Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
Tags:
long context
import json | |
import os | |
import datasets | |
from datasets.tasks import TextClassification | |
_CITATION = None | |
_DESCRIPTION = """ | |
Patent Classification Dataset: a classification of Patents (9 classes). | |
It contains 9 unbalanced classes, 35k Patents and summaries divided into 3 splits: train (25k), val (5k) and test (5k). | |
Data are sampled from "BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization." by Eva Sharma, Chen Li and Lu Wang | |
See: https://aclanthology.org/P19-1212.pdf | |
See: https://evasharma.github.io/bigpatent/ | |
""" | |
_LABELS = [ | |
"Human Necessities", | |
"Performing Operations; Transporting", | |
"Chemistry; Metallurgy", | |
"Textiles; Paper", | |
"Fixed Constructions", | |
"Mechanical Engineering; Lightning; Heating; Weapons; Blasting", | |
"Physics", | |
"Electricity", | |
"General tagging of new or cross-sectional technology", | |
] | |
class PatentClassificationConfig(datasets.BuilderConfig): | |
"""BuilderConfig for PatentClassification.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for PatentClassification. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(PatentClassificationConfig, self).__init__(**kwargs) | |
class PatentClassificationDataset(datasets.GeneratorBasedBuilder): | |
"""PatentClassification Dataset: classification of Patents (9 classes).""" | |
_DOWNLOAD_URL = "https://huggingface.co/datasets/ccdv/patent-classification/resolve/main/" | |
_TRAIN_FILE = "train_data.txt" | |
_VAL_FILE = "val_data.txt" | |
_TEST_FILE = "test_data.txt" | |
_LABELS_DICT = {label: i for i, label in enumerate(_LABELS)} | |
BUILDER_CONFIGS = [ | |
PatentClassificationConfig( | |
name="patent", | |
version=datasets.Version("1.0.0"), | |
description="Patent Classification Dataset: A classification task of Patents (9 classes)", | |
), | |
PatentClassificationConfig( | |
name="abstract", | |
version=datasets.Version("1.0.0"), | |
description="Patent Classification Dataset: A classification task of Patents with abstracts (9 classes)", | |
), | |
] | |
DEFAULT_CONFIG_NAME = "patent" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"text": datasets.Value("string"), | |
"label": datasets.features.ClassLabel(names=_LABELS), | |
} | |
), | |
supervised_keys=None, | |
citation=_CITATION, | |
task_templates=[TextClassification( | |
text_column="text", label_column="label")], | |
) | |
def _split_generators(self, dl_manager): | |
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) | |
val_path = dl_manager.download_and_extract(self._VAL_FILE) | |
test_path = dl_manager.download_and_extract(self._TEST_FILE) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate PatentClassification examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
label = self._LABELS_DICT[data["label"]] | |
if self.config.name == "abstract": | |
text = data["abstract"] | |
else: | |
text = data["description"] | |
yield id_, {"text": text, "label": label} | |