LyNoS / LyNoS.py
andreped's picture
Updated DATA_DIR to Benchmark
3f8138a
raw
history blame
6.06 kB
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding."""
import os
import csv
import json
import datasets
_DESCRIPTION = """\
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.
"""
_HOMEPAGE = "https://github.com/raidionics/LyNoS"
_LICENSE = "MIT"
_CITATION = """\
@article{bouget2023mediastinal,
title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas},
journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
volume={11},
number={1},
pages={44--58},
year={2023},
publisher={Taylor \& Francis}
}
"""
_URLS = {"zenodo": "https://zenodo.org/records/10102261/files/LyNoS.zip?download=1"}
class LyNoS(datasets.GeneratorBasedBuilder):
"""A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer."""
VERSION = datasets.Version("1.0.0")
DEFAULT_CONFIG_NAME = "zenodo"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="zenodo", version=VERSION, description="This includes all 15 CTs stored as a single zip on Zenodo"),
]
DEFAULT_CONFIG_NAME = "zenodo" # It's not mandatory to have a default configuration. Just use one if it make sense.
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.DATA_DIR = None
def get_patient(self, patient_id):
if (patient_id < 1) or (patiend_id > 15):
raise ValueError("patient_id should be an integer in range [1, 15].")
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "zenodo": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"ct": datasets.Value("string"),
"lymphnodes": datasets.Value("string"),
"azygos": datasets.Value("string"),
"brachiocephalicveins": datasets.Value("string"),
"esophagus": datasets.Value("string"),
"subclaviancarotidarteries": datasets.Value("string")
}
)
else:
raise ValueError("Only 'zenodo' is supported.")# This is an example to show how to have different features for "first_domain" and "second_domain"
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def get_data_dir(self):
return self.DATA_DIR
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
self.DATA_DIR = dl_manager.download_and_extract(urls)
# append AeroPath
self.DATA_DIR = os.path.join(self.DATA_DIR, "Benchmark")
print("data is downloaded to:", self.DATA_DIR)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"split": "test",
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
for patient_id in os.listdir(self.DATA_DIR):
curr_path = os.path.join(self.DATA_DIR, patient_id)
if patient_id in ["README.md", "license.md", "stations_sto.csv"]:
continue
yield patient_id, {
"ct": os.path.join(curr_path, patient_id.lower() + "_data.nii.gz"),
"lymphnodes": os.path.join(curr_path, patient_id.lower() + "_labels_LymphNodes.nii.gz"),
"azygos": os.path.join(curr_path, patient_id.lower() + "_labels_Azygos.nii.gz"),
"brachiocephalicveins": os.path.join(curr_path, patient_id.lower() + "_labels_BrachiocephalicVeins.nii.gz"),
"esophagus": os.path.join(curr_path, patient_id.lower() + "_labels_Esophagus.nii.gz"),
"subclaviancarotidarteries": os.path.join(curr_path, patient_id.lower() + "_labels_SubCarArt.nii.gz")
}