charsiu's picture
Upload folder using huggingface_hub
fcc50e4 verified
metadata
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: whisper_base_finetuned
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.3192600084831479

Visualize in Weights & Biases

whisper_base_finetuned

This model was trained from scratch on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3375
  • Wer: 0.3193

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4111 1.0 973 0.4590 0.4551
0.4068 2.0 1946 0.3847 0.4812
0.3617 3.0 2919 0.3585 0.4326
0.3144 4.0 3892 0.3436 0.3594
0.272 5.0 4865 0.3425 0.3639
0.2246 6.0 5838 0.3371 0.3341
0.1541 7.0 6811 0.3404 0.3377
0.1387 8.0 7784 0.3370 0.3196
0.1554 9.0 8757 0.3387 0.3113
0.1692 10.0 9730 0.3375 0.3193

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.2.1
  • Datasets 2.19.0
  • Tokenizers 0.19.1