----------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e3223 .table-wrap} ---------------------------------------------------------------------------------------- Cg1 and Cg2 are the centroids of the C7--C12 and C20--C25 benzene rings, respectively. ---------------------------------------------------------------------------------------- ::: ::: {#d1e3227 .table-wrap} ---------------------- --------- --------- ------------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* C5---H5A···Cg1^i^ 0.93 2.83 3.7325 (18) 164 C28---H28A···Cg2^ii^ 0.96 2.76 3.6929 (18) 165 ---------------------- --------- --------- ------------- --------------- ::: Symmetry codes: (i) −*x*, −*y*+1, −*z*; (ii) *x*, *y*−1, *z*. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) *Cg*1 and *Cg*2 are the centroids of the C7--C12 and C20--C25 benzene rings, respectively. ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* ------------------------ --------- ------- ------------- ------------- C5---H5*A*⋯*Cg*1^i^ 0.93 2.83 3.7325 (18) 164 C28---H28*A*⋯*Cg*2^ii^ 0.96 2.76 3.6929 (18) 165 Symmetry codes: (i) ; (ii) . ::: [^1]: ‡ Thomson Reuters ResearcherID: B-6034-2009. On secondment to: Multimedia University, Melaka Campus, Jalan Ayer Keroh Lama, 74750 Melaka, Malaysia. [^2]: § Thomson Reuters ResearcherID: E-2833-2010. Current address: Department of Chemistry, Gokhale Centenary College, Ankola 581 314, NK, Karnataka, India. [^3]: ¶ Thomson Reuters ResearcherID: A-5523-2009. [^4]: ‡‡ Thomson Reuters ResearcherID: A-3561-2009. Additional correspondence author, e-mail: [email protected].
PubMed Central
2024-06-05T04:04:17.128299
2011-1-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051801/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 8; 67(Pt 2):o289", "authors": [ { "first": "Omar bin", "last": "Shawkataly" }, { "first": "Imthyaz Ahmed", "last": "Khan" }, { "first": "H. A.", "last": "Hafiz Malik" }, { "first": "Chin Sing", "last": "Yeap" }, { "first": "Hoong-Kun", "last": "Fun" } ] }
PMC3051802
Related literature {#sec1} ================== For the biological activity of quinoline derivatives, see: Lunniss *et al.* (2009[@bb5]); Kemnitzer *et al.* (2008[@bb4]); Woodrow *et al.* (2009[@bb9]). For a related structure, see: Cheng *et al.* (2005[@bb2]). For the synthesis, see: Manoj *et al.* (2011[@bb6]). Experimental {#sec2} ============ {#sec2.1} ### Crystal data {#sec2.1.1} C~17~H~15~ClN~2~*M* *~r~* = 282.76Monoclinic,*a* = 15.1445 (13) Å*b* = 11.4337 (10) Å*c* = 8.4764 (7) Åβ = 92.344 (4)°*V* = 1466.5 (2) Å^3^*Z* = 4Mo *K*α radiationμ = 0.25 mm^−1^*T* = 293 K0.22 × 0.21 × 0.20 mm ### Data collection {#sec2.1.2} Bruker SMART APEXII CCD diffractometer13649 measured reflections3669 independent reflections2508 reflections with *I* \> 2σ(*I*)*R* ~int~ = 0.027 ### Refinement {#sec2.1.3} *R*\[*F* ^2^ \> 2σ(*F* ^2^)\] = 0.044*wR*(*F* ^2^) = 0.125*S* = 1.033669 reflections183 parametersH-atom parameters constrainedΔρ~max~ = 0.18 e Å^−3^Δρ~min~ = −0.30 e Å^−3^ {#d5e399} Data collection: *APEX2* (Bruker, 2008[@bb1]); cell refinement: *SAINT* (Bruker, 2008[@bb1]); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008[@bb7]); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008[@bb7]); molecular graphics: *ORTEP-3* (Farrugia, 1997[@bb3]); software used to prepare material for publication: *PLATON* (Spek, 2009[@bb8]). Supplementary Material ====================== Crystal structure: contains datablocks global, I. DOI: [10.1107/S1600536811002327/bt5456sup1.cif](http://dx.doi.org/10.1107/S1600536811002327/bt5456sup1.cif) Structure factors: contains datablocks I. DOI: [10.1107/S1600536811002327/bt5456Isup2.hkl](http://dx.doi.org/10.1107/S1600536811002327/bt5456Isup2.hkl) Additional supplementary materials: [crystallographic information](http://scripts.iucr.org/cgi-bin/sendsupfiles?bt5456&file=bt5456sup0.html&mime=text/html); [3D view](http://scripts.iucr.org/cgi-bin/sendcif?bt5456sup1&Qmime=cif); [checkCIF report](http://scripts.iucr.org/cgi-bin/paper?bt5456&checkcif=yes) Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: [BT5456](http://scripts.iucr.org/cgi-bin/sendsup?bt5456)). KNV thanks the CSIR, New Delhi, for financial assistance in the form of a Senior Research fellowship. DV acknowledges the Department of Science and Technology (DST) for providing data-collection facilities under the TBI Program and is also grateful for financial support to the Department under the UGC--SAP and DST--FIST programs. Comment ======= Quinoline derivatives fused with various heterocycles have displayed potent anticancer activity targeting different sites like topoisomerase I, telomerase, farnasyl transferase, Src tyrosine kinase, protein kinase CK-II etc. The trisubstituted quinoline analogs have attractive profile and are a good start point to initiate a lead optimisation programme. Due to its significant biological importance, the title compound was chosen for the X-ray crystallographic study. The title compound is the first structural example with methyl phenyl moiety attached to the amino substituted quinoline. The chlorine atom deviates only by 0.0276 (5)Å below the mean plane of atoms passing through C2-C10, N1. The methyl phenyl moiety is oriented at 129.9 (5)° from the plane containing the quinoline ring system. C-H···N and N-H···N intermolecular interactions assist the molecular packing of the crystal which resembles helical patterns. In addition to van der Waals forces, the hydrogen bond interactions at the groove of helix maintains the stability of the crystal packing. Atom N1 acts as a bifurcated acceptor. The bifurcated hydrogen bond also forms the R~1~^2^(6) motif. The structure of the title compound is shown in Figure 1. All the bond lengths and bond angles are in the usual ranges. The molecular packing with hydrogen bonds as dotted lines is shown in Figure 2. Experimental {#experimental} ============ A mixture of appropriate 6-methyl-2,4-dichloroquinoline (0.010 mol) and *p*-toluidine (0.010 mol) was heated under neat condition at 160°C for half an hour. The product obtained was washed with water, dried and purified by column chromatography over silica gel and eluted with petroleum ether : ethyl acetate mixture (99 : 1) to get the product as pale yellow solid. It was recrystallised using methanol. Refinement {#refinement} ========== The H-atoms were positioned geometrically and treated as riding atoms: C---H =0.93 Å H-aromatic, C---H = 0.96 Å H-methyl, and N---H = 0.86 Å, with *U*~iso~ = k×*U*~eq~(parent C or N-atom), where k = 1.5 for methyl H-atoms, and = 1.2 for all other H-atoms. Figures ======= ::: {#Fap1 .fig} Fig. 1. ::: {.caption} ###### View of the title molecule, showing the thermal ellipsoids drawn at the 50% probability level. ::: ![](e-67-0o490-fig1) ::: ::: {#Fap2 .fig} Fig. 2. ::: {.caption} ###### The crystal packing of the title compound viewed down c-axis with bifurcated hydrogen bonds (dotted lines) between the molecules. ::: ![](e-67-0o490-fig2) ::: Crystal data {#tablewrapcrystaldatalong} ============ ::: {#d1e117 .table-wrap} ------------------------- --------------------------------------- C~17~H~15~ClN~2~ *F*(000) = 592 *M~r~* = 282.76 *D*~x~ = 1.281 Mg m^−3^ Monoclinic, *P*2~1~/*c* Mo *K*α radiation, λ = 0.71073 Å Hall symbol: -P 2ybc Cell parameters from 3683 reflections *a* = 15.1445 (13) Å θ = 1.3--28.4° *b* = 11.4337 (10) Å µ = 0.25 mm^−1^ *c* = 8.4764 (7) Å *T* = 293 K β = 92.344 (4)° Block, yellow *V* = 1466.5 (2) Å^3^ 0.22 × 0.21 × 0.20 mm *Z* = 4 ------------------------- --------------------------------------- ::: Data collection {#tablewrapdatacollectionlong} =============== ::: {#d1e244 .table-wrap} ------------------------------------------ -------------------------------------- Bruker SMART APEXII CCD diffractometer 2508 reflections with *I* \> 2σ(*I*) Radiation source: fine-focus sealed tube *R*~int~ = 0.027 graphite θ~max~ = 28.4°, θ~min~ = 1.4° ω and φ scans *h* = −17→20 13649 measured reflections *k* = −13→15 3669 independent reflections *l* = −11→11 ------------------------------------------ -------------------------------------- ::: Refinement {#tablewraprefinementdatalong} ========== ::: {#d1e342 .table-wrap} ------------------------------------- ------------------------------------------------------------------------------------------------ Refinement on *F*^2^ Primary atom site location: structure-invariant direct methods Least-squares matrix: full Secondary atom site location: difference Fourier map *R*\[*F*^2^ \> 2σ(*F*^2^)\] = 0.044 Hydrogen site location: inferred from neighbouring sites *wR*(*F*^2^) = 0.125 H-atom parameters constrained *S* = 1.03 *w* = 1/\[σ^2^(*F*~o~^2^) + (0.052*P*)^2^ + 0.3324*P*\] where *P* = (*F*~o~^2^ + 2*F*~c~^2^)/3 3669 reflections (Δ/σ)~max~ = 0.001 183 parameters Δρ~max~ = 0.18 e Å^−3^ 0 restraints Δρ~min~ = −0.30 e Å^−3^ ------------------------------------- ------------------------------------------------------------------------------------------------ ::: Special details {#specialdetails} =============== ::: {#d1e499 .table-wrap} ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ \> 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2^) {#tablewrapcoords} ================================================================================================== ::: {#d1e544 .table-wrap} ------ -------------- -------------- --------------- -------------------- -- *x* *y* *z* *U*~iso~\*/*U*~eq~ Cl1 0.88432 (3) 0.45826 (5) 0.04769 (5) 0.07158 (19) C4 0.83107 (10) 0.48222 (13) −0.26320 (17) 0.0457 (4) N1 0.70049 (9) 0.37817 (12) −0.37362 (14) 0.0493 (3) C5 0.77053 (10) 0.45280 (13) −0.38898 (17) 0.0452 (3) C6 0.78424 (12) 0.50298 (17) −0.53791 (19) 0.0571 (4) H6 0.7459 0.4847 −0.6228 0.068\* C3 0.90078 (11) 0.55972 (15) −0.2897 (2) 0.0537 (4) H3 0.9400 0.5786 −0.2063 0.064\* C8 0.81569 (11) 0.42723 (14) −0.11597 (17) 0.0490 (4) C9 0.74846 (12) 0.35319 (15) −0.10002 (19) 0.0545 (4) H9 0.7394 0.3172 −0.0036 0.065\* N2 0.62355 (11) 0.25326 (14) −0.21237 (17) 0.0660 (4) H2 0.6281 0.2093 −0.1301 0.079\* C7 0.85260 (12) 0.57759 (16) −0.5596 (2) 0.0610 (5) H7 0.8599 0.6092 −0.6593 0.073\* C2 0.91267 (12) 0.60825 (16) −0.4350 (2) 0.0578 (4) C11 0.54756 (13) 0.23837 (16) −0.3114 (2) 0.0585 (4) C10 0.69089 (11) 0.33048 (14) −0.23354 (19) 0.0509 (4) C16 0.50425 (12) 0.33144 (16) −0.3851 (2) 0.0633 (5) H16 0.5279 0.4063 −0.3755 0.076\* C14 0.38882 (13) 0.2042 (2) −0.4889 (2) 0.0721 (6) C15 0.42658 (13) 0.31429 (18) −0.4723 (2) 0.0691 (5) H15 0.3988 0.3780 −0.5213 0.083\* C12 0.51110 (15) 0.12859 (18) −0.3286 (2) 0.0754 (6) H12 0.5393 0.0646 −0.2812 0.091\* C1 0.98772 (14) 0.69163 (19) −0.4625 (3) 0.0794 (6) H1A 0.9647 0.7693 −0.4775 0.119\* H1B 1.0178 0.6680 −0.5549 0.119\* H1C 1.0284 0.6907 −0.3727 0.119\* C17 0.30336 (15) 0.1871 (2) −0.5837 (3) 0.1002 (8) H17A 0.3034 0.1115 −0.6330 0.150\* H17B 0.2977 0.2465 −0.6635 0.150\* H17C 0.2546 0.1923 −0.5152 0.150\* C13 0.43288 (16) 0.1126 (2) −0.4157 (3) 0.0818 (7) H13 0.4093 0.0377 −0.4251 0.098\* ------ -------------- -------------- --------------- -------------------- -- ::: Atomic displacement parameters (Å^2^) {#tablewrapadps} ===================================== ::: {#d1e1071 .table-wrap} ----- ------------- ------------- ------------- -------------- ------------- -------------- *U*^11^ *U*^22^ *U*^33^ *U*^12^ *U*^13^ *U*^23^ Cl1 0.0732 (3) 0.0915 (4) 0.0487 (3) 0.0072 (3) −0.0138 (2) 0.0015 (2) C4 0.0506 (8) 0.0431 (8) 0.0435 (8) 0.0052 (7) 0.0014 (6) −0.0006 (6) N1 0.0576 (8) 0.0490 (7) 0.0415 (7) −0.0057 (6) 0.0054 (6) −0.0029 (6) C5 0.0513 (8) 0.0439 (8) 0.0406 (7) −0.0002 (7) 0.0037 (6) −0.0011 (6) C6 0.0644 (10) 0.0655 (11) 0.0411 (8) −0.0082 (9) −0.0010 (7) 0.0034 (8) C3 0.0536 (9) 0.0528 (10) 0.0542 (9) −0.0011 (8) −0.0037 (7) −0.0015 (8) C8 0.0565 (9) 0.0508 (9) 0.0395 (8) 0.0090 (8) −0.0011 (7) −0.0007 (7) C9 0.0697 (11) 0.0531 (10) 0.0410 (8) 0.0055 (9) 0.0069 (7) 0.0060 (7) N2 0.0813 (10) 0.0610 (9) 0.0561 (9) −0.0195 (8) 0.0079 (8) 0.0082 (7) C7 0.0694 (11) 0.0659 (12) 0.0483 (9) −0.0085 (9) 0.0076 (8) 0.0112 (8) C2 0.0571 (9) 0.0523 (10) 0.0641 (11) −0.0037 (8) 0.0049 (8) 0.0028 (8) C11 0.0720 (11) 0.0512 (10) 0.0540 (9) −0.0145 (9) 0.0211 (8) −0.0070 (8) C10 0.0622 (10) 0.0443 (9) 0.0469 (9) −0.0012 (8) 0.0106 (7) −0.0016 (7) C16 0.0644 (11) 0.0509 (11) 0.0759 (12) −0.0124 (9) 0.0198 (9) −0.0141 (9) C14 0.0716 (12) 0.0801 (14) 0.0660 (12) −0.0248 (11) 0.0220 (10) −0.0215 (11) C15 0.0644 (11) 0.0662 (13) 0.0780 (13) −0.0061 (9) 0.0198 (10) −0.0078 (10) C12 0.0959 (15) 0.0530 (11) 0.0781 (13) −0.0185 (11) 0.0119 (11) −0.0002 (10) C1 0.0747 (13) 0.0750 (14) 0.0886 (15) −0.0199 (11) 0.0065 (11) 0.0112 (11) C17 0.0856 (16) 0.121 (2) 0.0946 (17) −0.0340 (15) 0.0107 (13) −0.0253 (16) C13 0.0992 (17) 0.0598 (13) 0.0876 (15) −0.0334 (12) 0.0173 (13) −0.0139 (11) ----- ------------- ------------- ------------- -------------- ------------- -------------- ::: Geometric parameters (Å, °) {#tablewrapgeomlong} =========================== ::: {#d1e1483 .table-wrap} --------------------- -------------- ----------------------- -------------- Cl1---C8 1.7356 (16) C2---C1 1.509 (3) C4---C3 1.403 (2) C11---C12 1.377 (3) C4---C5 1.418 (2) C11---C16 1.385 (3) C4---C8 1.425 (2) C16---C15 1.378 (3) N1---C10 1.320 (2) C16---H16 0.9300 N1---C5 1.3716 (19) C14---C13 1.376 (3) C5---C6 1.410 (2) C14---C15 1.387 (3) C6---C7 1.360 (2) C14---C17 1.508 (3) C6---H6 0.9300 C15---H15 0.9300 C3---C2 1.369 (2) C12---C13 1.382 (3) C3---H3 0.9300 C12---H12 0.9300 C8---C9 1.335 (2) C1---H1A 0.9600 C9---C10 1.424 (2) C1---H1B 0.9600 C9---H9 0.9300 C1---H1C 0.9600 N2---C10 1.366 (2) C17---H17A 0.9600 N2---C11 1.407 (2) C17---H17B 0.9600 N2---H2 0.8600 C17---H17C 0.9600 C7---C2 1.410 (2) C13---H13 0.9300 C7---H7 0.9300 C3---C4---C5 119.79 (14) N1---C10---N2 119.69 (15) C3---C4---C8 124.74 (14) N1---C10---C9 123.58 (15) C5---C4---C8 115.47 (14) N2---C10---C9 116.71 (15) C10---N1---C5 117.16 (13) C15---C16---C11 120.72 (17) N1---C5---C6 118.75 (14) C15---C16---H16 119.6 N1---C5---C4 123.71 (13) C11---C16---H16 119.6 C6---C5---C4 117.54 (14) C13---C14---C15 117.0 (2) C7---C6---C5 121.16 (15) C13---C14---C17 122.1 (2) C7---C6---H6 119.4 C15---C14---C17 120.8 (2) C5---C6---H6 119.4 C16---C15---C14 121.5 (2) C2---C3---C4 121.83 (15) C16---C15---H15 119.2 C2---C3---H3 119.1 C14---C15---H15 119.2 C4---C3---H3 119.1 C11---C12---C13 120.5 (2) C9---C8---C4 121.40 (14) C11---C12---H12 119.7 C9---C8---Cl1 118.87 (12) C13---C12---H12 119.7 C4---C8---Cl1 119.72 (13) C2---C1---H1A 109.5 C8---C9---C10 118.67 (14) C2---C1---H1B 109.5 C8---C9---H9 120.7 H1A---C1---H1B 109.5 C10---C9---H9 120.7 C2---C1---H1C 109.5 C10---N2---C11 126.62 (15) H1A---C1---H1C 109.5 C10---N2---H2 116.7 H1B---C1---H1C 109.5 C11---N2---H2 116.7 C14---C17---H17A 109.5 C6---C7---C2 121.75 (16) C14---C17---H17B 109.5 C6---C7---H7 119.1 H17A---C17---H17B 109.5 C2---C7---H7 119.1 C14---C17---H17C 109.5 C3---C2---C7 117.93 (16) H17A---C17---H17C 109.5 C3---C2---C1 121.50 (17) H17B---C17---H17C 109.5 C7---C2---C1 120.56 (17) C14---C13---C12 121.99 (19) C12---C11---C16 118.19 (19) C14---C13---H13 119.0 C12---C11---N2 119.22 (19) C12---C13---H13 119.0 C16---C11---N2 122.46 (16) C10---N1---C5---C6 178.35 (15) C6---C7---C2---C1 −179.77 (18) C10---N1---C5---C4 −1.1 (2) C10---N2---C11---C12 146.26 (19) C3---C4---C5---N1 −179.84 (14) C10---N2---C11---C16 −38.0 (3) C8---C4---C5---N1 0.9 (2) C5---N1---C10---N2 −178.42 (15) C3---C4---C5---C6 0.7 (2) C5---N1---C10---C9 0.4 (2) C8---C4---C5---C6 −178.59 (15) C11---N2---C10---N1 −17.5 (3) N1---C5---C6---C7 179.95 (16) C11---N2---C10---C9 163.54 (16) C4---C5---C6---C7 −0.5 (3) C8---C9---C10---N1 0.4 (3) C5---C4---C3---C2 −0.2 (3) C8---C9---C10---N2 179.33 (15) C8---C4---C3---C2 178.95 (16) C12---C11---C16---C15 0.3 (3) C3---C4---C8---C9 −179.17 (16) N2---C11---C16---C15 −175.44 (16) C5---C4---C8---C9 0.0 (2) C11---C16---C15---C14 0.4 (3) C3---C4---C8---Cl1 1.9 (2) C13---C14---C15---C16 −0.7 (3) C5---C4---C8---Cl1 −178.91 (11) C17---C14---C15---C16 179.50 (18) C4---C8---C9---C10 −0.7 (2) C16---C11---C12---C13 −0.7 (3) Cl1---C8---C9---C10 178.30 (12) N2---C11---C12---C13 175.21 (18) C5---C6---C7---C2 0.0 (3) C15---C14---C13---C12 0.3 (3) C4---C3---C2---C7 −0.4 (3) C17---C14---C13---C12 −179.9 (2) C4---C3---C2---C1 179.92 (17) C11---C12---C13---C14 0.4 (3) C6---C7---C2---C3 0.5 (3) --------------------- -------------- ----------------------- -------------- ::: Hydrogen-bond geometry (Å, °) {#tablewraphbondslong} ============================= ::: {#d1e2173 .table-wrap} ----------------- --------- --------- ----------- --------------- *D*---H···*A* *D*---H H···*A* *D*···*A* *D*---H···*A* N2---H2···N1^i^ 0.86 2.59 3.404 (2) 157 ----------------- --------- --------- ----------- --------------- ::: Symmetry codes: (i) *x*, −*y*+1/2, *z*+1/2. ::: {#table1 .table-wrap} Table 1 ::: {.caption} ###### Hydrogen-bond geometry (Å, °) ::: *D*---H⋯*A* *D*---H H⋯*A* *D*⋯*A* *D*---H⋯*A* --------------- --------- ------- ----------- ------------- N2---H2⋯N1^i^ 0.86 2.59 3.404 (2) 157 Symmetry code: (i) . :::
PubMed Central
2024-06-05T04:04:17.136706
2011-1-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051802/", "journal": "Acta Crystallogr Sect E Struct Rep Online. 2011 Jan 26; 67(Pt 2):o490", "authors": [ { "first": "K. N.", "last": "Vennila" }, { "first": "K.", "last": "Prabha" }, { "first": "M.", "last": "Manoj" }, { "first": "K. J. Rajendra", "last": "Prasad" }, { "first": "D.", "last": "Velmurugan" } ] }
PMC3051807
Sir, We sincerely thank Professor Viroj Wiwanitkit for taking an interest in our article.\[[@CIT1]\] We agree, as we have stated in the 'limitations' section of the article, that the ability to generalize from our findings is limited by the small number of interviewees, particularly since they were drawn from a convenience sample. Similarly, we too would be interested in seeing the results of a study that compared the barriers and facilitators to adoption of digital images in a group with no accessibility to that in a group with accessibility. We would like to note, however, that the use of a relatively long semi-structured interview was a deliberate methodological choice. We believed that it was important to compare what the interviewees said on similar factors, and when the factors in Table 1 were not naturally brought up by the interviewees, we questioned them directly on these points at the end of the interview. Yet, we did not structure the flow or content of the interviews based on these factors, particularly since some of these factors were only discovered as the study progressed. We made this choice because we approached our interviews with the expectation that we would have more questions than answers when we had completed our analyses. In fact, we did find this to be the case, which is why we included in Table 3 the survey questions that we plan to use in the next stage of our research. We believe that combining *exploratory approaches,* where one of the main goals is to identify the factors and variables of interest, with *confirmatory approaches*, where one of the main goals is to identify whether factors and variables generalize to a larger population, is a reasonable approach for triangulation of findings across studies.\[[@CIT2]--[@CIT4]\] Had we jumped directly to designing a survey or even to conducting short structured interviews, we felt that we might have missed critically important barriers and facilitators to adoption of digital images. For example, it was not until our fifth interview that we discovered that using digital images would make it easier to use barcoding so as to reduce the risk of documenting diagnostic findings for the wrong patient, and we have now included this point in our survey. Our ongoing studies are exploring different facets of this new, exciting, and rapidly developing area. Available FREE in open access from: <http://www.jpathinformatics.org/text.asp?2011/2/1/10/>
PubMed Central
2024-06-05T04:04:17.141374
2011-2-26
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051807/", "journal": "J Pathol Inform. 2011 Feb 26; 2:10", "authors": [ { "first": "Emily S.", "last": "Patterson" }, { "first": "Mike", "last": "Rayo" }, { "first": "Carolina", "last": "Gill" }, { "first": "Metin N.", "last": "Gurcan" } ] }
PMC3051827
INTRODUCTION ============ Human fibrillin-1 is a large protein of approximately 350 kD and member of a family of extracellular cysteine-rich glycoproteins. Since 1991 mutations in the fibrillin-1 *(FBN1)* gene have been found to be responsible for Marfan syndrome (MFS; MIM\# 134797) ([@b23]; [@b9]). Fibrillin-1 is characterized by a highly conserved modular domain organization. The most prominent domain is the Epidermal Growth Factor-like (EGF) domain present 46 times and containing six highly conserved cysteine residues stabilizing the structure by three disulfide bonds. Of these EGF domains, 43 have a consensus sequence for calcium binding (cb) in the N-terminal pocket of the domain which may mediate protein-protein interactions. The EGF domains are interrupted by seven transforming growth factor (TGF)-binding protein domains characterized by 8 cysteine residues involved in intra-domain disulfide bonds ([@b31]; [@b33]). In the last update of the Universal Marfan Database - *FBN1 (UMD-FBN;* <http://www.umd.be>) ([@b13]) 803 different mutations are reported. Most of the mutations are missense mutations (56%) mainly substituting or creating a cysteine in a cbEGF domain. Other mutations are frameshift mutations, splice mutations and nonsense mutations. About 14% of mutations are recurring. All cbEGF domains start with a highly conserved aspartic acid, which is crucial for binding of a positively charged Ca^2+^ ion ([@b38]). We have identified 10 index cases with a substitution of the first aspartic acid substitution of a cbEGF domain and reviewed a further 14 published cases. Most of them exhibit a complete MFS phenotype. Surprisingly, in one family the substitution only led to MFS in homozygous state in three family members, whereas 13 family members carrying the heterozygous mutation do not have Marfan syndrome after thorough clinical examination. There is still a lot of debate how mutations in *FBN1* result in the MFS phenotype, but increasing evidence for different models is emerging. Possible explanations for the observed extreme variation in expression of the substitution of the first aspartic acid of a cbEGF domain are discussed. The observation of recessive inheritance of an expected dominant mutation also underscores the fact that mutations which are predicted to have a pathogenic effect, may not always lead to clinical symptoms. PATIENTS AND METHODS ==================== Patients -------- The patients were referred for DNA analysis of the fibrillin-1 gene to confirm the clinical diagnosis of MFS. Case 1, 2, 5, 7, 9 and 10 fulfilled the clinical Ghent criteria ([@b7]) for the diagnosis MFS. All index patients fulfilled the Ghent criteria when the finding of a pathogenic mutation in *FBN1* was included. Case 9 belongs to a large Turkish pedigree (Figure 1, III-1). She was examined at the age of 22 years. At the age of 6 weeks she was operated on a right sided hernia inguinalis. She was diagnosed with bilateral subluxation of the lenses when she was 3 years old. From that time on she has been operated several times for retinal detachments and lens luxation. At the age of 14 years an aortic root replacement was performed for progressive aortic root dilatation and aortic valve regurgitation. A spontaneous pneumothorax occurred at the age of 16 years. ::: {#fig01 .fig} Figure 1 ::: {.caption} ###### Pedigree of the family of case 9. Squares, male subjects; circles, female subjects. Affected subjects with a homozygous mutation (c.7454A\>T) are represented by solid symbols. Presence or absence of the heterozygous mutation is represented by an open symbol with a black dot or a minus symbol respectively. ::: ![](humu0031-E1915-f1) ::: Clinical examination at the age of 18 years showed a marfanoid habitus, slight downslanting of palpebral fissures and a high and gothic palate. Despite long fingers, wrist and thumb signs were negative. She exhibited limited extension of her elbows, mild asymmetry of the chest, and bilateral flat feet. Her skin showed several striae on the chest, shoulders, hips and lower back. Her length was 179.5 cm (+3,7SD for Turkish descent) and an arm span of 175 cm (within normal limits). The brother of case 9 (III-3) was a 13 year old boy with Marfan syndrome. He had mild skeletal manifestations of Marfan (pes planus), a mildly dilated aortic root, ectopia lentis and dural ectasia with an anterior sacral meningocele. Furthermore he suffered from recurrent episodes of intracranial hypertension treated by drainage of cerebrospinal fluid. He has been described in a case report ([@b17]). The third patient (II-15) died at the age of 22 years. His case history was obtained from the medical records. At the age of 2 years bilateral subluxation of lenses was diagnosed. He developed severe aortic and mitral valve regurgitation with an aneurysm of the aortic root. He had skeletal involvement and an anterior sacral meningocele. When he was 17 years of age an aortic root replacement was performed with reconstruction of the aortic and mitral valve. Due to progressive aortic regurgitation, a re-operation was performed a year later. He died at the age of 22 after a second episode of ventricular fibrillation. All heterozygous family members had a thorough skeletal, cardiologic and ophthalmologic examination including anthropometric measurements, echocardiography and slit lamp evaluation ([Table 1](#tbl1){ref-type="table"}). Only the mother and father of case 9 had an MRI evaluation for dural ectasia. The obtained clinical data of all family members are summarized in [Table 1](#tbl1){ref-type="table"}. The father of case 9 (II-6) had no clinical signs of Marfan syndrome. The mother (II-7) was tall, with a height on +2.5 SD but with normal body proportions. She had no other skeletal, ocular or cardiovascular involvement, but had several striae on the lumbar region and around the knees. Furthermore she suffered from spontaneous pneumothorax at the age of 21 years. An MRI-scan showed a dural ectasia at S2 with otherwise a normal dural sac. The father and mother of II-15 did not exhibit any signs of Marfan syndrome. None of the nine other heterozygous family members had a major criterion in one of the organ systems. Some were found to have a non-specific or minor sign. Individual II-1 has an arm span to height ratio of 1.06 and a mild dilatation of the abdominal aorta. II-4 had recurrent inguinal hernias but this was during a period of performing heavy physical labor. II-8 had an arm span to height ratio of 1.07 and bilateral flat feet. II-9 had reduced extension of the elbows. ::: {#tbl1 .table-wrap} Table 1 ::: {.caption} ###### Summary of the clinical features in the family of case 9 ::: **III-1** ------------------------------------------------------------------------ -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- -------------- ----------- Age at examination (years) 10 22 42 43 9 57 56 61 44 41 37 35 33 55 48 37 Sex M F M F M M F M M M F M F M F F height (cm) 150,5 180,9 167,1 174,4 135,0 164,0 157,5 166,0 167,5 174,5 167,0 188,5 161,0 181,0 164,7 161,0 height SDS (for Turkish descent) 1,6 3,7 -1,2 2,5 -0,2 -1,7 -0,6 -1,4 -1,1 0,1 1,1 2,5 0,8 1,2 0,7 0,2 arm span : height ratio 1,02 0,97 1,04 1,00 1,00 1,01 1,03 1,01 1,06 1,04 0,98 0,99 1,02 1,07 1,02 1,03 sitting height: height ratio 0,488 0,515 0,536 0,513 np 0,535 0,528 0,519 0,527 0,517 0,531 0,516 0,523 0,482 0,520 0,526 sitting height: height ratio SDS -2,0 -0,8 1,6 -0,8 np 1,5 0,2 0,3 1,0 0,3 0,3 0,2 0,0 -1,8 -0,4 0,0 **Skeletal system** **involv** **involv** **none** **none** **involv** **none** **none** **none** **none** **none** **none** **none** **none** **involv** **none** **none** **major** pectus carinatum no no no no yes no no no no no no no no no no no pectus excavatum requiring no no no no no no no no no no no no no no no no surgery sitting height: height ratio \<2 SD or armspan : height ratio yes no no no np no no no yes no no no no yes no no \>1.05 wrist and thumbsigns no no no no no no no no no no no no no no no no scoliosis of \>20° or spondylolisthesis no no no no np no no no no no no no no no no no reduced extension at the elbow (\<170°) no yes no yes np no no no no no no no no no yes no pes planus yes yes no no yes no no no no no no yes no yes no no protrusio acetabulae np np np np np np np np np np np np np np np np **minor** pectus excavatum of moderate severity no no no no yes no no no no no no no no no no no joint hypermobility no no no no np no no no no no no no no no no no highly arched palate with crowding no yes no no yes no no no no no no no no no no no facial appearance no yes no no yes no no no no no no no no no no no **Ocular system** **major** **major** **none** **none** **major** **none** **none** **none** **none** **none** **none** **none** **none** **none** **none** **none** **major** ectopia lentis yes yes no no yes no no no no no no no no no no no **minor** abnormally flat cornea np np np np np no no no no no no no no no no no increased axial length of globe np np np np np np np np np np np np no no no no hypoplastic iris or ciliary muscle np np no no yes no no no no no no no no no no no **Cardiovascular system** **major** **major** **none** **none** **major** **none** **none** **none** **involv** **none** **none** **none** **none** **none** **none** **none** **major** Z-score aortic root diameter 10,5^1^ **4** **0.3** **-1.4** **\>2^2^** **-0.9** **-0.8** **-1.8** **1.4** **-1.1** **-0.8** **-2.9** **-2.5** **0.4** **0.5** **0.8** dilatation ascending aorta yes (arr) yes no no yes (arr) no no no no no no no no no no no dissection of ascending aorta no no no no no no no no no no no no no no no no **minor** mitral valve prolaps yes yes no no yes no no no no no no no no no no no dilatation of main pulmonary artery no no no no np no no no no no no no no no no no calcification of the mitral annulus \< 40 years no no no no np no no np no no no no no no no no dilatation or dissection of descending aorta \< 50 years no no np no np no no no yes no no no no no no no **Pulmonary system** **involv** **none** **none** **involv** **none** **none** **none** **none** **none** **none** **none** **none** **none** **none** **none** **none** **minor** spontanous pneumothorax or apical blebs yes no no yes no no no no no no no no no no no no **Skin and integument** **involv** **none** **none** **involv** **np** **none** **none** **none** **none** **none** **involv** **involv** **none** **none** **none** **none** **minor** striae atrophicae recurrent or incisional herniae yes no no no no no yes no np np no no no no no no no no no no yes no no yes^3^ no no no no no no no no **Dura** **np** **major** **none** **major** **np** **np** **np** **np** **np** **np** **np** **np** **np** **np** **np** **np** **major** lumbosacral dural ectasia np yes no yes np np np np np np np np np np np np **Family or genetic history** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major^4^** **major** **major** 1st degree relative with Marfan syndrome pathogenic mutation in *FBN1* no hom yes hom yes het yes het no hom yes het yes het no het no het no het no het no het no het no het no het no het F female; M male; involve involvement; np not performed; arr aortic root replacement; homh mutation; Z-score related to body surface area and age according to Roman et al. ([@b35]); 1) aortic root measurement at the age of 14 years just before aortic root replacement; replacement; 2) no exact measurement available; 3) recurrent inguinal hernias during a period member or the presence of a pathogenic *FBN1* mutation. ::: The clinical data of cases 1-10 and published cases are summarized in [Table 2](#tbl2){ref-type="table"} together with the molecular data. ::: {#tbl2 .table-wrap} Table 2 ::: {.caption} ###### Published and observed missense mutations leading to the substitution of the first aspartic acid of a cbEGF domain ::: **Nucleotide change** **Amino acid change** **Exon** **cbEGF domain** **Diagnosis** **Phenotype** **Reference** **Aberant mRNA splicing** **Predicted aberant mRNA splicing^a^** **Inheritance** ----------------------- ----------------------- ---------- ------------------ ------------------------------------------------- --------------------------- -------------------------- --------------------------- ---------------------------------------- ------------------------------------------------ C.1468OT p.Asp490Tyr **11** **\#3** Classical MFS ard, el, sk ([@b16]) np yes Unknown c.2168A\>C p.Asp723Ala **18** **\#7** Severe classical MFS ard, mvp, el, myop, sk ([@b10]) np no De novo c.2168A\>T p.Asp723Val **18** **\#7** Classical MFS ard, mvp, el, sk, myop (Katzke etal., 2002) np no De novo c.2728G\>A p.Asp910Asn **22** **\#10** Classical MFS unknown UMD np yes Unknown c.3209A\>G p.Asp1070Gly **26** **\#12** Neonatal MFS unknown UMD np no Unknown c.3338A\>G p.Asp1113Gly **27** **\#13** Phenotype unknown unknown (Liu etal., 1997) np no Unknown c.3463G\>A p.Asp1155Asn **27** **\#14** Thoracic aortic aneurysm ard, mvp, diss ([@b27]) no yes De novo c.3464A\>G p.Asp1155Gly **28** **\#14** Classical MFS ard, el **Case** 1 no no Parents not available, 5 sibs neg for mutation c.3712G\>A p.Asp1238Asn **29** **\#16** Phenotype unknown unknown (Yuan etal., 1999) np no Unknown c.3713A\>G p.Asp1238Gly **30** **\#16** Classical MFS ard, mvp, sk (Tiecke etal., 2001) np no Familial c.3964G\>A p.Asp1322Asn **31** **\#18** Neonatal MFS ard, mi, ti, myop, sk **Case** 2 np yes De novo c.4210G\>T p.Asp1 404Tyr **33** **\#20** Classical MFS ard, el, sk ([@b16]) yes yes Familial c.5422G\>C p.Asp1808His **43** **\#26** Lens luxation and striae el, str **Case** 3 np no Parents not available c.5671G\>A p.Asp1891His **45** **\#28** Classical MFS ard, sk **Case** 4 np no De novo c.5788G\>C p.Asp1930His **45** **\#29** Classical MFS ard, el, sk **Case** 5 np yes De novo c.5788G\>A p.Asp1930Asn **46** **\#29** Phenotype unknown unknown (Liu etal., 1997) np yes Unknown c.5788G\>A p.Asp1930Asn **46** **\#29** Classical MFS ard, el, sk, de, str **Case** 6 np yes Parents not available c.6037G\>T p.Asp2013 Tyr **48** **\#31** Classical MFS ard, el, sk, de, str **Case** 7 np yes Familial c.6379G\>T p.Asp2127Tyr **51** **\#32** Classical MFS ard, el (Matsukawa et al., 2001) np yes Familial c.6381T\>A p.Asp2127Glu **52** **\#32** Classical MFS ard, sk ([@b22]) np no Familial c.7331A\>G p.Asp2444Gly **59** **\#38** Classical MFS ard, sk **Case** 8 np no De novo c.7454A\>T p.Asp2485Val **60** **\#39** Classical MFS in [homozygous]{.underline} state ard, el, sk, str, her, pn **Case** 9 no Familial c.7819G\>A p.Asp2607Asn **62** **\#42** Classical MFS ard, mvp, sk **Case** 10 no no Mother suspect for MFS c.7820A\>G p.Asp2607Gly **63** **\#42** Phenotype unknown unkown (Liu etal., 1997) np no Unknown UMD Universal Marfan Database - *FBN1 (UMD-FBN;* <http://www.umd.be>); cbEGF calcium binding Epidermal Growth Factor domain; bp basepair; np not performed; neg negative; pos positive; ard aortic root dilatation; diss aortic dissection; mvp mitral valve prolapse, mi mitral valve insufficiency; el ectopia lentis; pal high arched palate; ti tricuspid valve insufficiency; myop high myopia; ar arachnodactyly; hm hypermobility; contr contractures; str striae; her hernia; sk skeletal involvement; de dural ectasia; pn pneumothorax; unknown. The gray row represents the recessive mutation described in this article. Mutation numbering refers to the *FBN1* cDNA GenBank reference sequence: NM\_000138.3, with the A of the ATG translation initiation codon as nucleotide +1 (<http://www.hgvs.org/mutnomen>).^a^) Alamut mutation interpretation software version 1.5; Interactive Biosoftware, Rouen France. ::: Molecular studies ----------------- DNA was extracted from peripheral blood or paraffin embedded tissue, using standard techniques, analyzed by DHPLC and direct DNA sequencing as described previously ([@b26]). The reference sequence used to describe the mutations is the *FBN1* cDNA GenBank reference sequence: NM\_000138.3. Nucleotide numbering reflects cDNA numbering with +1 corresponding to the A of the ATG translation initiation codon in the reference sequence, according to journal guidelines (<http://www.hgvs.org/mutnomen>). Skin biopsies of case 1, 9 and her mother and case 10 were available. Fibroblasts were cultured and mRNA was isolated from confluent monolayers. For each individual two RNA isolations were performed: one cell culture of each was incubated with cycloheximide (0.25 mg/ml) for 4.5 hours prior to RNA isolation, to prevent possible nonsense mediated decay (NMD) of aberrantly spliced mRNA. RNA was isolated using the RNA isolation minikit (Qiagen) according to the manufacturers instructions. Full length single stranded cDNA was prepared with oligo-dT-primer and Superscript^T^MII RT reverse trancriptase (Invitrogen). To detect possible splice errors, the complete coding sequence of *FBN1* was analyzed by direct sequencing in 24 overlapping PCR fragments. The primers for overlapping fragments were positioned in different exons, to avoid allele dropout in case of exon skipping. For analysis of the mutation in exon 60, primers in exon 55 (forward) and 63 (reverse) were used. Primer sequences are given in [Supp. Table S1](#S1){ref-type="supplementary-material"}. RESULTS ======= Heterozygous mutations leading to a substitution of the first aspartic acid of a cbEGF domain were found in nine index cases and a homozygous mutation was found in 1 index case. These mutations and 14 comparable mutations described in the literature or in the *UMD-FBN1 (UMD-FBN;* <http://www.umd.be>) are listed in [Table 2](#tbl2){ref-type="table"}. The phenotypes were classical MFS in 15 cases, neonatal MFS in two cases, thoracic aortic aneurysm in one case and lens luxation with striae in one case. In four cases described in the literature the phenotype is not clear. The mutation was de novo in cases 2, 4, 5, and 8. In case 1, 3 and 6 parental DNA was not available. In case 1 five sibs were tested negative for the mutation. In case 6 the parents and seven sibs had no clinical symptoms of MFS. Case 7 has an affected sister with the same mutation. Their father died as a consequence of his third aortic dissection when he was 52 years of age. He was thought to have MFS. The mother of case 10 is probably affected but was not molecularly tested. Of the published mutations three were de novo, three were familial and in eight inheritance was unknown ([Table 2](#tbl2){ref-type="table"}). Using DHPLC for mutation scanning of all 65 exons of *FBN1,* initially no mutation was found in case 9. As the parents are consanguineous, a recessive mutation was suspected. Testing one of the parents, a heterozygous mutation was detected in exon 60: c.7454A\>T, leading to the amino acid substitution p.Asp2485Val. This mutation was found in a homozygous state in the patients III-1, III-3 and II-15. The parents (II-6 and II-7) of patients III-1 and III-3 are first cousins. The parents of patient II-15 are distantly related and both are related to II-6 and II-7 (Figure 1). In the parents of patients III-1, III-3 and II-15 and 9 family members the mutation was heterozygous. The mutation was not detected in 1000 Caucasian and 60 Turkish control chromosomes. Sequence analysis of cDNA, made from mRNA from cultured fibroblasts of case 1, case 9 and her mother, and case 10 showed no evidence of erroneous splicing of exon 60. Treatment with cycloheximide, to prevent possible nonsense mediated decay of erroneously spliced mRNA, gave the same results. Fibrobasts of the other patients were not available. DISCUSSION ========== We identified a heterozygous substitution of the first aspartic acid of a cbEGF domain in *FBN1* in nine index patients and a homozygous substitution in one index patient with MFS. Reviewing the literature we found 12 reports of substitution of the first aspartic acid, and a further two unpublished cases are quoted in the UMD database *(UMD-FBN;* <http://www.umd.be>) ([@b5]) as summarized in [Table 2](#tbl2){ref-type="table"}. All 10 index patients found in our center fulfilled the Ghent criteria when the finding of a pathogenic mutation was included. Of the 14 published cases, eight were reported to have a classical Marfan phenotype, one was a neonatal Marfan and one had a thoracic aortic aneurysm. Of four cases the phenotype was not reported. In all cases the acidic amino acid aspartic acid is replaced by a nonpolar or noncharged polar amino acid, apart from one mutation where aspartic acid is replaced by another acidic amino acid (p.Asp2127Glu) ([@b22]). The codons of the first aspartic acids in the cbEGF domains always contain the last base of one exon and the first two bases of the next. Consequently, mutations of these codons may affect splicing. Aberrant splicing was excluded in cases 1, 9, and 10 and in one of the published cases ([@b27]). The mutation c.4210G\>T was shown to destroy a donor splice site with abnormal splicing as a consequence ([@b16]). Of the 19 cases in which no cDNA analysis was performed, prediction software predicted aberrant splicing in eight cases ([Table 2](#tbl2){ref-type="table"}). Exon skipping, as a result of these mutations, may have more severe effects than missense mutations, because the exons are all in frame and consequently, skipping will lead to a shorter protein that may exert a dominant negative effect ([@b34]). There are several reasons to argue that a substitution of the first aspartic acid of a cbEGF domain will lead to a MFS phenotype in the heterozygous state. Calcium binding of cbEGF domains is necessary for stabilization of the secondary structure, prevention of proteolytic degradation and for protein-protein interaction ([@b10]; [@b15]; [@b6]). The first aspartic acid of a cbEGF domain is highly conserved in evolution and in the human fibrillin-1 gene all cbEGF domains start with an aspartic acid, which is crucial for binding of a positively charged Ca^2+^ ion (Figure 2) ([@b38]). Furthermore mutations of the first amino acid of a cbEGF domain of coagulation factor IX in haemophilia B have been proven to reduce calcium binding even if the aspartic acid is replaced by the acidic amino acid glutamic acid ([@b15]; [@b39]). The finding of 23 MFS or MFS-like cases with a heterozygous substitution of an aspartic acid in this position of the cbEGF domain underscores the crucial role of this amino acid. In this view the recessive nature of the mutation p.Asp2485Val in the family of case 9 came as a surprise. The family of case 9 (Figure 1) has been thoroughly investigated. Patients III-1 (case 9), III-3 and II-15 have the classical type of Marfan syndrome according to the Ghent criteria ([@b7]). Based on the pedigree with three affected patients and healthy consanguineous parents recessive inheritance could be expected. This was confirmed by finding a homozygous missense mutation in all three affected patients. The four unaffected parents and nine other unaffected relatives were found to be carriers of the mutation. Unexpectedly in none of the investigated heterozygous carriers obvious signs of Marfan syndrome could be found. Only after thorough clinical examination one of them (II-7) was found to have a dural ectasia at S2, which as yet is considered a major symptom in the Ghent criteria. Together with the family history and some minor signs (pneumothorax, striae and reduced extension of the elbows) this classifies II-7 as having Marfan syndrome. However, compared to the homozygous cases, the cardinal Marfan features in the skeletal, cardiac and ophthalmological systems are absent. ::: {#fig02 .fig} Figure 2 ::: {.caption} ###### Class I cbEGF domain showing the position of the first Asp in relation to the calcium molecule. (A) 3D picture of a cbEGF domain of fibrillin-1. The yellow arrow points to the first Asp. Picture derived from the NCBI database (<http://www.ncbi.nlm.nih.gov/>) ([@b12]). (B) cbEGD like domain ([@b15]). The arrow points to the first aspartic acid residue. Solid lines are the disulphide bridges between cysteine residues. ::: ![](humu0031-E1915-f2) ::: To our knowledge very little is known about recessive *FBN1* mutations. Only one family has been reported in which Marfan syndrome was found in two affected cousins homozygous for a *FBN1* mutation while the four normal parents were heterozygous carriers, indicating recessive inheritance of the syndrome ([@b8]). The mutation is located in exon 11 and leads to an amino-acid substitution creating a cysteine. Like us the authors expected this mutation to have a dominant effect in the heterozygous state. Two of the parents were sibs and exhibited minor signs of Marfan syndrome (increased arm span to height ratio and a highly arched palate). No other family members have been investigated. Only one other probably recessively inherited form of Marfan syndrome has been described but could not be proven by molecular analysis as the gene was not yet known ([@b14]). Three families have been described in the literature in which both parents are affected with more severely affected children. The first is an Italian couple of first cousins, both affected with Marfan syndrome, who had 4 affected children. Two of the four affected children showed more severe manifestations than other affected family members, presumably due to homozygosity ([@b3]). In 1984, Chemke described a family with Marfan syndrome. Two sibs suffered from a severe phenotype reminiscent of neonatal Marfan syndrome. Their parents were cousins and had a much milder phenotype. Remarkable is that the probably homozygous sibs were the only patients in the family with ectopia lentis ([@b4]). In 1988 a severely affected boy has been described ([@b36]). Both parents were affected and were found to carry amissense mutation in *FBN1.* Compound heterozygosity was identified in the severely affected child ([@b24]). In the recessive family described here the heterozygous mutation does not exert an important effect on the phenotype. Only in the homozygous state the abnormal fibrillin causes the classical clinical phenotype of Marfan syndrome. This observation together with the few other described families with bi-allelic inheritance, may support both alternative pathogenetic models of Marfan syndrome. A dominant negative effect of *FBN1* mutations has been the leading hypothesis for the pathogenesis of Marfan syndrome for a long time. However, several manifestations of Marfan syndrome like bone overgrowth, craniofacial features, lung disease, and muscle and fat hypoplasia could not be explained by a structurally abnormal protein. The observation that fibrillin interacts with a variety of proteins, including the latent TGFβ binding proteins (LTBP\'s) has lead to several investigations indicating that fibrillin-1 can interact with TGF^β^ signaling ([@b1]; [@b2]; [@b20]; [@b18]; [@b21]; [@b25]; [@b28]; [@b29]; [@b37]). According to splice site prediction software (Alamut mutation interpretation software version 1.5; Interactive Biosoftware, Rouen, France) the c.7454A\>T mutation, found in the family described here, is not predicted to cause erroneous splicing. This was confirmed by cDNA studies, showing no evidence of splice error. The position of the mutation (exon 60) may explain the lack of expression as mutations in the more C-terminal end of the gene are expected to give a milder phenotype ([@b13]; [@b34]). However the mutation in case 10 is even more terminal and still leads to a classical MFS phenotype. Hutchinson et al. ([@b19]) hypothesized that variable expression of the normal *FBN1* allele could moderate the phenotypic effect of the mutant allele. A compensatory higher level of *FBN1* expression from the normal allele would explain a milder phenotype. As the normal alleles are inherited from 5 different parents in our recessive family, this mechanism is highly unlikely. We hypothesize that the p.Asp2485Val mutation acts as a hypomorphic allele with a minimal dominant negative effect. Reduction of gene expression of both alleles could be the main determinant of the phenotype in homozygotes. The observation of only one major clinical sign in one of the heterozygotes (dural ectasia in II-7, Figure 1) and no major clinical signs in 12 other heterozygotes could be explained by sufficient gene expression with only a mild functional defect of the mutant allele product. This was also shown in a mouse model, however in this model the mutation had a severe dominant negative effect ([@b30]). In this model with a deletion of 272 amino acids in the central part of fibrillin-1, a tenfold reduction in expression of the mutant allele was shown in heterozygous mice, resulting in a normal phenotype. Homozygous mutant mice however died shortly after birth due to severe vascular complications. The other mouse model of Pereira was a targeted *FBN1* mutation leading to 15% expression of a normal product with no abnormal phenotype in heterozygous mice, while mice homozygous for this mutation have severe abnormalities comparable with the neonatal MFS phenotype. These mouse models suggests that there is a threshold of expression of the normal allele below which the abnormal phenotype will develop ([@b32]; [@b11]). To understand the exact pathogenetic mechanism expression studies and studies on protein synthesis, secretion and matrix incorporation of the Asp2486Val mutation are necessary For comprehensive studies of this type, a mouse model should be created. The finding of a homozygous substitution of A\>T, as described here, has implications for mutation screening in MFS. Homozygous substitutions will not have an effect on denaturation of double stranded DNA, because the basepair remains the same. Consequently, heteroduplex based testing, such as DHPLC, working with the principle of differential denaturation of double stranded heteroduplex DNA, cannot detect this mutation in homozygous state. Formerly, based on the presumed dominant inheritance mode, only heterozygous mutations were expected. Now it is clear that recessive inheritance is also possible and mutations may have been missed in similar cases, because heteroduplex based testing has been used until recently in many large diagnostic centers. Most laboratories nowadays use direct sequencing, which avoids this problem. In conclusion we have shown that the first aspartic acid of a cbEGF domain in *FBN1* is important for the function of fibrillin-1, but may not always lead to a clinical effect in the heterozygous state. This underscores that missense mutations must be interpreted with care. We thank the patients and their families for their very kind cooperation, Prof. Dr. E. Bakker for his helpful suggestions and Jacqueline Egthuijsen for technical assistance. Supplementary material ====================== ::: {#tbl3 .table-wrap} Supp. Table S1 ::: {.caption} ###### Primers for cDNA sequencing of *FBN1:* F=forward; R=reverse; numbers refer to position in cDNA sequence ::: fragment primername Sequence 5' \> 3' Length bp ---------- ------------ ------------------------- ----------- 1 FBN1F1 ATGCGTCGAGGGCGTCTGCT 384 FBN1R384 GCTACCTCCATTCATACAGCGA 2 FBN1F318 GATAGCTCCTTCCTGTGGCTCC 406 FBN1R728 CCGTGCGGATATTTGGAATG 3 FBN1F657 CCCCTGTGAGATGTGTCCTG 407 FBN1R1064 TTGGTTATGGACTGTGGCAGC 4 FBN1F1012 ACAGCTCTGACAAACGGGCG 384 FBN1R1396 TGCAGCGTCCATTTTGACAG 5 FBN1F1358 GCCAGTTGGTCCGCTATCTC 330 FBN1R1688 ACATGAAAGCCCGCATTACAC 6 FBN1F1609 AATGGCCGGATCTGCAATAA 398 FBN1R2007 CTGGCCTCTCTTGTATCCACCA 7 FBN1F1927 CTGGCTGTGGGTCTGGATGG 362 FBN1R2289 GCAGTTTTTCCCAGTTGAATCC 8 FBN1F2212 ATCTGTGAAAACCTTCGTGGGA 399 FBN1R2611 AGGTGGCTCCATTGATGTTGA 9 FBN1F2458 GTCTGCAAGAACAGCCCAGG 357 FBN1R2815 TGGGACACTGACACTTGAATGA 10 FBN1F2699 TACTCAAGAATTAAAGGAACA 525 FBN1R3224 CGGCATTCGTCAATGTCTGTGC 11 FBN1F3141 CATTGGCAGCTTTAAGTGCAGG 460 FBN1R3621 ACCACCATTCATTATGCTGCA 12 FBN1F3558 CCATTCAACTCCCGATAGGCT 335 FBN1R3893 TTTTCACAGGTCCCACTTAGGC 13 FBN1F3783 CAGGTGCTTGTGTTATGATG 392 FBN1R4173 GCACAGACAGCGGTAAGA 14 FBN1F4062 GATTGGAGATGGCATTAAGTGC 451 FBN1R4513 TGTTGACACAGTTCCCACTGA 15 FBN1F4425 CTACGAACTGGACAGAAGCGG 593 FBN1R5018 ATACAGGTGTAGTTGCCAACGG 16 FBN1F4910 ACTACCTGAATGAAGATACACG 626 FBN1R5536 GACCTGTGGAGGTGAAGCGGTAG 17 FBN1F5348 TCAACATGGTTGGCAGCTTCC 476 FBN1R5824 AAAGATTCCCATTTCCACTTGC 18 FBN1F5722 ACAATTGGTTCCTTCAACTG 356 FBN1R6074 GCACAAATTTCTGGCTCTT 19 FBN1F5973 CTTGGATGGGTCCTACAGATGC 579 FBN1R6552 CACATTCTTGCAGGTTCCATT 20 FBN1F6466 GGTTATACTCTAGCGGGAATG 450 FBN1R6937 TCCCACGGGTGTTGAGGCAGCG 21 FBN1F6842 AGCGGAGACCTGATGGAGAGG 645 FBN1R7487 CAGTTGTGTTGCTTGGTTGCA 22 FBN1F7429 CAAGAGGATGGAAGGAGCTGC 476 FBN1R7905 GAACTGTTCATACTGGAAGCCG 23 FBN1F7785 CTACCTCCAGCACTACCAGTGG 384 FBN1R8169 GTAGCCATTGATCTTACACTCG 24 FBN1F8024 CACCTGGTTACTTCCGCATAGG 672 FBN1R8696 ATGATTCTGATTGGGGGAAAA ::: [^1]: Communicated by Reed E. Pyeritz
PubMed Central
2024-06-05T04:04:17.142010
2010-12-01
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051827/", "journal": "Hum Mutat. 2010 Dec; 31(12):E1915-E1927", "authors": [ { "first": "Yvonne", "last": "Hilhorst-Hofstee" }, { "first": "Marry EB", "last": "Rijlaarsdam" }, { "first": "Arthur JHA", "last": "Scholte" }, { "first": "Marietta", "last": "Swart-van den Berg" }, { "first": "Michel IM", "last": "Versteegh" }, { "first": "Iris", "last": "van der Schoot-van Velzen" }, { "first": "Hans-Joachim", "last": "Schäbitz" }, { "first": "Emilia K", "last": "Bijlsma" }, { "first": "Marieke J", "last": "Baars" }, { "first": "Wilhelmina S", "last": "Kerstjens-Frederikse" }, { "first": "Jacques C", "last": "Giltay" }, { "first": "Ben C", "last": "Hamel" }, { "first": "Martijn H", "last": "Breuning" }, { "first": "Gerard", "last": "Pals" } ] }
PMC3051828
Introduction ============ In the last 50 years, humans have altered the world\'s ecosystems more than during any other time span in history. Twenty to seventy percent of the area of 11 of the 13 terrestrial biomes evaluated in the [@b31] has been converted to human use. Although informed and effective policy may slow land conversion ([@b62]), there is no consistent, widely accepted scientific framework for tracking the status of Earth\'s ecosystems and identifying those with a high probability of loss or degradation ([@b37]). Recognizing this gap, the fourth IUCN (International Union for Conservation of Nature) World Conservation Congress launched a process to develop criteria for assessing the status of and establishing a global red list of ecosystems ([@b22]). We use the term *ecosystem* as an assemblage of organisms that occur together in space and time and interact with each other and their physical environment ([@b39]). The IUCN uses quantitative and qualitative criteria to classify species by their probability of extinction (i.e., extinction risk) and to guide policy and interventions at all levels ([@b20]). Furthermore, the IUCN\'s criteria are the basis for some of the Convention on Biological Diversity\'s indicators ([@b8], [@b9]) and indices of biological diversity ([@b6], [@b5]), which are being used to track progress toward international conservation targets ([@b30]; [@b61]). At national scales, species red lists inform policy and action in more than 100 countries and provide ample data for other conservation applications ([@b20]; [@b64]). Ecosystem red lists have the potential to complement the policy successes of species red lists in several ways. Ecosystems may more effectively represent biological diversity as a whole than do individual species ([@b38]; [@b11]), especially given the taxonomic bias of the current IUCN Red List ([@b60]; [@b56]). Moreover, they include fundamental abiotic components that are only indirectly included in species assessments (e.g., riverine ecosystems; [@b2]). Declines in ecosystem status may also be more apparent than extirpations or extinctions of individual species; society often perceives loss of biological diversity in terms of loss of benefits such as clean water, food, timber, and fuel ([@b31]). Ecosystem-level assessments may also be less time consuming than species-by-species assessments. Despite concerted efforts, by 2010 the status of only 47,978 of the world\'s 1,740,330 known species (\<3%) had been evaluated for potential inclusion on the IUCN Red List ([@b20]). Furthermore, red lists of ecosystems may suggest areas in which extirpations are likely to result from extinction debt in response to loss and fragmentation of species' habitats ([@b57]; [@b58]; [@b59]) because decline in the extent and status of an ecosystem may precede the loss of its species. When used in tandem with species red lists, ecosystem red lists could provide the most informative indicator to date of the status of other elements of biological and abiotic diversity. Our objective here is to initiate a global consultation on the development of categories and criteria for a red list of ecosystems that is based on the best available science and draws from the experiences of the [@b20]. Key challenges must be addressed to develop robust methods to assess the probability that the status of ecosystems has declined or will decline. These challenges include defining ecosystems and the spatial units appropriate for assessment and determining a set of thresholds within criteria, thresholds such as amount of decline in geographical distribution or degree of degradation that must be reached in order to qualify for a corresponding category (e.g., endangered, vulnerable). The criteria and thresholds need to be broad enough to encompass many different types of ecosystem classifications, and yet specific enough to allow their application to geographical extents relevant to conservation decision making. We ask scientists with relevant expertise to join us in building a scientifically sound, credible, and objective system for assessing the level of threat to ecosystems worldwide of elimination or degradation. Characteristics of an Ideal System for Assessing Ecosystem Status ================================================================= Several protocols for assessing ecosystem status have been applied already, and they provide a base on which to build a global standard ([@b37]). In Australia, as a result of a continuing national assessment of "ecological communities," by 2008 40 communities had been listed as threatened under federal law, and many more have been listed by states ([@b13]; [@b14]). Similarly, the South African National Environmental Management: Biodiversity Act ([@b12]) resulted in the identification of over 200 threatened ecosystems ([@b44]; [@b50]). Analogous assessment frameworks have been proposed for European countries (Austria, [@b41]; [@b16]; [@b43]), the Americas ([@b17]), and other regions ([@b37]). To integrate these initiatives for assessing ecosystem status into a single global system, a shared vision of the goal is essential. We envision that a unified system for assessing ecosystem status will be based on criteria that are transparent, objective, and scientifically sound, and thresholds that are associated with different levels of risk of elimination and loss of function, are easily quantified and monitored, and facilitate comparisons among ecosystems. The criteria must be applicable to terrestrial, marine, and freshwater systems at multiple spatial extents (local to global) and resolutions (fine to coarse) and to data from diverse sources, both historical and current. Like the IUCN Red List criteria for species, a global set of criteria for ecosystems must be easily understood by policy makers and the public. Additionally it should be made explicit that risk assessments are just one component of conservation priority setting and thus should be consistent with the species-based approach for red lists. Major Scientific Challenges =========================== To achieve this vision, multiple scientific challenges must be met, starting with a definition of the basic ecosystem units to be assessed. Classical definitions of *ecosystem* (e.g., [@b63]) and those used in the Convention on Biological Diversity include both biotic and abiotic components that interact "as a functional unit" ([@b7]). Under this definition ecosystems occupy a defined geographic area and can be nested within other, larger ecosystems, with the largest ecosystem of all being the biosphere. Following a principal division by abiotic factors (terrestrial, freshwater, marine), most authorities, for example, recognize 15 terrestrial biomes (e.g., tundra, boreal forests, temperate grasslands) ([@b31]). Ecoregions are subdivisions of biomes defined by the biogeographic patterns of their biota ([@b40]). Most units of practical interest for evaluation, however, may occur at extents smaller than biomes and ecoregions. For example, the terrestrial ecosystems of the conterminous United States are defined by internally consistent characteristics of species composition, vegetation structure, climate, and landform ([@b51]). Similar groupings of ecosystems are applicable to freshwater and marine systems ([@b55]; [@b1]). In some cases, a focus on biological components may be essential for assessing the risk that ecosystems are degraded or ultimately eliminated. For example, in terrestrial ecosystems not threatened by mining or other activities likely to produce changes in abiotic factors, this focus is likely to result in the use of *ecosystem* as a generic term for *ecological communities* or for sets of relatively distinct assemblages of species that co-occur in space and time in association with particular abiotic features ([@b10]; [@b29]; [@b23]; [@b24]; [@b28]). For many terrestrial ecosystems, as well as some aquatic ones, land-cover classification may be the most practical approach for delineating units for assessment (e.g., [@b3]; [@b46]). In some freshwater ([@b54]) and most pelagic and deepwater marine systems ([@b49]), the delineation of assessment units may rely more heavily on abiotic features. For example, freshwater systems could be examined following a hierarchical riverine classification system ([@b54]), whereas deepwater marine systems could be categorized by geophysical variables such as depth, slope, and substrate ([@b49]). To construct useful units for ecosystem assessment, the selection of variables should be informed by empirically demonstrated relations with species composition. Because a unified worldwide delimitation of ecosystems is unlikely to occur in the near future ([@b48]; [@b53]) and because conservation policy is developed and applied at multiple scales ([@b62]), we believe the focus must remain on developing criteria for status assessment that are applicable to diverse ecosystem classifications. Delimiting ecosystems is complex, but defining threat levels for ecosystems and determining the trajectory toward their loss may be even more so. As composite entities, ecosystems may be considered "eliminated" when only one key component (such as top predators or keystone pollinators) is lost or, at the other extreme, when the last biotic element is lost. We believe the scientific community needs to focus on developing a pragmatic, standardized approach intermediate between these extremes (i.e., [@b46]). Elimination will usually be a gradual process; losses of species and ecosystem functions will lag behind declines in loss of area ([@b26]). Aquatic systems present challenges because ecosystem conversion and loss of function may be widespread but not easily detectable ([@b32]; [@b35]). The assessment system must reflect changes over policy-relevant time scales (e.g., years to a century); thus, critical signposts need to be developed that indicate status and threats en route to ecosystem elimination, just as have been developed for species ([@b27]; [@b24]). Because direct measurement of the level of threat to ecosystems and species is costly and difficult, assessments need to use surrogate measures of risk, or "criteria" ([@b27]), that are related to risk consistently across a range of ecosystem types. As in the case of species red lists ([@b20]), ecosystems should be assessed relative to all criteria but need to meet only one criterion for listing under a "threatened" category ([Fig. 1](#fig01){ref-type="fig"}). A logical starting point for these criteria in ecosystems, already incorporated into many existing ecosystem-assessment protocols, is the IUCN Red List for Threatened Species ([@b20]; [Table 1](#tbl1){ref-type="table"}). Because ecosystems in part are composed of species, criteria that apply to species may partly apply to ecosystems. Furthermore, the present system for assessing species is based on well-established scientific theory and empirical results and has been tested extensively ([@b27]). Criteria for assessing ecosystems should therefore be consistent with those for species, but may need to be adapted to accommodate relevant ecosystem theory (e.g., [@b52]). ::: {#tbl1 .table-wrap} Table 1 ::: {.caption} ###### Possible categories and criteria for use in developing a red list of ecosystems[a](#tf1-1){ref-type="table-fn"}. ::: Criterion Subcriterion Status[b](#tf1-2){ref-type="table-fn"} ----------------------------------------------------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------------------------ ---------------------------------------- A: Short-term decline (in distribution or ecological function) on the basis of any subcriterion 1\. observed, estimated, inferred or suspected decline in distribution of ≥80%, CR ≥50%, or EN ≥30% VU over the last 50 years 2\. projected or suspected decline in distribution of ≥80%, CR ≥50%, or EN ≥30% VU within the next 50 years 3\. observed, estimated, inferred, projected, or suspected decline in distribution of ≥80%, CR ≥50%, or EN ≥30% VU over any 50-year period, where the period must include both the past and the future 4\. relative to a reference state appropriate to the ecosystem, a reduction or likely reduction of ecological function that is \(a) very severe, in at least one major ecological process, throughout ≥80% of its extant distribution within the last or next 50 years; CR (b1) very severe, throughout ≥50% of its distribution within the last or next 50 years; EN (b2) severe, in at least one major ecological process, throughout ≥80% of its distribution within the last or next 50 years; EN (c1) very severe, in at least one major ecological process, throughout ≥30% of its distribution within the last or next 50 years; VU (c2) severe, in at least one major ecological process, throughout ≥50% of its distribution within the last or next 50 years. VU (c3) moderately severe, in at least one major ecological process, throughout ≥80% of its distribution within the last or next 50 years VU B: Historical decline (in distribution or ecological function) on the basis of either subcriterion 1 or 2 1\. estimated, inferred, or suspected decline in distribution of ≥90%, CR ≥70%, or EN ≥50% VU in the last 500 years 2\. relative to a reference state appropriate to the ecosystem, a very severe reduction in at least one major ecological function over ≥90%, CR ≥70%, or EN ≥50% of its distribution in the last 500 years VU C: Small current distribution and decline (in distribution or ecological function) or very few locations on the basis of either subcriterion 1 or 2 1\. extent of occurrence*^c^* estimated to be ≤100 km^2^, CR ≤5,000 km^2^, or EN ≤20,000 km^2^ VU and at least one of the following: \(a) observed, estimated, inferred, or suspected continuing decline in distribution, \(b) observed, estimated, inferred, or suspected severe reduction in at least one major ecological process, \(c) ecosystem exists at only one location, 5 or fewer locations, or 10 or fewer locations. CR EN VU or 2\. area of occupancy*^c^* estimated to be ≤10 km^2^, CR ≤500 km^2^, or EN ≤2000 km^2^ and at least one of the following: VU \(a) observed, estimated, inferred, or suspected continuing decline in distribution, \(b) observed, estimated, inferred, or suspected severe reduction in at least one major ecological process, \(c) ecosystem exists at only one location, 5 or fewer locations, or 10 or fewer locations CR EN VU D: Very small current distribution, estimated to be ≤5 km^2^, CR ≤50 km^2^, or EN ≤100 km^2^, VU and serious plausible threats, but not necessarily evidence of past or current decline in area or function. a Based on the IUCN Red List ([@b19]) and other systems proposed to date ([@b37]). b Abbreviations: CR, critically endangered; EN, endangered; VU, vulnerable. c See [@b19], [@b21] for guidelines on measuring extent of occurrence and area of occupancy. \[Correction added after publication 5 November 2010: Errors in the second column of Criterion D were amended.\] ::: ::: {#fig01 .fig} Figure 1 ::: {.caption} ###### The process of ecosystem-extinction risk assessment. Ecosystem data on one or more quantitative proxy risk indicators (criteria) are evaluated against thresholds to assign a threat category (critically endangered \[CR\], endangered \[EN\], or vulnerable \[VU\]) to the ecosystem. ::: ![](cobi0025-0021-f1) ::: In the case of species, assessment criteria are derived from estimates of geographical distribution, abundance, and their temporal trends ([@b19]; [@b27]). Thus, the process of ecosystem assessment could begin by estimating an ecosystem\'s geographical distribution and degree of degradation and temporal trends in these variables ([Table 1](#tbl1){ref-type="table"}; [Fig. 1](#fig01){ref-type="fig"}). In terrestrial systems, temporal trends in the distribution of land cover have been proposed and applied as criteria for assessing the status of some types of ecosystems ([@b3]; [@b44]; [@b46]). For example, the Cape Flats Sand Fynbos, in southwestern South Africa, is listed as critically endangered because the expansion of Cape Town has resulted in a reduction of over 84% of the original extent of the ecosystem ([@b44]; [@b50]). Methods for extrapolating the historical distributions of ecosystems continue to be developed and improved (e.g., [@b45]; [@b34]) and will undoubtedly aid the application of distribution-based criteria. Nevertheless, the abundance and trend-based criteria used presently for species assessments may lose meaning in the context of ecosystems (which do not simply consist of "individuals") because in ecosystems changes in spatial extent represent the endpoint of processes such as structural conversion and functional decline. Therefore, additional criteria are needed to standardize reliable measures of ecological function ([Table 1](#tbl1){ref-type="table"}) for which threats may be assessed in at least three dimensions: immediacy, scope, and severity ([@b28]). For example, clear-cutting a forest may represent functional loss that is immediate, widespread, and severe, and may lead to irreversible changes in ecosystem composition, structure, and function, including regime shifts and permanent declines in geographical distribution of the ecosystem ([@b52]). In this context, indicators of functional loss may include specific measures of threat (e.g., increases in the proportion of invasive species or pollutant levels), measures of structure (e.g., changes in species richness, trophic configuration, or guild diversity or status of particular keystone species, such as seed dispersers or pollinators), or measures of function (e.g., changes in nutrient cycling, trophic complexity, energy flows, biomass accumulation, or patterns of water flow) ([@b35]; [@b37]). For example, in New South Wales, Artesian Mound Springs is listed as an endangered ecological community because its artesian aquifers have been largely depleted, not because its geographical extent has been changed ([@b4]; [@b36]). Integrating the challenges and existing research outlined above, then, our proposed system combines measures of geographical distribution, ecological function, and their temporal trends over short and long periods in a manner analogous to the assessment of species for the IUCN Red List and results in four criteria ([Table 1](#tbl1){ref-type="table"}): rate of recent decline (in distribution or function); total historical decline (in distribution or function); limited current distribution with ongoing decline (in distribution or function); and very limited distribution without ongoing decline. Once criteria have been resolved, a further task will be quantifying thresholds for each criterion that reflect different levels of risk (i.e., vulnerable, endangered, critically endangered; [Fig. 1](#fig01){ref-type="fig"}) across ecosystem types and spatial scales. Again, these thresholds may be based on IUCN Red List thresholds for species, but must accommodate relevant ecosystem theory ([Table 1](#tbl1){ref-type="table"}). Species-area relations, for example, may inform the definition of thresholds for criteria on the basis of changes in geographical distribution, as has been done in South Africa ([@b15]; [@b44]) and other regions ([@b37]). These and other basic ecological principles from island biogeography and metapopulation theory allowed the assessment of threats to tropical dry forests in Venezuela. This assessment applied thresholds in land-cover loss and the rate of change in land cover across multiple spatial scales ([@b47]). Although the theoretical basis of extrapolating species-area relations to risk assessment has been questioned ([@b18]), these examples demonstrate the type of theoretically grounded approach that may produce robust thresholds for assessing risks to ecosystems at multiple scales. Developing thresholds for loss of ecological function may require more complex criteria to reflect variation in immediacy, scope, and severity ([@b28]), such that severe, widely distributed, and ongoing loss of function leads to assignments to the highest levels of threat ([Table 1](#tbl1){ref-type="table"}). For example, an ecosystem would be considered critically endangered if it were to experience a severe decline in function over a large portion of its distribution (\>80%) and the threatening process was ongoing or expected to commence in the near term ([Table 1](#tbl1){ref-type="table"}). Lower risk levels, such as "endangered," could be assigned if the decline in function was equally severe, but the extent was less. Next Steps in Establishing Criteria for Red Listing of Ecosystems ================================================================= By presenting preliminary, relatively simple criteria and thresholds ([Table 1](#tbl1){ref-type="table"}; [Fig. 1](#fig01){ref-type="fig"}), we do not imply that arriving at a final, unified system for assessment of ecosystem risk will be easy; in addition to the conceptual challenges, there are methodological and logistical issues to confront. For example, what is the best method for measuring the geographical distribution of an ecosystem? Or, how does one precisely define a location? The IUCN produces periodically updated, detailed guidelines for addressing these methodological questions in reference to species ([@b21]). We expect that the development of analogous guidelines for ecosystems will be a major component of the consultation process that will take place over the next few years. Nearly 15 years passed between the initial development of criteria for the IUCN Red List of Threatened Species and their official adoption ([@b27]). To minimize delay in the adoption of such criteria for ecosystems, it will be crucial to formulate a unified proposal for criteria and thresholds and make this proposal available online in scientific and popular venues. Protocols will need to be tested in a broad set of institutional contexts, geographical regions, and ecosystem types, and the protocols will need to be useful at local and global scales. The institutional capacity of IUCN and other participating organizations will need strengthening to implement such a global assessment of ecosystem risk. It is important to differentiate ecosystem risk assessment---a scientific, technical activity---from priority setting, a fundamentally societal, value-laden activity ([@b42]; [@b25]; [@b33]; [@b27]). As species red lists have demonstrated, transparent, objective, and scientifically based assessments are prerequisites for sound policy and planning ([@b27]). To ensure the scientifically credible application of criteria in red listing of ecosystems, case studies are needed to show how risk assessments can inform priority-setting efforts. Although the scientific and logistical challenges to developing criteria for an ecosystem red list are substantial, we believe the time is right to do so. Current opportunities include ongoing assessments at local and global scales, a strong IUCN mandate from governments and the conservation community, public concern worldwide about ecosystems and human dependence on them, a rich experience with the species red-listing process, and continuing and massive improvements in data collection and computing power. What remains is to engage the world\'s conservation and ecosystem scientists in this task. We are grateful to R. Akçakaya, E. Fleishman, S. Gergel, and anonymous reviewers for their constructive comments on previous versions of this paper. V. Abreu, P. Comer, J. de Queiroz, D. Faber-Langendoen, D. Grossman, C. Josse, A. Lindgaard, and R. Sayre provided excellent feedback during a workshop held at NatureServe headquartes. J.P.R. and I.Z. acknowledge the support of Fondo Nacional de Ciencia, Tecnología e Innovación (Agenda Biodiversidad, Segunda Fase, no. 200001516). B.R., T.S., and M.R. are grateful for the support of the Council for Scientific and Industrial Research and the South African National Biodiversity Institute. Funding for attendance at workshops and other general activities of the working group was provided by the Commission on Ecosystem Management of IUCN, and the UICN Sur office in Quito, Ecuador. Funding for assuring open-access of this article was provided by Instituto Venezolano de Investigaciones Científicas. Translations were kindly provided by Elodie Chene (French), Sekar Palupi (Bahasa Indonesian), Anne-Mette Høeg Andersen (Danish), and Keping Ma and Chun Minli (Chinese). Provita is a local conservation partner of the Ecohealh Alliance, formerly known as Wildlife Trust. Supporting Information ====================== Translations of this article and abstracts are available as part of the online article (Appendix S1). The authors are responsible for the content and functionality of these materials. Queries (other than absence of the material) should be directed to the corresponding author. [^1]: Re-use of this article is permitted in accordance with the Terms and Conditions set out at <http://wileyonlinelibrary.com/onlineopen#OnlineOpen_Terms>
PubMed Central
2024-06-05T04:04:17.148723
2010-11-05
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051828/", "journal": "Conserv Biol. 2011 Feb 5; 25(1):21-29", "authors": [ { "first": "Jon Paul", "last": "Rodríguez" }, { "first": "Kathryn M", "last": "Rodríguez-Clark" }, { "first": "Jonathan E M", "last": "Baillie" }, { "first": "Neville", "last": "Ash" }, { "first": "John", "last": "Benson" }, { "first": "Timothy", "last": "Boucher" }, { "first": "Claire", "last": "Brown" }, { "first": "Neil D", "last": "Burgess" }, { "first": "Ben", "last": "Collen" }, { "first": "Michael", "last": "Jennings" }, { "first": "David A", "last": "Keith" }, { "first": "Emily", "last": "Nicholson" }, { "first": "Carmen", "last": "Revenga" }, { "first": "Belinda", "last": "Reyers" }, { "first": "Mathieu", "last": "Rouget" }, { "first": "Tammy", "last": "Smith" }, { "first": "Mark", "last": "Spalding" }, { "first": "Andrew", "last": "Taber" }, { "first": "Matt", "last": "Walpole" }, { "first": "Irene", "last": "Zager" }, { "first": "Tara", "last": "Zamin" } ] }
PMC3051835
In their interesting contribution, Wang et al. ([@b1]) described an automated system for the diagnosis of follicular thyroid lesions, which was based on the analysis of nuclear texture features in histologic slides. According to the authors, the method was able to classify with 100% accuracy between normal thyroid tissue, follicular adenomas, and follicular carcinomas. However, the system had been trained with digitalized images of only few neoplasias, five follicular adenomas (mean lesion size of 4.8 cm), and five follicular carcinomas (a mean lesion size of 2.8 cm) as well as with images of nontumoral tissue. Recently, it had been demonstrated that in follicular adenomas the chromatin texture was size dependent, when analyzing digitalized, gray-value transformed images of nuclei in routinely hematoxylin-eosin (HE)-stained paraffin sections. In nuclei of larger adenomas, the entropy values, the fractal dimension, and the diagonal moment were significantly increased, whereas the values of the second angular moment and local homogeneity were decreased, when compared with the nuclei of smaller adenomas ([@b2]). Therefore, we would like to ask whether the considerable size differences between follicular adenomas and carcinomas in the study of Wang et al. ([@b1]) might have contributed to the extraordinary classification success claimed by the authors. To test our hypothesis, we made the following simulation study based on adenomas and carcinomas from previous studies on thyroid neoplasias in our laboratory ([@b2],[@b3],[@b4]). From each tumor, digitalized images of 100 randomly selected nuclei had been captured in bitmap format from routinely HE-stained 5-μm thick histologic sections ([@b2],[@b3]). The nuclei were interactively segmented and then converted to an eight-bit gray scale by calculating the luminance. The material comprised 18 follicular adenomas and 24 microinvasive follicular carcinomas. The final diagnosis had always been done by a meticulous examination of serial step sections. From this collection, we choose a combination of eight folicular carcinomas, so that their mean diameter of 2.78 cm had approximated well with that of the carcinomas from the study of Wang and coworkers (2.8 cm) ([@b1]). Then we selected with the help of random numbers, 100 sets of eight follicular adenomas each. The mean lesion size of these random sets varied between 1.98 and 5.21 cm. If our previously mentioned hypothesis was correct, then the ability to discriminate between nuclei of adenomas and carcinomas should vary with changing diameters of the adenoma cases. We calculated nuclear texture features using variables of the gray-level co-occurrence matrix (second angular moment, entropy, energy, peak prominence, standard deviation, cluster shade, and cluster prominence) as well as Shannon\'s entropy of the gray level histogram and the fractal dimension according to Sarkar. All these variables had shown to be useful for texture analysis in previous studies ([@b1],[@b4]--[@b10]). In a further step, we created 100 pairs composed of (a) always the aforementioned group of eight carcinomas with a mean diameter of 2.78 cm and (b) one of the 100 randomly choosen adenoma sets with, of course, varying mean lesion size (see Supporting Information). For each pair, we compared the nine texture features with the help of the *t*-test (*P* \< 0.05 for significant differences) and recorded, for each comparison, the percentage of statistically significant texture features by plotting these data versus the mean diameter of the adenoma set in a diagram ([Fig. 1](#fig01){ref-type="fig"}). ::: {#fig01 .fig} Figure 1 ::: {.caption} ###### Box and Whiskers diagram showing relationship between mean lesion diameter of the adenoma group and the number of nuclear texture features separating significantly adenomas and carcinomas. Nine texture variables had been tested in each case. The number of those revealing significant differences in a *t*-test (*P* \< 0.05) was plotted on the *y*-axis. With increasing size of the adenomas the chromatin architecture of adenomas is more different to that of carcinomas (Spearman\'s rank correlation coefficient *r* = 0.72; *P* \< 0.0001). ::: ![](cyto077A-1101-f1) ::: As we can easily notice, in very large adenomas nearly all nuclear texture features were significantly different from those of the carcinoma group. But these differences were rapidly vanishing, when we compared the carcinomas with smaller adenomas. With a mean adenoma lesion size of 4.8 cm, as in the study under discussion ([@b1]), approximately 80% of the texture parameters showed significant differences. However, when the mean diameters of adenomas and carcinomas were very similar (∼2.8 cm), this number had dropped below 20%. There was a highly significant direct correlation (Spearman\'s correlation coefficient *r* = 0.72; *P* \< 0.0001) between the mean lesion size of the adenoma cases and the percentage of significant different texture features between adenomas and carcinomas. We believe that the extraordinary good discrimination results reported in the study of Wang et al. ([@b1]) might largely be based on this effect and would have been worse, if smaller adenomas had been included in the investigation. Therefore, the data presented in the study of Wang et al. ([@b1]) are not able to test the quality of the program. To get a realistic view of the diagnostic power of the proposed automated system, the authors should repeat the evaluation with a considerably larger data set, after increasing the number of adenomas and carcinomas, both comprising a large spectrum of tumor diameters. Supporting information ====================== [^1]: E-mail: <[email protected]> [^2]: Additional Supporting Information may be found in the online version of this article. [^3]: Grant sponsor: São Paulo Research Foundation FAPESP; Grant number: 2007/52015-0; Grant sponsor: National Council of Technological and Scientific Development CNPq; Grant number: 479074/2008-9.
PubMed Central
2024-06-05T04:04:17.151464
2010-10-22
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051835/", "journal": "Cytometry A. 2010 Dec 22; 77A(12):1101-1102", "authors": [ { "first": "Konradin", "last": "Metze" }, { "first": "Rita C", "last": "Ferreira" }, { "first": "Randall L", "last": "Adam" } ] }
PMC3051870
The authors would like to add the following to the funding information: \"The study was supported by funding from the NIHR Oxford Biomedical Research Centre programme.\" **Competing Interests:**No competing interests declared.
PubMed Central
2024-06-05T04:04:17.152012
2011-3-08
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051870/", "journal": "PLoS One. 2011 Mar 8; 6(3):10.1371/annotation/fca26a4f-42c1-4772-a19e-aa9d96c4eeb2", "authors": [ { "first": "Sven", "last": "Létourneau" }, { "first": "Eung-Jun", "last": "Im" }, { "first": "Tumelo", "last": "Mashishi" }, { "first": "Choechoe", "last": "Brereton" }, { "first": "Anne", "last": "Bridgeman" }, { "first": "Hongbing", "last": "Yang" }, { "first": "Lucy", "last": "Dorrell" }, { "first": "Tao", "last": "Dong" }, { "first": "Bette", "last": "Korber" }, { "first": "Andrew J.", "last": "McMichael" }, { "first": "Tomáš", "last": "Hanke" } ] }
PMC3051877
Background ========== The intrinsic resistance of mycobacteria to most antimicrobial agents is generally attributed to their relatively impermeable cell-wall, which provides a barrier to noxious compounds and limits drug uptake \[[@B1]\]. This low permeability is due to the structure and lipid-rich composition of the mycobacterial cell-wall that comprises long-chain fatty acids, the mycolic acids, covalently bound to a peptidoglycan-arabinogalactan polymer, and extractable lipids not covalently linked to the peptidoglycan-arabinogalactan \[[@B1]-[@B3]\]. Diffusion of hydrophilic nutrients is mediated by pore-forming proteins like the MspA porin of *M. smegmatis*, which is described as the major diffusion pathway for hydrophilic solutes in these mycobacteria \[[@B4],[@B5]\]. Along with the controlled permeability by the cell-wall, active efflux systems can also provide resistance by extruding noxious compounds prior to their reaching their intended targets. Intracellular concentration of a given compound is therefore a result of interplay between permeability and efflux \[[@B6]\]. In order to develop effective antimycobacterial therapeutic strategies at a time when multidrug resistant and extensively drug resistant tuberculosis continue to escalate \[[@B7]\], the contributions made by alterations of permeability due to down regulation of porins and increased expression of efflux pumps that render these infections problematic for therapy, must be understood. Several mycobacterial efflux pumps have been identified and characterized to date \[[@B8]-[@B14]\]. However, their role in intrinsic and acquired drug resistance in mycobacteria is not completely understood. LfrA, a transporter protein of the major facilitator superfamily of *M. smegmatis*, was the first efflux pump to be genetically described in mycobacteria and it has been associated with resistance to ethidium bromide (EtBr), acriflavine, doxorubicin, rhodamine 123 and fluoroquinolones \[[@B14]-[@B17]\]. The regulation of LfrA is controlled by the upstream region of *lfrA*that contains a gene coding for LfrR, a putative transcriptional repressor of the TetR family, which represses the transcription of the *lfrRA*operon by directly binding to the promoter region \[[@B18],[@B19]\]. The efflux pump substrate EtBr is widely used as a probe to detect and quantify efflux activity by bacteria \[[@B20]-[@B23]\]. EtBr emits weak fluorescence in aqueous solution (outside cells) and becomes strongly fluorescent when concentrated in the periplasm of Gram-negative bacteria and in the cytoplasm of Gram-positive bacteria. As long as EtBr is not intercalated between nucleic bases of DNA, it is subject to extrusion. When it is intercalated, the binding constant is sufficiently strong to keep EtBr from access to the efflux pump system of the bacterium \[[@B24]\]. Recently, a semi-automated fluorometric method was developed using EtBr as substrate for the real-time assessment of efflux pump activity in bacteria \[[@B25]-[@B27]\]. The method was developed considering that EtBr accumulation inside the cell is the result of the interplay between cell-wall permeability and efflux activity. The fluorescence that results from the overall intracellular EtBr content is monitored by real-time fluorometry. In the study to be described, we used this semi-automated fluorometric method to study EtBr transport in *M. smegmatis*, using the wild-type strain mc^2^155 and mutant strains carrying in-frame deletions of genes coding for porins MspA and MspC, the efflux pump LfrA and its repressor LfrR, and correlated this information with the corresponding antibiotic profile. Since many efflux pumps of *M. smegmatis*have their homologues in *Mycobacterium tuberculosis*, the use of *M. smegmatis*as a model mycobacterium may provide data that will help to understand efflux-mediated drug resistance in *M. tuberculosis*and other mycobacteria that infect the human \[[@B15]\]. Results and Discussion ====================== MspA as a major pathway for EtBr in *M. smegmatis* -------------------------------------------------- The *M. smegmatis*strains used in this study are described in Table [1](#T1){ref-type="table"}. The accumulation of increasing concentrations of EtBr by strains SMR5, MN01 (Δ*mspA*) and ML10 (Δ*mspA*ΔmspC) is presented by Figure [1](#F1){ref-type="fig"}. Accumulation of EtBr under conditions that maximize efflux (presence of glucose and incubation at 37°C) begins to take place at a concentration of 1 mg/L in the case of *M. smegmatis*SMR5. This concentration of EtBr marginally exceeds the ability of the intrinsic efflux system of SMR5 to extrude the substrate. In the case of the SMR5 derived porin mutants MN01 (Δ*mspA*) and ML10 (Δ*mspA*Δ*mspC*), the marginal concentration that results in accumulation of EtBr is increased to 2 and 4 mg/L, respectively (Figure [1](#F1){ref-type="fig"}) and considered to be the result of a decreased influx rate of EtBr due to the deletion of porins in these strains \[[@B3],[@B5]\]. These concentrations were selected to test the effect of the efflux inhibitors chlorpromazine, thioridazine and verapamil in the accumulation of EtBr by these strains. This is to ensure that the increase of accumulation of EtBr is due to inhibition of efflux pumps and not to the use of an EtBr concentration that the cell\'s efflux system cannot extrude. As shown by Figure [2](#F2){ref-type="fig"}, the efflux inhibitors chlorpromazine, thioridazine and verapamil, used at ½ the minimum inhibitory concentration (MIC; see Table [1](#T1){ref-type="table"}), increased accumulation of EtBr, although only marginally in strain ML10. We interpret these results as indicating that because of the absence of both porins in ML10, little EtBr enters the cell, accumulation does not take place, and hence, there is no EtBr subject for extrusion. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Description of *M. smegmatis*strains used in this study and corresponding MICs determined for EtBr and efflux inhibitors ::: *M. smegmatis*strain Description \[Reference\] MICs (mg/L) ---------------------- --------------------------------------------------------------------------------------------------------------- ------------- ---- ------ ----- **mc^2^155** Wild-type \[[@B34]\] 6.25 25 12.5 200 **SMR5** mc^2^155 derivative; resistant to streptomycin due to a mutation in ribosomal protein S12 (*rpsL*) \[[@B29]\] 6.25 25 12.5 400 **MN01** SMR5 Δ*mspA*\[[@B5]\] 6.25 25 25 400 **ML10** SMR5 Δ*mspA*Δ*mspC*\[[@B28]\] 12.5 25 25 250 **XZL1675** mc^2^155 Δ*lfrA*\[[@B15]\] 0.4 25 6.25 125 **XZL1720** mc^2^155 Δ*lfrR*\[[@B15]\] 6.25 25 12.5 200 CPZ, chlorpromazine; EtBr, ethidium bromide; TZ, thioridazine; VP, verapamil. ::: ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Accumulation of increasing concentrations of EtBr (0.5-8 mg/L) by *M. smegmatis*SMR5, MN01 (Δ*mspA*) and ML10 (Δ*mspA*Δ*mspC*)**. ::: ![](1471-2180-11-35-1) ::: ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **Effect of efflux inhibitors on the accumulation of EtBr at 1, 2 and 4 mg/L by *M. smegmatis*SMR5, MN01 (Δ*mspA*) and ML10 (Δ*mspA*Δ*mspC*), respectively**. CPZ, chlorpromazine; EPI, efflux pump inhibitor; TZ, thioridazine; VP, verapamil. ::: ![](1471-2180-11-35-2) ::: LfrA is the main efflux system involved in EtBr extrusion in *M. smegmatis* --------------------------------------------------------------------------- The accumulation of increasing concentrations of EtBr by strains mc^2^155, XZL1675 (Δ*lfrA*) and XZL1720 (Δ*lfrR*) is presented by Figure [3](#F3){ref-type="fig"}. Concerning the knockout mutant for the efflux pump LfrA (strain XZL1675), EtBr started to accumulate at a concentration of 0.25 mg/L. Since in the wild-type strain *M. smegmatis*mc^2^155, accumulation took place at a concentration of 1 mg/L of EtBr, these results demonstrate an increased susceptibility of the mutant strain to EtBr due to the inactivation of efflux pump LfrA. In the case of the *lfrR*knockout mutant XZL1720, EtBr accumulation started at a concentration of 2 mg/L, a higher concentration than the observed for the wild-type. This could be due to the constitutive expression of LfrA in this strain as a consequence of the deletion of its repressor, LfrR. These results are in agreement to what has been previously reported regarding LfrA as the main efflux system involved in EtBr extrusion \[[@B15]-[@B17]\]. In order to determine the effect of the efflux inhibitors chlorpromazine, thioridazine and verapamil on EtBr efflux activity, efflux assays were performed for *M. smegmatis*mc^2^155, XZL1675 and XZL1720. As shown by Figure [4](#F4){ref-type="fig"}, all strains presented efflux of EtBr at 37°C in the presence of glucose. Moreover, this efflux activity was inhibited by chlorpromazine, thioridazine and verapamil. However, the concentration of EtBr used for the *lfrA*mutant was 15-fold lower than the concentration used for the wild-type and *lfrR*deleted strains (0.2 mg/L for XZL1675 *vs*3 mg/L for mc^2^155 and XZL1720, ½ MIC for each strain - see Table [1](#T1){ref-type="table"}). This further demonstrates that deletion of *lfrA*hinders the cell\'s ability to efflux EtBr, resulting in a low MIC for this fluorochrome and a decreased EtBr efflux activity when compared to mc^2^155 and XZL1720. ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **Accumulation of increasing concentrations of EtBr (0.25-8 mg/L) by *M. smegmatis*mc^2^155, XZL1675 (Δ*lfrA*) and XZL1720 (Δ*lfrR*)**. ::: ![](1471-2180-11-35-3) ::: ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **Efflux of EtBr by *M. smegmatis*mc^2^155, XZL1675 (Δ*lfrA*) and XZL1720 (Δ*lfrR*)**. Efflux takes place at 37°C in the presence of glucose and is inhibited by the efflux inhibitors thioridazine and verapamil. EtBr was used at ½ MIC for each strain in order to ensure maximum EtBr-loading of the bacteria, without compromising cellular viability. CPZ, chlorpromazine; EPI, efflux pump inhibitor; TZ, thioridazine; VP, verapamil. ::: ![](1471-2180-11-35-4) ::: Effect of efflux inhibitors on the antibiotic resistance of *M. smegmatis* -------------------------------------------------------------------------- In order to correlate the data obtained from the fluorometric method with a drug susceptibility profile, the MICs of several antibiotics were determined for each strain (Table [2](#T2){ref-type="table"}). Moreover, the effect of the efflux inhibitors on the reduction of MICs of the same antibiotics was also tested (Table [2](#T2){ref-type="table"}). *M. smegmatis*SMR5, MN01 and ML10 present an MIC for streptomycin above 256 mg/L due to the presence of a mutation in the *rpsL*gene that confers resistance to this antibiotic \[[@B5],[@B28],[@B29]\]. Deletion of porins MspA (MN01) and MspC (ML10) caused a decreased susceptibility to clarithromycin, erythromycin and rifampicin. Deletion of *lfrA*(XZL1675) increased the susceptibility to ciprofloxacin and ethambutol (Table [2](#T2){ref-type="table"}), which suggests that LfrA might contribute to the intrinsic resistance of *M. smegmatis*to these drugs, as already reported by other studies \[[@B15]\]. Moreover, the LfrA mutant also showed increased susceptibility to EtBr, thioridazine and verapamil (Table [1](#T1){ref-type="table"}). ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Effect of efflux inhibitors on the MICs of antibiotics for wild-type and mutant strains of *M. smegmatis* ::: MICs (mg/L) -------------------- -------------------------- ---------------------------- ------------------------- -------------------------------- -------------------------------- -------------------------------- ----------- ***M. smegmatis*strains** **Antibiotic/EPI** **mc^2^155 (wild-type)** **SMR5 (mc^2^155 STR^r^)** **MN01 (SMR5 Δ*mspA*)** **ML10 (SMR5 Δ*mspA*Δ*mspC*)** **XZL1675 (mc^2^155 Δ*lfrA*)** **XZL1720 (mc^2^155 Δ*lfrR*)** No EPI 0.5 0.5 0.5 0.5 0.5 0.5 **AMK** CPZ **0.125** **0.125** **0.125** 0.25 **0.063** **0.063** TZ **0.063** **0.063** **0.125** 0.25 **0.063** **0.063** VP **0.125** **0.125** **0.125** 0.25 **0.125** **0.125** No EPI 0.25 0.25 0.25 0.25 0.125 0.125 **CIP** CPZ **0.063** **0.063** **0.063** **0.063** 0.063 0.063 TZ **0.063** **0.063** **0.063** **0.063** **0.032** **0.032** VP **0.063** **0.063** **0.063** **0.063** 0.063 0.063 No EPI 2 2 8 8 2 2 **CLT** CPZ **0.25** **0.25** **0.5** **1** **0.25** **0.25** TZ **0.25** **0.25** **1** **1** **0.25** **0.25** VP **0.5** **0.5** **0.5** **1** **0.5** **0.5** No EPI 1 1 1 1 0.5 1 **EMB** CPZ 1 1 1 1 0.5 1 TZ 1 1 1 1 0.5 1 VP 1 1 1 1 0.5 1 No EPI 32 32 64 64 32 32 **ERY** CPZ **4** **4** **8** **8** **4** **4** TZ **4** **4** **16** **16** **4** **4** VP **8** **8** **8** **8** **8** **8** No EPI 4 4 8 8 0.5 0.5 **RIF** CPZ **1** **1** **2** **2** **0.125** **0.125** TZ 2 2 4 4 **0.125** **0.125** VP 2 2 4 4 **0.125** 0.25 No EPI 0.5 \>256 \>256 \>256 0.5 0.5 **STR** CPZ **0.125** \>256 \>256 \>256 **0.032** **0.063** TZ **0.125** \>256 \>256 \>256 **0.125** 0.25 VP 0.25 \>256 \>256 \>256 0.25 **0.125** AMK, amikacin; CIP, ciprofloxacin; CLT, clarithromycin; CPZ, chlorpromazine; EMB, ethambutol; EPI, efflux pump inhibitor; ERY, erythromycin; RIF, rifampicin; STR, streptomycin; TZ, thioridazine; VP, verapamil. Data in bold type represents significant (at least 4-fold) reduction of the MIC produced by the presence of an efflux inhibitor. ::: Relatively to the effect of the efflux inhibitors on the MICs of the tested antibiotics, there is an overall reduction of the MICs, with the exception of ethambutol, in all of the studied strains. The fact that the effect of these inhibitors is not dependent of a given genotype suggests that these compounds have a wide range of activity against efflux and are not specific of a particular efflux pump. Some of the results obtained in this study are at variance with those reported by others. Firstly, the previous characterization of the *lfrA*and *lfrR*knockout mutant strains by Li and Nikaido \[[@B15]\] showed that there is no difference between the mutant strains and the wild-type concerning the MIC for rifampicin (authors reported an MIC of 1 mg/L for each strain). In our study, we observed a decrease of the MIC against the *lfrA*and *lfrR*deleted mutants. Secondly, whereas deletion of *lfrR*is reported to increase the ciprofloxacin MIC from 0.25 mg/L (wild-type) to 4 mg/L (XZL1720) \[[@B15]\], our results show that the MIC for ciprofloxacin against the *lfrR*mutant is the same observed for the *lfrA*mutant. The variance between our results and those of others may be due to the use of different methods for the determination of the MICs: microdilution method in Middlebrook 7H9 medium supplemented with oleic acid albumin dextrose catalase (OADC) (this study) or microdilution method in Middlebrook 7H9 medium supplemented with OADC and Tween 80 in combination with drug gradient plates \[[@B15]\]. Conclusions =========== The detection of EtBr influx and efflux can be used to anticipate transport-mediated antibiotic resistance in bacteria, since some of these compounds use similar channels to enter and leave the cell. In this study, we have compared the wild-type *M. smegmatis*mc^2^155 with knockout mutants for LfrA and MspA for their ability to transport EtBr. It was observed that in the absence of MspA, the major porin of *M. smegmatis*, accumulation of EtBr decreased and the mycobacteria became more resistant to several antibiotics. This is in accordance with previous studies that demonstrated MspA as the major diffusion pathway for hydrophilic solutes in *M. smegmatis*, mediating the uptake of small and hydrophilic nutrients such as sugars and phosphates across the outer membrane \[[@B4],[@B28],[@B30]\]. Permeability of the cell to EtBr is, in our opinion, dependent for the most part on the presence of the major porin MspA. If this were not so, we would then expect little difference in the accumulation between intact and MspA deficient strains. This conclusion is supported by others that demonstrated that deletion of the *mspA*gene increased the resistance of *M. smegmatis*not only to hydrophilic molecules, but also to hydrophobic antibiotics, such as erythromycin \[[@B31]\]. However, deletion of *mspA*causes the alteration in the organisation of lipids of the mycobacterial outer membrane, resulting in a decreased rate of uptake of hydrophobic agents such as chenodeoxycholate \[[@B31],[@B32]\]. In fact, it has been previously demonstrated that a *M. tuberculosis*mutant lacking oxygenated mycolic acids also presents altered lipid organisation within its outer membrane, and the permeability to various agents is also altered \[[@B31],[@B32]\]. Undoubtedly, the lipid organisation and lipid composition of the outer membrane of mycobacteria significantly affects the permeability of agents into the cell. The mutant for the LfrA pump showed increased accumulation of EtBr and increased susceptibility to EtBr, ethambutol and ciprofloxacin. This is in agreement with other studies that showed that disruption of the *lfrA*gene decreased the MIC of EtBr, acriflavine, ciprofloxacin, doxorubicin and rhodamine \[[@B13],[@B16]\]. Moreover, it was shown that resistance to the tested antibiotics decreased in the presence of efflux inhibitors in the studied strains, demonstrating that these inhibitors have a broad range of activity that is not specific to a given genotype. In conclusion, the methodology used in this study demonstrates that porin MspA plays an important role in the entrance of quaternary ammonium compounds and antibiotics into the cell. Whether its absence is the main cause for decreased permeability, or that its absence has resulted in altered lipid structure of the outer membrane that is less permeable remains to be elucidated. The same methodology used to assess permeability also assessed the activity of the main efflux pump LfrA of the wild-type strain and of LfrA and LfrR depleted mutants and correlated the degree of activity with low-level resistance to several antimicrobial drugs. The methodology used and the results obtained in this work will be used in future studies as a working model for the evaluation of influx and efflux of substrates by multidrug resistant *M. tuberculosis*clinical isolates and, therefore, determine the cause for the multidrug resistant phenotype beyond simple mutation of relevant targets. Methods ======= Materials --------- EtBr, glucose, phosphate buffered solution (PBS), chlorpromazine, thioridazine, verapamil, amikacin, ciprofloxacin, ethambutol, erythromycin, rifampicin and streptomycin were purchased from Sigma Aldrich Química SA (Madrid, Spain). Clarithromycin was obtained from Abbott Laboratories (Abbott Park, IL, USA). Middlebrook 7H9 broth and OADC supplement were purchased from Difco (Detroit, MI, USA). All solutions were prepared on the day of the experiment. Bacteria -------- The *M. smegmatis*strains used in this work are described in Table [1](#T1){ref-type="table"}. *M. smegmatis*strains SMR5, MN01 and ML10 were kindly provided by Michael Niederweis (Department of Microbiology, University of Alabama at Birmingham, Birmingham, U.S.A); strains XZL1675 and XZL1720 were kindly provided by Hiroshi Nikaido (Department of Molecular and Cell Biology, University of California, Berkeley, California, U.S.A). Mycobacteria were grown at 37°C in Middlebrook 7H9 broth or Middlebrook 7H11 solid medium, supplemented with 10% (v/v) of OADC. Determination of Minimum Inhibitory Concentrations -------------------------------------------------- The determination of MICs of EtBr, the efflux inhibitors chlorpromazine, thioridazine and verapamil and of antibiotics studied alone and in the presence of an efflux inhibitor, was performed by the broth microdilution method according to the CLSI guidelines \[[@B33]\]. Briefly, mycobacterial strains were grown at 37°C in Middlebrook 7H9 broth supplemented with 10% OADC until an optical density (O.D.) of 0.8 at a wavelength of 600 nm. The number of colony-forming units (cfu) corresponding to aliquots of the inoculum was routinely calculated in order to ensure a constant number of bacterial cells from experiment to experiment. Bacterial cultures were diluted in PBS to equal the McFarland No. 0.5 standard and the final inoculum was prepared by diluting the bacterial suspension at 1:100. Aliquots of 0.1 mL were transferred to each well of a 96-well plate that contained 0.1 mL of each compound at concentrations prepared from 2-fold serial dilutions in 7H9/OADC medium. The inoculated plates were incubated at 37°C until growth in the agent-free control-well was evident (2-3 days). The MIC was defined as the lowest concentration of compound that inhibited visible growth. Semi-automated fluorometric method ---------------------------------- The assessment of accumulation and extrusion of EtBr on a real-time basis by *M. smegmatis*strains wild-type mc^2^155, SMR5, porin mutants, MN01 and ML10 and efflux mutants XZL1675 and XZL1720 (Table [1](#T1){ref-type="table"}) was performed using the semi-automated fluorometric method, as previously described \[[@B25]-[@B27]\]. ### (i) Accumulation assay *M. smegmatis*strains were grown in 5 mL of 7H9/OADC medium at 37°C until an O.D.~600~of 0.8. Cultures were centrifuged at 13000 rpm for 3 minutes, the supernatant discarded and the pellet washed in PBS (pH 7.4). The O.D.~600~was adjusted to 0.4 with PBS and glucose was added at final concentration of 0.4%. Aliquots of 0.095 mL of bacterial suspension were distributed to 0.2 mL PCR microtubes and EtBr was added at concentrations that ranged from 0.25 to 8 mg/L. Fluorescence was measured in the Rotor-Gene™ 3000 (Corbett Research, Sydney, Australia), using the 530 nm band-pass and the 585 nm high-pass filters as the excitation and detection wavelengths, respectively. Fluorescence data was acquired every 60 seconds for 60 minutes at 37°C. The effect of chlorpromazine, thioridazine and verapamil on the accumulation of EtBr was determined by adding 0.005 mL of each compound to aliquots of 0.095 mL of EtBr-containing bacterial suspension previously distributed to 0.2 mL PCR microtubes. Fluorescence was measured every 60 seconds for 60 minutes at 37°C in the Rotor-Gene™ 3000. Each inhibitor was used at ½ the MIC in order to not compromise the cellular viability (as confirmed by CFUs counting). ### (ii) Efflux assay Mycobacteria were exposed to conditions that promote maximum accumulation of EtBr: EtBr at ½ MIC for each strain; no glucose; presence of the efflux inhibitor that caused maximum accumulation, in this case verapamil; and incubation at 25°C \[[@B25]-[@B27]\]. The EtBr loaded cells were centrifuged at 13000 rpm for 3 minutes and resuspended in EtBr-free PBS containing 0.4% glucose. After adjusting the O.D.~600~to 0.4, aliquots of 0.095 mL were transferred to 0.2 mL microtubes. Fluorescence was measured in the Rotor-Gene™ 3000 as described for the accumulation assay. Efflux activity was quantified by comparing the fluorescence data obtained under conditions that promote efflux (presence of glucose and absence of efflux inhibitor) with the data from the control in which the mycobacteria are under conditions of no efflux (presence of an inhibitor and no energy source). Thus, the relative fluorescence corresponds to the ratio of fluorescence that remains per unit of time, relatively to the EtBr-loaded cells. Authors\' contributions ======================= LR designed the experiments, carried out the EtBr accumulation and efflux assays and drafted the manuscript. JR performed the MIC determination assays and participated in the EtBr efflux assays. IC participated in the study design and coordination and helped to draft the manuscript. LA participated in the study design and revised the manuscript. MV conceived of the study, participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript. Acknowledgements ================ The authors wish to thank Prof. Hiroshi Nikaido (Department of Molecular and Cell Biology, University of California, Berkeley, California, U.S.A) and Prof. Michael Niederweis for kindly providing the *M. smegmatis*mutant strains used in this work and to Prof. Winfried V. Kern (Center for Infectious Diseases and Travel Medicine, University Hospital, Freiburg, Germany) for valuable suggestions and scientific discussions. This work was supported by grants EU-FSE/FEDER-PTDC/BIA-MIC/71280/2006, EU-FSE/FEDER-PTDC/BIA-MIC/105509/2008 and EU-FSE/FEDER-PTDC/SAU-FCF/102807/2008 provided by Fundação para a Ciência e a Tecnologia (FCT) of Portugal. L. Rodrigues was supported by grant SFRH/BD/24931/2005 (FCT, Portugal).
PubMed Central
2024-06-05T04:04:17.152510
2011-2-18
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051877/", "journal": "BMC Microbiol. 2011 Feb 18; 11:35", "authors": [ { "first": "Liliana", "last": "Rodrigues" }, { "first": "Jorge", "last": "Ramos" }, { "first": "Isabel", "last": "Couto" }, { "first": "Leonard", "last": "Amaral" }, { "first": "Miguel", "last": "Viveiros" } ] }
PMC3051878
Background ========== Following emergence of resistance to inexpensive broad-spectrum antimicrobials across much of Africa, quinolone antibacterials have recently been introduced and are widely used. West African studies that sought quinolone resistance in commensal or diarrhoeagenic *Escherichia coli*before 2004 reported no or very low incidences of resistance to nalidixic acid and the fluoroquinolones \[[@B1]-[@B4]\]. Thus, available data suggests that resistance to the quinolones was rare in West Africa until the first decade of the 21^st^century. More recent anecdotal reports and surveillance studies point to emergence of quinolone resistance among enteric pathogens and faecal enteric bacteria in Ghana and elsewhere in West Africa \[[@B5]-[@B8]\]. In a study by Nys et al. (2004) faecal isolates of adult volunteers in eight different countries were assessed for susceptibility to antimicrobials in the same laboratory \[[@B8]\]. Resistance to broad spectrum first-generation antibiotics was common and ciprofloxacin resistance was found to be slowly emerging in Asian, South American and African countries, including Ghana \[[@B8]\]. Newman et al. (2004) collected 5099 clinical bacterial isolates (1105 of which were *E. coli*) from nine of the ten regions in Ghana and tested them for antimicrobial susceptibility. They found that over 70% of the isolates were resistant to tetracycline, trimethoprim-sulphamethoxazole, ampicillin and chloramphenicol and reported that 11% of the isolates were ciprofloxacin-resistant \[[@B7]\]. Quinolones inhibit the activity of bacterial DNA gyrase and DNA topoisomerase enzymes, which are essential for replication. Single nucleotide polymorphisms (SNPs) in the quinolone resistance determining regions (QRDR) of *gyrA*and *parC*, the two genes that encode DNA gyrase and topoisomerase IV respectively, can lead to conformational changes in these enzymes that cause them to block quinolones from binding to the DNA- substrate complex, yet still preserve their enzymatic function \[[@B9]\]. In *Escherichia coli*and related Gram-negative bacteria, DNA gyrase is the first target for fluoroquinolones. If *gyrA*has resistance-conferring mutations, the primary target of fluoroquinolone switches from DNA gyrase to topoisomerase IV \[[@B10],[@B11]\]. Studies from other parts of the world have found that resistance-conferring mutations are typically selected in *gyrA*first, and then *parC*. Although mutations in the QRDR of *gyrA*and *parC*are the most commonly documented resistance mechanisms, resistance has also been known to be conferred by mutations in the second topoisomerase gene, *parE*. Another mechanism of quinolone resistance relies on upregulation of efflux pumps, which export quinolones and other antimicrobials out of the bacterial cell. For example, mutations in the gene encoding a repressor of the *acrAB*pump genes, *acrR*, are associated with quinolone resistance \[[@B12]\]. Quinolone resistance can also be acquired horizontally through transferable quinolone resistance (*qnr*) or other DNA. The Qnr gene product inhibits quinolones binding to target proteins \[[@B13]\]. Other horizontally acquired quinolone resistance genes include *aac(6*\'*)-Ib*, encoding a fluroquinolone acetylating enzyme, as well as *qepA*and *oqxAB*, which encode horizontally transmitted efflux pumps \[[@B14]-[@B16]\]. Resistance to the quinolones often emerges at low-levels by acquisition of an initial resistance-conferring mutation or gene. Acquisition of subsequent mutations leads to higher levels of resistance to the first-generation quinolone, nalidixic acid and a broadening of the resistance spectrum to include second-generation quinolones (first-generation fluoroquinolones) such as ciprofloxacin, followed by newer second- and third-generation fluoroquinolones \[[@B17]\]. Although multiple mechanisms of quinolone resistance have been reported from other continents, there are few data from sub-Saharan Africa on the molecular basis for quinolone resistance. We performed antimicrobial susceptibility testing on fecal *E. coli*isolates from Accra, Ghana in 2006, 2007 and 2008. We identified isolates that were resistant to nalidixic acid and screened these strains for mutations in the QRDR of *gyrA*and *parC*as well as horizontally-acquired quinolone-resistance genes. In order to gain some insight into resistance dissemination, we also studied inter-strain relatedness among quinolone-resistant *E. coli*isolates by multilocus sequence typing. Results ======= Resistance to commonly used antimicrobials is high and resistance to the quinolones was detected ------------------------------------------------------------------------------------------------ In 2006, 2007 and 2008 respectively, 156, 78 and 101 stool specimens were collected. A total of 293 *Escherichia coli*isolates were recovered from culture of the 335 stool specimens. Consistent with the results of recent studies from West African countries, including Ghana \[[@B1],[@B7],[@B8]\], 50-90% of the *E. coli*isolates were resistant to the broad-spectrum antimicrobials ampicillin, streptomycin, sulphonamides, tetracycline and trimethoprim (Figure [1](#F1){ref-type="fig"}). Resistance to chloramphenicol was less common but was seen in 30-41% of the isolates. The proportions of isolates resistant to most agents were comparable between 2006 and 2007. However, the proportion of isolates resistant to each antimicrobial in 2008 was significantly greater than those seen in 2006, for all agents (p \< 0.05) (Figure [1](#F1){ref-type="fig"}). ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Proportion of *E. coli*isolates resistant to each of eight broad-spectrum antibacterials in 2006, 2007 and 2008**. ::: ![](1471-2180-11-44-1) ::: As illustrated in Figure [1](#F1){ref-type="fig"} in 2006 and 2007, we recorded resistance rates to nalidixic acid of 12.3% but by 2008, 15 (18.2%) of isolates were nalidixic acid resistant. Ciprofloxacin-resistant isolates represented 7 (5.4%) and 6 (7.7%) of the total number of isolates in 2006 and 2007 respectively. In 2008, 10 (9.9%) of the isolates were fluoroquinolone resistant. Thus, in 2006 and 2007, 13 (52%) quinolone-resistant *E. coli*isolates were ciprofloxacin resistant but in 2008, 10 (67%) of the quinolone-resistant *E. coli*were resistant to ciprofloxacin (Figure [1](#F1){ref-type="fig"}). Although the numbers were too small to attain statistical significance, organisms with higher nalidixic acid MICs were recovered more commonly in 2008 than in 2006 (Table [1](#T1){ref-type="table"}). ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Antimicrobial susceptibility, QRDR mutations and sequence types of quinolone-resistant *E. coli*isolates ::: ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ Strains Nali-dixic acid MIC\ Resistance pattern\* QRDR mutations Horizontally acquired quinolone resistance genes Allelic profile Sequence type (ST) ST complex mg/L ---------- ---------------------- ---------------------- ---------------- -------------------------------------------------- ----------------- -------------------- ------------ ---- ----- ---- ---- ---- ------ ------ **2006** 06/073 64 AC NSLTR none none none 6 19 15 16 9 8 7 443 205 06/079 128 AC NSLTR none none none 6 65 2 25 5 5 2 1466 none 06/137 128 AC NSLTR none none none 6 65 2 25 5 5 2 1466 none 06/065 128 A NSLTR none none *qnrS1* 6 7 5 1 8 18 2 206 206 06/036 256 AC NSLTR none none none 6 8 4 1 9 48 7 210 none 06/027 64 C N S83L none *qnrB2* 10 11 4 8 8 8 2 10 10 06/045 64 A NSLTR S83L none none 10 174 4 8 8 8 2 1286 10 06/056 128 A NSLTR S83L none none 112 11 5 12 8 8 86 542 none 06/068 128 AC NSLTR S83L none none 76 43 19 37 30 1 2 1465 none 06/151 \>1024 ACPNSLTR S83L, D87N none none 43 41 15 18 11 7 6 101 101 06/154 \>1024 ACPN TR S83L, D87N none *qnrB1* 43 41 15 18 11 7 6 101 101 06/030 \>1024 ACPN LTR S83L, D87N S80I *qnrS1* 10 11 4 8 8 13 73 617 10 06/110 \>1024 ACPNSLTR S83L, D87N S80I none 92 4 87 96 70 58 2 648 none 06/148 \>1024 A PNSLTR S83L, D87N S80I none 92 4 87 96 70 58 2 648 none 06/026 \>1024 ACPNSLTR S83L, D87N S80I, N105S none 56 6 22 16 11 1 7 455 None 06/112 \>1024 ACPN LTR S83L, D87N S80I, E84K none 6 29 32 16 11 8 44 156 156 **2007** none 07/16a 256 A PNSLT none none none 6 95 4 18 11 7 14 1304 none 07/34 128 AC N LTR none none none 10 11 4 12 7 8 2 1467 none 07/12 64 NSLT S83L none none 10 11 4 8 8 8 2 10 10 07/37 128 A N L R S83L T66I none 10 11 4 8 8 8 2 10 10 07/SHA \>1024 A PNSLTR S83L, D87N none none 6 11 95 104 8 7 2 450 none 07/375 \>1024 A PNSLTR S83L, D87N S80I *qepA* 10 11 4 8 8 8 2 10 10 07/337 \>1024 A PN LTR S83L, D87N S80I none 10 11 4 8 8 8 2 10 10 07/282 \>1024 ACPNSLTR S83L, D87N E84K *qepA* 6 29 32 16 11 8 44 156 156 07/24A \>1024 ACPNSLTR S83L, D87N S80I, E84G *qnrB1* 85 88 78 29 59 58 62 354 354 **2008** 08/54 64 AC NSLTR none none none 6 99 22 1 8 7 2 1479 206 08/23 64 ACPNSLTR none none none 10 29 4 8 8 8 44 1473 156 08/43 128 A NSLTR none none none 6 7 14 1 8 18 2 1471 l206 08/33 \>1024 ACPNSLTR none none *qnrS1* 6 11 14 8 8 6 6 1469 None 08/91 \>1024 ACPNSLTR none none none 10 11 4 1 8 9 2 227 10 08/101 64 A NSLTR S83A none *qnrS1* 10 11 4 1 8 9 2 227 10 08/78 128 ACPNSLTR S83L none *qnrS1* 10 11 4 8 8 8 2 10 10 08/90 256 ACPNSLTR S83L, D87N S80I none 6 4 12 1 20 18 7 410 23 08/11 \>1024 A PNSLTR S83L, D87N S80I none 6 6 5 26 11 8 6 1468 none 08/26 \>1024 A PN LTR S83L, D87N S80I *qnrS1* 10 11 4 8 8 8 2 10 10 08/87 \>1024 A NSLTR S83L, D87N S80I none 10 11 4 8 8 8 2 10 10 08/84 \>1024 A NSLTR S83L, D87N S80I *qnrS1* 10 11 4 8 8 8 2 10 10 08/93 \>1024 A PNSLTR S83L, D87N S80I none 10 11 4 8 8 8 2 10 10 08/17 \>1024 ACPNSLTR S83L, D87N S80I, E84V none 53 40 47 13 36 28 29 131 none 08/39 \>1024 ACPNSLTR S83L, D87N S80I, A108V none 92 40 87 96 70 8 29 1470 none ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ \*A = Ampicillin, C = Chloramphenicol, P = Ciprofloxacin, N = Nalidixic acid, S = Streptomycin, L = Sulphonamide, T = Tetracycline R = Trimethoprim ::: Quinolone resistance was almost always seen in multiply-resistant *E. coli*. As shown in Table [1](#T1){ref-type="table"}, all quinolone-resistant *E. coli*(QREC) were resistant to at least one other antimicrobial and all but three of the QREC isolates were resistant to four or more non-quinolone antibacterials. Most QREC demonstrated high-level resistance to nalidixic acid with 21 of 40 of the QREC isolates showing a nalidixic acid MIC that exceeded 1024 mg/L. Among 2006 isolates, low-level resistance was more common, with the MIC~50~in that year being 128 mg/L. In both 2007 and 2008, the MIC~50~was \>1024 mg/L. Quinolone resistant *E. coli*predominantly harbour mutations in *gyrA, parC*or both ----------------------------------------------------------------------------------- Increasing nalidixic acid MICs, accompanied by resistance to fluoroquinolones is often due to the acquisition of multiple mutations in quinolone targets. We sequenced the quinolone-resistance determining regions (QRDRs) of *gyrA*and *parC*in the 40 QREC isolates. As shown in Table [1](#T1){ref-type="table"}, 28 (70%) of the quinolone-resistant isolates had at least one non-synonymous substitution in the QRDR of *gyrA*and 18 of these isolates also had one or more non-synonymous mutations in *parC*. Twenty-seven of the 28 isolates with at least one mutation in *gyrA*had a serine to leucine substitution at position 83, one of the most commonly documented resistance conferring mutations \[[@B10]\]. Twenty of these isolates also harboured the frequently documented aspartic acid to asparagine substitution at position 87 and all of these isolates had a nalidixic acid MIC of at least 256 mg/L. Eighteen of them were resistant to ciprofloxacin as well as nalidixic acid. Eighteen QREC isolates had non-synonymous mutations in the QRDR of *parC*with a serine to isoleucine substitution at position 80, present in 16 strains, being the most common substitution (Table [1](#T1){ref-type="table"}). The 2007 isolate with a Thr66Ile substitution in ParC had a single GyrA substitution, Ser83Leu. All other isolates with ParC substitutions also had Ser83Leu and Asp87Asn substitutions in GyrA. Five isolates had more than one ParC substitution. Thr66Ile and Asn105Ser substitutions in ParC, seen in two isolates in this study, have not previously been described in *E. coli*but Thr66Ile has been seen in *Salmonellaenterica*serovars Heidelberg and Mbandaka \[[@B18]\](Table [1](#T1){ref-type="table"}). Both substitutions occur in strains with other previously described non-synonymous polymorphisms in *parC*and *gyrA*. In each case, the level and spectrum of resistance seen is not significantly greater than that for isolates that lack the novel substitution. Therefore, it is not possible to conclude that either substitution confers additional resistance although confirmation of this assumption, or otherwise, can only be made in isogenic strains. Multiple horizontally-transmitted quinlone resistance genes were detected among *E. coli*from Accra --------------------------------------------------------------------------------------------------- We used PCR to screen for *qnrA, qnrB, qnrS*and *qepA*genes and confirmed all amplicons by sequencing. Of the 40 strains evaluated twelve carried one horizontally acquired quinolone resistance gene. These were *qnrB1*(2 isolates), *qnrB2*(1 isolate), *qnrS1*(7 isolates) and *qepA*(2 isolates). In two isolates, without mutations in *gyrA*and *parC*QRDRs, horizontally-acquired resistance genes could account for the resistance seen. However, in the vast majority of cases, horizontally acquired resistance was seen in combination with QRDR mutations. Quinolone-resistant *E. coli*from Accra are over-represented among multi-locus sequence type 10 ----------------------------------------------------------------------------------------------- We hypothesized that clonal expansion might account, at least in part, for the rise in resistance seen in the course of the study. To test this hypothesis, we subjected all the 40 QREC isolates to multi-locus sequence typing by the scheme of Wirth et al \[[@B19]\] and deposited their allelic profiles in the database at <http://www.mlst.net>. We identified 30 Sequence Types (STs) among 40 QREC isolates from Ghana (0.75 STs per strain). As shown in Figure [2](#F2){ref-type="fig"}, quinolone resistance is seen in diverse lineages that have been detected in Ghana. STs that were recovered more than once among the QREC included ST10 (9 isolates) as well as STs101, 156, 227, 648 and 1466 (2 isolates each) (Table [1](#T1){ref-type="table"}). Although there were 10 QREC STs that were identified for the first time in this study (reflecting the low proportion of strains from West Africa in the database), only one of these (1466) was seen more than once among QREC (Figure [2](#F2){ref-type="fig"}, Table [1](#T1){ref-type="table"}). Three others were related to STs that were also seen among QREC - ST1471 was a single-locus variant of ST206, and STs1286 and 1467 were respectively single- and double-locus variants of ST10. Horizontally-transmitted quinlone resistance determinants were expectedly detected in strains belonging to multiple STs. However *qnrS1*alleles were in all but two cases detected among strains belonging to the ST10 complex. ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **eBURST output for 165 *E. coli*isolates in the**<http://www.mlst.net>**database that were isolated in Ghana, including 48 isolates sequence-typed in this study**. Each ST is marked as a dot or node. The size of the node is proportional to the number of isolates contained in that ST. Blue nodes represent predicted founder STs and sub-founders are indicated in yellow. All other STs marked as black dots. STs annotated in green are comprised of quinolone-resistant strains only and those written in pink contain quinolone-sensitive and quinolone-resistant isolates. ::: ![](1471-2180-11-44-2) ::: Nine of the 40 QREC isolates obtained in this study belonged to ST10, in contrast to 10 of 125 other *E. coli*from Ghana in the database (p = 0.02, Fisher\'s exact test). Moreover six other QREC isolates were single- or double- locus variants of ST10. Thus ST10 appeared to be over-represented among QREC isolates from Ghana. Because most of the isolates from Ghana were deposited in the database two to four years in advance of our own study, we sequence typed eight non-QREC isolates selected at random from our 2008 isolates. All eight belonged to different sequence types (10, 349, 541, 1474, 1475, 1476, 1477 and 1478), five of the eight sequence types were novel, and only one 2008 non-QREC strain was an ST10 isolate. Therefore our data suggest that ST10-complex QREC may represent a successful quinolone-resistant lineage. Discussion ========== Evolution of reduced susceptibility to the quinolones is causing concern following rapidly rising rates of fluoroquinolone-resistant *E. coli*in many parts of the world \[[@B20]\]. In African countries with a high infectious disease burden, formal and informal health systems depend heavily on broad spectrum orally-administrable antibacterials. In this study, we found that most commensal *E. coli*isolates are resistant to ampicillin, sulphonamides, tetracycline and trimethoprim, as well as streptomycin, which have been used to treat actual and supposed bacterial infections in Ghana for over four decades, and that resistance to these agents is increasing with time. We also found that about a third of isolates were resistant to chloramphenicol. Fluoroquinolone antimicrobials have been recently introduced as an effective alternative to older antibacterials that have been compromised by resistance. However, although resistance rates were markedly lower for this class of drugs, we also found that quinolone resistance was increasingly common among fecal *E. coli*in this study. We determined that 12-18% of fecal *E. coli*isolated from healthy individuals in Accra in 2006, 2007 and 2008 are quinolone resistant. Twenty-three of the 40 QREC isolated were resistant to the fluoroquinolone ciprofloxacin. Ciprofloxacin-resistant QREC, showing high-level nalidixic acid resistance, were more commonly isolated in 2008 than in 2006 and 2007. Strains with one or no mutations in *gyrA*were typically ciprofloxacin sensitive. However most isolates had accumulated a second *gyrA*mutation and/or mutations in *parC*and were fluoroquinolone resistant. The QRDR polymorphisms most commonly detected in this study are those most frequently reported in the literature \[[@B10]\]. As has been validated experimentally in isogenic strains, high-level nalidixic acid resistance and fluoroquinolone resistance in isolates in this study was associated with *parC*substitutions in strains also harbouring substitutions in *gyrA*\[[@B17]\]. However, *gyrA*and *parC*mutations did not absolutely correlate with nalidixic acid MICs, partly due to horizontally-acquired quinolone-resistance genes. We sought *qnrA, qnrB, qnrS*and *qepA*genes by PCR and confirmed all amplicons by sequencing. We found that two isolates without mutations in the QRDRs of *gyrA*and *parC*, as well as ten isolates with QRDR mutations carried a *qnrS1*, a *qnrB*or a *qepA*allele. The presence of horizontally-acquired genes accounted in part for elevated nalidixic acid MICs in strains that harboured these genes, but not completely. It is therefore possible that other resistance mechanisms, such as ParE polymorphisms, other horizontally acquired resistance genes (such as *oqxAB*and *aac(6*\'*)-Ib*for example), over-active efflux, or even novel mechanisms are present in some of the isolates. Resistance patterns in pathogens often mirror those in commensals. This is borne out by our recent documentation of quinolone resistance in *Vibrio cholerae*isolates recovered in the same time frame as the *E. coli*strains presented in this report \[[@B21]\]. Fifteen of the 40 QREC isolates identified in this study belonged to ST10, or were single- or double-locus variants of this ST, pointing to the possibility of clonal expansion. ST10-complex strains were isolated in all three years and therefore over-representation of these STs in our sample cannot be explained by short-term, localized clustering. There are four major *E. coli*phylogenetic clades: ECOR A, B1, B2 and D. Few studies have looked at the geographical variance in the distribution of these groups but overall, QREC from Ghana were predominantly drawn from ECOR group A. Of the STs identified in this study that are classified into ECOR clades at the *E. coli*MLST database, ST10 complex (14 isolates) belong to ECOR group A, ST131 (1 isolate) to ECOR B2, STs101 and 410 (3 isolates) to ECOR B1 and STs 156, 206 and 210 (4 isolates) are hybrids of ECOR A and B1, that is AxB1. Available data appear to suggest that ECOR A strains are highly prevalent in Africa, compared to some other world regions \[[@B22]\]. However, when we compared the sequence types of quinolone-resistant and -susceptible strains from Ghana only, we still found that resistant strains were over-represented in the ST10 complex. Pandemic clonal expansion of some QREC lineages has been reported in the literature \[[@B23]-[@B28]\]. For example, ST131 is a globally disseminated multi-resistant clone and was detected once among the QREC in this study. Recent reports suggest that isolates from Europe and North America that belong to ST10- or ST131- clonal complexes may be less likely to carry virulence factors for invasive disease, but more likely to be fluoroquinolone resistant \[[@B24]-[@B28]\]. However it is equally likely that mutations to fluoroquinolone resistance are more likely to be stably inherited in a specific genetic background. Our own data also appear to suggest that, although horizontally acquired, *qnrS1*is associated with ST10 complex. A recent paper by Davidson et al suggests that the antimalarial chloroquine may select for fluoroquinolone-resistant fecal bacteria in malaria endemic areas and proposes that chloroquine-mediated selection accounts for high levels of QREC in fecal flora in villages in South America \[[@B29]\]. However, data from within Africa (where chloroquine has seen heaviest use) to support this hypothesis are currently lacking and evidence from elsewhere supports a link between quinolone resistance rates in *E. coli*and fluoroquinolone consumption at population levels \[[@B30],[@B31]\]. Our own data suggest that even if resistance was present at low levels prior to the introduction of the quinolones, an upsurge in resistance may reflect a selective advantage that came with quinolone introduction. This is particularly likely for Ghana were artemisinin combination therapies have recently been introduced to replace chloroquine. Furthermore, because almost all quinolone resistant-*E. coli*were multiply resistant, selective pressure from other, even more commonly applied, antimicrobials will help to maintain the quinolone-resistant clonal groups we identified in this study. Conclusion ========== Fluoroquinolones, largely ciprofloxacin, were introduced very recently to Ghana with high expectations. This study demonstrates that resistance to these drugs is already common and occurs through multiple mechanisms, suggesting that heavy use of these valuable drugs may rapidly obliterate their usefulness. In addition to the impact that the emergence and dissemination of quinolone resistant bacteria may have on the use of fluoroquinolone antibacterials, we found that QREC were almost invariably resistant to multiple antimicrobials. This is worrisome because it means that, if the commensal flora is reflective of resistance profiles in pathogens, there may be few low-cost alternatives for managing infections due to Gram-negative enteric organisms. Additionally, horizontally-acquired resistance to the quinolones, and presumably other agents may be present on mobile elements that could be transmitted to pathogens. Recent calls for antimicrobial development have spotlighted hospital pathogens and Gram-positive community-acquired pathogens such as Staphylococci \[[@B32]\]. Our data suggest that there is also a pressing need for orally administrable drugs with activity against Gram-negative organisms, which can be used to manage community enteric infections in Ghana and other parts of Africa. Additionally, known strategies for containing antimicrobial resistance need to be more rigorously applied \[[@B33]-[@B35]\]. Methods ======= Strains ------- This study was approved by the Institutional Review Board of the University of Ghana Medical School. *E. coli*isolates were recovered from stool specimens collected from consenting, apparently healthy individuals who presented for medical check-ups at the Korle-Bu Teaching Hospital and the Microbiology Department of the University of Ghana Medical School. Colonies with a typical *E. coli*morphology on MacConkey agar were subjected to biochemical testing, and where this was inconclusive, by 16 S amplification and sequencing \[[@B36]\]. Colonies from the same specimen with identical biochemical and susceptibility profiles were treated as identical strains. Antimicrobial susceptibility testing ------------------------------------ Each isolate was tested for susceptibility to eight antimicrobials using the Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS) disc diffusion method \[[@B37]\]. Antimicrobial discs and control strain *E. coli*ATCC 35218 were obtained from Remel. The antimicrobial discs used contained ampicillin (10 μg), streptomycin (10 μg), trimethoprim (5 μg), tetracycline (30 μg), nalidixic acid (30 μg), chloramphenicol (30 μg), ciprofloxacin (5 μg) and sulphonamide (300 μg). Inhibition zone diameters were interpreted in accordance with CLSI guidelines with WHONET software version 5.3 \[[@B38]\]. Minimum inhibitory concentrations (MICs) to nalidixic acid were measured using the agar dilution technique on Mueller-Hinton agar as recommended by the CLSI and using *E. coli*ATCC 35218 as control \[[@B39]\]. Mutational analysis of the Quinolone-Resistance Determining Regions of *gyrA*and *parC* --------------------------------------------------------------------------------------- DNA was extracted from each quinolone-resistant isolate, using the Promega Wizard genomic extraction kit. The QRDR of the *gyrA*and *parC*genes were amplified from DNA templates by PCR using Platinum PCR supermix (Invitrogen) and the primer pairs listed in Table [2](#T2){ref-type="table"}. PCR reactions began with a two-minute hot start at 94°C followed by 30 cycles of 94°C for 30 s, annealing temperature, 30 s and 72°C for 30 s. *gyrA*amplifications were annealed at 58°C and *parC*reactions were annealed at 52°C. *E. coli*K-12 MG1655 \[[@B40]\] was used as a control. Amplicons were sequenced on both strands and predicted peptide sequences were compared to the corresponding gene from the MG1655 genome \[[@B40]\] by pair-wise FASTA alignments. ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Oligonucleotide primers used in this study ::: Target gene Primer Primer Sequence Purpose Reference ------------- ------------ ------------------------------------- -------------------------- ------------ *gyrA* gyrA12004 TGC CAG ATG TCC GAG AT *gyrA*QRDR amplification \[[@B12]\] gyrA11753 GTA TAA CGC ATT GCC GC *parC* EC-PAR-A CTG AAT GCC AGC GCC AAA TT *parC*QRDR amplification \[[@B43]\] EC-PAR-B GCG AAC GAT TTC GGA TCG TC *qnrA* qnrA-1A TTC AGC AAG ATT TCT CA *qnrA*detection \[[@B42]\] qnrA-1B GGC AGC ACT ATT ACT CCC AA *qnrB* qnrB-CS-1A CCT GAG CGG CAC TGA ATT TAT *qnrB*detection \[[@B42]\] qnrB-CS-1B GTT TGC TGC TCG CCA GTC GA *qnrS* qnrS-1A CAA TCA TAC ATA TCG GCA CC *qnrS*detection \[[@B42]\] qnr-1B TCA GGA TAA ACA ACA ATA CCC *qepA* qepA-F GCAGGTC CAGCAGCGGGTAG *qepA*detection \[[@B41]\] qepA-R CTTCCTGCCCGAGTATC GTG *adk* *adk*F ATTCTGCTTGGCGCTCCGGG MLST \[[@B19]\] *adk*R CCGTCAACTTTCGCGTATTT *fumC* *fumC*F TCACAGGTCGCCAGCGCTTC MLST \[[@B19]\] *fumC*R GTACGCAGCGAAAAAGATTC *gyrB* *gyrB*F TCGGCGACACGGATGACGGC MLST \[[@B19]\] *gyrB*R ATCAGGCCTTCACGCGCATC *icd* *icd*F ATGGAAAGTAAAGTAGTTGTTCCGGCACA MLST \[[@B19]\] *icd*R GGACGCAGCAGGATCTGTT *mdh* *mdh*F ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG MLST \[[@B19]\] *mdh*R TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT *purA* *purA*F CGCGCTGATGAAAGAGATGA MLST \[[@B19]\] *purA*R CATACGGTAAGCCACGCAGA *recA* *recA*F CGCATTCGCTTTACCCTGACC MLST \[[@B19]\] *recA*R TCGTCGAAATCTACGGACCGGA MLST - multi-locus sequence typing; QRDR - quinolone-resistance determining region ::: Identification of horizontally-acquired quinolone-resistance genes ------------------------------------------------------------------ Horizontally-acquired quinolone-resistance genes were identified by PCR. The primers of Liu et al \[[@B41]\] were used to screen for the *qepA*gene and *qnrA*, *qnrB*, and *qnrS*were identified with PCR using the primer pairs published by Wu et al \[[@B42]\] (Table [2](#T2){ref-type="table"}). Amplicons were sequence-verified. Multi-locus sequence typing --------------------------- Gene fragments from the *adk, fumC, gyrB, icd, mdh, purA*and *recA*were amplified using primers listed in Table [2](#T2){ref-type="table"}, as described by Wirth et al \[[@B19]\]. Amplified DNA products were sequenced from both ends. Allele assignments were made at the publicly accessible *E. coli*MLST database at <http://www.mlst.net>. Phylogenetic inferences about ancestral allelic profiles and strain interrelatedness were made using eBURSTv3 at <http://eburst.mlst.net/> defining clonal complexes based on groups sharing five identical alleles and bootstrapping with 1000 samplings. Statistical analysis -------------------- Proportions were compared using the χ^2^or Fisher\'s exact test with p-values less than 0.05 being considered significant. Authors\' contributions ======================= SSN performed molecular experiments, analysed and interpreted data, and contributed to writing the paper. JAO collected isolates and performed microbiology experiments. RSL designed and performed molecular experiments. MJN co-conceived the study and collected isolates. INO co-conceived the study, performed microbiology and molecular experiments, analysed and interpreted data and wrote the manuscript. All authors read and approved the final manuscript. Funding ======= This work was supported by a Branco Weiss Fellowship from the Society in Science, ETHZ, Zürich to INO. SSN and RSL were HHMI-supported undergraduate researchers, and RSL was also an Arnold and Mabel Beckman Scholar, at Haverford College. Acknowledgements ================ We thank Owusu Agyemang Nsiah-Poodoh, Jessica Glaubman, Cindy Manu and Bing Dao Zhang for technical assistance, as well as John Wain and Jennifer Crowe for helpful comments. This study was dependent on the *E. coli*MLST database curated by Mark Achtman and made publicly available from <http://www.mlst.net>.
PubMed Central
2024-06-05T04:04:17.155053
2011-2-27
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051878/", "journal": "BMC Microbiol. 2011 Feb 27; 11:44", "authors": [ { "first": "Sreela S", "last": "Namboodiri" }, { "first": "Japheth A", "last": "Opintan" }, { "first": "Rebeccah S", "last": "Lijek" }, { "first": "Mercy J", "last": "Newman" }, { "first": "Iruka N", "last": "Okeke" } ] }
PMC3051879
Background ========== GIS is a powerful tool for improving the understanding of data through visualisation and analysis, and is being increasingly used by public health professionals for planning, monitoring and surveillance \[[@B1]\]. Presenting data in maps can provide more insight than a table of the same data, enabling quick assessments of trends and interrelationships \[[@B2]\]. This capability can assist in targeting public health initiatives \[[@B3]\] as well as evaluating health programs and informing long term planning. Providing equitable minimum health services is a particular challenge in developing countries where health resources and transport infrastructure are often poor \[[@B4]\]. Access to health services is the primary determinant of utilisation of these services \[[@B5]-[@B7]\] and GIS tools are being increasingly used to evaluate the distribution of health resources (e.g. \[[@B7]-[@B11]\]). Despite this potential, the use of GIS in developing countries is not widespread. There are perceived problems with GIS in low resource settings\[[@B12]-[@B14]\]; (i) GIS software can be expensive and complex, (ii) input data are often of low quality but presentation in GIS suggests veracity; and (iii) there may be a low capacity for data analysis with the danger of misinterpretation. Various authors have described the potentially undemocratic nature of GIS and how it can exacerbate power imbalances through disenfranchising those without the skills and infrastructure required to work with the technology \[[@B15],[@B16]\]. Many GIS applications in developing countries rely on either proprietary software and/or a web interface requiring internet access \[[@B17]-[@B22]\]. Furthermore most of these applications require specialist data base skills to set up the back end data system for display and querying which limits health GIS to those with sophisticated data management skills and access to the internet. A common response designed to democratise GIS has been the development of web based tools to allow more decentralized access to health GIS applications \[[@B18]-[@B20],[@B23],[@B24]\]. Paradoxically, due to low levels and unequal distribution of internet access both between and within countries, the web itself is seen by many to be an undemocratic tool in the developing world preferentially empowering an urban elite and further disenfranchising the rural poor \[[@B25]-[@B27]\]. For example the latest figures (2010) for internet users as a percent of population show 11% for Africa and 12.3% for Indonesia, compared to 58% and 77% for Europe and North America respectively \[[@B28]\]. However new opportunities for the more widespread use of GIS in low resource settings are emerging out of recent developments in GIS software and associated hardware. This study addresses issues related to the prohibitive expense and complexity in GIS by exploring the possibilities presented by free or open source GIS software not reliant on internet access, decreasing hardware costs (e.g. GIS-ready laptops less than USD400), and the increasing availability of spatial data \[[@B17],[@B23]\] and spatial data collection tools (e.g. GPS enabled mobile phones). Through the introduction of a simple and inexpensive GIS in the developing context of eastern Indonesia, this study assessed whether these tools were appropriate for increasing the data analysis capabilities at local levels. Three GIS applications were implemented over a nine month period with mentoring support from Australian researchers. Training materials were tailored to the existing technical skills common in the young health department staff, and basic equipment was provided. The evaluation included an assessment of the uptake of the technology in this context and the sustainability of this uptake. Study Area ---------- Eastern Indonesia faces the challenges of providing adequate and equitable health services to a largely remote, rural population. Health in the eastern Indonesian province of Nusa Tenggara Timur (NTT) is generally poor, with high incidence of malaria \[[@B29]\], high infant mortality rate (54/1000, compared with 44/1000 nationally), and child malnutrition averaging 39% and reaching 50% in some areas \[[@B30]\]. In Indonesia, the responsibility for health service delivery is mainly at the district level. Due to decentralization since 2000, there has been devolution of budgeting and planning responsibility to the district level \[[@B31]\] without a corresponding provision of the base data and analysis skills required for evidence-based decision making. With the devolution of much authority and many functions to the district level, there have been disruptions to coordination and planning mechanisms, and difficulty in providing levels of public service delivery as high as those before decentralisation \[[@B32]\]. Currently, district and subdistrict health officers collect and collate health data for analysis at the provincial or national level (Figure [1a](#F1){ref-type="fig"}). However, with limited involvement in the subsequent processes of analysis, there is little sense of ownership of the data and data quality is often poor. Improving the quality of health data is a goal of a range of projects in Indonesia, yet there is little incentive at the local level to assure data quality when there is a limited understanding of how these data are to be used. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Schematic representation of the flow of health data in eastern Indonesia**. Currently (a), district staff send health data to the provincial and national levels to inform allocation of resources back to the districts. Potentially (b), district health staff could develop the capacity to analyse and interpret data to (c) inform district level resource allocation and to (d) advocate for appropriate resource allocation from the national level. ::: ![](1476-072X-10-15-1) ::: Increasing the capacity of district health officers to conduct data analysis could improve their understanding of the data they collect (Figure [1b](#F1){ref-type="fig"}) and so encourage the collection of more reliable data. District staff could base their health programs (Figure [1c](#F1){ref-type="fig"}) on the collected data and be empowered to advocate for targeted programs to address gaps in existing health services (Figure [1d](#F1){ref-type="fig"}). ### Site Locations The trial sites were located in three districts (*kabupaten*) in the eastern Indonesian province of Nusa Tenggara Timur (NTT), one of the five poorest provinces in Indonesia \[[@B33]\]. These districts were South Central Timor (Timor Tengah Selatan, TTS), in West Timor, and Ngada and Nagekeo, in central Flores (Figure [2](#F2){ref-type="fig"}). Prior to 2005 Nagekeo was part of Ngada district. ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **Location of study districts (Ngada, Nagekeo, Timor Tengah Selatan (South Central Timor, TTS) in the eastern Indonesian province of Nusa Tenggara Timur**. The provincial capital, is Kupang, in West Timor. ::: ![](1476-072X-10-15-2) ::: ### The health system in Nusa Tenggara Timur In 2009, Nusa Tenggara Timur province (NTT) had a population of 4.2 million, and health facilities included 33 hospitals, 284 clinics (*puskesmas*), and more than 10,000 other local health facilities (*pustu, polindes, poskesdes*and *posyandu*) \[[@B34]\]. National government funding is allocated directly to the 21 city and district health departments for establishing and operating health clinics. The provincial health department has a role in coordination of health resources (staff and infrastructure) and systems for surveillance of health indicators, however subdistricts can apply directly to the national government for funding to support health posts. Methods ======= Geographic Information System Software -------------------------------------- Most GIS products use only a small fraction of the functionality of expensive and complex commercial GIS packages. A broad range of visualisation techniques and queries can be performed using free simple open source (OS) software. It was assumed that staff who are able to update and graph data in spreadsheets (such as Excel) would have the competencies to view the same data spatially using OS GIS software. Three open source or free GIS tools were used in the three study districts: *Cybertracker* , free software for field data collection on GPS-enabled PDAs (personal digital assistant), was used to collect health infrastructure data; *Open Jump*, Java-based, open source GIS, was used to visualise health data and for simple analysis; and *AccessMod^©^*, a free extension from World Health Organisation (WHO), was used for service availability mapping (Figure [3](#F3){ref-type="fig"}). ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **System of data input and analysis: new reliable data collected using *Cybertracker*, new or existing data mapped and analysed in *Open Jump*, service availability modelling conducted in ArcView using the *AccessMod*^©^extension**. ::: ![](1476-072X-10-15-3) ::: Lack of reliable baseline data is commonly cited as a difficulty in implementing health GIS in the developing world \[[@B13],[@B14],[@B21],[@B35]\]. Addressing this difficulty, training included the use of *Cybertracker*for the collection of up-to-date and accurate spatial data at the local level. Data collection using *Cybertracker*is rapid \[[@B36]\], includes location coordinates, and can be exported directly to a GIS format for mapping and analysis. Health mapping with *Open Jump*and service availability mapping with *AccessMod^©^*used both new data collected using *Cybertracker*and existing data available from district health departments and clinics (Figure [3](#F3){ref-type="fig"}). *Open Jump*was chosen for this study because of its intuitive interface, broad functionality and the availability of a well designed charting plug-in. OS software is of particular interest to developing countries where resources are limited and licensing costs can be prohibitive. A report commissioned by the UK government on intellectual property rights and international development, recommended that developing countries should consider OS software alternatives in their procurement policies \[[@B37]\]. The free and unlimited distribution of OS software and its ability to import a broad range of pre-existing data formats makes it an attractive alternative to expensive proprietary packages. Furthermore the source code is open, allowing modifications to be made locally to suit particular applications \[[@B38]\]. *AccessMod^©^*is an extension to *ArcView 3.x*GIS software (ESRI) developed for the World Health Organisation to model accessibility and geographic coverage of health care infrastructure. The primary application of *AccessMod^©^*is to produce a spatial model of accessibility as a function of travel time to health facilities. Travel time is determined by transport infrastructure, land cover (i.e. rivers, forest, grass land) and terrain. Multiple travel time estimates based on different transport modes (e.g. walking, public transport, private transport) can be produced. These data can be combined with population distribution data and health centre capacity information to produce a theoretical catchment for mapped infrastructure. Estimating access to health services as a function of travel time, rather than as linear distance, is a significant improvement particularly in rugged terrain where modes of transport vary \[[@B7],[@B9],[@B39]-[@B43]\]. Although *ArcView*is not free software, this component of the study was included to demonstrate to training participants who showed a particular aptitude for GIS how a more sophisticated level of modelling could be conducted using the collected and free spatial data. The service availability modelling was also designed to develop a broader understanding in district health departments, once basic skills were developed and data collected, of the potential of GIS with further investment. The choice, by WHO, to develop *AccessMod^©^*for *ArcView 3.x*over other GIS platforms (e.g. *ArcGIS*) was principally motivated by its continuing widespread use and availability in developing countries \[[@B42]\]. We similarly choose *AccessMod^©^*due to the common availability of *ArcView*, its free distribution and simple interface. Training and equipment ---------------------- Each district was provided with one laptop (\~USD600), one external hard drive for data backup (320 GB) and one HP iPAQ 112 PDA (\~USD350) with external Bluetooth GPS (\~USD50). Initially, a 3 day training workshop was conducted in the use of *Cybertracker*for field data collection and *Open Jump*for data visualisation and querying. The trainees were mostly district health department staff and some provincial and clinic staff. Their selection was based on interest in learning health mapping and likelihood that they would have opportunities to use these skills in their work. The training examples and exercises used local data from each participating district. Six months after this training, further instruction was provided to selected participants from each district in service availability mapping. Participants were given all the required software, local spatial data, and video tutorials. The tutorials provided step-by-step, screen capture instructions with Indonesian language narration, (also available at the project website \[[@B44]\]), enabling participants to continue self-training after the training workshop. Pilot Health Mapping Applications --------------------------------- GIS technologies were trialled in each district to guide practical implementation and test their effectiveness. ### 1. Rapid field data collection using PDA and Cybertracker software Before this study, there were no comprehensive audits of health infrastructure at the district level. Management of hospitals and health clinics are the responsibility of the district government, whereas other health facilities (e.g. health posts) are funded by the central government directly to the sub-district governments. This leads to the potential for the poor coordination of health resource allocation between levels of government in the absence of reliable data about existing facilities. An audit of health infrastructure was undertaken using a simple data entry sequence in *Cybertracker*designed to collect information about the type of facility, working infrastructure (electricity, water, beds) and staff (numbers of doctors, nurses, midwives). In each district, two staff were allocated a motor bike to record these data at all health centres. ### 2. Mapping health indicators using Open Jump software Patient health data recorded at health clinics are reported each month, in an aggregated form, to the provincial and national health departments. Before this study, district health departments had little capacity to analyse the patient health data they collect, and as a consequence these data were rarely used to inform the allocation of health resources in their district. Subdistrict and village administration boundaries were obtained as spatial data sets from the district planning agency (BAPPEDA). All the target districts had recently updated these data to include newly formed administrative divisions. Health data, collected at the village level and collated into annual reports were entered into the data base files (.dbf) associated with the spatial data for administrative boundaries using Microsoft Office 2003 or Open Office Calc (open source spreadsheet software). These data were then mapped in *Open Jump*using colour themeing and charting tools. ### 3. Service availability mapping using AccessMod^©^ Most of the rural population of NTT lives in villages, often with limited access to health facilities due to rugged topography, poor roads, limited transport and seasonal flooding. Travel time from homes to health facilities was estimated using *AccessMod^©^*, taking into account terrain and seasonal variations in access (e.g. flooding). The following variables influencing travel time were provided as spatial grids for input into *AccessMod^©^*: \(i) Slope as derived from a high resolution digital elevation model (DEM). These data were obtained as a free download from the ASTER Global Digital Elevation Model (GDEM) program, a joint initiative of the Japan\'s Ministry of Economy, Trade and industry (METI) and NASA \[[@B45]\]. Slope was categorised into five classes from flat to vertical. \(ii) Land cover was produced as a grid with four categories savanna, scrub, forest and rivers. For TTS these data were produced by classifying Landsat satellite imagery obtained as a free download from the U.S. Geological Survey \[[@B46]\]. In Ngada and Nagekeo landcover data were available from previous projects. (iii)Transport infrastructure comprised road data which were classified into three categories of road quality; national, provincial and district. These data were obtained from the local department of planning. Each cell of each grid was then allocated an average travel time based on the mode of transport to be modelled, e.g. average speed walking through a scrub cell could be 2 km/hr whilst the average speed on a district level road using public transport may be 10 km/hr. These grids were combined within *AccessMod^©^*to produce an overall travel time grid. Using *AccessMod^©^*this grid was then intersected with the location of health facilities collected in pilot study 1 to produce models of travel time to selected health facilities. Evaluation of the pilot health mapping applications --------------------------------------------------- The relevance and effectiveness of the training in health mapping, as perceived by the district and clinic staff who had received the training, were assessed by surveying all the trainees using written questionnaires with closed and open questions, immediately after and six months after training. The implementation of the pilot GIS applications were evaluated by interviewing staff and officials of the participating clinics, and districts and provincial health departments. These interviews consisted of open-ended questions designed to discover if health mapping had been used to inform resource allocation planning, or in advocating for public health programs, and if so, whether these processes were an improvement on previous practices. Results ======= The results of this study included assessments of the following: \(1) the effectiveness of brief contextualized training of district health department staff with little or no knowledge of GIS, and \(2) the use of health mapping by district and clinic health department staff to inform improved health resource allocation and for advocacy. (1) Effectiveness of training ----------------------------- Surveys of the trainees indicated that, before the training, half the trainees had no prior GIS experience. Some trainees had received training in GIS using more complex software but had not used this complex software in their work because they encountered problems and were not given follow up support. These trainees found the *Open Jump*software easier to understand and use. \'Mapping using *Open Jump*is more practical and easy than using other GIS software.\' \[training participant\] \'*Open Jump*and *Cybertracker*are appropriate\... because they are simple, easy and flexible.\' \[training participant\] The contextualised nature of the training, i.e. exercises and examples using data from the trainees\' own districts, promoted uptake of the GIS. Before the training, some clinic staff had mapped malaria incidence by sub-district in hand-drawn maps (e.g. Figure [4a](#F4){ref-type="fig"}). After the training, they used *Open Jump*software to show yearly trends in malaria incidence for the same area (Figure [4b](#F4){ref-type="fig"}). At the completion of training, all trainees anticipated that the GIS tools would be useful in informing the targeted allocation of health resources. ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **Maps produced at a village clinic in TTS, West Timor**. (a) Hand-shaded map of number of malaria cases in the villages within the subdistrict of Kie, made before training and showing a pre-existing understanding of the value of health mapping. (b) Map, made by clinic staff after training, showing the number of malaria cases per village over a ten year period (1997-2007) from clinic data. ::: ![](1476-072X-10-15-4) ::: \'Field data collection and health mapping was very helpful especially for clinics in patient management, e.g. midwives can prioritise services for expectant mothers who are located in remote areas.\' \[training participant\] (2) Use of health mapping after training ---------------------------------------- Interviews six months after the conclusion of the pilot studies showed that the trainees had applied the skills gained to new applications, to inform resource allocation and to evaluate public health programs. The GIS applications that were being used six months after the pilot GIS applications are described below. ### Field data collection using PDA and Cybertracker software An audit and map of all health facilities were produced by health department staff in a short time and at low cost in all target districts. For example, 176 health facilities were mapped in two districts for the cost of salaries of two staff for six weeks and the running costs of two motor bikes. Through these field audits, district health department staff became aware of some health facilities in their district that they previously did not know existed. There was a demonstrable improvement in data quality with respect to completeness of the data set and the currency of the information. One limitation of the field data collection method was that data were restricted to variables that were quickly observed. There was no opportunity to verify staffing levels, staff skills or the function of the equipment present, however the audit was used to create a framework for further investigations of infrastructure function. \'Health mapping was very useful in the analysis of relationships between health initiatives, e.g. comparisons of maps of numbers of midwives per head of population and the percentage of women receiving visits by midwives.\' \[training participant\] ### Visualising health infrastructure and service availability mapping informed the allocation of health resources The maps of health infrastructure are now being used to inform the allocation of resources by the district health departments, e.g. in TTS, maps of midwives are now used in the planning of staffing allocations, and maps of clinic facilities are being used to plan the upgrading of clinics to provide basic emergency obstetric care. Staff allocations are determined by the district administrative head (*Bupati*), usually based on recommendations from the head of the district health department. Now maps and numbers of staff per subdistrict are used to frame these recommendations. \'We use computer and PDA to know coordinate locations of health facilities to help plan the official budget each year.\' \[training participant\] Service availability mapping has been used to map the extent of estimated travel time of up to two hours (based on walking to the nearest road and travelling by motor vehicle from there) to health facilities. This type of presentation of information is informing the prioritisaton of clinics to be upgraded to provide basic emergency obstetric care and the communities in which support for emergency transport is to be developed (Figure [5](#F5){ref-type="fig"}). ::: {#F5 .fig} Figure 5 ::: {.caption} ###### Estimated travel time of up to two hours around the clinics which provide basic emergency obstetric care and the hospital providing comprehensive emergency care in Ngada district, Flores. ::: ![](1476-072X-10-15-5) ::: ### Visualising maternal deaths and comparing with initiatives to encourage attendance by trained midwives at birth At a regional health clinic in TTS district, staff have mapped maternal deaths in villages and observed that relatively high numbers were recorded for a remote village and relatively low numbers were recorded for a village where fines were imposed for births that were not attended by a trained birth assistant. Six months after the pilot studies, mapping was used to improve access to maternal health care. This was an initiative of staff at a clinic in collaboration with district health staff, in response to mapping which showed poor levels of maternal health service provision in some regions. The locations of all pregnant women in a subdistrict (n = 217) were recorded (Figure [6](#F6){ref-type="fig"}), along with expected delivery dates. These location data were collected by midwives whilst visiting pregnant women for routine check-ups and so required little extra work. The maps produced have been used by midwives and other clinic staff to increase efficiency of check-up schedules and to ensure clinic transport was available to provide women with access to trained birth assistance. ::: {#F6 .fig} Figure 6 ::: {.caption} ###### The locations of pregnant women, health facilities and major roads in one subdistrict. ::: ![](1476-072X-10-15-6) ::: ### Health mapping has become a tool for advocacy In the annual report for 2009, for the first time, the TTS health department presented data in maps instead of only in tables, charts and graphs. Maps are now also routinely used in presentations to external agencies or in professional forums as a means of clearly and succinctly explaining key health data. The head of the Provincial health department recognizes the value of maps of travel time to health infrastructure as a tool for advocating for upgrading roads in areas with poorest access to health facilities. ### GIS tools for evaluation of public health programs District health department staff have used GIS to evaluate the effectiveness of a child immunization program. This was an initiative of the district health dept, after the conclusion of the pilot applications project. Funding allocations to child immunization were mapped by sub-district in TTS and compared with the percentage of children who are immunized. Areas of high funding allocation and poor immunization rate were identified and are being investigated further. Discussion ========== Free and simple GIS health applications, without reliance on access to the internet, were deemed appropriate for low resource settings such as rural eastern Indonesia. District and clinic health staff demonstrated ready uptake of health GIS, and instigated and implemented a range of new health mapping applications, independent of external expertise. Maps were also being used by district health departments in NTT as tools to advocate for improved resource allocation, and in assessing the efficacy of public health programs, thus creating the potential for health mapping to inform policy \[[@B47]\]. Many district health staff are now offering training in health mapping to other staff members, independent of the original project. This will support the sustainability of this capacity at the district and clinic level. We suggest that the effectiveness of the training in this pilot study was largely because simple software was used and the training was contextualized, i.e. based on exercises using data from the participants\' districts. The use of local data in the training exercises prepared the trainees for applying the skills in their workplace. The step-by-step training materials, with Indonesian narration, supported continued learning after the training. Uptake of health mapping by district and clinic staff was further enabled due to it being easily integrated into existing health information systems. These systems use spread sheets (district level) and hardcopy ledger (clinic level). Data from both these sources were easily imported into the open source mapping software (*Open Jump*) without additional data management systems. Health data in developing countries are often of poor quality and the district staff who collect the data have little opportunity to use the data they collected to inform their own planning and resource allocation. Furthermore, data sharing between province, district and subdistrict is generally poor \[[@B48]\]. Rapid collection of health infrastructure data in the field over large areas empowered district health staff, for the first time, to collect reliable and complete health infrastructure data. This study did not evaluate the quality of the patient health indicator data reported by the clinics. It is expected that timely mapping of health data by the district and clinic staff who collect and report these patient health data will highlight possible anomalies in the data set \[[@B49]\] and possibly lead to improvements in patient health data. Also, it is suggested that, if the staff reporting the data are also using the data to inform the public health programs they implement, there will be added incentive to ensure high quality data is collected. However even though spatial visualisation can be a tool for critical data analysis, this skill does not guarantee critical thinking. The ability to question the veracity of data, search for correlations, trends or inconsistencies are skills that need to be actively taught alongside the more technical competencies. Experience has shown that when trainees present the results of their health mapping to peers, critical thinking is encouraged both in the presenters and the audience. Although the results to date have been promising, a longer timeframe is required to evaluate the impacts of health mapping on policy and program development within district and provincial governments, and on the delivery and efficacy of health care. Some cautionary observations were made about the specific software and hardware used. Data collection using *Cybertracker*is simple, however we found that creating a database within *Cybertracker*was limited to those with reasonable IT literacy. Some hardware problems were encountered, including difficulty maintaining a Bluetooth connection between the PDA and GPS, and a short battery life of the PDA. To ensure no field time was lost due to hardware problems, some surveys were augmented by using a standard GPS to log points, with data recording manually. Alternative PDA hardware with inbuilt GPS and a supply of batteries has largely overcome this problem. *Open Jump*was effective for visualisation and preliminary analysis of recorded data. Some initial limitations with the *Open Jump*charting and printing functions were overcome through collaboration with the open source software engineer originally responsible for developing these components. Open source software is, by its nature, open to collaboration and sharing, and there is a large community of software developers ready to improve and refine open source tools based on intelligent feedback. The requirement for licence software to run *AccessMod*^©^is a significant limitation for its wider adoption although it effectively demonstrated the utility of simple modelling using free and easily collectable data. A further constraint was the limited availability of the demographic data required for comprehensive analysis. Whilst *AccessMod*^©^provided a general indicator of coverage of health facilities, the lack of population distribution data precluded, for example, the delineation of patient catchment areas for a particular health facility. However, staff of the district health departments have local knowledge about the location of population in their district. With mapping skills developed at the district level, this local knowledge can be incorporated into the interpretation of resource allocation maps, even in the absence of precise population information. Conclusions =========== The effectiveness of free and simple GIS was demonstrated at district and clinic levels in the low resource setting of rural, eastern Indonesia. The uptake and continued use of these technologies was a demonstration of decentralised GIS, empowering those with local knowledge and public health skills. This technology was deemed appropriate because it did not require internet access, a centralized database or a need for database development or maintenance. This low cost, internet-free approach has broad relevance in the context of the move towards the decentralisation of governance and service provision in the developing world \[[@B50],[@B51]\]. We argue that whilst most of the world is still without internet access, particularly outside urban centres, dependence on web-based health GIS applications will tend to re-centralise the power of GIS and thus work against many political reforms occurring in the developing world. To truly democratize the power of health GIS, appropriate \'disconnected\' technologies need to be available for the least empowered in the developing world. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= RF adapted GIS methods, developed and delivered locally relevant training and evaluated uptake. BM facilitated partner engagement and evaluated uptake. Both authors drafted the paper, and read and approved the final manuscript. Acknowledgements ================ The project work was funded by AusAID\'s Public Sector Linkages Program. Essential support was provided by the Regional Planning Board (BAPPEDA) and health departments in the Indonesian province of Nusa Tenggara Timur and the districts of Nagekeo, Ngada and South Central Timor. Skilled contributions were made by Efraim Muga, Erlin Bobaruba, Frederika Rambu Ngana, Johanna Karam, John Asbanu, Maria Toyo, Leli Nope, Leslie Dyck, Nelson Sula, Nahad Baunsele, Sam Pickering, Syahrundin Kola and Yulius Widiyantoro. Prof Geoff Roy created improved charting plug ins for *Open Jump*software. Penny Wurm, Suzanne Belton and anonymous reviewers provided helpful criticism of the manuscript.
PubMed Central
2024-06-05T04:04:17.160667
2011-2-25
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051879/", "journal": "Int J Health Geogr. 2011 Feb 25; 10:15", "authors": [ { "first": "Rohan P", "last": "Fisher" }, { "first": "Bronwyn A", "last": "Myers" } ] }
PMC3051880
Introduction ============ Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved chromatin bound enzyme \[[@B1],[@B2]\] and plays an important role in DNA repair, gene transcription, cell-cycle progression, cell death, and maintenance of genomic integrity \[[@B3]-[@B5]\]. PARP-1 is activated by DNA breaks and cleaves nicotinamide adenine dinucleotide (NAD^+^) into nicotinamide resulting in ADP-ribose moieties; these moieties covalently attach to various acceptor proteins including PARP itself. The continued activation of PARP leads to depletion of its substrate NAD^+^with consequent depletion of ATP, energy failure and cell death \[[@B6]\]. In addition to its influence on chromatin structure and stability, recent studies indicate PARP-1 plays a role in gene-specific transcription \[[@B7]-[@B9]\]. PARP-1 regulates transcription by modifying chromatin-associated proteins and acts as a cofactor for transcription factors, most notably NF-κB and AP-1 \[[@B10],[@B11]\]. Genetic deletion of PARP-1 attenuates tissue injury after ischemia and reperfusion, streptozocin-induced diabetes, endotoxic and hemorrhagic shock, heat stroke and localized colonic inflammation \[[@B12]-[@B19]\]. The benefits conferred by pharmacological inhibitors of poly (ADP-ribosylation) in diverse experimental disease models further reiterate the importance of PARP-1 as an important pharmacological target \[[@B20],[@B21]\] Oxidative injury and ATP depletion also leads to activation of heat shock factor (HSF)-1, a major transcription factor responsible for increased transcription of genes encoding heat shock proteins, particularly heat shock protein-70 \[[@B22],[@B23]\]. HSP-70 provides cytoprotection from a variety of inflammatory insults, including oxidative stress, viral infections and ischemia-reperfusion injury \[[@B24],[@B25]\]. Previously in an *in vivo*model of myocardial ischemia/reperfusion injury, we showed that cardioprotection conferred on PARP-1^-/-^mice is associated with enhanced HSF-1 activity and increased expression of HSP-70 as compared to wild-type mice \[[@B26]\]. Similarly, Fossati *et al*. documented increased HSP-70 expression in murine PARP-1 deficient fibroblasts as compared to wild type fibroblasts \[[@B27]\]. In gene knockout cell lines, unexpected compensatory or redundant mechanisms develop in response to the missing gene and can confound experimental observations. To verify that the upregulation of the heat shock response in PARP-1 deficient mice is not a compensatory response to the missing PARP-1 gene, we employed post-transcriptional gene silencing technology by RNA interference. Specifically, we utilized small interfering RNA (siRNA) to silence PARP-1 gene and hypothesized that the heat shock response is negatively modulated by PARP-1 activation in fibroblasts; therefore siRNA mediated PARP-1 inhibition would lead to augmentation of the heat shock response. Material and methods ==================== Cell culture ------------ Mouse fibroblasts from wild-type mice were created by immortalization by a standard 3T3 protocol \[[@B28]\]. Unless noted otherwise, all reagents were from Sigma-Aldrich (St. Louis MO). Cell monolayers were grown at 37°C in 5% CO~2~air in Dulbecco\'s modified Eagle medium (DMEM) (Gibco Technologies, Grand Island, NY) containing 10% fetal bovine serum (FBS), penicillin (100 U/ml), and streptomycin (100 μg/ml). At 75-80% confluence, fibroblasts were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C up to 4 h. If needed, cells were pretreated with PARP inhibitor 1, 5 dihydroxyisoquinoline (DIQ, 100 μM; Sigma, St. Louis, MO) for 45 min in all experiments. Nuclear protein extraction -------------------------- All nuclear protein extraction procedures were performed on ice with ice-cold reagents. Cells were washed twice with phosphate-buffered saline (PBS) and harvested by scraping. Cells were pelleted in 1 ml of PBS at 14,000 rpm for 1 min. The pellet was washed twice with PBS and resuspended in lysis buffer \[10 mM Tris-HCl (pH 7.8), 10 mM KCl, 1 mM ethylene glycol tetra acetic acid (EGTA), 5 mM MgCl~2~, 1 mM dithiothreitol (DTT), and 0.5 mM phenylmethylsulfonyl fluoride (PMSF)\]. The suspension was incubated on ice for 15 min and Nonidet P-40 was added followed by centrifugation at 4°C at 2,000 rpm for 5 min. The supernatant was discarded and the cell pellet was dissolved in extraction buffer (20 mM Tris-HCl, pH 7.8, 32 mM KCl, 0.2 mM EGTA, 5 mM MgCl~2~, 1 mM DTT, 0.5 mM PMSF and 25% v/v glycerol) was added to the nuclear pellet and incubated on ice for 15 min. Nuclear proteins were isolated by centrifugation at 14,000 rpm at 4°C for 10 min. Protein concentrations of the resultant supernatants were determined using the Bradford assay. Nuclear proteins were stored at -70°C until used for electromobility gel shift assays (EMSA). EMSA ---- EMSA were performed as previously described \[[@B29]\]. An oligonucleotide probe corresponding to an HSF-1 consensus sequence (5\'-GCC TCG ATT GTT CGC GAA GTT TCG-3\') was labeled with γ-\[^32^P\] ATP using T4 polynucleotide kinase (Promega) and purified in Bio-Spin chromatography columns (GE Healthcare, Buckinghamshire, UK). For each sample 4 μg of nuclear proteins were incubated with Bandshift buffer (10 mM Tris, 40 mM KCl, 1 mM (ethylene diamine tetra acetic acid) EDTA, 1 mM DTT, 50 ng/ml poly d(I-C), 10% glycerol) at room temperature with subsequent addition of the radiolabeled oligonucleotide probe for 30 min. Protein-nucleic acid complexes were resolved using a nondenaturing polyacrylamide gel consisting of 5% acrylamide (29:1 ratio of acrylamide: bisacrylamide) and run in 0.25 X Tris/Borate/EDTA (TBE) (45 mM Tris, 45 mM boric acid, 1 mM EDTA) for 1 h at 30 mA constant current. Gels were transferred to Whatman 3 MM paper, dried under a vacuum at 80°C for 1 h, and used to expose to X-ray film at -70°C with an intensifying screen. Real-time reverse transcriptase-PCR analysis -------------------------------------------- Fibroblasts were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C for 120 min. Cells were harvested in 1 ml of TRI-Reagent as directed by the manufacturer (Molecular Research Center, Cincinnati, OH). Bromochloropropane was used for the extraction. The final RNA pellet was dissolved in nuclease - free water and quantified using a GeneQuant Pro UV spectrophotometer (GE Healthcare). Extracted RNA (1 μg/reaction) was converted to single-stranded cDNA in a 20 μl reaction using the Reverse Transcriptase System Kit (Promega) as directed by the manufacturer. The mixture was heated to 70°C for 10 min, maintained at 42°C for 30 min, and then heated to 95°C for 5 min using a Gene Amp PCR System 9700 (Applied Biosystems, Foster City, CA). TaqMan Gene Expression Assays for HSP-70 (GENBANK accession no. NM 010479), 18 S RNA (endogenous control) and real-time PCR reagents were purchased from Applied Biosystems (Foster City, CA). Reaction mixtures for PCR were assembled as follows: 10 μl TaqMan Universal PCR Master Mix, 1 μl of each Gene Expression Assay mix, 1 μl cDNA template and 7 μl of water. PCR reactions were performed in an Applied Biosystems thermocycler 7300 Real Time PCR System by incubating at 50°C for 2 min, 95°C for 10 min, 95°C for 15 s, and 60°C for 1 min; the two final conditions were repeated for 40 cycles. Each sample was assayed in duplicate and the values were averaged. A ΔΔ C~t~relative quantification method was used to calculate mRNA levels for HSP-70 in the samples. Results were normalized relative to 18 S rRNA expression. SiRNA-mediated inhibition of PARP expression -------------------------------------------- Stealth small interference RNA (siRNA) sequences for PARP (sequences) were designed using Invitrogen on line software (Block-iT™RNAi Express) to target PARP-1 mRNA (accession number NM007415). Small interfering RNA (siRNA)-mediated silencing of the PARP-1 gene was performed using 21-bp siRNA duplexes purchased from Ambion (Austin, TX). The coding strand for PARP-1 siRNA was 5\'-AUG UCG GCA AAG UAG AUC CCU UUC C-3\'. An unrelated siRNA sequence (catalog number 12935-113) was used as a control. In this experiment, cells were incubated for 6 h and transfected at approximately 40% confluency with 20nm siRNA duplexes using Lipofectamine™2000 (Invitrogen, Carlsbad, CA) according to the manufacturer\'s instructions. All the experiments were performed 18 h after transfection. The efficiency and specificity of siRNA gene knockdown of PARP-1 was determined by real time PCR for PARP-1 mRNA and Western blotting for PARP-1 expression. Western blot analysis --------------------- Western blot analyses were performed as previously described \[[@B29]\]. Briefly, whole cell lysates containing 30 μg of protein were boiled in equal volumes of loading buffer (125 mM Tris, pH 6.8, 4% sodium dodecyl sulfate (SDS), 20% glycerol, and 10% β-mercaptoethanol). Proteins were separated on 8-16% polyacrylamide gels and subsequently transferred to polyvinylidene difluoride (PVDF) membranes (GE Healthcare, Buckinghamshire, UK). For immunoblotting, membranes were blocked with 5% non-fat dried milk in PBS for 1 h. Primary antibodies against the inducible isoform of HSP-70 (Stressgen, Victoria, BC, Canada) were applied at 1:2500 dilution for 1 h. After washing twice with PBS containing 0.5% Tween 20 (PBST), secondary antibody (horse radish peroxidase-conjugated goat anti- rabbit immunoglobulin G, Stressgen, Victoria, British Columbia) was applied at 1:4,000 dilution for 1 h. Blots were washed in PBST thrice for 10 min, incubated in Enhanced Chemiluminescence Reagent (GE Healthcare), and used to expose X-ray film (GE Healthcare). Immunoprecipitation ------------------- Nuclear extracts were incubated with normal mouse IgG-AC (20 μl Santa Cruz, sc-2343) and incubated for 30 min at 4°C. Anti-PARP antibody (10 μl Biomol, SA-250) or HSF-1 antibody (Stressgen, SPA-950) and non-specific IgG was added to the supernatant for 1 h at 4°C. Thereafter, protein A/G PLUS-Agarose beads were added (20 μl Santa Cruz Biotechnology, sc2003) and the samples were incubated overnight at 4°C. Beads were washed three times in volume 1xPBS and resuspended in 2 X SDS- polyacrylamide gel electrophoresis (PAGE) sample buffers and analyzed by 8% SDS-PAGE. The proteins were then transferred onto PVDF membranes (GE Healthcare, Buckinghamshire, UK). The membranes were blocked in 1X PBST containing 5% nonfat dry milk and incubated with an HSF-1 antibody (Stressgen, SPA-950) or Anti-PARP antibody (10 μl Biomol, SA-250). The membranes were washed and incubated with a polyclonal rabbit anti -rat antibody conjugated to horseradish peroxidase (Stressgen, SAB-200). Immunoreaction was visualized by chemiluminescence. Data analysis ------------- All values in the figures and text are expressed as mean ± SEM. The results were examined by analysis of variance followed by the Bonferroni\'s correction post hoc *t*test. A *p*-value less than 0.05 were considered significant. Results ======= Inhibition of PARP-1 expression by RNA interference augments HSP-70 protein expression -------------------------------------------------------------------------------------- To investigate the biological consequences of PARP-1 activation and its effect on the heat shock response, we employed a siRNA based approach to selectively inhibit PARP-1 expression. As a first step, we treated fibroblasts with various siRNA concentrations (10 nm to 100 nm) and evaluated PARP-1 mRNA and protein expression 18 h after transfection. The lowest concentration of PARP-1 siRNA resulting in efficient PARP-1 gene knockdown, as evidenced by a decrease in PARP-1 mRNA and protein expression, was 20nm (Figure [1A](#F1){ref-type="fig"} and [1B](#F1){ref-type="fig"}). This concentration was employed in all subsequent experiments. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Naïve, non target siRNA and PARP-1 siRNA transfected cells were tested for PARP-1 gene expression 18 h after transfection**. Figure 1A-Quantitative Real time PCR of PARP-1 mRNA normalized for 18 S mRNA expression. Figure 1B-Representative Western blot analysis for PARP-1 expression in naïve, non target siRNA and PARP-1 siRNA transfected cells (\* Represents *p*\< 0.05 *versus*naïve cells at the same time point). ::: ![](1476-9255-8-3-1) ::: Cells were transfected with siRNA for 12 h, subjected to heat shock for 45 min and allowed to recover for 4 h. The expression of HSP-70 was determined by immunoblotting. After heat shock, naïve cells demonstrated a significant increase in HSP-70 protein expression (Figure [2A](#F2){ref-type="fig"}). HSP-70 protein expression in cells transfected with non-target siRNA was comparable to naïve cells after heat shock (Figure [2A](#F2){ref-type="fig"} and [2B](#F2){ref-type="fig"}). Using siRNA to silence PARP-1, we observed that HSP-70 protein expression in PARP-1 siRNA-transfected cells was markedly upregulated as compared to naïve or non-target siRNA transfected cells (Figure [2A](#F2){ref-type="fig"} and [2B](#F2){ref-type="fig"}). These data support the view that PARP-1 gene silencing leads to augmentation of HSP-70 protein expression after heat shock. ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **Representative Western blot analysis for HSP-70 expression in naïve, non target siRNA and PARP-1 siRNA transfected cells**. Radiographs of Western blot analyses in whole cell extracts are representative of three similar separate experiments. Cells were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C for 4 h. In panel 2B the Western blot was quantitated by PhosphorImager analysis and the mean ± SEM plotted from three independent experiments (\* Represents *p*\< 0.05 *versus*heat shocked naïve cells at the same time point). ::: ![](1476-9255-8-3-2) ::: HSP-70 mRNA expression is increased with inhibition of PARP-1 expression ------------------------------------------------------------------------ To further ascertain that PARP-1 inhibition augments the heat shock response by enhancing HSP-70 gene transcription, we next determined its effect on HSP-70 mRNA using real time RT-PCR. HSP-70 mRNA was examined at 60 min after heat shock in transfected and naïve wild-type cells. After heat shock, both naïve cells and wild-type cells transfected with non-target siRNA had comparable HSP-70 mRNA levels (Figure [3](#F3){ref-type="fig"}). In contrast, PARP-1 directed siRNA led to a significant increase in HSP-70 transcripts as compared to cells transfected with non-target siRNA levels (140 ± 12 vs. 105 ± 7 A.U.). These data reinforce the notion that PARP-1 knockdown leads to a robust heat shock response as evidenced by increase in HSP-70 mRNA and protein expression in PARP-1 knockdown cells (Figure [3](#F3){ref-type="fig"}). ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **Quantitative Real time PCR of HSP-70 mRNA normalized for 18 S mRNA expression**. Naïve, non target siRNA and PARP-1 siRNA transfected cells were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C for 1 h (\*Represents *p*\< 0.05 *versus*heat shocked naïve cells at the same time point). ::: ![](1476-9255-8-3-3) ::: HSF-1 DNA-binding activity is increased with inhibition of PARP-1 ----------------------------------------------------------------- HSF-1 is a key transcription factor that regulates HSP-70 gene expression \[[@B22],[@B23]\]. Hence, we sought to determine if PARP-1 knockdown increased DNA binding of HSF-1. We subjected both naïve and siRNA transfected cells to heat shock and evaluated DNA binding of HSF-1 by EMSA. After heat shock, both naïve and non-target siRNA transfected cells demonstrated comparable DNA binding activity of HSF-1. Using EMSA, we found that nuclear extracts from cells transfected with PARP-1siRNA displayed increased binding of HSF-1 to nuclear DNA as compared with naïve and non-target transfected cells (Figure [4A](#F4){ref-type="fig"} and [4B](#F4){ref-type="fig"}). Collectively, these experiments suggest that PARP-1 negatively modulates the heat shock response i.e. knockdown of PARP-1 led to augmentation of the heat shock response by increasing HSF-1 activation, subsequently leading to increased HSP-70 gene expression. ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **A. DNA binding of HSF-1 after heat shock in naïve, non target siRNA and PARP-1 siRNA transfected cells**. Cells were subjected to heat shock at 43°C for 30 min followed by recovery at 37°C for 45 min. Autoradiograph of EMSA for HSF-1 is representative of 3 similar separate experiments. **B**. Mean ± SEM of scanned densitometry data demonstrating the effect of PARP-1 silencing on DNA binding of HSF-1 obtained from three independent experiments. ::: ![](1476-9255-8-3-4) ::: PARP-1 interacts with HSF-1 --------------------------- Because previous studies reported that PARP-1 may regulate transcription factors by a direct physical association \[[@B7],[@B8],[@B30]\] we next explored the possibility of a protein-protein interaction between PARP-1 and HSF-1. First, we confirmed that the modulation of the heat shock response by DIQ, a PARP-1 inhibitor is similar to the increase noted after siRNA mediated PARP-1 inhibition. Wild-type cells were subjected to heat shock at 43°C for 45 min and allowed to recover for 4 h. The expression of HSP-70 was determined by immunoblotting. DIQ pretreatment of wild-type cells not subjected to heat shock did not induce HSP-70 protein expression (data not shown). After heat shock, DIQ pretreated wild-type cells demonstrated significant increase in HSP-70 expression as compared to untreated cells (Figure [5A](#F5){ref-type="fig"}). Thus, similar to siRNA mediated PARP-1 inhibition, pharmacologic inhibition of PARP-1 also increases HSP-70 protein expression. ::: {#F5 .fig} Figure 5 ::: {.caption} ###### **A. Representative Western blot assay for HSP-70 expression in wild-type (wt) cells**. Radiographs of Western blot analyses in whole cell extracts are representative of three similar separate experiments. Cells were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C for 4 h in the presence or absence of DIQ treatment (100 μM). **B**. Cells were subjected to heat shock at 43°C for 45 min followed by recovery at 37°C for 45 min in the presence or absence of 1, 5-DIQ treatment (100 μM). Representative radiograph from co-immunoprecipitation experiments showing PARP-1/HSF-1 interaction. Nuclear lysates were immunoprecipitated with either HSF-1or PARP-1 antibody and subsequently probed with anti-HSF-1or PARP-1 antibody. ::: ![](1476-9255-8-3-5) ::: To determine if there is protein-protein interaction between PARP-1 and HSF-1, nuclear lysates were immunoprecipitated with antibodies against HSF-1. As shown in Figure [5B, H](#F5){ref-type="fig"}SF-1 was efficiently immunoprecipitated with HSF-1 antibody and no signal was observed when mouse IgG was used as a control for immunoprecipitation. Immunoblotting of the HSF-1immunoprecipitated proteins with PARP-1 antibody demonstrated the presence of PARP-1 suggesting that HSF-1and PARP-1 physically interact with each other. Wild-type cells treated with DIQ (PARP-1inhibitor) that had not been subjected to heat shock demonstrated a slight increase in nuclear HSF-1 content as compared to control cells. Cells pretreated with DIQ and subsequently exposed to heat shock demonstrated increased HSF-1 binding to PARP-1 as compared to untreated control heat shocked wild-type cells (Figure [5B](#F5){ref-type="fig"}). To confirm the results obtained by HSF-1 immunoprecipitation, we conducted the reverse experiment by immunoprecipitating with a PARP-1 antibody and subsequent analysis of the immunoprecipitate for HSF-1. Similar to our results above, cells pretreated with a PARP-1inhibitor demonstrated a slight increase in HSF-1 content as compared to control cells. Analogous to our finding above, nuclear lysates exposed to a PARP-1 inhibitor prior to heat shock demonstrated increased HSF-1 binding to PARP-1 in comparison to cells that were not exposed. Thus, in this study we demonstrate that PARP-1 physically interacts with HSF-1 in resting and heat shocked cells. Furthermore, these immunoprecipitation studies confirm that exposure to heat shock increases the nuclear HSF-1 binding to PARP-1. Discussion ========== PARP-1 catalyses the covalent attachment of ADP-ribose units on to the γ carboxyl group of glutamate residues in acceptor proteins including PARP-1 itself \[[@B5],[@B31],[@B32]\]. Each of these ADP-ribose units has an adenine moiety capable of base stacking and hydrogen bonding, along with two phosphate groups that carry negative charges. These polymers cause profound changes in the structure and function of key proteins that respond to DNA damage. For example, proteins like histones, topoisomerases I and II, and DNA helicases undergo poly (ADP-ribosylation) and help in regulation of chromatin structure and genomic integrity \[[@B3]-[@B5]\]. However, a growing body of evidence suggests that in addition to its regulation of chromatin structure, PARP-1 also plays a key role in gene-specific transcription. PARP-1 regulates gene-specific transcription by two possible mechanisms. Kim *et al*. demonstrated that PARP-1 binds to specific nucleosomes and leads to formation of compact, transcriptionally repressed chromatin structures \[[@B33]\]. Upon activation, PARP-1 is poly (ADP-ribosylated) and dissociates from chromatin leading to formation of decondensed, transcriptionally active euchromatin structures. It has also been proposed that PARP-1 is part of a nucleosome complex along with a histone variant macroH2A (mH2A). At baseline conditions, mH2A and an inactive PARP-1 are associated with the HSP-70 promoter. Upon heat shock, HSP-70 promoter bound PARP-1 is released to activate HSP-70 transcription \[[@B34]\]. Hence, siRNA mediated knockdown of either PARP-1 or mH2A1 downregulated transcription of HSP-70 gene. This observation was complemented by another study that demonstrated chromosomal \"puffing\" with increased HSP-70 gene expression in *Drosophila*salivary glands after heat shock \[[@B35]\]. It was proposed that PARP dissociates chromatin proteins at induced chromosomal loci, thus allowing increased transcription of target heat shock genes. In contrast to our study, treatment with an inhibitor of PARP activity reduced puffing and consequently decreased transcription of heat shock genes following heat shock. Our data are consistent with our previous *in vivo*study of myocardial ischemia-reperfusion injury, where we demonstrated that mice with genetic ablation of PARP-1 exhibit significant cardioprotection, associated with enhanced upregulation of HSF-1 DNA binding in the heart \[[@B26]\]. The reasons for the different response of dipterans and mammals to PARP-1 inhibition are unknown. It is plausible that factors including signaling mediators have evolved different effector proteins that can affect the heat shock response and its regulation by PARP-1. Another potential mechanism which may be more relevant to this study entails the role of PARP as a gene specific transcription enhancer/promoter binding cofactor activity that can enhance or inhibit gene expression. PARP-1 has been shown to interact with the transcription factors NF-κB, HTLV Tax-1 and RAR and this was associated with increased expression from dependent promoters \[[@B7]-[@B9]\]. Similarly, it has been suggested that PARP-1 is a co-transcription factor for the mammalian *achaete-scute*homologue (MASH) gene. PARP-1 is present in an inactive state as part of a co-repressor complex. Upon activation, PARP-1 is required for the dismissal of the co-repressor complex, and a second subsequent event leads to activation of the target MASH gene \[[@B36]\]. Our experiments indicate that PARP-1 modulates the heat shock response by functioning as a repressing factor of HSP-70 gene expression. We provide two lines of evidence in this regard. First, in this study we demonstrated that knockdown of PARP-1 gene increased HSP-70 gene expression as evidenced by increased DNA-binding activity of HSF-1, HSP-70 mRNA and protein expression. Secondly, using co-immunoprecipitation we demonstrated that PARP-1 may also regulate HSF-1 activation through direct interaction with this transcription factor. Protein-protein interaction is recognized as a mechanism for PARP-1 to function as a specific transcriptional co-activator of NF-κB \[[@B37]\]. Fossati *et al*. similarly documented increased HSP-70 expression in murine PARP-1 deficient fibroblasts as compared to wild type fibroblasts \[[@B27]\]. In contrast to our findings, this study was unable to detect PARP-1 and HSF-1 interaction by co-immunoprecipitation studies. While the cell type utilized in the two studies was remarkably similar, the duration of heat shock was different. In our study, the cells were subjected to 45 min of heat shock in comparison to 30 min in the study by Fossati *et al.*\[[@B27]\]. Other differences that could lead to different results may be the antibody type and protocol design for immunoprecipitation studies. Other studies have also proven that PARP-1 modulates transcription by direct interaction with AP2 \[[@B38]\], Oct-1\[[@B39]\], YY-1 \[[@B40]\] and TEF-1 \[[@B41]\]. PARP has been also shown to alter RNA polymerase II dependent transcription \[[@B42]\] and to effectively prevent and reverse p53 binding to the palindromic p53 consensus sequence \[[@B43]\]. Before HSF-1 is activated there are a series of processes that involve phosphorylation, translocation from the cytosol to the nucleus, formation of a trimer, binding to heat shock elements (HSE), and initiating HSP-70 gene expression \[[@B44]-[@B46]\]. It has been postulated that addition of long ADP-ribose tails to transcription factors can disable or dissociate the binding of transcription factors to their DNA recognition sites, also in part by electrostatic repulsion. This modification results in inhibition of transcription. Poly (ADP-ribosylation) of transcription factors prevents their binding to DNA. On the contrary, inhibition of PARP-1 enables the binding of the transcription factors to their specific DNA sites \[[@B5]\]. Thus, it is possible that both physical interaction with PARP-1 and poly (ADP-ribosylation) of HSF-1 reduce the availability of HSF-1 to initiate transcription. The increase in HSF-1 content, albeit inactive with DIQ pretreatment further reinforces the notion that PARP-1 represses HSP-70 gene transcription. Further studies need to be conducted to understand the precise mechanism as to how and where PARP-1 regulates HSF-1 activation. In conclusion, our results indicate that PARP-1 serves as a repressing factor of the heat shock response by regulating the expression of HSP-70. Both protein-protein interaction and catalytic activity of the PARP protein play a key role in modulation of the heat shock response. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= HS carried out the molecular studies. JG carried out the RT-PCR assays. BZ, RA conceived the study. RA, RLD participated in the design of the study. All authors read and approved the final manuscript. Acknowledgements ================ Funding for this study was provided by the National Institutes of Health to Dr. Rajesh Aneja (grant K08GM076344), Dr. Basilia Zingarelli (grant R01 HL-60730), and Dr. Russell Delude (grant GM37631).
PubMed Central
2024-06-05T04:04:17.163604
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051880/", "journal": "J Inflamm (Lond). 2011 Feb 23; 8:3", "authors": [ { "first": "Rajesh K", "last": "Aneja" }, { "first": "Hanna", "last": "Sjodin" }, { "first": "Julia V", "last": "Gefter" }, { "first": "Basilia", "last": "Zingarelli" }, { "first": "Russell L", "last": "Delude" } ] }
PMC3051881
Background ========== Obesity is associated with adipose tissue inflammation that eventually results in insulin resistance. This is characterized by adipose tissue macrophage infiltration \[[@B1],[@B2]\], elevated expression of inflammatory cytokines, including TNFα \[[@B3]\], IL6 \[[@B4]\], monocyte chemoattractant protein (MCP) 1 \[[@B5]\], plasminogen activator inhibitor (PAI) 1\[[@B6]\]. Inflammatory cytokines produced in adipose tissue act locally and systemically to amplify the inflammatory cascade and oppose insulin signaling in peripheral tissues. However, little is known about mechanisms that lead to resolution of inflammation in adipose tissue. Secretory leucocyte protease inhibitor (SLPI) is a protein that may play a major role in the dampening of inflammation in adipose tissue. It is an 11.7-kD non-glycosylated protein produced primarily at mucosal surfaces, especially in the upper respiratory tract \[[@B7]\]. In the lung \[[@B8]\], SLPI interacts and inhibits the activity of several proteolytic enzymes, making it an integral component of the defense mechanism in the lung. Apart from its anti-protease activity, SLPI also exerts anti-inflammatory effect against viral and antibacterial targets \[[@B9]\]. SLPI also inhibits NF-κB activation and production of TNF-α and nitric oxide \[[@B10]\] and SLPI knockout mice have an exaggerated inflammatory response and go into septic shock after LPS administration \[[@B11]\]. Although SLPI is expressed at multiple tissues during inflammation where it acts to counter the inflammatory events, there is no report of adipose tissue expression of SLPI or a potential anti-inflammatory role of SLPI in adipocytes. Therefore, we examined its expression in adipose tissue of mice that have been fed a high fat diet and in 3T3-L1 adipocytes treated with ligands for both toll-like receptors (TLR) 2 and 4, two major inflammatory receptors in adipose tissue \[[@B12],[@B13]\]. We demonstrate herein, for the first time, that SLPI is upregulated in adipose tissue in obesity. Additionally, we show that SLPI opposes induction of IL6 by LPS in adipocytes. Therefore, SLPI could be a potential target for the regulation of inflammation in adipose tissue. Methods ======= 3T3-L1 Adipocyte Culture ------------------------ Cells were obtained from ATCC (Manassas, VA) and cultured according to standard conditions. Briefly, cells were grown under 5% CO2 in Dulbecco\'s Modified Eagles Medium (DMEM) containing 10% fetal bovine serum (Hyclone, Logan, UT) and 0.5% penicillin-streptomycin mixture (Invitrogen, Carlsbad, CA). Cells were allowed to reach confluence, and two days post confluence (day 0), were induced to differentiate with a medium containing 10% fetal bovine serum, 1.7 μM insulin, 1 μM dexamethasone, and 0.5 mM IBMX for 48 h. Thereafter, fresh medium containing only insulin and fetal bovine serum was added for another 2 days. From then on media was replenished every 2 days with DMEM containing only 10% FBS. Fully differentiated cells were treated for 24 hours with either *Staphylococcus aureus*derived peptidoglycan (10 μg/mL) or *E.coli*lipopolysaccharride (100 ng/mL) (Sigma, St. Louis. MO). Animals ------- Eight week old male C57BL/6J mice were fed either a high fat diet (HF, D12492i) with 60% fat calories (n = 8) or a control diet (LF, D12450Bi) with 10% calories (n = 8) from fat (Research Diets, New Brunswick, NJ, <http://www.researchdiets.com>) for 12 weeks. At the end of the experiment animals were euthanized by CO~2~asphyxiation followed by cervical dislocation. All animal care protocols were approved by the Purdue Animal Care and Use Committee. Epididymal adipose tissue was obtained by careful dissection of adipose tissue around the epididymis and used for RNA extraction with Trizol (Invitrogen, Carlsbad, CA) or tissue lysates for western blotting. We also collected subcutaneous (collected from underneath the skin around the lumbar area), mesenteric (collected by careful dissection of adipose tissue from around the intestine) for a comparative analysis of SLPI mRNA expression by real-time PCR. To determine the relative expression of SLPI in adipocytes and stromal vascular fraction (SVF), adipose tissue was subjected to collagenase digestion (1 mg/ml Collagenase type 1, Sigma) in Krebs Ringer Buffer (118.5 mM NaCl, 4.8 mM KCl, 2.7 mM CaCl~2~, 1.2 mM KH~2~PO~4~, 1.1 mM MgSO~4~, 7H ~2~O, 25 mM NaHCO~3~, 5 mM glucose and 5% (w/v) BSA, pH 7.4) with shaking at 150 RPM for 30 minutes at 37°C. After digestion, adipocytes were allowed to separate by flotation and the infranatant solution was centrifuged for 5 minutes at 300 g to pellet the stromovascular fraction (SVF). The adipocyte fraction was washed three times with the KRB buffer to remove contaminants and ensure a pure population of adipocytes. This method has been validated with flow cytometry to yield a 100% pure population of adipocytes. Subsequently, RNA was isolated from adipocytes and the SVF for comparison with whole adipose tissue. Anti-inflammatory effect of SLPI -------------------------------- Differentiated 3T3-L1 adipocytes were pretreated for 2 hours with 10 ng/ml recombinant human SLPI (R &D Systems, Minneapolis, MN) and then treated with LPS for 3 hours. Media was recovered for ELISA and RNA for RT-PCR. Real-time quantitative RT-PCR ----------------------------- Total RNA from treated cells was extracted with Trizol Reagent (Invitrogen) according to the manufacturer\'s protocol. The mRNAs were treated with Turbo DNase (Ambion, Austin, TX) to remove contaminating DNA and reverse transcribed into cDNA using Improm II reverse transcriptase (Promega, Madison, WI). Real-time PCR was performed using a MyIQ real-time PCR detection machine (Bio-Rad) with the Faststart SYBR green based mix (Roche, Indianapolis, IN). Primers sequences used were: IL-6, 5\'-AACGATGATGCACTTGCAGA-3\' and 5\'-GAGCATTGGAAATTGGGGTA-3\' for the sense and antisense primers, respectively (14); SLPI, sense, 5\'-TGCTTAACCCTCCCAATGTC-3\' and antisense, 5\'-AATGCTGAGCCAAAAGGAGA-3\'; β-actin sense, 5\'-ATGGGTCAGAAGGACTCCTACG-3\' and antisense, 5\'-AGTGGTACGACCAGAGGCATAC-3\'; TNFα, 5\'-AGCCCCCAGTCTGTATCCTT-3\' and 5\'-CTCCCTTTGCAGAACTCAGG-3\'. Quantification of transcripts was done with the ΔΔ Ct method with normalization against the β-actin. Immunoblotting -------------- Whole tissue lysates were obtained by homogenizing tissues and cells in RIPA lysis buffer (0.5 M Tris-HCl, 1.5 M HCl, 2.5% Deoxycholic acid, 10% NP-40 and 10 mM EDTA) supplemented with protease and phosphates inhibitor cocktail (Sigma). Homogenized tissues and cells were then cleared of cellular and tissue debris by centrifugation at 10,000 g for 10 minutes at 4°C. Protein concentrations were determined with the BCA kit (Sigma). For immunoblotting, 50 μg of lysates were resolved on a 10% SDS-PAGE gel and transferred to a nitrocellulose membrane. Membranes were probed with rabbit anti-SLPI (Cat \# SC-28803, Santa Cruz, CA, USA) primary antibody and HRP-conjugated anti-rabbit secondary antibody (Cat\# 7074, Cell Signaling, Danvers, MA, USA). To determine the role of IKBα protein in the regulation of SLPI effect, the expression of phosphorylated and native IKBα was quantified by western blotting using rabbit primary antibodies (Cat\# 2859 and 4812, Cell Signaling, Danvers, MA, USA). Blots were subsequently blotted with the Supersignal^®^West Pico chemilumniscent reagent (Pierce, Rockford, IL) and exposed to autoradiographic film to capture protein specific signals. ELISA for Media IL-6 -------------------- Media concentration of IL-6 was determined with a mouse IL-6 ELISA kit (Endogen, Rockford, IL) according to the manufacturer\'s instructions. This kit has an assay sensitivity of \< 7 pg/ml and an inter assay and intra assay variation of \< 10%. Statistical analyses -------------------- All data were checked for normality and then analyzed using the GLM model analysis. When treatment effects were significant, mean separation was accomplished using the least-squares mean separation procedure. Results ======= Adipose tissue expression of SLPI and regulation by high fat diet ----------------------------------------------------------------- First, we determined the expression of SLPI in adipose tissue after a high fat (HF) diet. Increased protein and mRNA expression of SLPI was observed in epididymal fat from mice on high fat diet compared to mice on control (LF) diet (Figure [1A](#F1){ref-type="fig"} and [1B](#F1){ref-type="fig"}) (P \< 0.05). Next, to determine if there are differences in SLPI expression in different adipose depots, we examined SLPI expression in subcutaneous, epididymal and mesenteric depots (Figure [1C](#F1){ref-type="fig"}). Highest expression of SLPI expression was found in adipose tissue from the mesenteric depot (P \< 0.05) than the epididymal and subcutaneous depots. Additionally, significantly higher expression was found in the stromal vascular fraction than adipocytes (Figure [1D](#F1){ref-type="fig"}), an indication that this fraction is responsible for most of the increase in SLPI expression in adipose tissue in high fat diet. The higher expression SLPI in visceral depots (mesenteric and epididymal) than subcutaneous depot agrees with the higher level of TNFα, a classic marker of inflammation, observed in the epididymal tissue of mice on high fat diet, visceral (mesenteric and subcutaneous) vs. subcutaneous depot and in stromal vascular cells vs. adipocytes and whole adipose tissue (Figures [2A, B](#F2){ref-type="fig"} and [2C](#F2){ref-type="fig"}). ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **High fat feeding increases SLPI expression in adipose tissue of mice**. Mice were fed either a control low fat (LF) or high fat (HF) diet for 12 weeks. Epididymal adipose tissue were obtained and subjected to western blotting for SLPI protein. A representative blot is presented in Figure 1A. Expression of SLPI mRNA was quantified in Figures 1B, 1C and 1D. High fat feeding increases SLPI mRNA (Figure 1B) in adipose tissue. Higher expression of SLPI was observed in epididymal and mesenteric depots compared to the subcutaneous depot (Figure 1C), and in the stromal vascular faction compared to adipocytes (Figure 1D). Bars represent means and ± SEM. Superscript letters represent significant mean differences, P \< 0.05. ::: ![](1476-9255-8-5-1) ::: ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **High fat feeding increases Inflammation in adipose tissue of mice**. Mice were fed either a low fat (LF) or high fat (HF) diet for 12 weeks. Epididymal adipose tissue was obtained and subjected RT-PCR for expression of TNFα. High fat feeding increased TNFα mRNA (Figure 2A) in adipose tissue. Higher expression of TNFα was observed in epididymal and mesenteric depots compared to the subcutaneous depot (Figure 2B), and in the stromal vascular faction compared to adipocytes (Figure 2C). Bars represent means and ± SEM. Superscript letters represent significant mean differences, P \< 0.05. ::: ![](1476-9255-8-5-2) ::: Regulation of SLPI expression in adipocytes by inflammatory stimuli and anti-inflammatory effect of SLPI -------------------------------------------------------------------------------------------------------- Adipocytes express both TLR2 and TLR4 and the expression of these receptors is upregulated in obesity. Therefore, we examined whether treatment of adipocytes with peptidoglycan and LPS, ligands for TLR2 and TLR4, could alter the expression of SLPI. Both peptidoglycan and LPS (Figures [3A](#F3){ref-type="fig"} and [3B](#F3){ref-type="fig"}) upregulated expression of SLPI (P \< 0.05), suggesting that activation of these receptors in vivo could play a major part in the regulation of SLPI in adipose tissue. To determine whether SLPI exerts an anti-inflammatory role in adipocytes, 3T3-L1 adipocytes were pretreated for 2 hours with SLPI (10 ng/ml) and then with LPS (100 ng/ml) for 24 hours. Pretreatment of adipocytes with SLPI (Figures [4A](#F4){ref-type="fig"} and [4B](#F4){ref-type="fig"}) suppressed IL6 mRNA expression and protein secretion (P \< 0.05). Therefore, SLPI may be an important protein that is induced in adipose tissue during obesity to dampen the inflammatory tone. ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **Regulation of SLPI expression by LPS and peptidoglycan**. Differentiated 3T3-L1 adipocytes were either untreated (control, C) or treated with 100 ngml lipopolysaccharide (LPS) or peptidoglycan (PEP) (10 μg/ml) for 24 hours. SLPI mRNA was determined by RT-PCR and western blotting. Both LPS and peptidoglycan increased SLPI mRNA (Figure 3A) and protein (Figure 3B). Bars represent means and ± SEM of 4 different replicates. Superscript letters represent significant mean differences, P \< 0.05. ::: ![](1476-9255-8-5-3) ::: ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **Anti-inflammatory effects of SLPI in adipocytes**. Adipocytes were pretreated with 10 ng/ml recombinant SLPI for 2 hours and then treated with LPS (100 ng/ml) for 24 hours. Pretreatment with SLPI attenuates induction of IL6 mRNA (Figure 4A) and protein (Figure 4B). Bars represent means and ± SEM of 4 different replicates. Superscript letters represent significant mean differences, P \< 0.05. ::: ![](1476-9255-8-5-4) ::: SLPI stabilized IKBα expression in LPS treated adipocytes --------------------------------------------------------- Due to the importance of IKBα as a negative regulator of TLR signaling, we investigated the effect of SLPI on the abundance of this protein. Pretreatment with SLPI resulted in significant stabilization of IKBα (Figures [5A](#F5){ref-type="fig"} and [5B](#F5){ref-type="fig"}), suggesting that stabilization of IKBα remains a possible mechanism by which SLPI counteracts inflammation in adipocytes. ::: {#F5 .fig} Figure 5 ::: {.caption} ###### **SLPI stabilizes IKB α expression level**. Adipocytes were pretreated with 10 or 100 ng/ml recombinant SLPI for 2 hours and then treated with LPS (100 ng/ml) for 24 hours. Cell lysates were analyzed for the expression of phospho-IKB α and IKB α. Pretreatment with SLPI prevents the reduction of IKB α by LPS treatment (Figures 5A and B.) Bars represent means and ± SEM of 4 different replicates. Superscript letters represent significant mean differences, P \< 0.05. ::: ![](1476-9255-8-5-5) ::: Discussion ========== Inflammation plays a major role in obesity-induced insulin resistance by the release of multiple inflammatory cytokines that oppose insulin signaling \[[@B14]\]. Although the endogenous mechanisms that trigger adipose tissue inflammation are not very clear, there is evidence that innate pattern recognition receptors such as TLR2 and 4 play key roles in this process \[[@B12],[@B13]\]. These innate immune receptors are highly expressed in adipocytes and many functional assays have shown that their activation evokes inflammatory responses that are accompanied by increased expression of many inflammatory mediators (IL6, TNFα, MCP-1) \[[@B15],[@B16]\]. However, mechanisms that lead to resolution of inflammation in adipose tissue are less well studied; despite the well established paradigm that initiation of inflammatory response is often accompanied by concurrent activation of feedback mechanisms that act to suppress inflammatory response \[[@B17]-[@B19]\]. In support of the presence of this mechanism in adipocytes, activation of NFκB and MAPK pathways in adipocytes by LPS is transient and rapidly returns to basal over time \[[@B20]\]. Although several mechanisms are behind the feedback mechanism of inflammation resolution \[[@B17]-[@B19]\], SLPI is recognized as a potent anti-inflammatory protein that is induced to suppress tissue inflammation \[[@B21]\]. Therefore, the increase in SLPI expression in adipose tissue in diet-induced obesity suggests that SLPI may play a role to antagonize inflammation in adipose tissue. The higher expression of SLPI in the stromal vascular fraction correlates well with the elevated expression of TNFα. This suggests that SLPI expression is induced in proportion to the degree of inflammation and agrees with a role for SLPI in dampening the inflammatory state. It also indicates that immune cells such as macrophages, which make up the bulk of the stromal vascular fraction may be the major source of adipose tissue SLPI. Therefore, counter-regulatory mechanisms exist in adipose tissue to suppress inflammation and SLPI may be part of these mechanisms. Although SLPI is highly expressed in mucosal surfaces \[[@B22],[@B23]\], detection of its expression in adipose tissue indicates that it could play a key role in the resolution of inflammation in adipose tissue as well. Indeed, pretreatment of adipocytes with SLPI leads to downregulation of LPS induced IL-6 gene expression and protein secretion, confirming a functional role for SLPI in inflammation resolution in adipocytes. The anti-inflammatory action of SLPI may involve stabilization of IKBα abundance. Activation of TLR2 and 4 increased expression of SLPI in macrophages \[[@B10],[@B24]\] and in adipocytes as confirmed in this study. Therefore, because TLR2 and TLR4 are activated in adipose tissue in obesity \[[@B12],[@B13]\], the induction of SLPI in adipose tissue during obesity may be influenced by the activation state of the TLRs. Higher expression of SLPI in the visceral depots (mesenteric and epididymal) than the subcutaneous correlates with greater inflammation in the visceral depots than the subcutaneous depot. Elevated SLPI in the visceral depots could be part of the endogenous anti-inflammatory response to counter localized inflammation in these depots. Because visceral adiposity is linked to insulin resistance, induction of SLPI locally in adipose may also play a role in the prevention of inflammation-induced insulin resistance. In summary, we have demonstrated that obesity is accompanied by increased expression of SLPI in adipose tissue where it may act to suppress local inflammation. Abbreviations ============= ELISA: Enzyme linked immunoabsorbent assay; IKBα: Inhibitor of kappa B; IL6: interleukin 6; LPS: lipopolysaccharide; MCP: Monocyte chemoattracttant factor; NFκB: Nuclear factor kappa B; PEP: Peptidoglycan; SLPI: secretory leucocyte protease inhibitor; TLR: Toll-like receptors; TNF: Tumor necrosis factor. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= KMA conceived the original research idea. VJA assisted in the conduct of the experiments. KKB designed and supervised the in vivo mouse study. All authors read and approved the final manuscript. Acknowledgements ================ The authors acknowledge funding for this study from the Department of Animal Sciences, Purdue University.
PubMed Central
2024-06-05T04:04:17.165716
2011-2-28
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051881/", "journal": "J Inflamm (Lond). 2011 Feb 28; 8:5", "authors": [ { "first": "Venkata J", "last": "Adapala" }, { "first": "Kimberly K", "last": "Buhman" }, { "first": "Kolapo M", "last": "Ajuwon" } ] }
PMC3051882
Background ========== Many nursing home (NH) residents with dementia suffer from behavioural problems (BPs) like aggression, apathy and agitation. In a recent Dutch study, BPs were present in 80 percent of the residents \[[@B1]\]. BPs are associated with high costs, diminished quality of life of residents and a high workload for nurses \[[@B1]-[@B3]\]. Antipsychotics and physical restraints are frequently used to treat BPs \[[@B4],[@B5]\]. However, the use of antipsychotics may have serious negative side effects like extrapyramidal symptoms and increased risk of stroke \[[@B6]-[@B8]\] and the use of restraints may result in decreased functional status and quality of life \[[@B9]\]. Various studies have shown that treatments with less adverse effects can be used to manage BPs as an alternative to antipsychotics and physical restraints. For example, Cohen-Mansfield and colleagues \[[@B10]\] observed a positive effect of individualized psychosocial interventions, such as pain treatment, electronic massagers and individualized music. Furthermore, Livingston et al. found in their review that staff education and psychological and psychosocial treatments were effective \[[@B11]\]. Davison et al. \[[@B12]\] also found a significant decrease in BPs through the use of psychosocial interventions in people with dementia in whom individualised pharmacological treatment failed to work. In line with these studies, recent professional dementia guidelines emphasise the use of a systematic multidisciplinary approach to treat BPs and stress the importance of psychosocial interventions and staff training \[[@B13]-[@B16]\]. They also underline that the use of antipsychotics should be restricted as much as possible. Although these guidelines have been developed in collaboration with long-term care professionals, implementation in actual practice is difficult. Unfortunately, this is also the case in Dutch NHs \[[@B17]\], although the presence of various care disciplines offers excellent conditions for a multidisciplinary approach. A key problem in implementation of guidelines on BPs seems to be that guidelines do not include a structured, methodology-based approach how to manage BPs \[[@B18]\]. For example, an implementation plan on how different disciplines should work together in managing BPs, is often lacking. Therefore, we developed a care programme entitled: \'Grip on challenging behaviour\'. This care-programme, which offers a comprehensible structure of the care processes, is made practically applicable and ready to implement. It is based on the guidelines, fits with daily practice, and describes how new working methods are related to and can be integrated in the present care process following a step-by-step plan. This paper describes the design of the study that evaluates the effectiveness and cost-effectiveness of this care programme for managing BPs in NH residents with dementia. Methods/Design ============== Aim --- The aim of this project is to evaluate the effectiveness and cost-effectiveness of a multidisciplinary care programme for managing BPs in NH residents with dementia. The care programme proposes an evidence- and practice-based standardisation of all consecutive steps in the management of BP: detection, analysis, treatment and evaluation (see figure [1](#F1){ref-type="fig"}). Cooperation between disciplines is also prearranged and structured. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Components of the care programme \'Gripon challenging behaviour\'**. ::: ![](1472-6963-11-41-1) ::: Intervention ------------ In the first step, the care programme offers a screening tool to detect symptoms of BPs, next to the usual (daily) observation and detection of BPs by nurses. When (symptoms of) BPs are detected, structured forms are used to analyse the behaviour in the next step of the care programme. The nursing staff starts the analysis, after which the elderly care physician and the psychologist continue analysis when necessary. The outcome of the analysis is discussed in pre-arranged multidisciplinary team meetings in which the members of the multidisciplinary team choose the treatment option (or options) they consider appropriate, resulting in a written treatment plan (third step). Psychosocial interventions are first line treatment options and psychotropics or physical restraints should only be used when psychosocial interventions have no or not enough effect. In the fourth step, treatment is evaluated. Standard scales are used for rating BPs when evaluating the effect of interventions. When treatment outcomes are unsatisfactory, alternative treatment options may be chosen and/or a new analysis will be done. Design ------ The care programme will be implemented using a stepped wedge design (Table [1](#T1){ref-type="table"}). A stepped wedge design is a type of cross-over design in which different clusters (in this case dementia special care units (SCUs)) cross-over from control-condition to intervention over time \[[@B19]\]. In this study, fourteen participating units are randomly divided over five groups. Four groups consist of three dementia SCUs from three different NHs, one group consists of two dementia SCUs from two different NHs. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Flow chart of the stepped wedge design (0 = control condition; 1 = intervention). ::: T0 T1 T2 T3 T4 T5 --------- ---- ---- ---- ---- ---- ---- Group 1 0 1 1 1 1 1 Group 2 0 0 1 1 1 1 Group 3 0 0 0 1 1 1 Group 4 0 0 0 0 1 1 Group 5 0 0 0 0 0 1 The groups will start with the care programme on six different point in time (T0 through T5) ::: Six measurement cycles will take place: one measurement cycle every four months during a period of twenty months. The first measurement cycle is a baseline measurement on all participating units. After each measurement cycle, except the last one, a new group will start the intervention. The moment after which measurement cycle a group of units will start is randomised. A process analysis will be carried out during the study on the actual provision and use of the components of the care programme and on barriers and facilitators of implementation. The process analysis will consist of qualitative interviews with key persons within the NHs. Sampling -------- We calculated the sample-size using the following assumptions: On average, a dementia SCU houses 20 residents. Based on a previous study, we expect that 5% of the residents\' (legal) representatives will not give informed consent \[[@B1]\]. We expect no further attrition, because newly admitted residents will replace discharged and deceased residents during the study. For the primary outcome, we assume that our care programme leads to a 10 point decrease of BPs, measured with the Cohen-Mansfield Agitation Inventory (CMAI)\[[@B20]\]. Based on a Dutch study in NH patients \[[@B21]\], we assume a mean Intra Class Correlation Coefficient of 0.1. for clustering of BPs within a unit and a mean score of 47.7 (SD = 16.6) on the CMAI in NH patients with dementia. Based on these assumptions and a significance level (alpha) of 0.05 and a power (beta) of 0.80, 14 dementia SCUs with 6 measurements are needed in a stepped wedge design. The participating dementia SCUs will be recruited from NHs that collaborate with the VU University Medical Center (Amsterdam) and the Radboud University Nijmegen, Medical Center. The dementia SCUs participating in this study are not allowed to exchange staff between SCUs, in order to avoid carry-over effects, and thus dilution of the effect. Ethical approval ---------------- The study protocol was approved by the Medical Ethics Review Committee of the VU University Medical Center. All data will be anonymized and (legal) representatives will have the opportunity to object to the use of data from their relative. Measurements ------------ ### Patient characteristics *Sociodemographic variables*(e.g., age, gender, and length of stay) and the use of physical restraints will be collected from resident charts. *Severity of dementia*will be determined by elderly care physicians, using the Global Deterioration scale (GDS) \[[@B22]\]. The GDS is a validated seven-point scale that describes seven different stages of dementia ranging from \"subjectively and objectively normal\" to \"severe dementia\". *Data about psychotropic drug use (including antipsychotics)*will be derived from the NH pharmacists\' electronic registration system and will be classified according to the Anatomical Therapeutic Chemical (ATC) classification system \[[@B23]\]. *Behavioural problems*will be measured using the Cohen-Mansfield Agitation Inventory (CMAI) and the Neuropsychiatric Inventory - Nursing Home version (NPI-NH). To our knowledge, the CMAI is the only instrument specifically addressing agitation and aggression, with an adequate validity and reliability for the Dutch version \[[@B24],[@B25]\]. The CMAI will be used in primary effect analyses that focus on agitation and aggression, which are the most prevalent and most stressing BPs \[[@B4]\]. The NPI-NH is a version of the Neuropsychiatric Inventory \[[@B26]\] that is adjusted to the NH setting. The questionnaire contains twelve items which each measure the frequency and severity of a neuropsychiatric symptom. It was developed for rating by professional caregivers within institutions \[[@B27],[@B28]\]. The Dutch version proved to be valid and reliable \[[@B29]\]. *Quality of life*of residents will be measured with the Qualidem, a Dutch dementia specific observational quality of life instrument. With this instrument, nursing staff can rate quality of life of the resident over the last week. The Qualidem has nine subscales: Care relationship, Positive affect, Negative effect, Restless tense behaviour, Positive self image, Social relations, Social isolation, Feeling at home and Having something to do. The Qualidem was proven to be valid and reliable, although some items are not applicable to patients with severe dementia (GDS state 7) \[[@B30],[@B31]\]. ### Nursing staff characteristics Characteristics of the nursing staff (e.g. gender, working experience) are collected through the use of a questionnaire. Workload of nursing staff will be assessed using the Dutch version of the Maslach Burnout Inventory \[[@B32]\], the Utrechtse Burnout Scale-C \[[@B33]\]. The UBOS measures three components of workload and burnout: emotional exhaustion, depersonalisation and decreased personal accomplishment. Job satisfaction will be measured using two subscales of the Leiden quality of work questionnaire \[[@B34]\]. The two subscales measure job satisfaction and work and time pressure. The attitude of nursing staff to dementia care will be measured using the approaches to dementia questionnaire (ADQ) \[[@B35]\]. ### Special dementia care unit characteristics The Special Care Unit Environmental Quality Scale (SCUEQS) is used for the characteristics of the physical environment. The SCUEQS is a summary scale comprised of items from a larger observational instrument (the TESS-NH) which gathers data on the physical environment of a long-term care facility. The eighteen items measure maintenance, cleanliness, safety, lighting, physical appearance/homelikeness, orientation/cuing and noise \[[@B36]\]. In addition information about nursing staff-resident ratio and educational level of nursing staff will be gathered. Data analysis ------------- The CMAI-score and the NPI-NH score will be used as a primary outcome. Age, gender, length of stay, dementia severity, prescription of antipsychotics and of other psychotropics will be used as covariates. For the primary and secondary outcome analyses, multilevel linear regression and multilevel logistic regression analyses will be used. These analyses will calculate effects on neuropsychiatric symptoms, quality of life (Qualidem), prescription rate of antipsychotics, workload and job satisfaction of nursing staff and use of physical restraints. Economic evaluation ------------------- The economic evaluation will be conducted from a societal perspective. We will measure and value all relevant costs, such as costs of the structured care programme, prescription of antipsychotics and hospital admission. Data will be collected using NH registries. Standardised case report forms will be used to measure the time invested by NH staff (e.g. recreational therapist, nursing staff, psychologist, elderly care physician) in both the intervention and the usual care condition. Absence rate of nurses will be retrieved from the participating NHs. The EuroQol (EQ-5D) proxy version \[[@B37]\] will be used to measure quality adjusted life years (QALYS). Missing data on cost and outcomes will be imputed using multiple imputation according to the MICE algorithm \[[@B38]\]. A cost-effectiveness analysis will be conducted comparing the difference in total mean costs to the difference in effects on BPs; a cost-utility analysis will estimate the incremental costs per QALY. Bootstrapping will be used to estimate uncertainty of the incremental cost-effectiveness ratios (ICERs), which will be presented on cost-effectiveness planes. Cost-effectiveness acceptability curves and net monetary benefits will also be calculated \[[@B39]\]. Sensitivity analysis will include the most important cost-drivers. Discussion ========== The aim of this study is to measure the effectiveness and cost-effectiveness of an evidence- and practice-based care programme for managing BPs in NH residents with dementia. Primary outcome is the effect on prevalence of BP. Secondary outcomes are the effect on quality of life, use of antipsychotics and physical restraints and on workload and job satisfaction of nursing staff. Additionally, an economic evaluation will be carried out. We assume that implementation of the care programme will result in a decrease of BPs and, subsequently, in an increase of the quality of life of the residents. We also expect lower costs that will most likely be the result of a decrease of behavioural-problem related extra care, a decrease of medication, fewer admissions to hospital and also by a lower absence rate of nursing staff. Implementation is also expected to result in a lower workload and higher job satisfaction among nursing staff. The chosen design to implement and evaluate the care programme is suitable for our purposes. Not only does the stepped wedge design increase the power of the study by enabling between-groups and within-group analyses, it also ensures that implementation of the care programme occurs in all participating care units, which likely increases motivation for participating in the study \[[@B40]\]. Except for the EQ5D, which is used to calculate QALYs, the chosen outcome parameters are all commonly used in the field of nursing home medicine and are also suitable for the population of severely demented patients \[[@B22],[@B24],[@B27],[@B31]\]. The study has some limitations that should be mentioned. One limitation of the study is that, although data collection will be done by research assistants who are blinded for the trial condition, the NH staff will be aware of receiving the intervention, which may cause bias. To limit this bias, nursing staff will not be informed about the scores on the outcome measures. Another limitation is that we use proxy measures only, which may not be as reliable as patient measures \[[@B41]\]. However, in advancing stages of dementia, cognition and communication decrease, which makes the use of proxy measures inevitable \[[@B41]\]. Nevertheless, the described care programme for managing BP in NH residents with dementia and the chosen stepped wedge design seem very appropriate for our research goals. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= SAZ wrote the paper. MS has designed the study and co-wrote the paper. SUZ has assisted in the design of the study. RK assisted in the design of the study. JB designed the economic evaluation of the study. MT designed the economic evaluation of the study. JE assisted in the design of the study and co-wrote the paper. DG designed the study and co-wrote the paper. AP assisted in the design of the study and co-wrote the paper. All authors have been involved in revising the manuscript of the paper and have given final approval of the publication of the paper. Pre-publication history ======================= The pre-publication history for this paper can be accessed here: <http://www.biomedcentral.com/1472-6963/11/41/prepub> Acknowledgements ================ This study was funded by the Netherlands Organisation for Health Research and Development (ZonMw).
PubMed Central
2024-06-05T04:04:17.167782
2011-2-21
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051882/", "journal": "BMC Health Serv Res. 2011 Feb 21; 11:41", "authors": [ { "first": "Sandra A", "last": "Zwijsen" }, { "first": "Martin", "last": "Smalbrugge" }, { "first": "Sytse U", "last": "Zuidema" }, { "first": "Raymond TCM", "last": "Koopmans" }, { "first": "Judith E", "last": "Bosmans" }, { "first": "Maurits W", "last": "van Tulder" }, { "first": "Jan A", "last": "Eefsting" }, { "first": "Debby L", "last": "Gerritsen" }, { "first": "Anne-Margriet", "last": "Pot" } ] }
PMC3051883
Background ========== As consumerism continues to increase in healthcare, there has been a rise in awareness about how patients perceive the quality of the services they receive at a health-care institution \[[@B1],[@B2]\]. In addition, the web offers patients the opportunity to shop for the best places for care due to the rise in transparency of provider information on service quality and patient experience. As a consequence, patient satisfaction with service quality is becoming an increasingly important tool for providers to demonstrate patient focus and differentiation in the marketplace, as well as enhance patient loyalty. Furthermore, providers are using the information to make important decisions regarding operational and treatment plans \[[@B3]\]. Evaluations of service quality provide important data on the patient\'s perception of the quality of care and treatment delivered by physicians, paramedical staff and the hospital as a whole \[[@B4]\]. Health providers can use data on service quality to design and track quality improvement over time and compare themselves to other health providers when the same measures are used, as well as recognize and expeditiously resolve service problems in real-time \[[@B5],[@B6]\]. Measuring service quality also helps health care providers identify specific, and often unmet needs of patients, which has been a large focus of our work, and demonstrated by other research \[[@B7]\]. Similar to other acute health-care settings, the assessment of service quality, as perceived by patients, is critical in the oncology setting as well. Advances in diagnostics, treatment, supportive care and rehabilitation all necessitate continued monitoring to determine whether patients are satisfied with the increasingly complex and multidisciplinary nature of health care services that they are receiving, and to identify areas in which improvement is needed. Similar to other health-care disciplines, evaluation of perceived service quality in an acute care oncology setting, involves a diverse array of methodologies including longitudinal surveys, in-depth interviews, focus-group discussions, patient panels, consultation of voluntary groups, and analyses of patient feedback and concerns, followed by quick improvements to operations to help patients while they are undergoing care throughout the full cycle of treatment and follow up, as well as to help future patients. Patient-reported service quality surveys still continue to be the most widely used method of objectively and systematically determining a cancer patient\'s perception of the healthcare received. Cancer patients should be surveyed regularly due to the often aggressive nature of the disease and treatment. The modes of therapies have their own side effects and often result in difficult patient compliance. As a result, considerable demands are placed on health care providers to satisfy the complex healthcare needs of cancer patients. The literature shows that perceived service quality can act as a marker for patient willingness to comply with the treatment plan as well as to predict a patient\'s willingness to recommend a provider to friends and relatives \[[@B8],[@B9]\]. This is especially important in many countries where service quality data are not readily published and recommendations from family or friends becomes an important source of information for selecting a provider \[[@B9],[@B10]\]. There are several studies in the literature that have evaluated service quality in cancers like gastro esophageal \[[@B11]\], breast \[[@B5],[@B12]\], colorectal \[[@B13]\], lung, prostate \[[@B14]\] and gynecological \[[@B15],[@B16]\]. Collectively, these studies have found that satisfaction with the information provided by medical staff about a patient\'s illness and the course of treatment is important. This is followed closely by the time spent with the physician and the interpersonal skills of the physician. Other key factors are waiting time to get an appointment, empathy of staff with the patient, the continuity of care provided, and satisfaction with the nursing staff \[[@B17]\]. We are unaware of any information in the oncology literature demonstrating a link between perceived service quality and patient willingness to recommend a provider. In light of the importance of this information to the healthcare industry, as well as with the goal of taking the existing research in this area to the next level, we designed a study to investigate the relationship between perceived service quality and patient willingness to recommend at a network of national oncology hospitals. Methods ======= Study Population ---------------- All returning treating patients were eligible for inclusion in this study. Patients with all stages of all cancer types were eligible for the study. Specifically, patients who participated in the study were randomly selected from a population that had not responded to a service quality questionnaire within 60 days of the start of the study. The selected patients were approached onsite for survey administration. The surveyed cohort included 2018 randomly-selected returning cancer patients who had been treated at one of three Cancer Treatment Centers of America^®^(CTCA) hospitals between July 2007 and September 2009. The study was approved by the CTCA Institutional Review Board. Questionnaire and Survey Administration --------------------------------------- The service quality questionnaire used in this study was first developed and implemented by the Research team at CTCA in August 2006. The questionnaire was developed based on a patient-centered approach that used questions that patients view as important in their treatment experience. In addition to patient focus groups, survey dimensions were collated from several existing studies or questionnaires of oncology patients \[[@B18]-[@B21]\]. This service quality questionnaire covers the following dimensions of patient satisfaction: hospital operations and services, physicians and staff, and patient endorsements for others (friends and associates). After the patient consented to complete the survey, the Survey Research Associate completed the \"office use only section\" on the last page of the survey which includes unique patient identifiers. The survey was then given to the patient. The Survey Research Associate then opened and explained the survey, specifically describing the rating scale and the open-ended questions. Next, the Survey Research Associate informed the patient that he/she will return to collect the survey and/or explained the option of the comment/suggestion drop box. Throughout the day, the Survey Research Associate updated the survey tracking list to note the following: patients contacted, surveys returned, surveys declined, and missed patients. Statistical Analysis -------------------- Patient willingness to recommend, \"will you recommend this facility to friends and associates?\" was used as the dependent variable and was measured on an 11-point scale ranging from \"not at all likely\" to \"extremely likely\". This question is used to calculate the Net Promoter Score \[[@B22],[@B23]\], a measure that has been shown in a number of industries to effectively measure customer loyalty, with increasing use in healthcare, including our hospitals as a management tool. For the purpose of this analysis, as well as in accordance with previously reported research \[[@B9],[@B10]\], data were dichotomized into 2 categories: top box response (10) versus all others (0-9). The service quality items that were used as independent variables in this study were the ease of the admission (registration) process, the speed of the admission (registration) process, the timeliness with which care was delivered, team helping you understand your medical condition, team explaining your treatment options, team involving you in decision making, the amount of time spent team with you, team calling you by your name, team genuinely caring for you as an individual, team providing you with a sense of well-being, our team\'s \"whole person\" approach to patient care and the CTCA medical oncologist (patient\'s primary physician). These items were measured on a 7-point Likert-type scale ranging from \"completely dissatisfied\" to \"completely satisfied.\" Each service quality item was also dichotomized into 2 categories: \"completely satisfied\" (7) and \"not completely satisfied\" (1-6). Other control variables that were investigated for their relationship with patient willingness to recommend were age at diagnosis, prior treatment history and gender. The prior treatment history variable categorized patients into those who have received definitive cancer treatment elsewhere before coming to CTCA and those who were newly diagnosed at CTCA. The multivariate analysis also adjusted for the effects of CTCA center and survey year with dummy variables representing these categories. Descriptive statistics and frequencies were computed for each service quality item in the questionnaire. The relationship between perceived service quality and \"willingness to recommend\" was initially assessed via Kendall\'s tau b correlation and univariate logistic regression. Kendall\'s tau b is an appropriate measure of association for categorical variables and is commonly used when both variables have the same number of categories. Logistic regression was then employed to develop a multivariate model to predict patient willingness to recommend. Potential multicollinearity was assessed in two steps. Large values (above 0.70) of tau b were used as an initial screen for pairs of service quality measures, with one member of the pair not entered into the multivariate model (the measure that was more meaningful or actionable was retained). As a second check, the variance inflation factor was used with the final model to verify that multicollinearity was not significantly influencing model coefficients. The effect of perceived service quality on patient willingness to recommend was expressed as odds ratios (ORs) with 95% confidence intervals. A difference was considered to be statistically significant if the p value was less than or equal to 0.05. All data were analyzed using SPSS version 17.0 (SPSS, Chicago, IL, USA). Results ======= Response Rate ------------- A total of 2754 returning patients were contacted at all three centers combined to participate in the survey between July 2007 and September 2009. However, only 2018 patients responded. As a result, the response rate for this study was 73.3%. Baseline Patient Characteristics -------------------------------- Table [1](#T1){ref-type="table"} displays baseline patient characteristics across the entire study population (N = 2018). The most frequent diagnoses were breast (N = 412), lung (N = 294), prostate (N = 260), colorectal (N = 179) and pancreatic (N = 169) cancer. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Baseline Patient Characteristics (N = 2018) ::: Variable Categories Number (Percent) ------------------- -------------------- ------------------ Age Mean 54.2 Median 54.0 Range 16-92 CTCA Center Midwestern 953 (47.2) Southwestern 620 (30.7) Eastern 445 (22.1) Gender Male 902 (44.6) Female 1116 (55.4) Treatment History Newly Diagnosed 959 (47.5) Previously Treated 1059 (52.5) Survey Year 2007 561 (27.8) 2008 708 (35.1) 2009 749 (37.1) ::: Service Quality Items --------------------- Table [2](#T2){ref-type="table"} describes the level of patient satisfaction with service quality items concerning CTCA operations and services. Table [3](#T3){ref-type="table"} describes the level of patient satisfaction with service quality items concerning CTCA\'s multidisciplinary patient care team. Table [4](#T4){ref-type="table"} reports the patient willingness to recommend CTCA to friends and associates. 1553 (77.0%) patients said they were \"extremely likely\" to recommend CTCA to friends and associates. ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Service Quality Items: Operations and Services ::: ---------------------------------------------------------------------------------------------------------- How satisfied are you with: *Completely Satisfied* *Not Completely Satisfied* ---------------------------------------------------- ------------------------ ---------------------------- The ease of the admission (registration) process\ 1675 (83.8) 325 (16.3) (n = 2000) The speed of the admission (registration) process\ 1645 (82.7) 343 (17.3) (n = 1988) The timeliness with which your care was delivered\ 1327 (66.9) 658 (33.1) (n = 1985) ---------------------------------------------------------------------------------------------------------- Items were dichotomized into 2 groups of \"completely satisfied (7)\" and \"not completely satisfied (1-6)\" ::: ::: {#T3 .table-wrap} Table 3 ::: {.caption} ###### Service Quality Items: Multidisciplinary Patient Care Team ::: ------------------------------------------------------------------------------------------------------------------- How satisfied are you with our team in the following areas: *Completely Satisfied* *Not Completely Satisfied* ------------------------------------------------------------- ------------------------ ---------------------------- Helping you understand your medical condition\ 1316 (67.2) 642 (32.8) (n = 1958) Explaining your treatment options\ 1369 (70.6) 569 (29.4) (n = 1938) Involving you in decision making\ 1432 (74) 504 (26) (n = 1936) The amount of time spent with you\ 1414 (72.2) 545 (27.8) (n = 1959) Our team calling you by your name\ 1699 (86.9) 257 (13.1) (n = 1956) Our staff genuinely caring for you as an individual\ 1666 (84.9) 297 (15.1) (n = 1963) CTCA providing you with a sense of well-being\ 1550 (79.5) 400 (20.5) (n = 1950) Our \"whole person\" approach to patient care\ 1590 (82.1) 347 (17.9) (n = 1937) CTCA medical oncologist (n = 1915) 1487 (77.7) 428 (22.3) ------------------------------------------------------------------------------------------------------------------- Items were dichotomized into 2 groups of \"completely satisfied (7)\" and \"not completely satisfied (1-6)\" ::: ::: {#T4 .table-wrap} Table 4 ::: {.caption} ###### Patient endorsement of CTCA for themselves and others (N = 1963) ::: Item Categories N \% ---------------------------------------------------- ------------------- ------ ------ Will you recommend CTCA to friends and associates? Not at all likely 3 0.1 1 3 0.1 2 1 0.05 3 1 0.05 4 2 0.1 5 20 1.0 6 10 0.5 7 39 1.9 8 98 4.9 9 233 11.5 Extremely Likely 1553 77.0 ::: Univariate Analysis - Predictors of Patient Willingness to Recommend -------------------------------------------------------------------- Kendall\'s tau b correlations between the service quality measures and willingness to recommend were all significant at p \< .05, with values ranging from 0.20 to 0.40 (see Table [5](#T5){ref-type="table"}). Univariate logistic regression analyses were also all significant at p \< .05, with odds ratios ranging from 3.2 to 9.5 (see Table [6](#T6){ref-type="table"})., In addition, prior treatment history was found to be predictive of patient willingness to recommend such that newly diagnosed patients were more likely to recommend as compared to those who had been previously treated. Age and gender were not significant. ::: {#T5 .table-wrap} Table 5 ::: {.caption} ###### Association between Patient Endorsement of CTCA and Service Quality Measures ::: Variable Kendall\'s tau b P-value ---------------------------------------------------------- ------------------ -------------- The ease of the admission (registration) process 0.20 **\< 0.001** The speed of the admission (registration) process 0.22 **\< 0.001** The timeliness with which your care was delivered 0.29 **\< 0.001** Helping you understand your medical condition 0.40 **\< 0.001** Explaining your treatment options 0.40 **\< 0.001** Involving you in decision making 0.38 **\< 0.001** The amount of time spent with you 0.38 **\< 0.001** Our team calling you by your name 0.30 **\< 0.001** Our staff genuinely caring for you as an individual 0.38 **\< 0.001** CTCA providing you with a sense of well-being 0.44 **\< 0.001** Our \"whole person\" approach to patient care 0.38 **\< 0.001** CTCA medical oncologist 0.37 **\< 0.001** Gender (female as referent group) 0.04 0.10 Treatment History (previously treated as referent group) -0.09 **\< 0.001** Age (used as continuous variable) 0.03 0.17 ::: ::: {#T6 .table-wrap} Table 6 ::: {.caption} ###### Univariate Logistic Regression Analysis ::: Variable OR 95% CI P-value ---------------------------------------------------------- ------- -------------- -------------- The ease of the admission (registration) process 3.2 2.4 to 4.1 **\< 0.001** The speed of the admission (registration) process 3.5 2.7 to 4.5 **\< 0.001** The timeliness with which your care was delivered 4.1 3.3 to 5.2 **\< 0.001** Helping you understand your medical condition 7.5 5.9 to 9.6 **\< 0.001** Explaining your treatment options 7.2 5.7 to 9.2 **\< 0.001** Involving you in decision making 6.5 5.1 to 8.3 **\< 0.001** The amount of time spent with you 6.5 5.1 to 8.3 **\< 0.001** Our team calling you by your name 5.6 4.2 to 7.4 **\< 0.001** Our staff genuinely caring for you as an individual 7.9 6.1 to 10.4 **\< 0.001** CTCA providing you with a sense of well-being 9.5 7.4 to 12.2 **\< 0.001** Our \"whole person\" approach to patient care 7.3 5.6 to 9.4 **\< 0.001** CTCA medical oncologist 6.6 5.2 to 8.5 **\< 0.001** Gender (female as referent group) 0.83 0.67 to 1.03 0.10 Treatment History (previously treated as referent group) 1.6 1.3 to 2.0 **0.001** Age (used as continuous variable) 1.006 0.99 to 1.02 0.27 ::: Multivariate Analysis - Predictors of Patient Willingness to Recommend ---------------------------------------------------------------------- Before proceeding with multivariate analysis, we checked the bivariate Kendall\'s tau b correlation among the service quality predictors to screen for observable multicollinearity. Speed of admission and ease of admission were highly correlated (tau b = 0.74). \"Explaining treatment options\" was highly correlated with several items (\"helping you understand your condition\", tau b = 0.77 and \"involving you in decision-making\", tau b = 0.74). \"Providing a sense of well being\" and \"caring for you as an individual\" were highly correlated (tau b = 0.70). \"Ease of admission\", \"explaining treatment options\", and \"providing a sense of well being\" were accordingly not used in the multivariate model. \"Ease of admission\" and \"providing a sense of well being\" were dropped because we believe they may not have been consistently interpreted by patients. \"Explaining treatment options\" was dropped because it was highly correlated with several items and so dropping it was the most parsimonious approach. Table [7](#T7){ref-type="table"} displays the results of the multivariate logistic regression. The overall model was significant (chi-square 426.0, df = 16, p \< .001). The service quality items that were significant in the final model were \"team helping you understand your medical condition\", \"staff genuinely caring for you as an individual\" \"whole person approach to patient care\" and \"CTCA medical oncologist.\" Odds ratios ranged from about 2.0 to 2.2 for these service quality measures. Gender, treatment history, CTCA center and survey year were also significant. Males had lower willingness to recommend than females. Newly diagnosed patients had higher willingness to recommend as compared to those who were previously treated. Patients surveyed in 2009 were more like to recommend as compared to those surveyed in 2007. Patients surveyed at CTCA Southwestern in Tulsa, OK, were more likely to recommend as compared to those treated at CTCA Midwestern in Zion, IL, and CTCA Eastern at Philadelphia, PA. Finally, the type of cancer diagnosis was not found to influence patient \"willingness to recommend\" in the multivariate model. VIF values for the service quality measures ranged from 1.3 to 2.5, none of which indicate a significant problem with multicollinearity \[[@B24],[@B25]\]. ::: {#T7 .table-wrap} Table 7 ::: {.caption} ###### Multivariate Logistic Regression Analysis ::: Variable OR 95% CI P-value ---------------------------------------------------------- ------ -------------- -------------- The speed of the admission (registration) process 1.3 0.91 to 1.9 0.15 The timeliness with which your care was delivered 1.4 0.98 to 1.9 0.06 Helping you understand your medical condition 2.2 1.5 to 3.2 **\< 0.001** Involving you in decision making 1.2 0.82 to 1.8 0.31 The amount of time spent with you 1.3 0.87 to 1.9 0.20 Our team calling you by your name 0.82 0.52 to 1.3 0.38 Our staff genuinely caring for you as an individual 2.0 1.3 to 3.0 **0.001** Our \"whole person\" approach to patient care 2.0 1.4 to 2.9 **\< 0.001** CTCA medical oncologist 2.2 1.6 to 3.1 **\< 0.001** Gender (female as referent group) 0.68 0.51 to 0.91 **0.009** Treatment History (previously treated as referent group) 1.5 1.1 to 1.9 **0.01** Age (used as continuous variable) 0.99 0.98 to 1.01 0.81 CTCA Center (overall effect) 0.02  Midwestern versus Southwestern 0.71 0.51 to 0.99 **0.04**  Eastern versus Southwestern 0.60 0.41 to 0.88 **0.009** Survey Year (overall effect) 0.03  2008 versus 2007 1.00 0.72 to 1.4 0.98  2009 versus 2007 1.50 1.1 to 2.2 **0.02** ::: Discussion ========== Patient-reported service quality assesses the extent to which an individual\'s health care experiences match his or her expectations which in turn can influence a patient\'s willingness to recommend a health care provider to friends and associates. The present study investigates this association in an acute care national oncology hospital network. Our findings show that helping a patient to understand her/his condition, caring for a patient as an individual, a whole-person approach to care, and satisfaction with the medical oncologist all contribute to willingness to recommend CTCA to friends and associates. On the other hand, speed of admission, timeliness with which care was delivered, involving a patient in decision-making, calling a patient by their name, and the amount of time spent with a patient may not be as critical in willingness to recommend, relative to the other measures studied. These findings suggest that service quality that is central to the patient experience is critical for patient loyalty. The only seeming exceptions to this are amount of time spent with a patient and involving a patient in decision-making, but in this population, patients find these of lesser import than the quality of care itself. Further studies would need to examine these factors in new patient populations. In order to put our study in context, we review here a few available studies in the healthcare literature which have investigated service quality predictors of patient willingness to recommend a healthcare provider. A study conducted in 1910 patients in clinics throughout Taiwan investigated whether attributes of perceived clinic quality and patient education were associated with patient satisfaction and recommendation of a primary care provider. Patient recommendation was measured on a five-point Likert scale using the question \'When your family, relatives or friends need to see a doctor, would you recommend this clinic?\' The study found doctor\'s technical skill to be the most critical attribute of primary care quality for both overall satisfaction and recommendation, followed by doctor\'s interpersonal skill \[[@B9]\]. Another study conducted in 4945 patients in 126 Taiwanese hospitals examined the correlation of patient satisfaction with and recommendation of a hospital to patient ratings of interpersonal and technical performance of the hospital. Patient recommendation was measured on a five-point Likert scale using the question \'If someone asks you about the hospital, would you recommend it?\' The study found that technical competence was a more influential predictor for recommendation \[[@B10]\]. Another study conducted in 2160 consecutive adult patients treated within 36 family practice clinics in Slovenia investigated factors influencing patients\' recommendation of doctor. Patients\' responded to the statement \"I can strongly recommend my family doctor to my friends\" on a five-point scale, from strongly disagree to strongly agree. Higher satisfaction with doctor\'s working style and organization of the health care system predicted patient recommendation \[[@B26]\]. The results of our study do not compare directly with above mentioned studies because of the differences in study design, patient population studied, questionnaire used and factors adjusted for. Nevertheless, our study adds useful information to the growing body of literature on the importance of assessing patient perception about service quality as a predictor of patient willingness to recommend a hospital. Although this study reports on a relatively uncommon analysis of predicting patient willingness to recommend with perceived service quality, several limitations of the study require acknowledgment. The patient cohort was limited to only those patients who were English speakers, so this study sample is therefore not broadly representative of cancer patients in general. As a result, the generalizability of this study is limited. The data we used for this study were not primarily meant for research purposes. CTCA is a unique medical center. It specializes in treating only cancer patients, and it has an intense focus on patient-centered care. Compared to other centers, patients report very high levels of service quality at CTCA. Our study, which is hypothesis generating by nature, used a non-validated patient satisfaction questionnaire. However, it is reasonable to use a non-validated survey if the intent of the study is hypothesis generation rather than hypothesis testing. It might be argued that patients do not have the ability to judge a hospital\'s performance; however, patient perception is a key factor for hospital selection. This was the main goal of our study - to show the effects of patient perception about service quality on patient recommendation of a hospital. Finally, a response rate of 73.3% could potentially introduce a selection bias in our study. The baseline characteristics of patients who did not respond are not available for us to evaluate any systematic differences between responders and non-responders. More and more health care consumers are using the web to research and shop for the best health care providers, especially for complex medical conditions. In addition, in our own experience, we hear about more and more patients traveling great distances to receive care, due in large part, to a strong recommendation of the provider from the patient\'s friend, associate, colleague, or family member. And as the asymmetry in information between providers and consumers decreases, we can and should expect to see more informed consumers shopping for the best available healthcare. The strengths of our study include: a large sample size, the fact that we measured service quality as close to the time service was delivered as possible, and the fact that we used willingness to recommend (using the question and scale most commonly used in industry) as our dependent variable, which has been previously validated through research in many industries. To the best of our knowledge, this study is the first in the health care literature to report on the positive correlation between patient-reported service quality and patient willingness to recommend a provider in a large sample of cancer patients. During a time in which quality and value are becoming increasingly prominent themes in healthcare reform, we believe the patient\'s perspective of the key drivers of loyalty should be given greater national attention. In most of American medicine, we assess the relative importance of quality and patient satisfaction measures from expert panels and other traditional research methods developing institutionalized views of the attributes of health care that are most important. But what has been largely missing in the conversation is the patient\'s perspective (and perception) of the relative importance of key aspects of service quality in the health care delivery cycle. These are areas that require further research and at the time of this writing, our organization is seeking partners to conduct national population-based research on the key drivers of value in oncology, with service quality being an important dimension to be studied. As the health care legislation continues to be implemented, the entire health care system would benefit from a greater focus on the key drivers of value from the consumer\'s perspective - the patient, as well as their caregivers and families. These are important areas of research that will lend greater focus to where, when, and how we should apply our scarce resources to deliver the most valuable care to our patients - the ultimate consumer. Next steps in our research include linking data on service quality to patient outcomes. We are unaware of any literature linking service quality to data on patient quality of life, length of life, and overall satisfaction with health. Research is also underway at our center to explore the relationship between patient willingness to recommend and actual patient return (behavior) as well as how changes in patients\' clinical condition affect their willingness to recommend a provider, controlling for all other known variables. With respect to population-based research, we do plan on conducting national research on the patient\'s perspective of value in oncologic care, data that has largely been missing from the health policy discussions. Conclusions =========== In this multi-center study, we demonstrate the predictive significance of perceived service quality as it relates to patient willingness to recommend an oncology service provider. We identified four key service quality drivers of patient loyalty: \"team helping you understand your medical condition\", \"staff genuinely caring for you as an individual\" \"whole person approach to patient care\" and \"CTCA medical oncologist\". Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= CGL participated in concept, design, writing, statistical analysis and data interpretation. MR participated in concept, statistical analysis and data interpretation. DG participated in concept, statistical analysis, data interpretation and writing. All authors read and approved the final manuscript. Pre-publication history ======================= The pre-publication history for this paper can be accessed here: <http://www.biomedcentral.com/1472-6963/11/46/prepub> Acknowledgements ================ This study was funded by Cancer Treatment Centers of America^®^. We wish to thank Kristine Stolfi, Sara Mortensen, Jody Wehrwein, and Cindy Rawlings for data collection for this project. We would also like to thank Norine Oplt, Carol Wages and Carmen Roman for providing us with the updated demographic data. Finally, we thank all our patients and their families.
PubMed Central
2024-06-05T04:04:17.169515
2011-2-25
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051883/", "journal": "BMC Health Serv Res. 2011 Feb 25; 11:46", "authors": [ { "first": "Christopher G", "last": "Lis" }, { "first": "Mark", "last": "Rodeghier" }, { "first": "Digant", "last": "Gupta" } ] }
PMC3051884
Background ========== Judo therapy, originating in the Japanese martial art of judo, represents one of Japan\'s most unique and traditional co-medical professions \[[@B1]\]. Primarily, judo therapists manually treat sprains, bruises, soft tissue damage, fractures, and dislocations in their own offices. Since 1920, judo therapists have required state licensing. Following the 1998 court decision that rejected regulations promulgated by the Japanese Ministry of Health, Labour and Welfare limiting the total number of judo therapists \[[@B2]\], the number of academies training judo therapists increased from 14 to 70. As a result of the increased number of academies, new graduates qualifying as judo therapists began to practice during the period from approximately 2004 to 2006. People have the right for free access to healthcare service under universal coverage of health insurance in Japan; it has been achieved with relatively low cost (340 billion dollars annually for national health expenditure, 9% of GDP). In general, under the Japanese Health Insurance System, judo therapists can operate their facilities independently, and total medical expenditures for judo therapy have been estimated at greater than 3 billion dollars annually \[[@B3]\]. Thus, the practice of judo therapy requires careful monitoring. Judo therapists are expected to provide complementary and alternative medical treatments, particularly in areas with insufficient medical care services. In this sense, assessing the geographic distribution of judo therapists is important. If the increased number of judo therapists were concentrated primarily in urban areas, which also contain a relatively large number of orthopedists, the overlapping services provided by both professions might lead to conflicts between them. Some orthopedists have rumored that patients at their clinics are recruited by judo therapists. Clearly, for the current increased numbers of judo therapists to provide their services more equitably in terms of geographic distribution would be preferable, but no published studies have examined this possibility. The Lorenz curve and Gini indices, originally used in economics research to assess income inequality \[[@B4],[@B5]\], were chosen to describe geographic distribution in this study because they can be used to summarize resource distribution on a formal, standardized scale from \"0\" (even distribution) to \"1\' (greatest possible unevenness of distribution). Gini indices can provide a standardized basis on which to make judgments on the comparative degrees of geometric unevenness for different manpower resource pools at a point in time, or over a period of time \[[@B6],[@B7]\]. The indices have frequently been used to study disproportionate distributions of health services, including those pertaining to the numbers of physicians and medical facilities \[[@B8]-[@B13]\]. For example, using Gini indices, Kobayashi studied the number of physicians in Japanese municipalities and reported the changes in geographical distribution before and after the increase in medical schools \[[@B10]\]. Several reports using Gini indices for the geographical density of physicians, especially practicing physicians and pediatricians, have been published since the mid-1990s \[[@B11]-[@B13]\]. To perform the same type of analysis to assess disproportionate distributions of judo therapy facilities, we developed our database of the number of judo therapy facilities in each Japanese municipality and have published two reports on the geographic density of judo therapists \[[@B14],[@B15]\]. However, both studies were cross-sectional in study design and the geographic distribution of judo therapists was not examined over time. Thus, the objective of this study involved examining recent changes in the geographic distribution of judo therapy facilities in relation to the increase in judo therapy academies in Japan. Assuming that the orthopedists have a primary right to be located where they are, and do not require redistribution themselves, we would like to determine if the expansion of judo therapy in Japan since 1998 has been equitable between urban and rural areas, rather than concentrating in the urban areas where orthopedists have already been established. The hypothesis of this study was that as the number of therapy facilities expanded, so a more equal pattern of provision would be observed. To test this hypothesis, the Gini index of the number of judo therapy facilities at each of the national and regional levels was used as the simple parameter for statistical analysis. Then the Gini indices and their 95% confidence intervals of the number of judo therapy facilities were estimated at two-year intervals during 2004 to 2008, when the number of judo therapy facilities rapidly increased, to compare between 2004 and 2006 and between 2006 and 2008. Methods ======= Number of judo therapy facilities --------------------------------- The data set, developed from the NTT Internet Townpage Directory of Internet sites \[[@B16]\] in July 2004, 2006, and 2008, was composed of the number of judo therapy facilities in 3,218 municipalities throughout Japan. This method was validated in our previous studies \[[@B14],[@B15]\]; the total number of judo therapy facilities obtained from the Townpage Directory (= 21,995) was close to the number of judo therapy facilities in all prefectures reporting health insurance payments (= 23,199) in 2002. The Internet search used \"judo therapist\" and the name of each municipality as keywords. Among the search results, only \"Sekkotsu-in (facility for bone setting)\" and \"Seikotsu-in (osteopathy facility)\" were selected because other facilities are prohibited from practicing by the Japanese Health Insurance System. This study uses the number of judo therapy facilities instead of the number of judo therapists because no information could be gathered about the latter. Population by municipality -------------------------- The population of each municipality was estimated from census data \[[@B17],[@B18]\], as described in detail in our previous study \[[@B15]\]; the data set can be obtained from the corresponding author upon e-mail request. The incorporated population in July 2008 was used for the analysis of the municipalities consolidated after 2004. The populations of certain major cities were too large for direct comparisons; in these cases, Tokubetsu-ku (specific wards) were used for purposes of comparison. In total, 1,921 municipalities were defined for use in the analysis. Analysis -------- All statistical analyses were performed using the STATA (Ver.9 for Windows) and two-tailed *p*values of less than 0.05 were regarded as statistically significant. Although there were several measurements to report the geographic distributions \[[@B10],[@B19]\], this study used the mean numbers of judo therapy facilities per 100,000 people with their Gini indices according to our previous studies \[[@B14],[@B15]\] and Japanese other studies \[[@B6],[@B10]\]. The Gini indices were calculated based on Lorenz curve, and the procedure of the calculation was as follows. Municipalities were sorted by the number of judo therapy facilities per 100,000 people. Beginning with the municipality with the fewest judo therapy facilities, the x axis of the Lorenz represents the cumulative percentage of the population. The y axis represents the cumulative percentages of judo therapy facilities. Under conditions of complete equality, the cumulative curve would coincide with the 45° diagonal line. Unequal distributions produce cumulative curves below the 45° line. The Gini index is defined as the proportion of the area surrounded by the 45° line and the Lorenz curve in relation to the area below the 45° line; this index ranges from 0 to 1, with higher values indicating larger geographical gaps. In the same way, the Gini indices per 100,000 people were calculated individually for urban areas (= 919) and towns/villages (= 1,002). The Gini idex is originally a single value reflecting unequal distributions, but the confidence intervals (C.I.s) of the Gini index can be obtained by a bootstrapping procedure \[[@B20]\]. The bootstrap is a computer-intensive method that draws independent samples from the data and calculates the target statistic on each draw. The bootstrap procedure uses the observed data to estimate the theoretical and usually unknown distribution from which the data came \[[@B20],[@B21]\]. Bootstrap samples of the same size as the original sample are repeatedly drawn by sampling with replacement from the observed data. Based on previous studies \[[@B22],[@B23]\] a bootstrap method with 1,000-time randomizations was used to estimate 95% C.I.s of the Gini index. A replacement random sampling was performed 1,921 times from the original database of judo therapy facilities per 100,000 people, and the Gini index was estimated using the created new dataset. This procedure was repeated 1,000 times, and the confidence bands of the Gini index were constructed by multiplicatively expanding the 2.5% and 97.5% points of quantile functions of the simulated data so that the bands have 95% simultaneous coverage over the range of the Gini index. The estimated Gini indices were compared between urban areas and towns/villages for each year. Annual differences in the Gini indices were calculated and the bootstrap method was applied to determine statistical significance \[[@B22],[@B23]\]. Results ======= Table [1](#T1){ref-type="table"} shows the number of judo therapy facilities per 100,000 people and the estimated Gini index. Although the general population gradually decreased during the period studied, the number of judo therapy facilities consistently increased, resulting in an increase of the number of judo therapy facilities per 100,000 people. The number of judo therapy facilities in the entire country increased by 5.3% in 2006 and 8.3% in 2008 per 100,000 people compared to the values obtained in 2004 and 2006, respectively. This increase was significant only in 2008, which posted the same increase in urban areas. In contrast, no significant changes were found for towns/villages in both 2006 and 2008. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### The number of judo therapy (J.T.) facilities, their distribution per 100,000 people, and Gini indices in all areas, urban areas, and towns/villages in 2004, 2006, and 2008. ::: 2004 2006 2008 ------------------------------------------ ------------------------- ------------------------- -------------------------- Population (×1000) All areas (n = 1,921) 127,902 127,758 126,931 Urban areas (n = 919) 114,557 114,552 114,049 Town/villages (n = 1,002) 13,345 13,206 12,882 Number of J.T. facilities All areas 22,774 23,996 25,989 Urban areas 20,888 22,045 23,906 Towns/villages 1,886 1,951 2,083 J.T. facilities per 100,000 population\* All areas 15.3 ± 11.8 (14.7-15.7) 15.8 ± 12.2 (15.3-16.4) 17.6 ± 14.0 (17.0-18.2)† Urban areas 18.0 ± 9.8 (17.4-18.6) 19.0 ± 9.9 (18.3-19.6) 20.9 ± 12.1 (20.2-21.7)† Towns/villages 12.8 ± 12.9 (12.0-13.6) 13.1 ± 13.3 (12.2-13.9) 14.8 ± 14.9 (13.6-15.4) Mean Gini (95% C.I.)\* All areas 0.273 (0.261-286) 0.264 0.253-0.276)† 0.264 (0.251-0.276) Urban areas 0.258.248-0.267) 0.247 0.238-0.257)† 0.248 (0.239-0.257) Towns/villages 0.407 (0.394-0.419) 0.404 (0.392-0.417) 0.400(0.388-0.413) Mean values ± standard deviations (95% confidence intervals, C.I.s) of J.T. facilities per 100,000 people are presented; the mean Gini indices (95% C.I.s) of their distributions were estimated using the bootstrap method. ^†^The differences in values were significant (*p*\< 0.05, two-tailed t-test) when compared to those in the previous 2 years. ::: Compared to the values in the previous 2 years, the degrees by which the Gini index changed (95% C.I.) were -0.009 (-0.013, -0.006) in 2006 and 0.0005 (-0.006, 0.007) in 2008 in all areas; they were -0.010 (-0.013, -0.007) in 2006 and 0.0006 (-0.005, 0.006) in 2008 in urban areas, and -0.003 (-0.009, 0.003) in 2006 and -0.004 (-0.011, 0.003) in 2008 in towns/villages. This indicates that the Gini index significantly decreased in 2006 but not in 2008 in all areas and in urban areas but that it did not decrease significantly in either 2006 or in 2008 in towns/villages The Gini index was statistically higher (all *p*\< 0.05) in urban areas than in towns/villages in 2004, 2006, and 2008. The Lorenz curves of judo therapy facilities per 100,000 people in 2008 are presented for all, urban, and town/village areas in Figure [1](#F1){ref-type="fig"}. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Lorenz curves of distributions of judo therapy facilities in all areas, urban areas, and towns/villages in 2008**. The 45° diagonal line represents a completely even distribution. Unequal distributions produce cumulative curves below the 45° line. ::: ![](1472-6963-11-48-1) ::: Discussion ========== The present study demonstrates that the density of judo therapy facilities per population unit has increased, irrespective of area, from 2004 to 2008 along with the increase in the absolute number of judo therapy facilities. In particular, the extent to which judo therapy facilities per population unit increased in 2008 was statistically significant and higher than that in 2006 by a factor of more than 1.5. However, this increase in 2008 did not reflect equality in the geographic distribution of judo therapy facilities according to the Gini index. Rather, it reflects a trend toward increased geographical gaps between urban areas and the rest of Japan in 2008. These findings are important because under the current laws and regulations governing medical delivery systems, the Japanese government cannot intervene in choices about where medical practitioners practice. For example, Japan\'s physician manpower policy during the 1970s involved increasing the number of medical students and medical schools from 65 to 79 to address the shortage and maldistribution of physicians resulting in communities without doctors. The number of newly certificated physicians increased from approximately 4,000 to 8,000 per year by the mid-1980s. However, the inequality in physician distribution did not improve between 1980 and 1990 according to a previous Japanese study \[[@B10]\], suggesting that simply increasing the supply of medical providers does not constitute an advisable health policy. Rather, a policy that alleviates the maldistribution of medical providers should be developed. In the present study, the Gini indices significantly decreased in all areas and in urban areas only in 2006, even though the extent to which judo therapy facilities per population unit increased during this year was lower than that during 2008. Because the number of judo therapy facilities per population unit has remained at greater than 20 per 100,000 in urban areas since 2008, it seems clear that the rapid and substantial growth in the number of qualified judo therapists might not naturally match the geographic distribution of the need for judo therapy facilities. In the present study, national data were not used for two reasons, even though all judo therapists are required to report to the designated public health center. First, the statistics on judo therapists are organized according to each public health center but not according to each municipality \[[@B24]\]. Second, these data were not completely accurate insofar as they might have included defunct businesses because reporting closures of these facilities is not required \[[@B14],[@B15]\]. We finally decided to gather information about judo therapy facilities from the Townpage of each municipality, and the number obtained via this method was within 5% of the number of judo therapy facilities in all prefectures reporting health insurance payments. The number of facilities may represent a good surrogate for the number of therapists because in most cases, each facility contains only one practicing judo therapist. Using registration data obtained from the Japanese Judo Therapists\' Association \[[@B25]\], we estimated that an average of 1.09 therapists worked in each facility during the period studied. Before making remarks, several limitations should be noted. First of all, this study is not an analysis of the economics of service provision, but a use of a particular descriptive technology in assessing distributions of judo therapy facilities. Spatial inequality matters are largely due to the time price associated with any health facility, as well as other economic phenomenon including spatial access to health facilities \[[@B26],[@B27]\]. Because geographical distribution of medical service provider directly relates to urgent need of human life in the community, distribution per se should be analyzed apart from economics. Financial aspects of Judo therapy facilities are important but beyond our scope requiring totally different data set and method for analysis. Thus the results of time-changes in geographic distribution of judo therapy facilities were simply shown in this study. In the future a variety of economic factors need to be considered to interpret our results before approving or opposing health-care policy for the number of judo therapy facilities. Second, this study is limited by its use of a municipality-based method to determine the number of judo therapy facilities and residents; the scale and nature of the facilities could not be assessed. These were grouped data, and the possible effects of \'ecological fallacy\' should also be firmly considered for the interpretation of the results \[[@B28]\]. Also, the number of judo therapy facilities was divided by 100,000 people as the only indicator of \'need\'. This was because the national data of health-care facilities have usually been published as a unit of per 100,000 residences in Japan, but we should bear in mind that different \'needs\' indicators normally produce different inequality estimates: all of which have implications for health policy and planning competing health priorities. Third, the effects of unions of municipalities on the Gini indices should be considered. The Gini index is itself affected by the number of subjects analyzed \[[@B17],[@B18]\], and the indices for small towns and villages are smaller when such towns or villages are combined into larger cities. However, the number of united cities, towns, and villages was limited (= 27) from 2006 to 2008 and does not appear to account for changes in the geographical differences characterizing Japan in 2006. Fourth, four-year study period was relatively short to observe the change of distribution of judo therapy facilities. However, we were specifically interested in the change of distribution of judo therapy facilities from the start of drastic change of graduates qualifying as judo therapists (i.e., the years 2004 to 2006) in this study, and we recognize that the future study should be continued to observe the distribution of judo therapy facilities. In spite of these limitations, we demonstrated that judo therapy facilities are widely but unevenly distributed. We suggest that recent increases in the number of judo therapy facilities do not necessarily lead to amelioration of inequalities in their geographic distribution. A large portion of elderly individuals live in nonurban areas, and this fact seems to reinforce the need for judo therapy in such areas \[[@B29]\]. Geographic distributions of health services are affected by forces of demand and supply, and in the future we would like to assess the needs for judo therapy and the number of qualified judo therapists comprehensively in all regions before considering intervention plans to motivate judo therapists to practice in the underserved local areas. Conclusions =========== The numbers of judo therapy facilities increased significantly between 2006 and 2008 in Japan, but the Gini indices did not change significantly in the same period. The Gini indices for local towns and villages remained unchanged and were consistently higher than those in urban areas throughout the study periods. These results suggest that recent increases in the number of judo therapy facilities have not necessarily led to greater equality in their geographic distribution in terms of Gini indices. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= SI collected the data, performed statistical analysis, and wrote the manuscript. MN and EY have made substantial contributions to conception and design, and have been involved in drafting and revising the manuscript. KN made substantial contributions to analysis and interpretation of data. All authors read and approved the final manuscript. Pre-publication history ======================= The pre-publication history for this paper can be accessed here: <http://www.biomedcentral.com/1472-6963/11/48/prepub> Acknowledgements ================ This research was supported in part by Grant-in-Aid for Scientific Research (2010) (No. 10103152) from the Ministry of Health, Labour and Welfare, Japan.
PubMed Central
2024-06-05T04:04:17.173432
2011-2-28
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051884/", "journal": "BMC Health Serv Res. 2011 Feb 28; 11:48", "authors": [ { "first": "Satoshi", "last": "Inoue" }, { "first": "Mutsuhiro", "last": "Nakao" }, { "first": "Kyoko", "last": "Nomura" }, { "first": "Eiji", "last": "Yano" } ] }
PMC3051885
Background ========== Tuberous sclerosis complex (TSC) is an autosomal dominant neurogenetic disease caused by a mutation in either the *TSC1*or *TSC2*gene \[[@B1]-[@B3]\]. Roughly two-thirds of TSC cases reported in mutational and epidemiological studies are sporadic (simplex), while the remaining cases are familial \[[@B4]-[@B9]\]. Neurological symptoms include seizures, cognitive delay, impulsivity, attention deficit, and learning disabilities. TSC patients often present with characteristic brain lesions, including cortical tubers, subependymal nodules (SENs), and subependymal giant cell astrocytomas (SEGAs). The severity of neurological symptoms is variable, although mental retardation and intractable epilepsy are fairly common and are frequently the most debilitating symptoms \[[@B2],[@B10],[@B11]\]. Lesions outside of the nervous system, including renal angiomyolipomas (AMLs), renal cysts, cardiac rhabdomyomas, facial angiofibromas, periungual fibromas, retinal hamartomas, and pulmonary lymphangioleiomyomas (LAM), are also characteristic of TSC \[[@B2],[@B11]\]. Some of these lesions may result in life threatening events, such as hemorrhage into a large AML \[[@B12],[@B13]\] or spontaneous pneumothorax or chylothorax from a ruptured LAM \[[@B14]\]. Many of the hamartomatous growths associated with TSC are likely to be caused by loss of heterozygosity (LOH) due to a \"second-hit\" mutation that compromises the remaining normal TSC allele. This has been demonstrated in renal AMLs, cardiac rhabdomyomas, SEGAs and SENs \[[@B13],[@B15]-[@B18]\]. By contrast, LOH has only rarely been demonstrated in cortical tubers \[[@B19],[@B20]\]. While the lesions of TSC are generally associated with LOH, cognitive symptoms, including mental retardation, hyperactivity, impulsivity and attention deficit, may occur by a different mechanism, likely involving haploinsufficiency of TSC proteins in brain cells. In fact, the pathway in which hamartin and tuberin function has been shown to influence both neuronal structure and function \[[@B21]\]. It is therefore plausible that dysregulation of this pathway (a quantitative effect) produces cognitive deficits. Studies of coding and splice region mutations of the TSC1 and TSC2 genes have not yet produced a clear understanding of the relationship between genotype and phenotype, as people with the same primary mutation often have very different phenotypic outcomes \[[@B22],[@B23]\]. It is generally accepted, however, that mutations in the TSC1 gene produce milder symptoms compared to mutations in the TSC2 gene \[[@B4],[@B5],[@B9],[@B24]\]. Although most studies have failed to consistently link specific mutations to distinct phenotypes, there are exceptions such as the TSC2 R905Q mutation, which produces a mild form of the disease, and the TSC2 R905W and R905G mutations, which are associated with more severe forms of TSC \[[@B25]\]. Our research is aimed at understanding why individuals carrying identical TSC gene mutations often have widely varying clinical outcomes. It has been repeatedly noted in the literature that phenotypic variation of TSC disease is very common within families \[[@B2],[@B26]-[@B31]\]. The reason for this intra-familial variability in phenotype is currently unknown, although potential explanations include the modifying effects of unlinked genes, epigenetic factors \[[@B32],[@B33]\], or mosaicism \[[@B34],[@B35]\]. In many simple genetic disorders, pathogenic mutations inactivate the encoded protein or reduce its quantity or stability, thereby leading to an inadequate level of functional protein in the cell. TSC is an autosomal dominant genetic disease and, consequently, affected individuals are heterozygous for mutations in TSC1 or TSC2, i.e., one mutant and one normal allele is present in each cell \[[@B1]-[@B3]\]. We hypothesize that the differential expression of normal and mutant alleles may account for some proportion of the observed phenotypic variation. For example, it is possible that at the cellular level, relatively high levels of expression of the normal allele may compensate for the abnormal protein produced by the mutant allele. Conversely, high expression of a \"gain of function\" mutant protein, such as a mutant with dominant-negative properties, may be particularly deleterious. Based upon these considerations, it is plausible that allele-specific *cis*-acting elements that regulate mRNA expression \[[@B36]-[@B39]\] contribute to differences in disease severity in TSC. If common regulatory elements within the TSC loci play a role in modulating disease phenotype in individuals carrying a mutation at one of the TSC genes, we would expect to be able to detect the same regulatory elements in subjects selected from the normal population. To test this hypothesis we used a PCR/primer extension-based assay to measure allele-specific differences in expression of *TSC1*and *TSC2*mRNAs in leukocytes isolated from normal volunteers. The use of this assay allows highly accurate measurements of \"allelic expression imbalance\" (AEI) for individuals who are heterozygous for a \"marker\" single nucleotide polymorphism (SNP) located within the mRNA. Based on these measurements, we estimate that about 19% of the population (our sample group was of mixed races with a predominance of Caucasian individuals) is heterozygous for high- and low-expression alleles at the *TSC1*locus and 10% of the population is heterozygous for high- and low-expression alleles at the *TSC2*locus. Methods ======= IRB Approval ------------ This research was approved by the St. Joseph\'s Hospital and Medical Center Institutional Review Board (IRB) for Human Research. Informed consent was obtained from all study participants. Participants were healthy volunteers who denied any personal or familial history of Tuberous Sclerosis Complex. Isolation of DNA and RNA from blood samples ------------------------------------------- DNA was extracted from blood leukocytes using Gentra Puregene Blood Kits (Qiagen, Valencia, California) and stored at 4°C. RNA was extracted from blood leukocytes using PAXgene Blood RNA Kits (Qiagen, Valencia, California) and stored at -80°C. cDNA Synthesis from RNA samples ------------------------------- *TSC1*(NM\_000368) and *TSC2*(NM\_000548) mRNAs were reverse-transcribed to cDNA using gene-specific primers and the SuperScript III First-Strand synthesis system for RT-PCR, according to the manufacturer\'s protocol (Invitrogen, Carlsbad, California). The cDNA synthesis primer sequence for *TSC1*mRNA was 5\'-GGGCCTGTGCTGACTCTGGTTAGTG-3\'. The sequence of the cDNA synthesis primer for *TSC2*mRNA was 5\'-TTTCACTGACAGGCAATACC-3\'. cDNAs were stored at -20°C. Selection of Coding Region SNPs in TSC1 and TSC2 ------------------------------------------------ To distinguish TSC gene alleles we chose marker SNPs with relatively high rates of heterozygosity, as indicated in the NCBI Human Genome Resource SNP database <http://www.ncbi.nlm.nih.gov>, the SNPper resource (CHIP Bioinformatics resource - <http://snpper.chip.org>) and by our own genotyping data. Due to the need to distinguish the alleles, only samples heterozygous at marker SNPs were analyzed. Two SNPs were chosen as markers for *TSC1*alleles: rs739442 (C/T) and rs2809243 (C/T), both located in the 3\'-untranslated region (UTR) of *TSC1*mRNA. The DNA samples were genotyped at several exonic SNPs in the TSC2 gene. One synonymous SNP located within exon 40, rs1748 (C/T), proved to have the highest rate of heterozygosity among the tested SNPs (\~24%) and was therefore used for AEI analysis. Together, these three marker SNPs tag all known *TSC1*and *TSC2*mRNA splice variants. Genotyping using the SNaPshot assay ----------------------------------- All samples were genotyped using the SNaPshot assay. This method of genotyping relies on the presence of heterozygous marker SNPs to distinguish between two alleles of a gene. In homozygous samples, where the gene alleles have the same nucleotide at the SNP locus, electropherograms will show a single peak using the forward primer and a single peak using the reverse primer. In heterozygous samples, the presence of different nucleotides at the SNP locus on each allele will result in the production of two peaks in both forward and reverse reactions. PCR primer pairs were designed for amplifying genomic DNA segments that included each SNP of interest. The amplimer segments were used in a SNaPshot assay (ABI Prism SNaPshot Multiplex Kit) to establish the genotype (homozygous versus heterozygous) of individuals at each of the marker SNPs. The primers for amplifying the 3\'UTR genomic DNA segment containing the *TSC1*SNPs rs2809243 and rs739442 (amplimer size = 587 bp) were: 5\'-TAGTAATGGCAGAGCAGTCTAAACA-3\' (forward) and 5\'-TCCAGGTCTCATTCTCCCAACCGTA-3\' (reverse). The primers for amplifying a genomic DNA segment surrounding TSC2 exon 40 were: 5\'-CTGGGCAACGACTTTGTGTCCATTGTCTAC-3\' (forward) and 5\'-CTGACAGGCAATACCGTCCAA-3\' (reverse). This primer pair produces an 1857 bp amplimer when used with genomic DNA. The PCR program consisted of an initial denaturation at 94°C for 40 seconds. This was followed by 40 cycles of 94°C for 20 seconds, 55°C for 1 minute, 72°C for 1 1/2 minutes, and a final extension step at 72°C for 5 minutes. PCR products were gel purified from 1-1.5% low melt agarose gels (IBI Scientific, Peosta, Iowa) using the Wizard PCR Preps DNA Purification System (Promega, Madison, Wisconsin). Genotyping was done with primers designed for SNaPshot analysis. The SNaPshot assay was performed according to the manufacturer\'s protocol (Applied Biosciences, Inc.). Briefly, a PCR reaction was run in which a single fluorescently-tagged dideoxynucleotide was added at the 3\'-end of an annealed primer that was designed to terminate exactly one nucleotide before the SNP of interest (different fluorophores for ddA, ddG, ddC, and ddT). This allowed the identity of the SNP nucleotide to be determined using a capillary sequencer (Applied Biosystems Inc. Prism 310 Genetic Analyzer). This assay was used both for genotyping individuals at various SNPs and for AEI determination (as described in the following section). While both forward and reverse primers can be used for this analysis, the forward primers for each of the SNPs analyzed were found to give cleaner, more reliable results and were thus used in this assay. The primers for SNaPshot analysis of the TSC1 gene alleles were: rs2809243 5\'-AAACTCAACAAGTGCTCCTGAAAGAAA-3\' (forward) and rs739442 5\'-TACGAAATCTTAGTGCC-3\' (forward). The primer for SNaPshot analysis of the TSC2 gene allele was rs1748 (forward): 5\'-GCATCATAGCCGCTCCAACCCCACCGA-3\'. The PCR program consisted of 25 cycles of a 96°C denaturation step for 10 seconds, 50°C for 5 seconds and 60°C for 30 seconds. Subsequently, samples were treated for 45 minutes at 37°C with 5 units of antarctic phosphatase (New England Biolabs, Ipswich, Massachusetts). The phosphatase was then inactivated by incubating at 65°C for 10 minutes. Samples were run on the capillary sequencer and the genotype determined from the electropherogram generated during the run. Allelic expression imbalance assay ---------------------------------- Samples heterozygous at marker SNPs were tested for AEI using the SNaPshot assay. Genomic and cDNA fragments flanking each SNP (as described above) were amplified in triplicate and gel purified. The same primers previously described for use in the amplification of genomic DNA segments were used in this assay to amplify TSC1 and TSC2 cDNA gene segments. The primer pair amplifying the TSC2 cDNA segment produces a 553 bp fragment when used with cDNA rather than the 1857 bp fragment produced with genomic DNA as the template. This is due to inclusion of intronic sequence in the PCR product from genomic DNA. The PCR reactions amplify both alleles, preserving the existing allele ratios in genomic DNA and in cDNA. The concentrations of gel purified samples (purification performed as indicated above) were measured using a Nanodrop 2000c (Thermo Scientific, Waltham, Massachusetts). Equal concentrations of the amplified fragments were then used in SNaPshot assays. All genomic and cDNA samples were analyzed in triplicate using the ABI capillary sequencer. Genomic DNA has a theoretical allele ratio of 1.0, but due to differences in the detection efficiency of various fluorophores, this ratio often deviates from 1.0. Therefore, genomic DNA was used as an internal control to correct for the differences in detection. In order to calculate the necessary correction factor, the genomic DNA allelic ratios for a specific SNP from each capillary sequencer run were averaged and the correction factor was calculated as the inverse of this average genomic allelic ratio. A diagram of the method used for calculating and applying the correction factor is shown in Figure [1](#F1){ref-type="fig"}. The allele ratios for genomic and cDNA samples were calculated as the ratio of heterozygous peak heights (analysis done using Gene Mapper 3.0 software from Applied Biosystems, Inc.). The experimental values for both the genomic DNA and the cDNA were then multiplied by the correction factor and average values were calculated for each sample analyzed in triplicate (see Results section for additional details). Standard error of the mean (SEM) was calculated for each sample using Excel software (Microsoft, Inc.) and error bars indicating 2X SEM were used in graphing the results. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Method for correcting genomic and cDNA allele ratios (AR)**. Genomic DNA segments containing marker SNPs are amplified by PCR and used as templates in SNaPshot primer-extension assays. Extended primers containing one of two different fluorescently labeled nucleotides at their 3\'-ends are resolved by capillary electrophoresis and the ratio of peak heights calculated. An average genomic AR for a specific SNP is determined from all the genomic samples (each analyzed in triplicate). A correction factor (CF) is then calculated as the inverse of the average genomic AR. The genomic samples analyzed in triplicate are then individually multiplied by the CF to normalize the data to approximately 1.0, which is the theoretical ratio of two gene alleles in genomic DNA. The corrected average genomic AR is then determined. For each RNA sample, cDNA is synthesized and heterozygous SNP containing segments are amplified by PCR in triplicate and subjected to a SNaPshot PCR reaction. Samples are run on a capillary sequencer and the ratio of heterozygous peak heights is determined. Individual cDNA ARs are calculated and corrected by multiplying by the CF. The average corrected cDNA AR for each sample is then calculated. A sample is designated as showing AEI if the average corrected genomic AR and average corrected cDNA AR differ by greater than 2X the standard error of the mean and by at least 10%. ::: ![](1471-2350-12-29-1) ::: Results ======= AEI was examined in the *TSC1*and *TSC2*genes by quantifying the relative amounts of mRNA derived from each of the two alleles of each gene in leukocyte RNA samples isolated from normal individuals heterozygous for mRNA marker SNPs. To avoid the confounding effects of alternative splicing, SNPs located within the 3\'-UTR of the *TSC1*gene and in exon 40 of the *TSC2*gene were selected as markers. These regions are included in all known mRNA forms generated from the *TSC1*and *TSC2*genes. The rs numbers (NCBI SNP data base, <http://www.ncbi.nlm.nih.gov/snp>) and locations of the three *TSC1*and *TSC2*marker SNPs used in this study are shown in Figure [2](#F2){ref-type="fig"}. ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **This diagram shows the exon/intron structure of the *TSC1*and *TSC2*genes**. Exons are represented by numbered boxes. Exons subject to alternative splicing are indicated by brackets. The locations of the SNPs used for analysis of AEI are indicated by stars. ::: ![](1471-2350-12-29-2) ::: As described in detail in Methods, our AEI assays involve PCR amplification of short segments of *TSC1*or *TSC2*cDNA containing a marker SNP, followed by annealing of a synthetic oligonucleotide primer to a site immediately upstream from the SNP and primer extension in the presence of fluorescently tagged dideoxynucleotide triphosphates (ddNTPs). Because each ddNTP is tagged with a different fluorophore, the identity of the added base can be determined by resolving the fluorescently labeled primers by capillary electrophoresis and identifying the \"color\" of each extended primer \[[@B40]\]. Differences in expression between two alleles can be quantified by calculating the ratio of the peak heights of the traces corresponding to each fluorescently labeled primer. To correct for artifactual imbalances related to technical aspects of the assay, AEI assays were also carried out using genomic DNA, which in the absence of local chromosome deletions or duplications, would be expected to contain equal numbers of each allele. A correction factor derived from these measurements was used to correct AEI measurements obtained using cDNA templates. SNP frequencies in the sample population ---------------------------------------- Our assay uses SNPs located within protein coding exons or the 3\'-UTR to distinguish between the mRNA species that are transcribed from the two alleles of a gene in each individual. Because only subjects who are heterozygous at marker SNPs are informative in our assays, we first genotyped our subjects to identify individuals who are heterozygous for one or more of the *TSC1*and *TSC2*marker SNPs described above. The heterozygosities of the *TSC1*markers rs2809243 and rs739442 were approximately 49% (41/83) and 45% (37/83), respectively, in our sample. Heterozygosity of the *TSC2*marker SNP rs1748 was approximately 22% (18/82). These data are similar to average population heterozygosities for subjects of all races reported for these SNPs on the SNPper website (CHIP Bioinformatics resource - <http://snpper.chip.org>) and the NCBI SNP database. Approximately 36% (30/83) of subjects were heterozygous at both *TSC1*SNPs. AEI in the TSC1 gene -------------------- AEI analysis of *TSC1*mRNA expression was performed independently using the marker SNPs rs2809243 and rs739442. As indicated above, 41 individuals were heterozygous at rs2809243 and 37 were heterozygous at rs739442. 30 individuals were heterozygous at both of the marker SNPs. Data from these doubly heterozygous individuals was used for independent validation of the results from each SNP. As outlined in Figure [1](#F1){ref-type="fig"}, AEI measurements using genomic DNA as template were carried out to permit the calculation of a correction factor for AEI measurements using cDNA as template. AEIs were considered to be significant if the corrected cDNA allelic expression ratio differed from the corrected genomic allele ratio by greater than 10%, and if the error bars (defined here as 2x the standard error of the mean) for the average genomic and cDNA allele ratios did not overlap. Figure [3](#F3){ref-type="fig"} displays the corrected genomic and cDNA AEI ratios for each individual in our sample. Shown to the left in each graph is the data for individuals heterozygous at both marker SNPs. Shown to the right in each graph is additional data for individuals heterozygous at a single marker SNP. 8/41 individuals show AEI using rs2809243 while 7/37 individuals show AEI using rs739442. Of the doubly heterozygous individuals, rs2809243 revealed 6 individuals with AEI reaching our defined level of significance while rs739442 showed 5 individuals demonstrating AEI. The 5 individuals with AEI by rs739442 were the same as those with AEI by rs2809243. A 6^th^individual\'s sample (\#11) reached AEI significance by a small margin using rs2809243 but did not reach significance using rs739442 as the marker SNP, thus emphasizing the importance of using a second SNP to validate data. We were able to consistently score 5 out of 6 individuals as demonstrating significant AEI in blood leukocytes using two different SNPs. The AEI of *TSC1*mRNA expression in this control group ranged from 10% to greater than 30%. While this degree of imbalance is relatively small, it could be sufficient to modulate the phenotype in a TSC patient heterozygous for a mutation in the *TSC1*gene. Based on this small cohort of control subjects we estimate that the population frequency of AEI at the TSC1 locus may be as high as 15-20%. ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **AEI analysis of TSC1 mRNA expression in leukocytes isolated from 30 individuals doubly heterozygous for the marker SNPs rs2809243 and rs739442 and additional individuals (11 and 7 individuals respectively) singly heterozygous for one of the two SNPs**. For doubly heterozygous individuals (data at the left side of graphs 3A and 3B), blue bars indicate corrected genomic allelic ratios (AR) and grey bars indicate the corrected cDNA ARs. Data for singly heterozygous individuals is located to the right side of the 3A and 3B graphs using red and green bars to indicate genomic ARs and shaded bars to indicate cDNA ARs. Error bars indicate 2X the standard error of the mean (SEM). Stars indicate samples for which the average corrected cDNA AR differed from the genomic AR by more than 10% and had error bars that did not overlap with those of the genomic DNA. ::: ![](1471-2350-12-29-3) ::: It should be noted that the cDNA allelic expression ratios measured using the marker SNP rs280943 range from greater that 1 (samples 29 and 36) to less than 1 (samples 3 and 27). This implies that the regulatory variant or variants resulting in this AEI are not tightly linked to the marker SNP. Thus, if these individuals were heterozygous for a remote regulatory variant comprising one high-expression allele and one low-expression allele, the results of our AEI measurements imply that the high-expression allele is \"in phase\" (ie., located on the same chromosome) with the rs280943 C-allele in individuals 29 and 36, but is \"in-phase\" with the rs280943 T-allele in individuals 3 and 27. Similar arguments hold for the AEI measurement obtained using rs739442 as the marker SNP. The fact that the directions of the measured AEI differ for individual \#27, depending upon the choice of marker SNP, implies that the \"phase\" of the marker SNPs with respect to the functional variant is different in this individual. That is, in this individual the rs739442 C-allele is located on the same chromosome as the high-expression allele of the remote regulatory variant. Although the two SNPs used for these analyses (rs280943 and rs739442) are separated by only 166 bp, our data indicate that these SNPs are not tightly linked. As previously indicated, only around 29% of our sample population is heterozygous at both *TSC1*marker SNPs despite their close proximity. This is apparent in the data of individual \#27 which shows the marker SNPs to be on different chromosomes. Using the Hapmap database <http://hapmap.ncbi.nlm.nih.gov> the linkage disequilibrium D\' value for these SNPs is 0.671, confirming that these SNPs are not tightly linked despite the small separation distance. As these two SNPs are both located in the 3\'UTR of *TSC1*, it is not surprising to see this level of variation as mutations in this area are less likely to affect the protein function. AEI in the TSC2 gene -------------------- Twenty out of 83 individuals in our sample were heterozygous for the *TSC2*mRNA marker SNP rs1748, As shown in Figure [4](#F4){ref-type="fig"}, 10% (2/20) of these individuals demonstrated AEI above the 10% cut-off, with a difference of more than 2x the SEM. An independent marker SNP was not available for verification; however, AEI measurements were highly reproducible. Our data demonstrates that AEI is relatively common in both the *TSC1*and TSC2 genes. ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **AEI analysis of TSC2 mRNA expression in leukocytes isolated from 20 individuals heterozygous for the marker SNP rs1748**. Blue bars indicate corrected genomic allelic ratios (AR) and grey bars indicate corrected cDNA ARs. Error bars indicate 2X the standard error of the mean (SEM). Stars indicate samples for which the average corrected cDNA AR differed from the average corrected genomic AR by more than 10% and had error bars (2X SEM) that did not overlap with those of the genomic DNA. ::: ![](1471-2350-12-29-4) ::: Discussion ========== There is a growing consensus that *cis*-acting genetic variants significantly contribute to phenotypic differences among individuals, including disease risk \[[@B36],[@B39],[@B41]-[@B45]\]. Regulatory polymorphisms are one of the predominant mechanisms by which *cis*-acting gene regulation has been found to occur. These polymorphisms, located in regulatory regions, influence the expression of genes by affecting transcriptional activation or repression, generally by altering the DNA binding sites for transcription factors \[[@B36],[@B39],[@B46],[@B47]\]. In addition, splicing errors, changes in mRNA stablility, epigenetic modifications and polymorphic (AC~n~) microsatellites have also been implicated in cis-acting gene regulation \[[@B36],[@B37],[@B39],[@B46]-[@B49]\]. The best known examples of allele-specific differences in gene expression have been associated with X-inactivation \[[@B50]\] or genomic imprinting \[[@B51]\]. However, allelic variation in expression has also been demonstrated in non-imprinted genes and this allelic variation itself can be regulated by cis-acting elements \[[@B36]-[@B39]\]. Variations in allele expression have been previously linked to disease. For example, allelic variation in APC (adenomatous polyposis coli) expression plays a role in predisposition to colon cancer \[[@B41]\]. Allelic expression imbalance has also been studied in the cancer associated genes *BRCA1/2*and *CDH1*and used to identify polymorphisms, mutations and other defects that alter allelic expression and influence disease state \[[@B45],[@B48]\]. As many genes are active within networks, variation in the expression of specific gene alleles may ultimately result in multiple downstream effects within a network and between related gene networks. This creates an avenue by which even small differences in the expression of specific genes can ultimately result in substantial phenotypic changes \[[@B46],[@B47]\]. It has been noted frequently that disease causing mutations in families with TSC may produce very few problems in certain individuals while having catastrophic effects in others \[[@B2],[@B26]-[@B31]\]. Clearly, there are additional factors outside of the mutation itself that affect disease severity. Differences in allele specific mRNA expression could potentially be one of these disease modifying factors. It is possible that the overall amount of normal TSC protein in cells may determine the severity of the disease phenotype in patients. As TSC is a disease carried in a heterozygous state \[[@B1]-[@B3]\], some amount of normal TSC protein should be present in most cells since one normal allele of each TSC gene is present (the exception being abnormal tissue growths exhibiting LOH \[[@B15]-[@B18]\]). It is possible that higher relative expression of protein from the normal allele may be protective, while higher relative expression of abnormal protein from the mutant allele may have deleterious effects. We began to study this issue by determining the frequency of occurrence of AEI of the *TSC1*and *TSC2*genes in a control population. The intent was to establish if mRNA expression variation might be common enough to be a mechanism by which phenotypes are modified in patients with TSC gene mutations. In a cohort of normal volunteers we were able to quantify allele specific expression of the TSC genes in blood RNA and estimate the frequency of allelic skewing of expression for these two genes. In our studies we found that there was significant skewing of allelic expression of the *TSC1*gene in about 19% of our sample population and of the *TSC2*gene in 10% of our population. This estimate is based on a small sample of informative individuals (48 individuals who were heterozygous for a TSC1 marker SNP and 20 who were heterozygous for a TSC2 marker SNP). This was a sample of convenience, but individuals were recruited without bias and should be representative of the general population. If we assume a binomial distribution for the occurrence of AEI in the general population, we can use the exact test to calculate 95% confidence intervals for the actual population frequencies of AEI at the TSC1 and TSC2 genes. Based on such calculations, the 95% confidence interval for prevalence of AEI at TSC1 is 9% to 33% and for AEI at the TSC2 gene is 1.2% to 32%. These confidence intervals for the estimates for the actual population frequencies of AEI at TSC1 and TSC2 can of course be sharpened with larger sample sizes. While these are not large proportions, AEI may be occurring frequently enough to be a potential contributor to the phenotypic differences in TSC patients. In any given individual patient within a particular family, the phenotype could be determined not just by the mutation, but also by SNPs located within regulatory regions of the TSC genes. In such familial cases of TSC, the implication is that regulatory SNPs inherited from the parents in various combinations with the normal and mutant gene alleles can affect the phenotype of the child. The *TSC1*and *TSC2*gene products, hamartin and tuberin, function together as a protein complex. Therefore, mutation of either of the TSC genes results in the same disease \[[@B1],[@B3],[@B52]\]. The hamartin-tuberin complex is a modulator of the mTOR signaling pathway, which is important in the regulation of cell growth. We know that haploinsufficiency due to mutation of a single TSC gene allele is sufficient to cause TSC and represents an approximately 50% loss of the total expression of that TSC gene \[[@B2]\]. Loss of a single TSC gene allele is sufficient to disrupt neuronal morphology and function in mouse models \[[@B21]\]. Loss of both alleles of a TSC gene can result in the formation of hamartomas common to TSC as is demonstrated by LOH studies \[[@B13],[@B15]-[@B18]\]. These points clearly suggest that pathways modulated by hamartin and tuberin are sensitive to gene dosage effects. If a 50% reduction in expression of a TSC gene is sufficient to cause disease, it is plausible that smaller variations in expression, such as the 10-30% that we found in our experiments, might be sufficient to influence phenotype. In our control sample group, this level of variation in allelic expression of *TSC1*or *TSC2*does not result in a phenotype, as both alleles encode normal proteins. This degree of variation in mRNA expression combined with mutation of a TSC gene allele may be sufficient to influence phenotype either positively or negatively. It has previously been reported that a 50% decrease in the expression of a single allele of the adenomatous polyposis coli tumor suppressor gene (*APC*), representing an overall 25% decrease of APC mRNA expression, is sufficient to cause the development of familial adenomatous polyposis\[[@B41]\]. An additional study of a gene associated with osteoarthritis (*GDF5*) discovered that a promoter polymorphism which created a small reduction of the expression of the T allele (less than 27%), significantly increased individuals susceptibility to developing osteoarthritis \[[@B53]\]. These reports indicate that even small variations in allelic expression are important to disease outcomes. This supports our hypothesis that variation in expression of the TSC gene alleles, particularly in the presence of an existing genetic mutation, may influence disease severity in TSC patients. Tissue specific expression of genes is an important consideration when assessing the effects of variation in allelic expression. A sequence variant in the regulatory region of a gene might be relevant in some tissues and not in others, leading to conflicting results in different tissues \[[@B54]\]. Our study was performed in blood samples as this is a readily available tissue specimen. It is important to determine if allelic expression ratios measured in peripheral blood correlate with ratios measured in brain tissue, something that may be done using banked tissue samples. A difficulty we\'ve encountered is the availability of good-quality matched blood and brain tissue samples from which intact RNA and DNA can be extracted. Establishing a correlation between blood and brain expression levels is especially important as we try to relate expression of the *TSC*alleles in blood to severity of cognitive impairment in patients with TSC. The goal of our research is to determine if the levels of expression of mutant and wild-type alleles in patients with TSC, as measured in peripheral blood, correlates with phenotypic severity. To this end, we plan to next study familial cases of TSC, where multiple affected individuals have the same identical gene mutation, but are discordant in terms of disease severity. We shall determine if, in these multiplex families, disease severity is correlated with skewing of allele specific expression. Ultimately, we hope to use the combination of mutation detection and measures of AEI in blood samples to predict disease severity (at least in relation to cognitive impairment). Early identification of patients who are at risk for developing severe disease may allow for aggressive preventive interventions, and may protect the patient from additional damaging effects of the disease. Conclusions =========== We have concluded from our research that variation in *TSC1*and *TSC2*gene allele expression is common in normal individuals, as it was easily detected in a relatively small sample population. It is likely that this variation in allele expression will also be seen in some patients carrying TSC gene mutations and may therefore help to explain the intra-familial variation in disease severity frequently observed in TSC. These ideas can be tested in multiplex families that include patients with TSC that are discordant in disease severity (particularly cognitive symptoms). After such validation, we might be able to develop a simple blood test (ratio of wild-type to mutant TSC mRNA levels) that predicts disease severity in simplex cases of TSC. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= VN conceived of the study and VN, GJ and SR participated in its design and coordination. SR performed the DNA/RNA isolation and the AEI analysis. SO performed DNA sequencing and genotyping and provided theoretical advice. GJ and VN drafted the manuscript and SR and SO edited the manuscript. DS provided key technical advice and critical review of the manuscript. All authors read and approved the final manuscript. Pre-publication history ======================= The pre-publication history for this paper can be accessed here: <http://www.biomedcentral.com/1471-2350/12/29/prepub> Acknowledgements ================ This work was supported by grants from the NIH NINDS (VN; R21NS060025), NIH, ARRA Administrative Supplement (VN; 3R21NS060025-02S1), Science Foundation Arizona (VN; CAA 0257-08), Barrow Neurological Foundation (VN), National Basic Research Program of China - 973 Program (DS; 2010CB529600), and the National Natural Science Foundation of China (DS; 30870899).
PubMed Central
2024-06-05T04:04:17.175723
2011-2-23
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051885/", "journal": "BMC Med Genet. 2011 Feb 23; 12:29", "authors": [ { "first": "Garilyn M", "last": "Jentarra" }, { "first": "Stephen G", "last": "Rice" }, { "first": "Shannon", "last": "Olfers" }, { "first": "David", "last": "Saffen" }, { "first": "Vinodh", "last": "Narayanan" } ] }
PMC3051886
Background ========== [T]{.smallcaps}he TCF7L2-gene (*TCF7L2*; Transcription factor 7-like 2) encodes a transcription factor (Tcf-4) that is involved in the regulation of cellular proliferation and differentiation \[[@B1]\]. Variants in the *TCF7L2*have initially been shown to be associated with an increased risk for type 2 diabetes (T2D) in a genome-wide analysis of the isolate population of Iceland \[[@B2]\]. The strongest associations with T2D with a clear gene dose effect were reported for the rs7903146 variant \[[@B3]\]. The initial findings have been replicated in independent studies in multiple ethnic populations and were summarized in a large global meta-analysis \[[@B4]\]. The risk alleles actually predicted the progression from impaired glucose tolerance to diabetes prospectively \[[@B5]\] and an increased severity of the disease \[[@B6]\] in adults. Also, *TCF7L2*variants conferred a higher risk for early impairment of glucose metabolism emerging as soon as in childhood and adolescence \[[@B7]\]. Some clinical data suggested that the polymorphisms affected the capacity of pancreatic β-cells to secrete insulin rather than aggravating insulin resistance \[[@B5],[@B8]-[@B13]\], possibly by impaired β-cell proinsulin-processing \[[@B14]\]. This was further supported by expression data suggesting a putative role of *TCF7L2*in β-cell differentiation \[[@B12]\]. Considering the role of *TCF7L2*risk variants in insulin secretion, Pearson et al. \[[@B15]\] hypothesized that patients with diabetes risk alleles at rs12255372 and rs7903146 have an altered hypoglycaemic response to sulfonylureas (SUs) due to decreased β-cell function. They could indeed show that carriers of the diabetes risk alleles from the GoDART (Genetics of Diabetes Audit and Research Tayside) study were less likely to respond to SUs \[[@B15]\]. This study suggested that genetic variation in *TCF7L2*can alter response to therapy in T2D. Since a causal phenotype-genotype relationship can not be established with one initial report, replication studies are the backbone to the genetic epidemiology of complex diseases \[[@B16]\], and play a crucial role in pharmacogenomics as well. Therefore, we sought to evaluate the association between genetic variants in *TCF7L2*with SU treatment failure in an independent cohort from Germany. We recruited 189 patients with T2D being treated with SU agents and determined the *TCF7L2*rs7903146 diabetes risk genotype, which has been reported as having the strongest association with T2D \[[@B3]\]. We used a logistic regression with secondary SU failure defined as an A1C ≥7.0% after 6 months of SU treatment. Methods ======= Subjects -------- One hundred and eighty-nine patients with T2D, all of them being treated with SU agents, were recruited at the medical department of the Klinikum Lippe-Detmold, a large tertiary care hospital in East Westphalia, Germany, between 1 January 2000 and 30.11.2009. As the only hospital in the area, the one at Lippe-Detmold is responsible for the inpatient and outpatient management of all emergencies in the region. All patients had been treated with the SU drugs glimepiride (n = 147), glibenclamide (n = 39) and gliquidon (n = 3). Ninety-seven patients failed to respond to SU treatment according to our definition of A1C ≥7.0% after 6 months of treatment (76 patients treated with glimepiride, 19 with glibenclamide and 2 with gliquidon). Forty six patients were additionally treated with insulin. The mean (± SD) daily dose of SU agents was comparable between subjects who failed to respond to SUs and the controls (5.0 ± 3.7 mg vs. 6.8 ± 3.7 mg, *P*= 0.13 for glibenclamide; 2.5 ± 1.6 mg vs. 2.5 ± 1.4 mg for glimepiride, *P*= 0.99). As our patients were recruited within the framework of a study originally investigating the risk of hypoglycaemia \[[@B17]\], eighty nine patients had experienced a severe hypoglycaemia, which was defined as a symptomatic event requiring treatment with intravenous glucose and was confirmed by a blood glucose measurement of \<50 mg/dl (\<2.8 mmol/l). Seventy-two subjects were additionally treated with insulin sensitizing drug metformin (32 patients in the control group and 40 patients in the group of patients with SU treatment failure; *P*= 0.36, Table [1](#T1){ref-type="table"}). The protocol was approved by the Ethics Committee of the University of Münster School of Medicine and by the Ethics Committee of the University of Leipzig, School of Medicine. All patients gave written informed consent to participate in the study. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Clinical characteristics of all participants. ::: Treatment with sulfonylurea (A1C \<7%) Failure of treatment with sulfonylurea (A1C≥7%) *P-value* ------------------------------------- ---------------------------------------- ------------------------------------------------- ----------- N = 92 N = 97 **Gender**(Male/Female) 45/47 47/50 *0.95\** **Age**(yr) 78.2 ± 9.6 78.3 ± 9.0 *0.98* **BMI**(kg/m^2^) 26.8 ± 5.2 27.0 ± 4.7 *0.71* **Creatinine**(mg/dl) 1.73 ± 1.20 1.52 ± 0.55 *0.13* **Creatinine clearence**(ml/min) 42.96 ± 22.61 42.10 ± 18.77 *0.79* **A1C**(%) 6.13 ± 0.51 7.65 ± 1.40 *\<0.001* **Age at onset of diabetes**(yr) 68.0 ± 13.4 66.0 ± 10.9 *0.28* **Diabetes duration**(yr) 10.2 ± 9.5 11.9 ± 8.4 *0.20* **Co-medication**(n all drugs) 7 ± 3 7 ± 3 *0.29* **Sulfonylurea daily dose**(mg) 3.68 ± 6.40 4.24 ± 6.85 *0.56* **Metformin treatment**(n patients) 32 40 *0.36\** Data are mean ± SD; *P*- values for comparisons between genotypic groups by ANOVA statistics; \*- χ^2^test. ::: Genotyping of rs7903146 ----------------------- Genotyping of rs7903146 in all study subjects was done using the TaqMan allelic discrimination assay (Assays-on-Demand (TM), SNP Genotyping Products; Applied Biosystems, Inc.) on an ABI PRISM 7500 sequence detector (Applied Biosystems Inc.) according to the manufacturer\'s protocol. The genotype distribution was consistent with Hardy-Weinberg equilibrium (*P*\> 0.05). Genotyping success rate was \>99%, and duplicate genotyping concordance was 100%. Statistics ---------- Standard descriptive and comparative statistics (χ^2^test, t-test) were used to characterize and compare clinical parameters in different groups (controls, cases). Logistic regression analyses were used to calculate the effects of investigated factors on SU treatment failure, which were reported as odds ratio with 95% CI (confidence intervals). In the additive model, homozygotes for the major allele, heterozygotes and homozygotes for the minor allele were coded to a continuous numeric variable for genotype (as 0, 1, 2). Data were analyzed using the SPSS software package (version 15.0; SPSS, Inc., Chicago, IL). Results ======= Clinical characteristics of all study participants are given in Table [1](#T1){ref-type="table"}. As expected, the subjects with failure of SU treatment had a higher A1C than the controls (Table [1](#T1){ref-type="table"}). However, both groups were comparable in regard to the age, gender, age at onset of diabetes, duration of diabetes and creatinine clearance and co-medication presented as number of drugs taken by the patient (Table [1](#T1){ref-type="table"}). Also the number of patients additionally treated with metformin was similar between the groups (Table [1](#T1){ref-type="table"}). In the univariate logistic regression analyses, the *TCF7L2*genotype was the only predictor of SU treatment failure (Table [2](#T2){ref-type="table"}). The rs7903146 T allele was significantly more frequent in the group of patients who failed to respond to SU (36%) than in the control group (26%) \[*P = 0.046;*odds ratio (OR): 1.57 (1.01-2.45) in an additive mode of inheritance\] (Table [3](#T3){ref-type="table"}). In the control group, 56.0% of subjects had the CC, 36.3% had the CT and 7.7% had the TT genotype. Among patients who failed to respond to SUs, 41.2% were CC homozygous, 46.4% were CT heterozygous and 12.4% were TT homozygous (Table [3](#T3){ref-type="table"}). ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Univariate regression analyses of predictors on failure of sulfonylurea treatment in patients with type 2 diabetes. ::: **Odds ratio**(95% CI) *P-value* ---------------------------------------------------- ------------------------ ----------- **Gender** 0.98 (0.56-1.74) *0.95* **Age**(yr) 1.00 (0.97-1.03) *0.98* **Diabetes duration**(\<5 yrs vs. \>5 yrs) 1.65 (0.86-3.17) *0.13* **Sulfonylurea daily dose**(mg) 1.01 (0.97-1.06) *0.57* ***TCF7L2*genotype**(rs7903146; per allele effect) 1.57 (1.01-2.45) *0.046* ***TCF7L2*genotype**(CC vs. TT) 2.09 (1.02-4.27) *0.043* ::: ::: {#T3 .table-wrap} Table 3 ::: {.caption} ###### Effect of rs7903146 genotype on sulfonylurea treatment failure under logistic regression analysis. ::: ------------------------------------------------------------------------------------------------------------------------------------------------------------------- Genotype rs7903146 Total Controls\ Failure of treatment with sulfonylurea\ Frequency of T-allele\ Additive\ (A1C \<7%) (A1C≥7%) (controls vs. treatment failure) *[P]{.underline}*[value]{.underline}\ OR (95% CI) -------------------- ------------ ------------ ----------------------------------------- ---------------------------------- --------------------------------------- n = 188 n = 91 n = 97 CC 91 (48.4%) 51 (56.0%) 40 (41.2%) CT 78 (41.5%) 33 (36.3%) 45 (46.4%) 0.26/0.36 ***[0.046]{.underline}***\ 1.57 (1.01-2.45)\ TT 19 (10.1%) 7 (7.7%) 12 (12.4%) ------------------------------------------------------------------------------------------------------------------------------------------------------------------- ::: To investigate whether the rs7903146 effect is specific to the mechanism of action of SUs, we evaluated the genotype effects on response to a non-insulin secretagogue metformin. By analysing 72 metformin-treated individuals only, no effect of the genotype on SU treatment failure was found \[*P*= 0.98; OR 1.01 (0.50-2.03)\]. Secondary confirmatory analyses ------------------------------- In secondary analyses we used a logistic regression with secondary SU failure defined as the addition of insulin after at least 6 months of SU therapy and corresponding A1C measurement of ≥7.0%. Based on these criteria 46 patients from our cohort failed to respond to SU treatment and were additionally treated with insulin. In the univariate logistic regression analyses including 46 patients who failed to respond to SU treatment and 143 control subjects, diabetes duration (\<5 yrs vs. \>5 yrs) appeared to be the strongest predictor of SU treatment failure \[OR: 4.06 (1.50-11.01), *P*= 0.006\]. We also assessed the effect of rs7903146 on SU treatment failure. The rs7903146 T allele was significantly more frequent in the group of patients additionally treated with insulin (40%) than in the control group treated only with SUs (28%) \[*P*= 0.03; odds ratio (OR): 1.73 (1.06-2.84) in an additive mode of inheritance\]. In the control group, 53% of subjects had the CC genotype, 39% had CT and 8% had TT. Among patients treated with insulin, 35% were CC homozygous, 50% were CT heterozygous and 15% had the TT genotype. The results remained materially unchanged even after including diabetes duration as a strong predictor of SU treatment failure in these analyses, thus indicating an independent effect of the genotype \[OR: 1.66 (0.99-2.79), *P*= 0.06 in additive model\]. Discussion ========== In the present study, we investigated the effect of *TCF7L2*diabetes risk T-allele at rs7903146 on therapeutic response to SUs. In univariate regression analyses, *TCF7L2*genotype was the only predictor of SU treatment failure. The rs7903146 T-allele conferred a higher risk for sulfonylurea treatment failure as it was significantly more frequent in the group of patients who failed to respond to SUs (36%) than in the control group (26%). After adjusting for diabetes duration the odds ratio did not change (OR = 1.57) and the *P*-value reduced just minimally (from *P*= 0.046 to *P*= 0.057), thus indicating independent effect of the *TCF7L2*genotype. Despite the smaller sample size and so, limited statistical power, our data are in line with findings reported by Pearson et al. \[[@B15]\], suggesting that variation in *TCF7L2*influences therapeutic response to SUs. Pearson et al. observed that homozygous carriers of the *TCF7L2*risk alleles (rs1225372 and rs7903146) were twice as likely not to respond to SUs as patients homozygous for the non-risk alleles \[[@B15]\]. Considering pretreatment A1C levels as covariate in logistic regression analyses even strengthened the association between sulfonylurea response and genotype at rs7903146 \[[@B15]\]. Even though the findings are consistent between the present study and that reported by Pearson et al., several differences should be noted. First, Pearson et al. investigated a total of 911 SU users of 4,469 patients with T2D from the DARTS/MEMO (Diabetes Audit and Research Tayside/Medicines Monitoring Unit) collaboration database, who were recruited to GoDARTS between 1997 and 2006 \[[@B15]\]. Second, SU failure was defined very restrictively as an A1C \>7% within 3-12 months after treatment initiation. According to these criteria, 42% of SU users failed to respond to the therapy \[[@B15]\]. In our study we chose a comparable, overlapping definition of secondary SU failure with at least 6 months of SU therapy and corresponding A1C measurement of ≥7.0%. According to this definition, 51% of our patients failed to respond to SU therapy. We are aware that the difference in SU treatment failure frequency may be due to various study designs but it is noteworthy that to date, there is no widely accepted definition of secondary SU failure. Due to the lack of uniform definition, the frequency of SU failure varies considerably between 22% and 50% after 12 and 36 months of treatment, respectively \[[@B18],[@B19]\]. The decreasing effectiveness of SUs results from progressive loss of β-cell function but also from patient related factors (dietary incompliance, weight gain, lack of exercise). Despite the above mentioned differences between the studies, frequencies of TT homozygous subjects in the groups of patients who failed to respond to the therapy (independent of definition) were significantly higher than in the control groups and were comparable between both studies (12% vs. 8% in the German patients and 16% vs. 8% in the GoDARTS study). Also, genotype distribution of the rs7903146 was similar, with 10% and 11% of diabetic population with 2 copies of the T-allele in our study and the GoDARTS study, respectively. Finally, similarly to the GoDARTS study, our data suggest that carriers of the T allele were 57% more likely to fail SU treatment; TT homozygotes were twice as likely as CC homozygotes. It is noteworthy that an alternate definition of SU treatment failure in our cohort based on addition of insulin after at least 6 months of SU therapy and corresponding A1C measurement of ≥7.0% yielded similar results. Even though not independent from the previous analyses, these findings provide further support for the role of *TCF7L2*genotypes in altered hypoglycaemic response to SUs. Interestingly, when using this definition of SU treatment failure, diabetes duration appeared to be a predictor of treatment failure along with the *TCF7L2*genotype. Nevertheless, the genotype effect was independent as even after adjustment for diabetes duration, the results remained materially unchanged. Although the *P*-value went from 0.04 to 0.06 the odds ratio reduced only minimally (from 1.73 to 1.66). Indirectly, our findings also support studies that favour the role of *TCF7L2*in the regulation of insulin secretion. However, we are aware that since the *TCF7L2*variants increase progression from IGT to diabetes \[[@B5]\], additional models considering diabetes therapy, particularly including a control group having been treated with a different antidiabetic agent - e.g., metformin, would be desirable to clarify whether the observed data reflect pharmacogenetic effects specific to SUs or rather a disease-genetic process. Indeed, such a control group treated with metformin was included in the GoDARTS study \[[@B15]\]. The study suggested pharmacogenetic effects of *TCF7L2*SNPs influencing therapeutic response to sulfonylureas but not metformin, since no association was seen between metformin response and *TCF7L2*variants \[[@B15]\]. Even though limited by the small sample size (N = 72), we also failed to observe any influence of *TCF7L2*genotypes on the response to metformin, as a non-insulin secretagogue, thus further supporting the notion that *TCF7L2*effect is specific to the mechanism of action of SUs. One of the major limitations of our study is the low sample size and so, limited statistical power. Taking into account genotype frequencies and the sample size in our study we had a statistical power of 80% (at α = 0.05) to detect genetic risk (odds ratio) of 1.8 for treatment failure in additive mode of inheritance (software Quanto version 1.2.2) \[[@B20]\]. In contrast, the GoDARTS study by Pearson et *al*. \[[@B15]\] had 80% power to detect risk (OR) as low as 1.3. Also noteworthy, given the *TCF7L2*diabetes risk genotypes make patients more resistant to the action of sulfonylureas, one would expect that carriers of the risk genotype should be less likely to become hypoglycaemic. However, in our study we could not observe any differences in the frequency of the diabetes risk allele between patients with and without hypoglycaemia (*P*= 0.30). Conclusion ========== In conclusion, present data strengthen previously reported findings suggesting altered therapeutic response to SUs in patients with T2D carrying the diabetes risk alleles at *TCF7L2*variants. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= MH was responsible for clinical characteristics of study subjects. AK and MS edited the manuscript and contributed to the discussion. AH and PK conceived and designed the study and wrote the manuscript. All authors read and approved the final manuscript. Pre-publication history ======================= The pre-publication history for this paper can be accessed here: <http://www.biomedcentral.com/1471-2350/12/30/prepub> Acknowledgements ================ This work was supported by grants from the Deutsche Forschungsgemeinschaft (KFO-152 \"Atherobesity\" to AK (KO3512/1-1) and DHFD to MS, PK). We would like to thank Ines Müller and Beate Enigk for their excellent technical assistance.
PubMed Central
2024-06-05T04:04:17.179099
2011-2-24
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051886/", "journal": "BMC Med Genet. 2011 Feb 24; 12:30", "authors": [ { "first": "Andreas", "last": "Holstein" }, { "first": "Michael", "last": "Hahn" }, { "first": "Antje", "last": "Körner" }, { "first": "Michael", "last": "Stumvoll" }, { "first": "Peter", "last": "Kovacs" } ] }
PMC3051887
Introduction ============ Valvular strands have been described as small, well-delineated masses with a predilection for the valvular endocardium \[[@B1]\]. Clinically these strands present as filiform material attached to cardiac valve edges and is detected by transesophageal echocardiography \[[@B2]\]. These strands, as visualized by transesophageal echocardiography are associated with systemic embolization, especially stroke and notably these strokes tend to occur among younger persons \[[@B3],[@B4]\]. Case report =========== A 32 year old man presented with an acute onset of right sided hemiparesis. This occurred within the matter of minutes without any preceding warning symptoms. He had no known illnesses or allergies. He was a non smoker who never had any previous surgery and did not use illicit drugs. He works in the pharmaceutical industry and never experienced any similar symptoms before. The right sided hemiparesis resolved spontaneously over the next three hours and at the time of clinical examination no objective neurological signs were present. An MRI and MRA scan of the brain and cerebral vasculature were normal. His electrocardiogram and biochemical analysis, including electrolytes, glucose, thyroid function and full blood count were within normal limits. Carotid-IMT and Doppler studies of both carotid arteries were normal. Holter electrocardiography excluded the occurrence of intermittent arrhythmias as a possible cause for embolism. Paradoxical embolism was excluded by the absence of both a patent foramen ovale and deep venous thrombosis. Infective endocarditis was excluded by the absence of positive blood cultures and vegetations. Transthoracic, two-dimensional echocardiography revealed a peculiar serpentine strand attached to the coapting edge of the mitral valve (see additional files [1](#S1){ref-type="supplementary-material"}, [2](#S2){ref-type="supplementary-material"} and [3](#S3){ref-type="supplementary-material"}). He was diagnosed with a valvular strand attached to the mitral valve as the cause for a cerebral embolism to the left mid-cerebral artery. He was treated with a combination of aspirin (100 mg daily) and clopidogrel (75 mg every second day). This maintained his platelet ADP function below 50%. Follow up during the following three years was without any further incidents. Discussion ========== Vilem Dusan Lambl, a Bohemian physician (1824-1895) were the first to describe the occurrence of small, filiform processes he observed on the aortic valve in 1856\[[@B5]\]. Today, these Lambl\'s excrescences are also referred to as valvular strands and have been observed on all native and prosthetic valves\[[@B5]\]. These strands may occur as single strands, in rows or even in clusters\[[@B5]\]. They can vary in length from 1 mm to 10 mm and are usually less than 1 mm in thickness\[[@B5]\]. Valvular strands are composed of a fibroelastic, avascular core, covered by a layer of endothelial cells\[[@B5],[@B6]\]. The exact pathogenesis of formation of these structures are still unclear, however current opinion is that the initiating factor is that of an endocardial lesion in areas of trauma and/or high shear stress\[[@B5],[@B6]\]. These denuded areas are then covered by fibrin with subsequent covering by an endothelial layer\[[@B5],[@B6]\]. The prevalence of valvular strands has been estimated as 5.5% in a general population referred for transesophageal echocardiography and 40% in patients with stroke of unknown cause\[[@B1],[@B2]\]. The differential diagnosis for valvular strands includes the following\[[@B5]\]: a myxoma, thrombi, valvular vegetations, nonbacterial thrombotic (marantic) endocarditis, cardiac metastases, a fibroelastoma and other primary cardiac neoplasms. Of all of the above, the most difficult distinction is that between a valvular strand and a fibroelastoma\[[@B5],[@B7]\]. Histologically, these two entities are very similar with both containing a central core of elastic connective tissue, covered by endothelium. However, valvular strands are covered by a single layer of endothelial cells, but fibroelastomas contain regions of multiple layers of endothelial cells\[[@B5],[@B7]\]. Echocardiographically, fibroelastomas are more bulky, with stalks or pedestals sometimes present and multiple, fingerlike projections on their surface\[[@B5]\]. As fibroelastomas are usually found on the mechanically less strained parts of valves and endocardium they tend to be larger than valvular strands\[[@B5]\]. Valvular strands (Lambl\'s excrescences) are always found on the affected valve\'s line of closure and this limits their growth\[[@B5]\]. Several published case reports have shown that valvular strands are associated with emboli to the coronary, pulmonary, spinal, retinal and cerebral circulation\[[@B1]\]. Specifically regarding stroke, numerous reports have demonstrated an association with valvular strands, particularly in young patients\[[@B3],[@B4],[@B8],[@B9]\]. The mechanism for embolic events is either that of thrombi forming on the strands which then embolize or it is possible that the valvular strand itself can embolize\[[@B2]\]. Direct visualization of thrombus on a valvular strand have indeed been described before\[[@B10]\]. In conclusion, a case of a valvular strand, attached to the coapting edge of the mitral valve is presented, giving a serpentine appearance to the mitral valve. This valvular strand was the cause for a cerebral embolism which presented with a transient right sided hemiparesis. This is the only current case in the literature, where the combination of aspirin and clopidogrel is used for the prevention of further episodes of cerebral embolism. In the only randomized treatment study to date, no difference in relation to efficacy of warfarin compared to aspirin was found in patients with valvular strands and previous embolic episodes\[[@B2]\]. For this reason a combination of antiplatelet therapy was initiated as a therapeutic trial. It is proposed that a randomized controlled study involving the combination of aspirin and clopidogrel is warranted in patients with valvular strands presenting with a first episode of cerebral embolism. Competing interests =================== The author declares that they have no competing interests. Supplementary Material ====================== ::: {.caption} ###### Additional file 1 **Serpentine mitral valve**. Transthoracic echocardiographic image. Note the mitral valvular strand, marked with +. ::: ::: {.caption} ###### Click here for file ::: ::: {.caption} ###### Additional file 2 **Serpentine mitral valve**. This is another transthoracic echocardiographic image of the same mitral valvular strand, marked with +. Note the difference in endoventricular position, compared with additional file [1](#S1){ref-type="supplementary-material"}, clearly demonstrating the mobile nature of the strand. ::: ::: {.caption} ###### Click here for file ::: ::: {.caption} ###### Additional file 3 **Serpentine mitral valve**. This is a movie clip, demonstrating the mobile nature of the mitral valvular strand, giving a peculiar serpentine appearance to the mitral valve. ::: ::: {.caption} ###### Click here for file :::
PubMed Central
2024-06-05T04:04:17.180997
2011-2-27
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051887/", "journal": "Cardiovasc Ultrasound. 2011 Feb 27; 9:7", "authors": [ { "first": "James", "last": "Ker" } ] }
PMC3051888
Introduction ============ The Northern Norway Regional Health Authority (NNRHA) trust is responsible for the specialist health care service and all patient transportations in northern Norway. This includes the Norwegian Arctic areas (Svalbard, Bear Island, Hopen and Jan Mayen). Svalbard is a group of islands reaching up to the 80th degree northern latitude and covers an area of 61,020 km^2^. The land area constitutes 16% of Norway. The largest island is Spitsbergen, and its municipalities are Lonyearbyen, Barentsburg, Svea, Hornsund and Ny-Ålesund. The main airport is located at Longyearbyen, but there is also a minor one at Svea. The main industries on the island are coal mines, tourism, education, research and satellite services. According to data from Statistics Norway <http://www.ssb.no>, as of January 2009 there were a total of 2,570 inhabitants (2,085 Norwegians, 470 Russians and 10 Poles) on the island. There is a rich fishing area in the Svalbard zone, and fishermen from various nations such as Great Britain, Germany, Spain, Portugal, Russia, Iceland, the Faroe Islands and Norway fish in the area. Whereas people living in the Arctic experience seasonable darkness and polar nights, the summer is light. For example, Longyearbyen experiences 4 months of seasonable darkness (no sun; 7 October - 8 March), including 2 months (14 November - 30 January) with complete darkness (\"polar night\"). \"In compensation\", there are 4 months of midnight sun during the summer (20 April - 23 August). The Norwegian health care service in the region is provided by a small hospital unit in Longyearbyen. The unit is run by the University Hospital of North Norway (UNN) trust and is staffed with three medical doctors (one surgeon and two general practitioners). According to standard procedure, at least one doctor stays on the island at all times. Due to the limited staff, the hospital serves as a \"preparedness hospital\" taking care of primary health care, casualties and emergency care. Rough weather conditions, often presenting with strong winds, ice, cold temperatures and seasonable darkness, introduce challenges to health care in the Arctic. Long distances and almost no alternatives for landing make it necessary to be very cautious concerning safety before and during flights. Peoples\' activities in the Arctic vary significantly around the year. The coal mines have reduced activity during the summer, fisheries experience limited access to the northern regions in winter because of enlarged polar ice coverage, cruise liners mainly operate in the area during summer, and polar adventure activities employing dog sleds or snowmobiles mainly take place during periods with daylight and snow (mainly spring and autumn). Based on this knowledge, we aimed to clarify the variations in patients\' diagnoses and flights pattern around the year. Methods ======= The Arctic is shown in Figure [1](#F1){ref-type="fig"}. Despite the remote location, the population at Svalbard requests health care of similar quality to that offered on the mainland. An efficient air ambulance service is of utmost importance to meet these expectations. To administrate the service, the four Regional Health Authority (RHA) trusts have together established a company named Luftambulanse tjenesten ANS <http://www.luftambulanse.no>. The company registers all air ambulance activities in the LABAS database, employing a specific report sheet filled out by the medical crew (specialised nurse or medical doctor). Furthermore, they administrate finances for the supply of air ambulance operations. In northern Norway, the operations have been performed by the company Lufttrnsport AS <http://www.lufttransport.no>. They employ Beechcraft King Air 2002/B200 airplanes and Augusta AW 139 helicopters. Air operations by the Norwegian Coast Guard (NCG; employing Lynx helicopters onboard), the Governor of Svalbard (GoS; operating a Super Puma helicopter at Longyearbyen), the Norwegian Air Force (NAF; operating Sea King helicopters at Banak and Bodø on the Norwegian mainland) and other nationalities\' prospective air operations in the region were not included. Due to range limitations, the Lynx and Super Puma helicopters in the region usually have to transport patients to Longyearbyen for treatment and/or transportation to the Norwegian mainland is carried out by airplane. Most patients taken care of by the Lynx or Super Puma crews are thus indirectly included in our survey. The NAF\'s Sea King helicopters operate on the Norwegian mainland and along its coastline. They very rarely operate in the Arctic. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **The Arctic Sea**<http://benmuse.typepad.com/ben_muse/arctic/>. The *white cover*is the Arctic ice as in September 2007. The *arrows*points to Svalbard (*northern end*) and Tromsø (*southern end*). ::: ![](1865-1380-4-1-1) ::: In February 2010, the LABAS database was analysed focussing on the time period between 1 January 1999 and 31 December 2009. The primary goal was to clarify the variations in patients\' diagnoses and flights pattern around the year. The following data were registered: \- Flight data: Date and time of start and end of task, time spent, state of emergency (non-urgent, urgent, emergent) according to the Norwegian Index for Medical Emergency Assistance \[[@B1]\], destination (hospital) and any delay of more than 15 min. \- Patient data: Sex, age, nationality, diagnosis (according to the international classification of diseases, ICD), oxygen support, intubation, analgesics given, degree of seriousness \[National Advisory Committee on Aeronautics (NACA) scale; the scale is shown in Table [1](#T1){ref-type="table"}\], intravenous administrations and the use of vasopressor drugs. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### The National Advisory Committee on Aeronautics (NACA) scale. ::: Score level Patient status ------------- ---------------------------------------------------------------------------------- NACA 0 No injury or illness NACA 1 Not acute life-threatening disease or injury NACA 2 Acute intervention not necessary, further diagnostic studies needed NACA 3 Severe, but not life-threatening disease or injury; acute intervention necessary NACA 4 Development of vital (life-threatening) danger possible NACA 5 Acute vital (life-threatening) danger NACA 6 Acute cardiac or respiratory arrest NACA 7 Death ::: Statistical analysis -------------------- The Microsoft Office Excel 2007, Microsoft Corp., Redmond, WA, was employed for the calculations and database. Statistical Package for Social Science (SPSS) version 16.0, SPSS Inc., Chicago, IL, was employed for statistical analyses. Cases with an unknown value for a particular variable were excluded from analysis involving that variable. Statistical analyses were performed employing descriptive statistics and bivariate correlation analysis. All *P*-values are two tailed and considered statistically significant when *P*\< 0.05. No approval from the regional ethics committee was necessary as no individual patient identifiable data were accessed by the researchers. Results ======= Three hundred forty-five patients and 321 flights were identified, and incidents were most common in April, June, July and August. Details are shown in Figure [2](#F2){ref-type="fig"}. Patient and task characteristics are shown in Table [2](#T2){ref-type="table"}. Most patients (93%) were transported to the University Hospital of North Norway (UNN) (Figure [1](#F1){ref-type="fig"}). ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Overview of air ambulance operations in the Norwegian Arctic during the time period 1999 - 2009. ::: Items Subgroup Patients \% Median age (yrs) Range ------------------------------- ---------------------------- ---------- ----- ------------------ ------- ***Patient characteristics*** All (n = 345) Age 345 100 47 0-92 Sex Female 117 34 41 2-88 Male 225 65 47 1-92 Sex not registered 3 1 ***Nationality*** Not Norwegian (total) 75 22 Russian 31 9 German 8 2 Swedish 5 1 British 2 0.4 Finnish 1 0.2 Faroe Island 1 0.2 Unspecified 27 8 ***Task characteristics*** Emergency status Non-urgent 84 24 Urgent 144 42 Emergent 117 34 Diagnosis Psychiatry 9 3 42 21-67 Infection 34 10 40 1-84 Heart and vascular disease 76 22 54 19-87 Bone fracture 71 21 48 2-80 Gynaecology/obstetrics 28\* 8 29 20-40 Cancer/tumour 4 1 57 49-73 ***Treatment*** Intubation 4 1 Oxygen 204 59 Analgesics 135 39 Vasopressors 34 10 \*Twenty-four of the patients were transported to give birth to their children on the mainland. ::: ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **The number of patients transported each month of the year**. ::: ![](1865-1380-4-1-2) ::: Heart and vascular disease together with bone fracture and infections were the most frequent diagnoses and constituted half of all cases (Table [2](#T2){ref-type="table"}). One tenth of the patients had a gynaecologic/obstetric condition. Seasonal variations are shown in Figure [3](#F3){ref-type="fig"}. Half of all fractures occurred in April and August. The male/female ratio was 1.6 (inhabitants at Svalbard have a male/female ratio of 1.3). Fractures were more common among the age group 40 - 60 years, but there was no statistically significant correlation between age and fractures (*P*= 0.833). ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **The number of patients transported per month according to the main diagnostic groups (infection, vascular disease and fracture)**. ::: ![](1865-1380-4-1-3) ::: Concerning severity, most (85%) cases scored 3 or 4 on the NACA scale. Details are shown in Figure [4](#F4){ref-type="fig"}. There was a correlation between NACA score and age (*P*= 0.027). This was because heart and vascular disease was more common among the elderly. The mean NACA score among the heart and vascular disease group was 4.1 versus 3.3 among the controls. Three fourth of the cases were classified as urgent or emergent, and the state of emergency was correlated to heart and vascular disease (*P*= 0.020) and gynaecologic/obstetric causes (*P*= 0.000). ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **The NACA score distribution among the patients**. ::: ![](1865-1380-4-1-4) ::: Most patients were transported during the daytime. Only 50 patients were handled during periods of polar night and 97 (28%) during the period of seasonable darkness. Few (14%) patients were handled between midnight and 08:00 a.m. Details are shown in Figure [5](#F5){ref-type="fig"}. No increase in the number of tasks was revealed during the study period (Figure [6](#F6){ref-type="fig"}). The mean time spent per flight (one way) was 3 h 33 min (range 1 h - 8 h 35 min). Thirty-five transports were delayed, and the mean delay was 36 min. The specific cause of delay was not registered. ::: {#F5 .fig} Figure 5 ::: {.caption} ###### **The number of patients transported according to time (0 - 24 h) of takeoff (0 = midnight)**. ::: ![](1865-1380-4-1-5) ::: ::: {#F6 .fig} Figure 6 ::: {.caption} ###### **The number of patients transported each year**. ::: ![](1865-1380-4-1-6) ::: Discussion ========== Heart and vascular disease together with bone fractures was the most frequent diagnosis. This has also been documented by other investigators \[[@B2],[@B3]\]. Gynaecologic and obstetric causes accounted for 10% of patients. This is because pregnant women are routinely evacuated to the mainland for childbirth. A similar situation has been described among Canadian Inuit residents in the Canadian Arctic \[[@B4]\]. Researchers have commented that evacuation for childbirth has deleterious social and cultural effects \[[@B4]\]. Canadians have therefore recently established community birthing centres in Nunavik and Nunavut. This is not a current policy for the Norwegian Arctic because of the limited number of women living in the region, risk factors and the capabilities (no permanent access to a surgeon) at the local hospital unit. The high frequency of fractures in August has also been documented in a prior Norwegian study from the Norwegian Coast Guard \[[@B5]\]. The authors argue that this situation is caused by the fact that workers and fishermen are less cautious when returning to work after their summer holiday. In the future, stroke patients may become a growing group among the air ambulance patients because there will be more elderly people and new treatment guidelines. The role of air ambulance (helicopter) services in the transfer of stroke patients has been illustrated by Thomas and colleagues \[[@B6]\]. Prior to thrombolytic therapy, a CT scan has to confirm the diagnosis. Because of the limited time window between symptom onset and initiation of therapy, an air ambulance service is important for the hasty transfer of patients to the mainland for CT scanning. We have documented the logistics of the air ambulance service in the Norwegian Arctic and the variations around the year. Whereas the geography of northern Norway makes it necessary to include both airplanes and helicopters in the service, many countries employ helicopter emergency medical services (HEMS) alone \[[@B7],[@B8]\]. However, HEMS has limitations. In northern Norway rough weather conditions are a significant problem, especially during winter. A study from the region revealed an access rate of only 40% between November and March \[[@B9]\]. Even in northern Norway, ground transportation may be a good alternative \[[@B10],[@B11]\]. However, because of the lack of roads and long distances, ground transportation is of limited value in the Arctic When appropriate, sea transport may be an alternative. Despite the patients being airborne, there was a significant one-way flying time. Such a time span has also been shown employing heavy search and rescue helicopters in the Barents Sea \[[@B12]\]. The complexity of running operations in remote and cold regions has been illustrated in Antarctica \[[@B13]\]. In this report a ski-equipped airplane was employed, and a critically ill patient was transported 9 h north to New Zealand. Daylight returns to Svalbard in early March, and in April people perform many outdoor activities. Dog sleds and especially snowmobiles are common means of transport. The sunlight reflected by the white cover of snow may cause \"white out\" and consequently an increased risk of accidents. Svalbard has the highest frequency of snowmobile accidents worldwide \[[@B14]-[@B16]\]. During a 3-year period (1997 - 2000), 107 snowmobile injuries were registered \[[@B15]\]. Most injuries (79.4%) occurred in the time period between March and May. This is in accordance with the peak of fractures in April shown in our survey. In the future, significant changes will occur in the Arctic. As the ice is melting because of worldwide climate changes, shipping may take advantage of new routes among Europe, Northern Russia, Asia and North America. Furthermore, polar adventure operations will become steadily more popular as the coast areas of northern Greenland and north of Svalbard will be available for longer periods. In such a setting, Svalbard may become an important base for air ambulance services in the Arctic. Air ambulance service is costly and limited in terms of resources, especially in the Arctic \[[@B17]\]. It should therefore be discussed whether passengers participating in polar adventure operations must have a declaration from their personal physician that they are fit for the journey. Such operations are very different from \"tropical\" cruise lines \[[@B18]\]. To achieve maximum value (health gain) for the money, an excellent fleet coordination system is mandatory. Furthermore, high-quality decision criteria for aeromedical evacuation are important \[[@B19]-[@B21]\]. This has been summarised with the words \"right patient, place and time\" \[[@B20]\]. Another limitation has been the access to competent crew members \[[@B22]\]. As long as the Norwegian government decides to keep and support the Norwegian municipalities on Svalbard, a basic health care infrastructure has to be funded. In light of the potential (shipping, fishery, oil/gas industry) development of the Arctic region, a parallel expansion of the health care infrastructure should be considered. Conclusion ========== The NNRHA trust has been responsible for safe air ambulance operations in the Arctic, serving both Norwegians and others. The pressure on the limited resources is strongest in April, June, July and August. In the future, shipping and polar adventure operations will increase the need for health care services in the Arctic, especially during summer and autumn. This should be focussed on in future model-based analysis. Author information ================== The author is a medical oncologist, professor at the Faculty of Medicine at the University of Tromsø and medical director at the North Norway Regional Health Authority. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= Both TME and JN took part in the design of the study. TME collected the data from the LABAS database and made overviews of the material. JN carried out the statistical analysis, searched the PubMed database for relevant studies/reports and wrote the article. All authors read and approved the final manuscript. Acknowledgements ================ The authors wish to thank the personnel at the library of the University of Tromsø for their support. Useful comments from colleagues at the NNRHA are also appreciated. The study was funded by the Northern Norway Regional Health Authority.
PubMed Central
2024-06-05T04:04:17.181845
2011-1-27
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051888/", "journal": "Int J Emerg Med. 2011 Jan 27; 4:1", "authors": [ { "first": "Jan", "last": "Norum" }, { "first": "Trond M", "last": "Elsbak" } ] }
PMC3051889
Introduction ============ Satisfaction is an important issue in health care nowadays. The emergency department (ED) is considered to act as a gatekeeper of treatment for patients. Thereby, EDs must achieve customer satisfaction by providing quality services. According to Trout, statistics show that the number of ED clients is steadily increasing. This is an indicator of the importance of planning quality services based on the needs of these patients. In order to plan successfully, understanding the views, needs and demands of clients is an essential step. A common tool to improve the quality of care in the ED is to conduct a client satisfaction survey to clearly explore the variables affecting the satisfaction level and causes of dissatisfaction. Clients\' satisfaction is a key component in choosing an ED for receiving services or even for recommending it to others \[[@B1]\]. Although it may seem impossible to keep all clients satisfied, we can achieve a high level of satisfaction by working on related indicators and trying to improve them \[[@B2]\]. Studies from other countries indicate that using the results obtained from satisfaction surveys can have a profound effect on the quality of services \[[@B3]-[@B5]\]. In this study, we examined the satisfaction level of clients presenting to the ED of Imam Reza Teaching Hospital, which is one of the leading EDs in northwest Iran, with approximately 65,000 admissions per year. Methods ======= This cross-sectional study with descriptive and analytical aims was conducted in 2008, and the participants included our ED clients. Taking into account that busy work hours, shifts, personnel, different providers, day of the week and type of client complaint have an effect on satisfaction level, we selected our sample randomly considering the above factors. The sample distribution of the population consisting of 500 ED clients was carried out using accidental quota sampling. In the study period, the number of clients was 1,630 in 1 week. In the morning shift 578, in the evening shift 611 and in the night shift 410 clients were seen at the ED. Considering the fact that 500 people were selected as the sample population, the quota for the morning, evening and the night shift was 35.5%, 37.5% and 25.2%, respectively. In the study period, for selecting the people in each shift, random numbers were used to choose the individuals for the study. The questionnaires were given to the patients after they agreed to complete them. No evidence of unwillingness was detected, and all consented to cooperate. The satisfaction questionnaire of the Press Ganey Institute, which is being used in most American hospitals with more than 100 beds, was implemented in this survey. The literature indicates that 49 EDs in general hospitals and a 2002 study in Milwaukee, Wisconsin, also used this questionnaire \[[@B3],[@B4]\]. This institute has reported the status of patient satisfaction with visits to the ED every year since 2004 using collected data from all 50 states in the US \[[@B6]\]. In our study, we used this questionnaire with minor modification of some items because Iran\'s admission, visit and discharge processes are somewhat different from those in the US. The items we added to the questionnaire are the following: 1\. The literacy status and educational background of the interviewee 2\. Satisfaction of the interviewees with the ED security guards\' courtesy and behavior The two items \"Personal Issues\" and \"Access to Care\" were completely omitted from the original questionnaire. We validated the revised Press Ganey questionnaire by distributing it to ED specialists and academic members to confirm its content validity. The study used the highly valid and reliable Press Ganey questionnaire consisting of 30 standard questions organized into four sections: 1- Identification and waiting time 2- Registration process, physical comfort and nursing care 3- Physician care 4- Overall satisfaction with the emergency department. Interviews were conducted by research team members. The language used in preparing the questionnaire was Farsi, which is the official language of the country. The interviewers did not wear uniforms or badges. After introducing the objectives of the research to the patients and learning about their willingness to participate, the interviews were started. Subjects were interviewed once they exited the ED, both those who were going to be hospitalized in a ward or who were being discharged from the ED. In this study, the waiting time before the first examination of the patient was also measured. The exact time of the patient\'s arrival was recorded in his/her medical records upon their arrival, as was the first examination by the physician. According to these recorded times, the minutes the patient had spent waiting could be determined. In order to reduce an interview bias, the interviewers were oriented in a session by academic members of the ED with respect to unifying their communication and the process of interviewing the patients. The collected data were analyzed using SPSS version 13. Nominal and ordinal scale data were reported as absolute and relative frequency, and normally distributed data were presented as means ± standard deviation. To determine any differences between groups, data were analyzed by X^2^test; the odds ratio and 95% confidence interval were calculated to determine the relationships between the variables examined. P \< 0.05 was considered to be statistically significant. Results ======= Analysis of the data indicates that 500 clients out of the total number of clients referred to the ED agreed to participate in the study. Demographic characteristics of the participants are fully indicated in Table [1](#T1){ref-type="table"}. Because some questionnaires were not fully answered by the participants, a small proportion of the data was regarded as missing. ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Demographic characteristics. ::: Population-specific demographic Percent ----------------------------------------- --------- **Gender**  Female 40.8  Male 59.2 **Level of education**  License & high education 14.3  Technician 9.5  Diploma 25.7  Under diploma 36.2  Illiterate 12.5 **Time of visit**  Morning 35.5  Evening 37.5  Night 25.2  Missing 1.8 **Patient\'s first visit here**  Yes 37.3  No 62.7 **Who has completed the questionnaire**  Patient 9.4  Another one 89  Missing 1.6 **Living location**  Urban 82.5  Rural 17.3  Missing 0.2 **Patient\'s disposition**  Discharge 60.6  Admission 18.9  Expired 0.7 ::: The data also indicate that 9.5% of the participants were patients, 89% were their relatives and 1.6% of them did not answer the questions completely. Also, 37.5%, 35.5% and 25.2% of the interviewees were admitted to the ED in the evening, morning and night shifts, respectively. Only 37.3% of them were using our ED services for the first time. The majority of the subjects we studied were male (59.2%), and 40.8% were female. One third were living in Tabriz, which is a major city and provincial center in Iran. The minimum age of subjects was 12 years and the maximum 92 years, with an average value of 43.9 years. Further analysis of the data revealed that in terms of the literacy and academic background of the interviewees, the largest group (36.2%) comprised those who were either illiterate or had left school before getting their high school diploma. The least frequently represented group (9.5%) was that with participants holding an associate degree (a degree equal to college completion). In other words, 50% of the subjects had received an education below the level of a high school diploma. The data also show that 60.6%, 18.4%, 18% and 0.7% of the patients who were admitted to the ED were discharged, hospitalized, referred or died, respectively. We need to mention the 1.8% of the population here that was regarded as missing. This study reveals that the waiting time (WT) for the first visit to emergency medicine residents or specialists was 24.15 min, with a maximum of 35 min and minimum of 1 min. For the association analysis between waiting time and satisfaction levels, *P*= 0.03 indicates that those with longer WTs were dissatisfied. Table [2](#T2){ref-type="table"} shows the satisfaction level of clients in regard to 20 items of the questionnaire. ::: {#T2 .table-wrap} Table 2 ::: {.caption} ###### Satisfaction level of clients in regard to 20 items of the questionnaire. ::: Question Very poor Poor Fair Good Very good -------------------------------------------------------------------------------- ----------- ------ ------ ------ ----------- Courtesy of staff in the registration area 4.5 2.7 16.3 2.7 4.5 Comfort and pleasantness of the waiting area 8.7 10 25.3 21.5 34.5 Comfort and pleasantness during examination 12.5 3.4 14.6 14.3 55.2 Friendliness/courtesy of the nurse 6.1 2.9 13 17.9 61 Concern the nurse showed for doing medical orders 6.2 3.8 12.9 28 56.3 Courtesy of security staff 6.8 2.3 12.7 18.6 59.6 Courtesy of staff who transfer the patients 11 4.3 11.5 19.6 53.6 Length of wait before going to an exam room 16.8 9.4 15.6 17.3 40.9 Friendliness/courtesy of the care provider 4.9 2.2 10.4 16.7 65.8 Explanations the care provider gave you about your condition 8.6 7.8 16.4 16.4 50.8 Concern the care provider showed for your questions or worries 7 7 18.5 18.8 48.7 Care provider\'s efforts to include you in decisions about your treatment 17.8 8.7 13.2 14.3 46 Information the care provider gave you about medications 10 8.3 14.5 17.8 49.4 Instructions the care provider gave you about follow-up care 7.8 8.1 11.3 15.6 57.2 Degree to which care provider talked with you using words you could understand 6.9 5.1 15.2 13.3 59.5 Amount of time the care provider spent with you 9.3 10.9 15.4 15.7 48.7 Frequency of being visit by physicians 9.8 5.5 19.3 16.7 48.7 Overall cheerfulness of our practice 7.7 5.8 23.3 28.3 34.9 Overall cleanliness of our practice 14.5 7.7 19.8 29.3 28.7 Likelihood of your recommending our practice to others 10.9 7.5 16.6 27 38 ::: Items with a high level of satisfaction included: physicians\' courtesy and behavior with the patients (82.5%), security guards\' courtesy (78.3%) and nurses\' courtesy with the patients (78%). The lowest level of satisfaction refers to the following items: care provider\'s efforts to get the patients involved in making decisions about their own treatment (26.5%), waiting time (WT) for the first visit (26.2%), and cleanness and neatness (22.2%). The mean waiting time for the patients to be visited by a specialist was 24.15 min, ranging between 35 min as the maximum and 1 min as the minimum waiting times. The highest level of satisfaction with the ED was related to physicians\' courtesy (83.1%), and the lowest level was related to service men\'s friendliness (15.4%). The participants also rated their overall satisfaction of care received during their visit as very high (35/9%), high (28.3%), average (23.3%), low (5.8%) and very low (7.8%). Thus, the data indicate that overall satisfaction was 63.2%, although (13.6%) were dissatisfied. Once the patients themselves were interviewed, their satisfaction level was 60.6%. On the other hand, their relatives\' satisfaction level was 63.2%. Also, 18.5% of patients and 13% of their relatives reported dissatisfaction. The difference in satisfaction rate between the two groups was statistically significant (*P*= 0.03). In regard to work shifts, subjects\' satisfaction with the morning, evening and night shifts were 62.4%, 64.3% and 63.3%, respectively. Their dissatisfaction levels were 12%, 12.7% and 14.3%, respectively. Although the overall dissatisfaction rate for the night shift was less than that for the other shifts, there was no meaningful statistical difference among the different shifts. The data also indicate that living area, either urban or rural, showed no meaningful relation to satisfaction level. The satisfaction levels in regard to the subjects\' educational background were 45.7%, 51.5%, 53.7%, 76.3% and 65.8% for those holding bachelor degrees and above, associate degrees, high school diplomas, those under the high school level and those who were illiterate, respectively. Dissatisfaction levels among them were 23.9%, 9.1%, 13.7%, 9.1% and 18.4%, respectively. Data analysis shows that those with higher educational levels were more dissatisfied (*P*= 0.05). Once the subjects were asked whether they would recommend this ED to others or would refer to it again, 65% and 18.4% indicated that they would and would not, respectively. Discussion ========== Patient satisfaction is considered one of the important quality indicator(s) at the ED \[[@B1]\]. Measurement of patient satisfaction stands poised to play an increasingly important role in the growing push toward accountability among health care providers \[[@B3]\]. According to the report of Press Graney Associates (2009), the emergency department (ED) has become the hospital\'s front door, now accounting for more than half of all admissions in the United States \[[@B6]\]. This has placed considerable strain on many facilities, with the increasing demand for service - much of it inappropriate to the site of care - leading to long waiting times, crowded conditions, boarding patients in hallways, increased ambulance diversions, and highly variable care and outcomes \[[@B6]\]. Due to the fact that the ED is a unique department among other medical care services, understanding of the factors affecting patient satisfaction is essential \[[@B5]\]. Our survey, like similar studies, indicates that the general satisfaction of clients is high, although there are many unmet needs \[[@B7]\]. Findings indicate that 34.9% of the clients show very high general satisfaction with regard to ED performance. Further analysis of the data shows that 13.5% have low satisfaction. In total, 86.5% of the clients rated their satisfaction as above average. The Press Ganey Emergency Department Pulse Report 2009 found that patient satisfaction rose in 2008, continuing a 5-year trend of improvement. This report, which represents the experiences of 1,399,047 patients treated at 1,725 hospitals nationwide between 1 January and 31 December 2008 in the US, reveals that overall patient satisfaction with the ED was 83.18% \[[@B6]\]. Our findings also indicated that there is an association between satisfaction and being the patient\'s relative, educational level, time of admission and resident area (rural or urban). However, further analysis reveals that except for the interviewees themselves (patients or their relatives) and their educational backgrounds as two factors, there is no meaningful association between other factors and satisfaction. Patients\' relatives were more satisfied with the ED than the patients themselves were, and the patient satisfaction level was lower in those with higher educational levels. Time of admission, gender difference and place of residence had no meaningful relation with satisfaction level. Patients who arrived in the emergency department between 2:00 p.m. and 8:00 p.m. reported higher satisfaction than those who arrived in the morning or overnight hours; however, there was no meaningful statistical difference among different times of the day. In the Press Ganey report the highest satisfaction with the emergency department was recorded in the morning hours. The influences of gender, race, educational level and place of residence on patient satisfaction were not assessed in this report \[[@B6]\]. Staffing patterns, patient volume and severity of the patient conditions may play a large part in these differences in satisfaction. In the night hours, waiting times may be on the rise as patient volumes have increased during the day. The study by Hall and Press (1996) in the US shows that variables such as age and gender do not have a profound impact on satisfaction level. It also shows that an association exists between patients\' satisfaction and the respect they receive from physicians and nurses during waiting times \[[@B5]\]. Aragon\'s study reveals similar results; overall satisfaction was equal despite gender \[[@B8]\]. Consistent with other research, our results demonstrated that patient gender does not materially influence ED patient satisfaction. The findings of the study by Omidvari and colleagues at five large hospitals of the Tehran University of Medical Sciences were to some extent similar to our findings: 85.6% and 41.8% of clients showed satisfaction above average and very good, respectively. Those with higher education were less satisfied, but there was no significant relationship between marital status, occupation, gender, work shift and satisfaction level. It is also true that those who waited longer were less satisfied \[[@B9]\]. In another study in provincial teaching hospitals in Ghazvin, Iran, 94.4% of the clients were satisfied with hospital services. In total, 59% were satisfied with services provided in the ED. This study shows that a meaningful relationship exists between age, gender, education level and satisfaction \[[@B10]\]. A systematic review that was undertaken to identify published evidence relating to patient satisfaction in emergency medicine carried out by Taylor and Benger (2004) showed that patient age and race influenced satisfaction in some, but not all, studies \[[@B11]\]. The findings of our study revealed that the average time a patient waited to be seen by a specialist or a resident in emergency medicine was 24.15 min. There was an association with satisfaction level; those who waited longer were less satisfied (*P*= 0.03). Hedge\'s study, which was conducted with 126 patients with an average waiting time of 13 min, showed similar findings; those who waited longer were less satisfied \[[@B12]\]. In another study in 2004 at Cooper Hospital in New Jersey, the satisfaction level was higher in those with serious illnesses or emergency needs. In this study they suggested that the reduction in average waiting time was an important factor to increase the satisfaction level \[[@B13]\]. Compared with similar studies, the waiting time in our study was not much more; however, it was the second dissatisfaction factor that was rated. On the other hand, items with a high level of satisfaction included: physicians\' courtesy with patients, security guards\' courtesy and respect, and nurses\' respectful behavior with patients. The two important factors that influenced patient satisfaction seem to be the waiting time and staff service and courtesy. Aragon\'s investigation indicates that overall service satisfaction is a function of patient satisfaction with the physician, with the waiting time and with nursing service, hierarchically relating to the patients\' perception that the physician provides the greatest clinical value, followed by time spent waiting for the physician and then satisfaction with the nursing care \[[@B12]\]. In this regard, the literature provides ample evidence that satisfaction with waiting time, and nursing and physician care influences overall satisfaction with emergency room service and that these are key factors in the measurement of overall satisfaction. A cross-sectional study in Turkey among 1,113 patients indicated that there was a profound association between the physicians\' skills, friendliness or courtesy of physicians, the process of triage, information the care provider gave the patient about his/her illness and medications, the discharge process and satisfaction level. Lengthy waiting times had a direct relationship with patient dissatisfaction. On the other hand, reduction of waiting time had no effect on satisfaction level \[[@B14]\]. In the Press Ganey report (2009), patients who spent more than 2 h in the emergency department reported less overall satisfaction with their visits than those who were there for less than 2 h. Since much of the time in the ED is spent waiting - in the waiting room, in the exam area, for tests, for discharge - reducing waiting times should have a direct positive impact on patient satisfaction \[[@B6]\]. In another study in Turkey with 245 patients, lengthy waiting time and quality of ED services were the most important reasons for dissatisfaction and satisfaction of patients, respectively. The resulting belief was that patient satisfaction is an important indicator of quality of medical care service in EDs \[[@B15]\]. Findings of a study in teaching hospital EDs in Arak, Iran, indicate that admission wards and physician services receive 18 points out of 25 (72%) and 33 out of 45 (73%) in regard to patient satisfaction level. This study also demonstrated that there was a high dissatisfaction rate with the cleanness and suitability of public services and toilets \[[@B16]\]. In another study conducted in Iran, the satisfaction rate was as follows: medical and nursing care (78.6%), satisfaction with the environment (78.3%) and health status (68.8%). The majority of the sample (76.5%) was satisfied with the hospital EDs. Although the satisfaction level with quality services was considerably high, there was a substantial dissatisfaction with the availability of adequate facilities, physical environment, inpatient care and security staff courtesy \[[@B17]\]. Our study\'s findings reveal that a high satisfaction rate can be achieved by courtesy and respect shown to the clients by the staff. Communication skills seem to be an important factor in ED management and may improve patient satisfaction. A study in Hong Kong supports our belief that workshops on communication skills can improve doctors\' abilities in this area with a corresponding increase in patient satisfaction and decrease in patient complaints concerning ED doctors \[[@B18]\]. Our findings also indicate that only 15.3 percent of the sample was dissatisfied with students\' interventions in their treatment and examination process. Similar to other studies, our findings also showed that waiting time and the physical environment of the ED are among the factors causing much dissatisfaction and that they can be reduced by setting up a good triage system and trying to create a neat environment. The literature indicates that the comfort of the waiting room and cleanliness of the ED environment are also important patient satisfaction factors in the US: Those who rated the waiting room as \"very poor\" in comfort had dramatically lower overall satisfaction with their visit than those who rated the comfort of the waiting room as \"very good\" \[[@B6]\]. Moreover, a research study in Hazrat Rasoul Hospital (Tehran, Iran) revealed that by setting up a waiting room, using guide signs, admitting patients with a bedside form and having a member of the staff welcome clients raised the level of satisfaction considerably, from 49% to 83% in 2 years of follow-up \[[@B19]\]. In a similar study in 2004-2006, after an intervention moving the ED to a new location, establishing a quality management system, hiring ED specialists and experienced nurses and mechanizing the infrastructures, the satisfaction trend improved progressively in four stages from 59.7% to 64.2%, 71.4% and then 74.4% \[[@B20]\]. Thus, according to the findings of this study and similar ones, in order to raise the satisfaction level, EDs need to define their processes very clearly, especially those processes related to diagnosis and treatment, admission and discharge, and sorting emergency patients from acute cases admitted to the ED. On the other hand, EDs that cannot reduce waiting times can recover some patient satisfaction by improving the comfort of their waiting rooms. Hospitals can analyze their patients\' comments to find ways to improve the comfort level. Simple things such as repairing the air conditioning or replacing the chairs may have a noticeable effect on the patients\' perceptions of the ED. In Tailor\'s study in Australia, it was evident that staff orientation with an educational film and workshop on how to communicate effectively with patients and having a nurse to explain the diagnostic and treatment processes to patients improved the patient\'s satisfaction levels \[[@B21]\]. Although the skill of health care providers and their friendliness and courtesy are important factors in patient satisfaction, effort should focus on shortening the waiting times as well as improving patients\' perceptions about waiting in the ED. While longer waiting times increased patient frustration, it was not known whether differences in waiting time reflected actual differences in clinical quality. Patient perceptions of emergency department care quality were also much lower than perceptions of care quality at other ambulatory care providers, even for patients with similar waiting times. Limitations =========== There are some serious confounding factors in our study. We believe that evidence-based interventions can be adopted based on such survey data. However, the survey results might not be generalizable because of regional differences. We did not measure the time spent in the ED from patients\' arrival until disposition. This seems to be another important factor that may have a noticeable effect on patient satisfaction. Patients with different presentations might have different satisfaction rates, and the severity of cases may influence satisfaction rates, e.g., people who are in a great deal of pain are likely to be dissatisfied. There are different types of questionnaires to measure patient satisfaction. Which patient satisfaction measurement can be further integrated into an overall measure of clinical quality is unknown. Variation in measurement tools, however, hinders making patient satisfaction a reliable part of the quality equation. Data on patient satisfaction are currently collected by various entities for different purposes and at different levels in the health care system. The questionnaire used in our study is from the Press Ganey Institute. Another questionnaire that is commonly used in Europe is the questionnaire developed by the Picker Institute. The Picker questionnaire focuses on the patient care processes and can be used in similar studies. Conclusion ========== Our findings showed that in order to provide optimal ED services and win patients\' satisfaction, research-based interventions are needed in areas such as clinical care processes, nursing services, staff behavior and treatment of patients, physical environment and waiting time. To make these improvements, institutionalizing quality management in health services is a must, and using its feedback in a systematic way can enhance efficiency and patient satisfaction with the ED. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= HS, RGV and RRG conceived of the study, participated in its design and coordination, and wrote the first draft of the manuscript. CG, AJR and MS developed the study design and contributed to manuscript preparation. SS and PR participated in the design of the study and performed the statistical analysis. All authors read and approved the final manuscript.
PubMed Central
2024-06-05T04:04:17.184286
2011-1-27
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051889/", "journal": "Int J Emerg Med. 2011 Jan 27; 4:2", "authors": [ { "first": "Hassan", "last": "Soleimanpour" }, { "first": "Changiz", "last": "Gholipouri" }, { "first": "Shaker", "last": "Salarilak" }, { "first": "Payam", "last": "Raoufi" }, { "first": "Reza Gholi", "last": "Vahidi" }, { "first": "Amirhossein Jafari", "last": "Rouhi" }, { "first": "Rouzbeh Rajaei", "last": "Ghafouri" }, { "first": "Maryam", "last": "Soleimanpour" } ] }
PMC3051890
Introduction ============ Hemotympanum is most often associated with basilar skull fractures or nasal packing. Only six cases associated with spontaneous epistaxis have been described in the literature \[[@B1],[@B2]\]. Because of this rare situation, we present the case of a 51-year-old woman with bilateral hemotympanum secondary to spontaneous epistaxis. Initial evaluation must include an audiogram and radiological imaging (computed tomography, magnetic resonance imaging, etc.). Close follow-up of the patient is necessary for reducing the risk of long-term sequelae such as cholesterol granuloma \[[@B3]\]. Case report =========== A 51-year-old woman was referred to the emergency department with a complaint of epistaxis associated with exercise. She had been sweeping her house when she noticed the epistaxis. Her history indicated that after epistaxis had started, she went to the sink and cleaned her nose with water. She had pressed on her nose and called an ambulance. About 30 min after the start of epistaxis, an ambulance and emergency doctor arrived. The bleeding stopped while she was in the ambulance. Her blood pressure was 125/80 mmHg. She had an unremarkable past medical history and did not have coagulation diathesis or trauma/barotrauma, nor was she undergoing anticoagulant or salicylate therapy. She complained of slight hearing loss and a feeling of fullness in both ears. The physical examination was normal except for red-blue tympanic membranes and bilateral septal excoriation. There were no other petechiae or ecchymoses on the skin or mucous membranes. Her hematologic, biochemical and coagulation tests were also normal. Temporal bone fracture was ruled out by computed tomography scan. She was referred to the emergency department 2 days after the problem had started. In our examination, we found bilateral blue ear drums (Figures [1](#F1){ref-type="fig"} and [2](#F2){ref-type="fig"}), inactive epistaxis and septal excoriation (Figure [3](#F3){ref-type="fig"}). An audiogram demonstrated moderate bilateral conductive hearing loss, and the tympanogram findings were type b (flat type). After consulting an otolaryngologist, we prescribed amoxicillin (2 g/day). Five days after starting the medication, the patient\'s otoscopic findings and temporal MRI were normal at the control visit. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **Endoscopic view of right tympanic membrane**. ::: ![](1865-1380-4-3-1) ::: ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **Endoscopic view of left tympanic membrane**. ::: ![](1865-1380-4-3-2) ::: ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **Endoscopic view of septal excoriation**. ::: ![](1865-1380-4-3-3) ::: Idiopathic or spontaneous hemotympanum is an uncommon disorder characterized by a black-blue tympanic membrane discoloration as a result of recurrent hemorrhage in the middle ear or mastoid in the presence of Eustachian tube obstruction. Initial evaluation of a blue middle ear mass includes an audiogram and computed tomography (CT) scan with intravenous contrast. CT may identify congenital vascular malformation or bone erosion due to chronic otitis media or tumors. A magnetic resonance imaging (MRI) scan is useful to distinguish hemotympanum from a vascular tumor and to avoiding angiography, which is associated with significant morbidity. Evidence suggests that secretory otitis media and spontaneous hemotympanum are different phases of the same disease process. Discussion ========== Epistaxis is common and occurs more commonly in male than female patients. Epistaxis is noted at higher incidence in older patients \[[@B4]\]. It is secondary to local or systemic causes. Nasal trauma (surgical, digital), foreign bodies in the nasal passage, topical sprays or dust, inflammatory nasal diseases, septal deformities, tumors and vascular aneurysms can be the local factors \[[@B5],[@B6]\]. Coagulation deficits, Osler-Weber-Rendu disease and arteriosclerotic vascular diseases are possible systemic factors \[[@B5],[@B6]\]. Also regular uptake of anticoagulants can cause spontaneous bilateral hemotympanum \[[@B7]\]. The vascular supply of nasal mucosa originates from the external and internal carotid arteries. Kiesselbach\'s plexus, which is on the anterior part of the septum, is the site of most epistaxis events \[[@B6]\]; it is also known as Little\'s area and is rich in vascular supply \[[@B5]\]. Especially temporal bone fractures, nasal packing, anticoagulant therapy, chronic otitis media and coagulation deficits are the causes of hemotympanum \[[@B8]-[@B10]\]. It is most often associated with temporal traumas rather than nasal packing \[[@B1]\], but occasionally nasal packing, which can lead to peritubal lymphatic stasis, is a cause of hemotympanum \[[@B11]\]. Dysfunction of the Eustachian tube is thought to be the reason for spontaneous hemotympanum secondary to epistaxis \[[@B1]\]. In the case presented here, there was no history of nasal packing, so retrograde blood reflux to the Eustachian tube could have been the cause because there was a history of nasal pressure that could have caused reflux to the Eustachian tubes. Computed tomography or magnetic resonance imaging is necessary for making the differential diagnosis concerning the etiology of epistaxis \[[@B12]\]. In temporal traumas a fracture line could be visible on the scan, and chronic middle ear effusion can also be seen in cases of chronic otitis media. In patients with a basilar skull fracture, there can also be facial paralysis, tympanic membrane perforation or otorrhea. In patients with chronic otitis media, retraction pockets on the tympanic membrane are also visible. All patients with hemotympanum need close follow-up. A fluid-filled middle ear cavity may result in conductive, sensorineural or mixed hearing loss \[[@B13]\]. Not the type of fluid in the middle ear but rather the amount of fluid affects the rate of hearing loss \[[@B14]\]. To prevent persistent effusion, physicians must treat the patient with antimicrobial drugs \[[@B15]\]. The hearing deficits normalize after the middle ear effusion has been absorbed. Persistency of fluid may lead to permanent conductive hearing loss. Myringotomy with tube placement is needed for persistent effusions \[[@B16]\]. All patients with hemotympanum must be followed up closely to ensure resolution. Conclusion ========== Generally temporal bone fractures, nasal packing, anticoagulant therapy, chronic otitis media and coagulation deficits are the causes of hemotympanum. However, infrequently epistaxis is the causative factor. In patients with spontaneous hemotympanum secondary to epistaxis, emergency doctors need to work with otolaryngologists for close follow-up. Physicians must remember that to prevent long-term sequelae of persistent hemotympanum, myringotomy may be required. Consent ======= Written informed consent was obtained from the patient for publication of this case report and accompanying images. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= VF intervened the patient in the emergency department. KO and FK were conceived of the study, and participated in its design and coordination. All authors read andapproved the final manuscript.
PubMed Central
2024-06-05T04:04:17.187995
2011-1-27
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051890/", "journal": "Int J Emerg Med. 2011 Jan 27; 4:3", "authors": [ { "first": "Vural", "last": "Fidan" }, { "first": "Kemal", "last": "Ozcan" }, { "first": "Filiz", "last": "Karaca" } ] }
PMC3051891
Introduction ============ The carpal scaphoid bone is known to play a key role in the function of the wrist. Therefore, pathologic abnormalities of the scaphoid may have serious consequences. Scaphoid fractures account for 2-7% of all fractures and predominantly occur in young, active males. Of all carpal fractures, 82-89% concern scaphoid fractures. The incidence in Western countries is approximately five fractures in every 10,000 inhabitants \[[@B1]-[@B3]\]. However, because of the diagnostic challenge that scaphoid fractures often present, the exact incidence is unknown. Given the above, the indistinct method of treatment and the tremendous research efforts over the last decade resulting in up to 3,200 PubMed hits, the scaphoid remains one of the most interesting carpal bones for researchers. Anatomy ------- The scaphoid fracture was first described in 1905 by Destot, a French surgeon, anatomist and radiologist \[[@B4]\]. The word scaphoid is derived from the Greek word for boat (skaphos). Because of its unique anatomy it can articulate with all five surrounding bones (distal radius, os capitatum, os lunatum, os trapezium and os trapezoideum). Eighty percent of the scaphoid bone consists of cartilage, leaving limited space for entrance of the supplying arteries. The main blood supply is through retrograde branches of the radial artery. The dorsal branch of the radial artery provides 75% of the blood supply through the foramina. The palmar branch reaches the scaphoid via the distal tubercle. Contrary to the proximal pole, the distal pole and the tubercle have an independent vascularisation. The proximal pole depends on blood supply from the distal pole through the scaphoid bone. In case of a proximal scaphoid fracture, the blood supply through the scaphoid bone is interrupted, making the healing process of the proximal pole particularly more difficult \[[@B5]\]. Clinical presentation --------------------- The typical trauma mechanism is a fall on the outstretched hand with the wrist in radial deviation inducing impact of the palm. This trauma mechanism also puts the dorsal radius and the scaphoid-lunatum (SL) ligament at risk. The above-described mechanism causes the scaphoid bone to impact against the distal radius concavity, causing a fracture most likely to occur in the middle of the scaphoid. There is an increased chance of a proximal pole fracture when falls occur on the wrist in abduction \[[@B6]\]. Interestingly, the same trauma mechanism causes supracondylar humeral fractures in children and distal radius or carpal fractures in the elderly \[[@B7]\]. There are no reliable clinical tests to confirm or rule out the diagnosis of a scaphoid fracture. An observable swelling of the anatomic snuffbox (Figure [1](#F1){ref-type="fig"}) increases the chance of a scaphoid facture. Pain when applying pressure on the anatomic snuffbox or the scaphoid tubercle, or when applying axial pressure on the first metacarpal bone all have a sensitivity of 100%. However, their specificity is 9%, 30% and 48%, respectively \[[@B8]\]. Other studies found a higher specificity for a tender tubercle (57%). An over 50% diminished grip strength compared to the contralateral side increases the positive predictive value for a scaphoid fracture \[[@B9],[@B10]\]. ::: {#F1 .fig} Figure 1 ::: {.caption} ###### **The anatomic snuffbox**. ::: ![](1865-1380-4-4-1) ::: Imaging of the scaphoid ======================= There are several different diagnostic modalities to detect a scaphoid fracture. These include conventional radiographs, computed tomography (CT scans), magnetic resonance examination, bone scintigraphy and sonograms. Each procedure has its specific advantages and disadvantages (Table [1](#T1){ref-type="table"}). ::: {#T1 .table-wrap} Table 1 ::: {.caption} ###### Sensitivity and specificity for bone scans, MR examination and CT scans ::: Sensitivity (%) Specificity (%) --------------------------- ----------------- ----------------- Bone scan \[[@B19]\] 100 (83-100) 90 (81-96) MR examination \[[@B19]\] 80 (56-94) 100 (96-100) CT \[[@B48]\] 93 (83-98) 99 (96-100) ::: Conventional radiographs ------------------------ Scaphoid fractures are often missed with the use of conventional radiographs alone. Initial radiographs (Figure [2](#F2){ref-type="fig"}) detect at most 70% of all scaphoid fractures \[[@B11]\]. There is still no consensus regarding the different types of conventional radiographs. Anterior-posterior and lateral radiographs should be standard, and at least two additional views are advocated for a suspected scaphoid fracture \[[@B12]\]. ::: {#F2 .fig} Figure 2 ::: {.caption} ###### **Initial radiograph (patient A): a postero-anterior view; b oblique view; c. lateral view**. ::: ![](1865-1380-4-4-2) ::: Even on the repeated radiographic exam after 10-14 days propagated by many clinicians in case of an occult fracture, a scaphoid fracture is often missed, since the additional sensitivity is low, although in case of sclerosis it could confirm the suspected diagnosis \[[@B13]-[@B15]\]. Computed tomography (CT) ------------------------ The costs and radiation exposure for a computed tomography (Figure [3](#F3){ref-type="fig"}) scan are comparatively low. CT is readily available in both hospitals and emergency departments, which enables CT confirmation of a suspected scaphoid fracture. CT imaging also allows adequate judgement of cortical involvement and is therefore often used in the decision-making process concerning whether or not to operate on scaphoid fractures. ::: {#F3 .fig} Figure 3 ::: {.caption} ###### **CT scan (patient B) sagittal view of a fractured scaphoid**. ::: ![](1865-1380-4-4-3) ::: Unfortunately, the sensitivity of CT is lower in comparison to bone scintigraphy \[[@B16]\]. A solid statistical statement about the CT as a diagnostic tool for scaphoid fractures is difficult to make because of insufficient inclusion of patients in research to date. Despite the high resolution and multiplanar reconstructions, the difficulty of the interpretation of a CT scan lies in the distinction between channels in the trabecular bone pattern and fractures. This restricts the specificity of the CT scan \[[@B16]-[@B18]\]. Bone scintigraphy ----------------- Using a bone scan (Figure [4](#F4){ref-type="fig"}), scaphoid fractures can be ruled out with a high level of confidence. For this reason it is recommended as a second diagnostic modality of choice after conventional radiographs. The sensitivity is close to 100%, whereas the specificity depends on the modality that is defined as the gold standard for comparison. Bone scintigraphy results in up to 25% false-positive outcome measures \[[@B15]\]. The procedure is reliable and relatively fast, but patients have to pay an extra visit to the hospital, and it requires intravenous radioactive isotopes. In addition, bone scintigraphy is expensive \[[@B19]-[@B21]\]. ::: {#F4 .fig} Figure 4 ::: {.caption} ###### **Bone scintigraphy (patient C) of the hands the patient with a scaphoid fracture on the right side**. ::: ![](1865-1380-4-4-4) ::: Magnetic resonance examination ------------------------------ Magnetic resonance (MR) examination is often recommended as a diagnostic modality for occult scaphoid fractures (Figure [5](#F5){ref-type="fig"}) \[[@B22],[@B23],[@B13]\]. Late MR examination (after 19 days) shows better results in comparison to bone scintigraphy in terms of sensitivity and specificity \[[@B20]\]. However, the early MR imaging within 1 day after trauma has a limited sensitivity of 80% \[[@B19]\]. The interpretation of a MR examination depends strongly on the experience of the clinician. When adequately performed, MR examination enables simultaneous diagnosis of soft tissue and ligament injuries. Considerable experience is needed for the distinction between swelling and oedema, micro-fractures or incomplete fractures, or complete but nondislocated fractures. The MR examination also has infrastructural restrictions. Not every hospital has an MR scan, and if available there are often many structural and organizational problems to overcome. ::: {#F5 .fig} Figure 5 ::: {.caption} ###### **Magnetic resonance imaging (patient D) of a waist fracture of the scaphoid**. ::: ![](1865-1380-4-4-5) ::: Sonogram -------- The routine use of ultrasound is not indicated to diagnose a scaphoid fracture. Low-frequency ultrasound has not proven to be of any advantage, whereas high-frequency ultrasound can be helpful in the diagnosis of a scaphoid fracture. The interpretation of ultrasound is again dependant on the level of experience of the clinician. The use of ultrasound in the diagnostic process of an occult scaphoid fracture is still subject to research and therefore not yet established as a useful standard diagnostic modality \[[@B24],[@B25]\]. In conclusion, a gold standard with a positive predictive value of 100% for scaphoid fractures does not currently exist. Routine radiographs at baseline are mandatory, and repeated radiographs are not indicated to detect occult scaphoid fractures. Univocal data regarding the advocated diagnostic tool for imaging suspected scaphoid fractures are still limited. Classification of scaphoid fractures ==================================== Many classifications are used for carpal scaphoid fractures. Three will be discussed here in order of their clinical relevance. Herbert classification ---------------------- The Herbert classification \[[@B26]\] is based on the stability of the fracture. Unstable fractures are fractures with a dislocation of more than 1 mm or an angulation of more than 15° between the fragments. Additional fractures, trans-scaphoid-perilunate dislocations, multi-fragment fractures and proximal pole fractures are also classified as unstable. MAYO classification ------------------- The MAYO classification \[[@B27]\] (Figure [6](#F6){ref-type="fig"}) divides scaphoid fractures into proximal (Figure [7](#F7){ref-type="fig"}) (10%), middle (70%) and distal (20%) fractures. Within the distal third, distinction is made between the distal articular surface and the distal tubercle. ::: {#F6 .fig} Figure 6 ::: {.caption} ###### **MAYO classification for scaphoid fractures**. ::: ![](1865-1380-4-4-6) ::: ::: {#F7 .fig} Figure 7 ::: {.caption} ###### **Proximal pole fracture (patient E) on a conventional radiograph**. ::: ![](1865-1380-4-4-7) ::: Russe classification -------------------- The anatomic classification according to Russe \[[@B28]\] predicts the tendency of the fracture to heal. The classification distinguishes among horizontal oblique, transverse or vertical oblique fracture lines. The vertical oblique fracture is unstable, whereas the horizontal oblique and the transverse fractures are more stable fractures. Treatment ========= The aim of the treatment is to achieve fracture consolidation and functional recovery whilst avoiding complications such as non- or mal-union. Therapeutic options consist of direct functional treatment, cast immobilisation of the fracture and joints, and operative treatment. Direct functional treatment --------------------------- The literature shows that a scaphoid fracture can be treated functionally. In case of a clinically suspected scaphoid fracture without radiological signs of a fracture, early functional treatment can be started using a bandage or an orthosis. Patients with persistent clinical suspicion of a scaphoid fracture should have repeated radiological evaluation within 7 days after the trauma to evaluate the current treatment strategy and to potentially adjust the treatment strategy as a result based on the radiographic findings. Inadequate immobilisation of a scaphoid fracture increases the chances for pseudo-arthrosis by 30% \[[@B29]-[@B31]\]. We therefore believe that there is no indication to treat a proven scaphoid fracture functionally without cast immobilisation or operative fixation. Cast immobilisation ------------------- In case of an occult or stable scaphoid fracture according to the current Herbert classification, cast immobilisation is still the therapy of choice. Scaphoid fractures are hard to immobilise, since nearly every motion of the hand, wrist and forearm causes movement of the bone and pressure on the fracture line. Therefore, even an \"above the elbow\" cast may be applied \[[@B32]\]. There are different types of cast immobilisation for a scaphoid fracture either with or without inclusion of the thumb. There is no study proving a better consolidation with regard to the type of cast that is used; however immobilisation in slight dorsal extension seems to have a positive effect on the grip strength and range of motion of the wrist joint \[[@B33]-[@B35]\]. The duration of immobilisation varies, depending on the type of fracture and the outcome on repeated radiological check-ups, which serve as an estimation of fracture consolidation. Generally, a cast treatment of 6 weeks (Figure [8](#F8){ref-type="fig"}) should be sufficient in most non-displaced and stable fractures \[[@B36]\]. Cast immobilisation has been proven to be a reliable and successful treatment with low costs and a low complication rate. ::: {#F8 .fig} Figure 8 ::: {.caption} ###### **Treatment of scaphoid fractures**. ::: ![](1865-1380-4-4-8) ::: Operative treatment ------------------- With improved, minimally invasive surgical techniques, surgical treatment of non-displaced scaphoid fractures has increased. The advantage of operative management with percutaneous screw fixation (Figure [9](#F9){ref-type="fig"}) in a non-displaced fracture is the possibility of early functional treatment \[[@B37]-[@B39]\]. ::: {#F9 .fig} Figure 9 ::: {.caption} ###### **X-ray after percutaneous screw fixation of the scaphoid (patient F)**. ::: ![](1865-1380-4-4-9) ::: Operative treatment is indicated in unstable fractures according to the Herbert classification. However, there is no uniformity of opinion on the operative treatment of a non-dislocated fracture of the proximal pole. The scaphoid bone can be approached both from dorsal and volar directions. Distal and middle fractures are best approached from the volar side because of good exposure and conservation of the blood supply. Displaced proximal pole fractures require a dorsal approach because accurate placement of the screw will then be easier to perform. Because of the improved minimally invasive surgical techniques with limited trauma, an increase in surgically treated patients has evolved \[[@B40],[@B38]\]. In this manner, a prolonged immobilization period of often 8-12 weeks can be prevented. Wrist stiffness and reduced wrist strength were less frequently observed if a surgical procedure was successful. Moreover, the demand for strategies that allow early productivity of the young patient and the relatively high cost of prolonged immobilization have contributed to the shift towards surgical interventions. There is, however, still insufficient evidence concerning which treatment is preferable for the non-displaced scaphoid fracture \[[@B37]\]. Complications ------------- Both conservative and operative treatment may cause complications. These include delayed union, osteonecrosis, pseudo-arthrosis and the related instability, arthrosis and collapse of the carpal joint. These complications may result in serious functional restrictions with regard to mobility and grip strength. Additional complications in case of an operation are malalignment, failure to place the screw, re-operation, infections and soft tissue injuries. In case of a delayed union of the scaphoid fracture, a bone stimulator or magnetic field therapy can be used to achieve bone union \[[@B41]\]. Medicinal treatments are also described. However, evidence-based data are limited, and therefore this treatment is not generally accepted \[[@B42]\]. Pseudo-arthrosis often remains asymptomatic, and may become evident and symptomatic in case of a new trauma or in case of excess strain of the wrist joint. Pseudo-arthrosis in case of an operative treatment depends on the type of fracture and varies between 5 and 50% \[[@B43],[@B44]\]. A symptomatic pseudo-arthrosis is best treated operatively. Anatomical fracture reduction and intra-articular alignment will prevent an early arthrosis. Several operational techniques have been described. These always include debridement, realignment and implementation of a native vascularised or non-vascularised bone grafting, with or without the use of osteosynthesis \[[@B45],[@B46],[@B28]\]. The success rate of this procedure is between 74 and 94%. In case of proximal pseudo-arthrosis, the results are much worse \[[@B47]\]. There are no prospective randomized clinical trials that compare vascularised and non-vascularised bone grafting. Arthrosis can be a late complication of a scaphoid fracture. A sustainable reduction of pain and functional improvement are often no longer achieved in such cases. The so-called rescue operations in case of arthrosis are styloidectomy, denervation of the carpal joint, and the total or partial removal of the scaphoid with four-quadrant fusion (lunate bone, triquetral bone, capitate bone and hamate bone). Very few evidence-based data exist regarding the treatment of and diagnostic modalities for scaphoid fractures. Scaphoid non-union remains a difficult problem. Early recognition and improvement in treatment will decrease the incidence of this problem and will avoid late complications. Competing interests =================== No funds were received in support of this study. S.J. Rhemrev, M.D. Steven Rhemrev has been a trauma surgeon since 2001. He attended the University of Amsterdam Medical School in 1985. In 1995 he started his training for General Surgery at the Free University Medical Centre Amsterdam under the supervision of Prof. Dr. Haarman. In the past years he has continued his residency in Trauma Surgery at Medical Centre Alkmaar. He specialised in Traumatology at the VU Medical Centre with Prof. Dr. Patka and Prof. Dr. Haarman (2001-2003). He received a fellowship in Orthopaedic Trauma at Zams, Austria, and at the Liverpool Trauma Centre in Sydney, Australia. From 2003 to the present he has been working at the Medical Centre Haaglanden, which is a level 1 trauma centre in The Hague, The Netherlands, as a surgeon specialised in Trauma Surgery. He is the medical head of the Accident and Emergency Department. Since 2002 he has been doing research mainly on the upper extremities, especially the scaphoid bone. D. Ootes, M.S. Daan Ootes is a medical student. F.J.P. Beeres M.D., PhD. Frank Beeres is a third year resident at the Medical Centre Haaglanden. S.A.G. Meylaerts M.D., PhD. Sven Meylaerts is a trauma surgeon at the Medical Centre Haaglanden and consultant for the Accident and Emergency Department. I.B. Schipper M.D., PhD. Prof. Dr. Inger Schipper is a trauma surgeon at the Leids University Medical Centre. Authors\' contributions ======================= SR: collected the data, put the conclusions together and drafted the manuscript. DO: helped to find all the articles together, found the highlights, and drafted a part of the manuscript. FB: particepated in the design of the study helped with the statistics. SM: participated in the design of the study. IS: conceived of the study and helped with the final manuscript.
PubMed Central
2024-06-05T04:04:17.189276
2011-2-4
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051891/", "journal": "Int J Emerg Med. 2011 Feb 4; 4:4", "authors": [ { "first": "Steven J", "last": "Rhemrev" }, { "first": "Daan", "last": "Ootes" }, { "first": "Frank JP", "last": "Beeres" }, { "first": "Sven AG", "last": "Meylaerts" }, { "first": "Inger B", "last": "Schipper" } ] }
PMC3051892
Case One ======== A 32-year-old man was found confused and moaning in bed by family at 5 a.m., and brought in by family at 9 a.m. Family members stated he had eaten lunch and dinner with them the previous day, then went out drinking alcohol with friends and came home at 3 a.m. Past medical and surgical histories were unremarkable, and he takes no medications and has no allergies. On examination, his vital signs were stable (blood pressure 110/70 mmHg, heart rate 68 bpm, respiratory rate 12 bpm, oxygen saturation 93% room air, temperature 37°C), and the patient was unresponsive. He responded to sternal rub with moaning and moved all his extremities to painful stimuli. He smelled of sweet alcohol and did not answer questions. His eyes were open, pupils were reactive, and his head was normocephalic and atraumatic. He had no meningismus and no clonus. Cardiopulmonary and gastrointestinal examinations were normal, and he had no signs of trauma. A fingerstick point of care test indicated that the concentration of glucose in his blood was 27 mg/dl. The patient was given 30 ml of D50W, awoke immediately, jovial and smiling, and was observed for 1 h. While getting 500 ml of D5W, he ate some food, remained normoglycemic, and then was discharged. He did not return within 1 month. His diagnosis was alcohol-related hypoglycemia. Case Two ======== A 50-year-old man, known to be an alcoholic, presented after being found unresponsive at home in bed. He had been drinking the night before, but his family members could not arouse him in the morning. He had eaten all three meals the day and night before. Further history elucidated that he had had a cough for 1 month and 2 days of epigastric pain without vomiting, hematochezia, or diarrhea. He had no remarkable medical or surgical history, took no medications, and had no known drug allergies. His examination demonstrated a disheveled man who appeared unresponsive with only gurgling respirations (temperature 34.3°C, pulse 96, blood pressure 90/50, respiratory rate 20, oxygen saturation, 86% room air). He had no signs of trauma. His pupils were reactive and equal. He moved all extremities to painful stimuli and sternal rub, and his cardiopulmonary examination was normal. He had no meningismus and no clonus. His abdominal examination revealed epigastric guarding. There was no gross blood on rectal examination. His blood glucose concentration was 19.8 mg/dl as determined by a fingerstick. A chest x-ray was obtained because of hypoxia and demonstrated a possible left lower lobe infiltrate. The patient was given 25 ml of D50W and 500 ml of D5W. He awoke rapidly, and the results of his neurologic examination were normal, but he remained hypothermic and hypoxic with epigastric guarding. He was given oral omeprazole (as only oral proton pump inhibitors are available in Uganda), IV ranitidine, and IV ceftriaxone, and placed on an oxygen concentrator. The next day, the patient improved and was normothermic and normotensive, with normal oxygen saturation, and with normal abdominal and cardiopulmonary examination results. The patient was discharged with the diagnosis of alcohol-related hypoglycemia, gastritis, and aspiration pneumonia. He declined prescriptions for proton pump inhibitors or antibiotics on discharge. He did not return within 1 month. Case Three ========== A 55-year-old female presented to the ED after being found unresponsive in bed by friends in the morning. She was last seen by her neighbors the night before when they ate dinner together. Her neighbor stated that the patient does not regularly consume alcohol. Her past medical history was significant only for peptic ulcer disease, but she was not currently taking any medications. She had no known drug allergies. Examination revealed a well-nourished, hemodynamically stable (temperature 37°C, pulse 113, blood pressure 152/98, oxygen saturation 95% room air), non-toxic, unresponsive female. She withdrew all extremities to painful stimuli, and had no clonus and no meningismus. She had no signs of traumatic injuries; her pupils were reactive, and her cardiopulmonary and gastrointestinal examinations were normal. The blood glucose concentration, as determined by fingerstick, was 32 mg/dl. The patient received 15 ml of D50, improved immediately to a normal mental status, and had normal neurologic examination results. The patient reported that she had been drinking large quantities of alcohol, but she had eaten all her meals yesterday. The patient was admitted to the ward. She continued to be alert and oriented, and was discharged the next day. She did not return within 1 month. Her diagnosis was alcohol-related hypoglycemia. Discussion ========== In the United States, alcoholic patients who present with a depressed mental status are usually not in a hypoglycemic coma, but instead have other etiologies of coma such as sepsis, shock, hypothermia, trauma, or excessive intoxication. Those who do present in a hypoglycemic coma usually are an exception to this \'rule\' and fit into a few clinical stereotypes. Most have had a prolonged calorie fast (greater than 24 h) in the setting of an extended alcoholic binge or have a fasting state of several days with a more moderate amount of alcohol ingestion \[[@B2]-[@B4]\]. Additionally, these patients are usually abstaining from alcohol by the time of presentation \[[@B5]\]. Also, in the US, it is rare for non-diabetic patients to present with hypoglycemia; in one study over an 8-year period, only 88 patients were admitted to a tertiary care hospital with hypoglycemia, and of these, alcohol intoxication was found in only 13 patients (15%) \[[@B6]\]. Our Ugandan patients seem to differ from US patients in that it was common to observe non-diabetic patients presenting with hypoglycemia; also, the Ugandan alcoholic patients did not fit into any of the \'exceptions\' noted above as there was no fasting state, and they presented after acute alcohol ingestions without a significant period of abstinence. To understand this, it is necessary to review the basic pathophysiology of glucose utilization \[[@B7]\]. In the postprandial state, insulin levels peak at about 1 h and then steadily fall over the next several hours. Simultaneously during this decline, there is decreased uptake of glucose by the liver, muscle, and adipose tissue. Insulin is no longer suppressing glycogenolysis, gluconeogenesis, and lipolysis. For the first 12-24 h of fasting, hepatic glycogenolysis provides most of the glucose from glycogen stores. After that, lipolysis and protein breakdown provide fatty acid for energy, and glycerol and amino acids for gluconeogenesis. Therefore, assuming that a person is eating adequately at regular intervals, hypoglycemia can be avoided through various back-up mechanisms. Alcohol affects this process however. When ethanol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde, it reduces nicotinamide adenine dinucleotide (NAD) to NADH. In the next step in the pathway of ethanol breakdown, acetaldehyde is metabolized by aldehyde dehydrogenase, which also reduces NAD to NADH and produces acetate, which leaves the liver for metabolism by extra-hepatic tissue, such as skeletal muscle. Thus, the process of alcohol metabolism significantly decreases the hepatic NAD/NADH ratio. In rats, where the effect of ethanol on the hepatic redox state has been determined by freeze-clamping the liver, this ratio changes rapidly from 700/1 to 200/1 \[[@B8]\]. This change in hepatic redox state has profound effects on metabolic processes in the liver, since both alcohol metabolism and gluconeogenesis occur in this tissue, and both metabolic processes alter the NAD/NADH ratio. Gluconeogenesis requires a specific NAD/NADH ratio for the reductive synthesis of glucose \[[@B9]\]. Elevated levels of NADH, such as occur during ethanol metabolism, negatively affect a number of critical dehydrogenases in the liver that are required for gluconeogenesis \[[@B10]\]. For example, the conversion of lactate to pyruvate (a key gluconeogenic step) will be strongly inhibited by the increased level of NADH caused by the oxidation of ethanol. In addition, malate conversion to oxalacetate by NAD malate dehydrogenase, which is a critical reaction in gluconeogenesis, will be inhibited by the high level of cytosolic NADH. Alanine is another key gluconeogenic intermediate whose metabolism is profoundly altered by ethanol oxidation. Alanine is converted to pyruvate in the liver by alanine aminotransferase, but the elevated levels of NADH ensure that pyruvate will be immediately converted to lactate by lactate dehydrogenase. Thus, ethanol consumption rapidly increases the blood lactate concentration, while decreasing the level of glucose. Ethanol also can redistribute pancreatic microcirculation to enhance late-phase insulin secretion. This can cause hypoglycemia directly and inhibit the release and activation of counter-regulatory corticotropin, cortisol, and growth hormone that normally counteract hypoglycemia, which increases the risk for reactive hypoglycemia \[[@B11]\]. The hepatic redox state, however, should not affect the other processes of glycogenolysis and lipolysis, the other two major sources of glucose and energy other than gluconeogenesis. So why would our intoxicated Ugandan patients present with hypoglycemia despite normal feeding patterns when the US patients do not? Both lipolytic and ketogenic pathways are important to prevent hypoglycemia by providing substrates, free fatty acids, and ketone bodies, for alternative energy sources. If levels of fatty acids or ketone bodies fail to increase during fasting, the risk of hypoglycemia increases. The Ugandan diet is mostly carbohydrate starch from matoke (boiled mashed banana) and cassava, with a small amount of protein intake from beans and legumes. The impoverished low socioeconomic rural population that we serve in our hospital does not typically have access to a more varied diet. Patients commonly demonstrate kwashiorkor (protein deficiency) and marasmus (combined protein and carbohydrate deficiency) syndromes. It is possible that due to this chronic malnutrition, they lack the appropriate hepatic and muscle glycogen reserves that would be required to maintain normal blood glucose levels after even a brief fast combined with alcohol consumption \[[@B12]\]. Chronic malnutrition also decreases the availability of triglyceride in adipose tissue, which results in deficient glycerol available to be converted to glucose and fewer fatty acids to support energy metabolism. The average weight of an adult man in our ED is approximately 50 kg. These patients would then not only have gluconeogenesis limited by alcohol metabolism (as our US alcoholic population does as well), but they also have an inability to back up glucose stores with appropriate glycogenolysis and lipolysis. Despite only a short fast, in this baseline malnourished state, the normal metabolic mechanisms, such as mobilization of hepatic glycogen and fatty acid from adipose, would be insufficient to maintain energy homeostasis in the face of an ethanol-induced decrease in hepatic gluconeogenesis. Many other factors could be involved in this process as well. Further research should be undertaken to investigate the possibility of a genetic difference in the rate of clearance of ethanol (which could maintain the reduced hepatic redox state longer than expected). Perhaps the type of alcohol (or its processing) could play a role as well. Most of the rural population in this area drinks homemade sorghum or banana alcohol instead of other commercial grain alcohols or beers seen in more socioeconomically sound communities in high income countries. A less likely theory would be a frank baseline NAD deficiency due to genetics or malnutrition, but one would expect a more global effect on health rather than just alcohol-induced hypoglycemic coma. Little information exists on alcohol-related hypoglycemia in low-income countries, although hypoglycemia was commonly found in one recent study of alcoholic Nigerians \[[@B13]\]. Conclusion ========== Socioeconomic factors in low and middle income countries clearly affect clinical scenarios in many ways, from higher infectious disease prevalence and an increasing proportion of chronic disease, to the financial and cultural barriers to access of care. As demonstrated in this case series, it seems that socioeconomic factors may also play a large role in affecting the clinical presentations of patients because of their effect on basic science pathophysiology. Alcohol-induced hypoglycemia may be only one example of this phenomenon; further research should be done to elucidate how these factors can affect other basic pathophysiologic processes. Competing interests =================== The authors declare that they have no competing interests. Authors\' contributions ======================= HH and SC participated in clinical care of all case studies. HH was primary author. SC, SN, MB were secondary authors and editors. All authors read and approved the final manuscript. Consent ======= Verbal consent was obtained by the patients for publication of this case report, with \'written\' thumb print as signature due to language barrier and high rates of illiteracy. These consents are at Karoli Lwanga Nyakibale Hospital in Rukungiri District, Uganda. Research approval was obtained by the Medical Superintendent of the hospital. Acknowledgements ================ • Financial support from donations to Global Emergency Care Collaborative (<http://www.globalemergencycare.org>), a 501c3 nongovernmental organization. • Editing support from Professor Richard Hanson, PhD, Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio. All authors are founding members of the 501c3 nonprofit organization, Global Emergency Care Collaborative.
PubMed Central
2024-06-05T04:04:17.191121
2011-2-10
{ "license": "Creative Commons - Attribution - https://creativecommons.org/licenses/by/4.0/", "url": "https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3051892/", "journal": "Int J Emerg Med. 2011 Feb 10; 4:5", "authors": [ { "first": "Heather", "last": "Hammerstedt" }, { "first": "Stacey L", "last": "Chamberlain" }, { "first": "Sara W", "last": "Nelson" }, { "first": "Mark C", "last": "Bisanzo" } ] }