Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
long context
File size: 3,978 Bytes
10b72be 99efcf8 10b72be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import json
import os
import datasets
from datasets.tasks import TextClassification
_CITATION = None
_DESCRIPTION = """
Patent Classification Dataset: a classification of Patents (9 classes).
It contains 9 unbalanced classes, 25k Patents and summaries divided into 3 splits: train (25k), val (5k) and test (5k).
Copied from "Long Document Classification From Local Word Glimpses via Recurrent Attention Learning" by JUN HE LIQUN WANG LIU LIU, JIAO FENG AND HAO WU
See: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8675939
See: https://github.com/LiqunW/Long-document-dataset
"""
_LABELS = [
"Human Necessities",
"Performing Operations; Transporting",
"Chemistry; Metallurgy",
"Textiles; Paper",
"Fixed Constructions",
"Mechanical Engineering; Lightning; Heating; Weapons; Blasting",
"Physics",
"Electricity",
"General tagging of new or cross-sectional technology",
]
class PatentClassificationConfig(datasets.BuilderConfig):
"""BuilderConfig for PatentClassification."""
def __init__(self, **kwargs):
"""BuilderConfig for PatentClassification.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(PatentClassificationConfig, self).__init__(**kwargs)
class PatentClassificationDataset(datasets.GeneratorBasedBuilder):
"""PatentClassification Dataset: classification of Patents (9 classes)."""
_DOWNLOAD_URL = "https://huggingface.co/datasets/ccdv/patent-classification/resolve/main/"
_TRAIN_FILE = "train_data.txt"
_VAL_FILE = "val_data.txt"
_TEST_FILE = "test_data.txt"
_LABELS_DICT = {label: i for i, label in enumerate(_LABELS)}
BUILDER_CONFIGS = [
PatentClassificationConfig(
name="patent",
version=datasets.Version("1.0.0"),
description="Patent Classification Dataset: A classification task of Patents (9 classes)",
),
PatentClassificationConfig(
name="abstract",
version=datasets.Version("1.0.0"),
description="Patent Classification Dataset: A classification task of Patents with abstracts (9 classes)",
),
]
DEFAULT_CONFIG_NAME = "patent"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"label": datasets.features.ClassLabel(names=_LABELS),
}
),
supervised_keys=None,
citation=_CITATION,
task_templates=[TextClassification(
text_column="text", label_column="label")],
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._TRAIN_FILE)
val_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._VAL_FILE)
test_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._TEST_FILE)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}
),
]
def _generate_examples(self, filepath):
"""Generate PatentClassification examples."""
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
label = self._LABELS_DICT[data["label"]]
if self.config.name == "abstract":
text = data["abstract"]
else:
text = data["description"]
yield id_, {"text": text, "label": label}
|