|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
_CITATION = None |
|
|
|
|
|
_DESCRIPTION = """ |
|
PubMed dataset for summarization. |
|
From paper: A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents" by A. Cohan et al. |
|
See: https://aclanthology.org/N18-2097.pdf |
|
See: https://github.com/armancohan/long-summarization |
|
""" |
|
_CITATION = """\ |
|
@inproceedings{cohan-etal-2018-discourse, |
|
title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents", |
|
author = "Cohan, Arman and |
|
Dernoncourt, Franck and |
|
Kim, Doo Soon and |
|
Bui, Trung and |
|
Kim, Seokhwan and |
|
Chang, Walter and |
|
Goharian, Nazli", |
|
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)", |
|
month = jun, |
|
year = "2018", |
|
address = "New Orleans, Louisiana", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/N18-2097", |
|
doi = "10.18653/v1/N18-2097", |
|
pages = "615--621", |
|
abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.", |
|
} |
|
""" |
|
_ABSTRACT = "abstract" |
|
_ARTICLE = "article" |
|
|
|
class PubMedSummarizationConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PatentClassification.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for PubMedSummarization. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(PubMedSummarizationConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder): |
|
"""PubMedSummarization Dataset.""" |
|
|
|
_TRAIN_FILE = "train.zip" |
|
_VAL_FILE = "val.zip" |
|
_TEST_FILE = "test.zip" |
|
|
|
BUILDER_CONFIGS = [ |
|
PubMedSummarizationConfig( |
|
name="pubmed", |
|
version=datasets.Version("1.0.0"), |
|
description="PubMed dataset for summarization", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "pubmed" |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
_ARTICLE: datasets.Value("string"), |
|
_ABSTRACT: datasets.Value("string"), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/armancohan/long-summarization", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) + "/train.txt" |
|
val_path = dl_manager.download_and_extract(self._VAL_FILE) + "/val.txt" |
|
test_path = dl_manager.download_and_extract(self._TEST_FILE) + "/test.txt" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Generate PubMedSummarization examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
|
|
""" |
|
'article_id': str, |
|
'abstract_text': List[str], |
|
'article_text': List[str], |
|
'section_names': List[str], |
|
'sections': List[List[str]] |
|
""" |
|
article = data["article_text"] |
|
abstract = data["abstract_text"] |
|
yield id_, {"article": ' '.join(article), "abstract": ' '.join(abstract)} |
|
|