Create LyNoS.py
#1
by
dbouget
- opened
LyNoS.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding."""
|
2 |
+
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
_DESCRIPTION = """\
|
7 |
+
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.
|
8 |
+
"""
|
9 |
+
|
10 |
+
_HOMEPAGE = "https://github.com/raidionics/LyNoS"
|
11 |
+
|
12 |
+
_LICENSE = "MIT"
|
13 |
+
|
14 |
+
_CITATION = """\
|
15 |
+
@article{bouget2023mediastinal,
|
16 |
+
title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
|
17 |
+
author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas},
|
18 |
+
journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
|
19 |
+
volume={11},
|
20 |
+
number={1},
|
21 |
+
pages={44--58},
|
22 |
+
year={2023},
|
23 |
+
publisher={Taylor \& Francis}
|
24 |
+
}
|
25 |
+
|
26 |
+
"""
|
27 |
+
|
28 |
+
_URLS = [
|
29 |
+
{
|
30 |
+
"ct": f"data/Pat{i}/Pat{i}_data.nii.gz",
|
31 |
+
"azygos": f"data/Pat{i}/Pat{i}_labels_Azygos.nii.gz",
|
32 |
+
"brachiocephalicveins": f"data/Pat{i}/Pat{i}_labels_BrachiocephalicVeins.nii.gz",
|
33 |
+
"esophagus": f"data/Pat{i}/Pat{i}_labels_Esophagus.nii.gz",
|
34 |
+
"lymphnodes": f"data/Pat{i}/Pat{i}_labels_LymphNodes.nii.gz",
|
35 |
+
"subclaviancarotidarteries": f"data/Pat{i}/Pat{i}_labels_SubCarArt.nii.gz",
|
36 |
+
}
|
37 |
+
for i in range(1, 15)
|
38 |
+
]
|
39 |
+
|
40 |
+
|
41 |
+
class LyNoS(datasets.GeneratorBasedBuilder):
|
42 |
+
"""A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer."""
|
43 |
+
|
44 |
+
VERSION = datasets.Version("1.0.0")
|
45 |
+
|
46 |
+
def _info(self):
|
47 |
+
features = datasets.Features(
|
48 |
+
{
|
49 |
+
"ct": datasets.Value("string"),
|
50 |
+
"lymphnodes": datasets.Value("string"),
|
51 |
+
}
|
52 |
+
)
|
53 |
+
return datasets.DatasetInfo(
|
54 |
+
description=_DESCRIPTION,
|
55 |
+
features=features,
|
56 |
+
homepage=_HOMEPAGE,
|
57 |
+
license=_LICENSE,
|
58 |
+
citation=_CITATION,
|
59 |
+
)
|
60 |
+
|
61 |
+
def _split_generators(self, dl_manager):
|
62 |
+
data_dirs = dl_manager.download(_URLS)
|
63 |
+
return [
|
64 |
+
datasets.SplitGenerator(
|
65 |
+
name=datasets.Split.TEST,
|
66 |
+
# These kwargs will be passed to _generate_examples
|
67 |
+
gen_kwargs={
|
68 |
+
"data_dirs": data_dirs,
|
69 |
+
},
|
70 |
+
),
|
71 |
+
]
|
72 |
+
|
73 |
+
def _generate_examples(self, data_dirs):
|
74 |
+
for key, patient in enumerate(data_dirs):
|
75 |
+
yield key, patient
|