Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Russian
Size:
10K - 100K
License:
metadata
languages:
- ru
multilinguality:
- monolingual
pretty_name: Kinopoisk
size_categories:
- 10K<n<100K
task_categories:
- text-classification
- sentiment-analysis
task_ids:
- sentiment-classification
Dataset Summary
Kinopoisk movie reviews dataset (TOP250 & BOTTOM100 rank lists).
In total it contains 36,591 reviews from July 2004 to November 2012.
With following distribution along the 3-point sentiment scale:
- Good: 27,264;
- Bad: 4,751;
- Neutral: 4,576.
Data Fields
Each sample contains the following fields:
- part: rank list top250 or bottom100;
- movie_name;
- review_id;
- author: review author;
- date: date of a review;
- title: review title;
- grade3: sentiment score Good, Bad or Neutral;
- grade10: sentiment score on a 10-point scale parsed from text;
- content: review text.
Python
import pandas as pd
df = pd.read_json('kinopoisk.jsonl', lines=True)
df.sample(5)
Citation
@article{blinov2013research,
title={Research of lexical approach and machine learning methods for sentiment analysis},
author={Blinov, PD and Klekovkina, Maria and Kotelnikov, Eugeny and Pestov, Oleg},
journal={Computational Linguistics and Intellectual Technologies},
volume={2},
number={12},
pages={48--58},
year={2013}
}