The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Dataset Card for MedMentions
MedMentions is a new manually annotated resource for the recognition of biomedical concepts. What distinguishes MedMentions from other annotated biomedical corpora is its size (over 4,000 abstracts and over 350,000 linked mentions), as well as the size of the concept ontology (over 3 million concepts from UMLS 2017) and its broad coverage of biomedical disciplines.
Corpus: The MedMentions corpus consists of 4,392 papers (Titles and Abstracts) randomly selected from among papers released on PubMed in 2016, that were in the biomedical field, published in the English language, and had both a Title and an Abstract.
Annotators: We recruited a team of professional annotators with rich experience in biomedical content curation to exhaustively annotate all UMLS® (2017AA full version) entity mentions in these papers.
Annotation quality: We did not collect stringent IAA (Inter-annotator agreement) data. To gain insight on the annotation quality of MedMentions, we randomly selected eight papers from the annotated corpus, containing a total of 469 concepts. Two biologists ('Reviewer') who did not participate in the annotation task then each reviewed four papers. The agreement between Reviewers and Annotators, an estimate of the Precision of the annotations, was 97.3%.
Citation Information
@misc{mohan2019medmentions,
title={MedMentions: A Large Biomedical Corpus Annotated with UMLS Concepts},
author={Sunil Mohan and Donghui Li},
year={2019},
eprint={1902.09476},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 167