body
stringlengths
26
98.2k
body_hash
int64
-9,222,864,604,528,158,000
9,221,803,474B
docstring
stringlengths
1
16.8k
path
stringlengths
5
230
name
stringlengths
1
96
repository_name
stringlengths
7
89
lang
stringclasses
1 value
body_without_docstring
stringlengths
20
98.2k
@property def output_channels(self): 'The number of output channels for this conv layer.' raise NotImplementedError()
8,242,031,762,583,537,000
The number of output channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
output_channels
zhoudoufu/lingvo
python
@property def output_channels(self): raise NotImplementedError()
@property def input_channels(self): 'The number of input channels for this conv layer.' return self.params.filter_shape[2]
7,604,858,641,345,819,000
The number of input channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
input_channels
zhoudoufu/lingvo
python
@property def input_channels(self): return self.params.filter_shape[2]
def OutShape(self, in_shape): 'Compute the output shape given the input shape.' p = self.params return ComputeConvOutputShape(in_shape, p.filter_stride[0], p.filter_stride[1], self.output_channels)
2,269,693,255,134,553,600
Compute the output shape given the input shape.
lingvo/core/conv_layers_with_time_padding.py
OutShape
zhoudoufu/lingvo
python
def OutShape(self, in_shape): p = self.params return ComputeConvOutputShape(in_shape, p.filter_stride[0], p.filter_stride[1], self.output_channels)
def FProp(self, theta, inputs, paddings): "Apply convolution to inputs.\n\n Args:\n theta: A `.NestedMap` object containing weights' values of this layer and\n its children layers.\n inputs: The inputs tensor. It is expected to be of shape [batch, time,\n frequency, channel]. The time dimension corresponds to the height\n dimension as in images and the frequency dimension corresponds to the\n width dimension as in images.\n paddings: The paddings tensor, expected to be of shape [batch, time].\n\n Returns:\n outputs, out_paddings pair.\n " p = self.params with tf.name_scope(p.name): inputs = py_utils.with_dependencies([py_utils.assert_shape_match(tf.shape(paddings), [(- 1), (- 1)]), py_utils.assert_shape_match(tf.shape(inputs), tf.concat([tf.shape(paddings), [(- 1), self.input_channels]], 0))], inputs) def _ApplyPadding(tensor_in, padding_in): padding_expanded = tf.expand_dims(tf.expand_dims(padding_in, (- 1)), (- 1)) return (tensor_in * (1.0 - padding_expanded)) inputs = _ApplyPadding(inputs, paddings) out = self._EvaluateConvKernel(theta, inputs) conv_padding = ComputeConvOutputPadding(paddings, window=p.filter_stride[0], stride=p.filter_stride[0]) out = py_utils.HasShape(out, self.OutShape(tf.shape(inputs))) return (out, conv_padding)
3,925,714,795,081,023,500
Apply convolution to inputs. Args: theta: A `.NestedMap` object containing weights' values of this layer and its children layers. inputs: The inputs tensor. It is expected to be of shape [batch, time, frequency, channel]. The time dimension corresponds to the height dimension as in images and the frequency dimension corresponds to the width dimension as in images. paddings: The paddings tensor, expected to be of shape [batch, time]. Returns: outputs, out_paddings pair.
lingvo/core/conv_layers_with_time_padding.py
FProp
zhoudoufu/lingvo
python
def FProp(self, theta, inputs, paddings): "Apply convolution to inputs.\n\n Args:\n theta: A `.NestedMap` object containing weights' values of this layer and\n its children layers.\n inputs: The inputs tensor. It is expected to be of shape [batch, time,\n frequency, channel]. The time dimension corresponds to the height\n dimension as in images and the frequency dimension corresponds to the\n width dimension as in images.\n paddings: The paddings tensor, expected to be of shape [batch, time].\n\n Returns:\n outputs, out_paddings pair.\n " p = self.params with tf.name_scope(p.name): inputs = py_utils.with_dependencies([py_utils.assert_shape_match(tf.shape(paddings), [(- 1), (- 1)]), py_utils.assert_shape_match(tf.shape(inputs), tf.concat([tf.shape(paddings), [(- 1), self.input_channels]], 0))], inputs) def _ApplyPadding(tensor_in, padding_in): padding_expanded = tf.expand_dims(tf.expand_dims(padding_in, (- 1)), (- 1)) return (tensor_in * (1.0 - padding_expanded)) inputs = _ApplyPadding(inputs, paddings) out = self._EvaluateConvKernel(theta, inputs) conv_padding = ComputeConvOutputPadding(paddings, window=p.filter_stride[0], stride=p.filter_stride[0]) out = py_utils.HasShape(out, self.OutShape(tf.shape(inputs))) return (out, conv_padding)
def _EvaluateConvKernel(self, theta, conv_input): "Evaluate the convolution kernel on input 'conv_input'." raise NotImplementedError
-7,612,223,677,189,903,000
Evaluate the convolution kernel on input 'conv_input'.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, conv_input): raise NotImplementedError
@property def output_channels(self): 'The number of output channels for this conv layer.' p = self.params return p.filter_shape[(- 1)]
-3,440,541,955,508,788,700
The number of output channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
output_channels
zhoudoufu/lingvo
python
@property def output_channels(self): p = self.params return p.filter_shape[(- 1)]
def _EvaluateConvKernel(self, theta, inputs): 'Apply convolution to inputs.' p = self.params filter_w = self._GetWeight(theta) return tf.nn.convolution(inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding='SAME')
-3,120,093,250,225,228,300
Apply convolution to inputs.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, inputs): p = self.params filter_w = self._GetWeight(theta) return tf.nn.convolution(inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding='SAME')
def _EvaluateConvKernel(self, theta, inputs): 'Apply convolution to inputs.' p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.convolution(inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
-8,518,852,387,100,807,000
Apply convolution to inputs.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, inputs): p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.convolution(inputs, filter_w, strides=p.filter_stride, dilation_rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
@property def output_channels(self): 'The number of output channels for this conv layer.' p = self.params return (p.filter_shape[2] * p.filter_shape[3])
-3,158,050,055,185,182,000
The number of output channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
output_channels
zhoudoufu/lingvo
python
@property def output_channels(self): p = self.params return (p.filter_shape[2] * p.filter_shape[3])
def _EvaluateConvKernel(self, theta, inputs): 'Apply convolution to inputs.' p = self.params filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding='SAME')
-2,014,962,577,060,515,000
Apply convolution to inputs.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, inputs): p = self.params filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding='SAME')
def _EvaluateConvKernel(self, theta, inputs): 'Apply convolution to inputs.' p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
2,925,317,837,623,134,700
Apply convolution to inputs.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, inputs): p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
@property def output_channels(self): 'The number of output channels for this conv layer.' p = self.params return ((p.filter_shape[2] * p.filter_shape[3]) * p.weight_tiling_factor)
6,790,885,910,145,574,000
The number of output channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
output_channels
zhoudoufu/lingvo
python
@property def output_channels(self): p = self.params return ((p.filter_shape[2] * p.filter_shape[3]) * p.weight_tiling_factor)
@property def input_channels(self): 'The number of output channels for this conv layer.' p = self.params return (p.filter_shape[2] * p.weight_tiling_factor)
-1,990,916,665,096,716,500
The number of output channels for this conv layer.
lingvo/core/conv_layers_with_time_padding.py
input_channels
zhoudoufu/lingvo
python
@property def input_channels(self): p = self.params return (p.filter_shape[2] * p.weight_tiling_factor)
def _EvaluateConvKernel(self, theta, inputs): 'Apply convolution to inputs.' p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
2,925,317,837,623,134,700
Apply convolution to inputs.
lingvo/core/conv_layers_with_time_padding.py
_EvaluateConvKernel
zhoudoufu/lingvo
python
def _EvaluateConvKernel(self, theta, inputs): p = self.params assert (p.filter_shape[1] == 1), 'Only 1D causal convolutions supported.' padding_algorithm = 'VALID' causal_pad_size = ((p.filter_shape[0] - 1) * p.dilation_rate[0]) inputs = tf.pad(inputs, [[0, 0], [causal_pad_size, 0], [0, 0], [0, 0]]) filter_w = self._GetWeight(theta) return tf.nn.depthwise_conv2d(inputs, filter_w, strides=[1, p.filter_stride[0], p.filter_stride[1], 1], rate=p.dilation_rate, data_format='NHWC', padding=padding_algorithm)
def _get_dataset_class(self): 'The dataset is SeqDataset.' return dataset.SeqDataset
-2,868,445,351,187,315,000
The dataset is SeqDataset.
recstudio/model/seq/hgn.py
_get_dataset_class
ustc-recsys/Torchrec
python
def _get_dataset_class(self): return dataset.SeqDataset
def _get_loss_func(self): 'BPR loss is used.' return loss_func.BPRLoss()
-3,570,538,041,019,999,000
BPR loss is used.
recstudio/model/seq/hgn.py
_get_loss_func
ustc-recsys/Torchrec
python
def _get_loss_func(self): return loss_func.BPRLoss()
def check_mempool_result(self, result_expected, *args, **kwargs): "Wrapper to check result of testmempoolaccept on node_0's mempool" result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size)
-7,100,453,028,876,266,000
Wrapper to check result of testmempoolaccept on node_0's mempool
test/functional/mempool_accept.py
check_mempool_result
Mantle-One/mantlecoin
python
def check_mempool_result(self, result_expected, *args, **kwargs): result_test = self.nodes[0].testmempoolaccept(*args, **kwargs) assert_equal(result_expected, result_test) assert_equal(self.nodes[0].getmempoolinfo()['size'], self.mempool_size)
def download_file_repeatedly(tries, session, file_id, file_name, expected_file_size, request_headers, error): 'Attempt to download BaseSpace file numerous times in case of errors.' for i in range(tries): try: download_file(session=session, file_id=file_id, file_name=file_name, request_headers=request_headers, error=error) raise_for_file_corruption(file_name=file_name, expected_file_size=expected_file_size, error=error) break except BaseSpaceDownloadError: if ((i + 1) == tries): error('Could not download file from BaseSpace.') else: time.sleep(3)
-5,105,479,421,124,455,000
Attempt to download BaseSpace file numerous times in case of errors.
resolwe_bio/processes/import_data/basespace.py
download_file_repeatedly
plojyon/resolwe-bio
python
def download_file_repeatedly(tries, session, file_id, file_name, expected_file_size, request_headers, error): for i in range(tries): try: download_file(session=session, file_id=file_id, file_name=file_name, request_headers=request_headers, error=error) raise_for_file_corruption(file_name=file_name, expected_file_size=expected_file_size, error=error) break except BaseSpaceDownloadError: if ((i + 1) == tries): error('Could not download file from BaseSpace.') else: time.sleep(3)
def download_file(session, file_id, file_name, request_headers, error): 'Download BaseSpace file.' response = make_get_request(session=session, url=get_api_file_content_url(file_id=file_id), headers=request_headers, error=error, stream=True) try: with open(file_name, 'wb') as f: chunk_size = ((1024 * 1024) * 10) for chunk in response.iter_content(chunk_size=chunk_size): f.write(chunk) except FileNotFoundError: error(f'Could not save file to {file_name}, due to directory not being found') except PermissionError: error(f'Could not save file to {file_name}, due to insufficient permissions') except RequestException: error(f'Could not save file to {file_name}, due to a network error')
9,134,604,517,344,069,000
Download BaseSpace file.
resolwe_bio/processes/import_data/basespace.py
download_file
plojyon/resolwe-bio
python
def download_file(session, file_id, file_name, request_headers, error): response = make_get_request(session=session, url=get_api_file_content_url(file_id=file_id), headers=request_headers, error=error, stream=True) try: with open(file_name, 'wb') as f: chunk_size = ((1024 * 1024) * 10) for chunk in response.iter_content(chunk_size=chunk_size): f.write(chunk) except FileNotFoundError: error(f'Could not save file to {file_name}, due to directory not being found') except PermissionError: error(f'Could not save file to {file_name}, due to insufficient permissions') except RequestException: error(f'Could not save file to {file_name}, due to a network error')
def get_file_properties(session, file_id, request_headers, error): 'Get file name and size (in bytes).' response = make_get_request(session=session, url=get_api_file_url(file_id=file_id), headers=request_headers, error=error) info = response.json()['Response'] return (info['Name'], info['Size'])
9,217,621,477,618,900,000
Get file name and size (in bytes).
resolwe_bio/processes/import_data/basespace.py
get_file_properties
plojyon/resolwe-bio
python
def get_file_properties(session, file_id, request_headers, error): response = make_get_request(session=session, url=get_api_file_url(file_id=file_id), headers=request_headers, error=error) info = response.json()['Response'] return (info['Name'], info['Size'])
def make_get_request(session, url, headers, error, stream=False): 'Make a get request.' response = session.get(url=url, headers=headers, stream=stream, timeout=60) if (response.status_code == 401): error(f'Authentication failed on URL {url}') elif (response.status_code == 404): error(f'BaseSpace file {url} not found') elif (response.status_code != 200): error(f'Failed to retrieve content from {url}') return response
1,917,236,053,509,517,300
Make a get request.
resolwe_bio/processes/import_data/basespace.py
make_get_request
plojyon/resolwe-bio
python
def make_get_request(session, url, headers, error, stream=False): response = session.get(url=url, headers=headers, stream=stream, timeout=60) if (response.status_code == 401): error(f'Authentication failed on URL {url}') elif (response.status_code == 404): error(f'BaseSpace file {url} not found') elif (response.status_code != 200): error(f'Failed to retrieve content from {url}') return response
def get_api_file_url(file_id): 'Get BaseSpace API file URL.' api_url = 'https://api.basespace.illumina.com/v1pre3' return f'{api_url}/files/{file_id}'
-1,486,712,254,861,731,600
Get BaseSpace API file URL.
resolwe_bio/processes/import_data/basespace.py
get_api_file_url
plojyon/resolwe-bio
python
def get_api_file_url(file_id): api_url = 'https://api.basespace.illumina.com/v1pre3' return f'{api_url}/files/{file_id}'
def get_api_file_content_url(file_id): 'Get BaseSpace API file contents URL.' return f'{get_api_file_url(file_id=file_id)}/content'
-5,197,090,098,529,219,000
Get BaseSpace API file contents URL.
resolwe_bio/processes/import_data/basespace.py
get_api_file_content_url
plojyon/resolwe-bio
python
def get_api_file_content_url(file_id): return f'{get_api_file_url(file_id=file_id)}/content'
def output(output_option, value): 'Print to standard output.' if (output_option == 'full'): print(value) elif (output_option == 'filename'): if value.startswith('filename='): print(value[len('filename='):])
6,814,121,900,314,926,000
Print to standard output.
resolwe_bio/processes/import_data/basespace.py
output
plojyon/resolwe-bio
python
def output(output_option, value): if (output_option == 'full'): print(value) elif (output_option == 'filename'): if value.startswith('filename='): print(value[len('filename='):])
def get_token_from_secret_file(secret_file_path, error): 'Read secret file to obtain access token.' try: with open(secret_file_path, 'r') as f: return f.readline() except FileNotFoundError: error('Secret file not found') except PermissionError: error('No permissions to read secret file')
9,143,504,654,655,903,000
Read secret file to obtain access token.
resolwe_bio/processes/import_data/basespace.py
get_token_from_secret_file
plojyon/resolwe-bio
python
def get_token_from_secret_file(secret_file_path, error): try: with open(secret_file_path, 'r') as f: return f.readline() except FileNotFoundError: error('Secret file not found') except PermissionError: error('No permissions to read secret file')
def on_exit(session): 'Clean up function called on exit.' session.close()
3,417,955,870,742,018,600
Clean up function called on exit.
resolwe_bio/processes/import_data/basespace.py
on_exit
plojyon/resolwe-bio
python
def on_exit(session): session.close()
def raise_for_file_corruption(file_name, expected_file_size, error): 'Raise an error if file does not pass integrity check.' actual_file_size = os.path.getsize(file_name) if (expected_file_size != actual_file_size): error(f"File's ({file_name}) expected size ({expected_file_size}) does not match its actual size ({actual_file_size})") if (file_name.split('.')[(- 1)] == 'gz'): try: with gzip.open(file_name, 'rb') as f: chunk_size = ((1024 * 1024) * 10) while bool(f.read(chunk_size)): pass except OSError: error(f'File {file_name} did not pass gzip integrity check')
-2,081,467,245,419,386,000
Raise an error if file does not pass integrity check.
resolwe_bio/processes/import_data/basespace.py
raise_for_file_corruption
plojyon/resolwe-bio
python
def raise_for_file_corruption(file_name, expected_file_size, error): actual_file_size = os.path.getsize(file_name) if (expected_file_size != actual_file_size): error(f"File's ({file_name}) expected size ({expected_file_size}) does not match its actual size ({actual_file_size})") if (file_name.split('.')[(- 1)] == 'gz'): try: with gzip.open(file_name, 'rb') as f: chunk_size = ((1024 * 1024) * 10) while bool(f.read(chunk_size)): pass except OSError: error(f'File {file_name} did not pass gzip integrity check')
def run(self, inputs, outputs): 'Run import.' secret_path = (Path('/secrets') / inputs.access_token_secret['handle']) session = Session() atexit.register(on_exit, session) try: file_id = inputs.file_id access_token = get_token_from_secret_file(secret_file_path=secret_path, error=self.error) headers = {'x-access-token': access_token} (file_name, file_size) = get_file_properties(session=session, file_id=file_id, request_headers=headers, error=self.error) download_file_repeatedly(tries=inputs.advanced.tries, session=session, file_id=file_id, file_name=file_name, expected_file_size=file_size, request_headers=headers, error=self.error) output(inputs.advanced.output, f'filename={file_name}') except Exception as error: if inputs.advanced.verbose: traceback.print_exc() self.error('Unexpected error occurred while trying to download files from BaseSpace. Check standard output for more details.') else: print(str(error)) self.error('Unexpected error occurred while trying to download files from BaseSpace. Set Verbose to True to see the traceback.') outputs.file = file_name
5,502,022,459,005,394,000
Run import.
resolwe_bio/processes/import_data/basespace.py
run
plojyon/resolwe-bio
python
def run(self, inputs, outputs): secret_path = (Path('/secrets') / inputs.access_token_secret['handle']) session = Session() atexit.register(on_exit, session) try: file_id = inputs.file_id access_token = get_token_from_secret_file(secret_file_path=secret_path, error=self.error) headers = {'x-access-token': access_token} (file_name, file_size) = get_file_properties(session=session, file_id=file_id, request_headers=headers, error=self.error) download_file_repeatedly(tries=inputs.advanced.tries, session=session, file_id=file_id, file_name=file_name, expected_file_size=file_size, request_headers=headers, error=self.error) output(inputs.advanced.output, f'filename={file_name}') except Exception as error: if inputs.advanced.verbose: traceback.print_exc() self.error('Unexpected error occurred while trying to download files from BaseSpace. Check standard output for more details.') else: print(str(error)) self.error('Unexpected error occurred while trying to download files from BaseSpace. Set Verbose to True to see the traceback.') outputs.file = file_name
def list_topic_keys(authorization_rule_name: Optional[str]=None, namespace_name: Optional[str]=None, resource_group_name: Optional[str]=None, topic_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableListTopicKeysResult: '\n Namespace/ServiceBus Connection String\n API Version: 2017-04-01.\n\n\n :param str authorization_rule_name: The authorization rule name.\n :param str namespace_name: The namespace name\n :param str resource_group_name: Name of the Resource group within the Azure subscription.\n :param str topic_name: The topic name.\n ' __args__ = dict() __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name __args__['topicName'] = topic_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:servicebus:listTopicKeys', __args__, opts=opts, typ=ListTopicKeysResult).value return AwaitableListTopicKeysResult(alias_primary_connection_string=__ret__.alias_primary_connection_string, alias_secondary_connection_string=__ret__.alias_secondary_connection_string, key_name=__ret__.key_name, primary_connection_string=__ret__.primary_connection_string, primary_key=__ret__.primary_key, secondary_connection_string=__ret__.secondary_connection_string, secondary_key=__ret__.secondary_key)
7,076,781,155,728,823,000
Namespace/ServiceBus Connection String API Version: 2017-04-01. :param str authorization_rule_name: The authorization rule name. :param str namespace_name: The namespace name :param str resource_group_name: Name of the Resource group within the Azure subscription. :param str topic_name: The topic name.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
list_topic_keys
pulumi/pulumi-azure-nextgen
python
def list_topic_keys(authorization_rule_name: Optional[str]=None, namespace_name: Optional[str]=None, resource_group_name: Optional[str]=None, topic_name: Optional[str]=None, opts: Optional[pulumi.InvokeOptions]=None) -> AwaitableListTopicKeysResult: '\n Namespace/ServiceBus Connection String\n API Version: 2017-04-01.\n\n\n :param str authorization_rule_name: The authorization rule name.\n :param str namespace_name: The namespace name\n :param str resource_group_name: Name of the Resource group within the Azure subscription.\n :param str topic_name: The topic name.\n ' __args__ = dict() __args__['authorizationRuleName'] = authorization_rule_name __args__['namespaceName'] = namespace_name __args__['resourceGroupName'] = resource_group_name __args__['topicName'] = topic_name if (opts is None): opts = pulumi.InvokeOptions() if (opts.version is None): opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-nextgen:servicebus:listTopicKeys', __args__, opts=opts, typ=ListTopicKeysResult).value return AwaitableListTopicKeysResult(alias_primary_connection_string=__ret__.alias_primary_connection_string, alias_secondary_connection_string=__ret__.alias_secondary_connection_string, key_name=__ret__.key_name, primary_connection_string=__ret__.primary_connection_string, primary_key=__ret__.primary_key, secondary_connection_string=__ret__.secondary_connection_string, secondary_key=__ret__.secondary_key)
@property @pulumi.getter(name='aliasPrimaryConnectionString') def alias_primary_connection_string(self) -> str: '\n Primary connection string of the alias if GEO DR is enabled\n ' return pulumi.get(self, 'alias_primary_connection_string')
-735,264,547,924,943,000
Primary connection string of the alias if GEO DR is enabled
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
alias_primary_connection_string
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='aliasPrimaryConnectionString') def alias_primary_connection_string(self) -> str: '\n \n ' return pulumi.get(self, 'alias_primary_connection_string')
@property @pulumi.getter(name='aliasSecondaryConnectionString') def alias_secondary_connection_string(self) -> str: '\n Secondary connection string of the alias if GEO DR is enabled\n ' return pulumi.get(self, 'alias_secondary_connection_string')
-7,252,278,262,410,730,000
Secondary connection string of the alias if GEO DR is enabled
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
alias_secondary_connection_string
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='aliasSecondaryConnectionString') def alias_secondary_connection_string(self) -> str: '\n \n ' return pulumi.get(self, 'alias_secondary_connection_string')
@property @pulumi.getter(name='keyName') def key_name(self) -> str: '\n A string that describes the authorization rule.\n ' return pulumi.get(self, 'key_name')
-8,989,103,160,870,669,000
A string that describes the authorization rule.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
key_name
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='keyName') def key_name(self) -> str: '\n \n ' return pulumi.get(self, 'key_name')
@property @pulumi.getter(name='primaryConnectionString') def primary_connection_string(self) -> str: '\n Primary connection string of the created namespace authorization rule.\n ' return pulumi.get(self, 'primary_connection_string')
5,476,672,033,728,210,000
Primary connection string of the created namespace authorization rule.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
primary_connection_string
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='primaryConnectionString') def primary_connection_string(self) -> str: '\n \n ' return pulumi.get(self, 'primary_connection_string')
@property @pulumi.getter(name='primaryKey') def primary_key(self) -> str: '\n A base64-encoded 256-bit primary key for signing and validating the SAS token.\n ' return pulumi.get(self, 'primary_key')
-8,605,071,421,063,727,000
A base64-encoded 256-bit primary key for signing and validating the SAS token.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
primary_key
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='primaryKey') def primary_key(self) -> str: '\n \n ' return pulumi.get(self, 'primary_key')
@property @pulumi.getter(name='secondaryConnectionString') def secondary_connection_string(self) -> str: '\n Secondary connection string of the created namespace authorization rule.\n ' return pulumi.get(self, 'secondary_connection_string')
544,027,555,300,435,840
Secondary connection string of the created namespace authorization rule.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
secondary_connection_string
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='secondaryConnectionString') def secondary_connection_string(self) -> str: '\n \n ' return pulumi.get(self, 'secondary_connection_string')
@property @pulumi.getter(name='secondaryKey') def secondary_key(self) -> str: '\n A base64-encoded 256-bit primary key for signing and validating the SAS token.\n ' return pulumi.get(self, 'secondary_key')
-3,971,171,928,977,375,700
A base64-encoded 256-bit primary key for signing and validating the SAS token.
sdk/python/pulumi_azure_nextgen/servicebus/list_topic_keys.py
secondary_key
pulumi/pulumi-azure-nextgen
python
@property @pulumi.getter(name='secondaryKey') def secondary_key(self) -> str: '\n \n ' return pulumi.get(self, 'secondary_key')
def buildTree(self, preorder, inorder): '\n\t\t:type preorder: List[int]\n\t\t:type inorder: List[int]\n\t\t:rtype: TreeNode\n\t\t' if (not preorder): return None def build_node(lo, hi): node = TreeNode(preorder[self.index]) self.index += 1 j = inorder.index(node.val, lo, hi) if ((self.index < len(preorder)) and (preorder[self.index] in inorder[lo:j])): node.left = build_node(lo, j) if ((self.index < len(preorder)) and (preorder[self.index] in inorder[(j + 1):hi])): node.right = build_node((j + 1), hi) return node return build_node(0, len(preorder))
-666,873,995,319,372,700
:type preorder: List[int] :type inorder: List[int] :rtype: TreeNode
medium/Q105_ConstructBinaryTreeFromPreorderAndInorderTraversal.py
buildTree
Kaciras/leetcode
python
def buildTree(self, preorder, inorder): '\n\t\t:type preorder: List[int]\n\t\t:type inorder: List[int]\n\t\t:rtype: TreeNode\n\t\t' if (not preorder): return None def build_node(lo, hi): node = TreeNode(preorder[self.index]) self.index += 1 j = inorder.index(node.val, lo, hi) if ((self.index < len(preorder)) and (preorder[self.index] in inorder[lo:j])): node.left = build_node(lo, j) if ((self.index < len(preorder)) and (preorder[self.index] in inorder[(j + 1):hi])): node.right = build_node((j + 1), hi) return node return build_node(0, len(preorder))
def get_virtualization_api_version(): 'Returns the Virutalization API version string.\n\n :return: version string\n ' return to_str(dlpx.virtualization.api.__version__)
8,405,904,629,277,544,000
Returns the Virutalization API version string. :return: version string
platform/src/main/python/dlpx/virtualization/platform/util.py
get_virtualization_api_version
Balamuruhan/virtualization-sdk
python
def get_virtualization_api_version(): 'Returns the Virutalization API version string.\n\n :return: version string\n ' return to_str(dlpx.virtualization.api.__version__)
def euclidian_distance(self, e1, e2): '\n https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy\n ' return np.linalg.norm((e1 - e2))
7,530,376,623,388,592,000
https://stackoverflow.com/questions/1401712/how-can-the-euclidean-distance-be-calculated-with-numpy
Word2Vec/NearestNeighbor.py
euclidian_distance
bi3mer/Word2Vec
python
def euclidian_distance(self, e1, e2): '\n \n ' return np.linalg.norm((e1 - e2))
def _log_results(victims_output): 'Log results.' cve_id = victims_output.cve.id_ logger.info('[{cve_id}] picked `{winner}` out of `{candidates}`'.format(cve_id=cve_id, winner=victims_output.winner, candidates=victims_output.candidates)) logger.info('[{cve_id}] Affected version range: {version_ranges}'.format(cve_id=cve_id, version_ranges=victims_output.affected_versions)) logger.info('[{cve_id}] Safe version range: {version_ranges}'.format(cve_id=cve_id, version_ranges=victims_output.safe_versions))
6,854,853,430,072,565,000
Log results.
run.py
_log_results
jparsai/cvejob
python
def _log_results(victims_output): cve_id = victims_output.cve.id_ logger.info('[{cve_id}] picked `{winner}` out of `{candidates}`'.format(cve_id=cve_id, winner=victims_output.winner, candidates=victims_output.candidates)) logger.info('[{cve_id}] Affected version range: {version_ranges}'.format(cve_id=cve_id, version_ranges=victims_output.affected_versions)) logger.info('[{cve_id}] Safe version range: {version_ranges}'.format(cve_id=cve_id, version_ranges=victims_output.safe_versions))
def _filter_collection(collection, date_range, cherry_pick): 'Filter Document collection.' if date_range: collection_size_before = collection.count() collection = collection.find({'published_date': in_range(*date_range)}) logger.debug('Filtered out {} Documents that do not fall in the given range.'.format((collection_size_before - collection.count()))) if cherry_pick: logger.debug('Cherry-picked CVE `{cve_id}`'.format(cve_id=cherry_pick)) collection = collection.find({'cve.id_': cherry_pick}) return collection
-7,678,109,665,041,835,000
Filter Document collection.
run.py
_filter_collection
jparsai/cvejob
python
def _filter_collection(collection, date_range, cherry_pick): if date_range: collection_size_before = collection.count() collection = collection.find({'published_date': in_range(*date_range)}) logger.debug('Filtered out {} Documents that do not fall in the given range.'.format((collection_size_before - collection.count()))) if cherry_pick: logger.debug('Cherry-picked CVE `{cve_id}`'.format(cve_id=cherry_pick)) collection = collection.find({'cve.id_': cherry_pick}) return collection
def run(): 'Run CVEjob.' feed_dir = Config.feed_dir feed_names = Config.feed_names date_range = Config.date_range cherrypicked_cve_id = Config.cve_id cherrypicked_year = None if cherrypicked_cve_id: cherrypicked_year = cherrypicked_cve_id.split(sep='-')[1] if (int(cherrypicked_year) < 2002): cherrypicked_year = 2002 if date_range: date_range = parse_date_range(Config.date_range) feed_names = range(date_range[0].year, (date_range[1].year + 1)) if cherrypicked_cve_id: if (int(cherrypicked_year) not in feed_names): logger.info('[{picked_cve_id}] does not belong to the given feed range: {date_range}'.format(picked_cve_id=cherrypicked_cve_id, date_range=date_range)) return feed_names = [cherrypicked_year] if (not feed_names): if cherrypicked_cve_id: feed_names = [cherrypicked_year] else: feed_names = ['modified'] with FeedManager(n_workers=multiprocessing.cpu_count()) as feed_manager: feeds = feed_manager.fetch_feeds(feed_names=feed_names, data_dir=feed_dir, update=True) collection = feed_manager.collect(feeds) collection = _filter_collection(collection, date_range, cherrypicked_cve_id) if (not collection): logger.info('Collection is empty.'.format(picked_cve_id=cherrypicked_cve_id)) return logger.debug('Number of CVE Documents in the collection: {}'.format(collection.count())) if (Config.package_name and Config.cve_id): doc = [x for x in collection][0] (affected, safe) = NVDVersions(doc, Config.package_name, Config.ecosystem).run() victims_output = VictimsYamlOutput(ecosystem=Config.ecosystem, cve_doc=doc, winner=PackageNameCandidate(Config.package_name, Decimal('1.0')), candidates=[], affected=affected, fixedin=safe) _log_results(victims_output) victims_output.write() sys.exit(0) for doc in collection: cve_id = doc.cve.id_ try: if (not validate_cve(doc)): logger.debug('[{cve_id}] was filtered out by input checks'.format(cve_id=cve_id)) continue pkgfile_path = get_pkgfile_path(Config.pkgfile_dir, Config.ecosystem) identifier = get_identifier_cls()(doc, Config.ecosystem, pkgfile_path) candidates = identifier.identify() if (not candidates): logger.info('[{cve_id}] no package name candidates found'.format(cve_id=cve_id)) continue selector = VersionSelector(doc, candidates, Config.ecosystem) winner = selector.pick_winner() if (not winner): logger.info('[{cve_id}] no package name found'.format(cve_id=cve_id)) continue (affected, safe) = NVDVersions(doc, winner.package, Config.ecosystem).run() victims_output = VictimsYamlOutput(ecosystem=Config.ecosystem, cve_doc=doc, winner=winner, candidates=candidates, affected=affected, fixedin=safe) _log_results(victims_output) victims_output.write() except Exception as exc: logger.warning('[{cve_id}] Unexpected exception occurred: {exc}'.format(cve_id=cve_id, exc=exc), exc_info=True)
-8,527,722,847,959,948,000
Run CVEjob.
run.py
run
jparsai/cvejob
python
def run(): feed_dir = Config.feed_dir feed_names = Config.feed_names date_range = Config.date_range cherrypicked_cve_id = Config.cve_id cherrypicked_year = None if cherrypicked_cve_id: cherrypicked_year = cherrypicked_cve_id.split(sep='-')[1] if (int(cherrypicked_year) < 2002): cherrypicked_year = 2002 if date_range: date_range = parse_date_range(Config.date_range) feed_names = range(date_range[0].year, (date_range[1].year + 1)) if cherrypicked_cve_id: if (int(cherrypicked_year) not in feed_names): logger.info('[{picked_cve_id}] does not belong to the given feed range: {date_range}'.format(picked_cve_id=cherrypicked_cve_id, date_range=date_range)) return feed_names = [cherrypicked_year] if (not feed_names): if cherrypicked_cve_id: feed_names = [cherrypicked_year] else: feed_names = ['modified'] with FeedManager(n_workers=multiprocessing.cpu_count()) as feed_manager: feeds = feed_manager.fetch_feeds(feed_names=feed_names, data_dir=feed_dir, update=True) collection = feed_manager.collect(feeds) collection = _filter_collection(collection, date_range, cherrypicked_cve_id) if (not collection): logger.info('Collection is empty.'.format(picked_cve_id=cherrypicked_cve_id)) return logger.debug('Number of CVE Documents in the collection: {}'.format(collection.count())) if (Config.package_name and Config.cve_id): doc = [x for x in collection][0] (affected, safe) = NVDVersions(doc, Config.package_name, Config.ecosystem).run() victims_output = VictimsYamlOutput(ecosystem=Config.ecosystem, cve_doc=doc, winner=PackageNameCandidate(Config.package_name, Decimal('1.0')), candidates=[], affected=affected, fixedin=safe) _log_results(victims_output) victims_output.write() sys.exit(0) for doc in collection: cve_id = doc.cve.id_ try: if (not validate_cve(doc)): logger.debug('[{cve_id}] was filtered out by input checks'.format(cve_id=cve_id)) continue pkgfile_path = get_pkgfile_path(Config.pkgfile_dir, Config.ecosystem) identifier = get_identifier_cls()(doc, Config.ecosystem, pkgfile_path) candidates = identifier.identify() if (not candidates): logger.info('[{cve_id}] no package name candidates found'.format(cve_id=cve_id)) continue selector = VersionSelector(doc, candidates, Config.ecosystem) winner = selector.pick_winner() if (not winner): logger.info('[{cve_id}] no package name found'.format(cve_id=cve_id)) continue (affected, safe) = NVDVersions(doc, winner.package, Config.ecosystem).run() victims_output = VictimsYamlOutput(ecosystem=Config.ecosystem, cve_doc=doc, winner=winner, candidates=candidates, affected=affected, fixedin=safe) _log_results(victims_output) victims_output.write() except Exception as exc: logger.warning('[{cve_id}] Unexpected exception occurred: {exc}'.format(cve_id=cve_id, exc=exc), exc_info=True)
def __init__(self, S, A, R, p): "\n\t\tParameters\n\t\t----------\n\t\tS : int\n\t\t\tNumber of states\n\t\tA : matrix\n\t\t\tA[s][a] is True iff a is permitted in s\n\t\tR : list\n\t\t\tA list of reward generators\n\t\tp : matrix\n\t\t\tp[s][a][s'] = p(s'|s,a)\n\t\t" self.S = list(range(S)) (self.A, self.R, self.p) = (A, R, p) self.no_of_states = S self.no_of_actions = len(A[0])
5,419,094,374,289,751,000
Parameters ---------- S : int Number of states A : matrix A[s][a] is True iff a is permitted in s R : list A list of reward generators p : matrix p[s][a][s'] = p(s'|s,a)
main.py
__init__
ronaldosvieira/rl
python
def __init__(self, S, A, R, p): "\n\t\tParameters\n\t\t----------\n\t\tS : int\n\t\t\tNumber of states\n\t\tA : matrix\n\t\t\tA[s][a] is True iff a is permitted in s\n\t\tR : list\n\t\t\tA list of reward generators\n\t\tp : matrix\n\t\t\tp[s][a][s'] = p(s'|s,a)\n\t\t" self.S = list(range(S)) (self.A, self.R, self.p) = (A, R, p) self.no_of_states = S self.no_of_actions = len(A[0])
def step(self, s, a): 'Given a state and an action, returns a new state and a reward.\n\n\t\tParameters\n\t\t----------\n\t\ts : int\n\t\t\tCurrent state\n\t\ta : int\n\t\t\tAction to take\n\t\t' s_prime = np.random.choice(self.no_of_states, p=self.p[s][a]) r = self.R[s_prime].get() return (s_prime, r)
8,184,501,362,705,089,000
Given a state and an action, returns a new state and a reward. Parameters ---------- s : int Current state a : int Action to take
main.py
step
ronaldosvieira/rl
python
def step(self, s, a): 'Given a state and an action, returns a new state and a reward.\n\n\t\tParameters\n\t\t----------\n\t\ts : int\n\t\t\tCurrent state\n\t\ta : int\n\t\t\tAction to take\n\t\t' s_prime = np.random.choice(self.no_of_states, p=self.p[s][a]) r = self.R[s_prime].get() return (s_prime, r)
def __init__(self, username=None): '\n Keyword args:\n username (str): The username of the user.\n ' if (username is not None): self.username = username
-33,502,890,462,554,616
Keyword args: username (str): The username of the user.
pypureclient/flasharray/FA_2_2/models/username.py
__init__
Flav-STOR-WL/py-pure-client
python
def __init__(self, username=None): '\n Keyword args:\n username (str): The username of the user.\n ' if (username is not None): self.username = username
def to_dict(self): 'Returns the model properties as a dict' result = {} for (attr, _) in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(Username, dict): for (key, value) in self.items(): result[key] = value return result
-4,027,666,252,657,289,700
Returns the model properties as a dict
pypureclient/flasharray/FA_2_2/models/username.py
to_dict
Flav-STOR-WL/py-pure-client
python
def to_dict(self): result = {} for (attr, _) in six.iteritems(self.swagger_types): if hasattr(self, attr): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map((lambda x: (x.to_dict() if hasattr(x, 'to_dict') else x)), value)) elif hasattr(value, 'to_dict'): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map((lambda item: ((item[0], item[1].to_dict()) if hasattr(item[1], 'to_dict') else item)), value.items())) else: result[attr] = value if issubclass(Username, dict): for (key, value) in self.items(): result[key] = value return result
def to_str(self): 'Returns the string representation of the model' return pprint.pformat(self.to_dict())
5,849,158,643,760,736,000
Returns the string representation of the model
pypureclient/flasharray/FA_2_2/models/username.py
to_str
Flav-STOR-WL/py-pure-client
python
def to_str(self): return pprint.pformat(self.to_dict())
def __repr__(self): 'For `print` and `pprint`' return self.to_str()
-8,960,031,694,814,905,000
For `print` and `pprint`
pypureclient/flasharray/FA_2_2/models/username.py
__repr__
Flav-STOR-WL/py-pure-client
python
def __repr__(self): return self.to_str()
def __eq__(self, other): 'Returns true if both objects are equal' if (not isinstance(other, Username)): return False return (self.__dict__ == other.__dict__)
-4,847,326,211,869,451,000
Returns true if both objects are equal
pypureclient/flasharray/FA_2_2/models/username.py
__eq__
Flav-STOR-WL/py-pure-client
python
def __eq__(self, other): if (not isinstance(other, Username)): return False return (self.__dict__ == other.__dict__)
def __ne__(self, other): 'Returns true if both objects are not equal' return (not (self == other))
7,764,124,047,908,058,000
Returns true if both objects are not equal
pypureclient/flasharray/FA_2_2/models/username.py
__ne__
Flav-STOR-WL/py-pure-client
python
def __ne__(self, other): return (not (self == other))
def setup_platform(hass, config, add_entities, discovery_info=None): 'Set up the Blockchain.com sensors.' addresses = config[CONF_ADDRESSES] name = config[CONF_NAME] for address in addresses: if (not validate_address(address)): _LOGGER.error('Bitcoin address is not valid: %s', address) return False add_entities([BlockchainSensor(name, addresses)], True)
-512,189,206,448,340,000
Set up the Blockchain.com sensors.
homeassistant/components/blockchain/sensor.py
setup_platform
CantankerousBullMoose/core
python
def setup_platform(hass, config, add_entities, discovery_info=None): addresses = config[CONF_ADDRESSES] name = config[CONF_NAME] for address in addresses: if (not validate_address(address)): _LOGGER.error('Bitcoin address is not valid: %s', address) return False add_entities([BlockchainSensor(name, addresses)], True)
def __init__(self, name, addresses): 'Initialize the sensor.' self._name = name self.addresses = addresses self._state = None self._unit_of_measurement = 'BTC'
-3,735,731,008,319,450,000
Initialize the sensor.
homeassistant/components/blockchain/sensor.py
__init__
CantankerousBullMoose/core
python
def __init__(self, name, addresses): self._name = name self.addresses = addresses self._state = None self._unit_of_measurement = 'BTC'
@property def name(self): 'Return the name of the sensor.' return self._name
8,691,954,631,286,512,000
Return the name of the sensor.
homeassistant/components/blockchain/sensor.py
name
CantankerousBullMoose/core
python
@property def name(self): return self._name
@property def state(self): 'Return the state of the sensor.' return self._state
-2,324,550,726,442,955,000
Return the state of the sensor.
homeassistant/components/blockchain/sensor.py
state
CantankerousBullMoose/core
python
@property def state(self): return self._state
@property def unit_of_measurement(self): 'Return the unit of measurement this sensor expresses itself in.' return self._unit_of_measurement
-4,980,045,660,747,502,000
Return the unit of measurement this sensor expresses itself in.
homeassistant/components/blockchain/sensor.py
unit_of_measurement
CantankerousBullMoose/core
python
@property def unit_of_measurement(self): return self._unit_of_measurement
@property def icon(self): 'Return the icon to use in the frontend, if any.' return ICON
-4,249,800,035,670,332,000
Return the icon to use in the frontend, if any.
homeassistant/components/blockchain/sensor.py
icon
CantankerousBullMoose/core
python
@property def icon(self): return ICON
@property def extra_state_attributes(self): 'Return the state attributes of the sensor.' return {ATTR_ATTRIBUTION: ATTRIBUTION}
2,399,391,115,687,184,400
Return the state attributes of the sensor.
homeassistant/components/blockchain/sensor.py
extra_state_attributes
CantankerousBullMoose/core
python
@property def extra_state_attributes(self): return {ATTR_ATTRIBUTION: ATTRIBUTION}
def update(self): 'Get the latest state of the sensor.' self._state = get_balance(self.addresses)
397,848,807,134,841,400
Get the latest state of the sensor.
homeassistant/components/blockchain/sensor.py
update
CantankerousBullMoose/core
python
def update(self): self._state = get_balance(self.addresses)
def fit(self, train_dataset): 'Performs model training with standard settings' self.train = deepcopy(train_dataset) if ('orbit' in self.name): self.model.fit(self.train) elif ('nprophet' in self.name): self.model.fit(self.train, validate_each_epoch=True, valid_p=0.2, freq=self.freq, plot_live_loss=True, epochs=100)
1,659,354,040,461,019,400
Performs model training with standard settings
interpolML/interpolML/model/model.py
fit
MiguelMque/eafit-numerical-analysis-project
python
def fit(self, train_dataset): self.train = deepcopy(train_dataset) if ('orbit' in self.name): self.model.fit(self.train) elif ('nprophet' in self.name): self.model.fit(self.train, validate_each_epoch=True, valid_p=0.2, freq=self.freq, plot_live_loss=True, epochs=100)
def predict(self, dataset: Any): 'Performs prediction' self.test = deepcopy(dataset) if ('orbit' in self.name): prediction = self.model.predict(self.test) elif ('nprophet' in self.name): future = self.model.make_future_dataframe(self.train, periods=len(self.test)) prediction = self.model.predict(future).rename(columns={'yhat1': self.pred_col}) prediction = prediction[[self.date_col, self.pred_col]] self.prediction = prediction return self.prediction
-2,624,890,655,209,499,600
Performs prediction
interpolML/interpolML/model/model.py
predict
MiguelMque/eafit-numerical-analysis-project
python
def predict(self, dataset: Any): self.test = deepcopy(dataset) if ('orbit' in self.name): prediction = self.model.predict(self.test) elif ('nprophet' in self.name): future = self.model.make_future_dataframe(self.train, periods=len(self.test)) prediction = self.model.predict(future).rename(columns={'yhat1': self.pred_col}) prediction = prediction[[self.date_col, self.pred_col]] self.prediction = prediction return self.prediction
def sol(n, w, wt, v): '\n We do not need to create a 2d array here because all numbers are available\n always\n Try all items for weight ranging from 1 to w and check if weight\n can be picked. Take the max of the result\n ' dp = [0 for i in range((w + 1))] for i in range(n): for j in range((w + 1)): if (wt[i] <= j): dp[j] = max(dp[j], (v[i] + dp[(j - wt[i])])) return dp[w]
-5,269,090,704,713,257,000
We do not need to create a 2d array here because all numbers are available always Try all items for weight ranging from 1 to w and check if weight can be picked. Take the max of the result
full-problems/knapsackWithDuplicates.py
sol
vikas-t/DS-Algo
python
def sol(n, w, wt, v): '\n We do not need to create a 2d array here because all numbers are available\n always\n Try all items for weight ranging from 1 to w and check if weight\n can be picked. Take the max of the result\n ' dp = [0 for i in range((w + 1))] for i in range(n): for j in range((w + 1)): if (wt[i] <= j): dp[j] = max(dp[j], (v[i] + dp[(j - wt[i])])) return dp[w]
@property def call_positions(self): 'Alias for :func:bitshares.account.Account.callpositions.' return self.callpositions()
-4,466,748,821,980,121,000
Alias for :func:bitshares.account.Account.callpositions.
bitshares/account.py
call_positions
bangzi1001/python-nbs
python
@property def call_positions(self): return self.callpositions()
@property def callpositions(self): 'List call positions (collateralized positions :doc:`mpa`)' self.ensure_full() from .dex import Dex dex = Dex(blockchain_instance=self.blockchain) return dex.list_debt_positions(self)
-1,382,996,191,267,861,500
List call positions (collateralized positions :doc:`mpa`)
bitshares/account.py
callpositions
bangzi1001/python-nbs
python
@property def callpositions(self): self.ensure_full() from .dex import Dex dex = Dex(blockchain_instance=self.blockchain) return dex.list_debt_positions(self)
@property def openorders(self): 'Returns open Orders.' from .price import Order self.ensure_full() return [Order(o, blockchain_instance=self.blockchain) for o in self['limit_orders']]
-122,808,266,567,635,730
Returns open Orders.
bitshares/account.py
openorders
bangzi1001/python-nbs
python
@property def openorders(self): from .price import Order self.ensure_full() return [Order(o, blockchain_instance=self.blockchain) for o in self['limit_orders']]
def read_metafile(path: PathType) -> dd.DataFrame: 'Read cbgen metafile containing partitioned variant info' with bgen_metafile(path) as mf: divisions = ([(mf.partition_size * i) for i in range(mf.npartitions)] + [(mf.nvariants - 1)]) dfs = [dask.delayed(_read_metafile_partition)(path, i) for i in range(mf.npartitions)] meta = dd.utils.make_meta(METAFILE_DTYPE) return dd.from_delayed(dfs, meta=meta, divisions=divisions)
4,662,318,411,178,781,000
Read cbgen metafile containing partitioned variant info
sgkit/io/bgen/bgen_reader.py
read_metafile
pystatgen/sgk
python
def read_metafile(path: PathType) -> dd.DataFrame: with bgen_metafile(path) as mf: divisions = ([(mf.partition_size * i) for i in range(mf.npartitions)] + [(mf.nvariants - 1)]) dfs = [dask.delayed(_read_metafile_partition)(path, i) for i in range(mf.npartitions)] meta = dd.utils.make_meta(METAFILE_DTYPE) return dd.from_delayed(dfs, meta=meta, divisions=divisions)
def read_samples(path: PathType) -> pd.DataFrame: 'Read BGEN .sample file' df = pd.read_csv(path, sep=' ', skiprows=[1], usecols=[0]) df.columns = ['sample_id'] return df
-2,159,063,186,080,784,600
Read BGEN .sample file
sgkit/io/bgen/bgen_reader.py
read_samples
pystatgen/sgk
python
def read_samples(path: PathType) -> pd.DataFrame: df = pd.read_csv(path, sep=' ', skiprows=[1], usecols=[0]) df.columns = ['sample_id'] return df
def read_bgen(path: PathType, metafile_path: Optional[PathType]=None, sample_path: Optional[PathType]=None, chunks: Union[(str, int, Tuple[(int, int, int)])]='auto', lock: bool=False, persist: bool=True, contig_dtype: DType='str', gp_dtype: DType='float32') -> Dataset: 'Read BGEN dataset.\n\n Loads a single BGEN dataset as dask arrays within a Dataset\n from a ``.bgen`` file.\n\n Parameters\n ----------\n path\n Path to BGEN file.\n metafile_path\n Path to companion index file used to determine BGEN byte offsets.\n Defaults to ``path`` + ".metafile" if not provided.\n This file is necessary for reading BGEN genotype probabilities and it will be\n generated the first time the file is read if it does not already exist.\n If it needs to be created, it can make the first call to this function\n much slower than subsequent calls.\n sample_path\n Path to ``.sample`` file, by default None. This is used to fetch sample identifiers\n and when provided it is preferred over sample identifiers embedded in the ``.bgen`` file.\n chunks\n Chunk size for genotype probability data (3 dimensions),\n by default "auto".\n lock\n Whether or not to synchronize concurrent reads of\n file blocks, by default False. This is passed through to\n [dask.array.from_array](https://docs.dask.org/en/latest/array-api.html#dask.array.from_array).\n persist\n Whether or not to persist variant information in memory, by default True.\n This is an important performance consideration as the metadata file for this data will\n be read multiple times when False.\n contig_dtype\n Data type for contig names, by default "str".\n This may also be an integer type (e.g. "int"), but will fail if any of the contig names\n cannot be converted to integers.\n gp_dtype\n Data type for genotype probabilities, by default "float32".\n\n Warnings\n --------\n Only bi-allelic, diploid BGEN files are currently supported.\n\n Returns\n -------\n A dataset containing the following variables:\n\n - :data:`sgkit.variables.variant_id_spec` (variants)\n - :data:`sgkit.variables.variant_contig_spec` (variants)\n - :data:`sgkit.variables.variant_position_spec` (variants)\n - :data:`sgkit.variables.variant_allele_spec` (variants)\n - :data:`sgkit.variables.sample_id_spec` (samples)\n - :data:`sgkit.variables.call_dosage_spec` (variants, samples)\n - :data:`sgkit.variables.call_dosage_mask_spec` (variants, samples)\n - :data:`sgkit.variables.call_genotype_probability_spec` (variants, samples, genotypes)\n - :data:`sgkit.variables.call_genotype_probability_mask_spec` (variants, samples, genotypes)\n\n ' if (isinstance(chunks, tuple) and (len(chunks) != 3)): raise ValueError(f'`chunks` must be tuple with 3 items, not {chunks}') if (not np.issubdtype(gp_dtype, np.floating)): raise ValueError(f'`gp_dtype` must be a floating point data type, not {gp_dtype}') if ((not np.issubdtype(contig_dtype, np.integer)) and (np.dtype(contig_dtype).kind not in {'U', 'S'})): raise ValueError(f'`contig_dtype` must be of string or int type, not {contig_dtype}') path = Path(path) sample_path = (Path(sample_path) if sample_path else path.with_suffix('.sample')) if sample_path.exists(): sample_id = read_samples(sample_path).sample_id.values.astype('U') else: sample_id = _default_sample_ids(path) bgen_reader = BgenReader(path, metafile_path=metafile_path, dtype=gp_dtype) df = read_metafile(bgen_reader.metafile_path) if persist: df = df.persist() arrs = dataframe_to_dict(df, METAFILE_DTYPE) variant_id = arrs['id'] variant_contig: ArrayLike = arrs['chrom'].astype(contig_dtype) (variant_contig, variant_contig_names) = encode_contigs(variant_contig) variant_contig_names = list(variant_contig_names) variant_position = arrs['pos'] variant_allele = da.hstack((arrs['a1'][:, np.newaxis], arrs['a2'][:, np.newaxis])) call_genotype_probability = da.from_array(bgen_reader, chunks=chunks, lock=lock, fancy=False, asarray=False, name=f'{bgen_reader.name}:read_bgen:{path}') call_dosage = _to_dosage(call_genotype_probability) ds: Dataset = create_genotype_dosage_dataset(variant_contig_names=variant_contig_names, variant_contig=variant_contig, variant_position=variant_position, variant_allele=variant_allele, sample_id=sample_id, call_dosage=call_dosage, call_genotype_probability=call_genotype_probability, variant_id=variant_id) return ds
9,032,836,243,801,915,000
Read BGEN dataset. Loads a single BGEN dataset as dask arrays within a Dataset from a ``.bgen`` file. Parameters ---------- path Path to BGEN file. metafile_path Path to companion index file used to determine BGEN byte offsets. Defaults to ``path`` + ".metafile" if not provided. This file is necessary for reading BGEN genotype probabilities and it will be generated the first time the file is read if it does not already exist. If it needs to be created, it can make the first call to this function much slower than subsequent calls. sample_path Path to ``.sample`` file, by default None. This is used to fetch sample identifiers and when provided it is preferred over sample identifiers embedded in the ``.bgen`` file. chunks Chunk size for genotype probability data (3 dimensions), by default "auto". lock Whether or not to synchronize concurrent reads of file blocks, by default False. This is passed through to [dask.array.from_array](https://docs.dask.org/en/latest/array-api.html#dask.array.from_array). persist Whether or not to persist variant information in memory, by default True. This is an important performance consideration as the metadata file for this data will be read multiple times when False. contig_dtype Data type for contig names, by default "str". This may also be an integer type (e.g. "int"), but will fail if any of the contig names cannot be converted to integers. gp_dtype Data type for genotype probabilities, by default "float32". Warnings -------- Only bi-allelic, diploid BGEN files are currently supported. Returns ------- A dataset containing the following variables: - :data:`sgkit.variables.variant_id_spec` (variants) - :data:`sgkit.variables.variant_contig_spec` (variants) - :data:`sgkit.variables.variant_position_spec` (variants) - :data:`sgkit.variables.variant_allele_spec` (variants) - :data:`sgkit.variables.sample_id_spec` (samples) - :data:`sgkit.variables.call_dosage_spec` (variants, samples) - :data:`sgkit.variables.call_dosage_mask_spec` (variants, samples) - :data:`sgkit.variables.call_genotype_probability_spec` (variants, samples, genotypes) - :data:`sgkit.variables.call_genotype_probability_mask_spec` (variants, samples, genotypes)
sgkit/io/bgen/bgen_reader.py
read_bgen
pystatgen/sgk
python
def read_bgen(path: PathType, metafile_path: Optional[PathType]=None, sample_path: Optional[PathType]=None, chunks: Union[(str, int, Tuple[(int, int, int)])]='auto', lock: bool=False, persist: bool=True, contig_dtype: DType='str', gp_dtype: DType='float32') -> Dataset: 'Read BGEN dataset.\n\n Loads a single BGEN dataset as dask arrays within a Dataset\n from a ``.bgen`` file.\n\n Parameters\n ----------\n path\n Path to BGEN file.\n metafile_path\n Path to companion index file used to determine BGEN byte offsets.\n Defaults to ``path`` + ".metafile" if not provided.\n This file is necessary for reading BGEN genotype probabilities and it will be\n generated the first time the file is read if it does not already exist.\n If it needs to be created, it can make the first call to this function\n much slower than subsequent calls.\n sample_path\n Path to ``.sample`` file, by default None. This is used to fetch sample identifiers\n and when provided it is preferred over sample identifiers embedded in the ``.bgen`` file.\n chunks\n Chunk size for genotype probability data (3 dimensions),\n by default "auto".\n lock\n Whether or not to synchronize concurrent reads of\n file blocks, by default False. This is passed through to\n [dask.array.from_array](https://docs.dask.org/en/latest/array-api.html#dask.array.from_array).\n persist\n Whether or not to persist variant information in memory, by default True.\n This is an important performance consideration as the metadata file for this data will\n be read multiple times when False.\n contig_dtype\n Data type for contig names, by default "str".\n This may also be an integer type (e.g. "int"), but will fail if any of the contig names\n cannot be converted to integers.\n gp_dtype\n Data type for genotype probabilities, by default "float32".\n\n Warnings\n --------\n Only bi-allelic, diploid BGEN files are currently supported.\n\n Returns\n -------\n A dataset containing the following variables:\n\n - :data:`sgkit.variables.variant_id_spec` (variants)\n - :data:`sgkit.variables.variant_contig_spec` (variants)\n - :data:`sgkit.variables.variant_position_spec` (variants)\n - :data:`sgkit.variables.variant_allele_spec` (variants)\n - :data:`sgkit.variables.sample_id_spec` (samples)\n - :data:`sgkit.variables.call_dosage_spec` (variants, samples)\n - :data:`sgkit.variables.call_dosage_mask_spec` (variants, samples)\n - :data:`sgkit.variables.call_genotype_probability_spec` (variants, samples, genotypes)\n - :data:`sgkit.variables.call_genotype_probability_mask_spec` (variants, samples, genotypes)\n\n ' if (isinstance(chunks, tuple) and (len(chunks) != 3)): raise ValueError(f'`chunks` must be tuple with 3 items, not {chunks}') if (not np.issubdtype(gp_dtype, np.floating)): raise ValueError(f'`gp_dtype` must be a floating point data type, not {gp_dtype}') if ((not np.issubdtype(contig_dtype, np.integer)) and (np.dtype(contig_dtype).kind not in {'U', 'S'})): raise ValueError(f'`contig_dtype` must be of string or int type, not {contig_dtype}') path = Path(path) sample_path = (Path(sample_path) if sample_path else path.with_suffix('.sample')) if sample_path.exists(): sample_id = read_samples(sample_path).sample_id.values.astype('U') else: sample_id = _default_sample_ids(path) bgen_reader = BgenReader(path, metafile_path=metafile_path, dtype=gp_dtype) df = read_metafile(bgen_reader.metafile_path) if persist: df = df.persist() arrs = dataframe_to_dict(df, METAFILE_DTYPE) variant_id = arrs['id'] variant_contig: ArrayLike = arrs['chrom'].astype(contig_dtype) (variant_contig, variant_contig_names) = encode_contigs(variant_contig) variant_contig_names = list(variant_contig_names) variant_position = arrs['pos'] variant_allele = da.hstack((arrs['a1'][:, np.newaxis], arrs['a2'][:, np.newaxis])) call_genotype_probability = da.from_array(bgen_reader, chunks=chunks, lock=lock, fancy=False, asarray=False, name=f'{bgen_reader.name}:read_bgen:{path}') call_dosage = _to_dosage(call_genotype_probability) ds: Dataset = create_genotype_dosage_dataset(variant_contig_names=variant_contig_names, variant_contig=variant_contig, variant_position=variant_position, variant_allele=variant_allele, sample_id=sample_id, call_dosage=call_dosage, call_genotype_probability=call_genotype_probability, variant_id=variant_id) return ds
def _default_sample_ids(path: PathType) -> ArrayLike: 'Fetch or generate sample ids' with bgen_file(path) as bgen: if bgen.contain_samples: return bgen.read_samples() else: return np.char.add(b'sample_', np.arange(bgen.nsamples).astype('S'))
-2,921,464,483,249,048,000
Fetch or generate sample ids
sgkit/io/bgen/bgen_reader.py
_default_sample_ids
pystatgen/sgk
python
def _default_sample_ids(path: PathType) -> ArrayLike: with bgen_file(path) as bgen: if bgen.contain_samples: return bgen.read_samples() else: return np.char.add(b'sample_', np.arange(bgen.nsamples).astype('S'))
def _to_dosage(probs: ArrayLike) -> ArrayLike: 'Calculate the dosage from genotype likelihoods (probabilities)' assert (probs.shape[(- 1)] == 3), f'Expecting genotype (trailing) dimension of size 3, got array of shape {probs.shape}' return (probs[(..., 1)] + (2 * probs[(..., 2)]))
-602,845,097,226,297,300
Calculate the dosage from genotype likelihoods (probabilities)
sgkit/io/bgen/bgen_reader.py
_to_dosage
pystatgen/sgk
python
def _to_dosage(probs: ArrayLike) -> ArrayLike: assert (probs.shape[(- 1)] == 3), f'Expecting genotype (trailing) dimension of size 3, got array of shape {probs.shape}' return (probs[(..., 1)] + (2 * probs[(..., 2)]))
def rechunk_bgen(ds: Dataset, output: Union[(PathType, MutableMapping[(str, bytes)])], *, chunk_length: int=10000, chunk_width: int=1000, compressor: Optional[Any]=zarr.Blosc(cname='zstd', clevel=7, shuffle=2), probability_dtype: Optional[DType]='uint8', max_mem: str='4GB', pack: bool=True, tempdir: Optional[PathType]=None) -> Dataset: 'Rechunk BGEN dataset as Zarr.\n\n This function will use the algorithm https://rechunker.readthedocs.io/en/latest/\n to rechunk certain fields in a provided Dataset for better downstream performance.\n Depending on the system memory available (and the `max_mem` setting) this\n rechunking may occur without the need of any intermediate data store. Otherwise,\n approximately as much disk space is required as was needed to store the original\n BGEN data. Experiments show that this Zarr representation is ~20% larger even\n with all available optimizations and fairly aggressive compression (i.e. the\n default `clevel` 7).\n\n Note that this function is not evaluated lazily. The rechunking algorithm\n will run inline so calls to it may be slow. The resulting Dataset is\n generated based on the final, serialized Zarr data.\n\n Parameters\n ----------\n ds\n Dataset to rechunk, typically the result from `read_bgen`.\n output\n Zarr store or path to directory in file system.\n chunk_length\n Length (number of variants) of chunks in which data are stored, by default 10_000.\n chunk_width\n Width (number of samples) to use when storing chunks in output, by default 1_000.\n compressor\n Zarr compressor, no compression is used when set as None.\n probability_dtype\n Data type used to encode genotype probabilities, must be either uint8 or uint16.\n Setting this parameter results in a loss of precision. If None, probabilities\n will not be altered when stored.\n max_mem\n The amount of memory (in bytes) that workers are allowed to use. A string\n (e.g. 100MB) can also be used.\n pack\n Whether or not to optimize variable representations by removing unnecessary\n dimensions and elements. This includes storing 2 genotypes instead of 3, omitting\n dosage and collapsing the genotype probability mask to 2 dimensions. All of\n the above are restored in the resulting Dataset at the expense of extra\n computations on read.\n tempdir\n Temporary directory where intermediate files are stored. The default None means\n use the system default temporary directory.\n\n Warnings\n --------\n This functional is only applicable to diploid, bi-allelic BGEN datasets.\n\n Returns\n -------\n Dataset\n The rechunked dataset.\n ' if isinstance(output, Path): output = str(output) chunk_length = min(chunk_length, ds.dims['variants']) chunk_width = min(chunk_width, ds.dims['samples']) if pack: ds = pack_variables(ds) encoding = encode_variables(ds, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype) target_chunks = {var: encoding[var]['chunks'] for var in encoding if ('chunks' in encoding[var])} target_options = {var: {k: v for (k, v) in encoding[var].items() if (k != 'chunks')} for var in encoding} with tempfile.TemporaryDirectory(prefix='bgen_to_zarr_', suffix='.zarr', dir=tempdir) as tmpdir: rechunked = rechunker_api.rechunk(ds, max_mem=max_mem, target_chunks=target_chunks, target_store=output, target_options=target_options, temp_store=tmpdir, executor='dask') rechunked.execute() zarr.consolidate_metadata(output) ds: Dataset = xr.open_zarr(output, concat_characters=False) if pack: ds = unpack_variables(ds) return ds
-7,131,876,420,751,915,000
Rechunk BGEN dataset as Zarr. This function will use the algorithm https://rechunker.readthedocs.io/en/latest/ to rechunk certain fields in a provided Dataset for better downstream performance. Depending on the system memory available (and the `max_mem` setting) this rechunking may occur without the need of any intermediate data store. Otherwise, approximately as much disk space is required as was needed to store the original BGEN data. Experiments show that this Zarr representation is ~20% larger even with all available optimizations and fairly aggressive compression (i.e. the default `clevel` 7). Note that this function is not evaluated lazily. The rechunking algorithm will run inline so calls to it may be slow. The resulting Dataset is generated based on the final, serialized Zarr data. Parameters ---------- ds Dataset to rechunk, typically the result from `read_bgen`. output Zarr store or path to directory in file system. chunk_length Length (number of variants) of chunks in which data are stored, by default 10_000. chunk_width Width (number of samples) to use when storing chunks in output, by default 1_000. compressor Zarr compressor, no compression is used when set as None. probability_dtype Data type used to encode genotype probabilities, must be either uint8 or uint16. Setting this parameter results in a loss of precision. If None, probabilities will not be altered when stored. max_mem The amount of memory (in bytes) that workers are allowed to use. A string (e.g. 100MB) can also be used. pack Whether or not to optimize variable representations by removing unnecessary dimensions and elements. This includes storing 2 genotypes instead of 3, omitting dosage and collapsing the genotype probability mask to 2 dimensions. All of the above are restored in the resulting Dataset at the expense of extra computations on read. tempdir Temporary directory where intermediate files are stored. The default None means use the system default temporary directory. Warnings -------- This functional is only applicable to diploid, bi-allelic BGEN datasets. Returns ------- Dataset The rechunked dataset.
sgkit/io/bgen/bgen_reader.py
rechunk_bgen
pystatgen/sgk
python
def rechunk_bgen(ds: Dataset, output: Union[(PathType, MutableMapping[(str, bytes)])], *, chunk_length: int=10000, chunk_width: int=1000, compressor: Optional[Any]=zarr.Blosc(cname='zstd', clevel=7, shuffle=2), probability_dtype: Optional[DType]='uint8', max_mem: str='4GB', pack: bool=True, tempdir: Optional[PathType]=None) -> Dataset: 'Rechunk BGEN dataset as Zarr.\n\n This function will use the algorithm https://rechunker.readthedocs.io/en/latest/\n to rechunk certain fields in a provided Dataset for better downstream performance.\n Depending on the system memory available (and the `max_mem` setting) this\n rechunking may occur without the need of any intermediate data store. Otherwise,\n approximately as much disk space is required as was needed to store the original\n BGEN data. Experiments show that this Zarr representation is ~20% larger even\n with all available optimizations and fairly aggressive compression (i.e. the\n default `clevel` 7).\n\n Note that this function is not evaluated lazily. The rechunking algorithm\n will run inline so calls to it may be slow. The resulting Dataset is\n generated based on the final, serialized Zarr data.\n\n Parameters\n ----------\n ds\n Dataset to rechunk, typically the result from `read_bgen`.\n output\n Zarr store or path to directory in file system.\n chunk_length\n Length (number of variants) of chunks in which data are stored, by default 10_000.\n chunk_width\n Width (number of samples) to use when storing chunks in output, by default 1_000.\n compressor\n Zarr compressor, no compression is used when set as None.\n probability_dtype\n Data type used to encode genotype probabilities, must be either uint8 or uint16.\n Setting this parameter results in a loss of precision. If None, probabilities\n will not be altered when stored.\n max_mem\n The amount of memory (in bytes) that workers are allowed to use. A string\n (e.g. 100MB) can also be used.\n pack\n Whether or not to optimize variable representations by removing unnecessary\n dimensions and elements. This includes storing 2 genotypes instead of 3, omitting\n dosage and collapsing the genotype probability mask to 2 dimensions. All of\n the above are restored in the resulting Dataset at the expense of extra\n computations on read.\n tempdir\n Temporary directory where intermediate files are stored. The default None means\n use the system default temporary directory.\n\n Warnings\n --------\n This functional is only applicable to diploid, bi-allelic BGEN datasets.\n\n Returns\n -------\n Dataset\n The rechunked dataset.\n ' if isinstance(output, Path): output = str(output) chunk_length = min(chunk_length, ds.dims['variants']) chunk_width = min(chunk_width, ds.dims['samples']) if pack: ds = pack_variables(ds) encoding = encode_variables(ds, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype) target_chunks = {var: encoding[var]['chunks'] for var in encoding if ('chunks' in encoding[var])} target_options = {var: {k: v for (k, v) in encoding[var].items() if (k != 'chunks')} for var in encoding} with tempfile.TemporaryDirectory(prefix='bgen_to_zarr_', suffix='.zarr', dir=tempdir) as tmpdir: rechunked = rechunker_api.rechunk(ds, max_mem=max_mem, target_chunks=target_chunks, target_store=output, target_options=target_options, temp_store=tmpdir, executor='dask') rechunked.execute() zarr.consolidate_metadata(output) ds: Dataset = xr.open_zarr(output, concat_characters=False) if pack: ds = unpack_variables(ds) return ds
def bgen_to_zarr(input: PathType, output: Union[(PathType, MutableMapping[(str, bytes)])], region: Optional[Mapping[(Hashable, Any)]]=None, chunk_length: int=10000, chunk_width: int=1000, temp_chunk_length: int=100, compressor: Optional[Any]=zarr.Blosc(cname='zstd', clevel=7, shuffle=2), probability_dtype: Optional[DType]='uint8', max_mem: str='4GB', pack: bool=True, tempdir: Optional[PathType]=None) -> Dataset: 'Convert a BGEN file to a Zarr on-disk store.\n\n This function is a convenience for calling :func:`read_bgen` followed by\n :func:`rechunk_bgen`.\n\n Parameters\n ----------\n input\n Path to local BGEN dataset.\n output\n Zarr store or path to directory in file system.\n region\n Indexers on dataset dimensions used to define a subset of data to convert.\n Must be None or a dict with keys matching dimension names and values\n equal to integers or slice objects. This is passed directly to `Dataset.isel`\n so it has the same semantics.\n chunk_length\n Length (number of variants) of chunks in which data are stored, by default 10_000.\n chunk_width\n Width (number of samples) to use when storing chunks in output, by default 1_000.\n temp_chunk_length\n Length of chunks used in raw BGEN read, by default 100. This defines the vertical\n chunking (i.e. in the variants dimension) used when reading the raw data and because\n there is no horizontal chunking at this phase (i.e. in the samples dimension), this\n value should be much smaller than the target `chunk_length`.\n compressor\n Zarr compressor, by default Blosc + zstd with compression level 7. No compression\n is used when set as None.\n probability_dtype\n Data type used to encode genotype probabilities, must be either uint8 or uint16.\n Setting this parameter results in a loss of precision. If None, probabilities\n will not be altered when stored.\n max_mem\n The amount of memory (in bytes) that workers are allowed to use. A string\n (e.g. 100MB) can also be used.\n pack\n Whether or not to optimize variable representations by removing unnecessary\n dimensions and elements. This includes storing 2 genotypes instead of 3, omitting\n dosage and collapsing the genotype probability mask to 2 dimensions. All of\n the above are restored in the resulting Dataset at the expense of extra\n computations on read.\n tempdir\n Temporary directory where intermediate files are stored. The default None means\n use the system default temporary directory.\n\n Warnings\n --------\n This functional is only applicable to diploid, bi-allelic BGEN datasets.\n\n Returns\n -------\n Dataset\n The rechunked dataset.\n ' ds = read_bgen(input, chunks=(temp_chunk_length, (- 1), (- 1))) if (region is not None): ds = ds.isel(indexers=region) return rechunk_bgen(ds, output, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype, max_mem=max_mem, pack=pack, tempdir=tempdir)
2,164,697,128,023,955,200
Convert a BGEN file to a Zarr on-disk store. This function is a convenience for calling :func:`read_bgen` followed by :func:`rechunk_bgen`. Parameters ---------- input Path to local BGEN dataset. output Zarr store or path to directory in file system. region Indexers on dataset dimensions used to define a subset of data to convert. Must be None or a dict with keys matching dimension names and values equal to integers or slice objects. This is passed directly to `Dataset.isel` so it has the same semantics. chunk_length Length (number of variants) of chunks in which data are stored, by default 10_000. chunk_width Width (number of samples) to use when storing chunks in output, by default 1_000. temp_chunk_length Length of chunks used in raw BGEN read, by default 100. This defines the vertical chunking (i.e. in the variants dimension) used when reading the raw data and because there is no horizontal chunking at this phase (i.e. in the samples dimension), this value should be much smaller than the target `chunk_length`. compressor Zarr compressor, by default Blosc + zstd with compression level 7. No compression is used when set as None. probability_dtype Data type used to encode genotype probabilities, must be either uint8 or uint16. Setting this parameter results in a loss of precision. If None, probabilities will not be altered when stored. max_mem The amount of memory (in bytes) that workers are allowed to use. A string (e.g. 100MB) can also be used. pack Whether or not to optimize variable representations by removing unnecessary dimensions and elements. This includes storing 2 genotypes instead of 3, omitting dosage and collapsing the genotype probability mask to 2 dimensions. All of the above are restored in the resulting Dataset at the expense of extra computations on read. tempdir Temporary directory where intermediate files are stored. The default None means use the system default temporary directory. Warnings -------- This functional is only applicable to diploid, bi-allelic BGEN datasets. Returns ------- Dataset The rechunked dataset.
sgkit/io/bgen/bgen_reader.py
bgen_to_zarr
pystatgen/sgk
python
def bgen_to_zarr(input: PathType, output: Union[(PathType, MutableMapping[(str, bytes)])], region: Optional[Mapping[(Hashable, Any)]]=None, chunk_length: int=10000, chunk_width: int=1000, temp_chunk_length: int=100, compressor: Optional[Any]=zarr.Blosc(cname='zstd', clevel=7, shuffle=2), probability_dtype: Optional[DType]='uint8', max_mem: str='4GB', pack: bool=True, tempdir: Optional[PathType]=None) -> Dataset: 'Convert a BGEN file to a Zarr on-disk store.\n\n This function is a convenience for calling :func:`read_bgen` followed by\n :func:`rechunk_bgen`.\n\n Parameters\n ----------\n input\n Path to local BGEN dataset.\n output\n Zarr store or path to directory in file system.\n region\n Indexers on dataset dimensions used to define a subset of data to convert.\n Must be None or a dict with keys matching dimension names and values\n equal to integers or slice objects. This is passed directly to `Dataset.isel`\n so it has the same semantics.\n chunk_length\n Length (number of variants) of chunks in which data are stored, by default 10_000.\n chunk_width\n Width (number of samples) to use when storing chunks in output, by default 1_000.\n temp_chunk_length\n Length of chunks used in raw BGEN read, by default 100. This defines the vertical\n chunking (i.e. in the variants dimension) used when reading the raw data and because\n there is no horizontal chunking at this phase (i.e. in the samples dimension), this\n value should be much smaller than the target `chunk_length`.\n compressor\n Zarr compressor, by default Blosc + zstd with compression level 7. No compression\n is used when set as None.\n probability_dtype\n Data type used to encode genotype probabilities, must be either uint8 or uint16.\n Setting this parameter results in a loss of precision. If None, probabilities\n will not be altered when stored.\n max_mem\n The amount of memory (in bytes) that workers are allowed to use. A string\n (e.g. 100MB) can also be used.\n pack\n Whether or not to optimize variable representations by removing unnecessary\n dimensions and elements. This includes storing 2 genotypes instead of 3, omitting\n dosage and collapsing the genotype probability mask to 2 dimensions. All of\n the above are restored in the resulting Dataset at the expense of extra\n computations on read.\n tempdir\n Temporary directory where intermediate files are stored. The default None means\n use the system default temporary directory.\n\n Warnings\n --------\n This functional is only applicable to diploid, bi-allelic BGEN datasets.\n\n Returns\n -------\n Dataset\n The rechunked dataset.\n ' ds = read_bgen(input, chunks=(temp_chunk_length, (- 1), (- 1))) if (region is not None): ds = ds.isel(indexers=region) return rechunk_bgen(ds, output, chunk_length=chunk_length, chunk_width=chunk_width, compressor=compressor, probability_dtype=probability_dtype, max_mem=max_mem, pack=pack, tempdir=tempdir)
def __init__(self, method: Callable[(..., compute.TargetInstanceAggregatedList)], request: compute.AggregatedListTargetInstancesRequest, response: compute.TargetInstanceAggregatedList, *, metadata: Sequence[Tuple[(str, str)]]=()): 'Instantiate the pager.\n\n Args:\n method (Callable): The method that was originally called, and\n which instantiated this pager.\n request (google.cloud.compute_v1.types.AggregatedListTargetInstancesRequest):\n The initial request object.\n response (google.cloud.compute_v1.types.TargetInstanceAggregatedList):\n The initial response object.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n ' self._method = method self._request = compute.AggregatedListTargetInstancesRequest(request) self._response = response self._metadata = metadata
-2,642,775,035,473,236,000
Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.AggregatedListTargetInstancesRequest): The initial request object. response (google.cloud.compute_v1.types.TargetInstanceAggregatedList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata.
google/cloud/compute_v1/services/target_instances/pagers.py
__init__
Ctfbuster/python-compute
python
def __init__(self, method: Callable[(..., compute.TargetInstanceAggregatedList)], request: compute.AggregatedListTargetInstancesRequest, response: compute.TargetInstanceAggregatedList, *, metadata: Sequence[Tuple[(str, str)]]=()): 'Instantiate the pager.\n\n Args:\n method (Callable): The method that was originally called, and\n which instantiated this pager.\n request (google.cloud.compute_v1.types.AggregatedListTargetInstancesRequest):\n The initial request object.\n response (google.cloud.compute_v1.types.TargetInstanceAggregatedList):\n The initial response object.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n ' self._method = method self._request = compute.AggregatedListTargetInstancesRequest(request) self._response = response self._metadata = metadata
def __init__(self, method: Callable[(..., compute.TargetInstanceList)], request: compute.ListTargetInstancesRequest, response: compute.TargetInstanceList, *, metadata: Sequence[Tuple[(str, str)]]=()): 'Instantiate the pager.\n\n Args:\n method (Callable): The method that was originally called, and\n which instantiated this pager.\n request (google.cloud.compute_v1.types.ListTargetInstancesRequest):\n The initial request object.\n response (google.cloud.compute_v1.types.TargetInstanceList):\n The initial response object.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n ' self._method = method self._request = compute.ListTargetInstancesRequest(request) self._response = response self._metadata = metadata
-2,524,944,656,419,113,000
Instantiate the pager. Args: method (Callable): The method that was originally called, and which instantiated this pager. request (google.cloud.compute_v1.types.ListTargetInstancesRequest): The initial request object. response (google.cloud.compute_v1.types.TargetInstanceList): The initial response object. metadata (Sequence[Tuple[str, str]]): Strings which should be sent along with the request as metadata.
google/cloud/compute_v1/services/target_instances/pagers.py
__init__
Ctfbuster/python-compute
python
def __init__(self, method: Callable[(..., compute.TargetInstanceList)], request: compute.ListTargetInstancesRequest, response: compute.TargetInstanceList, *, metadata: Sequence[Tuple[(str, str)]]=()): 'Instantiate the pager.\n\n Args:\n method (Callable): The method that was originally called, and\n which instantiated this pager.\n request (google.cloud.compute_v1.types.ListTargetInstancesRequest):\n The initial request object.\n response (google.cloud.compute_v1.types.TargetInstanceList):\n The initial response object.\n metadata (Sequence[Tuple[str, str]]): Strings which should be\n sent along with the request as metadata.\n ' self._method = method self._request = compute.ListTargetInstancesRequest(request) self._response = response self._metadata = metadata
def audio_with_sox(path, sample_rate, start_time, end_time): '\n crop and resample the recording with sox and loads it.\n ' with NamedTemporaryFile(suffix='.wav') as tar_file: tar_filename = tar_file.name sox_params = 'sox "{}" -r {} -c 1 -b 16 -e si {} trim {} ={} >/dev/null 2>&1'.format(path, sample_rate, tar_filename, start_time, end_time) os.system(sox_params) y = load_audio(tar_filename) return y
1,673,118,714,672,008,000
crop and resample the recording with sox and loads it.
data/data_loader.py
audio_with_sox
ShuanDeMorian/deepspeech.pytorch
python
def audio_with_sox(path, sample_rate, start_time, end_time): '\n \n ' with NamedTemporaryFile(suffix='.wav') as tar_file: tar_filename = tar_file.name sox_params = 'sox "{}" -r {} -c 1 -b 16 -e si {} trim {} ={} >/dev/null 2>&1'.format(path, sample_rate, tar_filename, start_time, end_time) os.system(sox_params) y = load_audio(tar_filename) return y
def augment_audio_with_sox(path, sample_rate, tempo, gain): '\n Changes tempo and gain of the recording with sox and loads it.\n ' with NamedTemporaryFile(suffix='.wav') as augmented_file: augmented_filename = augmented_file.name sox_augment_params = ['tempo', '{:.3f}'.format(tempo), 'gain', '{:.3f}'.format(gain)] sox_params = 'sox "{}" -r {} -c 1 -b 16 -e si {} {} >/dev/null 2>&1'.format(path, sample_rate, augmented_filename, ' '.join(sox_augment_params)) os.system(sox_params) y = load_audio(augmented_filename) return y
-8,893,820,232,313,007,000
Changes tempo and gain of the recording with sox and loads it.
data/data_loader.py
augment_audio_with_sox
ShuanDeMorian/deepspeech.pytorch
python
def augment_audio_with_sox(path, sample_rate, tempo, gain): '\n \n ' with NamedTemporaryFile(suffix='.wav') as augmented_file: augmented_filename = augmented_file.name sox_augment_params = ['tempo', '{:.3f}'.format(tempo), 'gain', '{:.3f}'.format(gain)] sox_params = 'sox "{}" -r {} -c 1 -b 16 -e si {} {} >/dev/null 2>&1'.format(path, sample_rate, augmented_filename, ' '.join(sox_augment_params)) os.system(sox_params) y = load_audio(augmented_filename) return y
def load_randomly_augmented_audio(path, sample_rate=16000, tempo_range=(0.85, 1.15), gain_range=((- 6), 8)): '\n Picks tempo and gain uniformly, applies it to the utterance by using sox utility.\n Returns the augmented utterance.\n ' (low_tempo, high_tempo) = tempo_range tempo_value = np.random.uniform(low=low_tempo, high=high_tempo) (low_gain, high_gain) = gain_range gain_value = np.random.uniform(low=low_gain, high=high_gain) audio = augment_audio_with_sox(path=path, sample_rate=sample_rate, tempo=tempo_value, gain=gain_value) return audio
5,580,198,202,622,402,000
Picks tempo and gain uniformly, applies it to the utterance by using sox utility. Returns the augmented utterance.
data/data_loader.py
load_randomly_augmented_audio
ShuanDeMorian/deepspeech.pytorch
python
def load_randomly_augmented_audio(path, sample_rate=16000, tempo_range=(0.85, 1.15), gain_range=((- 6), 8)): '\n Picks tempo and gain uniformly, applies it to the utterance by using sox utility.\n Returns the augmented utterance.\n ' (low_tempo, high_tempo) = tempo_range tempo_value = np.random.uniform(low=low_tempo, high=high_tempo) (low_gain, high_gain) = gain_range gain_value = np.random.uniform(low=low_gain, high=high_gain) audio = augment_audio_with_sox(path=path, sample_rate=sample_rate, tempo=tempo_value, gain=gain_value) return audio
def parse_transcript(self, transcript_path): '\n :param transcript_path: Path where transcript is stored from the manifest file\n :return: Transcript in training/testing format\n ' raise NotImplementedError
5,100,548,454,453,052,000
:param transcript_path: Path where transcript is stored from the manifest file :return: Transcript in training/testing format
data/data_loader.py
parse_transcript
ShuanDeMorian/deepspeech.pytorch
python
def parse_transcript(self, transcript_path): '\n :param transcript_path: Path where transcript is stored from the manifest file\n :return: Transcript in training/testing format\n ' raise NotImplementedError
def parse_audio(self, audio_path): '\n :param audio_path: Path where audio is stored from the manifest file\n :return: Audio in training/testing format\n ' raise NotImplementedError
-881,191,290,387,988,900
:param audio_path: Path where audio is stored from the manifest file :return: Audio in training/testing format
data/data_loader.py
parse_audio
ShuanDeMorian/deepspeech.pytorch
python
def parse_audio(self, audio_path): '\n :param audio_path: Path where audio is stored from the manifest file\n :return: Audio in training/testing format\n ' raise NotImplementedError
def __init__(self, path=None, sample_rate=16000, noise_levels=(0, 0.5)): '\n Adds noise to an input signal with specific SNR. Higher the noise level, the more noise added.\n Modified code from https://github.com/willfrey/audio/blob/master/torchaudio/transforms.py\n ' if ((path is not None) and (not os.path.exists(path))): print("Directory doesn't exist: {}".format(path)) raise IOError self.paths = ((path is not None) and librosa.util.find_files(path)) self.sample_rate = sample_rate self.noise_levels = noise_levels
-5,970,089,495,763,871,000
Adds noise to an input signal with specific SNR. Higher the noise level, the more noise added. Modified code from https://github.com/willfrey/audio/blob/master/torchaudio/transforms.py
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, path=None, sample_rate=16000, noise_levels=(0, 0.5)): '\n Adds noise to an input signal with specific SNR. Higher the noise level, the more noise added.\n Modified code from https://github.com/willfrey/audio/blob/master/torchaudio/transforms.py\n ' if ((path is not None) and (not os.path.exists(path))): print("Directory doesn't exist: {}".format(path)) raise IOError self.paths = ((path is not None) and librosa.util.find_files(path)) self.sample_rate = sample_rate self.noise_levels = noise_levels
def __init__(self, audio_conf, normalize=False, speed_volume_perturb=False, spec_augment=False): '\n Parses audio file into spectrogram with optional normalization and various augmentations\n :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds\n :param normalize(default False): Apply standard mean and deviation normalization to audio tensor\n :param speed_volume_perturb(default False): Apply random tempo and gain perturbations\n :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms\n ' super(SpectrogramParser, self).__init__() self.window_stride = audio_conf['window_stride'] self.window_size = audio_conf['window_size'] self.sample_rate = audio_conf['sample_rate'] self.window = windows.get(audio_conf['window'], windows['hamming']) self.normalize = normalize self.speed_volume_perturb = speed_volume_perturb self.spec_augment = spec_augment self.noiseInjector = (NoiseInjection(audio_conf['noise_dir'], self.sample_rate, audio_conf['noise_levels']) if (audio_conf.get('noise_dir') is not None) else None) self.noise_prob = audio_conf.get('noise_prob')
-2,378,630,192,019,733,000
Parses audio file into spectrogram with optional normalization and various augmentations :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds :param normalize(default False): Apply standard mean and deviation normalization to audio tensor :param speed_volume_perturb(default False): Apply random tempo and gain perturbations :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, audio_conf, normalize=False, speed_volume_perturb=False, spec_augment=False): '\n Parses audio file into spectrogram with optional normalization and various augmentations\n :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds\n :param normalize(default False): Apply standard mean and deviation normalization to audio tensor\n :param speed_volume_perturb(default False): Apply random tempo and gain perturbations\n :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms\n ' super(SpectrogramParser, self).__init__() self.window_stride = audio_conf['window_stride'] self.window_size = audio_conf['window_size'] self.sample_rate = audio_conf['sample_rate'] self.window = windows.get(audio_conf['window'], windows['hamming']) self.normalize = normalize self.speed_volume_perturb = speed_volume_perturb self.spec_augment = spec_augment self.noiseInjector = (NoiseInjection(audio_conf['noise_dir'], self.sample_rate, audio_conf['noise_levels']) if (audio_conf.get('noise_dir') is not None) else None) self.noise_prob = audio_conf.get('noise_prob')
def __init__(self, audio_conf, manifest_filepath, labels, normalize=False, speed_volume_perturb=False, spec_augment=False): '\n Dataset that loads tensors via a csv containing file paths to audio files and transcripts separated by\n a comma. Each new line is a different sample. Example below:\n\n /path/to/audio.wav,/path/to/audio.txt\n ...\n\n :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds\n :param manifest_filepath: Path to manifest csv as describe above\n :param labels: String containing all the possible characters to map to\n :param normalize: Apply standard mean and deviation normalization to audio tensor\n :param speed_volume_perturb(default False): Apply random tempo and gain perturbations\n :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms\n ' with open(manifest_filepath) as f: ids = f.readlines() ids = [x.strip().split(',') for x in ids] self.ids = ids self.size = len(ids) self.labels_map = dict([(labels[i], i) for i in range(len(labels))]) try: self.use_jamo = audio_conf['use_jamo'] except: self.use_jamo = False super(SpectrogramDataset, self).__init__(audio_conf, normalize, speed_volume_perturb, spec_augment)
4,335,064,648,897,661,000
Dataset that loads tensors via a csv containing file paths to audio files and transcripts separated by a comma. Each new line is a different sample. Example below: /path/to/audio.wav,/path/to/audio.txt ... :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds :param manifest_filepath: Path to manifest csv as describe above :param labels: String containing all the possible characters to map to :param normalize: Apply standard mean and deviation normalization to audio tensor :param speed_volume_perturb(default False): Apply random tempo and gain perturbations :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, audio_conf, manifest_filepath, labels, normalize=False, speed_volume_perturb=False, spec_augment=False): '\n Dataset that loads tensors via a csv containing file paths to audio files and transcripts separated by\n a comma. Each new line is a different sample. Example below:\n\n /path/to/audio.wav,/path/to/audio.txt\n ...\n\n :param audio_conf: Dictionary containing the sample rate, window and the window length/stride in seconds\n :param manifest_filepath: Path to manifest csv as describe above\n :param labels: String containing all the possible characters to map to\n :param normalize: Apply standard mean and deviation normalization to audio tensor\n :param speed_volume_perturb(default False): Apply random tempo and gain perturbations\n :param spec_augment(default False): Apply simple spectral augmentation to mel spectograms\n ' with open(manifest_filepath) as f: ids = f.readlines() ids = [x.strip().split(',') for x in ids] self.ids = ids self.size = len(ids) self.labels_map = dict([(labels[i], i) for i in range(len(labels))]) try: self.use_jamo = audio_conf['use_jamo'] except: self.use_jamo = False super(SpectrogramDataset, self).__init__(audio_conf, normalize, speed_volume_perturb, spec_augment)
def __init__(self, *args, **kwargs): '\n Creates a data loader for AudioDatasets.\n ' super(AudioDataLoader, self).__init__(*args, **kwargs) self.collate_fn = _collate_fn
-1,195,107,911,870,949,600
Creates a data loader for AudioDatasets.
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, *args, **kwargs): '\n \n ' super(AudioDataLoader, self).__init__(*args, **kwargs) self.collate_fn = _collate_fn
def __init__(self, data_source, batch_size=1): '\n Samples batches assuming they are in order of size to batch similarly sized samples together.\n ' super(BucketingSampler, self).__init__(data_source) self.data_source = data_source ids = list(range(0, len(data_source))) self.bins = [ids[i:(i + batch_size)] for i in range(0, len(ids), batch_size)]
-8,620,534,451,393,159,000
Samples batches assuming they are in order of size to batch similarly sized samples together.
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, data_source, batch_size=1): '\n \n ' super(BucketingSampler, self).__init__(data_source) self.data_source = data_source ids = list(range(0, len(data_source))) self.bins = [ids[i:(i + batch_size)] for i in range(0, len(ids), batch_size)]
def __init__(self, data_source, batch_size=1, num_replicas=None, rank=None): '\n Samples batches assuming they are in order of size to batch similarly sized samples together.\n ' super(DistributedBucketingSampler, self).__init__(data_source) if (num_replicas is None): num_replicas = get_world_size() if (rank is None): rank = get_rank() self.data_source = data_source self.ids = list(range(0, len(data_source))) self.batch_size = batch_size self.bins = [self.ids[i:(i + batch_size)] for i in range(0, len(self.ids), batch_size)] self.num_replicas = num_replicas self.rank = rank self.num_samples = int(math.ceil(((len(self.bins) * 1.0) / self.num_replicas))) self.total_size = (self.num_samples * self.num_replicas)
-7,090,250,734,173,390,000
Samples batches assuming they are in order of size to batch similarly sized samples together.
data/data_loader.py
__init__
ShuanDeMorian/deepspeech.pytorch
python
def __init__(self, data_source, batch_size=1, num_replicas=None, rank=None): '\n \n ' super(DistributedBucketingSampler, self).__init__(data_source) if (num_replicas is None): num_replicas = get_world_size() if (rank is None): rank = get_rank() self.data_source = data_source self.ids = list(range(0, len(data_source))) self.batch_size = batch_size self.bins = [self.ids[i:(i + batch_size)] for i in range(0, len(self.ids), batch_size)] self.num_replicas = num_replicas self.rank = rank self.num_samples = int(math.ceil(((len(self.bins) * 1.0) / self.num_replicas))) self.total_size = (self.num_samples * self.num_replicas)
def filter_event(event, happening_before): 'Check if the following keys are present. These\n keys only show up when using the API. If fetching\n from the iCal, JSON, or RSS feeds it will just compare\n the dates\n ' status = True visibility = True actions = True if ('status' in event): status = (event['status'] == 'upcoming') if ('visibility' in event): visibility = (event['visibility'] == 'public') if ('self' in event): actions = ('announce' not in event['self']['actions']) return (status and visibility and actions and (event['time'] < happening_before))
-7,648,817,168,635,728,000
Check if the following keys are present. These keys only show up when using the API. If fetching from the iCal, JSON, or RSS feeds it will just compare the dates
app/Meetup/Filter.py
filter_event
OpenTwinCities/site_bot
python
def filter_event(event, happening_before): 'Check if the following keys are present. These\n keys only show up when using the API. If fetching\n from the iCal, JSON, or RSS feeds it will just compare\n the dates\n ' status = True visibility = True actions = True if ('status' in event): status = (event['status'] == 'upcoming') if ('visibility' in event): visibility = (event['visibility'] == 'public') if ('self' in event): actions = ('announce' not in event['self']['actions']) return (status and visibility and actions and (event['time'] < happening_before))
def evaluate(self, x): '\n Performs the evaluation of the objective at x.\n ' (f_evals, cost_evals) = self._eval_func(x) return (f_evals, cost_evals)
-8,275,771,205,466,574,000
Performs the evaluation of the objective at x.
Samples/codes/matopt_review/add_objective.py
evaluate
wilsongis/3DP_Experiments
python
def evaluate(self, x): '\n \n ' (f_evals, cost_evals) = self._eval_func(x) return (f_evals, cost_evals)
def _eval_func(self, x): '\n Performs sequential evaluations of the function at x (single location or batch). The computing time of each\n evaluation is also provided.\n ' cost_evals = [] f_evals = np.empty(shape=[0, self.n_obj]) for i in range(x.shape[0]): st_time = time.time() rlt = self.func(np.atleast_2d(x[i])) f_evals = np.vstack([f_evals, rlt]) cost_evals += [(time.time() - st_time)] return (f_evals, cost_evals)
3,552,057,242,387,114,000
Performs sequential evaluations of the function at x (single location or batch). The computing time of each evaluation is also provided.
Samples/codes/matopt_review/add_objective.py
_eval_func
wilsongis/3DP_Experiments
python
def _eval_func(self, x): '\n Performs sequential evaluations of the function at x (single location or batch). The computing time of each\n evaluation is also provided.\n ' cost_evals = [] f_evals = np.empty(shape=[0, self.n_obj]) for i in range(x.shape[0]): st_time = time.time() rlt = self.func(np.atleast_2d(x[i])) f_evals = np.vstack([f_evals, rlt]) cost_evals += [(time.time() - st_time)] return (f_evals, cost_evals)
def _validate_wildcard_uri(node, value): 'Raise if wildcards are within the domain of the uri.' for val in value: if (not wildcard_uri_is_valid(val)): raise colander.Invalid(node, 'Wildcards (_ and *) are not permitted within the\n domain of wildcard_uri')
-7,200,298,268,601,455,000
Raise if wildcards are within the domain of the uri.
h/schemas/annotation.py
_validate_wildcard_uri
bibliotechie/h
python
def _validate_wildcard_uri(node, value): for val in value: if (not wildcard_uri_is_valid(val)): raise colander.Invalid(node, 'Wildcards (_ and *) are not permitted within the\n domain of wildcard_uri')
def _document(document, claimant): '\n Return document meta and document URI data from the given document dict.\n\n Transforms the "document" dict that the client posts into a convenient\n format for creating DocumentURI and DocumentMeta objects later.\n\n ' document = (document or {}) document_uri_dicts = document_claims.document_uris_from_data(copy.deepcopy(document), claimant=claimant) document_meta_dicts = document_claims.document_metas_from_data(copy.deepcopy(document), claimant=claimant) return {'document_uri_dicts': document_uri_dicts, 'document_meta_dicts': document_meta_dicts}
7,862,136,510,796,650,000
Return document meta and document URI data from the given document dict. Transforms the "document" dict that the client posts into a convenient format for creating DocumentURI and DocumentMeta objects later.
h/schemas/annotation.py
_document
bibliotechie/h
python
def _document(document, claimant): '\n Return document meta and document URI data from the given document dict.\n\n Transforms the "document" dict that the client posts into a convenient\n format for creating DocumentURI and DocumentMeta objects later.\n\n ' document = (document or {}) document_uri_dicts = document_claims.document_uris_from_data(copy.deepcopy(document), claimant=claimant) document_meta_dicts = document_claims.document_metas_from_data(copy.deepcopy(document), claimant=claimant) return {'document_uri_dicts': document_uri_dicts, 'document_meta_dicts': document_meta_dicts}
def _format_jsonschema_error(error): 'Format a :py:class:`jsonschema.ValidationError` as a string.' if error.path: dotted_path = '.'.join([str(c) for c in error.path]) return '{path}: {message}'.format(path=dotted_path, message=error.message) return error.message
2,304,976,702,490,669,300
Format a :py:class:`jsonschema.ValidationError` as a string.
h/schemas/annotation.py
_format_jsonschema_error
bibliotechie/h
python
def _format_jsonschema_error(error): if error.path: dotted_path = '.'.join([str(c) for c in error.path]) return '{path}: {message}'.format(path=dotted_path, message=error.message) return error.message
def _shared(permissions, groupid): "\n Return True if the given permissions object represents shared permissions.\n\n Return False otherwise.\n\n Reduces the client's complex permissions dict to a simple shared boolean.\n\n :param permissions: the permissions dict sent by the client in an\n annotation create or update request\n :type permissions: dict\n\n :param groupid: the groupid of the annotation that the permissions dict\n applies to\n :type groupid: unicode\n\n " return (permissions['read'] == ['group:{id}'.format(id=groupid)])
-4,910,070,461,960,579,000
Return True if the given permissions object represents shared permissions. Return False otherwise. Reduces the client's complex permissions dict to a simple shared boolean. :param permissions: the permissions dict sent by the client in an annotation create or update request :type permissions: dict :param groupid: the groupid of the annotation that the permissions dict applies to :type groupid: unicode
h/schemas/annotation.py
_shared
bibliotechie/h
python
def _shared(permissions, groupid): "\n Return True if the given permissions object represents shared permissions.\n\n Return False otherwise.\n\n Reduces the client's complex permissions dict to a simple shared boolean.\n\n :param permissions: the permissions dict sent by the client in an\n annotation create or update request\n :type permissions: dict\n\n :param groupid: the groupid of the annotation that the permissions dict\n applies to\n :type groupid: unicode\n\n " return (permissions['read'] == ['group:{id}'.format(id=groupid)])
def _target_selectors(targets): '\n Return the target selectors from the given target list.\n\n Transforms the target lists that the client sends in annotation create and\n update requests into our internal target_selectors format.\n\n ' if (targets and ('selector' in targets[0])): return targets[0]['selector'] return []
1,615,902,591,248,185,000
Return the target selectors from the given target list. Transforms the target lists that the client sends in annotation create and update requests into our internal target_selectors format.
h/schemas/annotation.py
_target_selectors
bibliotechie/h
python
def _target_selectors(targets): '\n Return the target selectors from the given target list.\n\n Transforms the target lists that the client sends in annotation create and\n update requests into our internal target_selectors format.\n\n ' if (targets and ('selector' in targets[0])): return targets[0]['selector'] return []
def _date_is_parsable(self, value): 'Return True if date is parsable and False otherwise.' try: if (float(value) < 9999): raise ValueError('This is not in the form ms since the epoch.') except ValueError: try: parse(value) except ValueError: return False return True
1,211,354,839,976,220,000
Return True if date is parsable and False otherwise.
h/schemas/annotation.py
_date_is_parsable
bibliotechie/h
python
def _date_is_parsable(self, value): try: if (float(value) < 9999): raise ValueError('This is not in the form ms since the epoch.') except ValueError: try: parse(value) except ValueError: return False return True
def makeLineToWordsList(line, break_word=False): u'将一行文本转为单词列表' if break_word: return [c for c in line] lst = [] while line: ro = g_re_first_word.match(line) end = (1 if (not ro) else ro.end()) lst.append(line[:end]) line = line[end:] return lst
5,462,105,743,467,148,000
将一行文本转为单词列表
hard-gists/9c4d012d6fff059ccea7/snippet.py
makeLineToWordsList
bopopescu/dockerizeme
python
def makeLineToWordsList(line, break_word=False): u if break_word: return [c for c in line] lst = [] while line: ro = g_re_first_word.match(line) end = (1 if (not ro) else ro.end()) lst.append(line[:end]) line = line[end:] return lst
def makeLongLineToLines(long_line, start_x, start_y, width, line_height, font, cn_char_width=0): u'将一个长行分成多个可显示的短行' txt = long_line if (not txt): return [None] words = makeLineToWordsList(txt) lines = [] if (not cn_char_width): (cn_char_width, h) = font.size(u'汉') avg_char_per_line = (width / cn_char_width) if (avg_char_per_line <= 1): avg_char_per_line = 1 line_x = start_x line_y = start_y while words: tmp_words = words[:avg_char_per_line] tmp_ln = ''.join(tmp_words) (w, h) = font.size(tmp_ln) wc = len(tmp_words) while ((w < width) and (wc < len(words))): wc += 1 tmp_words = words[:wc] tmp_ln = ''.join(tmp_words) (w, h) = font.size(tmp_ln) while ((w > width) and (len(tmp_words) > 1)): tmp_words = tmp_words[:(- 1)] tmp_ln = ''.join(tmp_words) (w, h) = font.size(tmp_ln) if ((w > width) and (len(tmp_words) == 1)): line_y = makeLongWordToLines(tmp_words[0], line_x, line_y, width, line_height, font, lines) words = words[len(tmp_words):] continue line = {'x': line_x, 'y': line_y, 'text': tmp_ln, 'font': font} line_y += line_height words = words[len(tmp_words):] lines.append(line) if (len(lines) >= 1): while ((len(words) > 0) and (not words[0].strip())): words = words[1:] return lines
8,475,288,406,829,945,000
将一个长行分成多个可显示的短行
hard-gists/9c4d012d6fff059ccea7/snippet.py
makeLongLineToLines
bopopescu/dockerizeme
python
def makeLongLineToLines(long_line, start_x, start_y, width, line_height, font, cn_char_width=0): u txt = long_line if (not txt): return [None] words = makeLineToWordsList(txt) lines = [] if (not cn_char_width): (cn_char_width, h) = font.size(u'汉') avg_char_per_line = (width / cn_char_width) if (avg_char_per_line <= 1): avg_char_per_line = 1 line_x = start_x line_y = start_y while words: tmp_words = words[:avg_char_per_line] tmp_ln = .join(tmp_words) (w, h) = font.size(tmp_ln) wc = len(tmp_words) while ((w < width) and (wc < len(words))): wc += 1 tmp_words = words[:wc] tmp_ln = .join(tmp_words) (w, h) = font.size(tmp_ln) while ((w > width) and (len(tmp_words) > 1)): tmp_words = tmp_words[:(- 1)] tmp_ln = .join(tmp_words) (w, h) = font.size(tmp_ln) if ((w > width) and (len(tmp_words) == 1)): line_y = makeLongWordToLines(tmp_words[0], line_x, line_y, width, line_height, font, lines) words = words[len(tmp_words):] continue line = {'x': line_x, 'y': line_y, 'text': tmp_ln, 'font': font} line_y += line_height words = words[len(tmp_words):] lines.append(line) if (len(lines) >= 1): while ((len(words) > 0) and (not words[0].strip())): words = words[1:] return lines
def drawCopyright(im, dr, cfg): u'绘制版权信息' if (not cfg['copyright']): return font = getFontForPyGame(font_name=cfg['font-family'], font_size=12) rtext = font.render(cfg['copyright'], cfg['font-antialiasing'], (128, 128, 128), cfg['background-color']) sio = StringIO.StringIO() pygame.image.save(rtext, sio) sio.seek(0) copyright_im = Image.open(sio) (iw, ih) = im.size (cw, ch) = rtext.get_size() padding = cfg['padding'] offset_y = ((ih - 32) - padding[2]) if cfg['copyright-center']: cx = ((iw - cw) / 2) else: cx = cfg['padding'][3] cy = (offset_y + 12) dr.line([(padding[3], offset_y), ((iw - padding[1]), offset_y)], width=1, fill=(192, 192, 192)) im.paste(copyright_im, (cx, cy))
7,383,745,422,005,040,000
绘制版权信息
hard-gists/9c4d012d6fff059ccea7/snippet.py
drawCopyright
bopopescu/dockerizeme
python
def drawCopyright(im, dr, cfg): u if (not cfg['copyright']): return font = getFontForPyGame(font_name=cfg['font-family'], font_size=12) rtext = font.render(cfg['copyright'], cfg['font-antialiasing'], (128, 128, 128), cfg['background-color']) sio = StringIO.StringIO() pygame.image.save(rtext, sio) sio.seek(0) copyright_im = Image.open(sio) (iw, ih) = im.size (cw, ch) = rtext.get_size() padding = cfg['padding'] offset_y = ((ih - 32) - padding[2]) if cfg['copyright-center']: cx = ((iw - cw) / 2) else: cx = cfg['padding'][3] cy = (offset_y + 12) dr.line([(padding[3], offset_y), ((iw - padding[1]), offset_y)], width=1, fill=(192, 192, 192)) im.paste(copyright_im, (cx, cy))
def drawBorder(im, dr, cfg): u'绘制边框' if (not cfg['border-size']): return (w, h) = im.size (x, y) = ((w - 1), (h - 1)) dr.line([(0, 0), (x, 0), (x, y), (0, y), (0, 0)], width=cfg['border-size'], fill=cfg['border-color'])
-7,522,714,186,463,741,000
绘制边框
hard-gists/9c4d012d6fff059ccea7/snippet.py
drawBorder
bopopescu/dockerizeme
python
def drawBorder(im, dr, cfg): u if (not cfg['border-size']): return (w, h) = im.size (x, y) = ((w - 1), (h - 1)) dr.line([(0, 0), (x, 0), (x, y), (0, y), (0, 0)], width=cfg['border-size'], fill=cfg['border-color'])
def chain_return_value(future, loop, return_value): 'Compatible way to return a value in all Pythons.\n\n PEP 479, raise StopIteration(value) from a coroutine won\'t work forever,\n but "return value" doesn\'t work in Python 2. Instead, Motor methods that\n return values resolve a Future with it, and are implemented with callbacks\n rather than a coroutine internally.\n ' chained = concurrent.Future() def copy(_future): if chained.done(): return if (_future.exception() is not None): chained.set_exception(_future.exception()) else: chained.set_result(return_value) future.add_done_callback(functools.partial(loop.add_callback, copy)) return chained
2,489,905,371,473,619,500
Compatible way to return a value in all Pythons. PEP 479, raise StopIteration(value) from a coroutine won't work forever, but "return value" doesn't work in Python 2. Instead, Motor methods that return values resolve a Future with it, and are implemented with callbacks rather than a coroutine internally.
motor/frameworks/tornado/__init__.py
chain_return_value
smurfix/motor
python
def chain_return_value(future, loop, return_value): 'Compatible way to return a value in all Pythons.\n\n PEP 479, raise StopIteration(value) from a coroutine won\'t work forever,\n but "return value" doesn\'t work in Python 2. Instead, Motor methods that\n return values resolve a Future with it, and are implemented with callbacks\n rather than a coroutine internally.\n ' chained = concurrent.Future() def copy(_future): if chained.done(): return if (_future.exception() is not None): chained.set_exception(_future.exception()) else: chained.set_result(return_value) future.add_done_callback(functools.partial(loop.add_callback, copy)) return chained
def pymongo_class_wrapper(f, pymongo_class): 'Executes the coroutine f and wraps its result in a Motor class.\n\n See WrapAsync.\n ' @functools.wraps(f) async def _wrapper(self, *args, **kwargs): result = (await f(self, *args, **kwargs)) if (result.__class__ == pymongo_class): return self.wrap(result) else: return result return _wrapper
-1,625,393,533,709,248,000
Executes the coroutine f and wraps its result in a Motor class. See WrapAsync.
motor/frameworks/tornado/__init__.py
pymongo_class_wrapper
smurfix/motor
python
def pymongo_class_wrapper(f, pymongo_class): 'Executes the coroutine f and wraps its result in a Motor class.\n\n See WrapAsync.\n ' @functools.wraps(f) async def _wrapper(self, *args, **kwargs): result = (await f(self, *args, **kwargs)) if (result.__class__ == pymongo_class): return self.wrap(result) else: return result return _wrapper
def __init__(self, detail, source=None, title=None, status=None, code=None, id_=None, links=None, meta=None): 'Initialize a jsonapi exception\n\n :param dict source: the source of the error\n :param str detail: the detail of the error\n ' self.detail = detail self.source = source self.code = code self.id = id_ self.links = (links or {}) self.meta = (meta or {}) if (title is not None): self.title = title if (status is not None): self.status = status
-3,200,909,858,962,412,000
Initialize a jsonapi exception :param dict source: the source of the error :param str detail: the detail of the error
flapison/exceptions.py
__init__
Leechael/flapison
python
def __init__(self, detail, source=None, title=None, status=None, code=None, id_=None, links=None, meta=None): 'Initialize a jsonapi exception\n\n :param dict source: the source of the error\n :param str detail: the detail of the error\n ' self.detail = detail self.source = source self.code = code self.id = id_ self.links = (links or {}) self.meta = (meta or {}) if (title is not None): self.title = title if (status is not None): self.status = status