|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import argparse |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import time |
|
from pathlib import Path |
|
|
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import optax |
|
import torch |
|
import torch.utils.checkpoint |
|
import transformers |
|
from datasets import load_dataset, load_from_disk |
|
from flax import jax_utils |
|
from flax.core.frozen_dict import unfreeze |
|
from flax.training import train_state |
|
from flax.training.common_utils import shard |
|
from huggingface_hub import create_repo, upload_folder |
|
from PIL import Image, PngImagePlugin |
|
from torch.utils.data import IterableDataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed |
|
|
|
from diffusers import ( |
|
FlaxAutoencoderKL, |
|
FlaxControlNetModel, |
|
FlaxDDPMScheduler, |
|
FlaxStableDiffusionControlNetPipeline, |
|
FlaxUNet2DConditionModel, |
|
) |
|
from diffusers.utils import check_min_version, is_wandb_available |
|
|
|
|
|
|
|
|
|
LARGE_ENOUGH_NUMBER = 100 |
|
PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2) |
|
|
|
if is_wandb_available(): |
|
import wandb |
|
|
|
|
|
check_min_version("0.16.0.dev0") |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def image_grid(imgs, rows, cols): |
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new("RGB", size=(cols * w, rows * h)) |
|
grid_w, grid_h = grid.size |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
return grid |
|
|
|
|
|
def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_dtype): |
|
logger.info("Running validation... ") |
|
|
|
pipeline, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
tokenizer=tokenizer, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
dtype=weight_dtype, |
|
revision=args.revision, |
|
from_pt=args.from_pt, |
|
) |
|
params = jax_utils.replicate(params) |
|
params["controlnet"] = controlnet_params |
|
|
|
num_samples = jax.device_count() |
|
prng_seed = jax.random.split(rng, jax.device_count()) |
|
|
|
if len(args.validation_image) == len(args.validation_prompt): |
|
validation_images = args.validation_image |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_image) == 1: |
|
validation_images = args.validation_image * len(args.validation_prompt) |
|
validation_prompts = args.validation_prompt |
|
elif len(args.validation_prompt) == 1: |
|
validation_images = args.validation_image |
|
validation_prompts = args.validation_prompt * len(args.validation_image) |
|
else: |
|
raise ValueError( |
|
"number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`" |
|
) |
|
|
|
image_logs = [] |
|
|
|
for validation_prompt, validation_image in zip(validation_prompts, validation_images): |
|
prompts = num_samples * [validation_prompt] |
|
prompt_ids = pipeline.prepare_text_inputs(prompts) |
|
prompt_ids = shard(prompt_ids) |
|
|
|
validation_image = Image.open(validation_image).convert("RGB") |
|
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image]) |
|
processed_image = shard(processed_image) |
|
images = pipeline( |
|
prompt_ids=prompt_ids, |
|
image=processed_image, |
|
params=params, |
|
prng_seed=prng_seed, |
|
num_inference_steps=50, |
|
jit=True, |
|
).images |
|
|
|
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) |
|
images = pipeline.numpy_to_pil(images) |
|
|
|
image_logs.append( |
|
{"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt} |
|
) |
|
|
|
if args.report_to == "wandb": |
|
formatted_images = [] |
|
for log in image_logs: |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
|
|
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning")) |
|
for image in images: |
|
image = wandb.Image(image, caption=validation_prompt) |
|
formatted_images.append(image) |
|
|
|
wandb.log({"validation": formatted_images}) |
|
else: |
|
logger.warn(f"image logging not implemented for {args.report_to}") |
|
|
|
return image_logs |
|
|
|
|
|
def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None): |
|
img_str = "" |
|
if image_logs is not None: |
|
for i, log in enumerate(image_logs): |
|
images = log["images"] |
|
validation_prompt = log["validation_prompt"] |
|
validation_image = log["validation_image"] |
|
validation_image.save(os.path.join(repo_folder, "image_control.png")) |
|
img_str += f"prompt: {validation_prompt}\n" |
|
images = [validation_image] + images |
|
image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png")) |
|
img_str += f"![images_{i})](./images_{i}.png)\n" |
|
|
|
yaml = f""" |
|
--- |
|
license: creativeml-openrail-m |
|
base_model: {base_model} |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
- jax-diffusers-event |
|
inference: true |
|
--- |
|
""" |
|
model_card = f""" |
|
# controlnet- {repo_id} |
|
|
|
These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n |
|
{img_str} |
|
""" |
|
with open(os.path.join(repo_folder, "README.md"), "w") as f: |
|
f.write(yaml + model_card) |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Simple example of a training script.") |
|
parser.add_argument( |
|
"--pretrained_model_name_or_path", |
|
type=str, |
|
required=True, |
|
help="Path to pretrained model or model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--controlnet_model_name_or_path", |
|
type=str, |
|
default=None, |
|
help="Path to pretrained controlnet model or model identifier from huggingface.co/models." |
|
" If not specified controlnet weights are initialized from unet.", |
|
) |
|
parser.add_argument( |
|
"--revision", |
|
type=str, |
|
default=None, |
|
help="Revision of pretrained model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--from_pt", |
|
action="store_true", |
|
help="Load the pretrained model from a PyTorch checkpoint.", |
|
) |
|
parser.add_argument( |
|
"--controlnet_revision", |
|
type=str, |
|
default=None, |
|
help="Revision of controlnet model identifier from huggingface.co/models.", |
|
) |
|
parser.add_argument( |
|
"--profile_steps", |
|
type=int, |
|
default=0, |
|
help="How many training steps to profile in the beginning.", |
|
) |
|
parser.add_argument( |
|
"--profile_validation", |
|
action="store_true", |
|
help="Whether to profile the (last) validation.", |
|
) |
|
parser.add_argument( |
|
"--profile_memory", |
|
action="store_true", |
|
help="Whether to dump an initial (before training loop) and a final (at program end) memory profile.", |
|
) |
|
parser.add_argument( |
|
"--ccache", |
|
type=str, |
|
default=None, |
|
help="Enables compilation cache.", |
|
) |
|
parser.add_argument( |
|
"--controlnet_from_pt", |
|
action="store_true", |
|
help="Load the controlnet model from a PyTorch checkpoint.", |
|
) |
|
parser.add_argument( |
|
"--tokenizer_name", |
|
type=str, |
|
default=None, |
|
help="Pretrained tokenizer name or path if not the same as model_name", |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
type=str, |
|
default="runs/{timestamp}", |
|
help="The output directory where the model predictions and checkpoints will be written. " |
|
"Can contain placeholders: {timestamp}.", |
|
) |
|
parser.add_argument( |
|
"--cache_dir", |
|
type=str, |
|
default=None, |
|
help="The directory where the downloaded models and datasets will be stored.", |
|
) |
|
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.") |
|
parser.add_argument( |
|
"--resolution", |
|
type=int, |
|
default=512, |
|
help=( |
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this" |
|
" resolution" |
|
), |
|
) |
|
parser.add_argument( |
|
"--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader." |
|
) |
|
parser.add_argument("--num_train_epochs", type=int, default=100) |
|
parser.add_argument( |
|
"--max_train_steps", |
|
type=int, |
|
default=None, |
|
help="Total number of training steps to perform.", |
|
) |
|
parser.add_argument( |
|
"--checkpointing_steps", |
|
type=int, |
|
default=5000, |
|
help=("Save a checkpoint of the training state every X updates."), |
|
) |
|
parser.add_argument( |
|
"--learning_rate", |
|
type=float, |
|
default=1e-4, |
|
help="Initial learning rate (after the potential warmup period) to use.", |
|
) |
|
parser.add_argument( |
|
"--scale_lr", |
|
action="store_true", |
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", |
|
) |
|
parser.add_argument( |
|
"--lr_scheduler", |
|
type=str, |
|
default="constant", |
|
help=( |
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' |
|
' "constant", "constant_with_warmup"]' |
|
), |
|
) |
|
parser.add_argument( |
|
"--snr_gamma", |
|
type=float, |
|
default=None, |
|
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. " |
|
"More details here: https://arxiv.org/abs/2303.09556.", |
|
) |
|
parser.add_argument( |
|
"--dataloader_num_workers", |
|
type=int, |
|
default=0, |
|
help=( |
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." |
|
), |
|
) |
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") |
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") |
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") |
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") |
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") |
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") |
|
parser.add_argument( |
|
"--hub_model_id", |
|
type=str, |
|
default=None, |
|
help="The name of the repository to keep in sync with the local `output_dir`.", |
|
) |
|
parser.add_argument( |
|
"--logging_steps", |
|
type=int, |
|
default=100, |
|
help=("log training metric every X steps to `--report_t`"), |
|
) |
|
parser.add_argument( |
|
"--report_to", |
|
type=str, |
|
default="wandb", |
|
help=('The integration to report the results and logs to. Currently only supported platforms are `"wandb"`'), |
|
) |
|
parser.add_argument( |
|
"--mixed_precision", |
|
type=str, |
|
default="no", |
|
choices=["no", "fp16", "bf16"], |
|
help=( |
|
"Whether to use mixed precision. Choose" |
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." |
|
"and an Nvidia Ampere GPU." |
|
), |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
default=None, |
|
help=( |
|
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," |
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," |
|
" or to a folder containing files that 🤗 Datasets can understand." |
|
), |
|
) |
|
parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.") |
|
parser.add_argument( |
|
"--dataset_config_name", |
|
type=str, |
|
default=None, |
|
help="The config of the Dataset, leave as None if there's only one config.", |
|
) |
|
parser.add_argument( |
|
"--train_data_dir", |
|
type=str, |
|
default=None, |
|
help=( |
|
"A folder containing the training dataset. By default it will use `load_dataset` method to load a custom dataset from the folder." |
|
"Folder must contain a dataset script as described here https://huggingface.co/docs/datasets/dataset_script) ." |
|
"If `--load_from_disk` flag is passed, it will use `load_from_disk` method instead. Ignored if `dataset_name` is specified." |
|
), |
|
) |
|
parser.add_argument( |
|
"--load_from_disk", |
|
action="store_true", |
|
help=( |
|
"If True, will load a dataset that was previously saved using `save_to_disk` from `--train_data_dir`" |
|
"See more https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.load_from_disk" |
|
), |
|
) |
|
parser.add_argument( |
|
"--image_column", type=str, default="image", help="The column of the dataset containing the target image." |
|
) |
|
parser.add_argument( |
|
"--conditioning_image_column", |
|
type=str, |
|
default="conditioning_image", |
|
help="The column of the dataset containing the controlnet conditioning image.", |
|
) |
|
parser.add_argument( |
|
"--caption_column", |
|
type=str, |
|
default="text", |
|
help="The column of the dataset containing a caption or a list of captions.", |
|
) |
|
parser.add_argument( |
|
"--max_train_samples", |
|
type=int, |
|
default=None, |
|
help=( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set. Needed if `streaming` is set to True." |
|
), |
|
) |
|
parser.add_argument( |
|
"--proportion_empty_prompts", |
|
type=float, |
|
default=0, |
|
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).", |
|
) |
|
parser.add_argument( |
|
"--validation_prompt", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`." |
|
" Provide either a matching number of `--validation_image`s, a single `--validation_image`" |
|
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_image", |
|
type=str, |
|
default=None, |
|
nargs="+", |
|
help=( |
|
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`" |
|
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a" |
|
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single" |
|
" `--validation_image` that will be used with all `--validation_prompt`s." |
|
), |
|
) |
|
parser.add_argument( |
|
"--validation_steps", |
|
type=int, |
|
default=100, |
|
help=( |
|
"Run validation every X steps. Validation consists of running the prompt" |
|
" `args.validation_prompt` and logging the images." |
|
), |
|
) |
|
parser.add_argument("--wandb_entity", type=str, default=None, help=("The wandb entity to use (for teams).")) |
|
parser.add_argument( |
|
"--tracker_project_name", |
|
type=str, |
|
default="train_controlnet_flax", |
|
help=("The `project` argument passed to wandb"), |
|
) |
|
parser.add_argument( |
|
"--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over" |
|
) |
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") |
|
|
|
args = parser.parse_args() |
|
args.output_dir = args.output_dir.replace("{timestamp}", time.strftime("%Y%m%d_%H%M%S")) |
|
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) |
|
if env_local_rank != -1 and env_local_rank != args.local_rank: |
|
args.local_rank = env_local_rank |
|
|
|
|
|
if args.dataset_name is None and args.train_data_dir is None: |
|
raise ValueError("Need either a dataset name or a training folder.") |
|
if args.dataset_name is not None and args.train_data_dir is not None: |
|
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`") |
|
|
|
if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1: |
|
raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].") |
|
|
|
if args.validation_prompt is not None and args.validation_image is None: |
|
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set") |
|
|
|
if args.validation_prompt is None and args.validation_image is not None: |
|
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set") |
|
|
|
if ( |
|
args.validation_image is not None |
|
and args.validation_prompt is not None |
|
and len(args.validation_image) != 1 |
|
and len(args.validation_prompt) != 1 |
|
and len(args.validation_image) != len(args.validation_prompt) |
|
): |
|
raise ValueError( |
|
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`," |
|
" or the same number of `--validation_prompt`s and `--validation_image`s" |
|
) |
|
|
|
|
|
|
|
if args.streaming and args.max_train_samples is None: |
|
raise ValueError("You must specify `max_train_samples` when using dataset streaming.") |
|
|
|
return args |
|
|
|
|
|
def make_train_dataset(args, tokenizer, batch_size=None): |
|
|
|
|
|
|
|
|
|
|
|
if args.dataset_name is not None: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = load_dataset("/home/birgermoell/data") |
|
|
|
else: |
|
if args.train_data_dir is not None: |
|
if args.load_from_disk: |
|
dataset = load_from_disk( |
|
args.train_data_dir, |
|
) |
|
else: |
|
dataset = load_dataset( |
|
args.train_data_dir, |
|
cache_dir=args.cache_dir, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if isinstance(dataset["train"], IterableDataset): |
|
column_names = next(iter(dataset["train"])).keys() |
|
else: |
|
column_names = dataset["train"].column_names |
|
|
|
|
|
if args.image_column is None: |
|
image_column = column_names[0] |
|
logger.info(f"image column defaulting to {image_column}") |
|
else: |
|
image_column = args.image_column |
|
if image_column not in column_names: |
|
raise ValueError( |
|
f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
if args.caption_column is None: |
|
caption_column = column_names[1] |
|
logger.info(f"caption column defaulting to {caption_column}") |
|
else: |
|
caption_column = args.caption_column |
|
if caption_column not in column_names: |
|
raise ValueError( |
|
f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
if args.conditioning_image_column is None: |
|
conditioning_image_column = column_names[2] |
|
logger.info(f"conditioning image column defaulting to {caption_column}") |
|
else: |
|
conditioning_image_column = args.conditioning_image_column |
|
if conditioning_image_column not in column_names: |
|
raise ValueError( |
|
f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}" |
|
) |
|
|
|
def tokenize_captions(examples, is_train=True): |
|
captions = [] |
|
for caption in examples[caption_column]: |
|
if random.random() < args.proportion_empty_prompts: |
|
captions.append("") |
|
elif isinstance(caption, str): |
|
captions.append(caption) |
|
elif isinstance(caption, (list, np.ndarray)): |
|
|
|
captions.append(random.choice(caption) if is_train else caption[0]) |
|
else: |
|
raise ValueError( |
|
f"Caption column `{caption_column}` should contain either strings or lists of strings." |
|
) |
|
inputs = tokenizer( |
|
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" |
|
) |
|
return inputs.input_ids |
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
conditioning_image_transforms = transforms.Compose( |
|
[ |
|
transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR), |
|
transforms.CenterCrop(args.resolution), |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
def preprocess_train(examples): |
|
images = [image.convert("RGB") for image in examples[image_column]] |
|
images = [image_transforms(image) for image in images] |
|
|
|
conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]] |
|
conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images] |
|
|
|
examples["pixel_values"] = images |
|
examples["conditioning_pixel_values"] = conditioning_images |
|
examples["input_ids"] = tokenize_captions(examples) |
|
|
|
return examples |
|
|
|
if jax.process_index() == 0: |
|
if args.max_train_samples is not None: |
|
if args.streaming: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples) |
|
else: |
|
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) |
|
|
|
if args.streaming: |
|
train_dataset = dataset["train"].map( |
|
preprocess_train, |
|
batched=True, |
|
batch_size=batch_size, |
|
remove_columns=list(dataset["train"].features.keys()), |
|
) |
|
else: |
|
train_dataset = dataset["train"].with_transform(preprocess_train) |
|
|
|
return train_dataset |
|
|
|
|
|
def collate_fn(examples): |
|
pixel_values = torch.stack([example["pixel_values"] for example in examples]) |
|
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples]) |
|
conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float() |
|
|
|
input_ids = torch.stack([example["input_ids"] for example in examples]) |
|
|
|
batch = { |
|
"pixel_values": pixel_values, |
|
"conditioning_pixel_values": conditioning_pixel_values, |
|
"input_ids": input_ids, |
|
} |
|
batch = {k: v.numpy() for k, v in batch.items()} |
|
return batch |
|
|
|
|
|
def get_params_to_save(params): |
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params)) |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
if jax.process_index() == 0 and args.report_to == "wandb": |
|
wandb.init( |
|
entity=args.wandb_entity, |
|
project=args.tracker_project_name, |
|
job_type="train", |
|
config=args, |
|
) |
|
|
|
if args.seed is not None: |
|
set_seed(args.seed) |
|
|
|
rng = jax.random.PRNGKey(0) |
|
|
|
|
|
if jax.process_index() == 0: |
|
if args.output_dir is not None: |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
if args.push_to_hub: |
|
repo_id = create_repo( |
|
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token |
|
).repo_id |
|
|
|
|
|
if args.tokenizer_name: |
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name) |
|
elif args.pretrained_model_name_or_path: |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision |
|
) |
|
else: |
|
raise NotImplementedError("No tokenizer specified!") |
|
|
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps |
|
train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
train_dataset, |
|
shuffle=not args.streaming, |
|
collate_fn=collate_fn, |
|
batch_size=total_train_batch_size, |
|
num_workers=args.dataloader_num_workers, |
|
drop_last=True, |
|
) |
|
|
|
weight_dtype = jnp.float32 |
|
if args.mixed_precision == "fp16": |
|
weight_dtype = jnp.float16 |
|
elif args.mixed_precision == "bf16": |
|
weight_dtype = jnp.bfloat16 |
|
|
|
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="text_encoder", |
|
dtype=weight_dtype, |
|
revision=args.revision, |
|
from_pt=args.from_pt, |
|
) |
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
revision=args.revision, |
|
subfolder="vae", |
|
dtype=weight_dtype, |
|
from_pt=args.from_pt, |
|
) |
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained( |
|
args.pretrained_model_name_or_path, |
|
subfolder="unet", |
|
dtype=weight_dtype, |
|
revision=args.revision, |
|
from_pt=args.from_pt, |
|
) |
|
|
|
if args.controlnet_model_name_or_path: |
|
logger.info("Loading existing controlnet weights") |
|
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( |
|
args.controlnet_model_name_or_path, |
|
revision=args.controlnet_revision, |
|
from_pt=args.controlnet_from_pt, |
|
dtype=jnp.float32, |
|
) |
|
else: |
|
logger.info("Initializing controlnet weights from unet") |
|
rng, rng_params = jax.random.split(rng) |
|
|
|
controlnet = FlaxControlNetModel( |
|
in_channels=unet.config.in_channels, |
|
down_block_types=unet.config.down_block_types, |
|
only_cross_attention=unet.config.only_cross_attention, |
|
block_out_channels=unet.config.block_out_channels, |
|
layers_per_block=unet.config.layers_per_block, |
|
attention_head_dim=unet.config.attention_head_dim, |
|
cross_attention_dim=unet.config.cross_attention_dim, |
|
use_linear_projection=unet.config.use_linear_projection, |
|
flip_sin_to_cos=unet.config.flip_sin_to_cos, |
|
freq_shift=unet.config.freq_shift, |
|
) |
|
controlnet_params = controlnet.init_weights(rng=rng_params) |
|
controlnet_params = unfreeze(controlnet_params) |
|
for key in [ |
|
"conv_in", |
|
"time_embedding", |
|
"down_blocks_0", |
|
"down_blocks_1", |
|
"down_blocks_2", |
|
"down_blocks_3", |
|
"mid_block", |
|
]: |
|
controlnet_params[key] = unet_params[key] |
|
|
|
|
|
if args.scale_lr: |
|
args.learning_rate = args.learning_rate * total_train_batch_size |
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate) |
|
|
|
adamw = optax.adamw( |
|
learning_rate=constant_scheduler, |
|
b1=args.adam_beta1, |
|
b2=args.adam_beta2, |
|
eps=args.adam_epsilon, |
|
weight_decay=args.adam_weight_decay, |
|
) |
|
|
|
optimizer = optax.chain( |
|
optax.clip_by_global_norm(args.max_grad_norm), |
|
adamw, |
|
) |
|
|
|
state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer) |
|
|
|
noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained( |
|
args.pretrained_model_name_or_path, subfolder="scheduler" |
|
) |
|
|
|
|
|
validation_rng, train_rngs = jax.random.split(rng) |
|
train_rngs = jax.random.split(train_rngs, jax.local_device_count()) |
|
|
|
def compute_snr(timesteps): |
|
""" |
|
Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849 |
|
""" |
|
alphas_cumprod = noise_scheduler_state.common.alphas_cumprod |
|
sqrt_alphas_cumprod = alphas_cumprod**0.5 |
|
sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5 |
|
|
|
alpha = sqrt_alphas_cumprod[timesteps] |
|
sigma = sqrt_one_minus_alphas_cumprod[timesteps] |
|
|
|
snr = (alpha / sigma) ** 2 |
|
return snr |
|
|
|
def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng): |
|
|
|
if args.gradient_accumulation_steps > 1: |
|
grad_steps = args.gradient_accumulation_steps |
|
batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch) |
|
|
|
def compute_loss(params, minibatch, sample_rng): |
|
|
|
vae_outputs = vae.apply( |
|
{"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode |
|
) |
|
latents = vae_outputs.latent_dist.sample(sample_rng) |
|
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2)) |
|
latents = latents * vae.config.scaling_factor |
|
|
|
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng) |
|
noise = jax.random.normal(noise_rng, latents.shape) |
|
|
|
bsz = latents.shape[0] |
|
timesteps = jax.random.randint( |
|
timestep_rng, |
|
(bsz,), |
|
0, |
|
noise_scheduler.config.num_train_timesteps, |
|
) |
|
|
|
|
|
|
|
noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps) |
|
|
|
|
|
encoder_hidden_states = text_encoder( |
|
minibatch["input_ids"], |
|
params=text_encoder_params, |
|
train=False, |
|
)[0] |
|
|
|
controlnet_cond = minibatch["conditioning_pixel_values"] |
|
|
|
|
|
down_block_res_samples, mid_block_res_sample = controlnet.apply( |
|
{"params": params}, |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states, |
|
controlnet_cond, |
|
train=True, |
|
return_dict=False, |
|
) |
|
|
|
model_pred = unet.apply( |
|
{"params": unet_params}, |
|
noisy_latents, |
|
timesteps, |
|
encoder_hidden_states, |
|
down_block_additional_residuals=down_block_res_samples, |
|
mid_block_additional_residual=mid_block_res_sample, |
|
).sample |
|
|
|
|
|
if noise_scheduler.config.prediction_type == "epsilon": |
|
target = noise |
|
elif noise_scheduler.config.prediction_type == "v_prediction": |
|
target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps) |
|
else: |
|
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") |
|
|
|
loss = (target - model_pred) ** 2 |
|
|
|
if args.snr_gamma is not None: |
|
snr = jnp.array(compute_snr(timesteps)) |
|
snr_loss_weights = jnp.where(snr < args.snr_gamma, snr, jnp.ones_like(snr) * args.snr_gamma) / snr |
|
loss = loss * snr_loss_weights |
|
|
|
loss = loss.mean() |
|
|
|
return loss |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
|
|
|
|
def get_minibatch(batch, grad_idx): |
|
return jax.tree_util.tree_map( |
|
lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), |
|
batch, |
|
) |
|
|
|
def loss_and_grad(grad_idx, train_rng): |
|
|
|
minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch |
|
sample_rng, train_rng = jax.random.split(train_rng, 2) |
|
loss, grad = grad_fn(state.params, minibatch, sample_rng) |
|
return loss, grad, train_rng |
|
|
|
if args.gradient_accumulation_steps == 1: |
|
loss, grad, new_train_rng = loss_and_grad(None, train_rng) |
|
else: |
|
init_loss_grad_rng = ( |
|
0.0, |
|
jax.tree_map(jnp.zeros_like, state.params), |
|
train_rng, |
|
) |
|
|
|
def cumul_grad_step(grad_idx, loss_grad_rng): |
|
cumul_loss, cumul_grad, train_rng = loss_grad_rng |
|
loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng) |
|
cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad)) |
|
return cumul_loss, cumul_grad, new_train_rng |
|
|
|
loss, grad, new_train_rng = jax.lax.fori_loop( |
|
0, |
|
args.gradient_accumulation_steps, |
|
cumul_grad_step, |
|
init_loss_grad_rng, |
|
) |
|
loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad)) |
|
|
|
grad = jax.lax.pmean(grad, "batch") |
|
|
|
new_state = state.apply_gradients(grads=grad) |
|
|
|
metrics = {"loss": loss} |
|
metrics = jax.lax.pmean(metrics, axis_name="batch") |
|
|
|
def l2(xs): |
|
return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)])) |
|
|
|
metrics["l2_grads"] = l2(jax.tree_util.tree_leaves(grad)) |
|
|
|
return new_state, metrics, new_train_rng |
|
|
|
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,)) |
|
|
|
|
|
state = jax_utils.replicate(state) |
|
unet_params = jax_utils.replicate(unet_params) |
|
text_encoder_params = jax_utils.replicate(text_encoder.params) |
|
vae_params = jax_utils.replicate(vae_params) |
|
|
|
|
|
if args.streaming: |
|
dataset_length = args.max_train_samples |
|
else: |
|
dataset_length = len(train_dataloader) |
|
num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps) |
|
|
|
|
|
if args.max_train_steps is None: |
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch |
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}") |
|
logger.info(f" Num Epochs = {args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") |
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}") |
|
logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}") |
|
|
|
if jax.process_index() == 0 and args.report_to == "wandb": |
|
wandb.define_metric("*", step_metric="train/step") |
|
wandb.define_metric("train/step", step_metric="walltime") |
|
wandb.config.update( |
|
{ |
|
"num_train_examples": args.max_train_samples if args.streaming else len(train_dataset), |
|
"total_train_batch_size": total_train_batch_size, |
|
"total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch, |
|
"num_devices": jax.device_count(), |
|
"controlnet_params": sum(np.prod(x.shape) for x in jax.tree_util.tree_leaves(state.params)), |
|
} |
|
) |
|
|
|
global_step = step0 = 0 |
|
epochs = tqdm( |
|
range(args.num_train_epochs), |
|
desc="Epoch ... ", |
|
position=0, |
|
disable=jax.process_index() > 0, |
|
) |
|
if args.profile_memory: |
|
jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_initial.prof")) |
|
t00 = t0 = time.monotonic() |
|
for epoch in epochs: |
|
|
|
|
|
train_metrics = [] |
|
train_metric = None |
|
|
|
steps_per_epoch = ( |
|
args.max_train_samples // total_train_batch_size |
|
if args.streaming or args.max_train_samples |
|
else len(train_dataset) // total_train_batch_size |
|
) |
|
train_step_progress_bar = tqdm( |
|
total=steps_per_epoch, |
|
desc="Training...", |
|
position=1, |
|
leave=False, |
|
disable=jax.process_index() > 0, |
|
) |
|
|
|
for batch in train_dataloader: |
|
if args.profile_steps and global_step == 1: |
|
train_metric["loss"].block_until_ready() |
|
jax.profiler.start_trace(args.output_dir) |
|
if args.profile_steps and global_step == 1 + args.profile_steps: |
|
train_metric["loss"].block_until_ready() |
|
jax.profiler.stop_trace() |
|
|
|
batch = shard(batch) |
|
with jax.profiler.StepTraceAnnotation("train", step_num=global_step): |
|
state, train_metric, train_rngs = p_train_step( |
|
state, unet_params, text_encoder_params, vae_params, batch, train_rngs |
|
) |
|
train_metrics.append(train_metric) |
|
|
|
train_step_progress_bar.update(1) |
|
|
|
global_step += 1 |
|
if global_step >= args.max_train_steps: |
|
break |
|
|
|
if ( |
|
args.validation_prompt is not None |
|
and global_step % args.validation_steps == 0 |
|
and jax.process_index() == 0 |
|
): |
|
_ = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) |
|
|
|
if global_step % args.logging_steps == 0 and jax.process_index() == 0: |
|
if args.report_to == "wandb": |
|
train_metrics = jax_utils.unreplicate(train_metrics) |
|
train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics) |
|
wandb.log( |
|
{ |
|
"walltime": time.monotonic() - t00, |
|
"train/step": global_step, |
|
"train/epoch": global_step / dataset_length, |
|
"train/steps_per_sec": (global_step - step0) / (time.monotonic() - t0), |
|
**{f"train/{k}": v for k, v in train_metrics.items()}, |
|
} |
|
) |
|
t0, step0 = time.monotonic(), global_step |
|
train_metrics = [] |
|
if global_step % args.checkpointing_steps == 0 and jax.process_index() == 0: |
|
controlnet.save_pretrained( |
|
f"{args.output_dir}/{global_step}", |
|
params=get_params_to_save(state.params), |
|
) |
|
|
|
train_metric = jax_utils.unreplicate(train_metric) |
|
train_step_progress_bar.close() |
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})") |
|
|
|
|
|
if jax.process_index() == 0: |
|
if args.validation_prompt is not None: |
|
if args.profile_validation: |
|
jax.profiler.start_trace(args.output_dir) |
|
image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype) |
|
if args.profile_validation: |
|
jax.profiler.stop_trace() |
|
else: |
|
image_logs = None |
|
|
|
controlnet.save_pretrained( |
|
args.output_dir, |
|
params=get_params_to_save(state.params), |
|
) |
|
|
|
if args.push_to_hub: |
|
save_model_card( |
|
repo_id, |
|
image_logs=image_logs, |
|
base_model=args.pretrained_model_name_or_path, |
|
repo_folder=args.output_dir, |
|
) |
|
upload_folder( |
|
repo_id=repo_id, |
|
folder_path=args.output_dir, |
|
commit_message="End of training", |
|
ignore_patterns=["step_*", "epoch_*"], |
|
) |
|
|
|
if args.profile_memory: |
|
jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_final.prof")) |
|
logger.info("Finished training.") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|