|
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.""" |
|
|
|
|
|
import os |
|
import csv |
|
import json |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/raidionics/LyNoS" |
|
|
|
_LICENSE = "MIT" |
|
|
|
_CITATION = """\ |
|
@article{bouget2023mediastinal, |
|
title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding}, |
|
author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas}, |
|
journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, |
|
volume={11}, |
|
number={1}, |
|
pages={44--58}, |
|
year={2023}, |
|
publisher={Taylor \& Francis} |
|
} |
|
|
|
""" |
|
|
|
_URLS = {"zenodo": "https://zenodo.org/records/10102261/files/LyNoS.zip?download=1"} |
|
|
|
|
|
class LyNoS(datasets.GeneratorBasedBuilder): |
|
"""A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
DEFAULT_CONFIG_NAME = "zenodo" |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="zenodo", version=VERSION, description="This includes all 15 CTs stored as a single zip on Zenodo"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "zenodo" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
self.DATA_DIR = None |
|
|
|
def get_patient(self, patient_id): |
|
if (patient_id < 1) or (patiend_id > 15): |
|
raise ValueError("patient_id should be an integer in range [1, 15].") |
|
|
|
def _info(self): |
|
|
|
if self.config.name == "zenodo": |
|
features = datasets.Features( |
|
{ |
|
"ct": datasets.Value("string"), |
|
"lymphnodes": datasets.Value("string"), |
|
"azygos": datasets.Value("string"), |
|
"brachiocephalicveins": datasets.Value("string"), |
|
"esophagus": datasets.Value("string"), |
|
"subclaviancarotidarteries": datasets.Value("string") |
|
} |
|
) |
|
else: |
|
raise ValueError("Only 'zenodo' is supported.") |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def get_data_dir(self): |
|
return self.DATA_DIR |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
|
|
|
|
|
|
|
|
urls = _URLS[self.config.name] |
|
self.DATA_DIR = dl_manager.download_and_extract(urls) |
|
|
|
|
|
self.DATA_DIR = os.path.join(self.DATA_DIR, "Benchmark") |
|
|
|
print("data is downloaded to:", self.DATA_DIR) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, split): |
|
|
|
|
|
for patient_id in os.listdir(self.DATA_DIR): |
|
curr_path = os.path.join(self.DATA_DIR, patient_id) |
|
if patient_id in ["README.md", "license.md", "stations_sto.csv"]: |
|
continue |
|
yield patient_id, { |
|
"ct": os.path.join(curr_path, patient_id.lower() + "_data.nii.gz"), |
|
"lymphnodes": os.path.join(curr_path, patient_id.lower() + "_labels_LymphNodes.nii.gz"), |
|
"azygos": os.path.join(curr_path, patient_id.lower() + "_labels_Azygos.nii.gz"), |
|
"brachiocephalicveins": os.path.join(curr_path, patient_id.lower() + "_labels_BrachiocephalicVeins.nii.gz"), |
|
"esophagus": os.path.join(curr_path, patient_id.lower() + "_labels_Esophagus.nii.gz"), |
|
"subclaviancarotidarteries": os.path.join(curr_path, patient_id.lower() + "_labels_SubCarArt.nii.gz") |
|
} |
|
|