Upload te_en_syn_dataset.py
Browse files- te_en_syn_dataset.py +134 -0
te_en_syn_dataset.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Loading script for the Ancora NER dataset.
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
logger = datasets.logging.get_logger(__name__)
|
5 |
+
|
6 |
+
_CITATION = """ """
|
7 |
+
|
8 |
+
_DESCRIPTION = """AnCora Catalan NER.
|
9 |
+
This is a dataset for Named Eentity Reacognition (NER) from Ancora corpus adapted for
|
10 |
+
Machine Learning and Language Model evaluation purposes.
|
11 |
+
Since multiwords (including Named Entites) in the original Ancora corpus are aggregated as
|
12 |
+
a single lexical item using underscores (e.g. "Ajuntament_de_Barcelona")
|
13 |
+
we splitted them to align with word-per-line format, and added conventional Begin-Inside-Outside (IOB)
|
14 |
+
tags to mark and classify Named Entites.
|
15 |
+
We did not filter out the different categories of NEs from Ancora (weak and strong).
|
16 |
+
We did 6 minor edits by hand.
|
17 |
+
AnCora corpus is used under [CC-by] (https://creativecommons.org/licenses/by/4.0/) licence.
|
18 |
+
This dataset was developed by BSC TeMU as part of the AINA project, and to enrich the Catalan Language Understanding Benchmark (CLUB).
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE = """"""
|
22 |
+
|
23 |
+
_URL = "https://huggingface.co/datasets/anishka/Te_En_Syn_dataset/resolve/main/"
|
24 |
+
_TRAINING_FILE = "te_syn-code_switch-train.conllu"
|
25 |
+
_DEV_FILE = " te_syn-code_switch-dev.conllu"
|
26 |
+
_TEST_FILE = "te_syn-code_switch-test.conllu"
|
27 |
+
|
28 |
+
|
29 |
+
class AncoraCaNerConfig(datasets.BuilderConfig):
|
30 |
+
""" Builder config for the Ancora Ca NER dataset """
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
"""BuilderConfig for AncoraCaNer.
|
34 |
+
Args:
|
35 |
+
**kwargs: keyword arguments forwarded to super.
|
36 |
+
"""
|
37 |
+
super(AncoraCaNerConfig, self).__init__(**kwargs)
|
38 |
+
|
39 |
+
|
40 |
+
class AncoraCaNer(datasets.GeneratorBasedBuilder):
|
41 |
+
""" AncoraCaNer dataset."""
|
42 |
+
|
43 |
+
BUILDER_CONFIGS = [
|
44 |
+
AncoraCaNerConfig(
|
45 |
+
name="AncoraCaNer",
|
46 |
+
version=datasets.Version("2.0.0"),
|
47 |
+
description="AncoraCaNer dataset"
|
48 |
+
),
|
49 |
+
]
|
50 |
+
|
51 |
+
def _info(self):
|
52 |
+
return datasets.DatasetInfo(
|
53 |
+
description=_DESCRIPTION,
|
54 |
+
features=datasets.Features(
|
55 |
+
{
|
56 |
+
"idx": datasets.Value("string"),
|
57 |
+
"text": datasets.Sequence(datasets.Value("string")),
|
58 |
+
"upos": datasets.Sequence(
|
59 |
+
datasets.features.ClassLabel(
|
60 |
+
names=[
|
61 |
+
"NOUN",
|
62 |
+
"PUNCT",
|
63 |
+
"ADP",
|
64 |
+
"NUM",
|
65 |
+
"SYM",
|
66 |
+
"SCONJ",
|
67 |
+
"ADJ",
|
68 |
+
"PART",
|
69 |
+
"DET",
|
70 |
+
"CCONJ",
|
71 |
+
"PROPN",
|
72 |
+
"PRON",
|
73 |
+
"X",
|
74 |
+
"_",
|
75 |
+
"ADV",
|
76 |
+
"INTJ",
|
77 |
+
"VERB",
|
78 |
+
"AUX",
|
79 |
+
]
|
80 |
+
)
|
81 |
+
),
|
82 |
+
"xpos": datasets.Sequence(datasets.Value("string")),
|
83 |
+
}
|
84 |
+
),
|
85 |
+
supervised_keys=None,
|
86 |
+
homepage=_HOMEPAGE,
|
87 |
+
citation=_CITATION,
|
88 |
+
)
|
89 |
+
|
90 |
+
def _split_generators(self, dl_manager):
|
91 |
+
"""Returns SplitGenerators."""
|
92 |
+
urls_to_download = {
|
93 |
+
"train": f"{_URL}{_TRAINING_FILE}",
|
94 |
+
"dev": f"{_URL}{_DEV_FILE}",
|
95 |
+
"test": f"{_URL}{_TEST_FILE}",
|
96 |
+
}
|
97 |
+
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
101 |
+
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
102 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
|
103 |
+
]
|
104 |
+
|
105 |
+
def _generate_examples(self, filepath):
|
106 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
107 |
+
with open(filepath, encoding="utf-8") as f:
|
108 |
+
guid = 0
|
109 |
+
tokens = []
|
110 |
+
pos_tags = []
|
111 |
+
for line in f:
|
112 |
+
if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line.startswith("#"):
|
113 |
+
if tokens:
|
114 |
+
yield guid, {
|
115 |
+
"idx": str(guid),
|
116 |
+
"text": tokens,
|
117 |
+
"upos": pos_tags,
|
118 |
+
"xpos": pos_tags,
|
119 |
+
}
|
120 |
+
guid += 1
|
121 |
+
tokens = []
|
122 |
+
pos_tags = []
|
123 |
+
else:
|
124 |
+
# AncoraCaNer tokens are space separated
|
125 |
+
splits = line.split('\t')
|
126 |
+
tokens.append(splits[1])
|
127 |
+
pos_tags.append(splits[3].rstrip())
|
128 |
+
# last example
|
129 |
+
yield guid, {
|
130 |
+
"idx": str(guid),
|
131 |
+
"text": tokens,
|
132 |
+
"upos": pos_tags,
|
133 |
+
"xpos": pos_tags,
|
134 |
+
}
|