code
stringlengths
10
805k
def_use_chains
sequencelengths
0
667
""" ASGI config for CongoCart project. It exposes the ASGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.0/howto/deployment/asgi/ """ import os from django.core.asgi import get_asgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'CongoCart.settings') application = get_asgi_application()
[ [ [ 232, 234 ], [ 287, 289 ] ], [ [ 265, 285 ], [ 372, 392 ] ], [ [ 358, 369 ] ] ]
import pygame """ levels.py Houses all possible levels for the game to choose from. Selection occurs by invoking the selected level and by having a return tuple of (pad_sprite, trophies, car[x,y]). Must still be rendered into the main game. """ class PadSprite(pygame.sprite.Sprite): def __init__(self, image, position): super(PadSprite, self).__init__() self.normal = pygame.image.load(image) self.hit = pygame.image.load('images/collision.png') self.rect = pygame.Rect(self.normal.get_rect()) self.rect.center = position def update(self, hit_list): if self in hit_list: self.image = self.hit else: self.image = self.normal class Trophy(pygame.sprite.Sprite): def __init__(self, position): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load('images/trophy.png') self.rect = self.image.get_rect() self.rect.x, self.rect.y = position def draw(self, screen): screen.blit(self.image, self.rect) def level1(): pads = [ PadSprite('images/vertical_pads.png', (0, 100)), PadSprite('images/vertical_pads.png', (0, 200)), PadSprite('images/vertical_pads.png', (0, 400)), PadSprite('images/vertical_pads.png', (1024, 100)), PadSprite('images/vertical_pads.png', (1024, 550)), PadSprite('images/vertical_pads.png', (824, 768)), PadSprite('images/vertical_pads.png', (824, 368)), PadSprite('images/vertical_pads.png', (210, 375)), PadSprite('images/vertical_pads.png', (824, 368)), PadSprite('images/race_pads.png', (900, 0)), PadSprite('images/race_pads.png', (724, 0)), PadSprite('images/race_pads.png', (524, 0)), PadSprite('images/race_pads.png', (224, 0)), PadSprite('images/race_pads.png', (1024, 768)), PadSprite('images/race_pads.png', (624, 768)), PadSprite('images/race_pads.png', (224, 768)), PadSprite('images/race_pads.png', (450, 130)), PadSprite('images/race_pads.png', (550, 130)), PadSprite('images/small_horizontal.png', (600, 615)), PadSprite('images/small_horizontal.png', (350, 615)), PadSprite('images/small_horizontal.png', (470, 270)), PadSprite('images/small_vertical.png', (600, 390)), PadSprite('images/small_vertical.png', (350, 390)), PadSprite('images/vertical_pads.png', (0,250)), PadSprite('images/vertical_pads.png', (0, 525)), PadSprite('images/vertical_pads.png', (1024, 250)), PadSprite('images/vertical_pads.png', (1024, 525)), PadSprite('images/race_pads.png', (250, 0)), PadSprite('images/race_pads.png', (760, 0)), PadSprite('images/race_pads.png', (500, 0)), PadSprite('images/race_pads.png', (250, 768)), PadSprite('images/race_pads.png', (760, 768)), PadSprite('images/race_pads.png', (500, 768)) ] trophies = [Trophy((450, 320))] return 1, pads, trophies, (970, 730), 60 def level2(): pads = [ PadSprite('images/vertical_pads.png', (0, 100)), PadSprite('images/vertical_pads.png', (0, 200)), PadSprite('images/vertical_pads.png', (0, 400)), PadSprite('images/vertical_pads.png', (1024, 100)), PadSprite('images/vertical_pads.png', (1024, 550)), PadSprite('images/vertical_pads.png', (200, 768)), PadSprite('images/vertical_pads.png', (200, 368)), PadSprite('images/vertical_pads.png', (800, 375)), PadSprite('images/vertical_pads.png', (200, 368)), PadSprite('images/race_pads.png', (60, 0)), PadSprite('images/race_pads.png', (300, 0)), PadSprite('images/race_pads.png', (700, 0)), PadSprite('images/race_pads.png', (900, 0)), PadSprite('images/race_pads.png', (1024, 768)), PadSprite('images/race_pads.png', (624, 768)), PadSprite('images/race_pads.png', (224, 768)), PadSprite('images/race_pads.png', (450, 130)), PadSprite('images/race_pads.png', (550, 130)), PadSprite('images/small_horizontal.png', (670, 615)), PadSprite('images/small_horizontal.png', (470, 615)), PadSprite('images/small_horizontal.png', (470, 270)), PadSprite('images/small_vertical.png', (350, 490)), PadSprite('images/small_vertical.png', (350, 390)), PadSprite('images/small_vertical.png', (600, 390)), PadSprite('images/vertical_pads.png', (0,250)), PadSprite('images/vertical_pads.png', (0, 525)), PadSprite('images/vertical_pads.png', (1024, 250)), PadSprite('images/vertical_pads.png', (1024, 525)), PadSprite('images/race_pads.png', (250, 0)), PadSprite('images/race_pads.png', (760, 0)), PadSprite('images/race_pads.png', (500, 0)), PadSprite('images/race_pads.png', (250, 768)), PadSprite('images/race_pads.png', (760, 768)), PadSprite('images/race_pads.png', (500, 768)) ] trophies = [Trophy((450, 320))] return 2, pads, trophies, (30, 730), 60 def level3(): pads = [ PadSprite('images/race_pads.png', (800, 150)), PadSprite('images/race_pads.png', (800, 375)), PadSprite('images/race_pads.png', (800, 625)), PadSprite('images/race_pads.png', (800, 675)), PadSprite('images/race_pads.png', (800, 575)), PadSprite('images/race_pads.png', (200, 150)), PadSprite('images/race_pads.png', (200, 675)), PadSprite('images/race_pads.png', (200, 575)), PadSprite('images/race_pads.png', (200, 375)), PadSprite('images/race_pads.png', (200, 625)), PadSprite('images/small_vertical.png', (450, 260)), PadSprite('images/vertical_pads.png', (0, 250)), PadSprite('images/vertical_pads.png', (0, 525)), PadSprite('images/vertical_pads.png', (1024, 250)), PadSprite('images/vertical_pads.png', (1024, 525)), PadSprite('images/race_pads.png', (250, 0)), PadSprite('images/race_pads.png', (760, 0)), PadSprite('images/race_pads.png', (500, 0)), PadSprite('images/race_pads.png', (250, 768)), PadSprite('images/race_pads.png', (760, 768)), PadSprite('images/race_pads.png', (500, 768)) ] trophies = [Trophy((490, 50))] return 3, pads, trophies, (490, 700), 30 def level4(): pads = [ PadSprite('images/race_pads.png', (800, 150)), PadSprite('images/race_pads.png', (800, 375)), PadSprite('images/race_pads.png', (800, 625)), PadSprite('images/race_pads.png', (800, 675)), PadSprite('images/race_pads.png', (800, 575)), PadSprite('images/race_pads.png', (200, 150)), PadSprite('images/race_pads.png', (200, 675)), PadSprite('images/race_pads.png', (200, 575)), PadSprite('images/race_pads.png', (200, 375)), PadSprite('images/race_pads.png', (200, 625)), PadSprite('images/small_vertical.png', (555, 260)), PadSprite('images/vertical_pads.png', (0, 250)), PadSprite('images/vertical_pads.png', (0, 525)), PadSprite('images/vertical_pads.png', (1024, 250)), PadSprite('images/vertical_pads.png', (1024, 525)), PadSprite('images/race_pads.png', (250, 0)), PadSprite('images/race_pads.png', (760, 0)), PadSprite('images/race_pads.png', (500, 0)), PadSprite('images/race_pads.png', (250, 768)), PadSprite('images/race_pads.png', (760, 768)), PadSprite('images/race_pads.png', (500, 768)) ] trophies = [Trophy((490, 50))] return 4, pads, trophies, (490, 700), 30
[ [ [ 7, 13 ], [ 285, 291 ], [ 752, 758 ], [ 413, 419 ], [ 457, 463 ], [ 519, 525 ], [ 817, 823 ], [ 874, 880 ] ], [ [ 275, 284 ], [ 363, 372 ], [ 1107, 1116 ], [ 1164, 1173 ], [ 1221, 1230 ], [ 1278, 1287 ], [ 1338, 1347 ], [ 1398, 1407 ], [ 1457, 1466 ], [ 1516, 1525 ], [ 1575, 1584 ], [ 1634, 1643 ], [ 1687, 1696 ], [ 1740, 1749 ], [ 1793, 1802 ], [ 1846, 1855 ], [ 1902, 1911 ], [ 1957, 1966 ], [ 2012, 2021 ], [ 2067, 2076 ], [ 2122, 2131 ], [ 2184, 2193 ], [ 2246, 2255 ], [ 2308, 2317 ], [ 2368, 2377 ], [ 2429, 2438 ], [ 2485, 2494 ], [ 2542, 2551 ], [ 2602, 2611 ], [ 2662, 2671 ], [ 2715, 2724 ], [ 2768, 2777 ], [ 2821, 2830 ], [ 2876, 2885 ], [ 2931, 2940 ], [ 3102, 3111 ], [ 3159, 3168 ], [ 3216, 3225 ], [ 3273, 3282 ], [ 3333, 3342 ], [ 3393, 3402 ], [ 3452, 3461 ], [ 3511, 3520 ], [ 3570, 3579 ], [ 3629, 3638 ], [ 3681, 3690 ], [ 3734, 3743 ], [ 3787, 3796 ], [ 3840, 3849 ], [ 3896, 3905 ], [ 3951, 3960 ], [ 4006, 4015 ], [ 4061, 4070 ], [ 4116, 4125 ], [ 4178, 4187 ], [ 4240, 4249 ], [ 4302, 4311 ], [ 4362, 4371 ], [ 4422, 4431 ], [ 4483, 4492 ], [ 4539, 4548 ], [ 4596, 4605 ], [ 4656, 4665 ], [ 4716, 4725 ], [ 4769, 4778 ], [ 4822, 4831 ], [ 4875, 4884 ], [ 4930, 4939 ], [ 4985, 4994 ], [ 5156, 5165 ], [ 5211, 5220 ], [ 5266, 5275 ], [ 5321, 5330 ], [ 5376, 5385 ], [ 5431, 5440 ], [ 5486, 5495 ], [ 5541, 5550 ], [ 5596, 5605 ], [ 5651, 5660 ], [ 5706, 5715 ], [ 5767, 5776 ], [ 5824, 5833 ], [ 5881, 5890 ], [ 5941, 5950 ], [ 6001, 6010 ], [ 6054, 6063 ], [ 6107, 6116 ], [ 6160, 6169 ], [ 6215, 6224 ], [ 6270, 6279 ], [ 6440, 6449 ], [ 6495, 6504 ], [ 6550, 6559 ], [ 6605, 6614 ], [ 6660, 6669 ], [ 6715, 6724 ], [ 6770, 6779 ], [ 6825, 6834 ], [ 6880, 6889 ], [ 6935, 6944 ], [ 6990, 6999 ], [ 7051, 7060 ], [ 7108, 7117 ], [ 7165, 7174 ], [ 7225, 7234 ], [ 7285, 7294 ], [ 7338, 7347 ], [ 7391, 7400 ], [ 7444, 7453 ], [ 7499, 7508 ], [ 7554, 7563 ] ], [ [ 745, 751 ], [ 3000, 3006 ], [ 5054, 5060 ], [ 6338, 6344 ], [ 7622, 7628 ] ], [ [ 1076, 1082 ] ], [ [ 3071, 3077 ] ], [ [ 5125, 5131 ] ], [ [ 6409, 6415 ] ] ]
''' 3. Criar 2 matrizes 3x4 somar seus valores e armazenar o resultado em uma terceira matriz 3x4.'''
[]
# # Copyright (c) European Synchrotron Radiation Facility (ESRF) # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __authors__ = ["O. Svensson"] __license__ = "MIT" __date__ = "21/04/2019" import os import json import unittest from edna2.utils import UtilsTest from edna2.tasks.DozorTasks import ControlDozor class ControlDozorPlotExecTest(unittest.TestCase): def setUp(self): self.dataPath = UtilsTest.prepareTestDataPath(__file__) @unittest.skipIf(os.name == 'nt', "Don't run on Windows") def test_makePlot(self): workingDirectory = UtilsTest.getTestRunPath() dataCollectionId = 123456 outDataPath = self.dataPath / "outDataControlDozor.json" with open(str(outDataPath)) as f: outData = json.load(f) controlDozor = ControlDozor(inData={}) controlDozor.template = "mesh-test_1_%4d.cbf" controlDozor.directory = UtilsTest.getTestImageDirPath().as_posix() controlDozor.makePlot(dataCollectionId, outData, workingDirectory)
[ [ [ 1123, 1134 ] ], [ [ 1153, 1164 ] ], [ [ 1173, 1181 ] ], [ [ 1206, 1208 ], [ 1481, 1483 ] ], [ [ 1216, 1220 ], [ 1768, 1772 ] ], [ [ 1228, 1236 ], [ 1353, 1361 ], [ 1465, 1473 ] ], [ [ 1262, 1271 ], [ 1419, 1428 ], [ 1578, 1587 ], [ 1915, 1924 ] ], [ [ 1307, 1319 ], [ 1804, 1816 ] ], [ [ 1328, 1352 ] ] ]
# -*- coding: utf-8 -*- import scrapy import re from rkpass.items import dzswMorningItem # 电子商务设计师上午题 class DzswmorningspiderSpider(scrapy.Spider): name = 'dzswMorningSpider' allowed_domains = ['www.rkpass.cn'] start_urls = [] paperId_list = ['612', '541', '477', '453', '281', '280', '279', '278', '277', '276'] # 试卷的所有ID field_list = ['20182', '20172', '20162', '20152', '20142', '20132', '20122', '20112', '20102', '20092'] # 跟上行试卷所有ID对应考试场次 for j in range(len(paperId_list)): for i in range(1, 76): start_urls.append( 'http://www.rkpass.cn/tk_timu/14_' + str(paperId_list[j]) + '_' + str(i) + '_xuanze.html?field=' + field_list[j] + '&questionNum=' + str(i)) def parse(self, response): questionNum = str(response.url).strip().split("questionNum=")[-1] # 题号 scrapy运行插库顺序不一致问题 field = (str(response.url).strip().split("field=")[-1]).split("&")[0] # 区别场次 20181表示2018年上半年 knowledgeTwo = response.xpath(".//span[@class='red']//text()").extract() # 知识点(二级分类) # 针对2018年题库无分类处理 knowledgeTwo = knowledgeTwo[0] if list(knowledgeTwo) else "" dataimg = response.xpath(".//span[@class='shisi_text']/img[last()]/@src").extract() # 爬取题目及选项中图片 product_id = re.findall('\((.*?)\)', response.xpath(".//script//text()").extract()[0])[0].split(',')[0].strip( "'") # 该题目id 用于整理答案 question = "".join(response.xpath(".//table/tr[2]/td/span[@class='shisi_text']//text()").extract()) # 题目 A = "".join( "".join(response.xpath(".//table/tr[5]/td/span[@class='shisi_text']//text()").extract()).split()) # A选项 B = "".join( "".join(response.xpath(".//table/tr[7]/td/span[@class='shisi_text']//text()").extract()).split()) # B选项 C = "".join( "".join(response.xpath(".//table/tr[9]/td/span[@class='shisi_text']//text()").extract()).split()) # C选项 D = "".join( "".join(response.xpath(".//table/tr[11]/td/span[@class='shisi_text']//text()").extract()).split()) # D选项 questionImg = '' # 初始化 防止插库失败 if len(dataimg) > 0: # 判断题目及选项中是否有图片 if len(dataimg) == 1: questionImg = dataimg[0] # 第一张为题目图片 elif len(dataimg) == 4: # 图片总数等于4张 即为选项中图片 A = A + dataimg[0] B = B + dataimg[1] C = C + dataimg[2] D = D + dataimg[3] elif len(dataimg) == 5: # 图片总数等于5张 则分别是A、B、C、D中的图片 questionImg = dataimg[0] # 第一张为题目图片 A = A + dataimg[1] B = B + dataimg[2] C = C + dataimg[3] D = D + dataimg[4] # 处理分类 # 特殊情况 题目上即为一级分类(该题库2018年不存在有分类 数据库字段设置 可以为空) knowledgeOne = knowledgeTwo # 知识点一级分类 # 收集数据 item = dzswMorningItem() item['question'] = question item['questionImg'] = questionImg item['optiona'] = A item['optionb'] = B item['optionc'] = C item['optiond'] = D url = 'http://www.rkpass.cn/tk_jiexi.jsp?product_id=' + product_id + '&tixing=xuanze&answer=&paper_id=&tihao=&cache=' yield scrapy.Request(url, callback=self.parse_detail, dont_filter=True, meta={'item': item, 'field': field, 'questionNum': questionNum, 'knowledgeOne': knowledgeOne, 'knowledgeTwo': knowledgeTwo}) def parse_detail(self, response): knowledgeOne = response.meta['knowledgeOne'] # 接收当前题目一级分类 knowledgeTwo = response.meta['knowledgeTwo'] # 接收当前题目二级分类 questionNum = response.meta['questionNum'] # 接收当前题目号 field = response.meta['field'] # 接收当前考试场次 item = response.meta['item'] # 接收上级已爬取的数据 answer = response.xpath(".//td/span[@class='shisi_text']//text()").extract()[2].strip() # 答案 answerAnalysis = response.xpath(".//table/tr[3]/td//text()").extract() # 答案解析 answerAnalysis = "".join(answerAnalysis[3:len(answerAnalysis)]) # 接收二级答案页面数据 item['answer'] = answer item['answeranalysis'] = answerAnalysis item['field'] = field item['questionNum'] = questionNum item['knowledgeOne'] = knowledgeOne item['knowledgeTwo'] = knowledgeTwo return item
[ [ [ 31, 37 ], [ 133, 139 ], [ 3211, 3217 ] ], [ [ 45, 47 ], [ 1290, 1292 ] ], [ [ 73, 88 ], [ 2862, 2877 ] ], [ [ 109, 132 ] ] ]
def decoupling_regularization_prepare(graph, sigma_square,lambda_input): # get W matrix, Z(for row sum) and Z_prime(for col sum), and A_tilde # get matrix W: A = np.array(nx.adjacency_matrix(graph).todense()) d = np.sum(A, axis=1) D = np.diag(d) n = len(D) # Alternative way(19): set Sigma_square = sigma_square./d, where sigma_square is fixed Sigma_square = np.divide(sigma_square,d) Sigma = np.diag(Sigma_square) W = np.dot(A,inv(Sigma)) lambda_diag = lambda_input*np.ones(n) lambda_diag_matrix = np.diag(lambda_diag) W = W+lambda_diag_matrix w_col_sum = np.sum(W, axis=0) w_row_sum = np.sum(W, axis=1) Z_prime = np.diag(w_col_sum) Z = np.diag(w_row_sum) A_tilde = np.dot(np.dot(W,inv(Z_prime)),np.transpose(W)) # create return (A_tilde)
[ [ [ 4, 37 ] ] ]
# coding: utf8 from __future__ import unicode_literals from ..char_classes import ALPHA, ALPHA_LOWER, ALPHA_UPPER, QUOTES, HYPHENS from ..char_classes import LIST_ELLIPSES, LIST_ICONS _hyphens_no_dash = HYPHENS.replace('-', '').strip('|').replace('||', '') _infixes = (LIST_ELLIPSES + LIST_ICONS + [r'(?<=[{}])\.(?=[{}])'.format(ALPHA_LOWER, ALPHA_UPPER), r'(?<=[{a}])[,!?/\(\)]+(?=[{a}])'.format(a=ALPHA), r'(?<=[{a}{q}])[:<>=](?=[{a}])'.format(a=ALPHA, q=QUOTES), r'(?<=[{a}])--(?=[{a}])'.format(a=ALPHA), r'(?<=[{a}]),(?=[{a}])'.format(a=ALPHA), r'(?<=[{a}])([{q}\)\]\(\[])(?=[\-{a}])'.format(a=ALPHA, q=QUOTES), r'(?<=[{a}])[?";:=,.]*(?:{h})(?=[{a}])'.format(a=ALPHA, h=_hyphens_no_dash), r'(?<=[0-9])-(?=[0-9])']) TOKENIZER_INFIXES = _infixes
[ [ [ 39, 55 ] ], [ [ 86, 91 ], [ 435, 440 ], [ 498, 503 ], [ 564, 569 ], [ 619, 624 ], [ 690, 695 ], [ 771, 776 ] ], [ [ 93, 104 ], [ 351, 362 ] ], [ [ 106, 117 ], [ 364, 375 ] ], [ [ 119, 125 ], [ 507, 513 ], [ 699, 705 ] ], [ [ 127, 134 ], [ 211, 218 ] ], [ [ 163, 176 ], [ 278, 291 ] ], [ [ 178, 188 ], [ 294, 304 ] ], [ [ 192, 208 ], [ 841, 857 ] ], [ [ 266, 274 ], [ 923, 931 ] ], [ [ 903, 920 ] ] ]
# -*- coding: utf-8 -*- # Copyright (c) 2020 Felix Fontein <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type class ModuleDocFragment(object): DOCUMENTATION = r''' options: sops_binary: description: - Path to the sops binary. - By default uses C(sops). type: path version_added: 1.0.0 aws_profile: description: - The AWS profile to use for requests to AWS. - This corresponds to the sops C(--aws-profile) option. type: str version_added: 1.0.0 aws_access_key_id: description: - The AWS access key ID to use for requests to AWS. - Sets the environment variable C(AWS_ACCESS_KEY_ID) for the sops call. type: str version_added: 1.0.0 aws_secret_access_key: description: - The AWS secret access key to use for requests to AWS. - Sets the environment variable C(AWS_SECRET_ACCESS_KEY) for the sops call. type: str version_added: 1.0.0 aws_session_token: description: - The AWS session token to use for requests to AWS. - Sets the environment variable C(AWS_SESSION_TOKEN) for the sops call. type: str version_added: 1.0.0 config_path: description: - Path to the sops configuration file. - If not set, sops will recursively search for the config file starting at the file that is encrypted or decrypted. - This corresponds to the sops C(--config) option. type: path version_added: 1.0.0 enable_local_keyservice: description: - Tell sops to use local key service. - This corresponds to the sops C(--enable-local-keyservice) option. type: bool default: false version_added: 1.0.0 keyservice: description: - Specify key services to use next to the local one. - A key service must be specified in the form C(protocol://address), for example C(tcp://myserver.com:5000). - This corresponds to the sops C(--keyservice) option. type: list elements: str version_added: 1.0.0 ''' ANSIBLE_VARIABLES = r''' options: sops_binary: vars: - name: sops_binary aws_profile: vars: - name: sops_aws_profile aws_access_key_id: vars: - name: sops_aws_access_key_id aws_secret_access_key: vars: - name: sops_aws_secret_access_key aws_session_token: vars: - name: sops_session_token config_path: vars: - name: sops_config_path enable_local_keyservice: vars: - name: sops_enable_local_keyservice keyservice: vars: - name: sops_keyservice ''' ENCRYPT_SPECIFIC = r''' options: kms: description: - List of KMS ARNs to use. - This corresponds to the sops C(--kms) option. type: list elements: str version_added: 1.0.0 gcp_kms: description: - GCP KMS resource IDs to use. - This corresponds to the sops C(--gcp-kms) option. type: list elements: str version_added: 1.0.0 azure_kv: description: - Azure Key Vault URLs to use. - This corresponds to the sops C(--azure-kv) option. type: list elements: str version_added: 1.0.0 hc_vault_transit: description: - HashiCorp Vault key URIs to use. - For example, C(https://vault.example.org:8200/v1/transit/keys/dev). - This corresponds to the sops C(--hc-vault-transit) option. type: list elements: str version_added: 1.0.0 pgp: description: - PGP fingerprints to use. - This corresponds to the sops C(--pgp) option. type: list elements: str version_added: 1.0.0 unencrypted_suffix: description: - Override the unencrypted key suffix. - This corresponds to the sops C(--unencrypted-suffix) option. type: str version_added: 1.0.0 encrypted_suffix: description: - Override the encrypted key suffix. - When set to an empty string, all keys will be encrypted that are not explicitly marked by I(unencrypted_suffix). - This corresponds to the sops C(--encrypted-suffix) option. type: str version_added: 1.0.0 unencrypted_regex: description: - Set the unencrypted key suffix. - When specified, only keys matching the regular expression will be left unencrypted. - This corresponds to the sops C(--unencrypted-regex) option. type: str version_added: 1.0.0 encrypted_regex: description: - Set the encrypted key suffix. - When specified, only keys matching the regular expression will be encrypted. - This corresponds to the sops C(--encrypted-regex) option. type: str version_added: 1.0.0 encryption_context: description: - List of KMS encryption context pairs of format C(key:value). - This corresponds to the sops C(--encryption-context) option. type: list elements: str version_added: 1.0.0 shamir_secret_sharing_threshold: description: - The number of distinct keys required to retrieve the data key with L(Shamir's Secret Sharing, https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing). - If not set here and in the sops config file, will default to C(0). - This corresponds to the sops C(--shamir-secret-sharing-threshold) option. type: int version_added: 1.0.0 '''
[ [ [ 197, 212 ] ], [ [ 214, 222 ] ], [ [ 224, 238 ] ], [ [ 240, 253 ] ], [ [ 269, 286 ] ] ]
#!/usr/bin/env python3 from pyxdc.exceptions import ( ProviderError, BalanceError, APIError, AddressError, InvalidURLError, ClientError, NotFoundError, UnitError ) import pytest def test_exceptions(): with pytest.raises(ProviderError, match="error"): raise ProviderError("error") with pytest.raises(ProviderError, match="error, error"): raise ProviderError("error", "error") with pytest.raises(BalanceError, match="error"): raise BalanceError("error") with pytest.raises(BalanceError, match="error, error"): raise BalanceError("error", "error") with pytest.raises(APIError, match="error"): raise APIError("error") with pytest.raises(APIError): raise APIError("error", "error") with pytest.raises(AddressError, match="error"): raise AddressError("error") with pytest.raises(AddressError, match="error, error"): raise AddressError("error", "error") with pytest.raises(InvalidURLError, match="error"): raise InvalidURLError("error") with pytest.raises(ClientError, match="error"): raise ClientError("error") with pytest.raises(ClientError): raise ClientError("error", "error") with pytest.raises(NotFoundError, match="error"): raise NotFoundError("error") with pytest.raises(UnitError, match="error"): raise UnitError("error") with pytest.raises(UnitError, match="error, error"): raise UnitError("error", "error")
[ [ [ 59, 72 ], [ 237, 250 ], [ 282, 295 ], [ 328, 341 ], [ 380, 393 ] ], [ [ 74, 86 ], [ 435, 447 ], [ 479, 491 ], [ 524, 536 ], [ 575, 587 ] ], [ [ 88, 96 ], [ 629, 637 ], [ 669, 677 ], [ 710, 718 ], [ 735, 743 ] ], [ [ 98, 110 ], [ 785, 797 ], [ 829, 841 ], [ 874, 886 ], [ 925, 937 ] ], [ [ 112, 127 ], [ 979, 994 ], [ 1026, 1041 ] ], [ [ 133, 144 ], [ 1074, 1085 ], [ 1117, 1128 ], [ 1161, 1172 ], [ 1189, 1200 ] ], [ [ 146, 159 ], [ 1242, 1255 ], [ 1287, 1300 ] ], [ [ 161, 170 ], [ 1333, 1342 ], [ 1374, 1383 ], [ 1416, 1425 ], [ 1464, 1473 ] ], [ [ 181, 187 ], [ 223, 229 ], [ 314, 320 ], [ 421, 427 ], [ 510, 516 ], [ 615, 621 ], [ 696, 702 ], [ 771, 777 ], [ 860, 866 ], [ 965, 971 ], [ 1060, 1066 ], [ 1147, 1153 ], [ 1228, 1234 ], [ 1319, 1325 ], [ 1402, 1408 ] ], [ [ 194, 209 ] ] ]
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose Pty Ltd"> # Copyright (c) 2003-2021 Aspose Pty Ltd # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- from __future__ import absolute_import import unittest import os from groupdocs_conversion_cloud import * from test.test_context import TestContext from test.test_file import TestFile class TestConvertApi(TestContext): """ConvertApi unit tests""" def test_convert_document(self): """ Test case for convert_document """ test_file = TestFile.one_page_docx() settings = ConvertSettings() settings.file_path = test_file.folder + test_file.file_name settings.format = "jpg" settings.output_path = self.OUT_FOLDER request = ConvertDocumentRequest(settings) data = self.convert_api.convert_document(request) self.assertTrue(len(data) > 0) self.assertTrue(data[0].size > 0) def test_convert_document_download(self): """ Test case for convert_document with file result """ test_file = TestFile.one_page_docx() settings = ConvertSettings() settings.file_path = test_file.folder + test_file.file_name settings.format = "pdf" request = ConvertDocumentRequest(settings) data = self.convert_api.convert_document_download(request) self.assertGreater(os.path.getsize(data), 0) def test_convert_document_direct(self): """ Test case for convert_document with file result without using cloud storage """ test_file = TestFile.four_pages_docx() local_file_path = self.get_test_file_path(test_file) format = "pdf" request = ConvertDocumentDirectRequest(format, local_file_path) data = self.convert_api.convert_document_direct(request) self.assertGreater(os.path.getsize(data), 0) if __name__ == '__main__': unittest.main()
[ [ [ 1406, 1421 ] ], [ [ 1430, 1438 ], [ 3163, 3171 ] ], [ [ 1446, 1448 ], [ 2613, 2615 ], [ 3097, 3099 ] ], [ [ 1489, 1490 ], [ 1803, 1818 ], [ 1986, 2008 ], [ 2350, 2365 ], [ 2486, 2508 ], [ 2951, 2979 ] ], [ [ 1521, 1532 ], [ 1591, 1602 ] ], [ [ 1560, 1568 ], [ 1759, 1767 ], [ 2306, 2314 ], [ 2813, 2821 ] ], [ [ 1576, 1590 ] ] ]
import numpy as np import scipy.sparse as sp import torch def encode_onehot(labels): classes = set(labels) classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)} labels_onehot = np.array(list(map(classes_dict.get, labels)), dtype=np.int32) return labels_onehot def load_data(path="../data/cora/", dataset="cora"): """Load citation network dataset (cora only for now)""" print('Loading {} dataset...'.format(dataset)) idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset), dtype=np.dtype(str)) features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32) labels = encode_onehot(idx_features_labels[:, -1]) # build graph idx = np.array(idx_features_labels[:, 0], dtype=np.int32) idx_map = {j: i for i, j in enumerate(idx)} edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset), dtype=np.int32) edges = np.array(list(map(idx_map.get, edges_unordered.flatten())), dtype=np.int32).reshape(edges_unordered.shape) adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])), shape=(labels.shape[0], labels.shape[0]), dtype=np.float32) # build symmetric adjacency matrix adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj) features = normalize(features) adj = normalize(adj + sp.eye(adj.shape[0])) idx_train = range(140) idx_val = range(200, 500) idx_test = range(500, 1500) features = torch.FloatTensor(np.array(features.todense())) labels = torch.LongTensor(np.where(labels)[1]) adj = sparse_mx_to_torch_sparse_tensor(adj) idx_train = torch.LongTensor(idx_train) idx_val = torch.LongTensor(idx_val) idx_test = torch.LongTensor(idx_test) return adj, features, labels, idx_train, idx_val, idx_test def normalize(mx): """Row-normalize sparse matrix""" rowsum = np.array(mx.sum(1)) r_inv = np.power(rowsum, -1).flatten() r_inv[np.isinf(r_inv)] = 0. r_mat_inv = sp.diags(r_inv) mx = r_mat_inv.dot(mx) return mx def accuracy(output, labels): preds = output.max(1)[1].type_as(labels) correct = preds.eq(labels).double() correct = correct.sum() return correct / len(labels) def sparse_mx_to_torch_sparse_tensor(sparse_mx): """Convert a scipy sparse matrix to a torch sparse tensor.""" sparse_mx = sparse_mx.tocoo().astype(np.float32) indices = torch.from_numpy( np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)) values = torch.from_numpy(sparse_mx.data) shape = torch.Size(sparse_mx.shape) return torch.sparse.FloatTensor(indices, values, shape) def sub_graph(adj, num): ''' Monte carlo sample a number of neighbors for each node given the adjacent matrix adj: normalized and processed graph adjacent matrix num: the number of samples for each neighbor ''' nodes = adj.shape[0] neighbor_number = torch.sum(adj>0,dim=1).reshape(node,1)/num sub_graph = torch.randint(0,nodes, (nodes,num)) sub_graph = sub_graph.reshape(-1).cpu().tolist() sub_graph = list(set(sub_graph)) mask = torch.zeros(nodes,nodes) mask[sub_graph,sub_graph] = 1 return adj*mask*neighbor_number
[ [ [ 7, 18 ], [ 136, 138 ], [ 240, 242 ], [ 321, 323 ], [ 549, 551 ], [ 647, 649 ], [ 727, 729 ], [ 823, 825 ], [ 865, 867 ], [ 945, 947 ], [ 1037, 1039 ], [ 1059, 1061 ], [ 1146, 1148 ], [ 1212, 1214 ], [ 1362, 1364 ], [ 1694, 1696 ], [ 1754, 1756 ], [ 2086, 2088 ], [ 2118, 2120 ], [ 2159, 2161 ], [ 2590, 2592 ], [ 2642, 2644 ], [ 2691, 2693 ] ], [ [ 26, 44 ], [ 677, 679 ], [ 1197, 1199 ], [ 1548, 1550 ], [ 2197, 2199 ] ], [ [ 52, 57 ], [ 1676, 1681 ], [ 1737, 1742 ], [ 1840, 1845 ], [ 1882, 1887 ], [ 1923, 1928 ], [ 2616, 2621 ], [ 2715, 2720 ], [ 2760, 2765 ], [ 2799, 2804 ], [ 3127, 3132 ], [ 3186, 3191 ], [ 3323, 3328 ] ], [ [ 64, 77 ], [ 752, 765 ] ], [ [ 362, 371 ] ], [ [ 2020, 2029 ], [ 1502, 1511 ], [ 1532, 1541 ] ], [ [ 2260, 2268 ] ], [ [ 2438, 2470 ], [ 1785, 1817 ] ], [ [ 2853, 2862 ] ] ]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ._enums import * __all__ = [ 'RemediationFiltersArgs', ] @pulumi.input_type class RemediationFiltersArgs: def __init__(__self__, *, locations: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ The filters that will be applied to determine which resources to remediate. :param pulumi.Input[Sequence[pulumi.Input[str]]] locations: The resource locations that will be remediated. """ if locations is not None: pulumi.set(__self__, "locations", locations) @property @pulumi.getter def locations(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The resource locations that will be remediated. """ return pulumi.get(self, "locations") @locations.setter def locations(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "locations", value)
[ [ [ 176, 184 ] ], [ [ 192, 198 ] ], [ [ 206, 220 ], [ 386, 392 ], [ 888, 894 ], [ 501, 507 ], [ 523, 529 ], [ 823, 829 ], [ 938, 944 ], [ 960, 966 ], [ 1077, 1083 ], [ 1170, 1176 ], [ 1192, 1198 ], [ 1223, 1229 ] ], [ [ 240, 243 ] ], [ [ 245, 252 ] ], [ [ 254, 262 ], [ 492, 500 ], [ 929, 937 ], [ 1161, 1169 ] ], [ [ 264, 272 ], [ 514, 522 ], [ 951, 959 ], [ 1183, 1191 ] ], [ [ 274, 279 ] ], [ [ 281, 289 ] ], [ [ 306, 316 ] ], [ [ 337, 338 ] ], [ [ 340, 347 ] ], [ [ 410, 432 ] ] ]
import ast with open('./test.txt',"r") as f: #设置文件对象 str = f.read() #可以是随便对文件的操作 print(str) frame_list = ast.literal_eval(str) for frame in frame_list: print(frame)
[ [ [ 7, 10 ], [ 115, 118 ] ], [ [ 42, 43 ], [ 66, 67 ] ], [ [ 60, 63 ], [ 97, 100 ], [ 132, 135 ] ], [ [ 102, 112 ], [ 150, 160 ] ], [ [ 141, 146 ], [ 172, 177 ] ] ]
""" Package-level constants """ from strenum import StrEnum class SummaryLevel(StrEnum): """ Values for the SUMLEV column in PL94 data """ STATE = "040" STATE_COUNTY = "050" STATE_COUNTY_TRACT = "140" STATE_COUNTY_TRACT_BLOCKGROUP = "150" STATE_COUNTY_TRACT_BLOCKGROUP_BLOCK = "750"
[ [ [ 52, 59 ], [ 81, 88 ] ], [ [ 68, 80 ] ] ]
import _initpath import pyradox #result = pyradox.txt.parse_file('D:/Steam/steamapps/common/Europa Universalis IV/common/prices/00_prices.txt') #print(result) result = pyradox.parse(""" regular_group = { 1 2 3 } empty_tree = {} mixed_group = { 10 {} { a = 1 b = 2 } 20 } player_countries={ ITA={ user="Evil4Zerggin" country_leader=yes pinned_theatres={ { id=16 type=67 } } } } """) print(result)
[ [ [ 7, 16 ] ], [ [ 24, 31 ], [ 170, 177 ] ], [ [ 161, 167 ], [ 431, 437 ] ] ]
""" This is a plugin created by ShiN0 Copyright (c) 2020 ShiN0 <https://www.github.com/mgaertne/minqlx-plugin-tests> You are free to modify this plugin to your own one. """ import minqlx from minqlx import Plugin from minqlx.database import Redis import os import math import time import random import itertools import threading from abc import abstractmethod from operator import itemgetter import requests from requests.adapters import HTTPAdapter from requests.packages.urllib3.util.retry import Retry PLAYER_BASE = "minqlx:players:{0}" IPS_BASE = "minqlx:ips" SUPPORTED_GAMETYPES = ("ad", "ca", "ctf", "dom", "ft", "tdm") def requests_retry_session( retries=3, backoff_factor=0.1, status_forcelist=(500, 502, 504), session=None, ): session = session or requests.Session() retry = Retry( total=retries, read=retries, connect=retries, backoff_factor=backoff_factor, status_forcelist=status_forcelist, ) adapter = HTTPAdapter(max_retries=retry) session.mount('http://', adapter) session.mount('https://', adapter) return session class balancetwo(minqlx.Plugin): """ Checks qlstats for the elos of a player given as well as checking the elos of potentially aliases of the player by looking for connection from the same IP as the player has connected to locally. Uses: * qlx_balancetwo_ratingSystem (default: "mapbased-truskills") Either "mapbased-truskills", "truskills", "a-elo", "b-elo". In the future there might be a "custom" option for other rating providers. * qlx_balancetwo_ratingLimit_min (default: "15") minimum rating for players trying to connect * qlx_balancetwo_ratingLimit_max (default: "35") maximum rating for players trying to connect * qlx_balancetwo_ratingLimit_minGames (default: "10") minimum amount of rated games for player trying to connect * qlx_balancetwo_ratingStrategy (default: "") unused at the moment. For future use * qlx_balancetwo_autoSwitch (default: "0") automatically execute suggested switches rather than waiting for !agree from players. * qlx_balancetwo_uniquePlayerSwitches (default: "0") During a game, avoid switches that already happened during the same game * qlx_balancetwo_autoRebalance (default: "1") When new players join, the new players are automatically put on teams that result in the lower difference between the the teams. * qlx_balancetwo_elocheckPermission (default: "0") The permission for issuing the elocheck * qlx_balancetwo_elocheckReplyChannel (default: "public") The reply channel where the elocheck output is put to. Possible values: "public" or "private". Any other value leads to public announcements * qlx_balancetwo_elocheckShowSteamids (default: "0") Also lists the steam ids of the players checked """ database = Redis def __init__(self): super().__init__() self.set_cvar_once("qlx_balancetwo_ratingSystem", "mapbased-truskills") self.set_cvar_once("qlx_balancetwo_ratingLimit_kick", "1") self.set_cvar_once("qlx_balancetwo_ratingLimit_min", "15") self.set_cvar_once("qlx_balancetwo_ratingLimit_max", "35") self.set_cvar_once("qlx_balancetwo_ratingLimit_minGames", "10") self.set_cvar_once("qlx_balancetwo_elocheckPermission", "0") self.set_cvar_once("qlx_balancetwo_elocheckReplyChannel", "public") self.set_cvar_once("qlx_balancetwo_elocheckShowSteamids", "0") # indicates whether switch suggestions need to be opted-in (!a) or vetoed (!v) by the suggested players self.set_cvar_once("qlx_balancetwo_autoSwitch", "0") # if set to true, this avoids suggesting the same players for switching in the same game twice, might lead to # fewer possible suggestions self.set_cvar_once("qlx_balancetwo_uniquePlayerSwitches", "0") self.set_cvar_once("qlx_balancetwo_minimumSuggestionDiff", "25") self.set_cvar_once("qlx_balancetwo_minimumStddevDiff", "50") self.set_cvar_once("qlx_balancetwo_autoRebalance", "1") self.ratingLimit_kick = self.get_cvar("qlx_balancetwo_ratingLimit_kick", bool) self.ratingLimit_min = self.get_cvar("qlx_balancetwo_ratingLimit_min", int) self.ratingLimit_max = self.get_cvar("qlx_balancetwo_ratingLimit_max", int) self.ratingLimit_minGames = self.get_cvar("qlx_balancetwo_ratingLimit_minGames", int) self.reply_channel = self.get_cvar("qlx_balancetwo_elocheckReplyChannel") if self.reply_channel != "private": self.reply_channel = "public" self.show_steam_ids = self.get_cvar("qlx_balancetwo_elocheckShowSteamids", bool) self.auto_switch = self.get_cvar("qlx_balancetwo_autoSwitch", bool) self.unique_player_switches = self.get_cvar("qlx_balancetwo_uniquePlayerSwitches", bool) self.minimum_suggestion_diff = self.get_cvar("qlx_balancetwo_minimumSuggestionDiff", float) self.minimum_suggestion_stddev_diff = self.get_cvar("qlx_balancetwo_minimumStddevDiff", int) self.auto_rebalance = self.get_cvar("qlx_balancetwo_autoRebalance", bool) self.add_command(("elocheck", "getrating", "getelo", "elo"), self.cmd_elocheck, permission=self.get_cvar("qlx_balancetwo_elocheckPermission", int), usage="<player or steam_id>") self.add_command("aliases", self.cmd_aliases, permission=self.get_cvar("qlx_balancetwo_elocheckPermission", int), usage="[player or steam_id]") self.add_command(("ratings", "elos", "selo"), self.cmd_ratings) self.add_command("eloupdates", self.cmd_switch_elo_changes_notifications, usage="<0/1>") self.add_command("balance", self.cmd_balance, 1) self.add_command(("teams", "teens"), self.cmd_teams) self.add_command("do", self.cmd_do, 1) self.add_command("dont", self.cmd_dont, 1) self.add_command(("agree", "a"), self.cmd_agree, client_cmd_perm=0) self.add_command(("veto", "v"), self.cmd_veto, client_cmd_perm=0) self.add_command(("nokick", "dontkick"), self.cmd_nokick, 2, usage="[<name>]") self.add_hook("map", self.handle_map_change) self.add_hook("player_connect", self.handle_player_connect, priority=minqlx.PRI_LOWEST) self.add_hook("player_disconnect", self.handle_player_disconnect) self.add_hook("team_switch_attempt", self.handle_team_switch_attempt) self.add_hook("team_switch", self.handle_team_switch) self.add_hook("game_countdown", self.handle_game_countdown) self.add_hook("round_countdown", self.handle_round_countdown) self.add_hook("round_start", self.handle_round_start) self.add_hook("game_end", self.handle_game_end) self.rating_system = self.get_cvar("qlx_balancetwo_ratingSystem") self.balance_api = self.get_cvar("qlx_balanceApi") self.kickthreads = {} self.jointimes = {} self.last_new_player_id = None self.previous_teams = None self.previous_map = None self.previous_gametype = None self.previous_ratings = {} self.ratings = {} self.rating_diffs = {} self.fetch_elos_from_all_players() self.informed_players = [] self.switched_players = [] self.switch_suggestion = None self.in_countdown = False self.twovstwo_steam_ids = [] self.twovstwo_combinations = [] self.twovstwo_iter = None self.prevent = False self.last_action = "spec" @minqlx.thread def fetch_elos_from_all_players(self): self.fetch_ratings([player.steam_id for player in self.players()]) def fetch_ratings(self, steam_ids, mapname=None): self.fetch_mapbased_ratings(steam_ids, mapname) for rating_provider in [TRUSKILLS, A_ELO, B_ELO]: rating_results = rating_provider.fetch_elos(steam_ids) self.append_ratings(rating_provider.name, rating_results) def fetch_mapbased_ratings(self, steam_ids, mapname=None): if mapname is None and (self.game is None or self.game.map is None): return if mapname is None: mapname = self.game.map.lower() rating_results = TRUSKILLS.fetch_elos(steam_ids, headers={"X-QuakeLive-Map": mapname}) rating_provider_name = "{} {}".format(mapname, TRUSKILLS.name) self.append_ratings(rating_provider_name, rating_results) def append_ratings(self, rating_provider_name, json_result): if json_result is None: return if rating_provider_name in self.ratings: self.ratings[rating_provider_name].append_ratings(json_result) return self.ratings[rating_provider_name] = RatingProvider.from_json(json_result) def cmd_elocheck(self, player: minqlx.Player, msg: str, channel: minqlx.AbstractChannel): if len(msg) > 2: return minqlx.RET_USAGE if len(msg) == 1: target = player.steam_id else: target = msg[1] self.do_elocheck(player, target, channel) @minqlx.thread def do_elocheck(self, player: minqlx.Player, target: str, channel: minqlx.AbstractChannel): target_players = self.find_target_player(target) target_steam_id = None if target_players is None or len(target_players) == 0: try: target_steam_id = int(target) if not self.db.exists(PLAYER_BASE.format(target_steam_id)): player.tell("Sorry, player with steam id {} never played here.".format(target_steam_id)) return except ValueError: player.tell("Sorry, but no players matched your tokens: {}.".format(target)) return if len(target_players) > 1: player.tell("A total of ^6{}^7 players matched for {}:".format(len(target_players), target)) out = "" for p in target_players: out += " " * 2 out += "{}^6:^7 {}\n".format(p.id, p.name) player.tell(out[:-1]) return if len(target_players) == 1: target_steam_id = target_players.pop().steam_id reply_func = self.reply_func(player, channel) used_steam_ids = self.used_steam_ids_for(target_steam_id) aliases = self.fetch_aliases(used_steam_ids) truskill = RatingProvider.from_json(TRUSKILLS.fetch_elos(used_steam_ids)) a_elo = RatingProvider.from_json(A_ELO.fetch_elos(used_steam_ids)) b_elo = RatingProvider.from_json(B_ELO.fetch_elos(used_steam_ids)) map_based_truskill = None if self.game is not None and self.game.map is not None: map_based_truskill = RatingProvider.from_json( TRUSKILLS.fetch_elos(used_steam_ids, headers={"X-QuakeLive-Map": self.game.map.lower()})) if target_steam_id in aliases: target_player_elos = self.format_player_elos(a_elo, b_elo, truskill, map_based_truskill, target_steam_id, aliases=aliases[target_steam_id]) else: target_player_elos = self.format_player_elos(a_elo, b_elo, truskill, map_based_truskill, target_steam_id) reply_func("{0}^7".format(target_player_elos)) alternative_steam_ids = used_steam_ids[:] alternative_steam_ids.remove(target_steam_id) if len(alternative_steam_ids) == 0: return reply_func("Players from the same IPs:\n") for steam_id in alternative_steam_ids: if steam_id in aliases: player_elos = self.format_player_elos(a_elo, b_elo, truskill, map_based_truskill, steam_id, aliases=aliases[steam_id]) else: player_elos = self.format_player_elos(a_elo, b_elo, truskill, map_based_truskill, steam_id) reply_func("{0}^7".format(player_elos)) def find_target_player(self, target: str): try: steam_id = int(target) target_player = self.player(steam_id) if target_player: return [target_player] except ValueError: pass except minqlx.NonexistentPlayerError: pass return self.find_player(target) def reply_func(self, player, channel): if self.reply_channel == "private": return player.tell return self.identify_reply_channel(channel).reply def identify_reply_channel(self, channel): if channel in [minqlx.RED_TEAM_CHAT_CHANNEL, minqlx.BLUE_TEAM_CHAT_CHANNEL, minqlx.SPECTATOR_CHAT_CHANNEL, minqlx.FREE_CHAT_CHANNEL]: return minqlx.CHAT_CHANNEL return channel def used_steam_ids_for(self, steam_id): if not self.db.exists(PLAYER_BASE.format(steam_id) + ":ips"): return [steam_id] ips = self.db.smembers(PLAYER_BASE.format(steam_id) + ":ips") used_steam_ids = set() for ip in ips: if not self.db.exists(IPS_BASE + ":{0}".format(ip)): continue used_steam_ids = used_steam_ids | self.db.smembers(IPS_BASE + ":{0}".format(ip)) return [int(_steam_id) for _steam_id in used_steam_ids] def fetch_aliases(self, steam_ids): url_template = "{}aliases/".format(A_ELO.url_base) + "{}.json" try: result = requests_retry_session().get( url_template.format("+".join([str(steam_id) for steam_id in steam_ids])), timeout=A_ELO.timeout) except requests.RequestException as exception: self.logger.debug("request exception: {}".format(exception)) return {} if result.status_code != requests.codes.ok: return {} js = result.json() aliases = {} for steam_id in steam_ids: if str(steam_id) not in js: continue player_entry = js[str(steam_id)] aliases[steam_id] = [] cleaned_aliases = [] for entry in player_entry: if self.clean_text(entry) not in cleaned_aliases: aliases[steam_id].append(entry) cleaned_aliases.append(self.clean_text(entry)) return aliases def format_player_elos(self, a_elo, b_elo, truskill, map_based_truskill, steam_id, indent=0, aliases=None): display_name = self.resolve_player_name(steam_id) result = " " * indent + "{0}^7\n".format(self.format_player_name(steam_id)) if aliases is not None: displayed_aliases = aliases[:] displayed_aliases.remove(display_name) if len(displayed_aliases) != 0: if len(displayed_aliases) <= 5: result += " " * indent + "Aliases used: {}^7\n".format("^7, ".join(displayed_aliases[:5])) else: result += " " * indent + "Aliases used: {}^7, ... (^4!aliases <player>^7 to list all)\n" \ .format("^7, ".join(displayed_aliases[:5])) if map_based_truskill is not None: formatted_map_based_truskills = map_based_truskill.format_elos(steam_id) if formatted_map_based_truskills is not None and len(formatted_map_based_truskills) > 0: result += " " * indent + " " + "{1} Truskills: {0}\n" \ .format(formatted_map_based_truskills, self.game.map.lower()) formatted_truskills = truskill.format_elos(steam_id) if truskill is not None and len(formatted_truskills) > 0: result += " " * indent + " " + "Truskills: {0}\n".format(formatted_truskills) formatted_a_elos = a_elo.format_elos(steam_id) if a_elo is not None and len(formatted_a_elos) > 0: result += " " * indent + " " + "Elos: {0}\n".format(formatted_a_elos) formatted_b_elos = b_elo.format_elos(steam_id) if b_elo is not None and len(formatted_b_elos) > 0: result += " " * indent + " " + "B-Elos: {0}\n".format(formatted_b_elos) return result def format_player_name(self, steam_id): result = "" player_name = self.resolve_player_name(steam_id) result += "{0}^7".format(player_name) if self.show_steam_ids: result += " ({0})".format(steam_id) return result def resolve_player_name(self, steam_id): player = self.player(steam_id) if player is not None: return self.remove_trailing_color_code(player.name) if self.db.exists(PLAYER_BASE.format(steam_id) + ":last_used_name"): return self.remove_trailing_color_code(self.db[PLAYER_BASE.format(steam_id) + ":last_used_name"]) return "unknown" def remove_trailing_color_code(self, text): if not text.endswith("^7"): return text return text[:-2] def cmd_aliases(self, player: minqlx.Player, msg: str, channel: minqlx.AbstractChannel): if len(msg) != 2: return minqlx.RET_USAGE self.do_aliases(player, msg[1], channel) @minqlx.thread def do_aliases(self, player: minqlx.Player, target: str, channel: minqlx.AbstractChannel): target_players = self.find_target_player(target) target_steam_id = None if target_players is None or len(target_players) == 0: try: target_steam_id = int(target) if not self.db.exists(PLAYER_BASE.format(target_steam_id)): player.tell("Sorry, player with steam id {} never played here.".format(target_steam_id)) return except ValueError: player.tell("Sorry, but no players matched your tokens: {}.".format(target)) return if len(target_players) > 1: player.tell("A total of ^6{}^7 players matched for {}:".format(len(target_players), target)) out = "" for p in target_players: out += " " * 2 out += "{}^6:^7 {}\n".format(p.id, p.name) player.tell(out[:-1]) return if len(target_players) == 1: target_steam_id = target_players.pop().steam_id reply_func = self.reply_func(player, channel) aliases = self.fetch_aliases([target_steam_id]) if target_steam_id not in aliases: reply_func("Sorry, no aliases returned for {}".format(target_steam_id)) return reply_func("{0}^7".format(self.format_player_aliases(target_steam_id, aliases[target_steam_id]))) def format_player_aliases(self, steam_id, aliases): result = "{0}^7\n".format(self.format_player_name(steam_id)) result += "Aliases used: {}".format("^7, ".join(aliases)) return result def cmd_ratings(self, player, msg, channel): teams = self.teams() gametype = self.game.type_short mapname = self.game.map.lower() map_based_rating_provider_name = "{} {}".format(mapname, TRUSKILLS.name) if TRUSKILLS.name in self.ratings and map_based_rating_provider_name in self.ratings: truskills_rating_provider = self.ratings[TRUSKILLS.name] mapbased_truskills_rating_provider = self.ratings[map_based_rating_provider_name] channel.reply("^3{}^7 ratings (^3general^7/^3map-based^7) (^3{}^7)" .format(TRUSKILLS.name, TRUSKILLS.url_base.split(':')[1].strip('/'))) self.report_ratings_for_team(channel, teams["free"], gametype, truskills_rating_provider, mapbased_truskills_rating_provider, primary_rating_prefix="^6", secondary_rating_prefix="^6") self.report_ratings_for_team(channel, teams["red"], gametype, truskills_rating_provider, mapbased_truskills_rating_provider, primary_rating_prefix="^1", secondary_rating_prefix="^1") self.report_ratings_for_team(channel, teams["blue"], gametype, truskills_rating_provider, mapbased_truskills_rating_provider, primary_rating_prefix="^4", secondary_rating_prefix="^4") self.report_ratings_for_team(channel, teams["spectator"], gametype, truskills_rating_provider, mapbased_truskills_rating_provider) if A_ELO.name in self.ratings and B_ELO.name in self.ratings: primary_rating_provider = self.ratings[A_ELO.name] secondary_rating_provider = self.ratings[B_ELO.name] channel.reply("^5=================================^7") channel.reply("^3Elo^7 ratings (^3A elo^7/^3B elo^7) (^3{}^7)" .format(A_ELO.url_base.split(':')[1].strip('/'))) self.report_ratings_for_team(channel, teams["free"], gametype, primary_rating_provider, secondary_rating_provider, primary_rating_prefix="A:^6", secondary_rating_prefix="B:^6") self.report_ratings_for_team(channel, teams["red"], gametype, primary_rating_provider, secondary_rating_provider, primary_rating_prefix="A:^1", secondary_rating_prefix="B:^1") self.report_ratings_for_team(channel, teams["blue"], gametype, primary_rating_provider, secondary_rating_provider, primary_rating_prefix="A:^4", secondary_rating_prefix="B:^4") self.report_ratings_for_team(channel, teams["spectator"], gametype, primary_rating_provider, secondary_rating_provider, primary_rating_prefix="A:", secondary_rating_prefix="B:") def report_ratings_for_team(self, channel, team, gametype, primary_rating_provider, secondary_rating_provider, primary_rating_prefix="", secondary_rating_prefix=""): if team is None or len(team) <= 0: return primary_filtered = [player for player in team if player.steam_id in primary_rating_provider.rated_steam_ids()] primary_filtered = [player for player in primary_filtered if gametype in primary_rating_provider.rated_gametypes_for(player.steam_id)] primary_filtered = [player for player in primary_filtered if primary_rating_provider.games_for(player.steam_id, gametype) > 0] rated_player_texts = [] if len(primary_filtered) > 0: primary_sorted = sorted(primary_filtered, key=lambda x: primary_rating_provider[x.steam_id][gametype]["elo"], reverse=True) for player in primary_sorted: if player.steam_id in secondary_rating_provider.rated_steam_ids() and \ gametype in secondary_rating_provider.rated_gametypes_for(player.steam_id) and \ secondary_rating_provider.games_for(player.steam_id, gametype) > 0: rated_player_texts.append("{}^7: {}{}^7/{}{}^7" .format(player.name, primary_rating_prefix, primary_rating_provider[player.steam_id][gametype]["elo"], secondary_rating_prefix, secondary_rating_provider[player.steam_id][gametype]["elo"])) else: rated_player_texts.append("{}^7: {}{}^7/{}^5{}^7" .format(player.name, primary_rating_prefix, primary_rating_provider[player.steam_id][gametype]["elo"], secondary_rating_prefix, secondary_rating_provider[player.steam_id][gametype]["elo"])) primary_unranked = [player for player in team if player not in primary_filtered] if len(primary_unranked) > 0: secondary_filtered = [player for player in primary_unranked if player.steam_id in secondary_rating_provider.rated_steam_ids()] secondary_filtered = [player for player in secondary_filtered if gametype in secondary_rating_provider.rated_gametypes_for(player.steam_id)] secondary_filtered = [player for player in secondary_filtered if secondary_rating_provider.games_for(player.steam_id, gametype) > 0] if len(secondary_filtered) > 0: secondary_sorted = sorted(secondary_filtered, key=lambda x: primary_rating_provider[x.steam_id][gametype]["elo"], reverse=True) for player in secondary_sorted: rated_player_texts.append("{}^7: {}^5{}/{}{}^7" .format(player.name, primary_rating_prefix, primary_rating_provider[player.steam_id][gametype]["elo"], secondary_rating_prefix, secondary_rating_provider[player.steam_id][gametype]["elo"])) secondary_unranked = [player for player in primary_unranked if player not in secondary_filtered] for player in secondary_unranked: rated_player_texts.append("{}^7: {}^5{}^7/{}^5{}^7" .format(player.name, primary_rating_prefix, primary_rating_provider[player.steam_id][gametype]["elo"], secondary_rating_prefix, secondary_rating_provider[player.steam_id][gametype]["elo"])) channel.reply(", ".join(rated_player_texts)) def cmd_switch_elo_changes_notifications(self, player, msg, channel): flag = self.wants_to_be_informed(player.steam_id) self.db.set_flag(player, "balancetwo:rating_changes", not flag) if flag: player.tell( "Notifications for elo and truskill changes have been disabled. " "Use ^6{}eloupdates^7 to enable them again.".format(self.get_cvar("qlx_commandPrefix"))) else: player.tell( "Notifications for elo and truskill changes have been enabled. " "Use ^6{}eloupdates^7 to disable them again.".format(self.get_cvar("qlx_commandPrefix"))) return minqlx.RET_STOP_ALL def wants_to_be_informed(self, steam_id): return self.db.get_flag(steam_id, "balancetwo:rating_changes", default=False) def cmd_balance(self, player, msg, channel): gt = self.game.type_short if gt not in SUPPORTED_GAMETYPES: player.tell("This game mode is not supported by the balance plugin.") return minqlx.RET_STOP_ALL teams = self.teams() if len(teams["red"] + teams["blue"]) % 2 != 0: player.tell("The total number of players should be an even number.") return minqlx.RET_STOP_ALL players = dict([(p.steam_id, gt) for p in teams["red"] + teams["blue"]]) self.callback_balance(players, minqlx.CHAT_CHANNEL) def callback_balance(self, players, channel): if not self.game: return if self.game.state == "in_progress": return teams = self.teams() current = teams["red"] + teams["blue"] if len(current) % 2 == 1: player_to_spec = self.find_player_to_spec(current) self.logger.debug("putting {} to spec".format(player_to_spec.clean_name)) player_to_spec.put("spectator") balanced_teams = self.find_balanced_teams() if balanced_teams is None: return red_steam_ids, blue_steam_ids = balanced_teams changed = False for steam_id in red_steam_ids: player = self.player(steam_id) if player.team != "red": changed = True self.logger.debug("putting {} to red".format(player.clean_name)) player.put("red") for steam_id in blue_steam_ids: player = self.player(steam_id) if player.team != "blue": changed = True self.logger.debug("putting {} to blue".format(player.clean_name)) player.put("blue") if not changed: channel.reply("Teams are good! Nothing to balance.") return True self.report_teams(red_steam_ids, blue_steam_ids, channel) return True def find_player_to_spec(self, players): return min([player for player in players], key=lambda _player: self.find_games_here(_player)) def find_games_here(self, player): completed_key = "minqlx:players:{}:games_completed" if not self.db.exists(completed_key.format(player.steam_id)): return 0 return int(self.db[completed_key.format(player.steam_id)]) def find_time(self, player): if not (player.steam_id in self.jointimes): self.jointimes[player.steam_id] = time.time() return self.jointimes[player.steam_id] def find_balanced_teams(self): teams = self.teams() # if 3 < len(teams["red"] + teams["blue"]) < 6: # return self.find_next_2vs2_teams() if len(teams["red"] + teams["blue"]) < 8: return self.find_non_recent_small_balanced_teams() return self.find_large_balanced_teams() def find_next_2vs2_teams(self): teams = self.teams() steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] if self.twovstwo_iter is None or not self.check_all_steam_ids(steam_ids): self.twovstwo_steam_ids = steam_ids self.twovstwo_combinations = self.filter_combinations(steam_ids) self.twovstwo_iter = random_iterator(self.twovstwo_combinations) red_steam_ids = list(next(self.twovstwo_iter)) blue_steam_ids = [steam_id for steam_id in steam_ids if steam_id not in red_steam_ids] return red_steam_ids, blue_steam_ids def check_all_steam_ids(self, steam_ids): return sorted(steam_ids) == sorted(self.twovstwo_steam_ids) def filter_combinations(self, steam_ids): gametype = self.game.type_short configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: self.logger.debug("Balancing aborted. No ratings found for {}.".format(configured_rating_provider_name)) return [] configured_rating_provider = self.ratings[configured_rating_provider_name] combinations = [] if len(steam_ids) != 4: return [] combinations_list = [(steam_ids[0], steam_ids[1]), (steam_ids[0], steam_ids[2]), (steam_ids[0], steam_ids[3])] for red_steam_ids in combinations_list: blue_steam_ids = [steam_id for steam_id in steam_ids if steam_id not in red_steam_ids] red_avg = self.team_average(red_steam_ids, gametype, rating_provider=configured_rating_provider) blue_avg = self.team_average(blue_steam_ids, gametype, rating_provider=configured_rating_provider) diff = abs(red_avg - blue_avg) if diff < self.minimum_suggestion_diff: combinations.append((red_steam_ids, diff)) return combinations_list def find_non_recent_small_balanced_teams(self): teams = self.teams() gt = self.game.type_short steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: self.logger.debug("Balancing aborted. No ratings found for {}.".format(configured_rating_provider_name)) return configured_rating_provider = self.ratings[configured_rating_provider_name] team_combinations = [] for combination in itertools.combinations(steam_ids, int(len(steam_ids) / 2)): red_steam_ids = list(combination) blue_steam_ids = [steam_id for steam_id in steam_ids if steam_id not in red_steam_ids] if self.previous_teams is not None and ( sorted(red_steam_ids) == sorted(self.previous_teams[0]) or sorted(red_steam_ids) == sorted(self.previous_teams[1])): continue if self.previous_teams is not None and ( sorted(blue_steam_ids) == sorted(self.previous_teams[0]) or sorted(blue_steam_ids) == sorted(self.previous_teams[1])): continue red_avg = self.team_average(red_steam_ids, gt, rating_provider=configured_rating_provider) blue_avg = self.team_average(blue_steam_ids, gt, rating_provider=configured_rating_provider) diff = abs(red_avg - blue_avg) team_combinations.append((red_steam_ids, blue_steam_ids, diff)) filtered_combinations = [(red_steam_ids, blue_steam_ids, diff) for (red_steam_ids, blue_steam_ids, diff) in team_combinations if diff < self.minimum_suggestion_diff] self.logger.debug("team_combinations: {}".format(team_combinations)) self.logger.debug("filtered_combinations: {}".format(filtered_combinations)) if len(filtered_combinations) > 0: red_team, blue_team, diff = random.choice(filtered_combinations) elif len(team_combinations) > 0: red_team, blue_team, diff = min(team_combinations, key=itemgetter(2)) else: red_team = [player.steam_id for player in teams["red"]] blue_team = [player.steam_id for player in teams["blue"]] return red_team, blue_team def find_large_balanced_teams(self): teams = self.teams() gametype = self.game.type_short steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: self.logger.debug("Balancing aborted. No ratings found for {}.".format(configured_rating_provider_name)) return [], [] configured_rating_provider = self.ratings[configured_rating_provider_name] rated_steam_ids = [steam_id for steam_id in steam_ids if steam_id in configured_rating_provider.rated_steam_ids()] rated_steam_ids = [steam_id for steam_id in rated_steam_ids if gametype in configured_rating_provider.rated_gametypes_for(steam_id)] rated_steam_ids = [steam_id for steam_id in rated_steam_ids if configured_rating_provider[steam_id][gametype]["games"] > 0] rated_steam_ids.sort(key=lambda steam_id: configured_rating_provider[steam_id][gametype]["elo"]) if len(rated_steam_ids) % 2 == 1: rated_steam_ids.remove(rated_steam_ids[0]) red_steam_ids = [] blue_steam_ids = [] while len(rated_steam_ids) > 0: player1 = rated_steam_ids.pop() player2 = rated_steam_ids.pop() option1_red_average = self.team_average(red_steam_ids + [player1], gametype, rating_provider=configured_rating_provider) option1_blue_average = self.team_average(blue_steam_ids + [player2], gametype, rating_provider=configured_rating_provider) option1_diff = abs(option1_red_average - option1_blue_average) option2_red_average = self.team_average(red_steam_ids + [player2], gametype, rating_provider=configured_rating_provider) option2_blue_average = self.team_average(blue_steam_ids + [player1], gametype, rating_provider=configured_rating_provider) option2_diff = abs(option2_red_average - option2_blue_average) if option1_diff < option2_diff: red_steam_ids.append(player1) blue_steam_ids.append(player2) else: red_steam_ids.append(player2) blue_steam_ids.append(player1) return red_steam_ids, blue_steam_ids def report_teams(self, red_team, blue_team, channel): gt = self.game.type_short configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: self.logger.debug("No ratings for configured rating provider {} found. Abandoning." .format(configured_rating_provider_name)) return configured_rating_provider = self.ratings[configured_rating_provider_name] avg_red = self.team_average(red_team, gt, rating_provider=configured_rating_provider) avg_blue = self.team_average(blue_team, gt, rating_provider=configured_rating_provider) avg_diff = avg_red - avg_blue stddev_red = self.team_stddev(red_team, gt, mu=avg_red, rating_provider=configured_rating_provider) stddev_blue = self.team_stddev(blue_team, gt, mu=avg_blue, rating_provider=configured_rating_provider) if configured_rating_provider_name.endswith(TRUSKILLS.name): if avg_diff >= 0.005: channel.reply( "{} ratings: ^1{:.02f} (deviation: {:.02f}) " "^7vs ^4{:.02f} (deviation: {:.02f})^7 - DIFFERENCE: ^1{:.02f}" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue, abs(avg_diff))) return if avg_diff <= -0.005: channel.reply( "{} ratings: ^1{:.02f} (deviation: {:.02f}) " "^7vs ^4{:.02f} (deviation: {:.02f})^7 - DIFFERENCE: ^4{:.02f}" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue, abs(avg_diff))) return channel.reply( "{} ratings: ^1{:.02f} (deviation: {:.02f}) ^7vs ^4{:.02f} (deviation: {:.02f})^7 - Holy shit!" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue)) return if int(avg_diff) > 0: channel.reply("{} ratings: ^1{:.0f} (deviation: {:.0f}) " "^7vs ^4{:.0f} (deviation: {:.0f})^7 - DIFFERENCE: ^1{:.0f}" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue, abs(avg_diff))) return if int(avg_diff) < 0: channel.reply("{} ratings: ^1{:.0f} (deviation: {:.0f}) " "^7vs ^4{:.0f} (deviation: {:.0f})^7 - DIFFERENCE: ^4{:.0f}" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue, abs(avg_diff))) return channel.reply( "{} ratings: ^1{:.0f} (deviation: {:.0f}) ^7vs ^4{:.0f} (deviation: {:.0f})^7 - Holy shit!" .format(configured_rating_provider_name, avg_red, stddev_red, avg_blue, stddev_blue)) def configured_rating_provider_name(self): if self.game is not None and self.game.map is not None: if self.rating_system == "mapbased-truskills": rating_provider_name = "{} {}".format(self.game.map.lower(), TRUSKILLS.name) return rating_provider_name if self.rating_system.endswith("truskills"): return TRUSKILLS.name if self.rating_system == "a-elo": return A_ELO.name if self.rating_system == "b-elo": return B_ELO.name def team_average(self, steam_ids, gametype, rating_provider=None): if not steam_ids or len(steam_ids) == 0: return 0 configured_rating_provider = rating_provider if configured_rating_provider is None: configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: return 0 configured_rating_provider = self.ratings[configured_rating_provider_name] for steam_id in steam_ids: if steam_id not in configured_rating_provider.rated_steam_ids(): return 0 return sum([configured_rating_provider[steam_id][gametype]["elo"] for steam_id in steam_ids]) / len( steam_ids) def team_stddev(self, steam_ids, gametype, mu=None, rating_provider=None): if not steam_ids or len(steam_ids) == 0: return 0 configured_rating_provider = rating_provider if configured_rating_provider is None: configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name not in self.ratings: return 0 configured_rating_provider = self.ratings[configured_rating_provider_name] for steam_id in steam_ids: if steam_id not in configured_rating_provider.rated_steam_ids(): return 0 team_elos = [pow(configured_rating_provider[steam_id][gametype]["elo"] - mu, 2) for steam_id in steam_ids] return math.sqrt(sum(team_elos) / len(steam_ids)) def cmd_teams(self, player, msg, channel): gametype = self.game.type_short if gametype not in SUPPORTED_GAMETYPES: player.tell("This game mode is not supported by the balance plugin.") return minqlx.RET_STOP_ALL teams = self.teams() if len(teams["red"]) != len(teams["blue"]): player.tell("Both teams should have the same number of players.") return minqlx.RET_STOP_ALL self.report_teams([player.steam_id for player in teams["red"]], [player.steam_id for player in teams["blue"]], channel) if len(teams["red"] + teams["blue"]) == 0: channel.reply("No players active currently") return minqlx.RET_STOP_ALL if len(teams["red"] + teams["blue"]) == 4: i = random.randint(0, 99) if not i: channel.reply("Teens look ^6good!") else: channel.reply("Teams look good!") self.switch_suggestion = None return minqlx.RET_STOP_ALL self.collect_suggestions(teams, gametype, channel) @minqlx.thread def collect_suggestions(self, teams, gametype, channel): possible_switches = self.filtered_suggestions(teams, gametype) if self.unique_player_switches and len(self.switched_players) > 0: possible_switches = list(filter(lambda suggestion: suggestion.red_player.steam_id not in self.switched_players and suggestion.blue_player.steam_id not in self.switched_players, possible_switches)) self.handle_suggestions_collected(possible_switches, channel) def filtered_suggestions(self, teams, gametype): player_steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] configured_rating_provider_name = self.configured_rating_provider_name() configured_rating_provider = self.ratings[configured_rating_provider_name] minimum_suggestion_diff, minimum_suggestion_stddev_diff = \ self.minimum_suggestion_parameters(gametype, player_steam_ids) avg_red = self.team_average([player.steam_id for player in teams["red"]], gametype, rating_provider=configured_rating_provider) avg_blue = self.team_average([player.steam_id for player in teams["blue"]], gametype, rating_provider=configured_rating_provider) avg_diff = abs(avg_red - avg_blue) possible_switches = self.possible_switches(teams, gametype) if avg_diff <= minimum_suggestion_diff: stddev_red = self.team_stddev([player.steam_id for player in teams["red"]], gametype, mu=avg_red, rating_provider=configured_rating_provider) stddev_blue = self.team_stddev([player.steam_id for player in teams["blue"]], gametype, mu=avg_blue, rating_provider=configured_rating_provider) stddev_diff = abs(stddev_red - stddev_blue) return list(filter(lambda suggestion: stddev_diff - abs(suggestion.stddev_diff) >= minimum_suggestion_stddev_diff and abs(suggestion.stddev_diff) <= minimum_suggestion_stddev_diff and abs(suggestion.avg_diff) <= minimum_suggestion_diff, possible_switches)) return list(filter( lambda suggestion: avg_diff > abs(suggestion.avg_diff) and avg_diff - abs(suggestion.avg_diff) >= minimum_suggestion_diff, possible_switches)) def minimum_suggestion_parameters(self, gametype, steam_ids): return self.minimum_suggestion_diff, self.minimum_suggestion_stddev_diff def possible_switches(self, teams, gametype): player_steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] configured_rating_provider_name = self.configured_rating_provider_name() configured_rating_provider = self.ratings[configured_rating_provider_name] minimum_suggestion_diff, minimum_suggestion_stddev_diff = \ self.minimum_suggestion_parameters(gametype, player_steam_ids) switches = [] for red_p in teams["red"]: for blue_p in teams["blue"]: r = [player.steam_id for player in teams["red"] if player.steam_id != red_p.steam_id] + [blue_p.steam_id] b = [player.steam_id for player in teams["blue"] if player.steam_id != blue_p.steam_id] + [red_p.steam_id] avg_red = self.team_average(r, gametype, rating_provider=configured_rating_provider) avg_blue = self.team_average(b, gametype, rating_provider=configured_rating_provider) diff = avg_red - avg_blue if diff <= minimum_suggestion_diff: stddev_red = self.team_stddev(r, gametype, mu=avg_red, rating_provider=configured_rating_provider) stddev_blue = self.team_stddev(b, gametype, mu=avg_blue, rating_provider=configured_rating_provider) stddev_diff = stddev_red - stddev_blue suggestion = Suggestion(red_p, blue_p, diff, stddev_diff) switches.append(suggestion) return switches def handle_suggestions_collected(self, possible_switches, channel): rating_strategy = self.rating_strategy(self.get_cvar("qlx_balancetwo_ratingStrategy", str)) switch_suggestion_queue = SuggestionQueue(possible_switches, rating_strategy) if switch_suggestion_queue and len(switch_suggestion_queue) > 0: switch = switch_suggestion_queue.best_suggestion() channel.reply(switch.announcement()) if not self.switch_suggestion or switch != self.switch_suggestion: self.switch_suggestion = switch else: i = random.randint(0, 99) if not i: channel.reply("Teens look ^6good!") else: channel.reply("Teams look good!") self.switch_suggestion = None return True def rating_strategy(self, strategy): return DiffSuggestionRatingStrategy() def cmd_do(self, player, msg, channel): if self.auto_switch: return if not self.switch_suggestion: return self.switch_suggestion.execute() def cmd_dont(self, player, msg, channel): if not self.auto_switch: return if not self.switch_suggestion: return self.msg("An admin prevented the switch! The switch will be terminated.") self.switch_suggestion = None def cmd_agree(self, player, msg, channel): if self.auto_switch: return if not self.switch_suggestion: return if self.switch_suggestion.all_agreed(): return self.switch_suggestion.agree(player) if not self.switch_suggestion.all_agreed(): return # If the game's in progress and we're not in the round countdown, wait for next round. if self.game.state == "in_progress" and not self.in_countdown: self.msg("The switch will be executed at the start of next round.") return # Otherwise, switch right away. self.execute_suggestion() def execute_suggestion(self): try: self.switch_suggestion.execute() except minqlx.NonexistentPlayerError: self.switch_suggestion = None return except PlayerMovedToSpecError: self.switch_suggestion = None return self.switched_players += self.switch_suggestion.affected_steam_ids() self.switch_suggestion = None def cmd_veto(self, player, msg, channel): if not self.auto_switch: return if not self.switch_suggestion: return self.switch_suggestion.agree(player) if not self.switch_suggestion.all_agreed(): return self.msg("Both players vetoed! The switch will be terminated.") self.switch_suggestion = None def cmd_nokick(self, player, msg, channel): def dontkick(_steam_id): if _steam_id not in self.kickthreads: return kickthread = self.kickthreads[_steam_id] _resolved_player = self.player(_steam_id) if _resolved_player is None: return kickthread.stop() del self.kickthreads[_steam_id] _resolved_player.unmute() channel.reply("^7An admin has prevented {}^7 from being kicked.".format(_resolved_player.name)) if self.kickthreads is None or len(self.kickthreads.keys()) == 0: player.tell("^6Psst^7: There are no people being kicked right now.") return minqlx.RET_STOP_ALL if len(self.kickthreads.keys()) == 1: dontkick(list(self.kickthreads.keys())[0]) return _scheduled_players = [] for steam_id in self.kickthreads.keys(): if not self.kickthreads[steam_id].is_alive(): continue _player = self.player(steam_id) if _player is None: continue _scheduled_players.append(_player) _names = [p.name for p in _scheduled_players] if len(msg) < 2: player.tell("^6Psst^7: did you mean ^6{}^7?".format("^7 or ^6".join(_names))) return minqlx.RET_STOP_ALL matched_players = [_player for _player in _scheduled_players if msg[1] in _player.name] if len(matched_players) == 0: player.tell("^6Psst^7: no players matched '^6{}^7'?".format(msg[1])) return minqlx.RET_STOP_ALL if len(matched_players) > 1: _matched_names = [_player.name for _player in matched_players] player.tell("^6Psst^7: did you mean ^6{}^7?".format("^7 or ^6".join(_matched_names))) return minqlx.RET_STOP_ALL dontkick(matched_players[0].steam_id) def handle_map_change(self, mapname, factory): @minqlx.delay(3) def fetch_ratings_from_newmap(_mapname): steam_ids = [player.steam_id for player in self.players()] self.fetch_mapbased_ratings(steam_ids, mapname=_mapname) self.switched_players = [] self.informed_players = [] self.previous_ratings = self.ratings self.ratings = {} self.fetch_and_diff_ratings() fetch_ratings_from_newmap(mapname.lower()) self.clean_up_kickthreads() @minqlx.thread def clean_up_kickthreads(self): dead_threads = [] for steam_id in self.kickthreads.keys(): thread = self.kickthreads[steam_id] if not thread.is_alive(): dead_threads.append(steam_id) for dead_thread in dead_threads: del self.kickthreads[dead_thread] @minqlx.thread def fetch_and_diff_ratings(self): for rating_provider in [TRUSKILLS, A_ELO, B_ELO]: if rating_provider.name in self.previous_ratings: rating_results = \ rating_provider.fetch_elos(self.previous_ratings[rating_provider.name].rated_steam_ids()) if rating_results is None: continue self.append_ratings(rating_provider.name, rating_results) self.rating_diffs[rating_provider.name] = \ RatingProvider.from_json(rating_results) - self.previous_ratings[rating_provider.name] if self.previous_map is None: return rating_provider_name = "{} {}".format(self.previous_map, TRUSKILLS.name) if rating_provider_name not in self.previous_ratings: return rating_results = TRUSKILLS.fetch_elos(self.previous_ratings[rating_provider_name].rated_steam_ids(), headers={"X-QuakeLive-Map": self.previous_map}) if rating_results is None: return self.append_ratings(rating_provider_name, rating_results) self.rating_diffs[rating_provider_name] = \ RatingProvider.from_json(rating_results) - self.previous_ratings[rating_provider_name] def handle_player_connect(self, player): @minqlx.thread def fetch_player_elos(_player): self.fetch_ratings([_player.steam_id]) self.schedule_kick_for_players_outside_rating_limits([_player.steam_id]) self.record_join_times(player) fetch_player_elos(player) def record_join_times(self, player): if player.steam_id in self.jointimes: if (time.time() - self.jointimes[player.steam_id]) < 5: return self.jointimes[player.steam_id] = time.time() def schedule_kick_for_players_outside_rating_limits(self, steam_ids): if not self.ratingLimit_kick: return for steam_id in steam_ids: if not self.is_player_within_configured_rating_limit(steam_id): if steam_id not in self.kickthreads or not self.kickthreads[steam_id].is_alive(): configured_rating_provider_name = self.configured_rating_provider_name() configured_rating_provider = self.ratings[configured_rating_provider_name] if steam_id not in configured_rating_provider: continue gametype = self.game.type_short player_ratings = configured_rating_provider.rating_for(steam_id, gametype) if self.ratingLimit_min <= player_ratings: highlow = "high" else: highlow = "low" t = KickThread(steam_id, player_ratings, highlow) t.start() self.kickthreads[steam_id] = t def handle_player_disconnect(self, player, reason): if player.steam_id in self.jointimes: del self.jointimes[player.steam_id] def handle_team_switch_attempt(self, player, old, new): self.logger.debug("{} switched from {} to {}".format(player.clean_name, old, new)) if not self.game: return minqlx.RET_NONE gametype = self.game.type_short if gametype not in SUPPORTED_GAMETYPES: return minqlx.RET_NONE if new in ["red", "blue", "any", "free"]: rating_check = self.check_rating_limit(player) if rating_check is not None: return rating_check if self.game.state != "in_progress": return minqlx.RET_NONE return self.try_auto_rebalance(player, old, new) def check_rating_limit(self, player): if self.is_player_within_configured_rating_limit(player.steam_id): return if self.ratingLimit_kick: kickmsg = "so you'll be kicked shortly..." else: kickmsg = "but you are free to keep watching." player.tell("^6You do not meet the skill rating requirements to play on this server, {}".format(kickmsg)) player.center_print( "^6You do not meet the skill rating requirements to play on this server, {}".format(kickmsg)) return minqlx.RET_STOP_ALL def is_player_within_configured_rating_limit(self, steam_id): configured_rating_provider_name = self.configured_rating_provider_name() if configured_rating_provider_name.endswith("truskills"): configured_rating_provider_name = TRUSKILLS.name if configured_rating_provider_name not in self.ratings: self.logger.debug("Ratings not found. Allowing player to join: {}.".format(configured_rating_provider_name)) return True configured_rating_provider = self.ratings[configured_rating_provider_name] if steam_id not in configured_rating_provider: return False gametype = self.game.type_short player_ratings = configured_rating_provider.rating_for(steam_id, gametype) if self.ratingLimit_min <= player_ratings <= self.ratingLimit_max: return True player_games = configured_rating_provider.games_for(steam_id, gametype) return player_games < self.ratingLimit_minGames def try_auto_rebalance(self, player, old, new): if not self.auto_rebalance: return minqlx.RET_NONE if old not in ["spectator", "free"] or new not in ['red', 'blue', 'any']: return minqlx.RET_NONE teams = self.teams() if len(teams["red"]) == len(teams["blue"]): self.last_new_player_id = player.steam_id return minqlx.RET_NONE if not self.last_new_player_id: return minqlx.RET_NONE last_new_player = self.player(self.last_new_player_id) if not last_new_player: self.last_new_player_id = None return minqlx.RET_NONE gametype = self.game.type_short other_than_last_players_team = self.other_team(last_new_player.team) new_player_team = teams[other_than_last_players_team].copy() + [player] proposed_diff = self.calculate_player_average_difference(gametype, teams[last_new_player.team].copy(), new_player_team) alternative_team_a = [player for player in teams[last_new_player.team] if player != last_new_player] + \ [player] alternative_team_b = teams[other_than_last_players_team].copy() + [last_new_player] alternative_diff = self.calculate_player_average_difference(gametype, alternative_team_a, alternative_team_b) self.last_new_player_id = None if proposed_diff > alternative_diff: last_new_player.tell("{}, you have been moved to {} to maintain team balance." .format(last_new_player.clean_name, self.format_team(other_than_last_players_team))) last_new_player.put(other_than_last_players_team) if new in [last_new_player.team]: return minqlx.RET_NONE if new not in ["any"]: player.tell("{}, you have been moved to {} to maintain team balance." .format(player.clean_name, self.format_team(last_new_player.team))) player.put(last_new_player.team) return minqlx.RET_STOP_ALL if new not in ["any", other_than_last_players_team]: player.tell("{}, you have been moved to {} to maintain team balance." .format(player.clean_name, self.format_team(other_than_last_players_team))) player.put(other_than_last_players_team) return minqlx.RET_STOP_ALL return minqlx.RET_NONE def other_team(self, team): if team == "red": return "blue" return "red" def calculate_player_average_difference(self, gametype, team1, team2): team1_steam_ids = [player.steam_id for player in team1] team2_steam_ids = [player.steam_id for player in team2] configured_rating_provider_name = self.configured_rating_provider_name() configured_rating_provider = self.ratings[configured_rating_provider_name] team1_avg = self.team_average(gametype, team1_steam_ids, rating_provider=configured_rating_provider) team2_avg = self.team_average(gametype, team2_steam_ids, rating_provider=configured_rating_provider) return abs(team1_avg - team2_avg) def format_team(self, team): if team == "red": return "^1red^7" if team == "blue": return "^4blue^7" return "^3{}^7".format(team) def handle_team_switch(self, player, old, new): if self.last_new_player_id == player.steam_id and new in ["free", "spectator"]: self.last_new_player_id = None if new not in ["red", "blue", "any"]: return self.inform_about_rating_changes(player) def inform_about_rating_changes(self, player): if player.steam_id in self.informed_players: return self.informed_players.append(player.steam_id) if not self.wants_to_be_informed(player.steam_id): return changed_ratings = [] previous_truskills = "{} {}".format(self.previous_map, TRUSKILLS.name) for rating_provider_name in [previous_truskills, TRUSKILLS.name, A_ELO.name, B_ELO.name]: formatted_diffs = self.format_rating_diffs_for_rating_provider_name_and_player( rating_provider_name, player.steam_id) if formatted_diffs is not None: changed_ratings.append(formatted_diffs) if len(changed_ratings) == 0: return player.tell("Your ratings changed since the last map: {}".format(", ".join(changed_ratings))) def format_rating_diffs_for_rating_provider_name_and_player(self, rating_provider_name, steam_id): if rating_provider_name not in self.rating_diffs or steam_id not in self.rating_diffs[rating_provider_name] or \ self.previous_gametype not in self.rating_diffs[rating_provider_name][steam_id] or \ rating_provider_name not in self.ratings or steam_id not in self.ratings[rating_provider_name]: return None current_rating = self.ratings[rating_provider_name][steam_id][self.previous_gametype]["elo"] rating_diff = self.rating_diffs[rating_provider_name][steam_id][self.previous_gametype] if rating_provider_name.endswith(TRUSKILLS.name): if rating_diff < 0.0: return "^3{}^7: ^4{:.02f}^7 (^1{:+.02f}^7)".format(rating_provider_name, current_rating, rating_diff) elif rating_diff > 0.0: return "^3{}^7: ^4{:.02f}^7 (^2{:+.02f}^7)".format(rating_provider_name, current_rating, rating_diff) return None if rating_diff < 0: return "^3{}^7: ^4{:d}^7 (^1{:+d}^7)".format(rating_provider_name, current_rating, rating_diff) elif rating_diff > 0: return "^3{}^7: ^4{:d}^7 (^2{:+d}^7)".format(rating_provider_name, current_rating, rating_diff) return None @minqlx.delay(5) def handle_game_countdown(self): self.msg("^7Balancing on skill ratings...") self.callback_balance(None, minqlx.CHAT_CHANNEL) def handle_round_countdown(self, round_number): @minqlx.next_frame def execute_switch_suggestion(): self.execute_suggestion() if (not self.auto_switch and self.switch_suggestion is not None and self.switch_suggestion.all_agreed()) or \ (self.auto_switch and self.switch_suggestion is not None and not self.switch_suggestion.all_agreed()): execute_switch_suggestion() self.in_countdown = True self.even_up_teams() self.balance_before_start(round_number) def even_up_teams(self): teams = self.teams() player_count = len(teams["red"] + teams["blue"]) if player_count == 1: return team_diff = len(teams["red"]) - len(teams["blue"]) if abs(team_diff) == 0: return even_to, even_from = ["blue", "red"] if team_diff > 0 else ["red", "blue"] n = int(abs(team_diff) / 2) last = self.identify_player_to_move() if team_diff % 2 == 0: amount_players_moved = last.name if n == 1 else "{} players".format(n) self.msg( "^6Uneven teams detected!^7 At round start i'll move {} to {}".format(amount_players_moved, even_to)) return amount_players_moved = "lowest player" if n == 1 else "{} lowest players".format(n) message = " and move {} to {}".format(amount_players_moved, even_to) if n else '' self.msg("^6Uneven teams detected!^7 Server will auto spec {}{}.".format(last.name, message)) def identify_player_to_move(self): teams = self.teams() # See which team is bigger than the other if len(teams["blue"]) > len(teams["red"]): bigger_team = teams["blue"].copy() elif len(teams["red"]) > len(teams["blue"]): bigger_team = teams["red"].copy() else: self.msg("Cannot pick last player since there are none.") return if (self.game.red_score + self.game.blue_score) >= 1: self.msg("Picking someone to {} based on score".format(self.last_action)) lowest_score = bigger_team[0].score lowest_players = [bigger_team[0]] for p in bigger_team: if lowest_score == 0 and p.score <= lowest_score: lowest_players.append(p) elif p.score < lowest_players[0].score: lowest_score = max(p.score, 0) lowest_players = [p] elif p.score == lowest_players[0].score: lowest_players.append(p) if len(lowest_players) == 1: lowest_player = lowest_players[0] else: lowest_players2 = [lowest_players[0]] for player in lowest_players: if player.stats.damage_dealt < lowest_players2[0].stats.damage_dealt: lowest_players2 = [player] elif player.stats.damage_dealt == lowest_players2[0].stats.damage_dealt: lowest_players2.append(player) if len(lowest_players2) == 1: lowest_player = lowest_players2[0] else: lowest_player = max(lowest_players2, key=lambda e1: self.find_time(e1)) else: self.msg("Picking someone to {} based on join times.".format(self.last_action)) lowest_player = max(bigger_team, key=lambda e1: self.find_time(e1)) self.msg("Picked {} from the {} team.".format(lowest_player.name, lowest_player.team)) return lowest_player def handle_round_start(self, round_number): self.last_new_player_id = None self.in_countdown = False self.balance_before_start(round_number, True) @minqlx.thread def balance_before_start(self, roundnumber, direct=False): @minqlx.next_frame def game_logic(func): func() @minqlx.next_frame def slay_player(p): p.health = 0 def exclude_player(p): t = self.teams().copy() if p in t['red']: t['red'].remove(p) if p in t['blue']: t['blue'].remove(p) return t countdown = int(self.get_cvar('g_roundWarmupDelay')) if self.game.type_short == "ft": countdown = int(self.get_cvar('g_freezeRoundDelay')) if not direct: time.sleep(max(countdown / 1000 - 0.8, 0)) teams = self.teams() player_count = len(teams["red"] + teams["blue"]) if player_count == 1 or self.game.state not in ["in_progress"]: return if self.game.type_short == "ca": if self.game.roundlimit in [self.game.blue_score, self.game.red_score]: return if self.game.type_short == "tdm": if self.game.fraglimit in [self.game.blue_score, self.game.red_score]: return if self.game.type_short == "ctf": if self.game.capturelimit in [self.game.blue_score, self.game.red_score]: return team_diff = len(teams["red"]) - len(teams["blue"]) while abs(team_diff) >= 1: last = self.identify_player_to_move() if not last: self.msg( "Error: Trying to balance before round {} start. Red({}) - Blue({}) players" .format(roundnumber, len(teams['red']), len(teams['blue']))) return if team_diff % 2 == 0: even_to, even_from = ["blue", "red"] if team_diff > 0 else ["red", "blue"] game_logic(lambda: last.put(even_to)) self.msg("^6Uneven teams action^7: Moved {} from {} to {}".format(last.name, even_from, even_to)) else: if self.prevent or self.last_action == "ignore": excluded_teams = exclude_player(last) self.msg("^6Uneven teams^7: {} will not be moved to spec".format(last.name)) elif self.last_action == "slay": if "anti_rape" in minqlx.Plugin._loaded_plugins: game_logic(lambda: last.put("spectator")) self.msg("^6Uneven teams action^7: {} was moved to spec to even teams!".format(last.name)) self.msg("Not slayed because anti_rape plugin is loaded.") else: slay_player(last) self.msg("{} ^7has been ^1slain ^7to even the teams!") else: self.msg("^6Uneven teams action^7: {} was moved to spec to even teams!".format(last.name)) game_logic(lambda: last.put("spectator")) time.sleep(0.2) def handle_game_end(self, data): if not self.game or bool(data["ABORTED"]): return teams = self.teams() self.previous_teams = [player.steam_id for player in teams["red"]], \ [player.steam_id for player in teams["blue"]] self.previous_map = data["MAP"].lower() self.previous_gametype = data["GAME_TYPE"].lower() # self.record_team_stats(self.previous_gametype) if len(teams["red"] + teams["blue"]) == 4 and self.twovstwo_iter is None: steam_ids = [player.steam_id for player in teams["red"] + teams["blue"]] self.twovstwo_steam_ids = steam_ids self.twovstwo_combinations = [(steam_ids[0], steam_ids[1]), (steam_ids[0], steam_ids[2]), (steam_ids[0], steam_ids[3])] self.twovstwo_iter = random_iterator(self.twovstwo_combinations) next_twovstwo = sorted(list(next(self.twovstwo_iter))) other_twovstwo = sorted([steam_id for steam_id in steam_ids if steam_id not in next_twovstwo]) red_steam_ids = sorted([player.steam_id for player in teams["red"]]) blue_steam_ids = sorted([player.steam_id for player in teams["blue"]]) while not (next_twovstwo == red_steam_ids or next_twovstwo == blue_steam_ids or other_twovstwo == red_steam_ids or other_twovstwo == blue_steam_ids): next_twovstwo = sorted(list(next(self.twovstwo_iter))) other_twovstwo = sorted([steam_id for steam_id in steam_ids if steam_id not in next_twovstwo]) @minqlx.thread def record_team_stats(self, gametype): teams = self.teams() if len(teams["red"] + teams["blue"]) == 2: return stats = [ self.game.map, self.game.red_score, self.game.blue_score, self.team_stats(teams["red"], gametype), self.team_stats(teams["blue"], gametype) ] elostats_filename = os.path.join(self.get_cvar("fs_homepath"), "elostats.txt") with open(elostats_filename, "a") as elostats_file: elostats_file.write("{}\n".format(stats)) def team_stats(self, team, gametype): returned = {} for player in team: a_elo = 0 if A_ELO.name in self.ratings and player.steam_id in self.ratings[A_ELO.name]: a_elo = self.ratings[A_ELO.name][player.steam_id][gametype]["elo"] b_elo = 0 if B_ELO.name in self.ratings and player.steam_id in self.ratings[B_ELO.name]: b_elo = self.ratings[B_ELO.name][player.steam_id][gametype]["elo"] truskill = 0 if TRUSKILLS.name in self.ratings and player.steam_id in self.ratings[TRUSKILLS.name]: truskill = self.ratings[TRUSKILLS.name][player.steam_id][gametype]["elo"] returned[player.steam_id] = [a_elo, b_elo, truskill] return returned FILTERED_OUT_GAMETYPE_RESPONSES = ["steamid"] class SkillRatingProvider: def __init__(self, name, url_base, balance_api, timeout=7): self.name = name self.url_base = url_base self.balance_api = balance_api self.timeout = timeout def fetch_elos(self, steam_ids, headers=None): if len(steam_ids) == 0: return None request_url = self.url_base + "{}/{}".format(self.balance_api, "+".join([str(steam_id) for steam_id in steam_ids])) try: result = requests_retry_session().get(request_url, headers=headers, timeout=self.timeout) except requests.RequestException as exception: minqlx.get_logger("balancetwo").debug("request exception: {}".format(exception)) return None if result.status_code != requests.codes.ok: return None return result.json() TRUSKILLS = SkillRatingProvider("Truskill", "http://stats.houseofquake.com/", "elo/map_based") A_ELO = SkillRatingProvider("Elo", "http://qlstats.net/", "elo", timeout=15) B_ELO = SkillRatingProvider("B-Elo", "http://qlstats.net/", "elo_b", timeout=15) class RatingProvider: def __init__(self, json): self.jsons = [json] def __iter__(self): return iter(self.rated_steam_ids()) def __contains__(self, item): if not isinstance(item, int) and not isinstance(item, str): return False steam_id = item if isinstance(item, str): try: steam_id = int(item) except ValueError: return False for json_rating in self.jsons: if "playerinfo" not in json_rating: continue if str(steam_id) in json_rating["playerinfo"]: return True return False def __getitem__(self, item): if item not in self: raise TypeError steam_id = item if isinstance(item, str): try: steam_id = int(item) except ValueError: raise TypeError for json_rating in reversed(self.jsons): if "playerinfo" not in json_rating: continue if str(steam_id) not in json_rating["playerinfo"]: continue return PlayerRating(json_rating["playerinfo"][str(steam_id)]) return None def __sub__(self, other): returned = {} if not isinstance(other, RatingProvider): raise TypeError("Can't subtract '{}' from a RatingProvider".format(type(other).__name__)) for steam_id in self: if steam_id not in other: returned[steam_id] = {gametype: self.gametype_data_for(steam_id, gametype) for gametype in self.rated_gametypes_for(steam_id)} continue returned[steam_id] = {} for gametype in self.rated_gametypes_for(steam_id): if gametype not in other.rated_gametypes_for(steam_id): returned[steam_id][gametype] = self.gametype_data_for(steam_id, gametype) continue gametype_diff = self.gametype_data_for(steam_id, gametype)["elo"] - \ other.gametype_data_for(steam_id, gametype)["elo"] if gametype_diff == 0: continue returned[steam_id][gametype] = round(gametype_diff, 2) return returned @staticmethod def from_json(json_response): return RatingProvider(json_response) def append_ratings(self, json_response): self.jsons.append(json_response) def player_data_for(self, steam_id): return self[steam_id] def gametype_data_for(self, steam_id, gametype): if gametype not in self[steam_id]: return None return self[steam_id][gametype] def rating_for(self, steam_id, gametype): if gametype not in self[steam_id]: return None if "elo" not in self[steam_id][gametype]: return None return self[steam_id][gametype]["elo"] def games_for(self, steam_id, gametype): if gametype not in self[steam_id]: return None if "games" not in self[steam_id][gametype]: return None return self[steam_id][gametype]["games"] def rated_gametypes_for(self, steam_id): player_data = self[steam_id] if player_data is None: return [] return [gametype for gametype in player_data if gametype not in FILTERED_OUT_GAMETYPE_RESPONSES] def privacy_for(self, steam_id): player_data = self[steam_id] if player_data is None: return None if "privacy" not in player_data: return "private" return player_data["privacy"] def rated_steam_ids(self): returned = [] for json_rating in self.jsons: if "playerinfo" not in json_rating: continue returned = returned + [int(steam_id) for steam_id in json_rating["playerinfo"]] return [steam_id for steam_id in set(returned)] def format_elos(self, steam_id): result = "" for gametype in self.rated_gametypes_for(steam_id): if self.games_for(steam_id, gametype) != 0: result += "^2{0}^7: ^4{1}^7 ({2} games) ".format(gametype.upper(), self[steam_id][gametype]["elo"], self[steam_id][gametype]["games"]) return result def has_ratings_for_all(self, gametype, steam_ids): for steam_id in steam_ids: if steam_id not in self: return False if gametype not in self[steam_id]: return False if self[steam_id][gametype]["games"] == 0: return False return True class PlayerRating: def __init__(self, ratings, _time=-1, local=False): self.ratings = ratings self.time = _time self.local = local def __iter__(self): return iter(self.ratings["ratings"]) def __contains__(self, item): if not isinstance(item, str): return False return item in self.ratings["ratings"] def __getitem__(self, item): if item not in self: raise KeyError if not isinstance(item, str): raise KeyError returned = self.ratings["ratings"][item].copy() returned["time"] = self.time returned["local"] = self.local return returned def __getattr__(self, attr): if attr not in ["privacy"]: raise AttributeError("'{}' object has no atrribute '{}'".format(self.__class__.__name__, attr)) return self.ratings["privacy"] class SuggestionRatingStrategy: @abstractmethod def best_suggestion(self, suggestions): pass class DiffSuggestionRatingStrategy(SuggestionRatingStrategy): def best_suggestion(self, suggestions): return min(suggestions, key=lambda suggestion: abs(suggestion.avg_diff)) class SuggestionQueue: def __init__(self, items=None, strategy=DiffSuggestionRatingStrategy()): self.suggestions = items if items is not None else [] self.strategy = strategy def __str__(self): return "[{}]".format(", ".join([str(suggestion) for suggestion in self.suggestions])) def __len__(self): return len(self.suggestions) def best_suggestion(self): if len(self.suggestions) == 0: return None if len(self.suggestions) == 1: return self.suggestions[0] return self.strategy.best_suggestion(self.suggestions) class Suggestion: def __init__(self, red_player, blue_player, avg_diff, stddev_diff=0): self.red_player = red_player self.blue_player = blue_player self.avg_diff = avg_diff self.stddev_diff = stddev_diff self._agreed = dict() self.auto_switch = Plugin.get_cvar("qlx_balancetwo_autoSwitch", bool) def __eq__(self, other): if not isinstance(other, Suggestion): return False return self.red_player == other.red_player and self.blue_player == other.blue_player and \ self.avg_diff == other.avg_diff and self.stddev_diff == other.stddev_diff def __ne__(self, other): return not self.__eq__(other) def __str__(self): red_player = "({}, score: {}, dmg: {}, time: {})".format(self.red_player.clean_name, self.red_player.score, self.red_player.stats.damage_dealt, self.red_player.stats.time) blue_player = "({}, score: {}, dmg: {}, time: {})".format(self.blue_player.clean_name, self.blue_player.score, self.blue_player.stats.damage_dealt, self.blue_player.stats.time) return "Switch {} with {}, resulting diff: {}" \ .format(red_player, blue_player, self.avg_diff, self.stddev_diff) def announcement(self): if not self.auto_switch: return "SUGGESTION: switch ^6{}^7 with ^6{}^7. Mentioned players can type ^6!a^7 to agree." \ .format(self.red_player.clean_name, self.blue_player.clean_name) return "NOTICE: Server will switch ^6{}^7 with ^6{}^7 at start of next round. " \ "Both mentioned players need to type ^6!v^7 to veto the switch." \ .format(self.red_player.clean_name, self.blue_player.clean_name) def agree(self, player): self._agreed[player.steam_id] = True def agreed(self, player): return self._agreed.get(player.steam_id, False) def all_agreed(self): return self.agreed(self.red_player) and self.agreed(self.blue_player) def affected_steam_ids(self): return [self.red_player.steam_id, self.blue_player.steam_id] def validate_players(self): self.red_player.update() self.blue_player.update() def execute(self): self.red_player.update() self.blue_player.update() if self.red_player.team == "spectator": raise PlayerMovedToSpecError(self.red_player) if self.blue_player.team == "spectator": raise PlayerMovedToSpecError(self.blue_player) Plugin.switch(self.red_player, self.blue_player) @property def max_score(self): return max(self.red_player.score, self.blue_player.score) @property def score_sum(self): return self.red_player.score + self.blue_player.score class KickThread(threading.Thread): def __init__(self, steam_id, rating, highlow): threading.Thread.__init__(self) self.steam_id = steam_id self.rating = rating self.highlow = highlow self.go = True def try_msg(self): time.sleep(5) player = Plugin.player(self.steam_id) if not player: return if not self.go: return kickmsg = "so you'll be ^6kicked ^7shortly..." Plugin.msg("^7Sorry, {} your rating ({}) is too {}, {}".format(player.name, self.rating, self.highlow, kickmsg)) def try_mute(self): @minqlx.next_frame def execute(): try: player.mute() except ValueError: pass time.sleep(5) player = Plugin.player(self.steam_id) if not player: return if not self.go: return execute() def try_kick(self): @minqlx.next_frame def execute(): try: player.kick("^1GOT KICKED!^7 Rating ({}) was too {} for this server.".format(self.rating, self.highlow)) except ValueError: pass time.sleep(30) player = Plugin.player(self.steam_id) if not player: return if not self.go: return execute() def run(self): self.try_mute() self.try_msg() self.try_kick() def stop(self): self.go = False class PlayerMovedToSpecError(Exception): def __init__(self, player): self.player = player class random_iterator: def __init__(self, seq): self.seq = seq self.random_seq = random.sample(self.seq, len(self.seq)) self.iterator = iter(self.random_seq) def __iter__(self): return self def __next__(self): try: return next(self.iterator) except StopIteration: self.random_seq = random.sample(self.seq, len(self.seq)) self.iterator = iter(self.random_seq) return next(self.iterator)
[ [ [ 182, 188 ], [ 1160, 1166 ], [ 7687, 7693 ], [ 9256, 9262 ], [ 17403, 17409 ], [ 43938, 43944 ], [ 53694, 53700 ], [ 54045, 54051 ], [ 65611, 65617 ], [ 69610, 69616 ], [ 74348, 74354 ], [ 6396, 6402 ], [ 8973, 8979 ], [ 9007, 9013 ], [ 9076, 9082 ], [ 9304, 9310 ], [ 9341, 9347 ], [ 12491, 12497 ], [ 12828, 12834 ], [ 12858, 12864 ], [ 12912, 12918 ], [ 12943, 12949 ], [ 12989, 12995 ], [ 17226, 17232 ], [ 17260, 17266 ], [ 17330, 17336 ], [ 17450, 17456 ], [ 17487, 17493 ], [ 27557, 27563 ], [ 27937, 27943 ], [ 28142, 28148 ], [ 28283, 28289 ], [ 43011, 43017 ], [ 43210, 43216 ], [ 43539, 43545 ], [ 43852, 43858 ], [ 50512, 50518 ], [ 51934, 51940 ], [ 52580, 52586 ], [ 52836, 52842 ], [ 53086, 53092 ], [ 53214, 53220 ], [ 55428, 55434 ], [ 57376, 57382 ], [ 57500, 57506 ], [ 57768, 57774 ], [ 58408, 58414 ], [ 59548, 59554 ], [ 59666, 59672 ], [ 59837, 59843 ], [ 59913, 59919 ], [ 60087, 60093 ], [ 61483, 61489 ], [ 61780, 61786 ], [ 62116, 62122 ], [ 62152, 62158 ], [ 65752, 65758 ], [ 65835, 65841 ], [ 69696, 69702 ], [ 69773, 69779 ], [ 71959, 71965 ], [ 76462, 76468 ], [ 87421, 87427 ], [ 87769, 87775 ] ], [ [ 208, 214 ], [ 83919, 83925 ], [ 86529, 86535 ], [ 87095, 87101 ], [ 87274, 87280 ], [ 87601, 87607 ], [ 88041, 88047 ] ], [ [ 244, 249 ], [ 2896, 2901 ] ], [ [ 258, 260 ], [ 74763, 74765 ] ], [ [ 268, 272 ], [ 42731, 42735 ] ], [ [ 280, 284 ], [ 30233, 30237 ], [ 55796, 55800 ], [ 55914, 55918 ], [ 70268, 70272 ], [ 72608, 72612 ], [ 87064, 87068 ], [ 87570, 87574 ], [ 88009, 88013 ] ], [ [ 292, 298 ], [ 34685, 34691 ], [ 43627, 43633 ], [ 48934, 48940 ], [ 88518, 88524 ], [ 88785, 88791 ] ], [ [ 306, 315 ], [ 33222, 33231 ] ], [ [ 323, 332 ], [ 86805, 86814 ], [ 86884, 86893 ] ], [ [ 350, 364 ], [ 82745, 82759 ] ], [ [ 387, 397 ], [ 34830, 34840 ] ], [ [ 406, 414 ], [ 804, 812 ], [ 13858, 13866 ], [ 14027, 14035 ], [ 76410, 76418 ], [ 76601, 76609 ] ], [ [ 445, 456 ], [ 1014, 1025 ] ], [ [ 506, 511 ], [ 835, 840 ] ], [ [ 513, 524 ], [ 9621, 9632 ], [ 13108, 13119 ], [ 13210, 13221 ], [ 16869, 16880 ], [ 16979, 16990 ], [ 17767, 17778 ] ], [ [ 548, 556 ], [ 13338, 13346 ], [ 13458, 13466 ] ], [ [ 573, 592 ], [ 27815, 27834 ], [ 42889, 42908 ], [ 57460, 57479 ] ], [ [ 641, 663 ], [ 13700, 13722 ], [ 76314, 76336 ] ], [ [ 1149, 1159 ] ], [ [ 75727, 75758 ], [ 80384, 80415 ] ], [ [ 75781, 75800 ], [ 76687, 76706 ], [ 76778, 76797 ], [ 76855, 76874 ] ], [ [ 76675, 76684 ], [ 7963, 7972 ], [ 8385, 8394 ], [ 8510, 8519 ], [ 10602, 10611 ], [ 10963, 10972 ], [ 19334, 19343 ], [ 19362, 19371 ], [ 19498, 19507 ], [ 19723, 19732 ], [ 19739, 19748 ], [ 38668, 38677 ], [ 40872, 40881 ], [ 41004, 41013 ], [ 54129, 54138 ], [ 54800, 54809 ], [ 54923, 54932 ], [ 58688, 58697 ], [ 63738, 63747 ], [ 63812, 63821 ], [ 64962, 64971 ], [ 75461, 75470 ], [ 75528, 75537 ], [ 75585, 75594 ] ], [ [ 76770, 76775 ], [ 7974, 7979 ], [ 10681, 10686 ], [ 13637, 13642 ], [ 13828, 13833 ], [ 20815, 20820 ], [ 20925, 20930 ], [ 21179, 21184 ], [ 41081, 41086 ], [ 54140, 54145 ], [ 63828, 63833 ], [ 75066, 75071 ], [ 75129, 75134 ], [ 75179, 75184 ] ], [ [ 76847, 76852 ], [ 7981, 7986 ], [ 10756, 10761 ], [ 20846, 20851 ], [ 20990, 20995 ], [ 41154, 41159 ], [ 54147, 54152 ], [ 63840, 63845 ], [ 75262, 75267 ], [ 75325, 75330 ], [ 75375, 75380 ] ], [ [ 76936, 76950 ], [ 8899, 8913 ], [ 10577, 10591 ], [ 10656, 10670 ], [ 10731, 10745 ], [ 10921, 10935 ], [ 54589, 54603 ], [ 55286, 55300 ], [ 78265, 78279 ], [ 79345, 79359 ] ], [ [ 81805, 81817 ], [ 78102, 78114 ] ], [ [ 82714, 82738 ], [ 82854, 82878 ] ], [ [ 82825, 82853 ], [ 83075, 83103 ], [ 49218, 49246 ] ], [ [ 83014, 83029 ], [ 48538, 48553 ] ], [ [ 83628, 83638 ], [ 48212, 48222 ], [ 84033, 84043 ] ], [ [ 86794, 86804 ], [ 56901, 56911 ] ], [ [ 88319, 88341 ], [ 50619, 50641 ], [ 86371, 86393 ], [ 86479, 86501 ] ], [ [ 88423, 88438 ], [ 31029, 31044 ], [ 73546, 73561 ] ] ]
""" Module imports for templates.python.business_logic.my_project.my_app.migrations This file is automatically generated by ./scripts/empty_pyinit.sh DO NOT EDIT IT MANUALLY """
[]
# Copyright (c) The PyAMF Project. # See LICENSE.txt for details. # The simplest Django settings possible # support for Django < 1.5 DATABASE_ENGINE = 'django.db.backends.sqlite3' DATABASE_NAME = ':memory:' # support for Django >= 1.5 SECRET_KEY = 'unittest' DATABASES = { 'default': { 'ENGINE': DATABASE_ENGINE, 'NAME': DATABASE_NAME, } } INSTALLED_APPS = ('django_app.adapters',) MIDDLEWARE_CLASSES = ()
[ [ [ 135, 150 ], [ 312, 327 ] ], [ [ 182, 195 ], [ 345, 358 ] ], [ [ 238, 248 ] ], [ [ 263, 272 ] ], [ [ 370, 384 ] ], [ [ 412, 430 ] ] ]
# Copyright (c) 2021, Manfred Moitzi # License: MIT License import copy import math from typing import Iterable, List, Optional, Tuple from ezdxf import colors from ezdxf.entities import MText from ezdxf.lldxf import const from ezdxf.math import Matrix44, Vec3 from ezdxf.render.abstract_mtext_renderer import AbstractMTextRenderer from ezdxf.tools import text_layout as tl, fonts from ezdxf.tools.text import MTextContext from .backend import BackendInterface from .properties import Properties, RenderContext, rgb_to_hex from .type_hints import Color __all__ = ["complex_mtext_renderer"] def corner_vertices( left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ) -> Iterable[Vec3]: corners = [ # closed polygon: fist vertex == last vertex (left, top), (right, top), (right, bottom), (left, bottom), (left, top), ] if m is None: return Vec3.generate(corners) else: return m.transform_vertices(corners) class FrameRenderer(tl.ContentRenderer): def __init__(self, properties: Properties, backend: BackendInterface): self.properties = properties self.backend = backend def render( self, left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ) -> None: self._render_outline(list(corner_vertices(left, bottom, right, top, m))) def _render_outline(self, vertices: List[Vec3]) -> None: backend = self.backend properties = self.properties prev = vertices.pop(0) for vertex in vertices: backend.draw_line(prev, vertex, properties) prev = vertex def line( self, x1: float, y1: float, x2: float, y2: float, m: Matrix44 = None ) -> None: points = [(x1, y1), (x2, y2)] if m is not None: p1, p2 = m.transform_vertices(points) else: p1, p2 = Vec3.generate(points) self.backend.draw_line(p1, p2, self.properties) class ColumnBackgroundRenderer(FrameRenderer): def __init__( self, properties: Properties, backend: BackendInterface, bg_properties: Properties = None, offset: float = 0, text_frame: bool = False, ): super().__init__(properties, backend) self.bg_properties = bg_properties self.offset = offset # background border offset self.has_text_frame = text_frame def render( self, left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ) -> None: # Important: this is not a clipping box, it is possible to # render anything outside of the given borders! offset = self.offset vertices = list( corner_vertices( left - offset, bottom - offset, right + offset, top + offset, m ) ) if self.bg_properties is not None: self.backend.draw_filled_polygon(vertices, self.bg_properties) if self.has_text_frame: self._render_outline(vertices) class TextRenderer(FrameRenderer): """Text content renderer.""" def __init__( self, text: str, cap_height: float, width_factor: float, oblique: float, # angle in degrees properties: Properties, backend: BackendInterface, ): super().__init__(properties, backend) self.text = text self.cap_height = cap_height self.width_factor = width_factor self.oblique = oblique # angle in degrees def render( self, left: float, bottom: float, right: float, top: float, m: Matrix44 = None, ): """Create/render the text content""" sx = 1.0 tx = 0.0 if not math.isclose(self.width_factor, 1.0, rel_tol=1e-6): sx = self.width_factor if abs(self.oblique) > 1e-3: # degrees tx = math.tan(math.radians(self.oblique)) # fmt: off t = Matrix44(( sx, 0.0, 0.0, 0.0, tx, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, left, bottom, 0.0, 1.0 )) # fmt: on if m is not None: t *= m self.backend.draw_text(self.text, t, self.properties, self.cap_height) def complex_mtext_renderer( ctx: RenderContext, backend: BackendInterface, mtext: MText, properties: Properties ) -> None: cmr = ComplexMTextRenderer(ctx, backend, properties) align = tl.LayoutAlignment(mtext.dxf.attachment_point) layout_engine = cmr.layout_engine(mtext) layout_engine.place(align=align) layout_engine.render(mtext.ucs().matrix) class ComplexMTextRenderer(AbstractMTextRenderer): def __init__( self, ctx: RenderContext, backend: BackendInterface, properties: Properties, ): super().__init__() self._render_ctx = ctx self._backend = backend self._properties = properties # Implementation of required AbstractMTextRenderer methods: def word(self, text: str, ctx: MTextContext) -> tl.ContentCell: return tl.Text( width=self.get_font(ctx).text_width(text), height=ctx.cap_height, valign=tl.CellAlignment(ctx.align), stroke=self.get_stroke(ctx), renderer=TextRenderer( text, ctx.cap_height, ctx.width_factor, ctx.oblique, self.new_text_properties(self._properties, ctx), self._backend, )) def fraction( self, data: Tuple[str, str, str], ctx: MTextContext ) -> tl.ContentCell: upr, lwr, type_ = data if type_: return tl.Fraction( top=self.word(upr, ctx), bottom=self.word(lwr, ctx), stacking=self.get_stacking(type_), # renders just the divider line: renderer=FrameRenderer(self._properties, self._backend), ) else: return self.word(upr, ctx) def get_font_face(self, mtext: MText) -> fonts.FontFace: return self._properties.font # type: ignore def make_bg_renderer(self, mtext: MText) -> tl.ContentRenderer: dxf = mtext.dxf bg_fill = dxf.get("bg_fill", 0) bg_aci = None bg_true_color = None bg_properties: Optional[Properties] = None has_text_frame = False offset = 0 if bg_fill: # The fill scale is a multiple of the initial char height and # a scale of 1, fits exact the outer border # of the column -> offset = 0 offset = dxf.char_height * (dxf.get("box_fill_scale", 1.5) - 1) if bg_fill & const.MTEXT_BG_COLOR: if dxf.hasattr("bg_fill_color"): bg_aci = dxf.bg_fill_color if dxf.hasattr("bg_fill_true_color"): bg_aci = None bg_true_color = dxf.bg_fill_true_color if (bg_fill & 3) == 3: # canvas color = bit 0 and 1 set # can not detect canvas color from DXF document! # do not draw any background: bg_aci = None bg_true_color = None if bg_fill & const.MTEXT_TEXT_FRAME: has_text_frame = True bg_properties = self.new_bg_properties(bg_aci, bg_true_color) return ColumnBackgroundRenderer( self._properties, self._backend, bg_properties, offset=offset, text_frame=has_text_frame, ) # Implementation details of ComplexMTextRenderer: @property def backend(self) -> BackendInterface: return self._backend def resolve_aci_color(self, aci: int) -> Color: return self._render_ctx.resolve_aci_color(aci, self._properties.layer) def new_text_properties( self, properties: Properties, ctx: MTextContext ) -> Properties: new_properties = copy.copy(properties) if ctx.rgb is None: new_properties.color = self.resolve_aci_color(ctx.aci) else: new_properties.color = rgb_to_hex(ctx.rgb) new_properties.font = ctx.font_face return new_properties def new_bg_properties( self, aci: Optional[int], true_color: Optional[int] ) -> Properties: new_properties = copy.copy(self._properties) new_properties.color = ( # canvas background color self._render_ctx.current_layout_properties.background_color ) if true_color is None: if aci is not None: new_properties.color = self.resolve_aci_color(aci) # else canvas background color else: new_properties.color = rgb_to_hex(colors.int2rgb(true_color)) return new_properties
[ [ [ 69, 73 ], [ 8219, 8223 ], [ 8613, 8617 ] ], [ [ 81, 85 ], [ 3911, 3915 ], [ 4063, 4067 ], [ 4072, 4076 ] ], [ [ 105, 113 ], [ 716, 724 ] ], [ [ 115, 119 ], [ 1493, 1497 ] ], [ [ 121, 129 ], [ 6544, 6552 ], [ 8526, 8534 ], [ 8553, 8561 ] ], [ [ 131, 136 ], [ 5750, 5755 ] ], [ [ 156, 162 ], [ 9016, 9022 ] ], [ [ 190, 195 ], [ 4512, 4517 ], [ 6257, 6262 ], [ 6375, 6380 ] ], [ [ 220, 225 ], [ 6915, 6920 ], [ 7475, 7480 ] ], [ [ 249, 257 ], [ 694, 702 ], [ 1339, 1347 ], [ 1803, 1811 ], [ 2634, 2642 ], [ 3793, 3801 ], [ 4131, 4139 ] ], [ [ 259, 263 ], [ 725, 729 ], [ 947, 951 ], [ 1498, 1502 ], [ 1983, 1987 ] ], [ [ 313, 334 ], [ 4825, 4846 ] ], [ [ 359, 376 ], [ 1047, 1049 ], [ 4622, 4624 ], [ 5229, 5231 ], [ 5260, 5262 ], [ 5378, 5380 ], [ 5799, 5801 ], [ 5883, 5885 ], [ 6385, 6387 ] ], [ [ 378, 383 ], [ 6267, 6272 ] ], [ [ 413, 425 ], [ 5212, 5224 ], [ 5777, 5789 ], [ 8160, 8172 ] ], [ [ 447, 463 ], [ 1124, 1140 ], [ 2191, 2207 ], [ 3440, 3456 ], [ 4487, 4503 ], [ 4926, 4942 ], [ 7908, 7924 ] ], [ [ 488, 498 ], [ 1103, 1113 ], [ 2162, 2172 ], [ 2232, 2242 ], [ 3411, 3421 ], [ 4531, 4541 ], [ 4964, 4974 ], [ 6553, 6563 ], [ 8182, 8192 ], [ 8143, 8153 ], [ 8576, 8586 ] ], [ [ 500, 513 ], [ 4463, 4476 ], [ 4894, 4907 ] ], [ [ 515, 525 ], [ 8385, 8395 ], [ 9005, 9015 ] ], [ [ 550, 555 ], [ 8001, 8006 ] ], [ [ 557, 564 ] ], [ [ 600, 615 ], [ 1405, 1420 ], [ 2855, 2870 ] ], [ [ 1033, 1046 ], [ 2094, 2107 ], [ 3190, 3203 ], [ 6106, 6119 ] ], [ [ 2069, 2093 ], [ 7627, 7651 ] ], [ [ 3177, 3189 ], [ 5469, 5481 ] ], [ [ 4430, 4452 ] ], [ [ 4804, 4824 ], [ 4563, 4583 ] ] ]
# -*- coding: utf-8 -*- # # Unless explicitly stated otherwise all files in this repository are licensed # under the Apache 2 License. # # This product includes software developed at Datadog # (https://www.datadoghq.com/). # # Copyright 2018 Datadog, Inc. # """database.py Testing utils for creating database records needed for associations. """ from tests.utils import default_board_id, default_repo_id, default_list_id, \ default_issue_id, default_card_id, default_pull_request_id from app import db from app.models import Board, Issue, List, PullRequest, Repo, Subscription, \ SubscribedList def create_board(): """Create the board needed for the foreign key constraint.""" db.session.add( Board( name='board_name', url=f"https://trello.com/b/{default_board_id}", trello_board_id=default_board_id ) ) def create_repo(): """Create the repo needed for the foreign key constraint.""" db.session.add( Repo( name='repo_name', url='https://github.com/user/repo', github_repo_id=default_repo_id ) ) def create_list(): """Create the list needed for the foreign key constraint.""" db.session.add( List( name='list_name', trello_list_id=default_list_id, board_id=default_board_id ) ) def create_subscription(issue_autocard=True, pull_request_autocard=True): """Create a subscription.""" db.session.add( Subscription( board_id=default_board_id, repo_id=default_repo_id, issue_autocard=issue_autocard, pull_request_autocard=pull_request_autocard ) ) def create_subscribed_list(): """Create a subscribed list to create cards for.""" db.session.add( SubscribedList( subscription_board_id=default_board_id, subscription_repo_id=default_repo_id, list_id=default_list_id ) ) def create_issue(): """Create a GitHub issue representation.""" db.session.add( Issue( name='Test adding a new issue', url='https://github.com/a-organization/a-repo/issues/56', github_issue_id=default_issue_id, repo_id=default_repo_id, trello_board_id=default_board_id, trello_card_id=default_card_id ) ) def create_pull_request(): """Create a GitHub pull request representation.""" db.session.add( PullRequest( name='Update README.md', url='https://github.com/a-organization/a-repo/pulls/57', github_pull_request_id=default_pull_request_id, repo_id=default_repo_id, trello_board_id=default_board_id, trello_card_id=default_card_id ) )
[ [ [ 374, 390 ], [ 801, 817 ], [ 849, 865 ], [ 1354, 1370 ], [ 1559, 1575 ], [ 1895, 1911 ], [ 2345, 2361 ], [ 2778, 2794 ] ], [ [ 392, 407 ], [ 1107, 1122 ], [ 1597, 1612 ], [ 1946, 1961 ], [ 2300, 2315 ], [ 2733, 2748 ] ], [ [ 409, 424 ], [ 1316, 1331 ], [ 1983, 1998 ] ], [ [ 432, 448 ], [ 2262, 2278 ] ], [ [ 450, 465 ], [ 2390, 2405 ], [ 2823, 2838 ] ], [ [ 467, 490 ], [ 2688, 2711 ] ], [ [ 507, 509 ], [ 699, 701 ], [ 972, 974 ], [ 1229, 1231 ], [ 1500, 1502 ], [ 1821, 1823 ], [ 2089, 2091 ], [ 2510, 2512 ] ], [ [ 533, 538 ], [ 723, 728 ] ], [ [ 540, 545 ], [ 2113, 2118 ] ], [ [ 547, 551 ], [ 1253, 1257 ] ], [ [ 553, 564 ], [ 2534, 2545 ] ], [ [ 566, 570 ], [ 996, 1000 ] ], [ [ 572, 584 ], [ 1524, 1536 ] ], [ [ 592, 606 ], [ 1845, 1859 ] ], [ [ 613, 625 ] ], [ [ 888, 899 ] ], [ [ 1145, 1156 ] ], [ [ 1393, 1412 ] ], [ [ 1735, 1757 ] ], [ [ 2021, 2033 ] ], [ [ 2428, 2447 ] ] ]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('postcode_api', '0003_populate_postcode_area'), ] operations = [ migrations.CreateModel( name='LocalAuthority', fields=[ ('gss_code', models.CharField( max_length=9, serialize=False, primary_key=True, db_index=True)), ('name', models.CharField(max_length=128, db_index=True)), ], options={ }, bases=(models.Model,), ), migrations.CreateModel( name='PostcodeGssCode', fields=[ ('postcode_index', models.CharField( max_length=7, db_index=True)), ('local_authority_gss_code', models.CharField( max_length=9, serialize=False, primary_key=True, db_index=True)), ], options={ }, bases=(models.Model,), ), migrations.AlterField( model_name='address', name='postcode_area', field=models.CharField( default=b'', max_length=4, db_index=True, blank=True), preserve_default=True, ), ]
[ [ [ 47, 63 ] ], [ [ 87, 93 ], [ 369, 375 ], [ 518, 524 ], [ 681, 687 ], [ 832, 838 ], [ 946, 952 ], [ 1141, 1147 ], [ 1285, 1291 ] ], [ [ 95, 105 ], [ 124, 134 ], [ 260, 270 ], [ 716, 726 ], [ 1176, 1186 ] ], [ [ 114, 123 ] ] ]
# coding: utf-8 from collections import namedtuple from supervisely_lib.api.module_api import ApiField, ModuleApi from supervisely_lib._utils import camel_to_snake class PluginApi(ModuleApi): _info_sequence = [ApiField.ID, ApiField.NAME, ApiField.DESCRIPTION, ApiField.TYPE, ApiField.DEFAULT_VERSION, ApiField.DOCKER_IMAGE, ApiField.README, ApiField.CONFIGS, ApiField.VERSIONS, ApiField.CREATED_AT, ApiField.UPDATED_AT] Info = namedtuple('PluginInfo', [camel_to_snake(name) for name in _info_sequence]) def get_list(self, team_id, filters=None): return self.get_list_all_pages('plugins.list', {ApiField.TEAM_ID: team_id, ApiField.FILTER: filters or []}) def get_info_by_id(self, team_id, plugin_id): filters = [{"field": ApiField.ID, "operator": "=", "value": plugin_id}] return self._get_info_by_filters(team_id, filters)
[ [ [ 41, 51 ], [ 658, 668 ] ], [ [ 95, 103 ], [ 217, 225 ], [ 252, 260 ], [ 289, 297 ], [ 333, 341 ], [ 370, 378 ], [ 418, 426 ], [ 463, 471 ], [ 502, 510 ], [ 542, 550 ], [ 583, 591 ], [ 626, 634 ], [ 839, 847 ], [ 866, 874 ], [ 979, 987 ] ], [ [ 105, 114 ], [ 183, 192 ] ], [ [ 150, 164 ], [ 684, 698 ] ], [ [ 173, 182 ] ] ]
# Copyright (c) 2017-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. An additional grant of patent rights # can be found in the PATENTS file in the same directory. import torch import torch.nn as nn import torch.nn.functional as F # import torch.utils.checkpoint as cp from fairseq.modules import ( MaskedConvolution, MultiheadMaskedConvolution ) class ExpandingResNet(nn.Module): """ A network of residual convolutional layers""" def __init__(self, num_init_features, args): super().__init__() num_layers = args.num_layers num_features = num_init_features self.reduce_channels = Linear(num_features, num_features // args.divide_channels) if args.divide_channels > 1 else None num_features = num_features // args.divide_channels self.output_channels = num_features self.add_up_scale = 1 / (num_layers + 1) self.residual_blocks = nn.ModuleList([]) for i in range(num_layers): kernel_size = 2 * (i + 1) + 1 print('Layer ', i, kernel_size) self.residual_blocks.append(_ResLayer(num_features, kernel_size, args)) def forward(self, x, encoder_mask=None, decoder_mask=None, incremental_state=None): """ Input : N, Tt, Ts, C Output : N, Tt, Ts, C """ if self.reduce_channels is not None: x = self.reduce_channels(x) add_up = self.add_up_scale * x for layer in self.residual_blocks: x = layer(x, encoder_mask=encoder_mask, decoder_mask=decoder_mask, incremental_state=incremental_state) add_up += self.add_up_scale * x return add_up class _ResLayer(nn.Module): """ Single residual layer num_input_features - number of input channels to the layer kernel_size - size of masked convolution, k x (k // 2) drop_rate - dropout rate """ def __init__(self, num_features, kernel_size, args): super().__init__() self.drop_rate = args.convolution_dropout ffn_dim = args.ffn_dim mid_features = args.reduce_dim stride = args.conv_stride # source dimension stride dilsrc = args.source_dilation diltrg = args.target_dilation resolution = args.maintain_resolution if resolution: if not stride == 1: raise ValueError('Could not maintain the resolution with stride=%d' % stride) # choose the padding accordingly: padding_trg = diltrg * (kernel_size - 1) // 2 padding_src = dilsrc * (kernel_size - 1) // 2 padding = (padding_trg, padding_src) else: # must maintain the target resolution: padding = (diltrg * (kernel_size - 1) // 2, 0) # Reduce dim should be dividible by groups self.conv1 = nn.Conv2d(num_features, mid_features, kernel_size=1, stride=1, bias=False) self.mconv2 = MaskedConvolution( mid_features, num_features, kernel_size, args, padding=padding, ) self.fc1 = Linear(num_features, ffn_dim) self.fc2 = Linear(ffn_dim, num_features) self.scale = 0.5 ** .5 def forward(self, x, encoder_mask=None, decoder_mask=None, incremental_state=None): residual = x x = x.permute(0, 3, 1, 2) x = self.conv1(x) # x = F.relu(x) x = self.mconv2(x, incremental_state) if self.training: if encoder_mask is not None: x = x.masked_fill(encoder_mask.unsqueeze(1).unsqueeze(1), 0) if decoder_mask is not None: x = x.masked_fill(decoder_mask.unsqueeze(1).unsqueeze(-1), 0) if self.drop_rate: x = F.dropout(x, p=self.drop_rate, training=self.training) x = x.permute(0, 2, 3, 1) x = self.scale * (x + residual) # N, C, Tt, Ts # FFN: residual = x x = self.fc1(x) x = F.relu(x) x = self.fc2(x) if self.drop_rate: x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.scale * (x + residual) return x def Linear(in_features, out_features, bias=True): m = nn.Linear(in_features, out_features, bias) nn.init.xavier_uniform_(m.weight) if bias: nn.init.constant_(m.bias, 0.) return m
[ [ [ 293, 298 ] ], [ [ 306, 320 ], [ 499, 501 ], [ 1919, 1921 ], [ 1033, 1035 ], [ 3067, 3069 ], [ 4609, 4611 ], [ 4656, 4658 ], [ 4711, 4713 ] ], [ [ 328, 352 ], [ 4143, 4144 ], [ 4360, 4361 ], [ 4437, 4438 ] ], [ [ 427, 444 ], [ 3289, 3306 ] ], [ [ 446, 472 ] ], [ [ 483, 498 ] ], [ [ 1909, 1918 ], [ 1213, 1222 ] ], [ [ 4555, 4561 ], [ 751, 757 ], [ 3437, 3443 ], [ 3486, 3492 ] ] ]
# from resolve import resolve #################################### #################################### # 以下にプラグインの内容をペーストする # import sys from io import StringIO import unittest class TestClass(unittest.TestCase): def assertIO(self, input, output): stdout, stdin = sys.stdout, sys.stdin sys.stdout, sys.stdin = StringIO(), StringIO(input) resolve() sys.stdout.seek(0) out = sys.stdout.read()[:-1] sys.stdout, sys.stdin = stdout, stdin print('------------') print(out) print('------------') self.assertEqual(out, output) def test_入力例_1(self): input = """3 3 ... ... ...""" output = """4""" self.assertIO(input, output) def test_入力例_2(self): input = """3 5 ...#. .###. .#...""" output = """4""" self.assertIO(input, output) def test_入力例_3(self): input = """20 20 .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... .................... ....................""" output = """38""" self.assertIO(input, output) if __name__ == "__main__": unittest.main()
[ [ [ 22, 29 ], [ 370, 377 ] ], [ [ 136, 139 ], [ 280, 283 ], [ 292, 295 ], [ 388, 391 ], [ 421, 424 ] ], [ [ 155, 163 ], [ 334, 342 ], [ 346, 354 ] ], [ [ 171, 179 ], [ 197, 205 ], [ 1435, 1443 ] ], [ [ 187, 196 ] ] ]
from catalyst.contrib.datasets.misc_cv import ImageClassificationDataset class Imagewang(ImageClassificationDataset): """ `Imagewang <https://github.com/fastai/imagenette#image%E7%BD%91>`_ Dataset. .. note:: catalyst[cv] required for this dataset. """ name = "imagewang" resources = [ ( "https://s3.amazonaws.com/fast-ai-imageclas/imagewang.tgz", "46f9749616a29837e7cd67b103396f6e", ) ] class Imagewang160(ImageClassificationDataset): """ `Imagewang <https://github.com/fastai/imagenette#image%E7%BD%91>`_ Dataset with images resized so that the shortest size is 160 px. .. note:: catalyst[cv] required for this dataset. """ name = "imagewang-160" resources = [ ( "https://s3.amazonaws.com/fast-ai-imageclas/imagewang-160.tgz", "1dc388d37d1dc52836c06749e14e37bc", ) ] class Imagewang320(ImageClassificationDataset): """ `Imagewang <https://github.com/fastai/imagenette#image%E7%BD%91>`_ Dataset with images resized so that the shortest size is 320 px. .. note:: catalyst[cv] required for this dataset. """ name = "imagewang-320" resources = [ ( "https://s3.amazonaws.com/fast-ai-imageclas/imagewang-320.tgz", "ff01d7c126230afce776bdf72bda87e6", ) ] __all__ = ["Imagewang", "Imagewang160", "Imagewang320"]
[ [ [ 46, 72 ], [ 91, 117 ], [ 488, 514 ], [ 953, 979 ] ], [ [ 81, 90 ] ], [ [ 475, 487 ] ], [ [ 940, 952 ] ], [ [ 1399, 1406 ] ] ]
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import print_function import sys import warnings if sys.version >= '3': basestring = unicode = str from pyspark import since from pyspark.rdd import ignore_unicode_prefix from pyspark.sql.session import _monkey_patch_RDD, SparkSession from pyspark.sql.dataframe import DataFrame from pyspark.sql.readwriter import DataFrameReader from pyspark.sql.streaming import DataStreamReader from pyspark.sql.types import Row, StringType from pyspark.sql.utils import install_exception_handler __all__ = ["SQLContext", "HiveContext", "UDFRegistration"] class SQLContext(object): """The entry point for working with structured data (rows and columns) in Spark, in Spark 1.x. As of Spark 2.0, this is replaced by :class:`SparkSession`. However, we are keeping the class here for backward compatibility. A SQLContext can be used create :class:`DataFrame`, register :class:`DataFrame` as tables, execute SQL over tables, cache tables, and read parquet files. :param sparkContext: The :class:`SparkContext` backing this SQLContext. :param sparkSession: The :class:`SparkSession` around which this SQLContext wraps. :param jsqlContext: An optional JVM Scala SQLContext. If set, we do not instantiate a new SQLContext in the JVM, instead we make all calls to this object. """ _instantiatedContext = None @ignore_unicode_prefix def __init__(self, sparkContext, sparkSession=None, jsqlContext=None): """Creates a new SQLContext. >>> from datetime import datetime >>> sqlContext = SQLContext(sc) >>> allTypes = sc.parallelize([Row(i=1, s="string", d=1.0, l=1, ... b=True, list=[1, 2, 3], dict={"s": 0}, row=Row(a=1), ... time=datetime(2014, 8, 1, 14, 1, 5))]) >>> df = allTypes.toDF() >>> df.createOrReplaceTempView("allTypes") >>> sqlContext.sql('select i+1, d+1, not b, list[1], dict["s"], time, row.a ' ... 'from allTypes where b and i > 0').collect() [Row((i + CAST(1 AS BIGINT))=2, (d + CAST(1 AS DOUBLE))=2.0, (NOT b)=False, list[1]=2, \ dict[s]=0, time=datetime.datetime(2014, 8, 1, 14, 1, 5), a=1)] >>> df.rdd.map(lambda x: (x.i, x.s, x.d, x.l, x.b, x.time, x.row.a, x.list)).collect() [(1, u'string', 1.0, 1, True, datetime.datetime(2014, 8, 1, 14, 1, 5), 1, [1, 2, 3])] """ self._sc = sparkContext self._jsc = self._sc._jsc self._jvm = self._sc._jvm if sparkSession is None: sparkSession = SparkSession(sparkContext) if jsqlContext is None: jsqlContext = sparkSession._jwrapped self.sparkSession = sparkSession self._jsqlContext = jsqlContext _monkey_patch_RDD(self.sparkSession) install_exception_handler() if SQLContext._instantiatedContext is None: SQLContext._instantiatedContext = self @property def _ssql_ctx(self): """Accessor for the JVM Spark SQL context. Subclasses can override this property to provide their own JVM Contexts. """ return self._jsqlContext @classmethod @since(1.6) def getOrCreate(cls, sc): """ Get the existing SQLContext or create a new one with given SparkContext. :param sc: SparkContext """ if cls._instantiatedContext is None: jsqlContext = sc._jvm.SQLContext.getOrCreate(sc._jsc.sc()) sparkSession = SparkSession(sc, jsqlContext.sparkSession()) cls(sc, sparkSession, jsqlContext) return cls._instantiatedContext @since(1.6) def newSession(self): """ Returns a new SQLContext as new session, that has separate SQLConf, registered temporary views and UDFs, but shared SparkContext and table cache. """ return self.__class__(self._sc, self.sparkSession.newSession()) @since(1.3) def setConf(self, key, value): """Sets the given Spark SQL configuration property. """ self.sparkSession.conf.set(key, value) @ignore_unicode_prefix @since(1.3) def getConf(self, key, defaultValue=None): """Returns the value of Spark SQL configuration property for the given key. If the key is not set and defaultValue is not None, return defaultValue. If the key is not set and defaultValue is None, return the system default value. >>> sqlContext.getConf("spark.sql.shuffle.partitions") u'200' >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'10' >>> sqlContext.setConf("spark.sql.shuffle.partitions", u"50") >>> sqlContext.getConf("spark.sql.shuffle.partitions", u"10") u'50' """ return self.sparkSession.conf.get(key, defaultValue) @property @since("1.3.1") def udf(self): """Returns a :class:`UDFRegistration` for UDF registration. :return: :class:`UDFRegistration` """ return UDFRegistration(self) @since(1.4) def range(self, start, end=None, step=1, numPartitions=None): """ Create a :class:`DataFrame` with single :class:`pyspark.sql.types.LongType` column named ``id``, containing elements in a range from ``start`` to ``end`` (exclusive) with step value ``step``. :param start: the start value :param end: the end value (exclusive) :param step: the incremental step (default: 1) :param numPartitions: the number of partitions of the DataFrame :return: :class:`DataFrame` >>> sqlContext.range(1, 7, 2).collect() [Row(id=1), Row(id=3), Row(id=5)] If only one argument is specified, it will be used as the end value. >>> sqlContext.range(3).collect() [Row(id=0), Row(id=1), Row(id=2)] """ return self.sparkSession.range(start, end, step, numPartitions) @ignore_unicode_prefix @since(1.2) def registerFunction(self, name, f, returnType=StringType()): """Registers a python function (including lambda function) as a UDF so it can be used in SQL statements. In addition to a name and the function itself, the return type can be optionally specified. When the return type is not given it default to a string and conversion will automatically be done. For any other return type, the produced object must match the specified type. :param name: name of the UDF :param f: python function :param returnType: a :class:`pyspark.sql.types.DataType` object >>> sqlContext.registerFunction("stringLengthString", lambda x: len(x)) >>> sqlContext.sql("SELECT stringLengthString('test')").collect() [Row(stringLengthString(test)=u'4')] >>> from pyspark.sql.types import IntegerType >>> sqlContext.registerFunction("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] >>> from pyspark.sql.types import IntegerType >>> sqlContext.udf.register("stringLengthInt", lambda x: len(x), IntegerType()) >>> sqlContext.sql("SELECT stringLengthInt('test')").collect() [Row(stringLengthInt(test)=4)] """ self.sparkSession.catalog.registerFunction(name, f, returnType) # TODO(andrew): delete this once we refactor things to take in SparkSession def _inferSchema(self, rdd, samplingRatio=None): """ Infer schema from an RDD of Row or tuple. :param rdd: an RDD of Row or tuple :param samplingRatio: sampling ratio, or no sampling (default) :return: :class:`pyspark.sql.types.StructType` """ return self.sparkSession._inferSchema(rdd, samplingRatio) @since(1.3) @ignore_unicode_prefix def createDataFrame(self, data, schema=None, samplingRatio=None): """ Creates a :class:`DataFrame` from an :class:`RDD`, a list or a :class:`pandas.DataFrame`. When ``schema`` is a list of column names, the type of each column will be inferred from ``data``. When ``schema`` is ``None``, it will try to infer the schema (column names and types) from ``data``, which should be an RDD of :class:`Row`, or :class:`namedtuple`, or :class:`dict`. When ``schema`` is :class:`pyspark.sql.types.DataType` or :class:`pyspark.sql.types.StringType`, it must match the real data, or an exception will be thrown at runtime. If the given schema is not :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` as its only field, and the field name will be "value", each record will also be wrapped into a tuple, which can be converted to row later. If schema inference is needed, ``samplingRatio`` is used to determined the ratio of rows used for schema inference. The first row will be used if ``samplingRatio`` is ``None``. :param data: an RDD of any kind of SQL data representation(e.g. :class:`Row`, :class:`tuple`, ``int``, ``boolean``, etc.), or :class:`list`, or :class:`pandas.DataFrame`. :param schema: a :class:`pyspark.sql.types.DataType` or a :class:`pyspark.sql.types.StringType` or a list of column names, default is None. The data type string format equals to :class:`pyspark.sql.types.DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`pyspark.sql.types.ByteType`. We can also use ``int`` as a short name for :class:`pyspark.sql.types.IntegerType`. :param samplingRatio: the sample ratio of rows used for inferring :return: :class:`DataFrame` .. versionchanged:: 2.0 The ``schema`` parameter can be a :class:`pyspark.sql.types.DataType` or a :class:`pyspark.sql.types.StringType` after 2.0. If it's not a :class:`pyspark.sql.types.StructType`, it will be wrapped into a :class:`pyspark.sql.types.StructType` and each record will also be wrapped into a tuple. >>> l = [('Alice', 1)] >>> sqlContext.createDataFrame(l).collect() [Row(_1=u'Alice', _2=1)] >>> sqlContext.createDataFrame(l, ['name', 'age']).collect() [Row(name=u'Alice', age=1)] >>> d = [{'name': 'Alice', 'age': 1}] >>> sqlContext.createDataFrame(d).collect() [Row(age=1, name=u'Alice')] >>> rdd = sc.parallelize(l) >>> sqlContext.createDataFrame(rdd).collect() [Row(_1=u'Alice', _2=1)] >>> df = sqlContext.createDataFrame(rdd, ['name', 'age']) >>> df.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql import Row >>> Person = Row('name', 'age') >>> person = rdd.map(lambda r: Person(*r)) >>> df2 = sqlContext.createDataFrame(person) >>> df2.collect() [Row(name=u'Alice', age=1)] >>> from pyspark.sql.types import * >>> schema = StructType([ ... StructField("name", StringType(), True), ... StructField("age", IntegerType(), True)]) >>> df3 = sqlContext.createDataFrame(rdd, schema) >>> df3.collect() [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(df.toPandas()).collect() # doctest: +SKIP [Row(name=u'Alice', age=1)] >>> sqlContext.createDataFrame(pandas.DataFrame([[1, 2]])).collect() # doctest: +SKIP [Row(0=1, 1=2)] >>> sqlContext.createDataFrame(rdd, "a: string, b: int").collect() [Row(a=u'Alice', b=1)] >>> rdd = rdd.map(lambda row: row[1]) >>> sqlContext.createDataFrame(rdd, "int").collect() [Row(value=1)] >>> sqlContext.createDataFrame(rdd, "boolean").collect() # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... Py4JJavaError: ... """ return self.sparkSession.createDataFrame(data, schema, samplingRatio) @since(1.3) def registerDataFrameAsTable(self, df, tableName): """Registers the given :class:`DataFrame` as a temporary table in the catalog. Temporary tables exist only during the lifetime of this instance of :class:`SQLContext`. >>> sqlContext.registerDataFrameAsTable(df, "table1") """ df.createOrReplaceTempView(tableName) @since(1.6) def dropTempTable(self, tableName): """ Remove the temp table from catalog. >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> sqlContext.dropTempTable("table1") """ self.sparkSession.catalog.dropTempView(tableName) @since(1.3) def createExternalTable(self, tableName, path=None, source=None, schema=None, **options): """Creates an external table based on the dataset in a data source. It returns the DataFrame associated with the external table. The data source is specified by the ``source`` and a set of ``options``. If ``source`` is not specified, the default data source configured by ``spark.sql.sources.default`` will be used. Optionally, a schema can be provided as the schema of the returned :class:`DataFrame` and created external table. :return: :class:`DataFrame` """ return self.sparkSession.catalog.createExternalTable( tableName, path, source, schema, **options) @ignore_unicode_prefix @since(1.0) def sql(self, sqlQuery): """Returns a :class:`DataFrame` representing the result of the given query. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.sql("SELECT field1 AS f1, field2 as f2 from table1") >>> df2.collect() [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')] """ return self.sparkSession.sql(sqlQuery) @since(1.0) def table(self, tableName): """Returns the specified table as a :class:`DataFrame`. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.table("table1") >>> sorted(df.collect()) == sorted(df2.collect()) True """ return self.sparkSession.table(tableName) @ignore_unicode_prefix @since(1.3) def tables(self, dbName=None): """Returns a :class:`DataFrame` containing names of tables in the given database. If ``dbName`` is not specified, the current database will be used. The returned DataFrame has two columns: ``tableName`` and ``isTemporary`` (a column with :class:`BooleanType` indicating if a table is a temporary one or not). :param dbName: string, name of the database to use. :return: :class:`DataFrame` >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> df2 = sqlContext.tables() >>> df2.filter("tableName = 'table1'").first() Row(tableName=u'table1', isTemporary=True) """ if dbName is None: return DataFrame(self._ssql_ctx.tables(), self) else: return DataFrame(self._ssql_ctx.tables(dbName), self) @since(1.3) def tableNames(self, dbName=None): """Returns a list of names of tables in the database ``dbName``. :param dbName: string, name of the database to use. Default to the current database. :return: list of table names, in string >>> sqlContext.registerDataFrameAsTable(df, "table1") >>> "table1" in sqlContext.tableNames() True >>> "table1" in sqlContext.tableNames("default") True """ if dbName is None: return [name for name in self._ssql_ctx.tableNames()] else: return [name for name in self._ssql_ctx.tableNames(dbName)] @since(1.0) def cacheTable(self, tableName): """Caches the specified table in-memory.""" self._ssql_ctx.cacheTable(tableName) @since(1.0) def uncacheTable(self, tableName): """Removes the specified table from the in-memory cache.""" self._ssql_ctx.uncacheTable(tableName) @since(1.3) def clearCache(self): """Removes all cached tables from the in-memory cache. """ self._ssql_ctx.clearCache() @property @since(1.4) def read(self): """ Returns a :class:`DataFrameReader` that can be used to read data in as a :class:`DataFrame`. :return: :class:`DataFrameReader` """ return DataFrameReader(self) @property @since(2.0) def readStream(self): """ Returns a :class:`DataStreamReader` that can be used to read data streams as a streaming :class:`DataFrame`. .. note:: Experimental. :return: :class:`DataStreamReader` >>> text_sdf = sqlContext.readStream.text(tempfile.mkdtemp()) >>> text_sdf.isStreaming True """ return DataStreamReader(self) @property @since(2.0) def streams(self): """Returns a :class:`StreamingQueryManager` that allows managing all the :class:`StreamingQuery` StreamingQueries active on `this` context. .. note:: Experimental. """ from pyspark.sql.streaming import StreamingQueryManager return StreamingQueryManager(self._ssql_ctx.streams()) class HiveContext(SQLContext): """A variant of Spark SQL that integrates with data stored in Hive. Configuration for Hive is read from ``hive-site.xml`` on the classpath. It supports running both SQL and HiveQL commands. :param sparkContext: The SparkContext to wrap. :param jhiveContext: An optional JVM Scala HiveContext. If set, we do not instantiate a new :class:`HiveContext` in the JVM, instead we make all calls to this object. .. note:: Deprecated in 2.0.0. Use SparkSession.builder.enableHiveSupport().getOrCreate(). """ def __init__(self, sparkContext, jhiveContext=None): warnings.warn( "HiveContext is deprecated in Spark 2.0.0. Please use " + "SparkSession.builder.enableHiveSupport().getOrCreate() instead.", DeprecationWarning) if jhiveContext is None: sparkSession = SparkSession.builder.enableHiveSupport().getOrCreate() else: sparkSession = SparkSession(sparkContext, jhiveContext.sparkSession()) SQLContext.__init__(self, sparkContext, sparkSession, jhiveContext) @classmethod def _createForTesting(cls, sparkContext): """(Internal use only) Create a new HiveContext for testing. All test code that touches HiveContext *must* go through this method. Otherwise, you may end up launching multiple derby instances and encounter with incredibly confusing error messages. """ jsc = sparkContext._jsc.sc() jtestHive = sparkContext._jvm.org.apache.spark.sql.hive.test.TestHiveContext(jsc, False) return cls(sparkContext, jtestHive) def refreshTable(self, tableName): """Invalidate and refresh all the cached the metadata of the given table. For performance reasons, Spark SQL or the external data source library it uses might cache certain metadata about a table, such as the location of blocks. When those change outside of Spark SQL, users should call this function to invalidate the cache. """ self._ssql_ctx.refreshTable(tableName) class UDFRegistration(object): """Wrapper for user-defined function registration.""" def __init__(self, sqlContext): self.sqlContext = sqlContext def register(self, name, f, returnType=StringType()): return self.sqlContext.registerFunction(name, f, returnType) register.__doc__ = SQLContext.registerFunction.__doc__ def _test(): import os import doctest import tempfile from pyspark.context import SparkContext from pyspark.sql import Row, SQLContext import pyspark.sql.context os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.sql.context.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['tempfile'] = tempfile globs['os'] = os globs['sc'] = sc globs['sqlContext'] = SQLContext(sc) globs['rdd'] = rdd = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) globs['df'] = rdd.toDF() jsonStrings = [ '{"field1": 1, "field2": "row1", "field3":{"field4":11}}', '{"field1" : 2, "field3":{"field4":22, "field5": [10, 11]},' '"field6":[{"field7": "row2"}]}', '{"field1" : null, "field2": "row3", ' '"field3":{"field4":33, "field5": []}}' ] globs['jsonStrings'] = jsonStrings globs['json'] = sc.parallelize(jsonStrings) (failure_count, test_count) = doctest.testmod( pyspark.sql.context, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE) globs['sc'].stop() if failure_count: exit(-1) if __name__ == "__main__": _test()
[ [ [ 808, 822 ] ], [ [ 830, 833 ], [ 854, 857 ] ], [ [ 841, 849 ], [ 19150, 19158 ] ], [ [ 878, 888 ] ], [ [ 891, 898 ] ], [ [ 926, 931 ], [ 3960, 3965 ], [ 4420, 4425 ], [ 4729, 4734 ], [ 4927, 4932 ], [ 5658, 5663 ], [ 5858, 5863 ], [ 6782, 6787 ], [ 8664, 8669 ], [ 13083, 13088 ], [ 13461, 13466 ], [ 13746, 13751 ], [ 14540, 14545 ], [ 15015, 15020 ], [ 15433, 15438 ], [ 16311, 16316 ], [ 16967, 16972 ], [ 17118, 17123 ], [ 17289, 17294 ], [ 17449, 17454 ], [ 17713, 17718 ], [ 18151, 18156 ] ], [ [ 956, 977 ], [ 2154, 2175 ], [ 4900, 4921 ], [ 6755, 6776 ], [ 8680, 8701 ], [ 14513, 14534 ], [ 15406, 15427 ] ], [ [ 1010, 1027 ], [ 3535, 3552 ] ], [ [ 1029, 1041 ], [ 3338, 3350 ], [ 4282, 4294 ], [ 19406, 19418 ], [ 19502, 19514 ] ], [ [ 1076, 1085 ], [ 16184, 16193 ], [ 16258, 16267 ] ], [ [ 1121, 1136 ], [ 17671, 17686 ] ], [ [ 1171, 1187 ], [ 18108, 18124 ] ], [ [ 1218, 1221 ] ], [ [ 1223, 1233 ], [ 6844, 6854 ], [ 20843, 20853 ] ], [ [ 1264, 1289 ], [ 3580, 3605 ] ], [ [ 1291, 1298 ] ], [ [ 1358, 1368 ], [ 18533, 18543 ], [ 20951, 20961 ], [ 3619, 3629 ], [ 3672, 3682 ], [ 19566, 19576 ] ], [ [ 18521, 18532 ] ], [ [ 20642, 20657 ], [ 5830, 5845 ] ], [ [ 20993, 20998 ], [ 22264, 22269 ] ] ]
import unittest from src.google_foobar.P008_carrotland.solution_01 import answer class TestSolution(unittest.TestCase): def testcase_001(self): vertices = [[2, 3], [6, 9], [10, 160]] expected = 289 self.assertEqual(answer(vertices), expected) def testcase_002(self): vertices = [[91207, 89566], [-88690, -83026], [67100, 47194]] expected = 1730960165 self.assertEqual(answer(vertices), expected) def testcase_003(self): vertices = [[0, 0], [0, 1], [1, 0]] expected = 0 self.assertEqual(answer(vertices), expected) # Illustrated as problem_analysis_triangle_01.png def testcase_004(self): vertices = [[-1, -1], [1, 0], [0, 1]] expected = 1 self.assertEqual(answer(vertices), expected) # Illustrated as problem_analysis_triangle_02.png def testcase_005(self): vertices = [[0, 0], [0, 10], [10, 0]] expected = 36 self.assertEqual(answer(vertices), expected) # Illustrated as problem_analysis_triangle_03.png def testcase_006(self): vertices = [[1, 1], [4, 10], [10, 6]] expected = 31 self.assertEqual(answer(vertices), expected) # Illustrated as problem_analysis_triangle_04.png def testcase_007(self): vertices = [[-5, 4], [4, 6], [3, -3]] expected = 39 self.assertEqual(answer(vertices), expected) # Illustrated as problem_analysis_triangle_05.png def testcase_008(self): vertices = [[-5, -3], [5, -3], [0, 6]] expected = 40 self.assertEqual(answer(vertices), expected) if __name__ == '__main__': unittest.main()
[ [ [ 7, 15 ], [ 103, 111 ], [ 1656, 1664 ] ], [ [ 75, 81 ], [ 246, 252 ], [ 428, 434 ], [ 575, 581 ], [ 778, 784 ], [ 982, 988 ], [ 1186, 1192 ], [ 1390, 1396 ], [ 1595, 1601 ] ], [ [ 90, 102 ] ] ]
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Tests for the testing base code.""" from oslo_config import cfg from oslo_log import log as logging import oslo_messaging as messaging import six from jacket import rpc from jacket.compute import test from jacket.tests.compute import fixtures LOG = logging.getLogger(__name__) CONF = cfg.CONF CONF.import_opt('use_local', 'compute.conductor.api', group='conductor') class IsolationTestCase(test.TestCase): """Ensure that things are cleaned up after failed tests. These tests don't really do much here, but if isolation fails a bunch of other tests should fail. """ def test_service_isolation(self): self.flags(use_local=True, group='conductor') self.useFixture(fixtures.ServiceFixture('compute')) def test_rpc_consumer_isolation(self): class NeverCalled(object): def __getattribute__(*args): assert False, "I should never get called." server = rpc.get_server(messaging.Target(topic='compute', server=CONF.host), endpoints=[NeverCalled()]) server.start() class JsonTestCase(test.NoDBTestCase): def test_json_equal(self): expected = { "employees": [ {"firstName": "Anna", "lastName": "Smith"}, {"firstName": "John", "lastName": "Doe"}, {"firstName": "Peter", "lastName": "Jones"} ], "locations": set(['Boston', 'Mumbai', 'Beijing', 'Perth']) } observed = """{ "employees": [ { "lastName": "Doe", "firstName": "John" }, { "lastName": "Smith", "firstName": "Anna" }, { "lastName": "Jones", "firstName": "Peter" } ], "locations": [ "Perth", "Boston", "Mumbai", "Beijing" ] }""" self.assertJsonEqual(expected, observed) def test_json_equal_fail_on_length(self): expected = { 'top': { 'l1': { 'l2': ['a', 'b', 'c'] } } } observed = { 'top': { 'l1': { 'l2': ['c', 'a', 'b', 'd'] } } } try: self.assertJsonEqual(expected, observed) except Exception as e: # error reported is going to be a cryptic length failure # on the level2 structure. self.assertEqual(e.mismatch.describe(), "3 != 4") self.assertIn( "Matchee: {'top': {'l1': {'l2': ['c', 'a', 'b', 'd']}}}", six.text_type(e)) self.assertIn( "Matcher: {'top': {'l1': {'l2': ['a', 'b', 'c']}}}", six.text_type(e)) else: self.fail("This should have raised a mismatch exception") def test_json_equal_fail_on_inner(self): expected = { 'top': { 'l1': { 'l2': ['a', 'b', 'c'] } } } observed = { 'top': { 'l1': { 'l2': ['c', 'a', 'd'] } } } try: self.assertJsonEqual(expected, observed) except Exception as e: # error reported is going to be a cryptic length failure # on the level2 structure. self.assertEqual(e.mismatch.describe(), "'b' != 'c'") self.assertIn( "Matchee: {'top': {'l1': {'l2': ['c', 'a', 'd']}}}", six.text_type(e)) self.assertIn( "Matcher: {'top': {'l1': {'l2': ['a', 'b', 'c']}}}", six.text_type(e)) else: self.fail("This should have raised a mismatch exception") class BadLogTestCase(test.NoDBTestCase): """Make sure a mis-formatted debug log will get caught.""" def test_bad_debug_log(self): self.assertRaises(KeyError, LOG.debug, "this is a misformated %(log)s", {'nothing': 'nothing'}) class MatchTypeTestCase(test.NoDBTestCase): def test_match_type_simple(self): matcher = test.MatchType(dict) self.assertEqual(matcher, {}) self.assertEqual(matcher, {"hello": "world"}) self.assertEqual(matcher, {"hello": ["world"]}) self.assertNotEqual(matcher, []) self.assertNotEqual(matcher, [{"hello": "world"}]) self.assertNotEqual(matcher, 123) self.assertNotEqual(matcher, "foo") def test_match_type_object(self): class Hello(object): pass class World(object): pass matcher = test.MatchType(Hello) self.assertEqual(matcher, Hello()) self.assertNotEqual(matcher, World()) self.assertNotEqual(matcher, 123) self.assertNotEqual(matcher, "foo")
[ [ [ 796, 799 ], [ 1023, 1026 ] ], [ [ 821, 835 ], [ 987, 994 ] ], [ [ 843, 870 ], [ 1689, 1698 ] ], [ [ 878, 881 ], [ 3459, 3462 ], [ 3589, 3592 ], [ 4420, 4423 ], [ 4550, 4553 ] ], [ [ 902, 905 ], [ 1674, 1677 ] ], [ [ 933, 937 ], [ 1131, 1135 ], [ 1894, 1898 ], [ 4675, 4679 ], [ 4935, 4939 ], [ 5012, 5016 ], [ 5519, 5523 ] ], [ [ 971, 979 ], [ 1440, 1448 ] ], [ [ 981, 984 ], [ 4841, 4844 ] ], [ [ 1016, 1020 ], [ 1032, 1036 ], [ 1779, 1783 ] ], [ [ 1113, 1130 ] ], [ [ 1881, 1893 ] ], [ [ 4660, 4674 ] ], [ [ 4917, 4934 ] ] ]
from keras.layers import Input from keras.layers.merge import Concatenate from keras.models import Model from keras.optimizers import Adam from .keras_base import KerasBaseExp from .keras_base import exp_bag_of_strokes from .blocks import fc_branch, final_type1 class mlp_type1(KerasBaseExp): def initialize_model(self, in_dims, out_dims): input_layer = [Input(shape=(d, )) for d in in_dims] if len(input_layer) > 1: layer = Concatenate()(input_layer) else: layer = input_layer[0] layer = fc_branch(layer, self.decay) self.model = Model(inputs=input_layer, outputs=final_type1(layer, out_dims)) opt = Adam(lr=self.learning_rate) self.model.compile(optimizer=opt, metrics=['accuracy'], loss='categorical_crossentropy') class EXP1(mlp_type1, exp_bag_of_strokes): pass
[ [ [ 25, 30 ], [ 371, 376 ] ], [ [ 62, 73 ], [ 462, 473 ] ], [ [ 99, 104 ], [ 606, 611 ] ], [ [ 134, 138 ], [ 684, 688 ] ], [ [ 164, 176 ], [ 282, 294 ] ], [ [ 201, 219 ], [ 833, 851 ] ], [ [ 241, 250 ], [ 555, 564 ] ], [ [ 252, 263 ], [ 640, 651 ] ], [ [ 272, 281 ], [ 822, 831 ] ], [ [ 817, 821 ] ] ]
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2021 Infoblox, Inc. # Authors: Amit Mishra (@amishra2-infoblox), Vedant Sethia (@vedantsethia) # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) try: import requests import json import ipaddress except: raise ImportError("Requests module not found") __metaclass__ = type class Request(object): '''API Request class for Infoblox BloxOne's CRUD API operations ''' def __init__(self,baseUrl, token): '''Initialize the API class with baseUrl and API token ''' self.baseUrl = baseUrl self.token = token def get(self,endpoint,data={}): '''GET API request object ''' try: headers = {'Authorization': 'Token {}'.format(self.token)} url = '{}{}'.format(self.baseUrl, endpoint) result = requests.get(url, json.dumps(data), headers=headers) except: raise Exception("API request failed") if result.status_code in [200,201,204]: return (False, False, result.json()) elif result.status_code == 401: return (True, False, result.content) else: meta = {'status': result.status_code, 'response': result.json()} return (True, False, meta) def create(self,endpoint,data={},body=True): '''POST API request object ''' try: headers = {'Authorization': 'Token {}'.format(self.token)} url = '{}{}'.format(self.baseUrl, endpoint) if(body==True): result = requests.post(url, json.dumps(data), headers=headers) else: result = requests.post(url, headers=headers) except: raise Exception("API request failed") if result.status_code in [200,201,204]: return (False, False, result.json()) elif result.status_code == 401: return (True, False, result.content) else: meta = {'status': result.status_code, 'response': result.json()} return (True, False, meta) def update(self,endpoint,data={}): '''PATCH API request object ''' try: headers = {'Authorization': 'Token {}'.format(self.token)} url = '{}{}'.format(self.baseUrl, endpoint) result = requests.patch(url, json.dumps(data), headers=headers) except: raise Exception("API request failed") if result.status_code in [200,201,204]: return (False, False, result.json()) elif result.status_code == 401: return (True, False, result.content) else: meta = {'status': result.status_code, 'response': result.json()} return (True, False, meta) def put(self,endpoint,data={}): '''PUT API request object ''' try: headers = {'Authorization': 'Token {}'.format(self.token)} url = '{}{}'.format(self.baseUrl, endpoint) result = requests.put(url, json.dumps(data), headers=headers) except: raise Exception("API request failed") if result.status_code in [200,201,204]: return (False, False, result.json()) elif result.status_code == 401: return (True, False, result.content) else: meta = {'status': result.status_code, 'response': result.json()} return (True, False, meta) def delete(self,endpoint,data={}, body=False): '''DELETE API request object ''' try: headers = {'Authorization': 'Token {}'.format(self.token)} url = '{}{}'.format(self.baseUrl, endpoint) if(body==True): result = requests.delete(url, json.dumps(data), headers=headers) else: result = requests.delete(url, headers=headers) except: raise Exception("API request failed") if result.status_code in [200,201,204]: return (False, False, result.json()) elif result.status_code == 401: return (True, False, result.content) else: meta = {'status': result.status_code, 'response': result.json()} return (True, False, meta) class Utilities(object): '''Helper Functions for BloxOne DDI object operations ''' def __init__(self): '''Initializes the object ''' pass def normalize_ip(self, address, cidr=-1): '''Validates the IP Address ''' address = address.split('/') try: ipaddress.ip_address(address[0]) except: return ['',''] if cidr != -1 and int(cidr) < 32: return [address[0],cidr] elif len(address) == 2: return [address[0],address[1]] else: return [address[0],''] def flatten_dict_object(self,key,data): '''Modify the dictionary input object ''' payload = {} for i in data[key]: for k,v in i.items(): payload[k]=v return payload def dhcp_options(self, key, data, dhcp_option_codes): """Create a list of DHCP option dicts""" payload = [] for i in data[key]: for k, v in i.items(): dhcp_option = {} for item in dhcp_option_codes: if item["name"] == k: dhcp_option_code = item["id"] break if dhcp_option_code: dhcp_option["option_code"] = dhcp_option_code dhcp_option["option_value"] = v dhcp_option["type"] = "option" payload.append(dhcp_option) return payload
[ [ [ 271, 286 ] ], [ [ 288, 296 ] ], [ [ 298, 312 ] ], [ [ 331, 339 ], [ 974, 982 ], [ 1708, 1716 ], [ 1805, 1813 ], [ 2481, 2489 ], [ 3179, 3187 ], [ 3929, 3937 ], [ 4028, 4036 ] ], [ [ 351, 355 ], [ 992, 996 ], [ 1727, 1731 ], [ 2501, 2505 ], [ 3197, 3201 ], [ 3950, 3954 ] ], [ [ 367, 376 ], [ 4797, 4806 ] ], [ [ 437, 450 ] ], [ [ 465, 472 ] ], [ [ 4472, 4481 ] ] ]
# Copyright © 2019 Province of British Columbia # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """API endpoints for managing a Product resource.""" import json from flask_restx import Namespace, Resource, cors from auth_api import status as http_status from auth_api.exceptions import BusinessException from auth_api.services import Product as ProductService from auth_api.tracer import Tracer from auth_api.utils.util import cors_preflight API = Namespace('products', description='Endpoints for products management') TRACER = Tracer.get_instance() @cors_preflight('GET,OPTIONS') @API.route('', methods=['GET', 'OPTIONS']) class Products(Resource): """Resource for managing products.""" @staticmethod @TRACER.trace() @cors.crossdomain(origin='*') def get(): """Get a list of all products.""" try: response, status = json.dumps(ProductService.get_products()), http_status.HTTP_200_OK except BusinessException as exception: response, status = {'code': exception.code, 'message': exception.message}, exception.status_code return response, status
[ [ [ 655, 659 ], [ 1371, 1375 ] ], [ [ 685, 694 ], [ 951, 960 ] ], [ [ 696, 704 ], [ 1144, 1152 ] ], [ [ 706, 710 ], [ 1241, 1245 ] ], [ [ 733, 754 ], [ 1414, 1425 ] ], [ [ 787, 804 ], [ 1453, 1470 ] ], [ [ 835, 860 ], [ 1382, 1396 ] ], [ [ 889, 895 ], [ 1031, 1037 ] ], [ [ 928, 942 ], [ 1056, 1070 ] ], [ [ 945, 948 ], [ 1087, 1090 ] ], [ [ 1022, 1028 ], [ 1221, 1227 ] ], [ [ 1135, 1143 ] ] ]
"""Autocorrelation plot of data.""" from ..data import convert_to_dataset from ..labels import BaseLabeller from ..sel_utils import xarray_var_iter from ..rcparams import rcParams from ..utils import _var_names from .plot_utils import default_grid, filter_plotters_list, get_plotting_function def plot_autocorr( data, var_names=None, filter_vars=None, max_lag=None, combined=False, grid=None, figsize=None, textsize=None, labeller=None, ax=None, backend=None, backend_config=None, backend_kwargs=None, show=None, ): """Bar plot of the autocorrelation function for a sequence of data. Useful in particular for posteriors from MCMC samples which may display correlation. Parameters ---------- data: obj Any object that can be converted to an az.InferenceData object Refer to documentation of az.convert_to_dataset for details var_names: list of variable names, optional Variables to be plotted, if None all variable are plotted. Prefix the variables by `~` when you want to exclude them from the plot. Vector-value stochastics are handled automatically. filter_vars: {None, "like", "regex"}, optional, default=None If `None` (default), interpret var_names as the real variables names. If "like", interpret var_names as substrings of the real variables names. If "regex", interpret var_names as regular expressions on the real variables names. A la `pandas.filter`. max_lag: int, optional Maximum lag to calculate autocorrelation. Defaults to 100 or num draws, whichever is smaller combined: bool Flag for combining multiple chains into a single chain. If False (default), chains will be plotted separately. grid : tuple Number of rows and columns. Defaults to None, the rows and columns are automatically inferred. figsize: tuple Figure size. If None it will be defined automatically. Note this is not used if ax is supplied. textsize: float Text size scaling factor for labels, titles and lines. If None it will be autoscaled based on figsize. labeller : labeller instance, optional Class providing the method `make_label_vert` to generate the labels in the plot titles. Read the :ref:`label_guide` for more details and usage examples. ax: numpy array-like of matplotlib axes or bokeh figures, optional A 2D array of locations into which to plot the densities. If not supplied, Arviz will create its own array of plot areas (and return it). backend: str, optional Select plotting backend {"matplotlib","bokeh"}. Default "matplotlib". backend_config: dict, optional Currently specifies the bounds to use for bokeh axes. Defaults to value set in rcParams. backend_kwargs: dict, optional These are kwargs specific to the backend being used. For additional documentation check the plotting method of the backend. show: bool, optional Call backend show function. Returns ------- axes: matplotlib axes or bokeh figures Examples -------- Plot default autocorrelation .. plot:: :context: close-figs >>> import arviz as az >>> data = az.load_arviz_data('centered_eight') >>> az.plot_autocorr(data) Plot subset variables by specifying variable name exactly .. plot:: :context: close-figs >>> az.plot_autocorr(data, var_names=['mu', 'tau'] ) Combine chains by variable and select variables by excluding some with partial naming .. plot:: :context: close-figs >>> az.plot_autocorr(data, var_names=['~thet'], filter_vars="like", combined=True) Specify maximum lag (x axis bound) .. plot:: :context: close-figs >>> az.plot_autocorr(data, var_names=['mu', 'tau'], max_lag=200, combined=True) """ data = convert_to_dataset(data, group="posterior") var_names = _var_names(var_names, data, filter_vars) # Default max lag to 100 or max length of chain if max_lag is None: max_lag = min(100, data["draw"].shape[0]) if labeller is None: labeller = BaseLabeller() plotters = filter_plotters_list( list(xarray_var_iter(data, var_names, combined)), "plot_autocorr" ) rows, cols = default_grid(len(plotters), grid=grid) autocorr_plot_args = dict( axes=ax, plotters=plotters, max_lag=max_lag, figsize=figsize, rows=rows, cols=cols, combined=combined, textsize=textsize, labeller=labeller, backend_kwargs=backend_kwargs, show=show, ) if backend is None: backend = rcParams["plot.backend"] backend = backend.lower() if backend == "bokeh": autocorr_plot_args.update(backend_config=backend_config) # TODO: Add backend kwargs plot = get_plotting_function("plot_autocorr", "autocorrplot", backend) axes = plot(**autocorr_plot_args) return axes
[ [ [ 55, 73 ], [ 3990, 4008 ] ], [ [ 95, 107 ], [ 4263, 4275 ] ], [ [ 132, 147 ], [ 4329, 4344 ] ], [ [ 171, 179 ], [ 4804, 4812 ] ], [ [ 200, 210 ], [ 4050, 4060 ] ], [ [ 235, 247 ], [ 4413, 4425 ] ], [ [ 249, 269 ], [ 4294, 4314 ] ], [ [ 271, 292 ], [ 4995, 5016 ] ], [ [ 299, 312 ] ] ]
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ from django.contrib import admin # Register your models here. from django.contrib import admin from .models import RemOrganization, RemRole, RemUser, Nursery, NurseryPlantsHistory, MotherTree, Plantation, BeninYield, AlteiaData, DeptSatellite, CommuneSatellite, SpecialTuple admin.site.register(RemOrganization) admin.site.register(RemRole) admin.site.register(RemUser) admin.site.register(Nursery) admin.site.register(NurseryPlantsHistory) admin.site.register(MotherTree) admin.site.register(Plantation) admin.site.register(BeninYield) admin.site.register(AlteiaData) admin.site.register(DeptSatellite) admin.site.register(CommuneSatellite) admin.site.register(SpecialTuple)
[ [ [ 102, 107 ] ], [ [ 165, 170 ], [ 353, 358 ], [ 390, 395 ], [ 419, 424 ], [ 448, 453 ], [ 477, 482 ], [ 519, 524 ], [ 551, 556 ], [ 583, 588 ], [ 615, 620 ], [ 647, 652 ], [ 682, 687 ], [ 720, 725 ] ], [ [ 192, 207 ], [ 373, 388 ] ], [ [ 209, 216 ], [ 410, 417 ] ], [ [ 218, 225 ], [ 439, 446 ] ], [ [ 227, 234 ], [ 468, 475 ] ], [ [ 236, 256 ], [ 497, 517 ] ], [ [ 258, 268 ], [ 539, 549 ] ], [ [ 270, 280 ], [ 571, 581 ] ], [ [ 282, 292 ], [ 603, 613 ] ], [ [ 294, 304 ], [ 635, 645 ] ], [ [ 306, 319 ], [ 667, 680 ] ], [ [ 321, 337 ], [ 702, 718 ] ], [ [ 339, 351 ], [ 740, 752 ] ] ]
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the Apache License. from __future__ import print_function import contextlib import glob import json import os import re import shutil import stat import subprocess import sys import tempfile import time import unittest import zipfile from datetime import datetime, timedelta from threading import currentThread _ORIGINAL_POPEN = subprocess.Popen from mock import PropertyMock from azurelinuxagent.common import conf from azurelinuxagent.common.event import EVENTS_DIRECTORY, WALAEventOperation from azurelinuxagent.common.exception import ProtocolError, UpdateError, ResourceGoneError, HttpError from azurelinuxagent.common.future import ustr from azurelinuxagent.common.persist_firewall_rules import PersistFirewallRulesHandler from azurelinuxagent.common.protocol.hostplugin import URI_FORMAT_GET_API_VERSIONS, HOST_PLUGIN_PORT, \ URI_FORMAT_GET_EXTENSION_ARTIFACT, HostPluginProtocol from azurelinuxagent.common.protocol.restapi import VMAgentManifest, \ ExtHandlerPackage, ExtHandlerPackageList, ExtHandler, VMStatus, ExtHandlerStatus, ExtensionStatus from azurelinuxagent.common.protocol.util import ProtocolUtil from azurelinuxagent.common.protocol.wire import WireProtocol from azurelinuxagent.common.utils import fileutil, restutil, textutil from azurelinuxagent.common.utils.flexible_version import FlexibleVersion from azurelinuxagent.common.utils.networkutil import FirewallCmdDirectCommands from azurelinuxagent.common.version import AGENT_PKG_GLOB, AGENT_DIR_GLOB, AGENT_NAME, AGENT_DIR_PATTERN, \ AGENT_VERSION, CURRENT_AGENT, CURRENT_VERSION from azurelinuxagent.ga.exthandlers import ExtHandlersHandler, ExtHandlerInstance, HandlerEnvironment, ExtensionStatusValue from azurelinuxagent.ga.update import GuestAgent, GuestAgentError, MAX_FAILURE, AGENT_MANIFEST_FILE, \ get_update_handler, ORPHAN_POLL_INTERVAL, AGENT_PARTITION_FILE, AGENT_ERROR_FILE, ORPHAN_WAIT_INTERVAL, \ CHILD_LAUNCH_RESTART_MAX, CHILD_HEALTH_INTERVAL, GOAL_STATE_PERIOD_EXTENSIONS_DISABLED, UpdateHandler, \ READONLY_FILE_GLOBS, ExtensionsSummary, AgentUpgradeType from tests.protocol.mocks import mock_wire_protocol from tests.protocol.mockwiredata import DATA_FILE, DATA_FILE_MULTIPLE_EXT from tests.tools import AgentTestCase, data_dir, DEFAULT, patch, load_bin_data, Mock, MagicMock, \ clear_singleton_instances, mock_sleep, skip_if_predicate_true from tests.protocol import mockwiredata from tests.protocol.HttpRequestPredicates import HttpRequestPredicates NO_ERROR = { "last_failure": 0.0, "failure_count": 0, "was_fatal": False } FATAL_ERROR = { "last_failure": 42.42, "failure_count": 2, "was_fatal": True } WITH_ERROR = { "last_failure": 42.42, "failure_count": 2, "was_fatal": False } EMPTY_MANIFEST = { "name": "WALinuxAgent", "version": 1.0, "handlerManifest": { "installCommand": "", "uninstallCommand": "", "updateCommand": "", "enableCommand": "", "disableCommand": "", "rebootAfterInstall": False, "reportHeartbeat": False } } def faux_logger(): print("STDOUT message") print("STDERR message", file=sys.stderr) return DEFAULT @contextlib.contextmanager def _get_update_handler(iterations=1, test_data=None): """ This function returns a mocked version of the UpdateHandler object to be used for testing. It will only run the main loop [iterations] no of times. To reuse the same object, be sure to reset the iterations by using the update_handler.set_iterations() function. :param iterations: No of times the UpdateHandler.run() method should run. :return: Mocked object of UpdateHandler() class and object of the MockWireProtocol(). """ def _set_iterations(iterations_): # This will reset the current iteration and the max iterations to run for this test object. update_handler._cur_iteration = 0 update_handler._iterations = iterations_ def check_running(*val, **__): # This method will determine if the current UpdateHandler object is supposed to run or not. # There can be scenarios where the UpdateHandler.is_running.setter is called, in that case, return the first # value of the tuple and not increment the cur_iteration if len(val) > 0: return val[0] if update_handler._cur_iteration < update_handler._iterations: update_handler._cur_iteration += 1 return True return False test_data = DATA_FILE if test_data is None else test_data with mock_wire_protocol(test_data) as protocol: protocol_util = MagicMock() protocol_util.get_protocol = Mock(return_value=protocol) with patch("azurelinuxagent.ga.update.get_protocol_util", return_value=protocol_util): with patch("azurelinuxagent.common.conf.get_autoupdate_enabled", return_value=False): with patch.object(HostPluginProtocol, "is_default_channel", False): update_handler = get_update_handler() # Setup internal state for the object required for testing update_handler._cur_iteration = 0 update_handler._iterations = 0 update_handler.set_iterations = _set_iterations update_handler.get_iterations = lambda: update_handler._cur_iteration type(update_handler).is_running = PropertyMock(side_effect=check_running) with patch("time.sleep", side_effect=lambda _: mock_sleep(0.001)): with patch('sys.exit') as exit_mock: # Setup the initial number of iterations update_handler.set_iterations(iterations) update_handler.exit_mock = exit_mock try: yield update_handler, protocol finally: # Since PropertyMock requires us to mock the type(ClassName).property of the object, # reverting it back to keep the state of the test clean type(update_handler).is_running = True class UpdateTestCase(AgentTestCase): _test_suite_tmp_dir = None _agent_zip_dir = None @classmethod def setUpClass(cls): AgentTestCase.setUpClass() # copy data_dir/ga/WALinuxAgent-0.0.0.0.zip to _test_suite_tmp_dir/waagent-zip/WALinuxAgent-<AGENT_VERSION>.zip sample_agent_zip = "WALinuxAgent-0.0.0.0.zip" test_agent_zip = sample_agent_zip.replace("0.0.0.0", AGENT_VERSION) UpdateTestCase._test_suite_tmp_dir = tempfile.mkdtemp() UpdateTestCase._agent_zip_dir = os.path.join(UpdateTestCase._test_suite_tmp_dir, "waagent-zip") os.mkdir(UpdateTestCase._agent_zip_dir) source = os.path.join(data_dir, "ga", sample_agent_zip) target = os.path.join(UpdateTestCase._agent_zip_dir, test_agent_zip) shutil.copyfile(source, target) @classmethod def tearDownClass(cls): AgentTestCase.tearDownClass() shutil.rmtree(UpdateTestCase._test_suite_tmp_dir) @staticmethod def _get_agent_pkgs(in_dir=None): if in_dir is None: in_dir = UpdateTestCase._agent_zip_dir path = os.path.join(in_dir, AGENT_PKG_GLOB) return glob.glob(path) @staticmethod def _get_agents(in_dir=None): if in_dir is None: in_dir = UpdateTestCase._agent_zip_dir path = os.path.join(in_dir, AGENT_DIR_GLOB) return [a for a in glob.glob(path) if os.path.isdir(a)] @staticmethod def _get_agent_file_path(): return UpdateTestCase._get_agent_pkgs()[0] @staticmethod def _get_agent_file_name(): return os.path.basename(UpdateTestCase._get_agent_file_path()) @staticmethod def _get_agent_path(): return fileutil.trim_ext(UpdateTestCase._get_agent_file_path(), "zip") @staticmethod def _get_agent_name(): return os.path.basename(UpdateTestCase._get_agent_path()) @staticmethod def _get_agent_version(): return FlexibleVersion(UpdateTestCase._get_agent_name().split("-")[1]) @staticmethod def _add_write_permission_to_goal_state_files(): # UpdateHandler.run() marks some of the files from the goal state as read-only. Those files are overwritten when # a new goal state is fetched. This is not a problem for the agent, since it runs as root, but tests need # to make those files writtable before fetching a new goal state. Note that UpdateHandler.run() fetches a new # goal state, so tests that make multiple calls to that method need to call this function in-between calls. for gb in READONLY_FILE_GLOBS: for path in glob.iglob(os.path.join(conf.get_lib_dir(), gb)): fileutil.chmod(path, stat.S_IRUSR | stat.S_IWUSR) def agent_bin(self, version, suffix): return "bin/{0}-{1}{2}.egg".format(AGENT_NAME, version, suffix) def rename_agent_bin(self, path, dst_v): src_bin = glob.glob(os.path.join(path, self.agent_bin("*.*.*.*", '*')))[0] dst_bin = os.path.join(path, self.agent_bin(dst_v, '')) shutil.move(src_bin, dst_bin) def agents(self): return [GuestAgent(path=path) for path in self.agent_dirs()] def agent_count(self): return len(self.agent_dirs()) def agent_dirs(self): return self._get_agents(in_dir=self.tmp_dir) def agent_dir(self, version): return os.path.join(self.tmp_dir, "{0}-{1}".format(AGENT_NAME, version)) def agent_paths(self): paths = glob.glob(os.path.join(self.tmp_dir, "*")) paths.sort() return paths def agent_pkgs(self): return self._get_agent_pkgs(in_dir=self.tmp_dir) def agent_versions(self): v = [FlexibleVersion(AGENT_DIR_PATTERN.match(a).group(1)) for a in self.agent_dirs()] v.sort(reverse=True) return v @contextlib.contextmanager def get_error_file(self, error_data=None): if error_data is None: error_data = NO_ERROR with tempfile.NamedTemporaryFile(mode="w") as fp: json.dump(error_data if error_data is not None else NO_ERROR, fp) fp.seek(0) yield fp def create_error(self, error_data=None): if error_data is None: error_data = NO_ERROR with self.get_error_file(error_data) as path: err = GuestAgentError(path.name) err.load() return err def copy_agents(self, *agents): if len(agents) <= 0: agents = self._get_agent_pkgs() for agent in agents: shutil.copy(agent, self.tmp_dir) return def expand_agents(self): for agent in self.agent_pkgs(): path = os.path.join(self.tmp_dir, fileutil.trim_ext(agent, "zip")) zipfile.ZipFile(agent).extractall(path) def prepare_agent(self, version): """ Create a download for the current agent version, copied from test data """ self.copy_agents(self._get_agent_pkgs()[0]) self.expand_agents() versions = self.agent_versions() src_v = FlexibleVersion(str(versions[0])) from_path = self.agent_dir(src_v) dst_v = FlexibleVersion(str(version)) to_path = self.agent_dir(dst_v) if from_path != to_path: shutil.move(from_path + ".zip", to_path + ".zip") shutil.move(from_path, to_path) self.rename_agent_bin(to_path, dst_v) return def prepare_agents(self, count=20, is_available=True): # Ensure the test data is copied over agent_count = self.agent_count() if agent_count <= 0: self.copy_agents(self._get_agent_pkgs()[0]) self.expand_agents() count -= 1 # Determine the most recent agent version versions = self.agent_versions() src_v = FlexibleVersion(str(versions[0])) # Create agent packages and directories return self.replicate_agents( src_v=src_v, count=count - agent_count, is_available=is_available) def remove_agents(self): for agent in self.agent_paths(): try: if os.path.isfile(agent): os.remove(agent) else: shutil.rmtree(agent) except: # pylint: disable=bare-except pass return def replicate_agents(self, count=5, src_v=AGENT_VERSION, is_available=True, increment=1): from_path = self.agent_dir(src_v) dst_v = FlexibleVersion(str(src_v)) for i in range(0, count): # pylint: disable=unused-variable dst_v += increment to_path = self.agent_dir(dst_v) shutil.copyfile(from_path + ".zip", to_path + ".zip") shutil.copytree(from_path, to_path) self.rename_agent_bin(to_path, dst_v) if not is_available: GuestAgent(to_path).mark_failure(is_fatal=True) return dst_v class TestGuestAgentError(UpdateTestCase): def test_creation(self): self.assertRaises(TypeError, GuestAgentError) self.assertRaises(UpdateError, GuestAgentError, None) with self.get_error_file(error_data=WITH_ERROR) as path: err = GuestAgentError(path.name) err.load() self.assertEqual(path.name, err.path) self.assertNotEqual(None, err) self.assertEqual(WITH_ERROR["last_failure"], err.last_failure) self.assertEqual(WITH_ERROR["failure_count"], err.failure_count) self.assertEqual(WITH_ERROR["was_fatal"], err.was_fatal) return def test_clear(self): with self.get_error_file(error_data=WITH_ERROR) as path: err = GuestAgentError(path.name) err.load() self.assertEqual(path.name, err.path) self.assertNotEqual(None, err) err.clear() self.assertEqual(NO_ERROR["last_failure"], err.last_failure) self.assertEqual(NO_ERROR["failure_count"], err.failure_count) self.assertEqual(NO_ERROR["was_fatal"], err.was_fatal) return def test_save(self): err1 = self.create_error() err1.mark_failure() err1.mark_failure(is_fatal=True) err2 = self.create_error(err1.to_json()) self.assertEqual(err1.last_failure, err2.last_failure) self.assertEqual(err1.failure_count, err2.failure_count) self.assertEqual(err1.was_fatal, err2.was_fatal) def test_mark_failure(self): err = self.create_error() self.assertFalse(err.is_blacklisted) for i in range(0, MAX_FAILURE): # pylint: disable=unused-variable err.mark_failure() # Agent failed >= MAX_FAILURE, it should be blacklisted self.assertTrue(err.is_blacklisted) self.assertEqual(MAX_FAILURE, err.failure_count) return def test_mark_failure_permanent(self): err = self.create_error() self.assertFalse(err.is_blacklisted) # Fatal errors immediately blacklist err.mark_failure(is_fatal=True) self.assertTrue(err.is_blacklisted) self.assertTrue(err.failure_count < MAX_FAILURE) return def test_str(self): err = self.create_error(error_data=NO_ERROR) s = "Last Failure: {0}, Total Failures: {1}, Fatal: {2}".format( NO_ERROR["last_failure"], NO_ERROR["failure_count"], NO_ERROR["was_fatal"]) self.assertEqual(s, str(err)) err = self.create_error(error_data=WITH_ERROR) s = "Last Failure: {0}, Total Failures: {1}, Fatal: {2}".format( WITH_ERROR["last_failure"], WITH_ERROR["failure_count"], WITH_ERROR["was_fatal"]) self.assertEqual(s, str(err)) return class TestGuestAgent(UpdateTestCase): def setUp(self): UpdateTestCase.setUp(self) self.copy_agents(self._get_agent_file_path()) self.agent_path = os.path.join(self.tmp_dir, self._get_agent_name()) def test_creation(self): self.assertRaises(UpdateError, GuestAgent, "A very bad file name") n = "{0}-a.bad.version".format(AGENT_NAME) self.assertRaises(UpdateError, GuestAgent, n) self.expand_agents() agent = GuestAgent(path=self.agent_path) self.assertNotEqual(None, agent) self.assertEqual(self._get_agent_name(), agent.name) self.assertEqual(self._get_agent_version(), agent.version) self.assertEqual(self.agent_path, agent.get_agent_dir()) path = os.path.join(self.agent_path, AGENT_MANIFEST_FILE) self.assertEqual(path, agent.get_agent_manifest_path()) self.assertEqual( os.path.join(self.agent_path, AGENT_ERROR_FILE), agent.get_agent_error_file()) path = ".".join((os.path.join(conf.get_lib_dir(), self._get_agent_name()), "zip")) self.assertEqual(path, agent.get_agent_pkg_path()) self.assertTrue(agent.is_downloaded) self.assertFalse(agent.is_blacklisted) self.assertTrue(agent.is_available) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") def test_clear_error(self, mock_downloaded): # pylint: disable=unused-argument self.expand_agents() agent = GuestAgent(path=self.agent_path) agent.mark_failure(is_fatal=True) self.assertTrue(agent.error.last_failure > 0.0) self.assertEqual(1, agent.error.failure_count) self.assertTrue(agent.is_blacklisted) self.assertEqual(agent.is_blacklisted, agent.error.is_blacklisted) agent.clear_error() self.assertEqual(0.0, agent.error.last_failure) self.assertEqual(0, agent.error.failure_count) self.assertFalse(agent.is_blacklisted) self.assertEqual(agent.is_blacklisted, agent.error.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_is_available(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(agent.is_available) agent._unpack() self.assertTrue(agent.is_available) agent.mark_failure(is_fatal=True) self.assertFalse(agent.is_available) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_is_blacklisted(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(agent.is_blacklisted) agent._unpack() self.assertFalse(agent.is_blacklisted) self.assertEqual(agent.is_blacklisted, agent.error.is_blacklisted) agent.mark_failure(is_fatal=True) self.assertTrue(agent.is_blacklisted) self.assertEqual(agent.is_blacklisted, agent.error.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_resource_gone_error_not_blacklisted(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument try: mock_downloaded.side_effect = ResourceGoneError() agent = GuestAgent(path=self.agent_path) self.assertFalse(agent.is_blacklisted) except ResourceGoneError: pass except: # pylint: disable=bare-except self.fail("Exception was not expected!") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_ioerror_not_blacklisted(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument try: mock_downloaded.side_effect = IOError() agent = GuestAgent(path=self.agent_path) self.assertFalse(agent.is_blacklisted) except IOError: pass except: # pylint: disable=bare-except self.fail("Exception was not expected!") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_is_downloaded(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(agent.is_downloaded) agent._unpack() self.assertTrue(agent.is_downloaded) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_mark_failure(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) agent.mark_failure() self.assertEqual(1, agent.error.failure_count) agent.mark_failure(is_fatal=True) self.assertEqual(2, agent.error.failure_count) self.assertTrue(agent.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_unpack(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(os.path.isdir(agent.get_agent_dir())) agent._unpack() self.assertTrue(os.path.isdir(agent.get_agent_dir())) self.assertTrue(os.path.isfile(agent.get_agent_manifest_path())) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_unpack_fail(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(os.path.isdir(agent.get_agent_dir())) os.remove(agent.get_agent_pkg_path()) self.assertRaises(UpdateError, agent._unpack) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_load_manifest(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) agent._unpack() agent._load_manifest() self.assertEqual(agent.manifest.get_enable_command(), agent.get_agent_cmd()) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_load_manifest_missing(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(os.path.isdir(agent.get_agent_dir())) agent._unpack() os.remove(agent.get_agent_manifest_path()) self.assertRaises(UpdateError, agent._load_manifest) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_load_manifest_is_empty(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(os.path.isdir(agent.get_agent_dir())) agent._unpack() self.assertTrue(os.path.isfile(agent.get_agent_manifest_path())) with open(agent.get_agent_manifest_path(), "w") as file: # pylint: disable=redefined-builtin json.dump(EMPTY_MANIFEST, file) self.assertRaises(UpdateError, agent._load_manifest) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") def test_load_manifest_is_malformed(self, mock_loaded, mock_downloaded): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertFalse(os.path.isdir(agent.get_agent_dir())) agent._unpack() self.assertTrue(os.path.isfile(agent.get_agent_manifest_path())) with open(agent.get_agent_manifest_path(), "w") as file: # pylint: disable=redefined-builtin file.write("This is not JSON data") self.assertRaises(UpdateError, agent._load_manifest) def test_load_error(self): agent = GuestAgent(path=self.agent_path) agent.error = None agent._load_error() self.assertTrue(agent.error is not None) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") @patch("azurelinuxagent.ga.update.restutil.http_get") def test_download(self, mock_http_get, mock_loaded, mock_downloaded): # pylint: disable=unused-argument self.remove_agents() self.assertFalse(os.path.isdir(self.agent_path)) agent_pkg = load_bin_data(self._get_agent_file_name(), self._agent_zip_dir) mock_http_get.return_value = ResponseMock(response=agent_pkg) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) agent._download() self.assertTrue(os.path.isfile(agent.get_agent_pkg_path())) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") @patch("azurelinuxagent.ga.update.restutil.http_get") def test_download_fail(self, mock_http_get, mock_loaded, mock_downloaded): # pylint: disable=unused-argument self.remove_agents() self.assertFalse(os.path.isdir(self.agent_path)) mock_http_get.return_value = ResponseMock(status=restutil.httpclient.SERVICE_UNAVAILABLE) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertRaises(UpdateError, agent._download) self.assertFalse(os.path.isfile(agent.get_agent_pkg_path())) self.assertFalse(agent.is_downloaded) @patch("azurelinuxagent.ga.update.GuestAgent._ensure_downloaded") @patch("azurelinuxagent.ga.update.GuestAgent._ensure_loaded") @patch("azurelinuxagent.ga.update.restutil.http_get") @patch("azurelinuxagent.ga.update.restutil.http_post") def test_download_fallback(self, mock_http_post, mock_http_get, mock_loaded, mock_downloaded): # pylint: disable=unused-argument self.remove_agents() self.assertFalse(os.path.isdir(self.agent_path)) mock_http_get.return_value = ResponseMock( status=restutil.httpclient.SERVICE_UNAVAILABLE, response="") ext_uri = 'ext_uri' host_uri = 'host_uri' api_uri = URI_FORMAT_GET_API_VERSIONS.format(host_uri, HOST_PLUGIN_PORT) art_uri = URI_FORMAT_GET_EXTENSION_ARTIFACT.format(host_uri, HOST_PLUGIN_PORT) mock_host = HostPluginProtocol(host_uri, 'container_id', 'role_config') pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(ext_uri) agent = GuestAgent(pkg=pkg) agent.host = mock_host # ensure fallback fails gracefully, no http self.assertRaises(UpdateError, agent._download) self.assertEqual(mock_http_get.call_count, 2) self.assertEqual(mock_http_get.call_args_list[0][0][0], ext_uri) self.assertEqual(mock_http_get.call_args_list[1][0][0], api_uri) # ensure fallback fails gracefully, artifact api failure with patch.object(HostPluginProtocol, "ensure_initialized", return_value=True): self.assertRaises(UpdateError, agent._download) self.assertEqual(mock_http_get.call_count, 4) self.assertEqual(mock_http_get.call_args_list[2][0][0], ext_uri) self.assertEqual(mock_http_get.call_args_list[3][0][0], art_uri) a, k = mock_http_get.call_args_list[3] # pylint: disable=unused-variable self.assertEqual(False, k['use_proxy']) # ensure fallback works as expected with patch.object(HostPluginProtocol, "get_artifact_request", return_value=[art_uri, {}]): self.assertRaises(UpdateError, agent._download) self.assertEqual(mock_http_get.call_count, 6) a, k = mock_http_get.call_args_list[3] self.assertEqual(False, k['use_proxy']) self.assertEqual(mock_http_get.call_args_list[4][0][0], ext_uri) a, k = mock_http_get.call_args_list[4] self.assertEqual(mock_http_get.call_args_list[5][0][0], art_uri) a, k = mock_http_get.call_args_list[5] self.assertEqual(False, k['use_proxy']) @patch("azurelinuxagent.ga.update.restutil.http_get") def test_ensure_downloaded(self, mock_http_get): self.remove_agents() self.assertFalse(os.path.isdir(self.agent_path)) agent_pkg = load_bin_data(self._get_agent_file_name(), self._agent_zip_dir) mock_http_get.return_value = ResponseMock(response=agent_pkg) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertTrue(os.path.isfile(agent.get_agent_manifest_path())) self.assertTrue(agent.is_downloaded) @patch("azurelinuxagent.ga.update.GuestAgent._download", side_effect=UpdateError) def test_ensure_downloaded_download_fails(self, mock_download): # pylint: disable=unused-argument self.remove_agents() self.assertFalse(os.path.isdir(self.agent_path)) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertEqual(1, agent.error.failure_count) self.assertFalse(agent.error.was_fatal) self.assertFalse(agent.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._download") @patch("azurelinuxagent.ga.update.GuestAgent._unpack", side_effect=UpdateError) def test_ensure_downloaded_unpack_fails(self, mock_unpack, mock_download): # pylint: disable=unused-argument self.assertFalse(os.path.isdir(self.agent_path)) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertEqual(1, agent.error.failure_count) self.assertTrue(agent.error.was_fatal) self.assertTrue(agent.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._download") @patch("azurelinuxagent.ga.update.GuestAgent._unpack") @patch("azurelinuxagent.ga.update.GuestAgent._load_manifest", side_effect=UpdateError) def test_ensure_downloaded_load_manifest_fails(self, mock_manifest, mock_unpack, mock_download): # pylint: disable=unused-argument self.assertFalse(os.path.isdir(self.agent_path)) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertEqual(1, agent.error.failure_count) self.assertTrue(agent.error.was_fatal) self.assertTrue(agent.is_blacklisted) @patch("azurelinuxagent.ga.update.GuestAgent._download") @patch("azurelinuxagent.ga.update.GuestAgent._unpack") @patch("azurelinuxagent.ga.update.GuestAgent._load_manifest") def test_ensure_download_skips_blacklisted(self, mock_manifest, mock_unpack, mock_download): # pylint: disable=unused-argument agent = GuestAgent(path=self.agent_path) self.assertEqual(0, mock_download.call_count) agent.clear_error() agent.mark_failure(is_fatal=True) self.assertTrue(agent.is_blacklisted) pkg = ExtHandlerPackage(version=str(self._get_agent_version())) pkg.uris.append(None) agent = GuestAgent(pkg=pkg) self.assertEqual(1, agent.error.failure_count) self.assertTrue(agent.error.was_fatal) self.assertTrue(agent.is_blacklisted) self.assertEqual(0, mock_download.call_count) self.assertEqual(0, mock_unpack.call_count) class TestUpdate(UpdateTestCase): def setUp(self): UpdateTestCase.setUp(self) self.event_patch = patch('azurelinuxagent.common.event.add_event') self.update_handler = get_update_handler() protocol = Mock() protocol.get_ext_handlers = Mock(return_value=(Mock(), Mock())) self.update_handler.protocol_util = Mock() self.update_handler.protocol_util.get_protocol = Mock(return_value=protocol) # Since ProtocolUtil is a singleton per thread, we need to clear it to ensure that the test cases do not reuse # a previous state clear_singleton_instances(ProtocolUtil) def test_creation(self): self.assertEqual(None, self.update_handler.last_attempt_time) self.assertEqual(0, len(self.update_handler.agents)) self.assertEqual(None, self.update_handler.child_agent) self.assertEqual(None, self.update_handler.child_launch_time) self.assertEqual(0, self.update_handler.child_launch_attempts) self.assertEqual(None, self.update_handler.child_process) self.assertEqual(None, self.update_handler.signal_handler) def test_emit_restart_event_emits_event_if_not_clean_start(self): try: mock_event = self.event_patch.start() self.update_handler._set_sentinel() self.update_handler._emit_restart_event() self.assertEqual(1, mock_event.call_count) except Exception as e: # pylint: disable=unused-variable pass self.event_patch.stop() def _create_protocol(self, count=20, versions=None): latest_version = self.prepare_agents(count=count) if versions is None or len(versions) <= 0: versions = [latest_version] return ProtocolMock(versions=versions) def _test_ensure_no_orphans(self, invocations=3, interval=ORPHAN_WAIT_INTERVAL, pid_count=0): with patch.object(self.update_handler, 'osutil') as mock_util: # Note: # - Python only allows mutations of objects to which a function has # a reference. Incrementing an integer directly changes the # reference. Incrementing an item of a list changes an item to # which the code has a reference. # See http://stackoverflow.com/questions/26408941/python-nested-functions-and-variable-scope iterations = [0] def iterator(*args, **kwargs): # pylint: disable=unused-argument iterations[0] += 1 return iterations[0] < invocations mock_util.check_pid_alive = Mock(side_effect=iterator) pid_files = self.update_handler._get_pid_files() self.assertEqual(pid_count, len(pid_files)) with patch('os.getpid', return_value=42): with patch('time.sleep', return_value=None) as mock_sleep: # pylint: disable=redefined-outer-name self.update_handler._ensure_no_orphans(orphan_wait_interval=interval) for pid_file in pid_files: self.assertFalse(os.path.exists(pid_file)) return mock_util.check_pid_alive.call_count, mock_sleep.call_count def test_ensure_no_orphans(self): fileutil.write_file(os.path.join(self.tmp_dir, "0_waagent.pid"), ustr(41)) calls, sleeps = self._test_ensure_no_orphans(invocations=3, pid_count=1) self.assertEqual(3, calls) self.assertEqual(2, sleeps) def test_ensure_no_orphans_skips_if_no_orphans(self): calls, sleeps = self._test_ensure_no_orphans(invocations=3) self.assertEqual(0, calls) self.assertEqual(0, sleeps) def test_ensure_no_orphans_ignores_exceptions(self): with patch('azurelinuxagent.common.utils.fileutil.read_file', side_effect=Exception): calls, sleeps = self._test_ensure_no_orphans(invocations=3) self.assertEqual(0, calls) self.assertEqual(0, sleeps) def test_ensure_no_orphans_kills_after_interval(self): fileutil.write_file(os.path.join(self.tmp_dir, "0_waagent.pid"), ustr(41)) with patch('os.kill') as mock_kill: calls, sleeps = self._test_ensure_no_orphans( invocations=4, interval=3 * ORPHAN_POLL_INTERVAL, pid_count=1) self.assertEqual(3, calls) self.assertEqual(2, sleeps) self.assertEqual(1, mock_kill.call_count) @patch('azurelinuxagent.ga.update.datetime') def test_ensure_partition_assigned(self, mock_time): path = os.path.join(conf.get_lib_dir(), AGENT_PARTITION_FILE) mock_time.utcnow = Mock() self.assertFalse(os.path.exists(path)) for n in range(0, 99): mock_time.utcnow.return_value = Mock(microsecond=n * 10000) self.update_handler._ensure_partition_assigned() self.assertTrue(os.path.exists(path)) s = fileutil.read_file(path) self.assertEqual(n, int(s)) os.remove(path) def test_ensure_readonly_sets_readonly(self): test_files = [ os.path.join(conf.get_lib_dir(), "faux_certificate.crt"), os.path.join(conf.get_lib_dir(), "faux_certificate.p7m"), os.path.join(conf.get_lib_dir(), "faux_certificate.pem"), os.path.join(conf.get_lib_dir(), "faux_certificate.prv"), os.path.join(conf.get_lib_dir(), "ovf-env.xml") ] for path in test_files: fileutil.write_file(path, "Faux content") os.chmod(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH) self.update_handler._ensure_readonly_files() for path in test_files: mode = os.stat(path).st_mode mode &= (stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) self.assertEqual(0, mode ^ stat.S_IRUSR) def test_ensure_readonly_leaves_unmodified(self): test_files = [ os.path.join(conf.get_lib_dir(), "faux.xml"), os.path.join(conf.get_lib_dir(), "faux.json"), os.path.join(conf.get_lib_dir(), "faux.txt"), os.path.join(conf.get_lib_dir(), "faux") ] for path in test_files: fileutil.write_file(path, "Faux content") os.chmod(path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH) self.update_handler._ensure_readonly_files() for path in test_files: mode = os.stat(path).st_mode mode &= (stat.S_IRWXU | stat.S_IRWXG | stat.S_IRWXO) self.assertEqual( stat.S_IRUSR | stat.S_IWUSR | stat.S_IRGRP | stat.S_IROTH, mode) def _test_evaluate_agent_health(self, child_agent_index=0): self.prepare_agents() latest_agent = self.update_handler.get_latest_agent() self.assertTrue(latest_agent.is_available) self.assertFalse(latest_agent.is_blacklisted) self.assertTrue(len(self.update_handler.agents) > 1) child_agent = self.update_handler.agents[child_agent_index] self.assertTrue(child_agent.is_available) self.assertFalse(child_agent.is_blacklisted) self.update_handler.child_agent = child_agent self.update_handler._evaluate_agent_health(latest_agent) def test_evaluate_agent_health_ignores_installed_agent(self): self.update_handler._evaluate_agent_health(None) def test_evaluate_agent_health_raises_exception_for_restarting_agent(self): self.update_handler.child_launch_time = time.time() - (4 * 60) self.update_handler.child_launch_attempts = CHILD_LAUNCH_RESTART_MAX - 1 self.assertRaises(Exception, self._test_evaluate_agent_health) def test_evaluate_agent_health_will_not_raise_exception_for_long_restarts(self): self.update_handler.child_launch_time = time.time() - 24 * 60 self.update_handler.child_launch_attempts = CHILD_LAUNCH_RESTART_MAX self._test_evaluate_agent_health() def test_evaluate_agent_health_will_not_raise_exception_too_few_restarts(self): self.update_handler.child_launch_time = time.time() self.update_handler.child_launch_attempts = CHILD_LAUNCH_RESTART_MAX - 2 self._test_evaluate_agent_health() def test_evaluate_agent_health_resets_with_new_agent(self): self.update_handler.child_launch_time = time.time() - (4 * 60) self.update_handler.child_launch_attempts = CHILD_LAUNCH_RESTART_MAX - 1 self._test_evaluate_agent_health(child_agent_index=1) self.assertEqual(1, self.update_handler.child_launch_attempts) def test_filter_blacklisted_agents(self): self.prepare_agents() self.update_handler._set_agents([GuestAgent(path=path) for path in self.agent_dirs()]) self.assertEqual(len(self.agent_dirs()), len(self.update_handler.agents)) kept_agents = self.update_handler.agents[::2] blacklisted_agents = self.update_handler.agents[1::2] for agent in blacklisted_agents: agent.mark_failure(is_fatal=True) self.update_handler._filter_blacklisted_agents() self.assertEqual(kept_agents, self.update_handler.agents) def test_find_agents(self): self.prepare_agents() self.assertTrue(0 <= len(self.update_handler.agents)) self.update_handler._find_agents() self.assertEqual(len(self._get_agents(self.tmp_dir)), len(self.update_handler.agents)) def test_find_agents_does_reload(self): self.prepare_agents() self.update_handler._find_agents() agents = self.update_handler.agents self.update_handler._find_agents() self.assertNotEqual(agents, self.update_handler.agents) def test_find_agents_sorts(self): self.prepare_agents() self.update_handler._find_agents() v = FlexibleVersion("100000") for a in self.update_handler.agents: self.assertTrue(v > a.version) v = a.version @patch('azurelinuxagent.common.protocol.wire.WireClient.get_host_plugin') def test_get_host_plugin_returns_host_for_wireserver(self, mock_get_host): protocol = WireProtocol('12.34.56.78') mock_get_host.return_value = "faux host" host = self.update_handler._get_host_plugin(protocol=protocol) print("mock_get_host call cound={0}".format(mock_get_host.call_count)) self.assertEqual(1, mock_get_host.call_count) self.assertEqual("faux host", host) def test_get_latest_agent(self): latest_version = self.prepare_agents() latest_agent = self.update_handler.get_latest_agent() self.assertEqual(len(self._get_agents(self.tmp_dir)), len(self.update_handler.agents)) self.assertEqual(latest_version, latest_agent.version) def test_get_latest_agent_excluded(self): self.prepare_agent(AGENT_VERSION) self.assertFalse(self._test_upgrade_available( versions=self.agent_versions(), count=1)) self.assertEqual(None, self.update_handler.get_latest_agent()) def test_get_latest_agent_no_updates(self): self.assertEqual(None, self.update_handler.get_latest_agent()) def test_get_latest_agent_skip_updates(self): conf.get_autoupdate_enabled = Mock(return_value=False) self.assertEqual(None, self.update_handler.get_latest_agent()) def test_get_latest_agent_skips_unavailable(self): self.prepare_agents() prior_agent = self.update_handler.get_latest_agent() latest_version = self.prepare_agents(count=self.agent_count() + 1, is_available=False) latest_path = os.path.join(self.tmp_dir, "{0}-{1}".format(AGENT_NAME, latest_version)) self.assertFalse(GuestAgent(latest_path).is_available) latest_agent = self.update_handler.get_latest_agent() self.assertTrue(latest_agent.version < latest_version) self.assertEqual(latest_agent.version, prior_agent.version) def test_get_pid_files(self): pid_files = self.update_handler._get_pid_files() self.assertEqual(0, len(pid_files)) def test_get_pid_files_returns_previous(self): for n in range(1250): fileutil.write_file(os.path.join(self.tmp_dir, str(n) + "_waagent.pid"), ustr(n + 1)) pid_files = self.update_handler._get_pid_files() self.assertEqual(1250, len(pid_files)) pid_dir, pid_name, pid_re = self.update_handler._get_pid_parts() # pylint: disable=unused-variable for p in pid_files: self.assertTrue(pid_re.match(os.path.basename(p))) def test_is_clean_start_returns_true_when_no_sentinel(self): self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) self.assertTrue(self.update_handler._is_clean_start) def test_is_clean_start_returns_false_when_sentinel_exists(self): self.update_handler._set_sentinel(agent=CURRENT_AGENT) self.assertFalse(self.update_handler._is_clean_start) def test_is_clean_start_returns_false_for_exceptions(self): self.update_handler._set_sentinel() with patch("azurelinuxagent.common.utils.fileutil.read_file", side_effect=Exception): self.assertFalse(self.update_handler._is_clean_start) def test_is_orphaned_returns_false_if_parent_exists(self): fileutil.write_file(conf.get_agent_pid_file_path(), ustr(42)) with patch('os.getppid', return_value=42): self.assertFalse(self.update_handler._is_orphaned) def test_is_orphaned_returns_true_if_parent_is_init(self): with patch('os.getppid', return_value=1): self.assertTrue(self.update_handler._is_orphaned) def test_is_orphaned_returns_true_if_parent_does_not_exist(self): fileutil.write_file(conf.get_agent_pid_file_path(), ustr(24)) with patch('os.getppid', return_value=42): self.assertTrue(self.update_handler._is_orphaned) def test_is_version_available(self): self.prepare_agents(is_available=True) self.update_handler.agents = self.agents() for agent in self.agents(): self.assertTrue(self.update_handler._is_version_eligible(agent.version)) @patch("azurelinuxagent.ga.update.is_current_agent_installed", return_value=False) def test_is_version_available_rejects(self, mock_current): # pylint: disable=unused-argument self.prepare_agents(is_available=True) self.update_handler.agents = self.agents() self.update_handler.agents[0].mark_failure(is_fatal=True) self.assertFalse(self.update_handler._is_version_eligible(self.agents()[0].version)) @patch("azurelinuxagent.ga.update.is_current_agent_installed", return_value=True) def test_is_version_available_accepts_current(self, mock_current): # pylint: disable=unused-argument self.update_handler.agents = [] self.assertTrue(self.update_handler._is_version_eligible(CURRENT_VERSION)) @patch("azurelinuxagent.ga.update.is_current_agent_installed", return_value=False) def test_is_version_available_rejects_by_default(self, mock_current): # pylint: disable=unused-argument self.prepare_agents() self.update_handler.agents = [] v = self.agents()[0].version self.assertFalse(self.update_handler._is_version_eligible(v)) def test_purge_agents(self): self.prepare_agents() self.update_handler._find_agents() # Ensure at least three agents initially exist self.assertTrue(2 < len(self.update_handler.agents)) # Purge every other agent. Don't add the current version to agents_to_keep explicitly; # the current version is never purged agents_to_keep = [] kept_agents = [] purged_agents = [] for i in range(0, len(self.update_handler.agents)): if self.update_handler.agents[i].version == CURRENT_VERSION: kept_agents.append(self.update_handler.agents[i]) else: if i % 2 == 0: agents_to_keep.append(self.update_handler.agents[i]) kept_agents.append(self.update_handler.agents[i]) else: purged_agents.append(self.update_handler.agents[i]) # Reload and assert only the kept agents remain on disk self.update_handler.agents = agents_to_keep self.update_handler._purge_agents() self.update_handler._find_agents() self.assertEqual( [agent.version for agent in kept_agents], [agent.version for agent in self.update_handler.agents]) # Ensure both directories and packages are removed for agent in purged_agents: agent_path = os.path.join(self.tmp_dir, "{0}-{1}".format(AGENT_NAME, agent.version)) self.assertFalse(os.path.exists(agent_path)) self.assertFalse(os.path.exists(agent_path + ".zip")) # Ensure kept agent directories and packages remain for agent in kept_agents: agent_path = os.path.join(self.tmp_dir, "{0}-{1}".format(AGENT_NAME, agent.version)) self.assertTrue(os.path.exists(agent_path)) self.assertTrue(os.path.exists(agent_path + ".zip")) def _test_run_latest(self, mock_child=None, mock_time=None, child_args=None): if mock_child is None: mock_child = ChildMock() if mock_time is None: mock_time = TimeMock() with patch('azurelinuxagent.ga.update.subprocess.Popen', return_value=mock_child) as mock_popen: with patch('time.time', side_effect=mock_time.time): with patch('time.sleep', side_effect=mock_time.sleep): self.update_handler.run_latest(child_args=child_args) agent_calls = [args[0] for (args, _) in mock_popen.call_args_list if "run-exthandlers" in ''.join(args[0])] self.assertEqual(1, len(agent_calls), "Expected a single call to the latest agent; got: {0}. All mocked calls: {1}".format( agent_calls, mock_popen.call_args_list)) return mock_popen.call_args def test_run_latest(self): self.prepare_agents() agent = self.update_handler.get_latest_agent() args, kwargs = self._test_run_latest() args = args[0] cmds = textutil.safe_shlex_split(agent.get_agent_cmd()) if cmds[0].lower() == "python": cmds[0] = sys.executable self.assertEqual(args, cmds) self.assertTrue(len(args) > 1) self.assertRegex(args[0], r"^(/.*/python[\d.]*)$", "The command doesn't contain full python path") self.assertEqual("-run-exthandlers", args[len(args) - 1]) self.assertEqual(True, 'cwd' in kwargs) self.assertEqual(agent.get_agent_dir(), kwargs['cwd']) self.assertEqual(False, '\x00' in cmds[0]) def test_run_latest_passes_child_args(self): self.prepare_agents() agent = self.update_handler.get_latest_agent() # pylint: disable=unused-variable args, kwargs = self._test_run_latest(child_args="AnArgument") # pylint: disable=unused-variable args = args[0] self.assertTrue(len(args) > 1) self.assertRegex(args[0], r"^(/.*/python[\d.]*)$", "The command doesn't contain full python path") self.assertEqual("AnArgument", args[len(args) - 1]) def test_run_latest_polls_and_waits_for_success(self): mock_child = ChildMock(return_value=None) mock_time = TimeMock(time_increment=CHILD_HEALTH_INTERVAL / 3) self._test_run_latest(mock_child=mock_child, mock_time=mock_time) self.assertEqual(2, mock_child.poll.call_count) self.assertEqual(1, mock_child.wait.call_count) def test_run_latest_polling_stops_at_success(self): mock_child = ChildMock(return_value=0) mock_time = TimeMock(time_increment=CHILD_HEALTH_INTERVAL / 3) self._test_run_latest(mock_child=mock_child, mock_time=mock_time) self.assertEqual(1, mock_child.poll.call_count) self.assertEqual(0, mock_child.wait.call_count) def test_run_latest_polling_stops_at_failure(self): mock_child = ChildMock(return_value=42) mock_time = TimeMock() self._test_run_latest(mock_child=mock_child, mock_time=mock_time) self.assertEqual(1, mock_child.poll.call_count) self.assertEqual(0, mock_child.wait.call_count) def test_run_latest_polls_frequently_if_installed_is_latest(self): mock_child = ChildMock(return_value=0) # pylint: disable=unused-variable mock_time = TimeMock(time_increment=CHILD_HEALTH_INTERVAL / 2) self._test_run_latest(mock_time=mock_time) self.assertEqual(1, mock_time.sleep_interval) def test_run_latest_polls_every_second_if_installed_not_latest(self): self.prepare_agents() mock_time = TimeMock(time_increment=CHILD_HEALTH_INTERVAL / 2) self._test_run_latest(mock_time=mock_time) self.assertEqual(1, mock_time.sleep_interval) def test_run_latest_defaults_to_current(self): self.assertEqual(None, self.update_handler.get_latest_agent()) args, kwargs = self._test_run_latest() self.assertEqual(args[0], [sys.executable, "-u", sys.argv[0], "-run-exthandlers"]) self.assertEqual(True, 'cwd' in kwargs) self.assertEqual(os.getcwd(), kwargs['cwd']) def test_run_latest_forwards_output(self): try: tempdir = tempfile.mkdtemp() stdout_path = os.path.join(tempdir, "stdout") stderr_path = os.path.join(tempdir, "stderr") with open(stdout_path, "w") as stdout: with open(stderr_path, "w") as stderr: saved_stdout, sys.stdout = sys.stdout, stdout saved_stderr, sys.stderr = sys.stderr, stderr try: self._test_run_latest(mock_child=ChildMock(side_effect=faux_logger)) finally: sys.stdout = saved_stdout sys.stderr = saved_stderr with open(stdout_path, "r") as stdout: self.assertEqual(1, len(stdout.readlines())) with open(stderr_path, "r") as stderr: self.assertEqual(1, len(stderr.readlines())) finally: shutil.rmtree(tempdir, True) def test_run_latest_nonzero_code_marks_failures(self): # logger.add_logger_appender(logger.AppenderType.STDOUT) self.prepare_agents() latest_agent = self.update_handler.get_latest_agent() self.assertTrue(latest_agent.is_available) self.assertEqual(0.0, latest_agent.error.last_failure) self.assertEqual(0, latest_agent.error.failure_count) with patch('azurelinuxagent.ga.update.UpdateHandler.get_latest_agent', return_value=latest_agent): self._test_run_latest(mock_child=ChildMock(return_value=1)) self.assertTrue(latest_agent.is_blacklisted) self.assertFalse(latest_agent.is_available) self.assertNotEqual(0.0, latest_agent.error.last_failure) self.assertEqual(1, latest_agent.error.failure_count) def test_run_latest_exception_blacklists(self): self.prepare_agents() latest_agent = self.update_handler.get_latest_agent() self.assertTrue(latest_agent.is_available) self.assertEqual(0.0, latest_agent.error.last_failure) self.assertEqual(0, latest_agent.error.failure_count) with patch('azurelinuxagent.ga.update.UpdateHandler.get_latest_agent', return_value=latest_agent): self._test_run_latest(mock_child=ChildMock(side_effect=Exception("Force blacklisting"))) self.assertFalse(latest_agent.is_available) self.assertTrue(latest_agent.error.is_blacklisted) self.assertNotEqual(0.0, latest_agent.error.last_failure) self.assertEqual(1, latest_agent.error.failure_count) def test_run_latest_exception_does_not_blacklist_if_terminating(self): self.prepare_agents() latest_agent = self.update_handler.get_latest_agent() self.assertTrue(latest_agent.is_available) self.assertEqual(0.0, latest_agent.error.last_failure) self.assertEqual(0, latest_agent.error.failure_count) with patch('azurelinuxagent.ga.update.UpdateHandler.get_latest_agent', return_value=latest_agent): self.update_handler.is_running = False self._test_run_latest(mock_child=ChildMock(side_effect=Exception("Attempt blacklisting"))) self.assertTrue(latest_agent.is_available) self.assertFalse(latest_agent.error.is_blacklisted) self.assertEqual(0.0, latest_agent.error.last_failure) self.assertEqual(0, latest_agent.error.failure_count) @patch('signal.signal') def test_run_latest_captures_signals(self, mock_signal): self._test_run_latest() self.assertEqual(1, mock_signal.call_count) @patch('signal.signal') def test_run_latest_creates_only_one_signal_handler(self, mock_signal): self.update_handler.signal_handler = "Not None" self._test_run_latest() self.assertEqual(0, mock_signal.call_count) def _test_run(self, invocations=1, calls=1, enable_updates=False, sleep_interval=(6,)): conf.get_autoupdate_enabled = Mock(return_value=enable_updates) def iterator(*_, **__): iterator.count += 1 if iterator.count <= invocations: return True return False iterator.count = 0 fileutil.write_file(conf.get_agent_pid_file_path(), ustr(42)) with patch('azurelinuxagent.ga.exthandlers.get_exthandlers_handler') as mock_handler: mock_handler.run_ext_handlers = Mock() with patch('azurelinuxagent.ga.update.get_monitor_handler') as mock_monitor: with patch.object(UpdateHandler, 'is_running') as mock_is_running: mock_is_running.__get__ = Mock(side_effect=iterator) with patch('azurelinuxagent.ga.remoteaccess.get_remote_access_handler') as mock_ra_handler: with patch('azurelinuxagent.ga.update.get_env_handler') as mock_env: with patch('azurelinuxagent.ga.update.get_collect_logs_handler') as mock_collect_logs: with patch('azurelinuxagent.ga.update.get_send_telemetry_events_handler') as mock_telemetry_send_events: with patch('azurelinuxagent.ga.update.get_collect_telemetry_events_handler') as mock_event_collector: with patch('azurelinuxagent.ga.update.initialize_event_logger_vminfo_common_parameters'): with patch('azurelinuxagent.ga.update.is_log_collection_allowed', return_value=True): with patch('time.sleep') as sleep_mock: with patch('sys.exit') as mock_exit: if isinstance(os.getppid, MagicMock): self.update_handler.run() else: with patch('os.getppid', return_value=42): self.update_handler.run() self.assertEqual(1, mock_handler.call_count) self.assertEqual(calls, len([c for c in [call[0] for call in mock_handler.return_value.method_calls] if c == 'run'])) self.assertEqual(1, mock_ra_handler.call_count) self.assertEqual(calls, len(mock_ra_handler.return_value.method_calls)) if calls > 0: self.assertEqual(sleep_interval, sleep_mock.call_args[0]) self.assertEqual(1, mock_monitor.call_count) self.assertEqual(1, mock_env.call_count) self.assertEqual(1, mock_collect_logs.call_count) self.assertEqual(1, mock_telemetry_send_events.call_count) self.assertEqual(1, mock_event_collector.call_count) self.assertEqual(1, mock_exit.call_count) def test_run(self): self._test_run() def test_run_stops_if_update_available(self): self.update_handler._check_and_download_agent_if_upgrade_available = Mock(return_value=True) self._test_run(invocations=0, calls=0, enable_updates=True) def test_run_stops_if_orphaned(self): with patch('os.getppid', return_value=1): self._test_run(invocations=0, calls=0, enable_updates=True) def test_run_clears_sentinel_on_successful_exit(self): self._test_run() self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) def test_run_leaves_sentinel_on_unsuccessful_exit(self): self.update_handler._check_and_download_agent_if_upgrade_available = Mock(side_effect=Exception) self._test_run(invocations=1, calls=0, enable_updates=True) self.assertTrue(os.path.isfile(self.update_handler._sentinel_file_path())) def test_run_emits_restart_event(self): self.update_handler._emit_restart_event = Mock() self._test_run() self.assertEqual(1, self.update_handler._emit_restart_event.call_count) def test_set_agents_sets_agents(self): self.prepare_agents() self.update_handler._set_agents([GuestAgent(path=path) for path in self.agent_dirs()]) self.assertTrue(len(self.update_handler.agents) > 0) self.assertEqual(len(self.agent_dirs()), len(self.update_handler.agents)) def test_set_agents_sorts_agents(self): self.prepare_agents() self.update_handler._set_agents([GuestAgent(path=path) for path in self.agent_dirs()]) v = FlexibleVersion("100000") for a in self.update_handler.agents: self.assertTrue(v > a.version) v = a.version def test_set_sentinel(self): self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) self.update_handler._set_sentinel() self.assertTrue(os.path.isfile(self.update_handler._sentinel_file_path())) def test_set_sentinel_writes_current_agent(self): self.update_handler._set_sentinel() self.assertTrue( fileutil.read_file(self.update_handler._sentinel_file_path()), CURRENT_AGENT) def test_shutdown(self): self.update_handler._set_sentinel() self.update_handler._shutdown() self.assertFalse(self.update_handler.is_running) self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) def test_shutdown_ignores_missing_sentinel_file(self): self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) self.update_handler._shutdown() self.assertFalse(self.update_handler.is_running) self.assertFalse(os.path.isfile(self.update_handler._sentinel_file_path())) def test_shutdown_ignores_exceptions(self): self.update_handler._set_sentinel() try: with patch("os.remove", side_effect=Exception): self.update_handler._shutdown() except Exception as e: # pylint: disable=unused-variable self.assertTrue(False, "Unexpected exception") # pylint: disable=redundant-unittest-assert def _test_upgrade_available( self, base_version=FlexibleVersion(AGENT_VERSION), protocol=None, versions=None, count=20): if protocol is None: protocol = self._create_protocol(count=count, versions=versions) self.update_handler.protocol_util = protocol conf.get_autoupdate_gafamily = Mock(return_value=protocol.family) return self.update_handler._check_and_download_agent_if_upgrade_available(protocol, base_version=base_version) def test_upgrade_available_returns_true_on_first_use(self): self.assertTrue(self._test_upgrade_available()) def test_upgrade_available_handles_missing_family(self): data_file = mockwiredata.DATA_FILE.copy() data_file["ext_conf"] = "wire/ext_conf_missing_family.xml" with mock_wire_protocol(data_file) as protocol: self.update_handler.protocol_util = protocol with patch('azurelinuxagent.common.logger.warn') as mock_logger: with patch('tests.ga.test_update.ProtocolMock.get_vmagent_pkgs', side_effect=ProtocolError): self.assertFalse(self.update_handler._check_and_download_agent_if_upgrade_available(protocol, base_version=CURRENT_VERSION)) self.assertEqual(0, mock_logger.call_count) def test_upgrade_available_includes_old_agents(self): self.prepare_agents() old_version = self.agent_versions()[-1] old_count = old_version.version[-1] self.replicate_agents(src_v=old_version, count=old_count, increment=-1) all_count = len(self.agent_versions()) self.assertTrue(self._test_upgrade_available(versions=self.agent_versions())) self.assertEqual(all_count, len(self.update_handler.agents)) def test_upgrade_available_purges_old_agents(self): self.prepare_agents() agent_count = self.agent_count() self.assertEqual(20, agent_count) agent_versions = self.agent_versions()[:3] self.assertTrue(self._test_upgrade_available(versions=agent_versions)) self.assertEqual(len(agent_versions), len(self.update_handler.agents)) # Purging always keeps the running agent if CURRENT_VERSION not in agent_versions: agent_versions.append(CURRENT_VERSION) self.assertEqual(agent_versions, self.agent_versions()) def test_update_available_returns_true_if_current_gets_blacklisted(self): self.update_handler._is_version_eligible = Mock(return_value=False) self.assertTrue(self._test_upgrade_available()) def test_upgrade_available_skips_if_too_frequent(self): conf.get_autoupdate_frequency = Mock(return_value=10000) self.update_handler.last_attempt_time = time.time() self.assertFalse(self._test_upgrade_available()) def test_upgrade_available_skips_if_when_no_new_versions(self): self.prepare_agents() base_version = self.agent_versions()[0] + 1 self.update_handler._is_version_eligible = lambda x: x == base_version self.assertFalse(self._test_upgrade_available(base_version=base_version)) def test_upgrade_available_skips_when_no_versions(self): self.assertFalse(self._test_upgrade_available(protocol=ProtocolMock())) def test_upgrade_available_skips_when_updates_are_disabled(self): conf.get_autoupdate_enabled = Mock(return_value=False) self.assertFalse(self._test_upgrade_available()) def test_upgrade_available_sorts(self): self.prepare_agents() self._test_upgrade_available() v = FlexibleVersion("100000") for a in self.update_handler.agents: self.assertTrue(v > a.version) v = a.version def test_write_pid_file(self): for n in range(1112): fileutil.write_file(os.path.join(self.tmp_dir, str(n) + "_waagent.pid"), ustr(n + 1)) with patch('os.getpid', return_value=1112): pid_files, pid_file = self.update_handler._write_pid_file() self.assertEqual(1112, len(pid_files)) self.assertEqual("1111_waagent.pid", os.path.basename(pid_files[-1])) self.assertEqual("1112_waagent.pid", os.path.basename(pid_file)) self.assertEqual(fileutil.read_file(pid_file), ustr(1112)) def test_write_pid_file_ignores_exceptions(self): with patch('azurelinuxagent.common.utils.fileutil.write_file', side_effect=Exception): with patch('os.getpid', return_value=42): pid_files, pid_file = self.update_handler._write_pid_file() self.assertEqual(0, len(pid_files)) self.assertEqual(None, pid_file) @patch('azurelinuxagent.common.conf.get_extensions_enabled', return_value=False) def test_update_happens_when_extensions_disabled(self, _): """ Although the extension enabled config will not get checked before an update is found, this test attempts to ensure that behavior never changes. """ self.update_handler._check_and_download_agent_if_upgrade_available = Mock(return_value=True) self._test_run(invocations=0, calls=0, enable_updates=True, sleep_interval=(300,)) @patch("azurelinuxagent.common.logger.info") @patch("azurelinuxagent.ga.update.add_event") def test_telemetry_heartbeat_creates_event(self, patch_add_event, patch_info, *_): update_handler = get_update_handler() mock_protocol = WireProtocol("foo.bar") update_handler.last_telemetry_heartbeat = datetime.utcnow() - timedelta(hours=1) update_handler._send_heartbeat_telemetry(mock_protocol) self.assertEqual(1, patch_add_event.call_count) self.assertTrue(any(call_args[0] == "[HEARTBEAT] Agent {0} is running as the goal state agent {1}" for call_args in patch_info.call_args), "The heartbeat was not written to the agent's log") @staticmethod def _get_test_ext_handler_instance(protocol, name="OSTCExtensions.ExampleHandlerLinux", version="1.0.0"): eh = ExtHandler(name=name) eh.properties.version = version return ExtHandlerInstance(eh, protocol) def test_it_should_recreate_handler_env_on_service_startup(self): iterations = 5 with _get_update_handler(iterations) as (update_handler, protocol): update_handler.run(debug=True) expected_handler = self._get_test_ext_handler_instance(protocol) handler_env_file = expected_handler.get_env_file() self.assertTrue(os.path.exists(expected_handler.get_base_dir()), "Extension not found") # First iteration should install the extension handler and # subsequent iterations should not recreate the HandlerEnvironment file last_modification_time = os.path.getmtime(handler_env_file) self.assertEqual(os.path.getctime(handler_env_file), last_modification_time, "The creation time and last modified time of the HandlerEnvironment file dont match") # Simulate a service restart by getting a new instance of the update handler and protocol and # re-runnning the update handler. Then,ensure that the HandlerEnvironment file is recreated with eventsFolder # flag in HandlerEnvironment.json file. self._add_write_permission_to_goal_state_files() with _get_update_handler(iterations) as (update_handler, protocol): with patch("azurelinuxagent.common.agent_supported_feature._ETPFeature.is_supported", True): update_handler.set_iterations(1) update_handler.run(debug=True) self.assertGreater(os.path.getmtime(handler_env_file), last_modification_time, "HandlerEnvironment file didn't get overwritten") with open(handler_env_file, 'r') as handler_env_content_file: content = json.load(handler_env_content_file) self.assertIn(HandlerEnvironment.eventsFolder, content[0][HandlerEnvironment.handlerEnvironment], "{0} not found in HandlerEnv file".format(HandlerEnvironment.eventsFolder)) def test_it_should_not_setup_persistent_firewall_rules_if_EnableFirewall_is_disabled(self): executed_firewall_commands = [] def _mock_popen(cmd, *args, **kwargs): if 'firewall-cmd' in cmd: executed_firewall_commands.append(cmd) cmd = ["echo", "running"] return _ORIGINAL_POPEN(cmd, *args, **kwargs) with patch("azurelinuxagent.common.logger.info") as patch_info: with _get_update_handler(iterations=1) as (update_handler, _): with patch("azurelinuxagent.common.utils.shellutil.subprocess.Popen", side_effect=_mock_popen): with patch('azurelinuxagent.common.conf.enable_firewall', return_value=False): update_handler.run(debug=True) self.assertEqual(0, len(executed_firewall_commands), "firewall-cmd should not be called at all") self.assertTrue(any( "Not setting up persistent firewall rules as OS.EnableFirewall=False" == args[0] for (args, _) in patch_info.call_args_list), "Info not logged properly, got: {0}".format(patch_info.call_args_list)) def test_it_should_setup_persistent_firewall_rules_on_startup(self): iterations = 1 executed_commands = [] def _mock_popen(cmd, *args, **kwargs): if 'firewall-cmd' in cmd: executed_commands.append(cmd) cmd = ["echo", "running"] return _ORIGINAL_POPEN(cmd, *args, **kwargs) with _get_update_handler(iterations) as (update_handler, _): with patch("azurelinuxagent.common.utils.shellutil.subprocess.Popen", side_effect=_mock_popen) as mock_popen: with patch('azurelinuxagent.common.conf.enable_firewall', return_value=True): with patch('azurelinuxagent.common.osutil.systemd.is_systemd', return_value=True): update_handler.run(debug=True) # Firewall-cmd should only be called 3 times - 1st to check if running, 2nd & 3rd for the QueryPassThrough cmd self.assertEqual(3, len(executed_commands), "The number of times firewall-cmd should be called is only 3; Executed firewall commands: {0}; All popen calls: {1}".format( executed_commands, mock_popen.call_args_list)) self.assertEqual(PersistFirewallRulesHandler._FIREWALLD_RUNNING_CMD, executed_commands.pop(0), "First command should be to check if firewalld is running") self.assertTrue([FirewallCmdDirectCommands.QueryPassThrough in cmd for cmd in executed_commands], "The remaining commands should only be for querying the firewall commands") @contextlib.contextmanager def _setup_test_for_ext_event_dirs_retention(self): try: with _get_update_handler(test_data=DATA_FILE_MULTIPLE_EXT) as (update_handler, protocol): with patch("azurelinuxagent.common.agent_supported_feature._ETPFeature.is_supported", True): update_handler.run(debug=True) expected_events_dirs = glob.glob(os.path.join(conf.get_ext_log_dir(), "*", EVENTS_DIRECTORY)) no_of_extensions = protocol.mock_wire_data.get_no_of_plugins_in_extension_config() # Ensure extensions installed and events directory created self.assertEqual(len(expected_events_dirs), no_of_extensions, "Extension events directories dont match") for ext_dir in expected_events_dirs: self.assertTrue(os.path.exists(ext_dir), "Extension directory {0} not created!".format(ext_dir)) yield update_handler, expected_events_dirs finally: # The TestUpdate.setUp() initializes the self.tmp_dir to be used as a placeholder # for everything (event logger, status logger, conf.get_lib_dir() and more). # Since we add more data to the dir for this test, ensuring its completely clean before exiting the test. shutil.rmtree(self.tmp_dir, ignore_errors=True) self.tmp_dir = None def test_it_should_delete_extension_events_directory_if_extension_telemetry_pipeline_disabled(self): # Disable extension telemetry pipeline and ensure events directory got deleted with self._setup_test_for_ext_event_dirs_retention() as (update_handler, expected_events_dirs): with patch("azurelinuxagent.common.agent_supported_feature._ETPFeature.is_supported", False): self._add_write_permission_to_goal_state_files() update_handler.run(debug=True) for ext_dir in expected_events_dirs: self.assertFalse(os.path.exists(ext_dir), "Extension directory {0} still exists!".format(ext_dir)) def test_it_should_retain_extension_events_directories_if_extension_telemetry_pipeline_enabled(self): # Rerun update handler again with extension telemetry pipeline enabled to ensure we dont delete events directories with self._setup_test_for_ext_event_dirs_retention() as (update_handler, expected_events_dirs): self._add_write_permission_to_goal_state_files() update_handler.run(debug=True) for ext_dir in expected_events_dirs: self.assertTrue(os.path.exists(ext_dir), "Extension directory {0} should exist!".format(ext_dir)) def test_it_should_recreate_extension_event_directories_for_existing_extensions_if_extension_telemetry_pipeline_enabled(self): with self._setup_test_for_ext_event_dirs_retention() as (update_handler, expected_events_dirs): # Delete existing events directory for ext_dir in expected_events_dirs: shutil.rmtree(ext_dir, ignore_errors=True) self.assertFalse(os.path.exists(ext_dir), "Extension directory not deleted") with patch("azurelinuxagent.common.agent_supported_feature._ETPFeature.is_supported", True): self._add_write_permission_to_goal_state_files() update_handler.run(debug=True) for ext_dir in expected_events_dirs: self.assertTrue(os.path.exists(ext_dir), "Extension directory {0} should exist!".format(ext_dir)) class TestAgentUpgrade(UpdateTestCase): @contextlib.contextmanager def create_conf_mocks(self, hotfix_frequency, normal_frequency): # Disabling extension processing to speed up tests as this class deals with testing agent upgrades with patch("azurelinuxagent.common.conf.get_extensions_enabled", return_value=False): with patch("azurelinuxagent.common.conf.get_autoupdate_enabled", return_value=True): with patch("azurelinuxagent.common.conf.get_autoupdate_frequency", return_value=0.001): with patch("azurelinuxagent.common.conf.get_hotfix_upgrade_frequency", return_value=hotfix_frequency): with patch("azurelinuxagent.common.conf.get_normal_upgrade_frequency", return_value=normal_frequency): yield @contextlib.contextmanager def __get_update_handler(self, iterations=1, test_data=None, hotfix_frequency=1.0, normal_frequency=2.0, reload_conf=None): test_data = DATA_FILE if test_data is None else test_data with _get_update_handler(iterations, test_data) as (update_handler, protocol): def get_handler(url, **kwargs): if reload_conf is not None: reload_conf(url, protocol.mock_wire_data) if HttpRequestPredicates.is_agent_package_request(url): agent_pkg = load_bin_data(self._get_agent_file_name(), self._agent_zip_dir) return ResponseMock(response=agent_pkg) return protocol.mock_wire_data.mock_http_get(url, **kwargs) protocol.set_http_handlers(http_get_handler=get_handler) with self.create_conf_mocks(hotfix_frequency, normal_frequency): with patch("azurelinuxagent.ga.update.add_event") as mock_telemetry: yield update_handler, mock_telemetry def __assert_exit_code_successful(self, exit_mock): self.assertTrue(exit_mock.called, "The process should have exited") exit_args, _ = exit_mock.call_args self.assertEqual(exit_args[0], 0, "Exit code should be 0") def __assert_upgrade_telemetry_emitted(self, mock_telemetry, upgrade_type=AgentUpgradeType.Normal): upgrade_event_msgs = [kwarg['message'] for _, kwarg in mock_telemetry.call_args_list if '{0} Agent upgrade discovered, updating to WALinuxAgent-99999.0.0.0 -- exiting'.format( upgrade_type) in kwarg['message'] and kwarg[ 'op'] == WALAEventOperation.AgentUpgrade] self.assertEqual(1, len(upgrade_event_msgs), "Agent not upgraded properly") def __assert_agent_directories_available(self, versions): for version in versions: self.assertTrue(os.path.exists(self.agent_dir(version)), "Agent directory {0} not found".format(version)) def __assert_no_agent_upgrade_telemetry(self, mock_telemetry): self.assertEqual(0, len([kwarg['message'] for _, kwarg in mock_telemetry.call_args_list if "Agent upgrade discovered, updating to" in kwarg['message'] and kwarg[ 'op'] == WALAEventOperation.AgentUpgrade]), "Unwanted upgrade") def test_it_should_upgrade_agent_on_process_start_if_auto_upgrade_enabled(self): with self.__get_update_handler(iterations=10) as (update_handler, mock_telemetry): update_handler.run(debug=True) self.__assert_exit_code_successful(update_handler.exit_mock) self.assertEqual(1, update_handler.get_iterations(), "Update handler should've exited after the first run") self.__assert_agent_directories_available(versions=["99999.0.0.0"]) self.__assert_upgrade_telemetry_emitted(mock_telemetry) def test_it_should_download_new_agents_and_not_auto_upgrade_if_not_permitted(self): no_of_iterations = 10 data_file = DATA_FILE.copy() data_file['ga_manifest'] = "wire/ga_manifest_no_upgrade.xml" def reload_conf(url, mock_wire_data): # This function reloads the conf mid-run to mimic an actual customer scenario if HttpRequestPredicates.is_ga_manifest_request(url) and mock_wire_data.call_counts["manifest_of_ga.xml"] >= no_of_iterations/2: reload_conf.call_count += 1 # Ensure the first set of versions were downloaded as part of the first manifest self.__assert_agent_directories_available(versions=["1.0.0", "1.1.0", "1.2.0"]) # As per our current agent upgrade model, we don't rely on an incarnation update to upgrade the agent. Mocking the same mock_wire_data.data_files["ga_manifest"] = "wire/ga_manifest.xml" mock_wire_data.reload() reload_conf.call_count = 0 with self.__get_update_handler(iterations=no_of_iterations, test_data=data_file, hotfix_frequency=10, normal_frequency=10, reload_conf=reload_conf) as (update_handler, mock_telemetry): update_handler.run(debug=True) self.assertGreater(reload_conf.call_count, 0, "Ensure the conf reload was called") self.__assert_exit_code_successful(update_handler.exit_mock) self.assertEqual(no_of_iterations, update_handler.get_iterations(), "Update handler should've run its course") # Ensure the new agent versions were also downloaded once the manifest was updated self.__assert_agent_directories_available(versions=["2.0.0", "2.1.0", "99999.0.0.0"]) self.__assert_no_agent_upgrade_telemetry(mock_telemetry) def test_it_should_upgrade_agent_in_given_time_window_if_permitted(self): data_file = DATA_FILE.copy() data_file['ga_manifest'] = "wire/ga_manifest_no_upgrade.xml" def reload_conf(url, mock_wire_data): # This function reloads the conf mid-run to mimic an actual customer scenario if HttpRequestPredicates.is_ga_manifest_request(url) and mock_wire_data.call_counts["manifest_of_ga.xml"] >= 2: reload_conf.call_count += 1 # Ensure no new agent available so far self.assertFalse(os.path.exists(self.agent_dir("99999.0.0.0")), "New agent directory should not be found") # As per our current agent upgrade model, we don't rely on an incarnation update to upgrade the agent. Mocking the same mock_wire_data.data_files["ga_manifest"] = "wire/ga_manifest.xml" mock_wire_data.reload() reload_conf.call_count = 0 test_normal_frequency = 0.1 with self.__get_update_handler(iterations=50, test_data=data_file, reload_conf=reload_conf, normal_frequency=test_normal_frequency) as (update_handler, mock_telemetry): start_time = time.time() update_handler.run(debug=True) diff = time.time() - start_time self.assertGreater(reload_conf.call_count, 0, "Ensure the conf reload was called") self.__assert_exit_code_successful(update_handler.exit_mock) self.assertGreaterEqual(update_handler.get_iterations(), 3, "Update handler should've run at least until the new GA was available") # A bare-bone check to ensure that the agent waited for the new agent at least for the preset frequency time self.assertGreater(diff, test_normal_frequency, "The test run should be at least greater than the set frequency") self.__assert_agent_directories_available(versions=["99999.0.0.0"]) self.__assert_upgrade_telemetry_emitted(mock_telemetry) def test_it_should_not_auto_upgrade_if_auto_update_disabled(self): with self.__get_update_handler(iterations=10) as (update_handler, mock_telemetry): with patch("azurelinuxagent.common.conf.get_autoupdate_enabled", return_value=False): update_handler.run(debug=True) self.__assert_exit_code_successful(update_handler.exit_mock) self.assertGreaterEqual(update_handler.get_iterations(), 10, "Update handler should've run 10 times") self.__assert_no_agent_upgrade_telemetry(mock_telemetry) self.assertFalse(os.path.exists(self.agent_dir("99999.0.0.0")), "New agent directory should not be found") def test_it_should_not_auto_upgrade_if_corresponding_time_not_elapsed(self): # On Normal upgrade, should not upgrade if Hotfix time elapsed no_of_iterations = 10 data_file = DATA_FILE.copy() data_file['ga_manifest'] = "wire/ga_manifest_no_upgrade.xml" def reload_conf(url, mock_wire_data): # This function reloads the conf mid-run to mimic an actual customer scenario if HttpRequestPredicates.is_ga_manifest_request(url) and mock_wire_data.call_counts["manifest_of_ga.xml"] >= no_of_iterations / 2: reload_conf.call_count += 1 # As per our current agent upgrade model, we don't rely on an incarnation update to upgrade the agent. Mocking the same mock_wire_data.data_files["ga_manifest"] = "wire/ga_manifest.xml" mock_wire_data.reload() reload_conf.call_count = 0 with self.__get_update_handler(iterations=no_of_iterations, test_data=data_file, hotfix_frequency=0.01, normal_frequency=10, reload_conf=reload_conf) as (update_handler, mock_telemetry): update_handler.run(debug=True) self.assertGreater(reload_conf.call_count, 0, "Ensure the conf reload was called") self.__assert_exit_code_successful(update_handler.exit_mock) self.assertEqual(no_of_iterations, update_handler.get_iterations(), "Update handler didn't run completely") self.__assert_no_agent_upgrade_telemetry(mock_telemetry) upgrade_event_msgs = [kwarg['message'] for _, kwarg in mock_telemetry.call_args_list if kwarg['op'] == WALAEventOperation.AgentUpgrade] self.assertGreater(len([msg for msg in upgrade_event_msgs if 'Discovered new {0} upgrade WALinuxAgent-99999.0.0.0; Will upgrade on or after'.format( AgentUpgradeType.Normal) in msg]), 0, "Error message not propagated properly") @patch('azurelinuxagent.ga.update.get_collect_telemetry_events_handler') @patch('azurelinuxagent.ga.update.get_send_telemetry_events_handler') @patch('azurelinuxagent.ga.update.get_collect_logs_handler') @patch('azurelinuxagent.ga.update.get_monitor_handler') @patch('azurelinuxagent.ga.update.get_env_handler') class MonitorThreadTest(AgentTestCase): def setUp(self): AgentTestCase.setUp(self) self.event_patch = patch('azurelinuxagent.common.event.add_event') currentThread().setName("ExtHandler") protocol = Mock() protocol.get_ext_handlers = Mock(return_value=(Mock(), Mock())) self.update_handler = get_update_handler() self.update_handler.protocol_util = Mock() self.update_handler.protocol_util.get_protocol = Mock(return_value=protocol) clear_singleton_instances(ProtocolUtil) def _test_run(self, invocations=1): def iterator(*_, **__): iterator.count += 1 if iterator.count <= invocations: return True return False iterator.count = 0 with patch('os.getpid', return_value=42): with patch.object(UpdateHandler, '_is_orphaned') as mock_is_orphaned: mock_is_orphaned.__get__ = Mock(return_value=False) with patch.object(UpdateHandler, 'is_running') as mock_is_running: mock_is_running.__get__ = Mock(side_effect=iterator) with patch('azurelinuxagent.ga.exthandlers.get_exthandlers_handler'): with patch('azurelinuxagent.ga.remoteaccess.get_remote_access_handler'): with patch('azurelinuxagent.ga.update.initialize_event_logger_vminfo_common_parameters'): with patch('azurelinuxagent.common.cgroupapi.CGroupsApi.cgroups_supported', return_value=False): # skip all cgroup stuff with patch('azurelinuxagent.ga.update.is_log_collection_allowed', return_value=True): with patch('time.sleep'): with patch('sys.exit'): self.update_handler.run() def _setup_mock_thread_and_start_test_run(self, mock_thread, is_alive=True, invocations=0): thread = MagicMock() thread.run = MagicMock() thread.is_alive = MagicMock(return_value=is_alive) thread.start = MagicMock() mock_thread.return_value = thread self._test_run(invocations=invocations) return thread def test_start_threads(self, mock_env, mock_monitor, mock_collect_logs, mock_telemetry_send_events, mock_telemetry_collector): def _get_mock_thread(): thread = MagicMock() thread.run = MagicMock() return thread all_threads = [mock_telemetry_send_events, mock_telemetry_collector, mock_env, mock_monitor, mock_collect_logs] for thread in all_threads: thread.return_value = _get_mock_thread() self._test_run(invocations=0) for thread in all_threads: self.assertEqual(1, thread.call_count) self.assertEqual(1, thread().run.call_count) def test_check_if_monitor_thread_is_alive(self, _, mock_monitor, *args): # pylint: disable=unused-argument mock_monitor_thread = self._setup_mock_thread_and_start_test_run(mock_monitor, is_alive=True, invocations=1) self.assertEqual(1, mock_monitor.call_count) self.assertEqual(1, mock_monitor_thread.run.call_count) self.assertEqual(1, mock_monitor_thread.is_alive.call_count) self.assertEqual(0, mock_monitor_thread.start.call_count) def test_check_if_env_thread_is_alive(self, mock_env, *args): # pylint: disable=unused-argument mock_env_thread = self._setup_mock_thread_and_start_test_run(mock_env, is_alive=True, invocations=1) self.assertEqual(1, mock_env.call_count) self.assertEqual(1, mock_env_thread.run.call_count) self.assertEqual(1, mock_env_thread.is_alive.call_count) self.assertEqual(0, mock_env_thread.start.call_count) def test_restart_monitor_thread_if_not_alive(self, _, mock_monitor, *args): # pylint: disable=unused-argument mock_monitor_thread = self._setup_mock_thread_and_start_test_run(mock_monitor, is_alive=False, invocations=1) self.assertEqual(1, mock_monitor.call_count) self.assertEqual(1, mock_monitor_thread.run.call_count) self.assertEqual(1, mock_monitor_thread.is_alive.call_count) self.assertEqual(1, mock_monitor_thread.start.call_count) def test_restart_env_thread_if_not_alive(self, mock_env, *args): # pylint: disable=unused-argument mock_env_thread = self._setup_mock_thread_and_start_test_run(mock_env, is_alive=False, invocations=1) self.assertEqual(1, mock_env.call_count) self.assertEqual(1, mock_env_thread.run.call_count) self.assertEqual(1, mock_env_thread.is_alive.call_count) self.assertEqual(1, mock_env_thread.start.call_count) def test_restart_monitor_thread(self, _, mock_monitor, *args): # pylint: disable=unused-argument mock_monitor_thread = self._setup_mock_thread_and_start_test_run(mock_monitor, is_alive=False, invocations=1) self.assertEqual(True, mock_monitor.called) self.assertEqual(True, mock_monitor_thread.run.called) self.assertEqual(True, mock_monitor_thread.is_alive.called) self.assertEqual(True, mock_monitor_thread.start.called) def test_restart_env_thread(self, mock_env, *args): # pylint: disable=unused-argument mock_env_thread = self._setup_mock_thread_and_start_test_run(mock_env, is_alive=False, invocations=1) self.assertEqual(True, mock_env.called) self.assertEqual(True, mock_env_thread.run.called) self.assertEqual(True, mock_env_thread.is_alive.called) self.assertEqual(True, mock_env_thread.start.called) class ChildMock(Mock): def __init__(self, return_value=0, side_effect=None): Mock.__init__(self, return_value=return_value, side_effect=side_effect) self.poll = Mock(return_value=return_value, side_effect=side_effect) self.wait = Mock(return_value=return_value, side_effect=side_effect) class ProtocolMock(object): def __init__(self, family="TestAgent", etag=42, versions=None, client=None): self.family = family self.client = client self.call_counts = { "get_vmagent_manifests": 0, "get_vmagent_pkgs": 0, "update_goal_state": 0 } self.goal_state_is_stale = False self.etag = etag self.versions = versions if versions is not None else [] self.create_manifests() self.create_packages() def emulate_stale_goal_state(self): self.goal_state_is_stale = True def create_manifests(self): self.agent_manifests = [] if len(self.versions) <= 0: return if self.family is not None: manifest = VMAgentManifest(family=self.family) for i in range(0, 10): manifest.uris.append("https://nowhere.msft/agent/{0}".format(i)) self.agent_manifests.append(manifest) def create_packages(self): self.agent_packages = ExtHandlerPackageList() if len(self.versions) <= 0: return for version in self.versions: package = ExtHandlerPackage(str(version)) for i in range(0, 5): package_uri = "https://nowhere.msft/agent_pkg/{0}".format(i) package.uris.append(package_uri) self.agent_packages.versions.append(package) def get_protocol(self): return self def get_vmagent_manifests(self): self.call_counts["get_vmagent_manifests"] += 1 if self.goal_state_is_stale: self.goal_state_is_stale = False raise ResourceGoneError() return self.agent_manifests, self.etag def get_vmagent_pkgs(self, manifest): # pylint: disable=unused-argument self.call_counts["get_vmagent_pkgs"] += 1 if self.goal_state_is_stale: self.goal_state_is_stale = False raise ResourceGoneError() return self.agent_packages def update_goal_state(self): self.call_counts["update_goal_state"] += 1 class ResponseMock(Mock): def __init__(self, status=restutil.httpclient.OK, response=None, reason=None): Mock.__init__(self) self.status = status self.reason = reason self.response = response def read(self): return self.response class TimeMock(Mock): def __init__(self, time_increment=1): Mock.__init__(self) self.next_time = time.time() self.time_call_count = 0 self.time_increment = time_increment self.sleep_interval = None def sleep(self, n): self.sleep_interval = n def time(self): self.time_call_count += 1 current_time = self.next_time self.next_time += self.time_increment return current_time class TryUpdateGoalStateTestCase(HttpRequestPredicates, AgentTestCase): """ Tests for UpdateHandler._try_update_goal_state() """ def test_it_should_return_true_on_success(self): update_handler = get_update_handler() with mock_wire_protocol(mockwiredata.DATA_FILE) as protocol: self.assertTrue(update_handler._try_update_goal_state(protocol), "try_update_goal_state should have succeeded") def test_it_should_return_false_on_failure(self): with mock_wire_protocol(mockwiredata.DATA_FILE) as protocol: def http_get_handler(url, *_, **__): if self.is_goal_state_request(url): return HttpError('Exception to fake an error retrieving the goal state') return None protocol.set_http_handlers(http_get_handler=http_get_handler) update_handler = get_update_handler() self.assertFalse(update_handler._try_update_goal_state(protocol), "try_update_goal_state should have failed") def test_it_should_update_the_goal_state(self): update_handler = get_update_handler() with mock_wire_protocol(mockwiredata.DATA_FILE) as protocol: protocol.mock_wire_data.set_incarnation(12345) # the first goal state should produce an update update_handler._try_update_goal_state(protocol) self.assertEqual(protocol.get_incarnation(), '12345', "The goal state was not updated (received unexpected incarnation)") # no changes in the goal state should not produce an update update_handler._try_update_goal_state(protocol) self.assertEqual(protocol.get_incarnation(), '12345', "The goal state should not be updated (received unexpected incarnation)") # a new goal state should produce an update protocol.mock_wire_data.set_incarnation(6789) update_handler._try_update_goal_state(protocol) self.assertEqual(protocol.get_incarnation(), '6789', "The goal state was not updated (received unexpected incarnation)") def test_it_should_log_errors_only_when_the_error_state_changes(self): with mock_wire_protocol(mockwiredata.DATA_FILE) as protocol: def http_get_handler(url, *_, **__): if self.is_goal_state_request(url): if fail_goal_state_request: return HttpError('Exception to fake an error retrieving the goal state') return None protocol.set_http_handlers(http_get_handler=http_get_handler) @contextlib.contextmanager def create_log_and_telemetry_mocks(): with patch("azurelinuxagent.ga.update.logger", autospec=True) as logger_patcher: with patch("azurelinuxagent.ga.update.add_event") as add_event_patcher: yield logger_patcher, add_event_patcher calls_to_strings = lambda calls: (str(c) for c in calls) filter_calls = lambda calls, regex=None: (c for c in calls_to_strings(calls) if regex is None or re.match(regex, c)) logger_calls = lambda regex=None: [m for m in filter_calls(logger.method_calls, regex)] # pylint: disable=used-before-assignment,unnecessary-comprehension warnings = lambda: logger_calls(r'call.warn\(.*An error occurred while retrieving the goal state.*') periodic_warnings = lambda: logger_calls(r'call.periodic_warn\(.*Attempts to retrieve the goal state are failing.*') success_messages = lambda: logger_calls(r'call.info\(.*Retrieving the goal state recovered from previous errors.*') telemetry_calls = lambda regex=None: [m for m in filter_calls(add_event.mock_calls, regex)] # pylint: disable=used-before-assignment,unnecessary-comprehension goal_state_events = lambda: telemetry_calls(r".*op='FetchGoalState'.*") # # Initially calls to retrieve the goal state are successful... # update_handler = get_update_handler() fail_goal_state_request = False with create_log_and_telemetry_mocks() as (logger, add_event): update_handler._try_update_goal_state(protocol) lc = logger_calls() self.assertTrue(len(lc) == 0, "A successful call should not produce any log messages: [{0}]".format(lc)) tc = telemetry_calls() self.assertTrue(len(tc) == 0, "A successful call should not produce any telemetry events: [{0}]".format(tc)) # # ... then an error happens... # fail_goal_state_request = True with create_log_and_telemetry_mocks() as (logger, add_event): update_handler._try_update_goal_state(protocol) w = warnings() pw = periodic_warnings() self.assertEqual(1, len(w), "A failure should have produced a warning: [{0}]".format(w)) self.assertEqual(1, len(pw), "A failure should have produced a periodic warning: [{0}]".format(pw)) gs = goal_state_events() self.assertTrue(len(gs) == 1 and 'is_success=False' in gs[0], "A failure should produce a telemetry event (success=false): [{0}]".format(gs)) # # ... and errors continue happening... # with create_log_and_telemetry_mocks() as (logger, add_event): update_handler._try_update_goal_state(protocol) update_handler._try_update_goal_state(protocol) update_handler._try_update_goal_state(protocol) w = warnings() pw = periodic_warnings() self.assertTrue(len(w) == 0, "Subsequent failures should not produce warnings: [{0}]".format(w)) self.assertEqual(len(pw), 3, "Subsequent failures should produce periodic warnings: [{0}]".format(pw)) tc = telemetry_calls() self.assertTrue(len(tc) == 0, "Subsequent failures should not produce any telemetry events: [{0}]".format(tc)) # # ... until we finally succeed # fail_goal_state_request = False with create_log_and_telemetry_mocks() as (logger, add_event): update_handler._try_update_goal_state(protocol) s = success_messages() w = warnings() pw = periodic_warnings() self.assertEqual(len(s), 1, "Recovering after failures should have produced an info message: [{0}]".format(s)) self.assertTrue(len(w) == 0 and len(pw) == 0, "Recovering after failures should have not produced any warnings: [{0}] [{1}]".format(w, pw)) gs = goal_state_events() self.assertTrue(len(gs) == 1 and 'is_success=True' in gs[0], "Recovering after failures should produce a telemetry event (success=true): [{0}]".format(gs)) def _create_update_handler(): """ Creates an UpdateHandler in which agent updates are mocked as a no-op. """ update_handler = get_update_handler() update_handler._check_and_download_agent_if_upgrade_available = Mock(return_value=False) return update_handler @contextlib.contextmanager def _mock_exthandlers_handler(extension_statuses=None): """ Creates an ExtHandlersHandler that doesn't actually handle any extensions, but that returns status for 1 extension. The returned ExtHandlersHandler uses a mock WireProtocol, and both the run() and report_ext_handlers_status() are mocked. The mock run() is a no-op. If a list of extension_statuses is given, successive calls to the mock report_ext_handlers_status() returns a single extension with each of the statuses in the list. If extension_statuses is omitted all calls to report_ext_handlers_status() return a single extension with a success status. """ def create_vm_status(extension_status): vm_status = VMStatus(status="Ready", message="Ready") vm_status.vmAgent.extensionHandlers = [ExtHandlerStatus()] vm_status.vmAgent.extensionHandlers[0].extension_status = ExtensionStatus(name="TestExtension") vm_status.vmAgent.extensionHandlers[0].extension_status.status = extension_status return vm_status with mock_wire_protocol(DATA_FILE) as protocol: exthandlers_handler = ExtHandlersHandler(protocol) exthandlers_handler.run = Mock() if extension_statuses is None: exthandlers_handler.report_ext_handlers_status = Mock(return_value=create_vm_status(ExtensionStatusValue.success)) else: exthandlers_handler.report_ext_handlers_status = Mock(side_effect=[create_vm_status(s) for s in extension_statuses]) yield exthandlers_handler class ProcessGoalStateTestCase(AgentTestCase): """ Tests for UpdateHandler._process_goal_state() """ def test_it_should_process_goal_state_only_on_new_goal_state(self): with _mock_exthandlers_handler() as exthandlers_handler: update_handler = _create_update_handler() remote_access_handler = Mock() remote_access_handler.run = Mock() # process a goal state update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(1, exthandlers_handler.run.call_count, "exthandlers_handler.run() should have been called on the first goal state") self.assertEqual(1, exthandlers_handler.report_ext_handlers_status.call_count, "exthandlers_handler.report_ext_handlers_status() should have been called on the first goal state") self.assertEqual(1, remote_access_handler.run.call_count, "remote_access_handler.run() should have been called on the first goal state") # process the same goal state update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(1, exthandlers_handler.run.call_count, "exthandlers_handler.run() should have not been called on the same goal state") self.assertEqual(2, exthandlers_handler.report_ext_handlers_status.call_count, "exthandlers_handler.report_ext_handlers_status() should have been called on the same goal state") self.assertEqual(1, remote_access_handler.run.call_count, "remote_access_handler.run() should not have been called on the same goal state") # process a new goal state exthandlers_handler.protocol.mock_wire_data.set_incarnation(999) exthandlers_handler.protocol.client.update_goal_state() update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(2, exthandlers_handler.run.call_count, "exthandlers_handler.run() should have been called on a new goal state") self.assertEqual(3, exthandlers_handler.report_ext_handlers_status.call_count, "exthandlers_handler.report_ext_handlers_status() should have been called on a new goal state") self.assertEqual(2, remote_access_handler.run.call_count, "remote_access_handler.run() should have been called on a new goal state") class ReportStatusTestCase(AgentTestCase): """ Tests for UpdateHandler._report_status() """ def setUp(self): self.patches = [ patch("time.sleep", side_effect=lambda _: mock_sleep(0.001)), patch("sys.exit") ] for p in self.patches: p.start() return AgentTestCase.setUp(self) def tearDown(self): for p in self.patches: p.stop() return AgentTestCase.tearDown(self) @staticmethod @contextlib.contextmanager def _mock_update_handler(iterations=1, **kwargs): """ Creates an UpdateHandler instance that will run n iterations. Can be supplied keyword args for: * mock_wire_data_file: This arg is treated like mock_wire_protocol would. Defaults to mockwiredata.DATA_FILE_STATUS_BLOB * http_<action>_handler where action is get, put, or post: This arg is treated like mock_wire_protocol would. Returned UpdateHandler instance has its protocol mocked via mock_wire_protocol. """ # Build the side_effect list for the UpdateHandler.is_running PropertyMock. # Return True for the first n iterations followed by a single False to stop # and then another True because the current UpdateHandler implementation # does a __set__ during shutdown. is_running_return_values = [True] * iterations + [False, True] is_running_patch = patch.object(UpdateHandler, "is_running", PropertyMock(side_effect=is_running_return_values)) mock_http_get = kwargs.get("http_get_handler") mock_http_put = kwargs.get("http_put_handler") mock_http_post = kwargs.get("http_post_handler") mock_wire_data_file = kwargs.get("mock_wire_data_file", mockwiredata.DATA_FILE_STATUS_BLOB) try: with mock_wire_protocol(mock_wire_data_file, mock_http_get, mock_http_post, mock_http_put) as protocol: update_handler = get_update_handler() update_handler.protocol_util.get_protocol = Mock(return_value=protocol) is_running_patch.start() yield update_handler finally: is_running_patch.stop() @staticmethod def _fail_goal_state_fetch(url, **_): """ For each goal state requested, returns values in order before failing with an HttpError. Is useful for getting the agent into a specific state before causing a failure. Relies on this function to have the property return_vals populated with a list of values to be returned in order. Any `None` in the list will cause the mock wire data to be queried and returned, and thus functions as a sort of default. """ if not HttpRequestPredicates.is_goal_state_request(url): # url does not represent a request for a goal state; return None so # that the mock_wire_protocol will return whatever data is in the mock # wire data object (as per the mock_wire_protocol's docstring). return None try: return ReportStatusTestCase._fail_goal_state_fetch.return_vals.pop() except IndexError: raise HttpError() def test_update_handler_should_report_status_even_on_failed_goal_state_fetch(self): try: # Returning None forces the mock wire data to return the contents in the static # files, as documented in mock_wire_protocol's docstring. We return thrice: # once for protocol initialization, once for HostGAPlugin initialization, # and once for the initial call in run(). # TODO: This test has too much knowledge of the protocol with the wireserver; rewrite it # at the level of UpdateHanlder._process_goal_state, which is where the tested # logic resides. # # TODO: For the same reason, the test below (commented out) needs to be rewritten ReportStatusTestCase._fail_goal_state_fetch.return_vals = [None, None, None] with ReportStatusTestCase._mock_update_handler(http_get_handler=ReportStatusTestCase._fail_goal_state_fetch) as update_handler: update_handler.run(debug=True) mock_protocol = update_handler.protocol_util.get_protocol() self.assertEqual(mock_protocol.mock_wire_data.call_counts['/StatusBlob'], 1, "Expected a single status blob to be uploaded") finally: # clean up the static variable del ReportStatusTestCase._fail_goal_state_fetch.return_vals @skip_if_predicate_true(lambda: True, "See TODO comment in test_update_handler_should_report_status_even_on_failed_goal_state_fetch") def test_update_handler_should_report_status_for_cached_goal_state_on_failed_fetch(self): try: # Adds one return to the test above (test_upload_vm_status_even_on_failed_goal_state_fetch). # The third (and last) return is to allow for the extensions to be processed once so that # we will have extension status to test for. ReportStatusTestCase._fail_goal_state_fetch.return_vals = [ None, None, None, None ] with ReportStatusTestCase._mock_update_handler(iterations=2, http_get_handler=ReportStatusTestCase._fail_goal_state_fetch) as update_handler: update_handler.run(debug=True) wire_data = update_handler.protocol_util.get_protocol().mock_wire_data self.assertEqual(wire_data.call_counts['/StatusBlob'], 2, "Expected two status blobs to be uploaded, one for each iteration of the run loop.") latest_status_blob_str = wire_data.status_blobs[-1] latest_status_blob = json.loads(latest_status_blob_str) ext_handler_statuses = latest_status_blob.get('aggregateStatus', {}).get("handlerAggregateStatus") self.assertEqual(1, len(ext_handler_statuses), "Expected status for a single extension") expectedHandlerInfo = { "handlerName": "OSTCExtensions.ExampleHandlerLinux", "handlerVersion": "1.0.0" } for key, expected_val in expectedHandlerInfo.items(): actual_val = ext_handler_statuses[0].get(key) msg = "Extension information '{0}' did not match the provided extension.".format(key) self.assertEqual(actual_val, expected_val, msg) finally: # clean up the static variable del ReportStatusTestCase._fail_goal_state_fetch.return_vals def test_report_status_should_log_errors_only_once_per_goal_state(self): update_handler = _create_update_handler() with _mock_exthandlers_handler() as exthandlers_handler: with patch("azurelinuxagent.ga.update.logger.warn") as logger_warn: update_handler._report_status(exthandlers_handler, False) self.assertEqual(0, logger_warn.call_count, "UpdateHandler._report_status() should not report WARNINGS when there are no errors") with patch("azurelinuxagent.ga.update.ExtensionsSummary.__init__", return_value=Exception("TEST EXCEPTION")): # simulate an error during _report_status() update_handler._report_status(exthandlers_handler, False) update_handler._report_status(exthandlers_handler, False) update_handler._report_status(exthandlers_handler, False) self.assertEqual(1, logger_warn.call_count, "UpdateHandler._report_status() should report only 1 WARNING when there are multiple errors within the same goal state") exthandlers_handler.protocol.mock_wire_data.set_incarnation(999) update_handler._try_update_goal_state(exthandlers_handler.protocol) update_handler._report_status(exthandlers_handler, True) self.assertEqual(2, logger_warn.call_count, "UpdateHandler._report_status() should continue reporting errors after a new goal state") class GoalStateIntervalTestCase(AgentTestCase): def test_initial_goal_state_period_should_default_to_goal_state_period(self): configuration_provider = conf.ConfigurationProvider() test_file = os.path.join(self.tmp_dir, "waagent.conf") with open(test_file, "w") as file_: file_.write("Extensions.GoalStatePeriod=987654321\n") conf.load_conf_from_file(test_file, configuration_provider) self.assertEqual(987654321, conf.get_initial_goal_state_period(conf=configuration_provider)) def test_update_handler_should_use_the_default_goal_state_period(self): update_handler = get_update_handler() default = conf.get_int_default_value("Extensions.GoalStatePeriod") self.assertEqual(default, update_handler._goal_state_period, "The UpdateHanlder is not using the default goal state period") def test_update_handler_should_not_use_the_default_goal_state_period_when_extensions_are_disabled(self): with patch('azurelinuxagent.common.conf.get_extensions_enabled', return_value=False): update_handler = get_update_handler() self.assertEqual(GOAL_STATE_PERIOD_EXTENSIONS_DISABLED, update_handler._goal_state_period, "Incorrect goal state period when extensions are disabled") def test_the_default_goal_state_period_and_initial_goal_state_period_should_be_the_same(self): update_handler = get_update_handler() default = conf.get_int_default_value("Extensions.GoalStatePeriod") self.assertEqual(default, update_handler._goal_state_period, "The UpdateHanlder is not using the default goal state period") def test_update_handler_should_use_the_initial_goal_state_period_when_it_is_different_to_the_goal_state_period(self): with patch('azurelinuxagent.common.conf.get_initial_goal_state_period', return_value=99999): update_handler = get_update_handler() self.assertEqual(99999, update_handler._goal_state_period, "Expected the initial goal state period") def test_update_handler_should_use_the_initial_goal_state_period_until_the_goal_state_converges(self): initial_goal_state_period, goal_state_period = 11111, 22222 with patch('azurelinuxagent.common.conf.get_initial_goal_state_period', return_value=initial_goal_state_period): with patch('azurelinuxagent.common.conf.get_goal_state_period', return_value=goal_state_period): with _mock_exthandlers_handler([ExtensionStatusValue.transitioning, ExtensionStatusValue.success]) as exthandlers_handler: remote_access_handler = Mock() update_handler = _create_update_handler() self.assertEqual(initial_goal_state_period, update_handler._goal_state_period, "Expected the initial goal state period") # the extension is transisioning, so we should still be using the initial goal state period update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(initial_goal_state_period, update_handler._goal_state_period, "Expected the initial goal state period when the extension is transitioning") # the goal state converged (the extension succeeded), so we should switch to the regular goal state period update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(goal_state_period, update_handler._goal_state_period, "Expected the regular goal state period after the goal state converged") def test_update_handler_should_switch_to_the_regular_goal_state_period_when_the_goal_state_does_not_converges(self): initial_goal_state_period, goal_state_period = 11111, 22222 with patch('azurelinuxagent.common.conf.get_initial_goal_state_period', return_value=initial_goal_state_period): with patch('azurelinuxagent.common.conf.get_goal_state_period', return_value=goal_state_period): with _mock_exthandlers_handler([ExtensionStatusValue.transitioning, ExtensionStatusValue.transitioning]) as exthandlers_handler: remote_access_handler = Mock() update_handler = _create_update_handler() self.assertEqual(initial_goal_state_period, update_handler._goal_state_period, "Expected the initial goal state period") # the extension is transisioning, so we should still be using the initial goal state period update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(initial_goal_state_period, update_handler._goal_state_period, "Expected the initial goal state period when the extension is transitioning") # a new goal state arrives before the current goal state converged (the extension is transitioning), so we should switch to the regular goal state period exthandlers_handler.protocol.mock_wire_data.set_incarnation(100) update_handler._process_goal_state(exthandlers_handler, remote_access_handler) self.assertEqual(goal_state_period, update_handler._goal_state_period, "Expected the regular goal state period when the goal state does not converge") class ExtensionsSummaryTestCase(AgentTestCase): @staticmethod def _create_extensions_summary(extension_statuses): """ Creates an ExtensionsSummary from an array of (extension name, extension status) tuples """ vm_status = VMStatus(status="Ready", message="Ready") vm_status.vmAgent.extensionHandlers = [ExtHandlerStatus()] * len(extension_statuses) for i in range(len(extension_statuses)): vm_status.vmAgent.extensionHandlers[i].extension_status = ExtensionStatus(name=extension_statuses[i][0]) vm_status.vmAgent.extensionHandlers[0].extension_status.status = extension_statuses[i][1] return ExtensionsSummary(vm_status) def test_equality_operator_should_return_true_on_items_with_the_same_value(self): summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) self.assertTrue(summary1 == summary2, "{0} == {1} should be True".format(summary1, summary2)) def test_equality_operator_should_return_false_on_items_with_different_values(self): summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.success)]) self.assertFalse(summary1 == summary2, "{0} == {1} should be False") summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.success)]) self.assertFalse(summary1 == summary2, "{0} == {1} should be False") def test_inequality_operator_should_return_true_on_items_with_different_values(self): summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.success)]) self.assertTrue(summary1 != summary2, "{0} != {1} should be True".format(summary1, summary2)) summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.success)]) self.assertTrue(summary1 != summary2, "{0} != {1} should be True") def test_inequality_operator_should_return_false_on_items_with_same_value(self): summary1 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) summary2 = ExtensionsSummaryTestCase._create_extensions_summary([("Extension 1", ExtensionStatusValue.success), ("Extension 2", ExtensionStatusValue.transitioning)]) self.assertFalse(summary1 != summary2, "{0} != {1} should be False".format(summary1, summary2)) if __name__ == '__main__': unittest.main()
[ [ [ 121, 135 ] ], [ [ 144, 154 ], [ 3269, 3279 ], [ 10148, 10158 ], [ 76037, 76047 ], [ 79676, 79686 ], [ 80529, 80539 ], [ 106778, 106788 ], [ 111238, 111248 ], [ 102082, 102092 ] ], [ [ 162, 166 ], [ 7485, 7489 ], [ 7711, 7715 ], [ 8942, 8946 ], [ 9237, 9241 ], [ 9802, 9806 ], [ 76437, 76441 ] ], [ [ 174, 178 ], [ 10356, 10360 ], [ 23997, 24001 ], [ 73040, 73044 ], [ 116653, 116657 ] ], [ [ 186, 188 ], [ 6848, 6850 ], [ 6920, 6922 ], [ 6977, 6979 ], [ 7041, 7043 ], [ 7433, 7435 ], [ 7647, 7649 ], [ 7730, 7732 ], [ 7916, 7918 ], [ 8158, 8160 ], [ 8953, 8955 ], [ 9247, 9249 ], [ 9320, 9322 ], [ 9692, 9694 ], [ 9812, 9814 ], [ 11010, 11012 ], [ 12545, 12547 ], [ 12588, 12590 ], [ 16457, 16459 ], [ 17049, 17051 ], [ 17203, 17205 ], [ 17320, 17322 ], [ 21843, 21845 ], [ 21929, 21931 ], [ 21991, 21993 ], [ 22348, 22350 ], [ 22394, 22396 ], [ 23254, 23256 ], [ 23324, 23326 ], [ 23747, 23749 ], [ 23833, 23835 ], [ 24413, 24415 ], [ 24499, 24501 ], [ 25304, 25306 ], [ 25681, 25683 ], [ 26088, 26090 ], [ 26440, 26442 ], [ 26972, 26974 ], [ 29572, 29574 ], [ 29923, 29925 ], [ 30261, 30263 ], [ 30868, 30870 ], [ 31561, 31563 ], [ 35927, 35929 ], [ 36107, 36109 ], [ 36903, 36905 ], [ 37426, 37428 ], [ 37541, 37543 ], [ 37758, 37760 ], [ 37873, 37875 ], [ 37975, 37977 ], [ 38045, 38047 ], [ 38115, 38117 ], [ 38185, 38187 ], [ 38255, 38257 ], [ 38411, 38413 ], [ 38612, 38614 ], [ 38842, 38844 ], [ 38900, 38902 ], [ 38959, 38961 ], [ 39017, 39019 ], [ 39166, 39168 ], [ 39367, 39369 ], [ 44561, 44563 ], [ 45141, 45143 ], [ 45489, 45491 ], [ 45602, 45604 ], [ 49667, 49669 ], [ 49768, 49770 ], [ 49825, 49827 ], [ 49982, 49984 ], [ 50082, 50084 ], [ 50138, 50140 ], [ 54427, 54429 ], [ 54583, 54585 ], [ 54641, 54643 ], [ 60204, 60206 ], [ 62388, 62390 ], [ 62706, 62708 ], [ 63668, 63670 ], [ 63795, 63797 ], [ 64276, 64278 ], [ 64420, 64422 ], [ 64601, 64603 ], [ 68920, 68922 ], [ 69210, 69212 ], [ 69292, 69294 ], [ 71659, 71661 ], [ 71923, 71925 ], [ 71987, 71989 ], [ 72797, 72799 ], [ 76447, 76449 ], [ 76912, 76914 ], [ 78072, 78074 ], [ 78673, 78675 ], [ 79179, 79181 ], [ 79546, 79548 ], [ 82537, 82539 ], [ 88118, 88120 ], [ 119235, 119237 ], [ 86004, 86006 ] ], [ [ 196, 198 ], [ 102590, 102592 ] ], [ [ 206, 212 ], [ 7109, 7115 ], [ 7233, 7239 ], [ 9374, 9380 ], [ 10873, 10879 ], [ 11612, 11618 ], [ 11674, 11680 ], [ 12647, 12653 ], [ 13192, 13198 ], [ 13258, 13264 ], [ 55413, 55419 ], [ 77387, 77393 ], [ 79103, 79109 ] ], [ [ 220, 224 ], [ 9029, 9033 ], [ 9044, 9048 ], [ 38447, 38451 ], [ 38462, 38466 ], [ 38477, 38481 ], [ 38492, 38496 ], [ 38655, 38659 ], [ 38670, 38674 ], [ 38685, 38689 ], [ 38738, 38742 ], [ 39202, 39206 ], [ 39217, 39221 ], [ 39232, 39236 ], [ 39247, 39251 ], [ 39410, 39414 ], [ 39425, 39429 ], [ 39440, 39444 ], [ 39500, 39504 ], [ 39515, 39519 ], [ 39530, 39534 ], [ 39545, 39549 ] ], [ [ 232, 242 ], [ 409, 419 ] ], [ [ 250, 253 ], [ 3235, 3238 ], [ 51496, 51499 ], [ 54298, 54301 ], [ 54320, 54323 ], [ 54827, 54830 ], [ 54893, 54896 ], [ 55083, 55086 ], [ 55133, 55136 ] ], [ [ 261, 269 ], [ 6789, 6797 ], [ 10299, 10307 ], [ 54538, 54546 ] ], [ [ 277, 281 ], [ 40450, 40454 ], [ 40759, 40763 ], [ 41034, 41038 ], [ 41283, 41287 ], [ 67841, 67845 ], [ 86665, 86669 ], [ 86739, 86743 ], [ 99132, 99136 ] ], [ [ 289, 297 ], [ 127967, 127975 ] ], [ [ 305, 312 ], [ 11082, 11089 ] ], [ [ 334, 342 ], [ 70637, 70645 ] ], [ [ 344, 353 ], [ 70657, 70666 ] ], [ [ 376, 389 ], [ 90774, 90787 ] ], [ [ 391, 406 ], [ 73627, 73642 ], [ 74757, 74772 ] ], [ [ 444, 456 ], [ 5519, 5531 ], [ 112283, 112295 ] ], [ [ 493, 497 ], [ 8966, 8970 ], [ 17333, 17337 ], [ 37439, 37443 ], [ 37988, 37992 ], [ 38058, 38062 ], [ 38128, 38132 ], [ 38198, 38202 ], [ 38268, 38272 ], [ 38855, 38859 ], [ 38913, 38917 ], [ 38972, 38976 ], [ 39030, 39034 ], [ 44170, 44174 ], [ 46279, 46283 ], [ 46710, 46714 ], [ 58385, 58389 ], [ 58669, 58673 ], [ 65400, 65404 ], [ 67736, 67740 ], [ 68443, 68447 ], [ 76460, 76464 ], [ 119186, 119190 ], [ 119396, 119400 ], [ 119493, 119497 ], [ 119699, 119703 ], [ 120470, 120474 ] ], [ [ 539, 555 ], [ 76489, 76505 ] ], [ [ 557, 575 ], [ 82296, 82314 ], [ 82944, 82962 ], [ 89933, 89951 ] ], [ [ 621, 634 ], [ 66170, 66183 ] ], [ [ 636, 647 ], [ 30091, 30102 ], [ 30716, 30727 ], [ 31387, 31398 ], [ 13616, 13627 ], [ 16564, 16575 ], [ 16690, 16701 ], [ 22458, 22469 ], [ 23393, 23404 ], [ 24055, 24066 ], [ 24725, 24736 ], [ 26385, 26396 ], [ 27778, 27789 ], [ 28244, 28255 ], [ 28872, 28883 ] ], [ [ 649, 666 ], [ 19796, 19813 ], [ 19935, 19952 ], [ 98298, 98315 ], [ 98593, 98610 ] ], [ [ 668, 677 ], [ 114031, 114040 ], [ 100169, 100178 ], [ 101899, 101908 ] ], [ [ 720, 724 ], [ 36152, 36156 ], [ 36948, 36952 ], [ 45194, 45198 ], [ 46311, 46315 ], [ 46742, 46746 ], [ 58701, 58705 ], [ 68973, 68977 ], [ 69379, 69383 ] ], [ [ 783, 810 ], [ 75662, 75689 ] ], [ [ 866, 893 ], [ 27218, 27245 ] ], [ [ 895, 911 ], [ 27263, 27279 ], [ 27350, 27366 ] ], [ [ 919, 952 ], [ 27299, 27332 ] ], [ [ 954, 972 ], [ 5015, 5033 ], [ 27388, 27406 ], [ 28100, 28118 ], [ 28705, 28723 ] ], [ [ 1025, 1040 ], [ 97403, 97418 ] ], [ [ 1048, 1065 ], [ 25506, 25523 ], [ 26234, 26251 ], [ 27541, 27558 ], [ 29774, 29791 ], [ 30308, 30325 ], [ 30915, 30932 ], [ 31608, 31625 ], [ 32435, 32452 ], [ 97807, 97824 ] ], [ [ 1067, 1088 ], [ 97667, 97688 ] ], [ [ 1090, 1100 ], [ 71165, 71175 ] ], [ [ 1102, 1110 ], [ 124630, 124638 ], [ 107515, 107523 ] ], [ [ 1112, 1128 ], [ 124719, 124735 ], [ 107604, 107620 ] ], [ [ 1130, 1145 ], [ 124884, 124899 ], [ 107690, 107705 ] ], [ [ 1195, 1207 ], [ 33447, 33459 ], [ 91131, 91143 ] ], [ [ 1257, 1269 ], [ 43079, 43091 ], [ 70562, 70574 ] ], [ [ 1311, 1319 ], [ 8033, 8041 ], [ 9008, 9016 ], [ 11037, 11045 ], [ 36087, 36095 ], [ 36883, 36891 ], [ 37796, 37804 ], [ 38357, 38365 ], [ 39112, 39120 ], [ 45121, 45129 ], [ 46259, 46267 ], [ 46690, 46698 ], [ 58649, 58657 ], [ 63990, 63998 ], [ 68900, 68908 ], [ 69349, 69357 ] ], [ [ 1321, 1329 ], [ 98791, 98799 ], [ 26178, 26186 ], [ 27075, 27083 ] ], [ [ 1331, 1339 ], [ 51385, 51393 ] ], [ [ 1398, 1413 ], [ 65122, 65137 ], [ 8273, 8288 ], [ 10015, 10030 ], [ 11403, 11418 ], [ 11496, 11511 ], [ 12214, 12229 ], [ 13008, 13023 ], [ 42762, 42777 ], [ 63469, 63484 ], [ 68682, 68697 ] ], [ [ 1467, 1492 ], [ 75850, 75875 ] ], [ [ 1536, 1550 ], [ 7454, 7468 ] ], [ [ 1552, 1566 ], [ 7668, 7682 ] ], [ [ 1568, 1578 ], [ 9144, 9154 ], [ 9736, 9746 ], [ 16652, 16662 ], [ 44605, 44615 ], [ 49711, 49721 ], [ 50026, 50036 ] ], [ [ 1580, 1597 ], [ 10031, 10048 ] ], [ [ 1605, 1618 ], [ 12852, 12865 ], [ 65138, 65151 ], [ 6729, 6742 ], [ 43784, 43797 ] ], [ [ 1620, 1633 ], [ 45841, 45854 ], [ 64065, 64078 ] ], [ [ 1635, 1650 ], [ 47869, 47884 ], [ 48824, 48839 ], [ 66313, 66328 ], [ 67302, 67317 ], [ 67375, 67390 ] ], [ [ 1694, 1712 ], [ 107926, 107944 ] ], [ [ 1714, 1732 ], [ 71242, 71260 ] ], [ [ 1734, 1752 ], [ 73102, 73120 ], [ 73146, 73164 ], [ 73254, 73272 ] ], [ [ 1754, 1774 ], [ 108131, 108151 ], [ 121501, 121521 ], [ 121537, 121557 ], [ 123095, 123115 ], [ 123131, 123151 ], [ 125253, 125273 ], [ 125300, 125320 ], [ 125427, 125447 ], [ 125474, 125494 ], [ 125794, 125814 ], [ 125841, 125861 ], [ 125968, 125988 ], [ 126015, 126035 ], [ 126215, 126235 ], [ 126336, 126356 ], [ 126383, 126403 ], [ 126673, 126693 ], [ 126720, 126740 ], [ 126847, 126867 ], [ 126894, 126914 ], [ 127119, 127139 ], [ 127240, 127260 ], [ 127287, 127307 ], [ 127570, 127590 ], [ 127617, 127637 ], [ 127744, 127764 ], [ 127791, 127811 ] ], [ [ 1813, 1823 ], [ 9443, 9453 ], [ 13393, 13403 ], [ 16577, 16587 ], [ 16703, 16713 ], [ 16765, 16775 ], [ 17783, 17793 ], [ 18604, 18614 ], [ 19092, 19102 ], [ 19836, 19846 ], [ 20402, 20412 ], [ 20879, 20889 ], [ 21278, 21288 ], [ 21785, 21795 ], [ 22290, 22300 ], [ 22738, 22748 ], [ 23196, 23206 ], [ 23689, 23699 ], [ 24355, 24365 ], [ 24808, 24818 ], [ 25610, 25620 ], [ 26338, 26348 ], [ 27648, 27658 ], [ 29878, 29888 ], [ 30412, 30422 ], [ 31019, 31029 ], [ 31712, 31722 ], [ 32216, 32226 ], [ 32539, 32549 ], [ 41639, 41649 ], [ 44659, 44669 ], [ 63088, 63098 ], [ 63402, 63412 ] ], [ [ 1825, 1840 ], [ 10649, 10664 ], [ 13573, 13588 ], [ 13629, 13644 ], [ 13736, 13751 ], [ 14210, 14225 ] ], [ [ 1842, 1853 ], [ 15093, 15104 ], [ 15307, 15318 ], [ 15652, 15663 ] ], [ [ 1855, 1874 ], [ 17079, 17098 ] ], [ [ 1882, 1900 ], [ 5102, 5120 ], [ 33011, 33029 ], [ 70517, 70535 ], [ 90940, 90958 ], [ 99703, 99721 ], [ 100367, 100385 ], [ 100588, 100606 ], [ 103537, 103555 ], [ 106635, 106653 ], [ 112767, 112785 ], [ 119660, 119678 ], [ 120122, 120140 ], [ 120431, 120449 ], [ 120913, 120931 ] ], [ [ 1902, 1922 ], [ 37120, 37140 ] ], [ [ 1924, 1944 ], [ 37459, 37479 ] ], [ [ 1946, 1962 ], [ 17233, 17249 ] ], [ [ 1964, 1984 ], [ 34686, 34706 ] ], [ [ 1992, 2016 ], [ 40525, 40549 ], [ 40833, 40857 ], [ 41098, 41122 ], [ 41358, 41382 ] ], [ [ 2018, 2039 ], [ 52583, 52604 ], [ 52944, 52965 ], [ 53677, 53698 ], [ 53959, 53980 ] ], [ [ 2041, 2078 ], [ 120172, 120209 ] ], [ [ 2080, 2093 ], [ 58980, 58993 ], [ 91457, 91470 ], [ 91611, 91624 ], [ 112254, 112267 ] ], [ [ 2101, 2120 ], [ 8897, 8916 ] ], [ [ 2122, 2139 ], [ 125048, 125065 ] ], [ [ 2141, 2157 ], [ 81934, 81950 ], [ 90203, 90219 ] ], [ [ 2191, 2209 ], [ 4644, 4662 ], [ 65900, 65918 ], [ 99737, 99755 ], [ 99985, 100003 ], [ 100622, 100640 ], [ 101663, 101681 ], [ 107853, 107871 ], [ 112635, 112653 ] ], [ [ 2250, 2259 ], [ 4588, 4597 ], [ 80733, 80742 ], [ 83701, 83710 ], [ 85525, 85534 ], [ 88444, 88453 ], [ 107872, 107881 ] ], [ [ 2261, 2283 ], [ 76179, 76201 ] ], [ [ 2308, 2321 ], [ 6343, 6356 ], [ 90620, 90633 ], [ 99540, 99553 ], [ 108372, 108385 ], [ 110749, 110762 ], [ 119055, 119068 ], [ 124400, 124413 ], [ 6467, 6480 ], [ 7195, 7208 ], [ 90665, 90678 ], [ 111057, 111070 ], [ 111185, 111198 ] ], [ [ 2323, 2331 ], [ 6990, 6998 ] ], [ [ 2333, 2340 ], [ 3258, 3265 ] ], [ [ 2342, 2347 ], [ 17588, 17593 ], [ 18359, 18364 ], [ 18429, 18434 ], [ 18845, 18850 ], [ 18915, 18920 ], [ 19489, 19494 ], [ 19559, 19564 ], [ 20077, 20082 ], [ 20147, 20152 ], [ 20633, 20638 ], [ 20703, 20708 ], [ 21033, 21038 ], [ 21103, 21108 ], [ 21546, 21551 ], [ 21616, 21621 ], [ 22046, 22051 ], [ 22116, 22121 ], [ 22492, 22497 ], [ 22562, 22567 ], [ 22942, 22947 ], [ 23012, 23017 ], [ 23434, 23439 ], [ 23504, 23509 ], [ 24096, 24101 ], [ 24166, 24171 ], [ 24952, 24957 ], [ 25022, 25027 ], [ 25088, 25093 ], [ 25731, 25736 ], [ 25801, 25806 ], [ 25867, 25872 ], [ 26536, 26541 ], [ 26606, 26611 ], [ 26672, 26677 ], [ 26730, 26735 ], [ 29412, 29417 ], [ 30023, 30028 ], [ 30589, 30594 ], [ 30650, 30655 ], [ 31194, 31199 ], [ 31255, 31260 ], [ 31314, 31319 ], [ 31887, 31892 ], [ 31948, 31953 ], [ 32007, 32012 ], [ 37310, 37315 ], [ 42908, 42913 ], [ 47133, 47138 ], [ 47577, 47582 ], [ 47893, 47898 ], [ 57871, 57876 ], [ 58045, 58050 ], [ 69778, 69783 ], [ 70311, 70316 ], [ 70360, 70365 ], [ 90285, 90290 ], [ 90358, 90363 ], [ 90428, 90433 ], [ 90489, 90494 ], [ 90545, 90550 ], [ 4801, 4806 ], [ 4900, 4905 ], [ 5002, 5007 ], [ 5584, 5589 ], [ 5675, 5680 ], [ 28087, 28092 ], [ 28692, 28697 ], [ 32933, 32938 ], [ 34735, 34740 ], [ 35597, 35602 ], [ 35655, 35660 ], [ 36583, 36588 ], [ 36971, 36976 ], [ 46040, 46045 ], [ 46334, 46339 ], [ 46512, 46517 ], [ 46765, 46770 ], [ 50405, 50410 ], [ 50514, 50519 ], [ 50583, 50588 ], [ 55850, 55855 ], [ 56586, 56591 ], [ 57380, 57385 ], [ 58725, 58730 ], [ 58874, 58879 ], [ 58967, 58972 ], [ 59127, 59132 ], [ 59243, 59248 ], [ 59340, 59345 ], [ 59459, 59464 ], [ 59600, 59605 ], [ 59742, 59747 ], [ 59876, 59881 ], [ 60010, 60015 ], [ 60102, 60107 ], [ 60441, 60446 ], [ 62169, 62174 ], [ 64784, 64789 ], [ 66017, 66022 ], [ 66098, 66103 ], [ 68999, 69004 ], [ 69459, 69464 ], [ 69558, 69563 ], [ 72581, 72586 ], [ 73679, 73684 ], [ 73834, 73839 ], [ 73950, 73955 ], [ 74882, 74887 ], [ 75008, 75013 ], [ 75106, 75111 ], [ 76255, 76260 ], [ 77781, 77786 ], [ 79257, 79262 ], [ 79891, 79896 ], [ 79989, 79994 ], [ 80090, 80095 ], [ 80198, 80203 ], [ 80356, 80361 ], [ 81491, 81496 ], [ 87688, 87693 ], [ 90718, 90723 ], [ 91390, 91395 ], [ 91444, 91449 ], [ 91598, 91603 ], [ 91758, 91763 ], [ 91852, 91857 ], [ 91953, 91958 ], [ 92075, 92080 ], [ 92233, 92238 ], [ 92359, 92364 ], [ 92429, 92434 ], [ 110885, 110890 ], [ 110959, 110964 ], [ 112241, 112246 ], [ 117742, 117747 ], [ 118047, 118052 ], [ 120012, 120017 ], [ 120796, 120801 ], [ 121236, 121241 ], [ 121361, 121366 ], [ 122830, 122835 ], [ 122955, 122960 ], [ 102179, 102184 ], [ 102280, 102285 ] ], [ [ 2349, 2362 ], [ 25357, 25370 ], [ 29625, 29638 ], [ 81123, 81136 ] ], [ [ 2364, 2368 ], [ 96328, 96332 ], [ 98754, 98758 ], [ 99030, 99034 ], [ 4760, 4764 ], [ 33051, 33055 ], [ 33094, 33098 ], [ 33113, 33117 ], [ 33121, 33125 ], [ 33174, 33178 ], [ 33238, 33242 ], [ 35434, 35438 ], [ 37508, 37512 ], [ 37639, 37643 ], [ 44200, 44204 ], [ 58415, 58419 ], [ 58850, 58854 ], [ 59075, 59079 ], [ 62021, 62025 ], [ 62586, 62590 ], [ 62860, 62864 ], [ 65431, 65435 ], [ 67586, 67590 ], [ 67768, 67772 ], [ 68473, 68477 ], [ 70190, 70194 ], [ 90831, 90835 ], [ 90874, 90878 ], [ 90893, 90897 ], [ 90901, 90905 ], [ 91005, 91009 ], [ 91069, 91073 ], [ 91552, 91556 ], [ 91706, 91710 ], [ 96401, 96405 ], [ 96494, 96498 ], [ 96571, 96575 ], [ 98852, 98856 ], [ 99087, 99091 ], [ 106724, 106728 ], [ 107989, 107993 ], [ 108096, 108100 ], [ 108237, 108241 ], [ 108681, 108685 ], [ 108728, 108732 ], [ 112865, 112869 ], [ 121636, 121640 ], [ 123236, 123240 ] ], [ [ 2370, 2379 ], [ 4711, 4720 ], [ 60216, 60225 ], [ 92636, 92645 ], [ 92669, 92678 ], [ 92707, 92716 ], [ 92763, 92772 ], [ 93073, 93082 ], [ 93110, 93119 ] ], [ [ 2387, 2412 ], [ 33421, 33446 ], [ 91105, 91130 ] ], [ [ 2414, 2424 ], [ 5626, 5636 ], [ 110927, 110937 ] ], [ [ 2426, 2448 ], [ 115460, 115482 ] ], [ [ 2476, 2488 ], [ 65789, 65801 ], [ 99756, 99768 ], [ 100004, 100016 ], [ 100641, 100653 ], [ 101682, 101694 ], [ 112568, 112580 ] ], [ [ 2538, 2559 ], [ 99517, 99538 ], [ 113579, 113600 ], [ 81038, 81059 ], [ 83939, 83960 ], [ 85763, 85784 ], [ 88682, 88703 ] ], [ [ 2561, 2569 ], [ 10277, 10285 ], [ 10408, 10416 ], [ 10568, 10576 ], [ 14395, 14403 ], [ 14464, 14472 ], [ 14535, 14543 ], [ 15748, 15756 ], [ 15843, 15851 ], [ 15881, 15889 ], [ 15920, 15928 ] ], [ [ 2649, 2660 ] ], [ [ 2741, 2751 ], [ 13697, 13707 ], [ 13901, 13911 ], [ 13972, 13982 ], [ 14045, 14055 ], [ 14171, 14181 ], [ 16025, 16035 ], [ 16122, 16132 ], [ 16162, 16172 ], [ 16203, 16213 ] ], [ [ 2833, 2847 ], [ 24007, 24021 ] ], [ [ 3159, 3170 ], [ 55016, 55027 ] ], [ [ 3299, 3318 ], [ 71383, 71402 ], [ 72501, 72520 ], [ 73755, 73774 ], [ 74809, 74828 ], [ 76149, 76168 ], [ 80793, 80812 ] ], [ [ 6328, 6342 ], [ 13490, 13504 ], [ 16304, 16318 ], [ 32833, 32847 ], [ 79653, 79667 ], [ 6752, 6766 ], [ 6861, 6875 ], [ 6816, 6830 ], [ 6929, 6943 ], [ 7054, 7068 ], [ 7247, 7261 ], [ 7388, 7402 ], [ 7602, 7616 ], [ 7814, 7828 ], [ 7933, 7947 ], [ 8051, 8065 ], [ 8175, 8189 ], [ 8289, 8303 ], [ 16350, 16364 ], [ 32879, 32893 ] ], [ [ 13470, 13489 ] ], [ [ 16289, 16303 ] ], [ [ 32822, 32832 ] ], [ [ 79636, 79652 ] ], [ [ 90602, 90619 ] ], [ [ 96318, 96327 ], [ 50314, 50323 ], [ 52510, 52519 ], [ 52874, 52883 ], [ 53235, 53244 ], [ 53572, 53581 ], [ 54994, 55003 ], [ 55989, 55998 ], [ 56725, 56734 ], [ 57570, 57579 ] ], [ [ 96636, 96648 ], [ 34591, 34603 ], [ 68347, 68359 ] ], [ [ 98741, 98753 ], [ 25458, 25470 ], [ 26158, 26170 ], [ 27042, 27054 ], [ 29726, 29738 ], [ 81214, 81226 ] ], [ [ 99021, 99029 ], [ 50380, 50388 ], [ 52559, 52567 ], [ 52920, 52928 ], [ 53282, 53290 ], [ 53653, 53661 ], [ 53935, 53943 ] ], [ [ 99490, 99516 ] ], [ [ 106497, 106519 ], [ 108620, 108642 ], [ 117635, 117657 ], [ 121681, 121703 ], [ 123281, 123303 ] ], [ [ 106808, 106833 ], [ 108539, 108564 ], [ 117673, 117698 ], [ 121474, 121499 ], [ 123068, 123093 ] ], [ [ 108347, 108371 ] ], [ [ 110728, 110748 ], [ 113924, 113944 ], [ 114819, 114839 ], [ 114914, 114934 ], [ 114973, 114993 ], [ 115398, 115418 ], [ 115977, 115997 ], [ 116080, 116100 ], [ 116169, 116189 ], [ 117476, 117496 ] ], [ [ 119029, 119054 ] ], [ [ 124374, 124399 ], [ 125183, 125208 ], [ 125357, 125382 ], [ 125724, 125749 ], [ 125898, 125923 ], [ 126145, 126170 ], [ 126266, 126291 ], [ 126603, 126628 ], [ 126777, 126802 ], [ 127049, 127074 ], [ 127170, 127195 ], [ 127500, 127525 ], [ 127674, 127699 ] ] ]
from ptypes import * class Header(pstruct.type): _fields_ = [ (dyn.block(3), 'Signature'), (dyn.block(3), 'Version'), ] class LogicalScreenDescriptor(pstruct.type): class _Flags(pbinary.struct): _fields_ = [(1, 'Global Color Table'), (3, 'Color Resolution'), (1, 'Sort'), (3, 'Size')] def optional(self): if self['Flags'].li['Global Color Table'] > 0: return dyn.clone(ColorTable, length=pow(2, self['Flags']['Size'] + 1)) return dyn.clone(ColorTable, length=0) _fields_ = [ (pint.uint16_t, 'Width'), (pint.uint16_t, 'Height'), (_Flags, 'Flags'), (pint.uint8_t, 'BackgroundColorIndex'), (pint.uint8_t, 'PixelAspectRatio'), (optional, 'Global Color Table') ] class Color(pstruct.type): _fields_ = [ (pint.uint8_t, 'r'), (pint.uint8_t, 'g'), (pint.uint8_t, 'b'), ] class ColorTable(parray.type): length = 0 _object_ = Color class ImageDescriptor(pstruct.type): class _Flags(pbinary.struct): _fields_ = [(1, 'Local Color Table'), (1, 'Interlace'), (1, 'Sort'), (2, 'Reserved'), (3, 'Size')] def optional(self): if self['Flags'].li['Local Color Table'] > 0: return dyn.clone(ColorTable, length=pow(2, self['Flags']['Size'] + 1)) return dyn.clone(ColorTable, length=0) _fields_ = [ (pint.uint8_t, 'Separator'), (pint.uint16_t, 'Left'), (pint.uint16_t, 'Top'), (pint.uint16_t, 'Width'), (pint.uint16_t, 'Height'), (_Flags, 'Flags'), (optional, 'Color Table') ] class Trailer(pint.uint8_t): pass # value == 0x3b class ImageTableData_Chunk(pstruct.type): _fields_ = [ (pint.uint8_t, 'CodeSize'), (ptype.type, 'something') ] class ImageData_Chunk(pstruct.type): _fields_ = [ (pint.uint8_t, 'Block Size'), (lambda s: dyn.block(int(s['Block Size'].li)), 'Data Values') ] class ImageData( parray.type ): length = 1 _object_ = ImageData_Chunk def isTerminator(self, v): if int(v['Block Size']) == 0: return True return False class File(pstruct.type): _fields_ = [ (Header, 'header'), (LogicalScreenDescriptor, 'screen'), (ImageDescriptor, 'image'), (ImageData, 'data') ] if __name__ == '__main__': import ptypes,image.gif as gif ptypes.setsource( ptypes.provider.file('./poc.gif') ) z = gif.File() print(z.l)
[ [ [ 19, 20 ], [ 35, 42 ], [ 76, 79 ], [ 113, 116 ], [ 176, 183 ], [ 208, 215 ], [ 560, 564 ], [ 594, 598 ], [ 656, 660 ], [ 704, 708 ], [ 799, 806 ], [ 840, 844 ], [ 869, 873 ], [ 898, 902 ], [ 942, 948 ], [ 1015, 1022 ], [ 1047, 1054 ], [ 1407, 1411 ], [ 1444, 1448 ], [ 1477, 1481 ], [ 1509, 1513 ], [ 1543, 1547 ], [ 1651, 1655 ], [ 1719, 1726 ], [ 1760, 1764 ], [ 1796, 1801 ], [ 1850, 1857 ], [ 1891, 1895 ], [ 2014, 2020 ], [ 2201, 2208 ], [ 422, 425 ], [ 501, 504 ], [ 1269, 1272 ], [ 1348, 1351 ], [ 1939, 1942 ] ], [ [ 28, 34 ], [ 2242, 2248 ] ], [ [ 152, 175 ], [ 2270, 2293 ] ], [ [ 793, 798 ], [ 986, 991 ] ], [ [ 931, 941 ], [ 432, 442 ], [ 511, 521 ], [ 1279, 1289 ], [ 1358, 1368 ] ], [ [ 999, 1014 ], [ 2315, 2330 ] ], [ [ 1643, 1650 ] ], [ [ 1698, 1718 ] ], [ [ 1834, 1849 ], [ 2059, 2074 ] ], [ [ 2003, 2012 ], [ 2351, 2360 ] ], [ [ 2196, 2200 ] ], [ [ 2415, 2421 ], [ 2443, 2449 ], [ 2461, 2467 ] ], [ [ 2422, 2438 ], [ 2506, 2509 ] ], [ [ 2502, 2503 ], [ 2527, 2528 ] ] ]
import dis import re import sys import textwrap import unittest from test.support import cpython_only from test.bytecode_helper import BytecodeTestCase class TestTranforms(BytecodeTestCase): def test_unot(self): # UNARY_NOT POP_JUMP_IF_FALSE --> POP_JUMP_IF_TRUE' def unot(x): if not x == 2: del x self.assertNotInBytecode(unot, 'UNARY_NOT') self.assertNotInBytecode(unot, 'POP_JUMP_IF_FALSE') self.assertInBytecode(unot, 'POP_JUMP_IF_TRUE') def test_elim_inversion_of_is_or_in(self): for line, cmp_op in ( ('not a is b', 'is not',), ('not a in b', 'not in',), ('not a is not b', 'is',), ('not a not in b', 'in',), ): code = compile(line, '', 'single') self.assertInBytecode(code, 'COMPARE_OP', cmp_op) def test_global_as_constant(self): # LOAD_GLOBAL None/True/False --> LOAD_CONST None/True/False def f(): x = None x = None return x def g(): x = True return x def h(): x = False return x for func, elem in ((f, None), (g, True), (h, False)): self.assertNotInBytecode(func, 'LOAD_GLOBAL') self.assertInBytecode(func, 'LOAD_CONST', elem) def f(): 'Adding a docstring made this test fail in Py2.5.0' return None self.assertNotInBytecode(f, 'LOAD_GLOBAL') self.assertInBytecode(f, 'LOAD_CONST', None) def test_while_one(self): # Skip over: LOAD_CONST trueconst POP_JUMP_IF_FALSE xx def f(): while 1: pass return list for elem in ('LOAD_CONST', 'POP_JUMP_IF_FALSE'): self.assertNotInBytecode(f, elem) for elem in ('JUMP_ABSOLUTE',): self.assertInBytecode(f, elem) def test_pack_unpack(self): # On PyPy, "a, b = ..." is even more optimized, by removing # the ROT_TWO. But the ROT_TWO is not removed if assigning # to more complex expressions, so check that. for line, elem in ( ('a, = a,', 'LOAD_CONST',), ('a[1], b = a, b', 'ROT_TWO',), ('a, b[2], c = a, b, c', 'ROT_THREE',), ): code = compile(line,'','single') self.assertInBytecode(code, elem) self.assertNotInBytecode(code, 'BUILD_TUPLE') self.assertNotInBytecode(code, 'UNPACK_TUPLE') def test_folding_of_tuples_of_constants(self): # On CPython, "a,b,c=1,2,3" turns into "a,b,c=<constant (1,2,3)>" # but on PyPy, it turns into "a=1;b=2;c=3". for line, elem in ( ('a = 1,2,3', (1, 2, 3)), ('("a","b","c")', ('a', 'b', 'c')), ('(None, 1, None)', (None, 1, None)), ('((1, 2), 3, 4)', ((1, 2), 3, 4)), ): code = compile(line,'','single') self.assertInBytecode(code, 'LOAD_CONST', elem) self.assertNotInBytecode(code, 'BUILD_TUPLE') # Long tuples should be folded too. code = compile(repr(tuple(range(10000))),'','single') self.assertNotInBytecode(code, 'BUILD_TUPLE') # One LOAD_CONST for the tuple, one for the None return value load_consts = [instr for instr in dis.get_instructions(code) if instr.opname == 'LOAD_CONST'] self.assertEqual(len(load_consts), 2) # Bug 1053819: Tuple of constants misidentified when presented with: # . . . opcode_with_arg 100 unary_opcode BUILD_TUPLE 1 . . . # The following would segfault upon compilation def crater(): (~[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ],) def test_folding_of_lists_of_constants(self): for line, elem in ( # in/not in constants with BUILD_LIST should be folded to a tuple: ('a in [1,2,3]', (1, 2, 3)), ('a not in ["a","b","c"]', ('a', 'b', 'c')), ('a in [None, 1, None]', (None, 1, None)), ('a not in [(1, 2), 3, 4]', ((1, 2), 3, 4)), ): code = compile(line, '', 'single') self.assertInBytecode(code, 'LOAD_CONST', elem) self.assertNotInBytecode(code, 'BUILD_LIST') def test_folding_of_sets_of_constants(self): for line, elem in ( # in/not in constants with BUILD_SET should be folded to a frozenset: ('a in {1,2,3}', frozenset({1, 2, 3})), ('a not in {"a","b","c"}', frozenset({'a', 'c', 'b'})), ('a in {None, 1, None}', frozenset({1, None})), ('a not in {(1, 2), 3, 4}', frozenset({(1, 2), 3, 4})), ('a in {1, 2, 3, 3, 2, 1}', frozenset({1, 2, 3})), ): code = compile(line, '', 'single') self.assertNotInBytecode(code, 'BUILD_SET') self.assertInBytecode(code, 'LOAD_CONST', elem) # Ensure that the resulting code actually works: def f(a): return a in {1, 2, 3} def g(a): return a not in {1, 2, 3} self.assertTrue(f(3)) self.assertTrue(not f(4)) self.assertTrue(not g(3)) self.assertTrue(g(4)) def test_folding_of_binops_on_constants(self): for line, elem in ( ('a = 2+3+4', 9), # chained fold ('"@"*4', '@@@@'), # check string ops ('a="abc" + "def"', 'abcdef'), # check string ops ('a = 3**4', 81), # binary power ('a = 3*4', 12), # binary multiply ('a = 13//4', 3), # binary floor divide ('a = 14%4', 2), # binary modulo ('a = 2+3', 5), # binary add ('a = 13-4', 9), # binary subtract ('a = (12,13)[1]', 13), # binary subscr ('a = 13 << 2', 52), # binary lshift ('a = 13 >> 2', 3), # binary rshift ('a = 13 & 7', 5), # binary and ('a = 13 ^ 7', 10), # binary xor ('a = 13 | 7', 15), # binary or ): code = compile(line, '', 'single') self.assertInBytecode(code, 'LOAD_CONST', elem) for instr in dis.get_instructions(code): self.assertFalse(instr.opname.startswith('BINARY_')) # Verify that unfoldables are skipped code = compile('a=2+"b"', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', 2) self.assertInBytecode(code, 'LOAD_CONST', 'b') # Verify that large sequences do not result from folding code = compile('a="x"*10000', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', 10000) self.assertNotIn("x"*10000, code.co_consts) code = compile('a=1<<1000', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', 1000) self.assertNotIn(1<<1000, code.co_consts) # difference to CPython: PyPy allows slightly larger constants to be # created code = compile('a=2**10000', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', 10000) self.assertNotIn(2**10000, code.co_consts) @cpython_only # we currently not bother to implement that def test_binary_subscr_on_unicode(self): # valid code get optimized code = compile('"foo"[0]', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', 'f') self.assertNotInBytecode(code, 'BINARY_SUBSCR') code = compile('"\u0061\uffff"[1]', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', '\uffff') self.assertNotInBytecode(code,'BINARY_SUBSCR') # With PEP 393, non-BMP char get optimized code = compile('"\U00012345"[0]', '', 'single') self.assertInBytecode(code, 'LOAD_CONST', '\U00012345') self.assertNotInBytecode(code, 'BINARY_SUBSCR') # invalid code doesn't get optimized # out of range code = compile('"fuu"[10]', '', 'single') self.assertInBytecode(code, 'BINARY_SUBSCR') def test_folding_of_unaryops_on_constants(self): for line, elem in ( ('-0.5', -0.5), # unary negative ('-0.0', -0.0), # -0.0 ('-(1.0-1.0)', -0.0), # -0.0 after folding ('-0', 0), # -0 ('~-2', 1), # unary invert ('+1', 1), # unary positive ): code = compile(line, '', 'single') self.assertInBytecode(code, 'LOAD_CONST', elem) for instr in dis.get_instructions(code): self.assertFalse(instr.opname.startswith('UNARY_')) # Check that -0.0 works after marshaling def negzero(): return -(1.0-1.0) for instr in dis.get_instructions(code): self.assertFalse(instr.opname.startswith('UNARY_')) # Verify that unfoldables are skipped for line, elem, opname in ( ('-"abc"', 'abc', 'UNARY_NEGATIVE'), ('~"abc"', 'abc', 'UNARY_INVERT'), ): code = compile(line, '', 'single') self.assertInBytecode(code, 'LOAD_CONST', elem) self.assertInBytecode(code, opname) def test_elim_extra_return(self): # RETURN LOAD_CONST None RETURN --> RETURN def f(x): return x self.assertNotInBytecode(f, 'LOAD_CONST', None) returns = [instr for instr in dis.get_instructions(f) if instr.opname == 'RETURN_VALUE'] self.assertEqual(len(returns), 1) def test_elim_jump_to_return(self): # JUMP_FORWARD to RETURN --> RETURN def f(cond, true_value, false_value): return true_value if cond else false_value self.assertNotInBytecode(f, 'JUMP_FORWARD') self.assertNotInBytecode(f, 'JUMP_ABSOLUTE') returns = [instr for instr in dis.get_instructions(f) if instr.opname == 'RETURN_VALUE'] self.assertEqual(len(returns), 2) def test_elim_jump_after_return1(self): # Eliminate dead code: jumps immediately after returns can't be reached def f(cond1, cond2): if cond1: return 1 if cond2: return 2 while 1: return 3 while 1: if cond1: return 4 return 5 return 6 self.assertNotInBytecode(f, 'JUMP_FORWARD') self.assertNotInBytecode(f, 'JUMP_ABSOLUTE') returns = [instr for instr in dis.get_instructions(f) if instr.opname == 'RETURN_VALUE'] self.assertEqual(len(returns), 6) def test_elim_jump_after_return2(self): # Eliminate dead code: jumps immediately after returns can't be reached def f(cond1, cond2): while 1: if cond1: return 4 self.assertNotInBytecode(f, 'JUMP_FORWARD') # There should be one jump for the while loop. returns = [instr for instr in dis.get_instructions(f) if instr.opname == 'JUMP_ABSOLUTE'] self.assertEqual(len(returns), 1) returns = [instr for instr in dis.get_instructions(f) if instr.opname == 'RETURN_VALUE'] self.assertEqual(len(returns), 2) def test_make_function_doesnt_bail(self): def f(): def g()->1+1: pass return g self.assertNotInBytecode(f, 'BINARY_ADD') def test_constant_folding(self): # Issue #11244: aggressive constant folding. exprs = [ '3 * -5', '-3 * 5', '2 * (3 * 4)', '(2 * 3) * 4', '(-1, 2, 3)', '(1, -2, 3)', '(1, 2, -3)', '(1, 2, -3) * 6', 'lambda x: x in {(3 * -5) + (-1 - 6), (1, -2, 3) * 2, None}', ] for e in exprs: code = compile(e, '', 'single') for instr in dis.get_instructions(code): self.assertFalse(instr.opname.startswith('UNARY_')) self.assertFalse(instr.opname.startswith('BINARY_')) self.assertFalse(instr.opname.startswith('BUILD_')) class TestBuglets(unittest.TestCase): def test_bug_11510(self): # folded constant set optimization was commingled with the tuple # unpacking optimization which would fail if the set had duplicate # elements so that the set length was unexpected def f(): x, y = {1, 1} return x, y with self.assertRaises(ValueError): f() if __name__ == "__main__": unittest.main()
[ [ [ 7, 10 ], [ 3395, 3398 ], [ 6936, 6939 ], [ 9344, 9347 ], [ 9565, 9568 ], [ 10227, 10230 ], [ 10684, 10687 ], [ 11318, 11321 ], [ 11800, 11803 ], [ 11966, 11969 ], [ 12767, 12770 ] ], [ [ 18, 20 ] ], [ [ 28, 31 ] ], [ [ 39, 47 ] ], [ [ 55, 63 ], [ 13020, 13028 ], [ 13436, 13444 ] ], [ [ 89, 101 ], [ 7879, 7891 ] ], [ [ 136, 152 ], [ 174, 190 ] ], [ [ 160, 173 ] ], [ [ 13008, 13019 ] ] ]
# -*- coding: utf-8 -*- __author__ = 'Matt Makai' __email__ = '[email protected]' __version__ = '0.1.0'
[ [ [ 25, 35 ] ], [ [ 51, 60 ] ], [ [ 83, 94 ] ] ]
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest from numpy.testing import assert_allclose from .. import Parameter, Parameters, optimize_iminuit pytest.importorskip("iminuit") def fcn(parameters): x = parameters["x"].value y = parameters["y"].value z = parameters["z"].value x_opt, y_opt, z_opt = 2, 3e5, 4e-5 x_err, y_err, z_err = 0.2, 3e4, 4e-6 return ((x - x_opt) / x_err) ** 2 + ((y - y_opt) / y_err) ** 2 + ((z - z_opt) / z_err) ** 2 @pytest.fixture() def pars(): x = Parameter("x", 2.1) y = Parameter("y", 3.1, scale=1e5) z = Parameter("z", 4.1, scale=1e-5) return Parameters([x, y, z]) def test_iminuit_basic(pars): factors, info, minuit = optimize_iminuit(function=fcn, parameters=pars) assert info["success"] assert_allclose(fcn(pars), 0, atol=1e-5) # Check the result in parameters is OK assert_allclose(pars["x"].value, 2, rtol=1e-3) assert_allclose(pars["y"].value, 3e5, rtol=1e-3) # Precision of estimate on "z" is very poor (0.040488). Why is it so bad? assert_allclose(pars["z"].value, 4e-5, rtol=2e-2) # Check that minuit sees the parameter factors correctly assert_allclose(factors, [2, 3, 4], rtol=1e-3) assert_allclose(minuit.values["par_000_x"], 2, rtol=1e-3) assert_allclose(minuit.values["par_001_y"], 3, rtol=1e-3) assert_allclose(minuit.values["par_002_z"], 4, rtol=1e-3) def test_iminuit_frozen(pars): pars["y"].frozen = True factors, info, minuit = optimize_iminuit(function=fcn, parameters=pars) assert info["success"] assert_allclose(pars["x"].value, 2, rtol=1e-4) assert_allclose(pars["y"].value, 3.1e5) assert_allclose(pars["z"].value, 4.e-5, rtol=1e-4) assert_allclose(fcn(pars), 0.111112, rtol=1e-5) assert minuit.list_of_fixed_param() == ["par_001_y"] def test_iminuit_limits(pars): pars["y"].min = 301000 factors, info, minuit = optimize_iminuit(function=fcn, parameters=pars) assert info["success"] # Check the result in parameters is OK assert_allclose(pars["x"].value, 2, rtol=1e-2) assert_allclose(pars["y"].value, 301000, rtol=1e-3) # Check that minuit sees the limit factors correctly states = minuit.get_param_states() assert not states[0]["has_limits"] y = states[1] assert y["has_limits"] assert_allclose(y["lower_limit"], 3.01) # The next assert can be added when we no longer test on iminuit 1.2 # See https://github.com/gammapy/gammapy/pull/1771 # assert states[1]["upper_limit"] is None
[ [ [ 71, 77 ], [ 176, 182 ], [ 499, 505 ] ], [ [ 104, 119 ], [ 808, 823 ], [ 897, 912 ], [ 948, 963 ], [ 1079, 1094 ], [ 1195, 1210 ], [ 1246, 1261 ], [ 1308, 1323 ], [ 1370, 1385 ], [ 1599, 1614 ], [ 1650, 1665 ], [ 1694, 1709 ], [ 1749, 1764 ], [ 2068, 2083 ], [ 2119, 2134 ], [ 2357, 2372 ] ], [ [ 135, 144 ], [ 536, 545 ], [ 564, 573 ], [ 603, 612 ] ], [ [ 146, 156 ], [ 646, 656 ] ], [ [ 158, 174 ], [ 728, 744 ], [ 1518, 1534 ], [ 1944, 1960 ] ], [ [ 213, 216 ], [ 754, 757 ], [ 824, 827 ], [ 1544, 1547 ], [ 1765, 1768 ], [ 1970, 1973 ] ], [ [ 520, 524 ] ], [ [ 674, 692 ] ], [ [ 1434, 1453 ] ], [ [ 1861, 1880 ] ] ]
m = int(input()) m /= 1000 if m < 0.1: print('00') elif 0.1 <= m and m <= 5: m = str(int(10 * m)) if len(m) == 1: m = '0' + m print(m) elif 6 <= m and m <= 30: print(int(m) + 50) elif 35 <= m and m <= 70: print((int(m) - 30) // 5 + 80) else: print('89')
[ [ [ 0, 1 ], [ 17, 18 ] ], [ [ 85, 86 ], [ 117, 118 ], [ 144, 145 ], [ 156, 157 ] ], [ [ 134, 135 ], [ 156, 157 ] ] ]
import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as td class Flow(nn.Module): """ Building both normalizing flows and neural flows. Example: >>> import stribor as st >>> torch.manual_seed(123) >>> dim = 2 >>> flow = st.Flow(st.UnitNormal(dim), [st.Affine(dim)]) >>> x = torch.rand(1, dim) >>> y, ljd = flow(x) >>> y_inv, ljd_inv = flow.inverse(y) Args: base_dist (Type[torch.distributions]): Base distribution transforms (List[st.flows]): List of invertible transformations """ def __init__(self, base_dist=None, transforms=[]): super().__init__() self.base_dist = base_dist self.transforms = nn.ModuleList(transforms) def forward(self, x, latent=None, mask=None, t=None, reverse=False, **kwargs): """ Args: x (tensor): Input sampled from base density with shape (..., dim) latent (tensor, optional): Conditional vector with shape (..., latent_dim) Default: None mask (tensor): Masking tensor with shape (..., 1) Default: None t (tensor, optional): Flow time end point. Default: None reverse (bool, optional): Whether to perform an inverse. Default: False Returns: y (tensor): Output that follows target density (..., dim) log_jac_diag (tensor): Log-Jacobian diagonal (..., dim) """ transforms = self.transforms[::-1] if reverse else self.transforms _mask = 1 if mask is None else mask log_jac_diag = torch.zeros_like(x).to(x) for f in transforms: if reverse: x, ld = f.inverse(x * _mask, latent=latent, mask=mask, t=t, **kwargs) else: x, ld = f.forward(x * _mask, latent=latent, mask=mask, t=t, **kwargs) log_jac_diag += ld * _mask return x, log_jac_diag def inverse(self, y, latent=None, mask=None, t=None, **kwargs): """ Inverse of forward function with the same arguments. """ return self.forward(y, latent=latent, mask=mask, t=t, reverse=True, **kwargs) def log_prob(self, x, **kwargs): """ Calculates log-probability of a sample. Args: x (tensor): Input with shape (..., dim) Returns: log_prob (tensor): Log-probability of the input with shape (..., 1) """ if self.base_dist is None: raise ValueError('Please define `base_dist` if you need log-probability') x, log_jac_diag = self.inverse(x, **kwargs) log_prob = self.base_dist.log_prob(x) + log_jac_diag.sum(-1) return log_prob.unsqueeze(-1) def sample(self, num_samples, latent=None, mask=None, **kwargs): """ Transforms samples from the base to the target distribution. Uses reparametrization trick. Args: num_samples (tuple or int): Shape of samples latent (tensor): Latent conditioning vector with shape (..., latent_dim) Returns: x (tensor): Samples from target distribution with shape (*num_samples, dim) """ if self.base_dist is None: raise ValueError('Please define `base_dist` if you need sampling') if isinstance(num_samples, int): num_samples = (num_samples,) x = self.base_dist.rsample(num_samples) x, log_jac_diag = self.forward(x, **kwargs) return x
[ [ [ 7, 12 ], [ 1665, 1670 ] ], [ [ 21, 35 ], [ 117, 119 ], [ 758, 760 ] ], [ [ 44, 68 ] ], [ [ 77, 102 ] ], [ [ 112, 116 ] ] ]
#!/usr/bin/env python3 # Copyright (c) 2017-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test external signer. Verify that a blinkhashd node can use an external signer command. See also wallet_signer.py for tests that require wallet context. """ import os import platform from test_framework.test_framework import BlinkhashTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class RPCSignerTest(BlinkhashTestFramework): def mock_signer_path(self): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'mocks', 'signer.py') if platform.system() == "Windows": return "py " + path else: return path def set_test_params(self): self.num_nodes = 4 self.extra_args = [ [], [f"-signer={self.mock_signer_path()}", '-keypool=10'], [f"-signer={self.mock_signer_path()}", '-keypool=10'], ["-signer=fake.py"], ] def skip_test_if_missing_module(self): self.skip_if_no_external_signer() def set_mock_result(self, node, res): with open(os.path.join(node.cwd, "mock_result"), "w", encoding="utf8") as f: f.write(res) def clear_mock_result(self, node): os.remove(os.path.join(node.cwd, "mock_result")) def run_test(self): self.log.debug(f"-signer={self.mock_signer_path()}") assert_raises_rpc_error(-1, 'Error: restart blinkhashd with -signer=<cmd>', self.nodes[0].enumeratesigners ) # Handle script missing: assert_raises_rpc_error(-1, 'execve failed: No such file or directory', self.nodes[3].enumeratesigners ) # Handle error thrown by script self.set_mock_result(self.nodes[1], "2") assert_raises_rpc_error(-1, 'RunCommandParseJSON error', self.nodes[1].enumeratesigners ) self.clear_mock_result(self.nodes[1]) self.set_mock_result(self.nodes[1], '0 [{"type": "trezor", "model": "trezor_t", "error": "fingerprint not found"}]') assert_raises_rpc_error(-1, 'fingerprint not found', self.nodes[1].enumeratesigners ) self.clear_mock_result(self.nodes[1]) result = self.nodes[1].enumeratesigners() assert_equal(len(result['signers']), 2) assert_equal(result['signers'][0]["fingerprint"], "00000001") assert_equal(result['signers'][0]["name"], "trezor_t") if __name__ == '__main__': RPCSignerTest().main()
[ [ [ 382, 384 ], [ 644, 646 ], [ 657, 659 ], [ 673, 675 ], [ 1265, 1267 ], [ 1405, 1407 ], [ 1415, 1417 ] ], [ [ 392, 400 ], [ 735, 743 ] ], [ [ 444, 466 ], [ 572, 594 ] ], [ [ 505, 517 ], [ 2444, 2456 ], [ 2492, 2504 ], [ 2562, 2574 ] ], [ [ 523, 546 ], [ 1549, 1572 ], [ 1720, 1743 ], [ 1943, 1966 ], [ 2233, 2256 ] ], [ [ 558, 571 ], [ 2649, 2662 ] ] ]
import pandas as pd import pathlib from fairness.results import local_results_path BASE_DIR = local_results_path() PACKAGE_DIR = pathlib.Path(__file__).parents[2] RAW_DATA_DIR = PACKAGE_DIR / 'data' / 'raw' PROCESSED_DATA_DIR = BASE_DIR / 'data' / 'preprocessed' # Joosje: BASE_DIR used to be PACKAGE_DIR RESULT_DIR = BASE_DIR / "results" ANALYSIS_DIR = BASE_DIR / "analysis" class Data(): def __init__(self): pass def get_dataset_name(self): """ This is the stub name that will be used to generate the processed filenames and is the assumed stub for the raw data filename. """ return self.dataset_name def get_class_attribute(self): """ Returns the name of the class attribute to be used for classification. """ return self.class_attr def get_positive_class_val(self, tag): """ Returns the value used in the dataset to indicate the positive classification choice. """ # FIXME this dependence between tags and metadata is bad; don't know how to fix it right now if tag == 'numerical-binsensitive': return 1 else: return self.positive_class_val def get_sensitive_attributes(self): """ Returns a list of the names of any sensitive / protected attribute(s) that will be used for a fairness analysis and should not be used to train the model. """ return self.sensitive_attrs def get_sensitive_attributes_with_joint(self): """ Same as get_sensitive_attributes, but also includes the joint sensitive attribute if there is more than one sensitive attribute. """ # Joosje: skip joint # if len(self.get_sensitive_attributes()) > 1: # return self.get_sensitive_attributes() + ['-'.join(self.get_sensitive_attributes())] return self.get_sensitive_attributes() def get_privileged_class_names(self, tag): """ Returns a list in the same order as the sensitive attributes list above of the privileged class name (exactly as it appears in the data) of the associated sensitive attribute. """ # FIXME this dependence between tags and privileged class names is bad; don't know how to # fix it right now if tag == 'numerical-binsensitive': return [1 for x in self.get_sensitive_attributes()] else: return self.privileged_class_names def get_privileged_class_names_with_joint(self, tag): """ Same as get_privileged_class_names, but also includes the joint sensitive attribute if there is more than one sensitive attribute. """ priv_class_names = self.get_privileged_class_names(tag) if len(priv_class_names) > 1: return priv_class_names + ['-'.join(str(v) for v in priv_class_names)] return priv_class_names def get_categorical_features(self): """ Returns a list of features that should be expanded to one-hot versions for numerical-only algorithms. This should not include the protected features or the outcome class variable. """ return self.categorical_features def get_features_to_keep(self): return self.features_to_keep def get_missing_val_indicators(self): return self.missing_val_indicators def load_raw_dataset(self): data_path = self.get_raw_filename() data_frame = pd.read_csv(data_path, error_bad_lines=False, na_values=self.get_missing_val_indicators(), encoding = 'ISO-8859-1') return data_frame def get_raw_filename(self): RAW_DATA_DIR.mkdir(parents=True, exist_ok=True) return RAW_DATA_DIR / (self.get_dataset_name() + '.csv') def get_filename(self, tag): PROCESSED_DATA_DIR.mkdir(parents=True, exist_ok=True) return PROCESSED_DATA_DIR / (self.get_dataset_name() + "_" + tag + '.csv') def get_results_filename(self, sensitive_attr, tag): RESULT_DIR.mkdir(parents=True, exist_ok=True) return RESULT_DIR / (self.get_dataset_name() + "_" + sensitive_attr + "_" + tag + '.csv') def get_param_results_filename(self, sensitive_attr, tag, algname): RESULT_DIR.mkdir(parents=True, exist_ok=True) return RESULT_DIR / (algname + '_' + self.get_dataset_name() + "_" + sensitive_attr + \ "_" + tag + '.csv') def get_analysis_filename(self, sensitive_attr, tag): ANALYSIS_DIR.mkdir(parents=True, exist_ok=True) return ANALYSIS_DIR / (self.get_dataset_name() + "_" + sensitive_attr + "_" + tag + '.csv') def data_specific_processing(self, dataframe): """ Takes a pandas dataframe and modifies it to do any data specific processing. This should include any ordered categorical replacement by numbers. The resulting pandas dataframe is returned. """ return dataframe def handle_missing_data(self, dataframe): """ This method implements any data specific missing data processing. Any missing data not replaced by values in this step will be removed by the general preprocessing script. """ return dataframe def get_class_balance_statistics(self, data_frame=None): if data_frame is None: data_frame = self.load_raw_dataset() r = data_frame.groupby(self.get_class_attribute()).size() return r def get_sensitive_attribute_balance_statistics(self, data_frame=None): if data_frame is None: data_frame = self.load_raw_dataset() return [data_frame.groupby(a).size() for a in self.get_sensitive_attributes()] ########################################################################## def get_results_data_frame(self, sensitive_attr, tag): return pd.read_csv(self.get_results_filename(sensitive_attr, tag)) def get_param_results_data_frame(self, sensitive_attr, tag): return pd.read_csv(self.get_param_results_filename(sensitive_attr, tag))
[ [ [ 7, 19 ], [ 3523, 3525 ], [ 5995, 5997 ], [ 6136, 6138 ] ], [ [ 27, 34 ], [ 130, 137 ] ], [ [ 64, 82 ], [ 95, 113 ] ], [ [ 84, 92 ], [ 229, 237 ], [ 319, 327 ], [ 355, 363 ] ], [ [ 116, 127 ], [ 179, 190 ] ], [ [ 164, 176 ], [ 3772, 3784 ], [ 3835, 3847 ] ], [ [ 208, 226 ], [ 3927, 3945 ], [ 3996, 4014 ] ], [ [ 306, 316 ], [ 4130, 4140 ], [ 4191, 4201 ], [ 4355, 4365 ], [ 4416, 4426 ] ], [ [ 340, 352 ], [ 4599, 4611 ], [ 4662, 4674 ] ], [ [ 385, 389 ] ] ]
from django.core.urlresolvers import reverse from django.http import Http404 from django.test import TestCase, override_settings import mock from rest_framework.exceptions import APIException, PermissionDenied from rest_framework.request import Request from rest_framework.response import Response from rest_framework.routers import SimpleRouter from rest_framework.settings import api_settings from rest_framework.viewsets import GenericViewSet class DummyViewSet(GenericViewSet): """Dummy test viewset that raises an exception when calling list().""" def list(self, *args, **kwargs): raise Exception('something went wrong') test_exception = SimpleRouter() test_exception.register('testexcept', DummyViewSet, base_name='test-exception') @override_settings(ROOT_URLCONF=test_exception.urls) class TestExceptionHandlerWithViewSet(TestCase): # The test client connects to got_request_exception, so we need to mock it # otherwise it would immediately re-raise the exception. @mock.patch('olympia.api.exceptions.got_request_exception') def test_view_exception(self, got_request_exception_mock): url = reverse('test-exception-list') with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False, DEBUG=False): response = self.client.get(url) assert response.status_code == 500 assert response.data == {'detail': 'Internal Server Error'} assert got_request_exception_mock.send.call_count == 1 assert got_request_exception_mock.send.call_args[0][0] == DummyViewSet assert isinstance( got_request_exception_mock.send.call_args[1]['request'], Request) # The test client connects to got_request_exception, so we need to mock it # otherwise it would immediately re-raise the exception. @mock.patch('olympia.api.exceptions.got_request_exception') def test_view_exception_debug(self, got_request_exception_mock): url = reverse('test-exception-list') with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False, DEBUG=True): response = self.client.get(url) assert response.status_code == 500 data = response.data assert set(data.keys()) == set(['detail', 'traceback']) assert data['detail'] == 'Internal Server Error' assert 'Traceback (most recent call last):' in data['traceback'] assert got_request_exception_mock.send.call_count == 1 assert got_request_exception_mock.send.call_args[0][0] == DummyViewSet assert isinstance( got_request_exception_mock.send.call_args[1]['request'], Request) class TestExceptionHandler(TestCase): def test_api_exception_handler_returns_response(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False): try: raise APIException() except Exception as exc: response = exception_handler(exc, {}) assert isinstance(response, Response) assert response.status_code == 500 def test_exception_handler_returns_response_for_404(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False): try: raise Http404() except Exception as exc: response = exception_handler(exc, {}) assert isinstance(response, Response) assert response.status_code == 404 def test_exception_handler_returns_response_for_403(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False): try: raise PermissionDenied() except Exception as exc: response = exception_handler(exc, {}) assert isinstance(response, Response) assert response.status_code == 403 def test_non_api_exception_handler_returns_response(self): # Regular DRF exception handler does not return a Response for non-api # exceptions, but we do. exception_handler = api_settings.EXCEPTION_HANDLER with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=False): try: raise Exception() except Exception as exc: response = exception_handler(exc, {}) assert isinstance(response, Response) assert response.status_code == 500 def test_api_exception_handler_with_propagation(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.assertRaises(APIException): with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=True): try: raise APIException() except Exception as exc: exception_handler(exc, {}) def test_exception_handler_404_with_propagation(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.assertRaises(Http404): with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=True): try: raise Http404() except Exception as exc: exception_handler(exc, {}) def test_exception_handler_403_with_propagation(self): exception_handler = api_settings.EXCEPTION_HANDLER with self.assertRaises(PermissionDenied): with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=True): try: raise PermissionDenied() except Exception as exc: exception_handler(exc, {}) def test_non_api_exception_handler_with_propagation(self): # Regular DRF exception handler does not return a Response for non-api # exceptions, but we do. exception_handler = api_settings.EXCEPTION_HANDLER with self.assertRaises(KeyError): with self.settings(DEBUG_PROPAGATE_EXCEPTIONS=True): try: raise KeyError() except Exception as exc: exception_handler(exc, {})
[ [ [ 37, 44 ], [ 1145, 1152 ], [ 1950, 1957 ] ], [ [ 69, 76 ], [ 3329, 3336 ], [ 5052, 5059 ], [ 5174, 5181 ] ], [ [ 101, 109 ], [ 853, 861 ], [ 2662, 2670 ] ], [ [ 111, 128 ], [ 763, 780 ] ], [ [ 137, 141 ], [ 1009, 1013 ], [ 1808, 1812 ] ], [ [ 181, 193 ], [ 2893, 2905 ], [ 4671, 4683 ], [ 4798, 4810 ] ], [ [ 195, 211 ], [ 3760, 3776 ], [ 5423, 5439 ], [ 5554, 5570 ] ], [ [ 247, 254 ], [ 1653, 1660 ], [ 2624, 2631 ] ], [ [ 291, 299 ], [ 3043, 3051 ], [ 3474, 3482 ], [ 3914, 3922 ], [ 4459, 4467 ] ], [ [ 335, 347 ], [ 665, 677 ] ], [ [ 384, 396 ], [ 2760, 2772 ], [ 3196, 3208 ], [ 3627, 3639 ], [ 4179, 4191 ], [ 4608, 4620 ], [ 4989, 5001 ], [ 5360, 5372 ], [ 5865, 5877 ] ], [ [ 433, 447 ], [ 469, 483 ] ], [ [ 456, 468 ], [ 718, 730 ], [ 1544, 1556 ], [ 2515, 2527 ] ], [ [ 648, 662 ], [ 680, 694 ], [ 794, 808 ] ], [ [ 821, 852 ] ], [ [ 2641, 2661 ] ] ]
import os, sys, urllib.request from tkinter import * from tkinter.messagebox import * __version__ = 3 __filename__ = "ImageRenaming" __basename__ = os.path.basename(sys.argv[0]) __savepath__ = os.path.join(os.environ['APPDATA'], "QuentiumPrograms") __iconpath__ = __savepath__ + "/{}.ico".format(__filename__) try:urllib.request.urlopen("https://www.google.fr/", timeout=1); connection = True except:connection = False if not os.path.exists(__iconpath__): try:os.mkdir(__savepath__) except:pass if connection == True: try:urllib.request.urlretrieve("https://quentium.fr/+++PythonDL/{}.ico".format(__filename__), __iconpath__) except:pass if connection == True: try:script_version = int(urllib.request.urlopen("https://quentium.fr/programs/index.php").read().decode().split(__filename__ + "<!-- Version: ")[1].split(" --></h2>")[0]) except:script_version = __version__ if script_version > __version__: if os.path.exists(__iconpath__):popup = Tk(); popup.attributes("-topmost", 1); popup.iconbitmap(__iconpath__); popup.withdraw() ask_update = askquestion(__filename__ + " V" + str(script_version), "Une mise à jour à été trouvée, souhaitez vous la télécharger puis l'éxécuter ?", icon="question") if ask_update == "yes": try:os.rename(__basename__, __filename__ + "-old.exe") except:os.remove(__filename__ + "-old.exe"); os.rename(__basename__, __filename__ + "-old.exe") if "-32" in str(__basename__):urllib.request.urlretrieve("https://quentium.fr/download.php?file={}-32.exe".format(__filename__), __filename__ + ".exe") else:urllib.request.urlretrieve("https://quentium.fr/download.php?file={}.exe".format(__filename__), __filename__ + ".exe") showwarning(__filename__, "Le programme va redémarrer pour fonctionner sous la nouvelle version.", icon="warning") os.system("start " + __filename__ + ".exe"); os._exit(1) __filename__ = __filename__ + " V" + str(__version__) from datetime import datetime from tkinter.filedialog import * from tkinter import * def start_rename(): directory = askdirectory() if directory: if askyesno(__filename__, "Êtes-vous sûr de renommer toutes les images dans ce dossier ? Cette action ne peux pas être annulée !"): files1 = [f for f in os.listdir(directory) if f[-4:].lower() in (".jpg",".JPG",".png",".PNG",".jpeg",".JPEG",".bmp",".gif")] for (index, filename) in enumerate(files1): file = directory + "/" + filename extension = os.path.splitext(filename)[1] if check_var.get() == 0: time1 = os.path.getctime(file) elif check_var.get() == 1: time1 = os.path.getmtime(file) time2 = datetime.fromtimestamp(time1) time = time2.strftime("%Y%m%d%H%M%S%f") newname = time + "_" + str(os.path.getsize(file)) + extension os.rename(file, directory + "/" + newname) files2 = [f for f in os.listdir(directory) if f[-4:].lower() in (".jpg",".JPG",".png",".PNG",".jpeg",".JPEG",".bmp",".gif")] for (index, filename) in enumerate(files2): file = directory + "/" + filename extension = os.path.splitext(filename)[1] newname = "Image-%05d%s" % (index + 1, extension) if os.path.exists(newname): continue if True: os.rename(file, directory + "/" + newname) imagerenaming.destroy() os._exit(0) else: showwarning(__filename__, "Erreur : Aucun dossier n'a été sélectionné !") imagerenaming = Tk() width = 800 height = 500 imagerenaming.update_idletasks() x = (imagerenaming.winfo_screenwidth() - width) // 2 y = (imagerenaming.winfo_screenheight() - height) // 2 imagerenaming.geometry("{}x{}+{}+{}".format(width , height, int(x), int(y))) imagerenaming.resizable(width=False, height=False) imagerenaming.configure(bg = "lightgray") if os.path.exists(__iconpath__): imagerenaming.iconbitmap(__iconpath__) imagerenaming.title(__filename__) Label(imagerenaming, text="Bienvenue dans le programme de renommage !", font="impact 30", fg="red", bg="lightgray").pack(pady=60) check_var = IntVar() check_var.set(0) Radiobutton(imagerenaming, text="Date de création", variable=check_var, value=0, font="impact 20", bg="lightgray").pack(pady=10) Radiobutton(imagerenaming, text="Date de modification", variable=check_var, value=1, font="impact 20", bg="lightgray").pack() Button(imagerenaming, text="Renommer des images", command=start_rename, relief=GROOVE, width=25, font="impact 20", fg="black").pack(pady=50) imagerenaming.mainloop()
[ [ [ 7, 9 ], [ 149, 151 ], [ 194, 196 ], [ 207, 209 ], [ 428, 430 ], [ 466, 468 ], [ 955, 957 ], [ 1303, 1305 ], [ 1373, 1375 ], [ 1411, 1413 ], [ 1901, 1903 ], [ 1946, 1948 ], [ 4081, 4083 ], [ 2342, 2344 ], [ 2580, 2582 ], [ 2679, 2681 ], [ 2773, 2775 ], [ 2949, 2951 ], [ 3000, 3002 ], [ 3077, 3079 ], [ 3315, 3317 ], [ 3430, 3432 ], [ 3529, 3531 ], [ 3616, 3618 ] ], [ [ 11, 14 ], [ 166, 169 ] ], [ [ 16, 30 ], [ 316, 322 ], [ 544, 550 ], [ 721, 727 ], [ 1504, 1510 ], [ 1643, 1649 ] ], [ [ 51, 52 ] ], [ [ 84, 85 ], [ 992, 994 ], [ 1101, 1112 ], [ 1774, 1785 ] ], [ [ 87, 98 ], [ 895, 906 ], [ 931, 942 ], [ 2000, 2011 ] ], [ [ 103, 115 ], [ 297, 309 ], [ 619, 631 ], [ 808, 820 ], [ 1113, 1125 ], [ 1327, 1339 ], [ 1383, 1395 ], [ 1435, 1447 ], [ 1588, 1600 ], [ 1603, 1615 ], [ 1724, 1736 ], [ 1739, 1751 ], [ 1786, 1798 ], [ 1922, 1934 ], [ 1974, 1986 ] ], [ [ 134, 146 ], [ 1313, 1325 ], [ 1421, 1433 ], [ 1490, 1502 ] ], [ [ 179, 191 ], [ 265, 277 ], [ 475, 487 ] ], [ [ 250, 262 ], [ 443, 455 ], [ 634, 646 ], [ 970, 982 ], [ 1048, 1060 ], [ 4096, 4108 ], [ 4140, 4152 ] ], [ [ 377, 387 ], [ 512, 522 ], [ 672, 682 ] ], [ [ 402, 412 ], [ 512, 522 ], [ 672, 682 ] ], [ [ 700, 714 ], [ 914, 928 ], [ 1139, 1153 ] ], [ [ 878, 892 ], [ 914, 928 ], [ 1139, 1153 ] ], [ [ 984, 989 ], [ 998, 1003 ], [ 1031, 1036 ], [ 1063, 1068 ] ], [ [ 1088, 1098 ], [ 1266, 1276 ] ], [ [ 1959, 1971 ], [ 4174, 4186 ], [ 2189, 2201 ], [ 3658, 3670 ] ], [ [ 2035, 2043 ], [ 2820, 2828 ] ], [ [ 2075, 2076 ] ], [ [ 2097, 2098 ], [ 3737, 3739 ], [ 4188, 4193 ], [ 4330, 4336 ], [ 4356, 4367 ], [ 4485, 4496 ], [ 4611, 4617 ], [ 4690, 4696 ], [ 2136, 2148 ], [ 2180, 2188 ], [ 3646, 3657 ] ], [ [ 2104, 2116 ], [ 4669, 4681 ] ], [ [ 3721, 3734 ], [ 3767, 3780 ], [ 3805, 3818 ], [ 3858, 3871 ], [ 3908, 3921 ], [ 3985, 3998 ], [ 4036, 4049 ], [ 4115, 4128 ], [ 4154, 4167 ], [ 4194, 4207 ], [ 4368, 4381 ], [ 4497, 4510 ], [ 4618, 4631 ], [ 4752, 4765 ], [ 3584, 3597 ] ], [ [ 3742, 3747 ], [ 3841, 3846 ], [ 3952, 3957 ] ], [ [ 3754, 3760 ], [ 3895, 3901 ], [ 3960, 3966 ] ], [ [ 3800, 3801 ], [ 3972, 3973 ] ], [ [ 3853, 3854 ], [ 3980, 3981 ] ], [ [ 4318, 4327 ], [ 4339, 4348 ], [ 4418, 4427 ], [ 4550, 4559 ], [ 2629, 2638 ], [ 2723, 2732 ] ] ]
# Generated by Django 3.1.4 on 2021-01-24 04:42 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('exam', '0006_exam_duration'), ] operations = [ migrations.AlterField( model_name='exam', name='duration', field=models.CharField(default=0, max_length=4, verbose_name='Durasi Ujian'), ), ]
[ [ [ 71, 81 ], [ 108, 118 ], [ 227, 237 ] ], [ [ 83, 89 ], [ 328, 334 ] ], [ [ 98, 107 ] ] ]
import asyncio import inspect import json import os import random import unittest from unittest.mock import Mock import aiohttp import aiohttp.web from aiohttp.test_utils import unittest_run_loop, setup_test_loop, teardown_test_loop import pep8 import jsonrpc_base import jsonrpc_websocket.jsonrpc from jsonrpc_websocket import Server, ProtocolError, TransportError class JsonTestClient(): def __init__(self, loop=None): self.test_server = None self.loop = loop self.connect_side_effect = None async def ws_connect(self, *args, **kwargs): if self.connect_side_effect: self.connect_side_effect() self.test_server = JsonTestServer(self.loop) return self.test_server class JsonTestServer(): def __init__(self, loop=None): self.loop = loop self.send_handler = None self.receive_queue = asyncio.Queue(loop=loop) self._closed = False self.receive_side_effect = None async def send_str(self, data): self.send_handler(self, data) def test_receive(self, data): self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.TEXT, data, '')) def test_binary(self, data=bytes()): self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.BINARY, data, '')) def test_error(self): self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.ERROR, 0, '')) def test_close(self): self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.CLOSED, 0, '')) def test_ping(self): self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.PING, 0, '')) async def receive(self): value = await self.receive_queue.get() if self.receive_side_effect: self.receive_side_effect() return (value) async def close(self): if not self._closed: self._closed = True self.receive_queue.put_nowait(aiohttp.WSMessage(aiohttp.WSMsgType.CLOSED, 0, '')) class TestCase(unittest.TestCase): def assertSameJSON(self, json1, json2): """Tells whether two json strings, once decoded, are the same dictionary""" return self.assertDictEqual(json.loads(json1), json.loads(json2)) def assertRaisesRegex(self, *args, **kwargs): return super(TestCase, self).assertRaisesRegex(*args, **kwargs) class TestJSONRPCClient(TestCase): def setUp(self): self.loop = setup_test_loop() self.client = JsonTestClient(self.loop) random.randint = Mock(return_value=1) self.server = Server('/xmlrpc', session=self.client, timeout=0.2) self.ws_loop_future = self.loop.run_until_complete(self.server.ws_connect()) def tearDown(self): if self.server.connected: self.client.test_server.test_close() self.loop.run_until_complete(self.ws_loop_future) teardown_test_loop(self.loop) @property def handler(self): return self.client.test_server.send_handler @handler.setter def handler(self, value): self.client.test_server.send_handler = value def receive(self, data): self.client.test_server.test_receive(data) def receive_binary(self, data): self.client.test_server.test_binary(data) def test_pep8_conformance(self): """Test that we conform to PEP8.""" source_files = [] project_dir = os.path.dirname(os.path.abspath(__file__)) package_dir = os.path.join(project_dir, 'jsonrpc_async') for root, directories, filenames in os.walk(package_dir): source_files.extend([os.path.join(root, f) for f in filenames if f.endswith('.py')]) pep8style = pep8.StyleGuide(quiet=False, max_line_length=120) result = pep8style.check_files(source_files) self.assertEqual(result.total_errors, 0, "Found code style errors (and warnings).") def test_pending_message_response(self): pending_message = jsonrpc_websocket.jsonrpc.PendingMessage(loop=self.loop) pending_message.response = 10 self.assertEqual(pending_message.response, 10) @unittest_run_loop async def test_send_message(self): # catch timeout responses with self.assertRaises(TransportError) as transport_error: def handler(server, data): try: asyncio.wait(asyncio.sleep(10, loop=self.loop)) except asyncio.CancelledError: # event loop will be terminated before sleep finishes pass self.handler = handler await self.server.send_message(jsonrpc_base.Request('my_method', params=None, msg_id=1)) self.assertIsInstance(transport_error.exception.args[1], asyncio.TimeoutError) @unittest_run_loop async def test_client_closed(self): await self.server.close() with self.assertRaisesRegex(TransportError, 'Client is not connected.'): def handler(server, data): pass self.handler = handler await self.server.send_message(jsonrpc_base.Request('my_method', params=None, msg_id=1)) @unittest_run_loop async def test_double_connect(self): with self.assertRaisesRegex(TransportError, 'Connection already open.'): await self.server.ws_connect() @unittest_run_loop async def test_ws_error(self): self.client.test_server.test_error() with self.assertRaisesRegex(TransportError, 'Websocket error detected. Connection closed.'): await self.ws_loop_future @unittest_run_loop async def test_binary(self): self.client.test_server.test_binary() @unittest_run_loop async def test_message_not_json(self): with self.assertRaises(TransportError) as transport_error: self.receive('not json') await self.ws_loop_future self.assertIsInstance(transport_error.exception.args[1], ValueError) @unittest_run_loop async def test_message_binary_not_utf8(self): # If we get a binary message, we should try to decode it as JSON, but # if it's not valid we should just ignore it, and an exception should # not be thrown self.receive_binary(bytes((0xE0, 0x80, 0x80))) self.client.test_server.test_close() await self.ws_loop_future @unittest_run_loop async def test_message_binary_not_json(self): # If we get a binary message, we should try to decode it as JSON, but # if it's not valid we should just ignore it, and an exception should # not be thrown self.receive_binary('not json'.encode()) self.client.test_server.test_close() await self.ws_loop_future @unittest_run_loop async def test_message_ping_ignored(self): self.client.test_server.test_ping() self.client.test_server.test_close() await self.ws_loop_future @unittest_run_loop async def test_connection_timeout(self): def bad_connect(): raise aiohttp.ClientError("Test Error") self.client.connect_side_effect = bad_connect await self.server.close() with self.assertRaises(TransportError) as transport_error: await self.server.ws_connect() self.assertIsInstance(transport_error.exception.args[1], aiohttp.ClientError) @unittest_run_loop async def test_server_request(self): def test_method(): return 1 self.server.test_method = test_method def handler(server, data): response = json.loads(data) self.assertEqual(response["result"], 1) self.handler = handler self.receive('{"jsonrpc": "2.0", "method": "test_method", "id": 1}') @unittest_run_loop async def test_server_request_binary(self): # Test that if the server sends a binary websocket message, that's a # UTF-8 encoded JSON request we process it def test_method(): return 1 self.server.test_method = test_method def handler(server, data): response = json.loads(data) self.assertEqual(response["result"], 1) self.handler = handler self.receive_binary('{"jsonrpc": "2.0", "method": "test_method", "id": 1}'.encode()) @unittest_run_loop async def test_server_notification(self): def test_method(): pass self.server.test_method = test_method self.receive('{"jsonrpc": "2.0", "method": "test_method"}') @unittest_run_loop async def test_server_response_error(self): def test_method(): return 1 self.server.test_method = test_method def receive_side_effect(): raise aiohttp.ClientError("Test Error") self.client.test_server.receive_side_effect = receive_side_effect self.receive('{"jsonrpc": "2.0", "method": "test_method", "id": 1}') with self.assertRaises(TransportError) as transport_error: await self.ws_loop_future self.assertIsInstance(transport_error.exception.args[1], aiohttp.ClientError) @unittest_run_loop async def test_calls(self): # rpc call with positional parameters: def handler1(server, data): request = json.loads(data) self.assertEqual(request["params"], [42, 23]) server.test_receive('{"jsonrpc": "2.0", "result": 19, "id": 1}') self.handler = handler1 self.assertEqual((await self.server.subtract(42, 23)), 19) def handler2(server, data): request = json.loads(data) self.assertEqual(request["params"], {'y': 23, 'x': 42}) server.test_receive('{"jsonrpc": "2.0", "result": 19, "id": 1}') self.handler = handler2 self.assertEqual((await self.server.subtract(x=42, y=23)), 19) def handler3(server, data): request = json.loads(data) self.assertEqual(request["params"], {'foo': 'bar'}) self.handler = handler3 await self.server.foobar({'foo': 'bar'}, _notification=True) @unittest_run_loop async def test_simultaneous_calls(self): # Test that calls can be delivered simultaneously, and can return out # of order def handler(server, data): pass self.handler = handler random.randint = Mock(return_value=1) task1 = self.loop.create_task(self.server.call1()) random.randint = Mock(return_value=2) task2 = self.loop.create_task(self.server.call2()) self.assertFalse(task1.done()) self.assertFalse(task2.done()) self.receive('{"jsonrpc": "2.0", "result": 2, "id": 2}') await task2 self.assertFalse(task1.done()) self.assertTrue(task2.done()) self.receive('{"jsonrpc": "2.0", "result": 1, "id": 1}') await task1 self.assertTrue(task1.done()) self.assertTrue(task2.done()) self.assertEqual(1, task1.result()) self.assertEqual(2, task2.result()) @unittest_run_loop async def test_notification(self): # Verify that we ignore the server response def handler(server, data): pass self.handler = handler self.assertIsNone((await self.server.subtract(42, 23, _notification=True))) if __name__ == '__main__': unittest.main()
[ [ [ 7, 14 ], [ 884, 891 ], [ 4782, 4789 ], [ 4385, 4392 ], [ 4398, 4405 ], [ 4456, 4463 ] ], [ [ 22, 29 ] ], [ [ 37, 41 ], [ 2220, 2224 ], [ 2239, 2243 ], [ 7614, 7618 ], [ 8145, 8149 ], [ 9326, 9330 ], [ 9637, 9641 ], [ 9962, 9966 ] ], [ [ 49, 51 ], [ 3432, 3434 ], [ 3448, 3450 ], [ 3497, 3499 ], [ 3584, 3586 ], [ 3639, 3641 ] ], [ [ 59, 65 ], [ 2534, 2540 ], [ 10404, 10410 ], [ 10509, 10515 ] ], [ [ 73, 81 ], [ 2036, 2044 ], [ 11416, 11424 ] ], [ [ 108, 112 ], [ 2551, 2555 ], [ 10421, 10425 ], [ 10526, 10530 ] ], [ [ 121, 128 ] ], [ [ 136, 147 ], [ 1126, 1133 ], [ 1144, 1151 ], [ 1259, 1266 ], [ 1277, 1284 ], [ 1379, 1386 ], [ 1397, 1404 ], [ 1495, 1502 ], [ 1513, 1520 ], [ 1611, 1618 ], [ 1629, 1636 ], [ 1968, 1975 ], [ 1986, 1993 ], [ 7375, 7382 ], [ 9144, 9151 ], [ 7078, 7085 ], [ 8788, 8795 ] ], [ [ 179, 196 ], [ 4147, 4164 ], [ 4810, 4827 ], [ 5185, 5202 ], [ 5374, 5391 ], [ 5617, 5634 ], [ 5720, 5737 ], [ 6006, 6023 ], [ 6394, 6411 ], [ 6776, 6793 ], [ 6970, 6987 ], [ 7402, 7419 ], [ 7798, 7815 ], [ 8346, 8363 ], [ 8574, 8591 ], [ 9171, 9188 ], [ 10151, 10168 ], [ 11107, 11124 ] ], [ [ 198, 213 ], [ 2460, 2475 ] ], [ [ 215, 233 ], [ 2909, 2927 ] ], [ [ 241, 245 ], [ 3724, 3728 ] ], [ [ 254, 266 ], [ 4658, 4670 ], [ 5121, 5133 ] ], [ [ 274, 299 ], [ 3991, 4008 ] ], [ [ 330, 336 ], [ 2594, 2600 ] ], [ [ 338, 351 ] ], [ [ 353, 367 ], [ 4269, 4283 ], [ 4938, 4952 ], [ 5280, 5294 ], [ 5508, 5522 ], [ 5812, 5826 ], [ 7231, 7245 ], [ 9005, 9019 ] ], [ [ 376, 390 ], [ 2500, 2514 ] ], [ [ 744, 758 ], [ 679, 693 ] ], [ [ 2027, 2035 ], [ 2407, 2415 ], [ 2330, 2338 ] ], [ [ 2389, 2406 ] ] ]
r""" Incidence structures (i.e. hypergraphs, i.e. set systems) An incidence structure is specified by a list of points, blocks, or an incidence matrix ([1]_, [2]_). :class:`IncidenceStructure` instances have the following methods: {METHODS_OF_IncidenceStructure} REFERENCES: .. [1] Block designs and incidence structures from wikipedia, :wikipedia:`Block_design` :wikipedia:`Incidence_structure` .. [2] \E. Assmus, J. Key, Designs and their codes, CUP, 1992. AUTHORS: - Peter Dobcsanyi and David Joyner (2007-2008) This is a significantly modified form of part of the module block_design.py (version 0.6) written by Peter Dobcsanyi [email protected]. - Vincent Delecroix (2014): major rewrite Methods ------- """ #*************************************************************************** # Copyright (C) 2007 # # # # Peter Dobcsanyi and David Joyner # # <[email protected]> <[email protected]> # # # # # # Distributed under the terms of the GNU General Public License (GPL) # # as published by the Free Software Foundation; either version 2 of # # the License, or (at your option) any later version. # # http://www.gnu.org/licenses/ # #*************************************************************************** from __future__ import print_function import six from six import itervalues from six.moves import range from sage.rings.integer import Integer from sage.misc.latex import latex from sage.sets.set import Set class IncidenceStructure(object): r""" A base class for incidence structures (i.e. hypergraphs, i.e. set systems) An incidence structure (i.e. hypergraph, i.e. set system) can be defined from a collection of blocks (i.e. sets, i.e. edges), optionally with an explicit ground set (i.e. point set, i.e. vertex set). Alternatively they can be defined from a binary incidence matrix. INPUT: - ``points`` -- (i.e. ground set, i.e. vertex set) the underlying set. If ``points`` is an integer `v`, then the set is considered to be `\{0, ..., v-1\}`. .. NOTE:: The following syntax, where ``points`` is ommitted, automatically defines the ground set as the union of the blocks:: sage: H = IncidenceStructure([['a','b','c'],['c','d','e']]) sage: H.ground_set() ['a', 'b', 'c', 'd', 'e'] - ``blocks`` -- (i.e. edges, i.e. sets) the blocks defining the incidence structure. Can be any iterable. - ``incidence_matrix`` -- a binary incidence matrix. Each column represents a set. - ``name`` (a string, such as "Fano plane"). - ``check`` -- whether to check the input - ``copy`` -- (use with caution) if set to ``False`` then ``blocks`` must be a list of lists of integers. The list will not be copied but will be modified in place (each block is sorted, and the whole list is sorted). Your ``blocks`` object will become the :class:`IncidenceStructure` instance's internal data. EXAMPLES: An incidence structure can be constructed by giving the number of points and the list of blocks:: sage: IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) Incidence structure with 7 points and 7 blocks Only providing the set of blocks is sufficient. In this case, the ground set is defined as the union of the blocks:: sage: IncidenceStructure([[1,2,3],[2,3,4]]) Incidence structure with 4 points and 2 blocks Or by its adjacency matrix (a `\{0,1\}`-matrix in which rows are indexed by points and columns by blocks):: sage: m = matrix([[0,1,0],[0,0,1],[1,0,1],[1,1,1]]) sage: IncidenceStructure(m) Incidence structure with 4 points and 3 blocks The points can be any (hashable) object:: sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] sage: B = [(V[0],V[1],V[2]), (V[1],V[2]), (V[0],V[2])] sage: I = IncidenceStructure(V, B) sage: I.ground_set() [(0, 'a'), (0, 'b'), (1, 'a'), (1, 'b')] sage: I.blocks() [[(0, 'a'), (0, 'b'), (1, 'a')], [(0, 'a'), (1, 'a')], [(0, 'b'), (1, 'a')]] The order of the points and blocks does not matter as they are sorted on input (see :trac:`11333`):: sage: A = IncidenceStructure([0,1,2], [[0],[0,2]]) sage: B = IncidenceStructure([1,0,2], [[0],[2,0]]) sage: B == A True sage: C = BlockDesign(2, [[0], [1,0]]) sage: D = BlockDesign(2, [[0,1], [0]]) sage: C == D True If you care for speed, you can set ``copy`` to ``False``, but in that case, your input must be a list of lists and the ground set must be `{0, ..., v-1}`:: sage: blocks = [[0,1],[2,0],[1,2]] # a list of lists of integers sage: I = IncidenceStructure(3, blocks, copy=False) sage: I._blocks is blocks True """ def __init__(self, points=None, blocks=None, incidence_matrix=None, name=None, check=True, copy=True): r""" TESTS:: sage: IncidenceStructure(3, [[4]]) Traceback (most recent call last): ... ValueError: Block [4] is not contained in the point set sage: IncidenceStructure(3, [[0,1],[0,2]], check=True) Incidence structure with 3 points and 2 blocks sage: IncidenceStructure(2, [[0,1,2,3,4,5]], check=False) Incidence structure with 2 points and 1 blocks We avoid to convert to integers when the points are not (but compare equal to integers because of coercion):: sage: V = GF(5) sage: e0,e1,e2,e3,e4 = V sage: [e0,e1,e2,e3,e4] == list(range(5)) # coercion makes them equal True sage: blocks = [[e0,e1,e2],[e0,e1],[e2,e4]] sage: I = IncidenceStructure(V, blocks) sage: type(I.ground_set()[0]) <... 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> sage: type(I.blocks()[0][0]) <... 'sage.rings.finite_rings.integer_mod.IntegerMod_int'> TESTS:: sage: IncidenceStructure([]) Incidence structure with 0 points and 0 blocks """ from sage.matrix.constructor import matrix from sage.structure.element import Matrix # Reformatting input if isinstance(points, Matrix): assert incidence_matrix is None, "'incidence_matrix' cannot be defined when 'points' is a matrix" assert blocks is None, "'blocks' cannot be defined when 'points' is a matrix" incidence_matrix = points points = blocks = None elif (points is not None and blocks is None): blocks = points points = set().union(*blocks) if points: assert incidence_matrix is None, "'incidence_matrix' cannot be defined when 'points' is defined" if incidence_matrix: M = matrix(incidence_matrix) v = M.nrows() self._points = list(range(v)) self._point_to_index = None self._blocks = sorted(M.nonzero_positions_in_column(i) for i in range(M.ncols())) else: if isinstance(points, (int,Integer)): self._points = list(range(points)) self._point_to_index = None else: self._points = sorted(points) if self._points == list(range(len(points))) and all(isinstance(x,(int,Integer)) for x in self._points): self._point_to_index = None else: self._point_to_index = {e:i for i,e in enumerate(self._points)} if check: for block in blocks: if any(x not in self._points for x in block): raise ValueError("Block {} is not contained in the point set".format(block)) if len(block) != len(set(block)): raise ValueError("Repeated element in block {}".format(block)) if self._point_to_index: # translate everything to integers between 0 and v-1 blocks = [sorted(self._point_to_index[e] for e in block) for block in blocks] elif copy: # create a new list made of sorted blocks blocks = [sorted(block) for block in blocks] else: # sort the data but avoid copying it for b in blocks: b.sort() blocks.sort() self._blocks = blocks self._name = str(name) if name is not None else 'IncidenceStructure' self._classes = None self._canonical_label = None def __iter__(self): """ Iterator over the blocks. EXAMPLES:: sage: sts = designs.steiner_triple_system(9) sage: list(sts) [[0, 1, 5], [0, 2, 4], [0, 3, 6], [0, 7, 8], [1, 2, 3], [1, 4, 7], [1, 6, 8], [2, 5, 8], [2, 6, 7], [3, 4, 8], [3, 5, 7], [4, 5, 6]] sage: b = IncidenceStructure('ab', ['a','ab']) sage: it = iter(b) sage: next(it) ['a'] sage: next(it) ['a', 'b'] """ if self._point_to_index is None: for b in self._blocks: yield b[:] else: for b in self._blocks: yield [self._points[i] for i in b] def __repr__(self): """ A print method. EXAMPLES:: sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD Incidence structure with 7 points and 7 blocks """ return 'Incidence structure with {} points and {} blocks'.format( self.num_points(), self.num_blocks()) __str__ = __repr__ def __eq__(self, other): """ Test whether the two incidence structures are equal. TESTS:: sage: blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]] sage: BD1 = IncidenceStructure(7, blocks) sage: M = BD1.incidence_matrix() sage: BD2 = IncidenceStructure(incidence_matrix=M) sage: BD1 == BD2 True sage: e1 = frozenset([0,1]) sage: e2 = frozenset([2]) sage: sorted([e1,e2]) == [e1,e2] True sage: sorted([e2,e1]) == [e2,e1] True sage: I1 = IncidenceStructure([e1,e2], [[e1],[e1,e2]]) sage: I2 = IncidenceStructure([e1,e2], [[e2,e1],[e1]]) sage: I3 = IncidenceStructure([e2,e1], [[e1,e2],[e1]]) sage: I1 == I2 and I2 == I1 and I1 == I3 and I3 == I1 and I2 == I3 and I3 == I2 True """ # We are extra careful in this method since we cannot assume that a # total order is defined on the point set. if not isinstance(other, IncidenceStructure): return False if self._points == other._points: return self._blocks == other._blocks if (self.num_points() != other.num_points() or self.num_blocks() != other.num_blocks()): return False p_to_i = self._point_to_index if self._point_to_index else list(range(self.num_points())) if any(p not in p_to_i for p in other.ground_set()): return False other_blocks = sorted(sorted(p_to_i[p] for p in b) for b in other.blocks()) return self._blocks == other_blocks def __ne__(self, other): r""" Difference test. EXAMPLES:: sage: BD1 = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: M = BD1.incidence_matrix() sage: BD2 = IncidenceStructure(incidence_matrix=M) sage: BD1 != BD2 False """ return not self == other def __contains__(self, block): r""" Tests if a block belongs to the incidence structure INPUT: - ``block`` -- a block. EXAMPLES:: sage: [1,2,3,4] in IncidenceStructure([[1,2,3,4]]) True sage: [1,2,4,3] in IncidenceStructure([[1,2,3,4]]) True sage: [1,2,"3",4] in IncidenceStructure([[1,2,3,4]]) False sage: [1,2,"3",4] in IncidenceStructure([[1,2,"3",4]]) True More complicated examples:: sage: str="I had a dream of a time when a 3-lines patch does not kill one hour" sage: sets = Subsets(str.split(), 4) sage: IS = IncidenceStructure(sets) # a complete 4-uniform hypergraph sage: ["I", "dream", "of", "one"] in IS True sage: ["does", "patch", "kill", "dream"] in IS True sage: ["Am", "I", "finally", "done ?"] in IS False sage: IS = designs.ProjectiveGeometryDesign(3, 1, GF(2), point_coordinates=False) sage: [3,8,7] in IS True sage: [3,8,9] in IS False """ try: iter(block) except TypeError: return False # Relabel to 0,...,n-1 if necessary if self._point_to_index is not None: try: block = [self._point_to_index[x] for x in block] except KeyError: return False return sorted(block) in self._blocks def canonical_label(self): r""" Return a canonical label for the incidence structure. A canonical label is relabeling of the points into integers `\{0,...,n-1\}` such that isomorphic incidence structures are relabelled to equal objects. EXAMPLES:: sage: fano1 = designs.balanced_incomplete_block_design(7,3) sage: fano2 = designs.projective_plane(2) sage: fano1 == fano2 False sage: fano1.relabel(fano1.canonical_label()) sage: fano2.relabel(fano2.canonical_label()) sage: fano1 == fano2 True """ if self._canonical_label is None: from sage.graphs.graph import Graph g = Graph() n = self.num_points() g.add_edges((i+n,x) for i,b in enumerate(self._blocks) for x in b) canonical_label = g.canonical_label([list(range(n)),list(range(n,n+self.num_blocks()))],certificate=True)[1] canonical_label = [canonical_label[x] for x in range(n)] self._canonical_label = canonical_label return dict(zip(self._points,self._canonical_label)) def is_isomorphic(self, other, certificate=False): r""" Return whether the two incidence structures are isomorphic. INPUT: - ``other`` -- an incidence structure. - ``certificate`` (boolean) -- whether to return an isomorphism from ``self`` to ``other`` instead of a boolean answer. EXAMPLES:: sage: fano1 = designs.balanced_incomplete_block_design(7,3) sage: fano2 = designs.projective_plane(2) sage: fano1.is_isomorphic(fano2) True sage: fano1.is_isomorphic(fano2,certificate=True) {0: 0, 1: 1, 2: 2, 3: 6, 4: 4, 5: 3, 6: 5} TESTS:: sage: IS = IncidenceStructure([["A",5,pi],["A",5,"Wouhou"],["A","Wouhou",(9,9)],[pi,12]]) sage: IS2 = IS.copy() sage: IS2.relabel(IS2.canonical_label()) sage: IS.is_isomorphic(IS2) True sage: canon = IS.is_isomorphic(IS2,certificate=True) sage: IS.relabel(canon) sage: IS==IS2 True sage: IS2 = IncidenceStructure([[1,2]]) sage: IS2.is_isomorphic(IS) False sage: IS2.is_isomorphic(IS,certificate=True) {} Checking whether two :class:`IncidenceStructure` are isomorphic incidentally computes their canonical label (if necessary). Thus, subsequent calls to :meth:`is_isomorphic` will be faster:: sage: IS1 = designs.projective_plane(3) sage: IS2 = IS1.relabel(Permutations(IS1.ground_set()).random_element(),inplace=False) sage: IS2 = IncidenceStructure(IS2.blocks()) sage: IS1._canonical_label is None and IS2._canonical_label is None True sage: IS1.is_isomorphic(IS2) True sage: IS1._canonical_label is None or IS2._canonical_label is None False """ if (self.num_points() != other.num_points() or self.num_blocks() != other.num_blocks() or sorted(self.block_sizes()) != sorted(other.block_sizes())): return {} if certificate else False A_canon = self.canonical_label() B_canon = other.canonical_label() A = self.relabel(A_canon,inplace=False) B = other.relabel(B_canon,inplace=False) if A == B: if certificate: B_canon_rev = {y:x for x,y in six.iteritems(B_canon)} return {x:B_canon_rev[xint] for x,xint in six.iteritems(A_canon)} else: return True else: return {} if certificate else False def isomorphic_substructures_iterator(self, H2,induced=False): r""" Iterates over all copies of ``H2`` contained in ``self``. A hypergraph `H_1` contains an isomorphic copy of a hypergraph `H_2` if there exists an injection `f:V(H_2)\mapsto V(H_1)` such that for any set `S_2\in E(H_2)` the set `S_1=f(S2)` belongs to `E(H_1)`. It is an *induced* copy if no other set of `E(H_1)` is contained in `f(V(H_2))`, i.e. `|E(H_2)|=\{S:S\in E(H_1)\text{ and }f(V(H_2))\}`. This function lists all such injections. In particular, the number of copies of `H` in itself is equal to *the size of its automorphism group*. See :mod:`~sage.combinat.designs.subhypergraph_search` for more information. INPUT: - ``H2`` an :class:`IncidenceStructure` object. - ``induced`` (boolean) -- whether to require the copies to be induced. Set to ``False`` by default. EXAMPLES: How many distinct `C_5` in Petersen's graph ? :: sage: P = graphs.PetersenGraph() sage: C = graphs.CycleGraph(5) sage: IP = IncidenceStructure(P.edges(labels=False)) sage: IC = IncidenceStructure(C.edges(labels=False)) sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC)) 120 As the automorphism group of `C_5` has size 10, the number of distinct unlabelled copies is 12. Let us check that all functions returned correspond to an actual `C_5` subgraph:: sage: for f in IP.isomorphic_substructures_iterator(IC): ....: assert all(P.has_edge(f[x],f[y]) for x,y in C.edges(labels=False)) The number of induced copies, in this case, is the same:: sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 120 They begin to differ if we make one vertex universal:: sage: P.add_edges([(0,x) for x in P], loops=False) sage: IP = IncidenceStructure(P.edges(labels=False)) sage: IC = IncidenceStructure(C.edges(labels=False)) sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC)) 420 sage: sum(1 for _ in IP.isomorphic_substructures_iterator(IC,induced=True)) 60 The number of copies of `H` in itself is the size of its automorphism group:: sage: H = designs.projective_plane(3) sage: sum(1 for _ in H.isomorphic_substructures_iterator(H)) 5616 sage: H.automorphism_group().cardinality() 5616 """ from sage.combinat.designs.subhypergraph_search import SubHypergraphSearch return SubHypergraphSearch(self,H2,induced=induced) def copy(self): r""" Return a copy of the incidence structure. EXAMPLES:: sage: IS = IncidenceStructure([[1,2,3,"e"]],name="Test") sage: IS Incidence structure with 4 points and 1 blocks sage: copy(IS) Incidence structure with 4 points and 1 blocks sage: [1, 2, 3, 'e'] in copy(IS) True sage: copy(IS)._name 'Test' """ IS = IncidenceStructure(self._blocks, name=self._name, check=False) IS.relabel(dict(zip(range(self.num_points()),self._points))) IS._canonical_label = None if self._canonical_label is None else self._canonical_label[:] return IS __copy__ = copy def induced_substructure(self, points): r""" Return the substructure induced by a set of points. The substructure induced in `\mathcal H` by a set `X\subseteq V(\mathcal H)` of points is the incidence structure `\mathcal H_X` defined on `X` whose sets are all `S\in \mathcal H` such that `S\subseteq X`. INPUT: - ``points`` -- a set of points. .. NOTE:: This method goes over all sets of ``self`` before building a new :class:`IncidenceStructure` (which involves some relabelling and sorting). It probably should not be called in a performance-critical code. EXAMPLES: A Fano plane with one point removed:: sage: F = designs.steiner_triple_system(7) sage: F.induced_substructure([0..5]) Incidence structure with 6 points and 4 blocks TESTS:: sage: F.induced_substructure([0..50]) Traceback (most recent call last): ... ValueError: 7 is not a point of the incidence structure sage: F.relabel(dict(enumerate("abcdefg"))) sage: F.induced_substructure("abc") Incidence structure with 3 points and ... sage: F.induced_substructure("Y") Traceback (most recent call last): ... ValueError: 'Y' is not a point of the incidence structure """ # Checking the input if self._point_to_index is None: n = self.num_points() for x in points: x = int(x) if x < 0 or x >= n: raise ValueError("{} is not a point of the incidence structure".format(x)) int_points = points else: try: int_points = [self._point_to_index[x] for x in points] except KeyError as bad_pt: raise ValueError("{} is not a point of the incidence structure".format(bad_pt)) int_points = set(int_points) return IncidenceStructure(points, [[self._points[x] for x in S] for S in self._blocks if int_points.issuperset(S)]) def trace(self, points, min_size=1, multiset=True): r""" Return the trace of a set of points. Given an hypergraph `\mathcal H`, the *trace* of a set `X` of points in `\mathcal H` is the hypergraph whose blocks are all non-empty `S \cap X` where `S \in \mathcal H`. INPUT: - ``points`` -- a set of points. - ``min_size`` (integer; default 1) -- minimum size of the sets to keep. By default all empty sets are discarded, i.e. ``min_size=1``. - ``multiset`` (boolean; default ``True``) -- whether to keep multiple copies of the same set. .. NOTE:: This method goes over all sets of ``self`` before building a new :class:`IncidenceStructure` (which involves some relabelling and sorting). It probably should not be called in a performance-critical code. EXAMPLES: A Baer subplane of order 2 (i.e. a Fano plane) in a projective plane of order 4:: sage: P4 = designs.projective_plane(4) sage: F = designs.projective_plane(2) sage: for x in Subsets(P4.ground_set(),7): ....: if P4.trace(x,min_size=2).is_isomorphic(F): ....: break sage: subplane = P4.trace(x,min_size=2); subplane Incidence structure with 7 points and 7 blocks sage: subplane.is_isomorphic(F) True TESTS:: sage: F.trace([0..50]) Traceback (most recent call last): ... ValueError: 7 is not a point of the incidence structure sage: F.relabel(dict(enumerate("abcdefg"))) sage: F.trace("abc") Incidence structure with 3 points and ... sage: F.trace("Y") Traceback (most recent call last): ... ValueError: 'Y' is not a point of the incidence structure """ # Checking the input if self._point_to_index is None: n = self.num_points() int_points = frozenset(int(x) for x in points) for x in int_points: if x < 0 or x >= n: raise ValueError("{} is not a point of the incidence structure".format(x)) else: try: int_points = frozenset(self._point_to_index[x] for x in points) except KeyError as bad_pt: raise ValueError("{} is not a point of the incidence structure".format(bad_pt)) blocks = [int_points.intersection(S) for S in self._blocks] if min_size: blocks = [S for S in blocks if len(S)>=min_size] if not multiset: blocks = set(blocks) IS = IncidenceStructure(blocks) IS.relabel({i:self._points[i] for i in int_points}) return IS def ground_set(self): r""" Return the ground set (i.e the list of points). EXAMPLES:: sage: IncidenceStructure(3, [[0,1],[0,2]]).ground_set() [0, 1, 2] """ return self._points[:] def num_points(self): r""" Return the size of the ground set. EXAMPLES:: sage: designs.DesarguesianProjectivePlaneDesign(2).num_points() 7 sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) sage: B.num_points() 4 """ return len(self._points) def num_blocks(self): r""" Return the number of blocks. EXAMPLES:: sage: designs.DesarguesianProjectivePlaneDesign(2).num_blocks() 7 sage: B = IncidenceStructure(4, [[0,1],[0,2],[0,3],[1,2], [1,2,3]]) sage: B.num_blocks() 5 """ return len(self._blocks) def blocks(self): """ Return the list of blocks. EXAMPLES:: sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.blocks() [[0, 1, 2], [0, 3, 4], [0, 5, 6], [1, 3, 5], [1, 4, 6], [2, 3, 6], [2, 4, 5]] """ if self._point_to_index is None: return [b[:] for b in self._blocks] else: return [[self._points[i] for i in b] for b in self._blocks] def block_sizes(self): r""" Return the set of block sizes. EXAMPLES:: sage: BD = IncidenceStructure(8, [[0,1,3],[1,4,5,6],[1,2],[5,6,7]]) sage: BD.block_sizes() [3, 2, 4, 3] sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.block_sizes() [3, 3, 3, 3, 3, 3, 3] """ return [len(_) for _ in self._blocks] def degree(self, p=None, subset=False): r""" Return the degree of a point ``p`` (or a set of points). The degree of a point (or set of points) is the number of blocks that contain it. INPUT: - ``p`` -- a point (or a set of points) of the incidence structure. - ``subset`` (boolean) -- whether to interpret the argument as a set of point (``subset=True``) or as a point (``subset=False``, default). EXAMPLES:: sage: designs.steiner_triple_system(9).degree(3) 4 sage: designs.steiner_triple_system(9).degree({1,2},subset=True) 1 TESTS:: sage: designs.steiner_triple_system(9).degree() doctest:...: DeprecationWarning: Please use degrees() instead of degree(None) See http://trac.sagemath.org/17108 for details. {0: 4, 1: 4, 2: 4, 3: 4, 4: 4, 5: 4, 6: 4, 7: 4, 8: 4} sage: designs.steiner_triple_system(9).degree(subset=True) Traceback (most recent call last): ... ValueError: subset must be False when p is None """ if p is None: if subset is True: raise ValueError("subset must be False when p is None") from sage.misc.superseded import deprecation deprecation(17108, "Please use degrees() instead of degree(None)") return self.degrees() # degree of a point if not subset: if self._point_to_index: p = self._point_to_index.get(p,-1) else: p = p if (p>=0 and p<len(self._points)) else -1 return sum((p in b) for b in self._blocks) if p != -1 else 0 # degree of a set else: if self._point_to_index: p = set(self._point_to_index.get(x,-1) for x in p) else: p = set(p) if all(x>=0 and x<len(self._points) for x in p) else set([-1]) return sum(p.issubset(b) for b in self._blocks) if -1 not in p else 0 def degrees(self, size=None): r""" Return the degree of all sets of given size, or the degree of all points. The degree of a point (or set of point) is the number of blocks that contain it. INPUT: - ``size`` (integer) -- return the degree of all subsets of points of cardinality ``size``. When ``size=None``, the function outputs the degree of all points. .. NOTE:: When ``size=None`` the output is indexed by the points. When ``size=1`` it is indexed by tuples of size 1. This is the same information, stored slightly differently. OUTPUT: A dictionary whose values are degrees and keys are either: - the points of the incidence structure if ``size=None`` (default) - the subsets of size ``size`` of the points stored as tuples EXAMPLES:: sage: IncidenceStructure([[1,2,3],[1,4]]).degrees(2) {(1, 2): 1, (1, 3): 1, (1, 4): 1, (2, 3): 1, (2, 4): 0, (3, 4): 0} In a Steiner triple system, all pairs have degree 1:: sage: S13 = designs.steiner_triple_system(13) sage: all(v == 1 for v in S13.degrees(2).values()) True """ if size is None: d = [0]*self.num_points() for b in self._blocks: for x in b: d[x] += 1 return {p: d[i] for i, p in enumerate(self._points)} else: from itertools import combinations d = {t:0 for t in combinations(range(self.num_points()),size)} for b in self._blocks: for s in combinations(b,size): d[s]+=1 if self._point_to_index: return {tuple([self._points[x] for x in s]):v for s,v in six.iteritems(d)} else: return d def rank(self): r""" Return the rank of the hypergraph (the maximum size of a block). EXAMPLES:: sage: h = Hypergraph(8, [[0,1,3],[1,4,5,6],[1,2]]) sage: h.rank() 4 """ return max(len(b) for b in self._blocks) def is_regular(self,r=None): r""" Test whether the incidence structure is `r`-regular. An incidence structure is said to be `r`-regular if all its points are incident with exactly `r` blocks. INPUT: - ``r`` (integer) OUTPUT: If ``r`` is defined, a boolean is returned. If ``r`` is set to ``None`` (default), the method returns either ``False`` or the integer ``r`` such that the incidence structure is `r`-regular. .. WARNING:: In case of `0`-regular incidence structure, beware that ``if not H.is_regular()`` is a satisfied condition. EXAMPLES:: sage: designs.balanced_incomplete_block_design(7,3).is_regular() 3 sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=3) True sage: designs.balanced_incomplete_block_design(7,3).is_regular(r=4) False TESTS:: sage: IncidenceStructure([]).is_regular() Traceback (most recent call last): ... ValueError: This incidence structure has no points. """ if self.num_points() == 0: raise ValueError("This incidence structure has no points.") count = [0]*self.num_points() for b in self._blocks: for x in b: count[x] += 1 count = set(count) if len(count) != 1: return False elif r is None: return count.pop() else: return count.pop() == r def is_uniform(self,k=None): r""" Test whether the incidence structure is `k`-uniform An incidence structure is said to be `k`-uniform if all its blocks have size `k`. INPUT: - ``k`` (integer) OUTPUT: If ``k`` is defined, a boolean is returned. If ``k`` is set to ``None`` (default), the method returns either ``False`` or the integer ``k`` such that the incidence structure is `k`-uniform. .. WARNING:: In case of `0`-uniform incidence structure, beware that ``if not H.is_uniform()`` is a satisfied condition. EXAMPLES:: sage: designs.balanced_incomplete_block_design(7,3).is_uniform() 3 sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=3) True sage: designs.balanced_incomplete_block_design(7,3).is_uniform(k=4) False TESTS:: sage: IncidenceStructure([]).is_uniform() Traceback (most recent call last): ... ValueError: This incidence structure has no blocks. """ if self.num_blocks() == 0: raise ValueError("This incidence structure has no blocks.") sizes = set(self.block_sizes()) if len(sizes) != 1: return False elif k is None: return sizes.pop() else: return sizes.pop() == k def is_connected(self): r""" Test whether the design is connected. EXAMPLES:: sage: IncidenceStructure(3, [[0,1],[0,2]]).is_connected() True sage: IncidenceStructure(4, [[0,1],[2,3]]).is_connected() False """ from sage.sets.disjoint_set import DisjointSet D = DisjointSet(self.num_points()) for B in self._blocks: x = B[0] for i in range(1,len(B)): D.union(x,B[i]) return D.number_of_subsets() == 1 def is_simple(self): r""" Test whether this design is simple (i.e. no repeated block). EXAMPLES:: sage: IncidenceStructure(3, [[0,1],[1,2],[0,2]]).is_simple() True sage: IncidenceStructure(3, [[0],[0]]).is_simple() False sage: V = [(0,'a'),(0,'b'),(1,'a'),(1,'b')] sage: B = [[V[0],V[1]], [V[1],V[2]]] sage: I = IncidenceStructure(V, B) sage: I.is_simple() True sage: I2 = IncidenceStructure(V, B*2) sage: I2.is_simple() False """ B = self._blocks return all(B[i] != B[i+1] for i in range(len(B)-1)) def _gap_(self): """ Return the GAP string describing the design. EXAMPLES:: sage: BD = IncidenceStructure(7,[[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD._gap_() 'BlockDesign(7,[[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 4, 6], [2, 5, 7], [3, 4, 7], [3, 5, 6]])' """ B = self.blocks() v = self.num_points() gB = [[x+1 for x in b] for b in self._blocks] return "BlockDesign("+str(v)+","+str(gB)+")" def intersection_graph(self,sizes=None): r""" Return the intersection graph of the incidence structure. The vertices of this graph are the :meth:`blocks` of the incidence structure. Two of them are adjacent if the size of their intersection belongs to the set ``sizes``. INPUT: - ``sizes`` -- a list/set of integers. For convenience, setting ``sizes`` to ``5`` has the same effect as ``sizes=[5]``. When set to ``None`` (default), behaves as ``sizes=PositiveIntegers()``. EXAMPLES: The intersection graph of a :func:`~sage.combinat.designs.bibd.balanced_incomplete_block_design` is a :meth:`strongly regular graph <Graph.is_strongly_regular>` (when it is not trivial):: sage: BIBD = designs.balanced_incomplete_block_design(19,3) sage: G = BIBD.intersection_graph(1) sage: G.is_strongly_regular(parameters=True) (57, 24, 11, 9) """ from sage.sets.positive_integers import PositiveIntegers from sage.graphs.graph import Graph from sage.sets.set import Set if sizes is None: sizes = PositiveIntegers() elif sizes in PositiveIntegers(): sizes = (sizes,) V = [Set(v) for v in self] return Graph([V, lambda x,y: len(x & y) in sizes], loops=False) def incidence_matrix(self): r""" Return the incidence matrix `A` of the design. A is a `(v \times b)` matrix defined by: ``A[i,j] = 1`` if ``i`` is in block ``B_j`` and 0 otherwise. EXAMPLES:: sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.block_sizes() [3, 3, 3, 3, 3, 3, 3] sage: BD.incidence_matrix() [1 1 1 0 0 0 0] [1 0 0 1 1 0 0] [1 0 0 0 0 1 1] [0 1 0 1 0 1 0] [0 1 0 0 1 0 1] [0 0 1 1 0 0 1] [0 0 1 0 1 1 0] sage: I = IncidenceStructure('abc', ('ab','abc','ac','c')) sage: I.incidence_matrix() [1 1 1 0] [1 1 0 0] [0 1 1 1] """ from sage.matrix.constructor import Matrix from sage.rings.all import ZZ A = Matrix(ZZ, self.num_points(), self.num_blocks(), sparse=True) for j, b in enumerate(self._blocks): for i in b: A[i, j] = 1 return A def incidence_graph(self,labels=False): r""" Return the incidence graph of the incidence structure A point and a block are adjacent in this graph whenever they are incident. INPUT: - ``labels`` (boolean) -- whether to return a graph whose vertices are integers, or labelled elements. - ``labels is False`` (default) -- in this case the first vertices of the graphs are the elements of :meth:`ground_set`, and appear in the same order. Similarly, the following vertices represent the elements of :meth:`blocks`, and appear in the same order. - ``labels is True``, the points keep their original labels, and the blocks are :func:`Set <Set>` objects. Note that the labelled incidence graph can be incorrect when blocks are repeated, and on some (rare) occasions when the elements of :meth:`ground_set` mix :func:`Set` and non-:func:`Set <Set>` objects. EXAMPLES:: sage: BD = IncidenceStructure(7, [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]]) sage: BD.incidence_graph() Bipartite graph on 14 vertices sage: A = BD.incidence_matrix() sage: Graph(block_matrix([[A*0,A],[A.transpose(),A*0]])) == BD.incidence_graph() True TESTS: With ``labels = True``:: sage: BD.incidence_graph(labels=True).has_edge(0,Set([0,1,2])) True """ if labels: from sage.graphs.graph import Graph from sage.sets.set import Set G = Graph() G.add_vertices(self.ground_set()) for b in self.blocks(): b = Set(b) G.add_vertex(b) G.add_edges((b,x) for x in b) return G else: from sage.graphs.bipartite_graph import BipartiteGraph A = self.incidence_matrix() return BipartiteGraph(A) def complement(self,uniform=False): r""" Return the complement of the incidence structure. Two different definitions of "complement" are made available, according to the value of ``uniform``. INPUT: - ``uniform`` (boolean) -- - if set to ``False`` (default), returns the incidence structure whose blocks are the complements of all blocks of the incidence structure. - If set to ``True`` and the incidence structure is `k`-uniform, returns the incidence structure whose blocks are all `k`-sets of the ground set that do not appear in ``self``. EXAMPLES: The complement of a :class:`~sage.combinat.designs.bibd.BalancedIncompleteBlockDesign` is also a `2`-design:: sage: bibd = designs.balanced_incomplete_block_design(13,4) sage: bibd.is_t_design(return_parameters=True) (True, (2, 13, 4, 1)) sage: bibd.complement().is_t_design(return_parameters=True) (True, (2, 13, 9, 6)) The "uniform" complement of a graph is a graph:: sage: g = graphs.PetersenGraph() sage: G = IncidenceStructure(g.edges(labels=False)) sage: H = G.complement(uniform=True) sage: h = Graph(H.blocks()) sage: g == h False sage: g == h.complement() True TESTS:: sage: bibd.relabel({i:str(i) for i in bibd.ground_set()}) sage: bibd.complement().ground_set() ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12'] sage: I = IncidenceStructure('abc', ['ab','ac','bc']) sage: I.is_t_design(return_parameters=True) (True, (2, 3, 2, 1)) """ if uniform: k = self.is_uniform() if k is False: raise ValueError("The incidence structure is not uniform.") blocks = [] num_blocks = self.num_blocks() i = 0 from itertools import combinations for B in combinations(range(self.num_points()),k): B = list(B) while i<num_blocks and self._blocks[i] < B: i += 1 if i<num_blocks and self._blocks[i] == B: i += 1 continue blocks.append(B) I = IncidenceStructure(blocks,copy=False) else: X = set(range(self.num_points())) I = IncidenceStructure([X.difference(B) for B in self._blocks]) I.relabel({i:self._points[i] for i in range(self.num_points())}) return I def relabel(self, perm=None, inplace=True): r""" Relabel the ground set INPUT: - ``perm`` -- can be one of - a dictionary -- then each point ``p`` (which should be a key of ``d``) is relabeled to ``d[p]`` - a list or a tuple of length ``n`` -- the first point returned by :meth:`ground_set` is relabeled to ``l[0]``, the second to ``l[1]``, ... - ``None`` -- the incidence structure is relabeled to be on `\{0,1,...,n-1\}` in the ordering given by :meth:`ground_set`. - ``inplace`` -- If ``True`` then return a relabeled graph and does not touch ``self`` (default is ``False``). EXAMPLES:: sage: TD=designs.transversal_design(5,5) sage: TD.relabel({i:chr(97+i) for i in range(25)}) sage: TD.ground_set() ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y'] sage: TD.blocks()[:3] [['a', 'f', 'k', 'p', 'u'], ['a', 'g', 'm', 's', 'y'], ['a', 'h', 'o', 'q', 'x']] Relabel to integer points:: sage: TD.relabel() sage: TD.blocks()[:3] [[0, 5, 10, 15, 20], [0, 6, 12, 18, 24], [0, 7, 14, 16, 23]] TESTS: Check that the relabel is consistent on a fixed incidence structure:: sage: I = IncidenceStructure([0,1,2,3,4], ....: [[0,1,3],[0,2,4],[2,3,4],[0,1]]) sage: I.relabel() sage: from itertools import permutations sage: for p in permutations([0,1,2,3,4]): ....: J = I.relabel(p,inplace=False) ....: if I == J: print(p) (0, 1, 2, 3, 4) (0, 1, 4, 3, 2) And one can also verify that we have exactly two automorphisms:: sage: I.automorphism_group() Permutation Group with generators [(2,4)] """ if not inplace: from copy import copy G = copy(self) G.relabel(perm=perm, inplace=True) return G if perm is None: self._points = list(range(self.num_points())) self._point_to_index = None return if isinstance(perm, (list,tuple)): perm = dict(zip(self._points, perm)) if not isinstance(perm, dict): raise ValueError("perm argument must be None, a list or a dictionary") if len(set(perm.values())) != len(perm): raise ValueError("Two points are getting relabelled with the same name !") self._points = [perm[x] for x in self._points] if self._points == list(range(self.num_points())): self._point_to_index = None else: self._point_to_index = {v:i for i,v in enumerate(self._points)} def __hash__(self): r""" Not Implemented This object is mutable because of .relabel() EXAMPLES:: sage: TD=designs.transversal_design(5,5) sage: hash(TD) Traceback (most recent call last): ... RuntimeError: This object is mutable ! """ raise RuntimeError("This object is mutable !") ##################### # real computations # ##################### def packing(self, solver=None, verbose=0): r""" Return a maximum packing A maximum packing in a hypergraph is collection of disjoint sets/blocks of maximal cardinality. This problem is NP-complete in general, and in particular on 3-uniform hypergraphs. It is solved here with an Integer Linear Program. For more information, see the :wikipedia:`Packing_in_a_hypergraph`. INPUT: - ``solver`` -- (default: ``None``) Specify a Linear Program (LP) solver to be used. If set to ``None``, the default one is used. For more information on LP solvers and which default solver is used, see the method :meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class :class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`. - ``verbose`` -- integer (default: ``0``). Sets the level of verbosity. Set to 0 by default, which means quiet. EXAMPLES:: sage: P = IncidenceStructure([[1,2],[3,4],[2,3]]).packing() sage: sorted(sorted(b) for b in P) [[1, 2], [3, 4]] sage: len(designs.steiner_triple_system(9).packing()) 3 """ from sage.numerical.mip import MixedIntegerLinearProgram # List of blocks containing a given point x d = [[] for x in self._points] for i, B in enumerate(self._blocks): for x in B: d[x].append(i) p = MixedIntegerLinearProgram(solver=solver) b = p.new_variable(binary=True) for x, L in enumerate(d): # Set of disjoint blocks p.add_constraint(p.sum([b[i] for i in L]) <= 1) # Maximum number of blocks p.set_objective(p.sum([b[i] for i in range(self.num_blocks())])) p.solve(log=verbose) return [[self._points[x] for x in self._blocks[i]] for i, v in six.iteritems(p.get_values(b)) if v] def is_t_design(self, t=None, v=None, k=None, l=None, return_parameters=False): r""" Test whether ``self`` is a `t-(v,k,l)` design. A `t-(v,k,\lambda)` (sometimes called `t`-design for short) is a block design in which: - the underlying set has cardinality `v` - the blocks have size `k` - each `t`-subset of points is covered by `\lambda` blocks INPUT: - ``t,v,k,l`` (integers) -- their value is set to ``None`` by default. The function tests whether the design is a ``t-(v,k,l)`` design using the provided values and guesses the others. Note that `l`` cannot be specified if ``t`` is not. - ``return_parameters`` (boolean)-- whether to return the parameters of the `t`-design. If set to ``True``, the function returns a pair ``(boolean_answer,(t,v,k,l))``. EXAMPLES:: sage: fano_blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]] sage: BD = IncidenceStructure(7, fano_blocks) sage: BD.is_t_design() True sage: BD.is_t_design(return_parameters=True) (True, (2, 7, 3, 1)) sage: BD.is_t_design(2, 7, 3, 1) True sage: BD.is_t_design(1, 7, 3, 3) True sage: BD.is_t_design(0, 7, 3, 7) True sage: BD.is_t_design(0,6,3,7) or BD.is_t_design(0,7,4,7) or BD.is_t_design(0,7,3,8) False sage: BD = designs.AffineGeometryDesign(3, 1, GF(2)) sage: BD.is_t_design(1) True sage: BD.is_t_design(2) True Steiner triple and quadruple systems are other names for `2-(v,3,1)` and `3-(v,4,1)` designs:: sage: S3_9 = designs.steiner_triple_system(9) sage: S3_9.is_t_design(2,9,3,1) True sage: blocks = designs.steiner_quadruple_system(8) sage: S4_8 = IncidenceStructure(8, blocks) sage: S4_8.is_t_design(3,8,4,1) True sage: blocks = designs.steiner_quadruple_system(14) sage: S4_14 = IncidenceStructure(14, blocks) sage: S4_14.is_t_design(3,14,4,1) True Some examples of Witt designs that need the gap database:: sage: BD = designs.WittDesign(9) # optional - gap_packages sage: BD.is_t_design(2,9,3,1) # optional - gap_packages True sage: W12 = designs.WittDesign(12) # optional - gap_packages sage: W12.is_t_design(5,12,6,1) # optional - gap_packages True sage: W12.is_t_design(4) # optional - gap_packages True Further examples:: sage: D = IncidenceStructure(4,[[],[]]) sage: D.is_t_design(return_parameters=True) (True, (0, 4, 0, 2)) sage: D = IncidenceStructure(4, [[0,1],[0,2],[0,3]]) sage: D.is_t_design(return_parameters=True) (True, (0, 4, 2, 3)) sage: D = IncidenceStructure(4, [[0],[1],[2],[3]]) sage: D.is_t_design(return_parameters=True) (True, (1, 4, 1, 1)) sage: D = IncidenceStructure(4,[[0,1],[2,3]]) sage: D.is_t_design(return_parameters=True) (True, (1, 4, 2, 1)) sage: D = IncidenceStructure(4, [list(range(4))]) sage: D.is_t_design(return_parameters=True) (True, (4, 4, 4, 1)) TESTS:: sage: blocks = designs.steiner_quadruple_system(8) sage: S4_8 = IncidenceStructure(8, blocks) sage: R = list(range(15)) sage: [(v,k,l) for v in R for k in R for l in R if S4_8.is_t_design(3,v,k,l)] [(8, 4, 1)] sage: [(v,k,l) for v in R for k in R for l in R if S4_8.is_t_design(2,v,k,l)] [(8, 4, 3)] sage: [(v,k,l) for v in R for k in R for l in R if S4_8.is_t_design(1,v,k,l)] [(8, 4, 7)] sage: [(v,k,l) for v in R for k in R for l in R if S4_8.is_t_design(0,v,k,l)] [(8, 4, 14)] sage: A = designs.AffineGeometryDesign(3, 1, GF(2)) sage: A.is_t_design(return_parameters=True) (True, (2, 8, 2, 1)) sage: A = designs.AffineGeometryDesign(4, 2, GF(2)) sage: A.is_t_design(return_parameters=True) (True, (3, 16, 4, 1)) sage: I = IncidenceStructure(2, []) sage: I.is_t_design(return_parameters=True) (True, (0, 2, 0, 0)) sage: I = IncidenceStructure(2, [[0],[0,1]]) sage: I.is_t_design(return_parameters=True) (False, (0, 0, 0, 0)) """ from sage.arith.all import binomial # Missing parameters ? if v is None: v = self.num_points() if k is None: k = len(self._blocks[0]) if self._blocks else 0 if l is not None and t is None: raise ValueError("t must be set when l=None") b = self.num_blocks() # Trivial wrong answers if (any(len(block) != k for block in self._blocks) or # non k-uniform v != self.num_points()): return (False, (0,0,0,0)) if return_parameters else False # Trivial case t>k if (t is not None and t>k): if (l is None or l == 0): return (True, (t,v,k,0)) if return_parameters else True else: return (False, (0,0,0,0)) if return_parameters else False # Trivial case k=0 if k==0: if (l is None or l == 0): return (True, (0,v,k,b)) if return_parameters else True else: return (False, (0,0,0,0)) if return_parameters else False # Trivial case k=v (includes v=0) if k == v: if t is None: t = v if l is None or b == l: return (True, (t,v,k,b)) if return_parameters else True else: return (True, (0,0,0,0)) if return_parameters else False # Handbook of combinatorial design theorem II.4.8: # # a t-(v,k,l) is also a t'-(v,k,l') # for t' < t and l' = l* binomial(v-t',t-t') / binomial(k-t',t-t') # # We look for the largest t such that self is a t-design from itertools import combinations for tt in (range(1,k+1) if t is None else [t]): # is lambda an integer? if (b*binomial(k,tt)) % binomial(v,tt) != 0: tt -= 1 break s = {} for block in self._blocks: for i in combinations(block,tt): s[i] = s.get(i,0) + 1 if len(set(s.values())) != 1: tt -= 1 break ll = b*binomial(k,tt) // binomial(v,tt) if ((t is not None and t!=tt) or (l is not None and l!=ll)): return (False, (0,0,0,0)) if return_parameters else False else: if tt == 0: ll = b return (True, (tt,v,k,ll)) if return_parameters else True def is_generalized_quadrangle(self, verbose=False, parameters=False): r""" Test if the incidence structure is a generalized quadrangle. An incidence structure is a generalized quadrangle iff (see [BH12]_, section 9.6): - two blocks intersect on at most one point. - For every point `p` not in a block `B`, there is a unique block `B'` intersecting both `\{p\}` and `B` It is a *regular* generalized quadrangle if furthermore: - it is `s+1`-:meth:`uniform <is_uniform>` for some positive integer `s`. - it is `t+1`-:meth:`regular <is_regular>` for some positive integer `t`. For more information, see the :wikipedia:`Generalized_quadrangle`. .. NOTE:: Some references (e.g. [PT09]_ or [GQwiki]_) only allow *regular* generalized quadrangles. To use such a definition, see the ``parameters`` optional argument described below, or the methods :meth:`is_regular` and :meth:`is_uniform`. INPUT: - ``verbose`` (boolean) -- whether to print an explanation when the instance is not a generalized quadrangle. - ``parameters`` (boolean; ``False``) -- if set to ``True``, the function returns a pair ``(s,t)`` instead of ``True`` answers. In this case, `s` and `t` are the integers defined above if they exist (each can be set to ``False`` otherwise). EXAMPLES:: sage: h = designs.CremonaRichmondConfiguration() sage: h.is_generalized_quadrangle() True This is actually a *regular* generalized quadrangle:: sage: h.is_generalized_quadrangle(parameters=True) (2, 2) TESTS:: sage: H = IncidenceStructure((2*graphs.CompleteGraph(3)).edges(labels=False)) sage: H.is_generalized_quadrangle(verbose=True) Some point is at distance >3 from some block. False sage: G = graphs.CycleGraph(5) sage: B = list(G.subgraph_search_iterator(graphs.PathGraph(3))) sage: H = IncidenceStructure(B) sage: H.is_generalized_quadrangle(verbose=True) Two blocks intersect on >1 points. False sage: hypergraphs.CompleteUniform(4,2).is_generalized_quadrangle(verbose=1) Some point has two projections on some line. False """ # The distance between a point and a line in the incidence graph is odd # and must be <= 3. Thus, the diameter is at most 4 g = self.incidence_graph() if g.diameter() > 4: if verbose: print("Some point is at distance >3 from some block.") return False # There is a unique projection of a point on a line. Thus, the girth of # g is at least 7 girth = g.girth() if girth == 4: if verbose: print("Two blocks intersect on >1 points.") return False elif girth == 6: if verbose: print("Some point has two projections on some line.") return False if parameters: s = self.is_uniform() t = self.is_regular() s = s-1 if (s is not False and s>=2) else False t = t-1 if (t is not False and t>=2) else False return (s,t) else: return True def dual(self, algorithm=None): """ Return the dual of the incidence structure. INPUT: - ``algorithm`` -- whether to use Sage's implementation (``algorithm=None``, default) or use GAP's (``algorithm="gap"``). .. NOTE:: The ``algorithm="gap"`` option requires GAP's Design package (included in the gap_packages Sage spkg). EXAMPLES: The dual of a projective plane is a projective plane:: sage: PP = designs.DesarguesianProjectivePlaneDesign(4) sage: PP.dual().is_t_design(return_parameters=True) (True, (2, 21, 5, 1)) TESTS:: sage: D = IncidenceStructure(4, [[0,2],[1,2,3],[2,3]]) sage: D Incidence structure with 4 points and 3 blocks sage: D.dual() Incidence structure with 3 points and 4 blocks sage: print(D.dual(algorithm="gap")) # optional - gap_packages Incidence structure with 3 points and 4 blocks sage: blocks = [[0,1,2],[0,3,4],[0,5,6],[1,3,5],[1,4,6],[2,3,6],[2,4,5]] sage: BD = IncidenceStructure(7, blocks, name="FanoPlane") sage: BD Incidence structure with 7 points and 7 blocks sage: print(BD.dual(algorithm="gap")) # optional - gap_packages Incidence structure with 7 points and 7 blocks sage: BD.dual() Incidence structure with 7 points and 7 blocks REFERENCE: - Soicher, Leonard, Design package manual, available at http://www.gap-system.org/Manuals/pkg/design/htm/CHAP003.htm """ if algorithm == "gap": from sage.interfaces.gap import gap gap.load_package("design") gD = self._gap_() gap.eval("DD:=DualBlockDesign("+gD+")") v = eval(gap.eval("DD.v")) gblcks = eval(gap.eval("DD.blocks")) gB = [] for b in gblcks: gB.append([x-1 for x in b]) return IncidenceStructure(list(range(v)), gB, name=None, check=False) else: return IncidenceStructure( incidence_matrix=self.incidence_matrix().transpose(), check=False) def automorphism_group(self): r""" Return the subgroup of the automorphism group of the incidence graph which respects the P B partition. It is (isomorphic to) the automorphism group of the block design, although the degrees differ. EXAMPLES:: sage: P = designs.DesarguesianProjectivePlaneDesign(2); P (7,3,1)-Balanced Incomplete Block Design sage: G = P.automorphism_group() sage: G.is_isomorphic(PGL(3,2)) True sage: G Permutation Group with generators [...] sage: G.cardinality() 168 A non self-dual example:: sage: IS = IncidenceStructure(list(range(4)), [[0,1,2,3],[1,2,3]]) sage: IS.automorphism_group().cardinality() 6 sage: IS.dual().automorphism_group().cardinality() 1 Examples with non-integer points:: sage: I = IncidenceStructure('abc', ('ab','ac','bc')) sage: I.automorphism_group() Permutation Group with generators [('b','c'), ('a','b')] sage: IncidenceStructure([[(1,2),(3,4)]]).automorphism_group() Permutation Group with generators [((1,2),(3,4))] """ from sage.graphs.graph import Graph from sage.groups.perm_gps.permgroup import PermutationGroup g = Graph() n = self.num_points() g.add_edges((i+n,x) for i,b in enumerate(self._blocks) for x in b) ag = g.automorphism_group(partition=[list(range(n)), list(range(n,n+self.num_blocks()))]) if self._point_to_index: gens = [[tuple([self._points[i] for i in cycle if (not cycle or cycle[0]<n)]) for cycle in g.cycle_tuples()] for g in ag.gens()] else: gens = [[tuple(cycle) for cycle in g.cycle_tuples() if (not cycle or cycle[0]<n)] for g in ag.gens()] return PermutationGroup(gens, domain=self._points) def is_resolvable(self, certificate=False, solver=None, verbose=0, check=True): r""" Test whether the hypergraph is resolvable A hypergraph is said to be resolvable if its sets can be partitionned into classes, each of which is a partition of the ground set. .. NOTE:: This problem is solved using an Integer Linear Program, and GLPK (the default LP solver) has been reported to be very slow on some instances. If you hit this wall, consider installing a more powerful LP solver (CPLEX, Gurobi, ...). INPUT: - ``certificate`` (boolean) -- whether to return the classes along with the binary answer (see examples below). - ``solver`` -- (default: ``None``) Specify a Linear Program (LP) solver to be used. If set to ``None``, the default one is used. For more information on LP solvers and which default solver is used, see the method :meth:`solve <sage.numerical.mip.MixedIntegerLinearProgram.solve>` of the class :class:`MixedIntegerLinearProgram <sage.numerical.mip.MixedIntegerLinearProgram>`. - ``verbose`` -- integer (default: ``0``). Sets the level of verbosity. Set to 0 by default, which means quiet. - ``check`` (boolean) -- whether to check that output is correct before returning it. As this is expected to be useless (but we are cautious guys), you may want to disable it whenever you want speed. Set to ``True`` by default. EXAMPLES: Some resolvable designs:: sage: TD = designs.transversal_design(2,2,resolvable=True) sage: TD.is_resolvable() True sage: AG = designs.AffineGeometryDesign(3,1,GF(2)) sage: AG.is_resolvable() True Their classes:: sage: b,cls = TD.is_resolvable(True) sage: b True sage: cls # random [[[0, 3], [1, 2]], [[1, 3], [0, 2]]] sage: b,cls = AG.is_resolvable(True) sage: b True sage: cls # random [[[6, 7], [4, 5], [0, 1], [2, 3]], [[5, 7], [0, 4], [3, 6], [1, 2]], [[0, 2], [4, 7], [1, 3], [5, 6]], [[3, 4], [0, 7], [1, 5], [2, 6]], [[3, 7], [1, 6], [0, 5], [2, 4]], [[0, 6], [2, 7], [1, 4], [3, 5]], [[4, 6], [0, 3], [2, 5], [1, 7]]] A non-resolvable design:: sage: Fano = designs.balanced_incomplete_block_design(7,3) sage: Fano.is_resolvable() False sage: Fano.is_resolvable(True) (False, []) TESTS:: sage: _,cls1 = AG.is_resolvable(certificate=True) sage: _,cls2 = AG.is_resolvable(certificate=True) sage: cls1 is cls2 False """ if self._classes is None: degrees = set(itervalues(self.degrees())) if len(degrees) != 1: self._classes = False else: from sage.numerical.mip import MixedIntegerLinearProgram from sage.numerical.mip import MIPSolverException n_classes = degrees.pop() p = MixedIntegerLinearProgram(solver=solver) b = p.new_variable(binary=True) domain = list(range(self.num_points())) # Lists of blocks containing i for every i dual = [[] for i in domain] for i,B in enumerate(self._blocks): for x in B: dual[x].append(i) # Each class is a partition for t in range(n_classes): for x in domain: p.add_constraint(p.sum(b[t,i] for i in dual[x]) == 1) # Each set appears exactly once for i in range(len(self._blocks)): p.add_constraint(p.sum(b[t,i] for t in range(n_classes)) == 1) try: p.solve(log=verbose) except MIPSolverException: self._classes = False else: # each class is stored as the list of indices of its blocks self._classes = [[] for _ in range(n_classes)] for (t,i),v in six.iteritems(p.get_values(b)): if v: self._classes[t].append(self._blocks[i]) if check and self._classes is not False: assert sorted(id(c) for cls in self._classes for c in cls) == sorted(id(b) for b in self._blocks), "some set does not appear exactly once" domain = list(range(self.num_points())) for i,c in enumerate(self._classes): assert sorted(sum(c,[])) == domain, "class {} is not a partition".format(i) if self._classes is False: return (False, []) if certificate else False if certificate: if self._point_to_index is None: classes = [[block[:] for block in classs] for classs in self._classes] else: classes = [[[self._points[i] for i in block] for block in classs] for classs in self._classes] return (True, classes) else: return True def coloring(self, k=None, solver=None, verbose=0): r""" Compute a (weak) `k`-coloring of the hypergraph A weak coloring of a hypergraph `\mathcal H` is an assignment of colors to its vertices such that no set is monochromatic. INPUT: - ``k`` (integer) -- compute a coloring with `k` colors if an integer is provided, otherwise returns an optimal coloring (i.e. with the minimum possible number of colors). - ``solver`` -- (default: ``None``) Specify a Linear Program (LP) solver to be used. If set to ``None``, the default one is used. For more information on LP solvers and which default solver is used, see the method :meth:`~sage.numerical.mip.MixedIntegerLinearProgram.solve` of the class :class:`~sage.numerical.mip.MixedIntegerLinearProgram`. - ``verbose`` -- non-negative integer (default: ``0``). Set the level of verbosity you want from the linear program solver. Since the problem is `NP`-complete, its solving may take some time depending on the graph. A value of 0 means that there will be no message printed by the solver. EXAMPLES: The Fano plane has chromatic number 3:: sage: len(designs.steiner_triple_system(7).coloring()) 3 One admissible 3-coloring:: sage: designs.steiner_triple_system(7).coloring() # not tested - architecture-dependent [[0, 2, 5, 1], [4, 3], [6]] The chromatic number of a graph is equal to the chromatic number of its 2-uniform corresponding hypergraph:: sage: g = graphs.PetersenGraph() sage: H = IncidenceStructure(g.edges(labels=False)) sage: len(g.coloring()) 3 sage: len(H.coloring()) 3 """ if k is None: for k in range(self.num_points()+1): try: return self.coloring(k) except ValueError: pass if k == 0: if self.num_points(): raise ValueError("Only empty hypergraphs are 0-chromatic") return [] elif any(len(x) == 1 for x in self._blocks): raise RuntimeError("No coloring can be defined " "when there is a set of size 1") elif k == 1: if any(x for x in self._blocks): raise ValueError("This hypergraph contains a set. " "It is not 1-chromatic") return [self.ground_set()] from sage.numerical.mip import MixedIntegerLinearProgram, MIPSolverException p = MixedIntegerLinearProgram(solver=solver) b = p.new_variable(binary=True) for x in range(self.num_points()): p.add_constraint(p.sum(b[x,i] for i in range(k)) == 1) for s in self._blocks: for i in range(k): p.add_constraint(p.sum(b[x,i] for x in s) <= len(s)-1) try: p.solve(log=verbose) except MIPSolverException: raise ValueError("This hypergraph is not {}-colorable".format(k)) col = [[] for i in range(k)] for (x,i),v in six.iteritems(p.get_values(b)): if v: col[i].append(self._points[x]) return col def edge_coloring(self): r""" Compute a proper edge-coloring. A proper edge-coloring is an assignment of colors to the sets of the incidence structure such that two sets with non-empty intersection receive different colors. The coloring returned minimizes the number of colors. OUTPUT: A partition of the sets into color classes. EXAMPLES:: sage: H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H Incidence structure with 6 points and 4 blocks sage: C = H.edge_coloring() sage: C # random [[[3, 4, 5]], [[2, 3, 4]], [[4, 5, 6], [1, 2, 3]]] sage: Set(map(Set,sum(C,[]))) == Set(map(Set,H.blocks())) True """ from sage.graphs.graph import Graph blocks = self.blocks() blocks_sets = [frozenset(_) for _ in blocks] g = Graph([list(range(self.num_blocks())), lambda x,y: len(blocks_sets[x]&blocks_sets[y])], loops = False) return [[blocks[i] for i in C] for C in g.coloring(algorithm="MILP")] def _spring_layout(self): r""" Return a spring layout for the points. The layout is computed by creating a graph `G` on the points *and* sets of the incidence structure. Each set is then made adjacent in `G` with all points it contains before a spring layout is computed for this graph. The position of the points in the graph gives the position of the points in the final drawing. .. NOTE:: This method also returns the position of the "fake" points, i.e. those representing the sets. EXAMPLES:: sage: H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H Incidence structure with 6 points and 4 blocks sage: L = H._spring_layout() sage: L # random {1: (0.238, -0.926), 2: (0.672, -0.518), 3: (0.449, -0.225), 4: (0.782, 0.225), 5: (0.558, 0.518), 6: (0.992, 0.926), {3, 4, 5}: (0.504, 0.173), {2, 3, 4}: (0.727, -0.173), {4, 5, 6}: (0.838, 0.617), {1, 2, 3}: (0.393, -0.617)} sage: all(v in L for v in H.ground_set()) True sage: all(v in L for v in map(Set,H.blocks())) True """ from sage.graphs.graph import Graph g = Graph() for s in map(Set, self.blocks()): for x in s: g.add_edge((0, s), (1, x)) _ = g.plot(iterations = 50000,save_pos=True) # The values are rounded as TikZ does not like accuracy. return {k[1]: (round(x, 3), round(y, 3)) for k, (x, y) in g.get_pos().items()} def _latex_(self): r""" Return a TikZ representation of the incidence structure EXAMPLES:: sage: H = Hypergraph([{1,2,3},{2,3,4},{3,4,5},{4,5,6}]); H Incidence structure with 6 points and 4 blocks sage: view(H) # not tested With sets of size 4:: sage: g = graphs.Grid2dGraph(5,5) sage: C4 = graphs.CycleGraph(4) sage: sets = Set(map(Set,list(g.subgraph_search_iterator(C4)))) sage: H = Hypergraph(sets) sage: view(H) # not tested """ from sage.functions.trig import arctan2 from sage.misc.misc import warn warn("\nThe hypergraph is drawn as a set of closed curves. The curve " "representing a set S go **THROUGH** the points contained " "in S.\n A point which is encircled by a curve but is not located " "on its boundary is **NOT** included in the corresponding set.\n" "\n" "The colors are picked for readability and have no other meaning.") latex.add_package_to_preamble_if_available("tikz") latex.add_to_mathjax_avoid_list("tikz") if not latex.has_file("tikz.sty"): raise RuntimeError("You must have TikZ installed in order " "to draw a hypergraph.") domain = self.ground_set() pos = self._spring_layout() tex = "\\begin{tikzpicture}[scale=3]\n" colors = ["black", "red", "green", "blue", "cyan", "magenta", "yellow","pink","brown"] colored_sets = [(s,i) for i,S in enumerate(self.edge_coloring()) for s in S] # Prints each set with its color for s,i in colored_sets: current_color = colors[i%len(colors)] if len(s) == 2: s = list(s) tex += ("\\draw[color="+str(current_color)+","+ "line width=.1cm,opacity = .6] "+ str(pos[s[0]])+" -- "+str(pos[s[1]])+";\n") continue tex += ("\\draw[color="+str(current_color)+"," "line width=.1cm,opacity = .6," "line cap=round," "line join=round]" "plot [smooth cycle,tension=1] coordinates {") # Reorders the vertices of s according to their angle with the # "center", i.e. the vertex representing the set s cx, cy = pos[Set(s)] s = [pos[_] for _ in s] s = sorted(s, key = lambda x_y: arctan2(x_y[0] - cx, x_y[1] - cy)) for x in s: tex += str(x)+" " tex += "};\n" # Prints each vertex for v in domain: tex += "\\draw node[fill,circle,scale=.5,label={90:$"+latex(v)+"$}] at "+str(pos[v])+" {};\n" tex += "\\end{tikzpicture}" return tex from sage.misc.rest_index_of_methods import gen_rest_table_index __doc__ = __doc__.format(METHODS_OF_IncidenceStructure=gen_rest_table_index(IncidenceStructure))
[ [ [ 1683, 1697 ] ], [ [ 1706, 1709 ], [ 17658, 17661 ], [ 17740, 17743 ], [ 32528, 32531 ], [ 50420, 50423 ], [ 70054, 70057 ], [ 74343, 74346 ] ], [ [ 1726, 1736 ], [ 68622, 68632 ] ], [ [ 1759, 1764 ], [ 7516, 7521 ], [ 7642, 7647 ], [ 7761, 7766 ], [ 7924, 7929 ], [ 11816, 11821 ], [ 14946, 14951 ], [ 14961, 14966 ], [ 15072, 15077 ], [ 21318, 21323 ], [ 32276, 32281 ], [ 36401, 36406 ], [ 37175, 37180 ], [ 44459, 44464 ], [ 44838, 44843 ], [ 44987, 44992 ], [ 47273, 47278 ], [ 47799, 47804 ], [ 50274, 50279 ], [ 56976, 56981 ], [ 63314, 63319 ], [ 65086, 65091 ], [ 65147, 65152 ], [ 69060, 69065 ], [ 69386, 69391 ], [ 69593, 69598 ], [ 69678, 69683 ], [ 70001, 70006 ], [ 70412, 70417 ], [ 72984, 72989 ], [ 73894, 73899 ], [ 73971, 73976 ], [ 74040, 74045 ], [ 74309, 74314 ], [ 75396, 75401 ] ], [ [ 1797, 1804 ], [ 7714, 7721 ], [ 7970, 7977 ] ], [ [ 1833, 1838 ], [ 78369, 78374 ], [ 78428, 78433 ], [ 78484, 78489 ], [ 80087, 80092 ] ], [ [ 1865, 1868 ], [ 76970, 76973 ], [ 79758, 79761 ] ], [ [ 1877, 1895 ], [ 80325, 80343 ], [ 11470, 11488 ], [ 21163, 21181 ], [ 23569, 23587 ], [ 26537, 26555 ], [ 44766, 44784 ], [ 44880, 44898 ], [ 63290, 63308 ], [ 63386, 63404 ] ], [ [ 80228, 80248 ], [ 80304, 80324 ] ], [ [ 80249, 80256 ] ] ]
# -*- coding: utf-8 -*- # Define source file encoding to support raw unicode characters in Python 2 import sys # Third party import pytest # Project from ddtrace.compat import to_unicode, PY2, reraise, get_connection_response # Use different test suites for each Python version, this allows us to test the expected # results for each Python version rather than writing a generic "works for both" test suite if PY2: class TestCompatPY2(object): def test_to_unicode_string(self): # Calling `compat.to_unicode` on a non-unicode string res = to_unicode('test') assert type(res) == unicode assert res == 'test' def test_to_unicode_unicode_encoded(self): # Calling `compat.to_unicode` on a unicode encoded string res = to_unicode('\xc3\xbf') assert type(res) == unicode assert res == u'ÿ' def test_to_unicode_unicode_double_decode(self): # Calling `compat.to_unicode` on a unicode decoded string # This represents the double-decode issue, which can cause a `UnicodeEncodeError` # `'\xc3\xbf'.decode('utf-8').decode('utf-8')` res = to_unicode('\xc3\xbf'.decode('utf-8')) assert type(res) == unicode assert res == u'ÿ' def test_to_unicode_unicode_string(self): # Calling `compat.to_unicode` on a unicode string res = to_unicode(u'ÿ') assert type(res) == unicode assert res == u'ÿ' def test_to_unicode_bytearray(self): # Calling `compat.to_unicode` with a `bytearray` containing unicode res = to_unicode(bytearray('\xc3\xbf')) assert type(res) == unicode assert res == u'ÿ' def test_to_unicode_bytearray_double_decode(self): # Calling `compat.to_unicode` with an already decoded `bytearray` # This represents the double-decode issue, which can cause a `UnicodeEncodeError` # `bytearray('\xc3\xbf').decode('utf-8').decode('utf-8')` res = to_unicode(bytearray('\xc3\xbf').decode('utf-8')) assert type(res) == unicode assert res == u'ÿ' def test_to_unicode_non_string(self): # Calling `compat.to_unicode` on non-string types assert to_unicode(1) == u'1' assert to_unicode(True) == u'True' assert to_unicode(None) == u'None' assert to_unicode(dict(key='value')) == u'{\'key\': \'value\'}' def test_get_connection_response(self): """Ensure that buffering is in kwargs.""" class MockConn(object): def getresponse(self, *args, **kwargs): assert 'buffering' in kwargs mock = MockConn() get_connection_response(mock) else: class TestCompatPY3(object): def test_to_unicode_string(self): # Calling `compat.to_unicode` on a non-unicode string res = to_unicode('test') assert type(res) == str assert res == 'test' def test_to_unicode_unicode_encoded(self): # Calling `compat.to_unicode` on a unicode encoded string res = to_unicode('\xff') assert type(res) == str assert res == 'ÿ' def test_to_unicode_unicode_string(self): # Calling `compat.to_unicode` on a unicode string res = to_unicode('ÿ') assert type(res) == str assert res == 'ÿ' def test_to_unicode_bytearray(self): # Calling `compat.to_unicode` with a `bytearray` containing unicode """ res = to_unicode(bytearray('\xff', 'utf-8')) assert type(res) == str assert res == 'ÿ' def test_to_unicode_non_string(self): # Calling `compat.to_unicode` on non-string types assert to_unicode(1) == '1' assert to_unicode(True) == 'True' assert to_unicode(None) == 'None' assert to_unicode(dict(key='value')) == '{\'key\': \'value\'}' def test_get_connection_response(self): """Ensure that buffering is NOT in kwargs.""" class MockConn(object): def getresponse(self, *args, **kwargs): assert 'buffering' not in kwargs mock = MockConn() get_connection_response(mock) class TestPy2Py3Compat(object): """Common tests to ensure functions are both Python 2 and Python 3 compatible. """ def test_reraise(self): # ensure the `raise` function is Python 2/3 compatible with pytest.raises(Exception) as ex: try: raise Exception('Ouch!') except Exception: # original exception we want to re-raise (typ, val, tb) = sys.exc_info() try: # this exception doesn't allow a re-raise, and we need # to use the previous one collected via `exc_info()` raise Exception('Obfuscate!') except Exception: pass # this call must be Python 2 and 3 compatible raise reraise(typ, val, tb) assert ex.value.args[0] == 'Ouch!'
[ [ [ 107, 110 ], [ 4899, 4902 ] ], [ [ 133, 139 ], [ 4689, 4695 ] ], [ [ 178, 188 ], [ 581, 591 ], [ 813, 823 ], [ 1208, 1218 ], [ 1449, 1459 ], [ 1681, 1691 ], [ 2109, 2119 ], [ 2359, 2369 ], [ 2400, 2410 ], [ 2447, 2457 ], [ 2494, 2504 ], [ 3035, 3045 ], [ 3263, 3273 ], [ 3479, 3489 ], [ 3709, 3719 ], [ 3942, 3952 ], [ 3982, 3992 ], [ 4028, 4038 ], [ 4074, 4084 ] ], [ [ 190, 193 ], [ 416, 419 ] ], [ [ 195, 202 ], [ 5276, 5283 ] ], [ [ 204, 227 ], [ 2839, 2862 ], [ 4426, 4449 ] ], [ [ 431, 444 ] ], [ [ 2886, 2899 ] ], [ [ 4464, 4480 ] ] ]
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import contextlib import copy import importlib.util import logging import math import os import sys import warnings from collections import defaultdict from itertools import accumulate from typing import Callable, Dict, List, Optional import numpy as np import torch import torch.nn.functional as F from fairseq.logging.meters import safe_round from fairseq.modules import gelu, gelu_accurate, sin, swish from fairseq.modules.multihead_attention import MultiheadAttention from torch import Tensor try: from amp_C import multi_tensor_l2norm multi_tensor_l2norm_available = True except ImportError: multi_tensor_l2norm_available = False logger = logging.getLogger(__name__) def split_paths(paths: str) -> List[str]: return paths.split(os.pathsep) if "://" not in paths else paths.split("|") def load_ensemble_for_inference(filenames, task, model_arg_overrides=None): from fairseq import checkpoint_utils deprecation_warning( "utils.load_ensemble_for_inference is deprecated. " "Please use checkpoint_utils.load_model_ensemble instead." ) return checkpoint_utils.load_model_ensemble( filenames, arg_overrides=model_arg_overrides, task=task ) def apply_to_sample(f, sample): if hasattr(sample, '__len__') and len(sample) == 0: return {} def _apply(x): if torch.is_tensor(x): return f(x) elif isinstance(x, dict): return {key: _apply(value) for key, value in x.items()} elif isinstance(x, list): return [_apply(x) for x in x] elif isinstance(x, tuple): return tuple(_apply(x) for x in x) elif isinstance(x, set): return {_apply(x) for x in x} else: return x return _apply(sample) def move_to_cuda(sample): def _move_to_cuda(tensor): return tensor.cuda() return apply_to_sample(_move_to_cuda, sample) def move_to_cpu(sample): def _move_to_cpu(tensor): # PyTorch has poor support for half tensors (float16) on CPU. # Move any such tensors to float32. if tensor.dtype in {torch.bfloat16, torch.float16}: tensor = tensor.to(dtype=torch.float32) return tensor.cpu() return apply_to_sample(_move_to_cpu, sample) def get_incremental_state( module: MultiheadAttention, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, ) -> Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" return module.get_incremental_state(incremental_state, key) def set_incremental_state( module: MultiheadAttention, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]], key: str, value: Dict[str, Optional[Tensor]], ) -> Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: result = module.set_incremental_state(incremental_state, key, value) if result is not None: incremental_state = result return incremental_state def load_align_dict(replace_unk): if replace_unk is None: align_dict = None elif isinstance(replace_unk, str) and len(replace_unk) > 0: # Load alignment dictionary for unknown word replacement if it was passed as an argument. align_dict = {} with open(replace_unk, "r") as f: for line in f: cols = line.split() align_dict[cols[0]] = cols[1] else: # No alignment dictionary provided but we still want to perform unknown word replacement by copying the # original source word. align_dict = {} return align_dict def print_embed_overlap(embed_dict, vocab_dict): embed_keys = set(embed_dict.keys()) vocab_keys = set(vocab_dict.symbols) overlap = len(embed_keys & vocab_keys) logger.info("found {}/{} types in embedding file".format(overlap, len(vocab_dict))) def parse_embedding(embed_path): """Parse embedding text file into a dictionary of word and embedding tensors. The first line can have vocabulary size and dimension. The following lines should contain word and embedding separated by spaces. Example: 2 5 the -0.0230 -0.0264 0.0287 0.0171 0.1403 at -0.0395 -0.1286 0.0275 0.0254 -0.0932 """ embed_dict = {} with open(embed_path) as f_embed: next(f_embed) # skip header for line in f_embed: pieces = line.rstrip().split(" ") embed_dict[pieces[0]] = torch.Tensor( [float(weight) for weight in pieces[1:]] ) return embed_dict def load_embedding(embed_dict, vocab, embedding): for idx in range(len(vocab)): token = vocab[idx] if token in embed_dict: embedding.weight.data[idx] = embed_dict[token] return embedding def replace_unk(hypo_str, src_str, alignment, align_dict, unk): from fairseq import tokenizer # Tokens are strings here hypo_tokens = tokenizer.tokenize_line(hypo_str) # TODO: Very rare cases where the replacement is '<eos>' should be handled gracefully src_tokens = tokenizer.tokenize_line(src_str) + ["<eos>"] for i, ht in enumerate(hypo_tokens): if ht == unk: src_token = src_tokens[alignment[i]] # Either take the corresponding value in the aligned dictionary or just copy the original value. hypo_tokens[i] = align_dict.get(src_token, src_token) return " ".join(hypo_tokens) def post_process_prediction( hypo_tokens, src_str, alignment, align_dict, tgt_dict, remove_bpe=None, extra_symbols_to_ignore=None ): hypo_str = tgt_dict.string(hypo_tokens, remove_bpe, extra_symbols_to_ignore=extra_symbols_to_ignore) if align_dict is not None: hypo_str = replace_unk( hypo_str, src_str, alignment, align_dict, tgt_dict.unk_string() ) if align_dict is not None or remove_bpe is not None: # Convert back to tokens for evaluating with unk replacement or without BPE # Note that the dictionary can be modified inside the method. hypo_tokens = tgt_dict.encode_line(hypo_str, add_if_not_exist=True) return hypo_tokens, hypo_str, alignment def make_positions(tensor, padding_idx: int, onnx_trace: bool = False): """Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. """ # The series of casts and type-conversions here are carefully # balanced to both work with ONNX export and XLA. In particular XLA # prefers ints, cumsum defaults to output longs, and ONNX doesn't know # how to handle the dtype kwarg in cumsum. mask = tensor.ne(padding_idx).int() return (torch.cumsum(mask, dim=1).type_as(mask) * mask).long() + padding_idx def strip_pad(tensor, pad): return tensor[tensor.ne(pad)] def buffered_arange(max): if not hasattr(buffered_arange, "buf"): buffered_arange.buf = torch.LongTensor() if max > buffered_arange.buf.numel(): buffered_arange.buf.resize_(max) torch.arange(max, out=buffered_arange.buf) return buffered_arange.buf[:max] def convert_padding_direction( src_tokens, padding_idx, right_to_left: bool = False, left_to_right: bool = False ): assert right_to_left ^ left_to_right pad_mask = src_tokens.eq(padding_idx) if not pad_mask.any(): # no padding, return early return src_tokens if left_to_right and not pad_mask[:, 0].any(): # already right padded return src_tokens if right_to_left and not pad_mask[:, -1].any(): # already left padded return src_tokens max_len = src_tokens.size(1) buffered = torch.empty(0).long() if max_len > 0: torch.arange(max_len, out=buffered) range = buffered.type_as(src_tokens).expand_as(src_tokens) num_pads = pad_mask.long().sum(dim=1, keepdim=True) if right_to_left: index = torch.remainder(range - num_pads, max_len) else: index = torch.remainder(range + num_pads, max_len) return src_tokens.gather(1, index) def item(tensor): if hasattr(tensor, "item"): return tensor.item() if hasattr(tensor, "__getitem__"): return tensor[0] return tensor def multi_tensor_total_norm(grads, chunk_size=2048*32) -> torch.Tensor: per_device_grads = {} norms = [] for grad in grads: device = grad.device cur_device_grads = per_device_grads.get(device) if cur_device_grads is None: cur_device_grads = [] per_device_grads[device] = cur_device_grads cur_device_grads.append(grad) for device in per_device_grads.keys(): cur_device_grads = per_device_grads[device] if device.type == "cuda": # TODO(msb) return has_inf has_inf = torch.zeros((1, 1), dtype=torch.int, device=device) with torch.cuda.device(device): norm = multi_tensor_l2norm(chunk_size, has_inf, [cur_device_grads], False) norms.append(norm[0]) else: norms += [torch.norm(g, p=2, dtype=torch.float32) for g in cur_device_grads] total_norm = torch.norm(torch.stack(norms)) return total_norm def clip_grad_norm_(params, max_norm, aggregate_norm_fn=None) -> torch.Tensor: if isinstance(params, torch.Tensor): params = [params] params = list(params) grads = [p.grad.detach() for p in filter(lambda p: p.grad is not None, params)] if len(grads) == 0: if len(params) > 0: return params[0].new_tensor(0.) else: return torch.tensor(0.) if len(grads) == 1: total_norm = torch.norm(grads[0], p=2, dtype=torch.float32) else: if multi_tensor_l2norm_available: total_norm = multi_tensor_total_norm(grads) else: warnings.warn( "amp_C fused kernels unavailable, disabling multi_tensor_l2norm; " "you may get better performance by installing NVIDIA's apex library" ) total_norm = torch.norm( torch.stack([torch.norm(g, p=2, dtype=torch.float32) for g in grads]) ) if aggregate_norm_fn is not None: total_norm = aggregate_norm_fn(total_norm) if max_norm > 0: max_norm = float(max_norm) clip_coef = (max_norm / (total_norm + 1e-6)).clamp_(max=1) for g in grads: g.mul_(clip_coef) return total_norm def fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _match_types(arg1, arg2): """Convert the numerical argument to the same type as the other argument""" def upgrade(arg_number, arg_structure): if isinstance(arg_structure, tuple): return tuple([arg_number] * len(arg_structure)) elif isinstance(arg_structure, dict): arg = copy.deepcopy(arg_structure) for k in arg: arg[k] = upgrade(arg_number, arg_structure[k]) return arg else: return arg_number if isinstance(arg1, float) or isinstance(arg1, int): return upgrade(arg1, arg2), arg2 elif isinstance(arg2, float) or isinstance(arg2, int): return arg1, upgrade(arg2, arg1) return arg1, arg2 def resolve_max_positions(*args): """Resolve max position constraints from multiple sources.""" def map_value_update(d1, d2): updated_value = copy.deepcopy(d1) for key in d2: if key not in updated_value: updated_value[key] = d2[key] else: updated_value[key] = min(d1[key], d2[key]) return updated_value def nullsafe_min(l): minim = None for item in l: if minim is None: minim = item elif item is not None and item < minim: minim = item return minim max_positions = None for arg in args: if max_positions is None: max_positions = arg elif arg is not None: max_positions, arg = _match_types(max_positions, arg) if isinstance(arg, float) or isinstance(arg, int): max_positions = min(max_positions, arg) elif isinstance(arg, dict): max_positions = map_value_update(max_positions, arg) else: max_positions = tuple(map(nullsafe_min, zip(max_positions, arg))) return max_positions def import_user_module(args): module_path = getattr(args, "user_dir", None) if module_path is not None: module_path = os.path.abspath(args.user_dir) if not os.path.exists(module_path): fairseq_rel_path = os.path.join( os.path.dirname(__file__), "..", args.user_dir ) if os.path.exists(fairseq_rel_path): module_path = fairseq_rel_path module_parent, module_name = os.path.split(module_path) if module_name not in sys.modules: sys.path.insert(0, module_parent) importlib.import_module(module_name) def softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def log_softmax(x, dim: int, onnx_trace: bool = False): if onnx_trace: return F.log_softmax(x.float(), dim=dim) else: return F.log_softmax(x, dim=dim, dtype=torch.float32) def get_perplexity(loss, round=2, base=2): if loss is None: return 0. try: return safe_round(base ** loss, round) except OverflowError: return float('inf') def deprecation_warning(message, stacklevel=3): # don't use DeprecationWarning, since it's ignored by default warnings.warn(message, stacklevel=stacklevel) def get_activation_fn(activation: str) -> Callable: """ Returns the activation function corresponding to `activation` """ if activation == "relu": return F.relu elif activation == "gelu": return gelu elif activation == "gelu_fast": deprecation_warning( "--activation-fn=gelu_fast has been renamed to gelu_accurate" ) return gelu_accurate elif activation == "gelu_accurate": return gelu_accurate elif activation == 'sin': return sin elif activation == 'swish': return swish elif activation == "tanh": return torch.tanh elif activation == "linear": return lambda x: x else: raise RuntimeError("--activation-fn {} not supported".format(activation)) def get_available_activation_fns() -> List: return [ "relu", "gelu", "gelu_fast", # deprecated "gelu_accurate", "sin", "swish", "tanh", "linear", ] @contextlib.contextmanager def eval(model): is_training = model.training model.eval() yield model.train(is_training) def has_parameters(module): try: next(module.parameters()) return True except StopIteration: return False def set_torch_seed(seed): # Set seed based on args.seed and the update number so that we get # reproducible results when resuming from checkpoints assert isinstance(seed, int) torch.manual_seed(seed) torch.cuda.manual_seed(seed) @contextlib.contextmanager def with_torch_seed(seed): assert isinstance(seed, int) rng_state = torch.get_rng_state() cuda_rng_state = torch.cuda.get_rng_state() set_torch_seed(seed) yield torch.set_rng_state(rng_state) torch.cuda.set_rng_state(cuda_rng_state) def parse_alignment(line): """ Parses a single line from the alingment file. Args: line (str): String containing the alignment of the format: <src_idx_1>-<tgt_idx_1> <src_idx_2>-<tgt_idx_2> .. <src_idx_m>-<tgt_idx_m>. All indices are 0 indexed. Returns: torch.IntTensor: packed alignments of shape (2 * m). """ alignments = line.strip().split() parsed_alignment = torch.IntTensor(2 * len(alignments)) for idx, alignment in enumerate(alignments): src_idx, tgt_idx = alignment.split("-") parsed_alignment[2 * idx] = int(src_idx) parsed_alignment[2 * idx + 1] = int(tgt_idx) return parsed_alignment def get_token_to_word_mapping(tokens, exclude_list): n = len(tokens) word_start = [int(token not in exclude_list) for token in tokens] word_idx = list(accumulate(word_start)) token_to_word = {i: word_idx[i] for i in range(n)} return token_to_word def extract_hard_alignment(attn, src_sent, tgt_sent, pad, eos): tgt_valid = ((tgt_sent != pad) & (tgt_sent != eos)).nonzero().squeeze(dim=-1) src_invalid = ((src_sent == pad) | (src_sent == eos)).nonzero().squeeze(dim=-1) src_token_to_word = get_token_to_word_mapping(src_sent, [eos, pad]) tgt_token_to_word = get_token_to_word_mapping(tgt_sent, [eos, pad]) alignment = [] if len(tgt_valid) != 0 and len(src_invalid) < len(src_sent): attn_valid = attn[tgt_valid] attn_valid[:, src_invalid] = float("-inf") _, src_indices = attn_valid.max(dim=1) for tgt_idx, src_idx in zip(tgt_valid, src_indices): alignment.append( ( src_token_to_word[src_idx.item()] - 1, tgt_token_to_word[tgt_idx.item()] - 1, ) ) return alignment def new_arange(x, *size): """ Return a Tensor of `size` filled with a range function on the device of x. If size is empty, using the size of the variable x. """ if len(size) == 0: size = x.size() return torch.arange(size[-1], device=x.device).expand(*size).contiguous() def get_tpu_device(args): import torch_xla.core.xla_model as xm return xm.xla_device() def logging_multiple_line_messages(msg): msg_arr = msg.split("\n") for line in msg_arr: logger.info(line) class CudaEnvironment(object): def __init__(self): cur_device = torch.cuda.current_device() prop = torch.cuda.get_device_properties("cuda:{}".format(cur_device)) self.name = prop.name self.major = prop.major self.minor = prop.minor self.total_memory_in_GB = prop.total_memory / 1024 / 1024 / 1024 @staticmethod def pretty_print_cuda_env_list(cuda_env_list): """ Given a list of CudaEnviorments, pretty print them """ num_workers = len(cuda_env_list) center = "CUDA enviroments for all {} workers".format(num_workers) banner_len = 40 - len(center) // 2 first_line = "*" * banner_len + center + "*" * banner_len msg_arr = [first_line] for r, env in enumerate(cuda_env_list): msg_arr.append( "rank {:3d}: ".format(r) + "capabilities = {:2d}.{:<2d} ; ".format(env.major, env.minor) + "total memory = {:.3f} GB ; ".format(env.total_memory_in_GB) + "name = {:40s}".format(env.name) ) msg_arr.append(first_line) logging_multiple_line_messages("\n".join(msg_arr))
[ [ [ 185, 195 ], [ 15270, 15280 ], [ 15796, 15806 ] ], [ [ 203, 207 ], [ 11285, 11289 ], [ 11853, 11857 ] ], [ [ 215, 229 ], [ 13475, 13484 ] ], [ [ 237, 244 ], [ 838, 845 ] ], [ [ 252, 256 ] ], [ [ 264, 266 ], [ 933, 935 ], [ 13016, 13018 ], [ 13062, 13064 ], [ 13122, 13124 ], [ 13152, 13154 ], [ 13228, 13230 ], [ 13346, 13348 ] ], [ [ 274, 277 ], [ 13404, 13407 ], [ 13429, 13432 ] ], [ [ 285, 293 ], [ 10188, 10196 ], [ 14210, 14218 ] ], [ [ 318, 329 ] ], [ [ 352, 362 ], [ 16948, 16958 ] ], [ [ 382, 390 ], [ 14300, 14308 ] ], [ [ 392, 396 ], [ 2628, 2632 ], [ 2559, 2563 ], [ 2569, 2573 ], [ 2989, 2993 ], [ 2999, 3003 ], [ 2880, 2884 ], [ 2890, 2894 ], [ 2946, 2950 ] ], [ [ 398, 402 ], [ 899, 903 ], [ 15084, 15088 ] ], [ [ 404, 412 ], [ 2619, 2627 ], [ 2638, 2646 ], [ 2550, 2558 ], [ 2579, 2587 ], [ 2980, 2988 ], [ 3009, 3017 ], [ 2871, 2879 ], [ 2900, 2908 ], [ 2956, 2964 ] ], [ [ 421, 432 ] ], [ [ 440, 445 ], [ 4798, 4803 ], [ 7042, 7047 ], [ 7277, 7282 ], [ 7387, 7392 ], [ 8024, 8029 ], [ 8074, 8079 ], [ 8267, 8272 ], [ 8336, 8341 ], [ 8641, 8646 ], [ 9159, 9164 ], [ 9185, 9190 ], [ 9228, 9233 ], [ 9420, 9425 ], [ 9445, 9450 ], [ 9504, 9509 ], [ 9515, 9520 ], [ 9624, 9629 ], [ 9664, 9669 ], [ 9944, 9949 ], [ 10007, 10012 ], [ 10039, 10044 ], [ 10410, 10415 ], [ 10438, 10443 ], [ 10451, 10456 ], [ 10476, 10481 ], [ 13683, 13688 ], [ 13881, 13886 ], [ 14881, 14886 ], [ 15736, 15741 ], [ 15764, 15769 ], [ 15898, 15903 ], [ 15941, 15946 ], [ 16007, 16012 ], [ 16042, 16047 ], [ 16519, 16524 ], [ 18164, 18169 ], [ 18530, 18535 ], [ 18573, 18578 ], [ 1525, 1530 ], [ 2304, 2309 ], [ 2320, 2325 ], [ 2373, 2378 ] ], [ [ 453, 477 ], [ 13600, 13601 ], [ 13655, 13656 ], [ 13790, 13791 ], [ 13849, 13850 ], [ 14428, 14429 ] ], [ [ 513, 523 ], [ 14004, 14014 ] ], [ [ 552, 556 ], [ 14481, 14485 ] ], [ [ 558, 571 ], [ 14650, 14663 ], [ 14719, 14732 ] ], [ [ 573, 576 ], [ 14778, 14781 ] ], [ [ 578, 583 ], [ 14829, 14834 ] ], [ [ 632, 650 ], [ 2507, 2525 ], [ 2828, 2846 ] ], [ [ 669, 675 ], [ 2647, 2653 ], [ 2588, 2594 ], [ 3018, 3024 ], [ 2909, 2915 ], [ 2965, 2971 ] ], [ [ 704, 723 ], [ 9278, 9297 ] ], [ [ 728, 757 ], [ 10075, 10104 ] ], [ [ 789, 818 ], [ 10075, 10104 ] ], [ [ 829, 835 ], [ 4115, 4121 ], [ 18434, 18440 ] ], [ [ 872, 883 ] ], [ [ 995, 1022 ] ], [ [ 1392, 1407 ], [ 2066, 2081 ], [ 2428, 2443 ] ], [ [ 1972, 1984 ] ], [ [ 2111, 2122 ] ], [ [ 2472, 2493 ] ], [ [ 2793, 2814 ] ], [ [ 3315, 3330 ] ], [ [ 3942, 3961 ] ], [ [ 4205, 4220 ] ], [ [ 4911, 4925 ] ], [ [ 5136, 5147 ], [ 6079, 6090 ] ], [ [ 5791, 5814 ] ], [ [ 6515, 6529 ] ], [ [ 7117, 7126 ] ], [ [ 7181, 7196 ], [ 7222, 7237 ], [ 7255, 7270 ], [ 7309, 7324 ], [ 7346, 7361 ], [ 7409, 7424 ], [ 7441, 7456 ] ], [ [ 7473, 7498 ] ], [ [ 8424, 8428 ] ], [ [ 8587, 8610 ], [ 10131, 10154 ] ], [ [ 9563, 9578 ] ], [ [ 10818, 10835 ] ], [ [ 10965, 10977 ], [ 12493, 12505 ] ], [ [ 11698, 11719 ] ], [ [ 12886, 12904 ] ], [ [ 13518, 13525 ] ], [ [ 13704, 13715 ] ], [ [ 13902, 13916 ] ], [ [ 14096, 14115 ], [ 1113, 1132 ], [ 14530, 14549 ] ], [ [ 14262, 14279 ] ], [ [ 15050, 15078 ] ], [ [ 15300, 15304 ] ], [ [ 15408, 15422 ] ], [ [ 15548, 15562 ], [ 15972, 15986 ] ], [ [ 15826, 15841 ] ], [ [ 16089, 16104 ] ], [ [ 16789, 16814 ], [ 17308, 17333 ], [ 17380, 17405 ] ], [ [ 17058, 17080 ] ], [ [ 17933, 17943 ] ], [ [ 18237, 18251 ] ], [ [ 18334, 18364 ], [ 19596, 19626 ] ], [ [ 18460, 18475 ] ] ]
from numpy.core.fromnumeric import reshape import torch import numpy as np import pickle from itertools import combinations, permutations from sklearn.decomposition import PCA from sklearn.manifold import MDS, TSNE from scipy.stats import pearsonr, ttest_ind import statsmodels.api as sm from dataset import get_loaders, WineGrid def analyze_episodic(model, test_data, args): # Collect attention weights for each sample in test set model.eval() m, x_ = test_data[0] # only 1 episode in test data m = m.to(args.device) # m: [1, n_train, sample_dim] x = x_[:,:,:-1].to(args.device) # x: [1, n_test, sample_dim] y = x_[:,:,-1].type(torch.long).to(args.device) y = y.squeeze() # y: [1, n_test] with torch.no_grad(): y_hat, attention = model(x, m) attention = attention[0] # first (only) memory layer attention = np.squeeze(attention) # attention: [n_train, n_test] # Check the retrieval weights of relevant vs. irrelevant training samples grid = test_data.grid train = grid.train # train *samples* in test *episode* test = grid.test # test *samples* in test *episode* n_train = len(train) n_test = len(test) rel_ids = grid.hub_sample_ids # relevant memory ids (train samples) attn_ranks = np.zeros_like(attention) for i in range(n_test): argsorted_attn = np.argsort(attention[i]) ranks = np.zeros([n_train]) ranks[argsorted_attn] = np.arange(n_train) attn_ranks[i] = ranks relevant = [] irrelevant = [] for i in range(n_test): for j in range(n_train): if j in rel_ids[i]: relevant.append(attn_ranks[i,j]) else: irrelevant.append(attn_ranks[i,j]) rank_data = {"relevant": relevant, "irrelevant": irrelevant} # Check how often a legitimate "path" was retrieved in the top 5% k = 8 # top k memories with highest weights (k = 8 means 5 percent) used_hub = [] for i in range(n_test): highest_attn = np.argsort(attention[i])[-k:] test_f1, test_f2, test_ctx, test_y = test[i] # Get relevant hubs for current test sample hubs = [] for rel_id in rel_ids[i]: train_sample = train[rel_id] train_f1, train_f2 = train_sample[0], train_sample[1] if train_f1 in [test_f1, test_f2]: hubs.append(train_f2) if train_f2 in [test_f1, test_f2]: hubs.append(train_f1) hubs = list(set(hubs)) hubs_dict = {h:[] for h in hubs} assert len(hubs) == 2, "shouldn't be more than 2 hubs?" # Check if one of the hubs appears with f1 and f2 attended_train = [train[idx] for idx in highest_attn] for sample in attended_train: train_f1, train_f2, train_ctx, train_y = sample if train_ctx != test_ctx: continue # must be samples testing the same axis to be relevant if hubs[0] == train_f1: hubs_dict[hubs[0]].append(sample[1]) if hubs[1] == sample[0]: hubs_dict[hubs[1]].append(sample[1]) if hubs[0] == sample[1]: hubs_dict[hubs[0]].append(sample[0]) if hubs[1] == sample[1]: hubs_dict[hubs[1]].append(sample[0]) if test_f1 in hubs_dict[hubs[0]] and test_f2 in hubs_dict[hubs[0]]: used_hub.append(True) elif test_f1 in hubs_dict[hubs[1]] and test_f2 in hubs_dict[hubs[1]]: used_hub.append(True) else: used_hub.append(False) p_used_hub = np.mean(used_hub) print("Proportion that episodic system retrieved a hub path:", p_used_hub) results = {"rank_data":rank_data, "p_used_hub": p_used_hub} return results def analyze_cortical(model, test_data, analyze_loader, args): # Useful dictionaries from test dataset n_states = test_data.n_states loc2idx = test_data.loc2idx idx2loc = {idx:loc for loc, idx in loc2idx.items()} idxs = [idx for idx in range(n_states)] # locs = [idx2loc[idx] for idx in idxs] idx2tensor = test_data.idx2tensor model.eval() # Get embeddings from model for each face face_embedding = model.face_embedding face_embedding.to(args.device) embeddings = [] # Get hiddens from the recurrent model for each face # if the model was stepwisemlp if args.cortical_model=='stepwisemlp': hiddens = [[] for i in range(2)] hiddens_cong = [[] for i in range(2)] hiddens_incong = [[] for i in range(2)] hiddens_ctxs = [[[] for j in range(args.N_contexts)] for i in range(2)] else: hiddens = [] # hidden reps. for both contexts hiddens_incong = [] hiddens_cong = [] hiddens_ctxs = [[] for i in range(args.N_contexts)] idxs1 = [] idxs2 = [] idxs1_ctxs = [[] for i in range(args.N_contexts)] idxs2_ctxs = [[] for i in range(args.N_contexts)] samples = [] samples_ctxs = [[] for i in range(args.N_contexts)] samples_cong = [] samples_incong = [] with torch.no_grad(): for idx in range(n_states): face_tensor = idx2tensor[idx].unsqueeze(0).to(args.device) embedding = face_embedding(face_tensor) # [1, state_dim] embedding = embedding.cpu().numpy() embeddings.append(embedding) embeddings = np.concatenate(embeddings, axis=0) # [n_states, state_dim] for batch in analyze_loader: if args.cortical_task == 'face_task': f1, f2, ctx, out, idx1, idx2 = batch elif args.cortical_task == 'wine_task': f1, f2, ctx, out1, out2, idx1, idx2 = batch idx1 = idx1[0] idx2 = idx2[0] samples.append(batch) (x1, y1), (x2, y2) = idx2loc[idx1], idx2loc[idx2] f1 = f1.to(args.device) f2 = f2.to(args.device) ctx = ctx.to(args.device) # create congruent and incongruent groups grid_angle = np.arctan2((y2-y1),(x2-x1)) phi = np.sin(2*grid_angle) if np.abs(phi)<1e-5: # for congrunet trials, # zero out those very close to zero angles # so it won't turn into 1 or -1 by sign cong = 0 else: cong = np.sign(phi) # 1: congruent, -1:incongruent, 0:none # get the hidden reps. y_hat, out = model(f1, f2, ctx) # y_hat: [1, 2] # rnn_out: [seq_length, 1, hidden_dim]: [3, 1, 128] # mlp_out: [1, hidden_dim]: [1, 128] if args.order_ctx == 'first': f1_ind = 1 f2_ind = 2 elif args.order_ctx == 'last': f1_ind = 0 f2_ind = 1 if args.cortical_model=='stepwisemlp': out1, out2 = out out1 = out1.cpu().numpy() out2 = out2.cpu().numpy() hiddens[0].append(out1) hiddens[1].append(out2) hiddens_ctxs[0][ctx].append(out1) hiddens_ctxs[1][ctx].append(out2) else: out = out.cpu().numpy() hiddens.append(out) hiddens_ctxs[ctx].append(out) ctx = ctx[0].cpu().numpy() idxs1.append(idx1) idxs2.append(idx2) idxs1_ctxs[ctx].append(idx1) idxs2_ctxs[ctx].append(idx2) samples_ctxs[ctx].append(batch) if ((cong==1) and ((ctx==0) or (ctx==1))): if args.cortical_model=='stepwisemlp': hiddens_cong[0].append(out1) hiddens_cong[1].append(out2) else: hiddens_cong.append(out) samples_cong.append(batch) elif ((cong==-1) and ((ctx==0) or (ctx==1))): if args.cortical_model=='stepwisemlp': hiddens_incong[0].append(out1) hiddens_incong[1].append(out2) else: hiddens_incong.append(out) samples_incong.append(batch) hiddens = np.asarray(hiddens).squeeze() # for n_ctx=2, data_len = 16*12*2=384 (n_states:16, n_states-ties:12, permutation:2) # rnn hiddens: [data_len, seq_length, hidden_dim] : [384, 3, 128] # mlp hiddens: [data_len, hidden_dim]: [384, 128] # stepwisemlp hiddens: [num_hidds, data_len, hidden_dim]: [2, 384, 128] # with diagonals - wine task = data_len = (n_ctx-n_diag)*192+n_diag*212 # [n_ctx:2, data_len:384], [n_ctx:4, data_len:768], [n_ctx:8, data_len: 1616] hiddens_incong = np.asarray(hiddens_incong).squeeze() hiddens_cong = np.asarray(hiddens_cong).squeeze() # rnn hiddens_cong/incong: [144, 3, 128] # mlp hiddens_cong/incong: [144, 128] # stepwise mlp hiddens_cong/incong: [2, 144, 128] # hiddens_ctx: even tho it is 384, but it is ordered based on the contexts if args.cortical_model=='stepwisemlp': hiddens_ctx = np.concatenate(np.asarray(hiddens_ctxs).squeeze(), axis=1) # hiddens_ctxs: [n_hidds=2, n_ctx, 192, 1, 128] # hiddens_ctx: [n_hidds=2, 384, 128] hiddens_inc_c = np.concatenate((hiddens_incong, hiddens_cong), axis=1) # hiddens_inc_c: [n_hidds, 384-ties, 128]: [2, 288, 128] else: hiddens_ctx = np.concatenate(hiddens_ctxs, axis = 0).squeeze() # mlp hiddens_ctxs: [n_ctx, 192, 1, 128] # rnn hiddens_ctxs: [n_ctx, n_trials=192, 3, 1, 128] # rnn hiddens_ctx: [384, 3, 128] # mlp hiddens_ctx: [384, 128] hiddens_inc_c = np.concatenate((hiddens_incong, hiddens_cong), axis=0) # rnn hiddens_inc_c: [384-ties, seq_length, 128]: [288, 3, 128] # mlp hiddens_inc_c: [384-ties, 128]: [288, 128] if ((args.cortical_model=='rnn') or (args.cortical_model=='rnncell')): hiddens_ctx = hiddens_ctx[:, -1, :] # [384, 128] hiddens_inc_c = hiddens_inc_c[:, -1, :] #[288, 128] samples_inc_c = np.concatenate((samples_incong, samples_cong), axis=0) if args.cortical_model=='stepwisemlp': avg_hidden = np.zeros([2, n_states, hiddens.shape[-1]]) avg_hidden_ctxs = np.zeros([2, args.N_contexts, n_states, hiddens.shape[-1]]) else: avg_hidden = np.zeros([n_states, hiddens.shape[-1]]) avg_hidden_ctxs = np.zeros([args.N_contexts, n_states, hiddens.shape[-1]]) if ((args.cortical_model=='rnn') or (args.cortical_model=='rnncell')): hiddens_ctxs = np.asarray(hiddens_ctxs).squeeze() # [n_ctx, n_tirals=192, seq_len=3, hidd_dim=128] # Take average for each face based on its location for f in range(n_states): temp1 = [np.expand_dims(hiddens[i,f1_ind,:], axis=0) for i, idx1 in enumerate(idxs1) if idx1==f] temp2 = [np.expand_dims(hiddens[i,f2_ind,:], axis=0) for i, idx2 in enumerate(idxs2) if idx2==f] if len(temp1 + temp2)>1: avg_hidden[f] = np.concatenate(temp1 + temp2, axis=0).mean(axis=0) for ctx in range(args.N_contexts): temp1_ctxs = [hiddens_ctxs[ctx,i,f1_ind,:] for i, idx1 in enumerate(idxs1_ctxs[ctx]) if idx1==f] temp2_ctxs = [hiddens_ctxs[ctx,i,f2_ind,:] for i, idx2 in enumerate(idxs2_ctxs[ctx]) if idx2==f] if len(temp1_ctxs + temp2_ctxs)>1: m = np.zeros([2,hiddens_ctxs.shape[-1]]) m[0] = np.mean(np.asarray(temp1_ctxs), axis=0) m[1] = np.mean(np.asarray(temp2_ctxs), axis=0) avg_hidden_ctxs[ctx, f, :] = np.mean(m, axis=0) # avg_hidden_ctxs[ctx, f, :] = np.concatenate(temp1_ctxs + temp2_ctxs, axis=0).mean(axis=0) # avg_hidden_ctxs: [n_ctx, n_states, hidden_dim]: [2, 16, 128] avg_hidden_ctx = np.concatenate(avg_hidden_ctxs, axis=0) elif args.cortical_model in ['mlp', 'mlp_cc']: for f in range(n_states): temp = [hiddens[i,:] for i, (idx1, idx2) in enumerate(zip(idxs1, idxs2)) if ((idx1==f) | (idx2==f))] if len(temp)>1: avg_hidden[f] = np.mean(temp, axis=0) for ctx in range(args.N_contexts): temp_ctxs = [hiddens_ctxs[ctx][i] for i, (idx1, idx2) in enumerate(zip(idxs1_ctxs[ctx], idxs2_ctxs[ctx])) if ((idx1==f) | (idx2==f))] if len(temp_ctxs)>1: avg_hidden_ctxs[ctx, f, :] = np.mean(temp_ctxs, axis=0) # avg_hidden_ctxs: [n_contexts, n_states, hidden_dim]: [2, 16, 128] avg_hidden_ctx = np.concatenate(avg_hidden_ctxs, axis=0) elif args.cortical_model=='stepwisemlp': # todo: how to do the averaging? over both hidden reps? # hiddens_ctxs anf hiddens_inc_c for the pca results should have two dimensions, hiddens_ctxs = np.asarray(hiddens_ctxs).squeeze() for f in range(n_states): temp1 = [hiddens[0,i,:] for i, idx1 in enumerate(idxs1) if idx1==f] temp2 = [hiddens[1,i,:] for i, idx2 in enumerate(idxs2) if idx2==f] if len(temp1)>1: avg_hidden[0,f,:] = np.mean(temp1, axis=0) if len(temp2)>1: avg_hidden[1,f,:] = np.mean(temp2, axis=0) # avg_hidden: [n_hidd, n_states, hidd_dim]: [2,16,128] for ctx in range(args.N_contexts): temp1_ctxs = [hiddens_ctxs[0,ctx,i,:] for i, idx1 in enumerate(idxs1_ctxs[ctx]) if idx1==f] temp2_ctxs = [hiddens_ctxs[1,ctx,i,:] for i, idx2 in enumerate(idxs2_ctxs[ctx]) if idx2==f] if len(temp1_ctxs)>1: avg_hidden_ctxs[0,ctx,f,:] = np.mean(temp1_ctxs, axis=0) if len(temp2_ctxs)>1: avg_hidden_ctxs[1,ctx,f,:] = np.mean(temp2_ctxs, axis=0) # avg_hidden_ctxs: [n_hidd, n_contexts, n_states, hidden_dim]: [2, 2, 16, 128] avg_hidden_ctx = np.concatenate(avg_hidden_ctxs, axis=1) samples_res = {'samples': samples, 'samples_ctxs': samples_ctxs, 'samples_inc_c': samples_inc_c} results = {'samples_res':samples_res, 'idxs1': idxs1, 'idxs2': idxs2, 'embeddings': embeddings, # [16, 32] 'hiddens_ctx':hiddens_ctx, # mlp/rnn: [384,128] or in stepwisedmlp: [2,384,128] 'hiddens_ctxs':hiddens_ctxs, # mlp: [n_ctx, 192, 1, 128], rnn: [n_ctx, 192, 3, 128] 'avg_hidden':avg_hidden, # [16, 128] or [n_hidd=2, 16, 128] 'avg_hidden_ctx':avg_hidden_ctx, # mlp/rnn: [32, 128] or stepwisedmlp: [n_hidd=2, 32, 128] # the reaosn to have these is because the concat for each model is diff and want to deal with it here 'avg_hidden_ctxs':avg_hidden_ctxs, # [mlp/rnn: n_ctx, 16, 128] or stepwisedmlp: [n_hidd=2, n_ctx, 16, 128] 'hiddens_inc_c': hiddens_inc_c} # mlp/rnn: [288, 128] or stepwisedmlp: [n_hidd=2, 288, 128] return results def analyze_accs(args, test_data, cortical_result, dist_results): resutls = {'train_acc': cortical_result['train_acc'], 'test_acc': cortical_result['test_acc'], 'cong_train_acc': cortical_result['cong_train_acc'], 'incong_train_acc': cortical_result['incong_train_acc'], 'cong_test_acc': cortical_result['cong_test_acc'], 'incong_test_acc': cortical_result['incong_test_acc']} return resutls # cortical_analyze_acc = cortical_result['analyze_acc'] # cortical_analyze_correct = cortical_result['analyze_correct'] def analyze_credit_assignment(args, test_data, cortical_result, dist_results): resutls = {'grad_ctx': cortical_result['grad_ctx'], 'grad_f1': cortical_result['grad_f1'], 'grad_f2': cortical_result['grad_f2'], 'grad_ctx_cong': cortical_result['grad_ctx_cong'], 'grad_f1_cong': cortical_result['grad_f1_cong'], 'grad_f2_cong': cortical_result['grad_f2_cong'], 'grad_ctx_incong': cortical_result['grad_ctx_incong'], 'grad_f1_incong': cortical_result['grad_f1_incong'], 'grad_f2_incong': cortical_result['grad_f2_incong'] } return resutls def proportions(args, test_data, cortical_result, dist_results): hiddens_ctxs = cortical_result['hiddens_ctxs'] # list of len [n_ctx] hiddens_ctxs = [np.concatenate(h, axis=0) for h in hiddens_ctxs] # list of len [n_ctx] each has either [192,128] or [224,128] # when n_ctx=8, we have diff number of ties, therefore, # in the first 4 contexts we have [192, 128], and in # the second 4 contexts (diagonals) we have [224, 128] # that is why we go over each of the hiddens in hiddens_ctxs # and then concat them to create [n_trials, hidden_dim] for each ps = [] p_pies = [] for h in hiddens_ctxs: # h: [n_trials, hidden_dim] p_pies.append(np.any(h>0, axis=0)) # list of len [n_ctx], each shape [128,] ps.append(np.mean(h>0, axis=0)) # [n_ctx, 128] ps = np.asarray(ps) # ps: [n_ctx, 128] # avg num of the trials that were active for each unit, and for each context s = np.sum(ps, axis=0, keepdims=True) # s: [1, hidden_dim], overall activity of each hidden unit, # if that unit was active at all, over all trials (regardless of the context) n = ps / s # n: [n_ctx, hidden_dim] # normalized - how much each unit is active for each ctx over trials # normalized by the overall activity of that unit for all ctx and trials # f = n > threshold # there are some NaNs prop_results = {'hiddens_ctxs': hiddens_ctxs, 'p_pies': p_pies, # which trials are active for each hidden unit, 'ps': ps, # on average, how many trials were active for each hidden unit 'n': n} return prop_results def calc_dist_ctx(args, test_data, cortical_result, dist_results): N_contexts = 2 #ToDo: for now it works only for x and y, because of the angles # Useful dictionaries from test dataset n_states = test_data.n_states loc2idx = test_data.loc2idx idx2loc = {idx:loc for loc, idx in loc2idx.items()} idxs = [idx for idx in range(n_states)] N_contexts = args.N_contexts N_responses = args.N_responses avg_hidden_ctxs = cortical_result['avg_hidden_ctxs'] # [2, 16, 128] # Correlation grid_dists = [] hidd_dists_ctxs = [[] for i in range(N_contexts)] grid_1ds_ctxs = [[] for i in range(N_contexts)] grid_angles = [] samples = [] for idx1, idx2 in combinations(idxs, 2): (x1, y1), (x2, y2) = idx2loc[idx1], idx2loc[idx2] samples.append((idx1, idx2)) grid_dist = np.sqrt((x1-x2)**2 + (y1-y2)**2) grid_dists.append(grid_dist) for ctx in range(N_contexts): # Euclidean distance between hidden reps. in context ctx if args.cortical_model=='stepwisemlp': hidd_dist = np.zeros([2]) hidd1, hidd2 = avg_hidden_ctxs[0,ctx,idx1,:], avg_hidden_ctxs[0,ctx,idx2,:] hidd_dist[0] = np.linalg.norm(hidd1 - hidd2) hidd1, hidd2 = avg_hidden_ctxs[1,ctx,idx1,:], avg_hidden_ctxs[1,ctx,idx2,:] hidd_dist[1] = np.linalg.norm(hidd1 - hidd2) else: hidd1, hidd2 = avg_hidden_ctxs[ctx][idx1], avg_hidden_ctxs[ctx][idx2] hidd_dist = np.linalg.norm(hidd1 - hidd2) hidd_dists_ctxs[ctx].append(hidd_dist) # 1D rank - Manhattan distance loc1 = [x1, y1] loc2 = [x2, y2] winegrid = WineGrid(N_responses, N_contexts) r1, r2 = winegrid.ctx_to_r(ctx, loc1, loc2) grid_1ds_ctxs[ctx].append(np.abs(r1-r2)) # create on and off diagonal groups grid_angle = np.arctan2((y2-y1),(x2-x1)) grid_angles.append(grid_angle) grid_dists = np.array(grid_dists) # [(n_states*(nstates-1))/2]: [120] grid_angles = np.array(grid_angles) # [120] samples = np.array(samples) hidd_dists_ctxs = np.array(hidd_dists_ctxs) # [n_ctx, sampels, n_hidds]: in mlp: [2,120], in stepwisemlp: [2,120,2] phi = np.sin(2*grid_angles) binary_phi = np.sign(phi) for i, p in enumerate(phi): if np.abs(p)<1e-5: binary_phi[i] = 0 angle_results = {'grid_angles': grid_angles, 'phi': phi, 'binary_phi': binary_phi} dist_results = {'samples': samples, 'hidd_dists_ctxs': hidd_dists_ctxs, 'grid_1ds_ctxs': grid_1ds_ctxs, 'grid_dists': grid_dists, 'angle_results': angle_results} return dist_results def calc_dist(args, test_data, cortical_result, dist_results=None): # Useful dictionaries from test dataset n_states = test_data.n_states loc2idx = test_data.loc2idx idx2loc = {idx:loc for loc, idx in loc2idx.items()} idxs = [idx for idx in range(n_states)] # Correlation grid_dists = [] cong_grid_dists = [] incong_grid_dists = [] embed_dists = [] hidd_dists = [] cong_hidd_dists = [] incong_hidd_dists = [] cong_embed_dists = [] incong_embed_dists = [] grid_angles = [] cong_grid_angles = [] incong_grid_angles = [] samples = [] embeddings = cortical_result['embeddings'] avg_hidden = cortical_result['avg_hidden'] # [16, 128] for idx1, idx2 in combinations(idxs, 2): (x1, y1), (x2, y2) = idx2loc[idx1], idx2loc[idx2] samples.append((idx1, idx2)) grid_dist = np.sqrt((x1-x2)**2 + (y1-y2)**2) grid_dists.append(grid_dist) # Euclidean distance between embeddings emb1, emb2 = embeddings[idx1], embeddings[idx2] embed_dist = np.linalg.norm(emb1 - emb2) embed_dists.append(embed_dist) # Euclidean distance between hidden reps. if args.cortical_model=='stepwisemlp': hidd_dist = np.zeros([2]) hidd1, hidd2 = avg_hidden[0,idx1], avg_hidden[0,idx2] hidd_dist[0] = np.linalg.norm(hidd1 - hidd2) hidd1, hidd2 = avg_hidden[1,idx1], avg_hidden[1,idx2] hidd_dist[1] = np.linalg.norm(hidd1 - hidd2) else: hidd1, hidd2 = avg_hidden[idx1], avg_hidden[idx2] hidd_dist = np.linalg.norm(hidd1 - hidd2) hidd_dists.append(hidd_dist) # create on and off diagonal groups grid_angle = np.arctan2((y2-y1),(x2-x1)) grid_angles.append(grid_angle) phi = np.sin(2*grid_angle) if np.abs(phi)<1e-5: # for congrunet trials, # zero out those very close to zero angles # so it won't turn into 1 or -1 by sign cong = 0 else: cong = np.sign(phi) # 1: congruent, -1:incongruent, 0:none if cong==1: cong_hidd_dists.append(hidd_dist) cong_grid_dists.append(grid_dist) cong_embed_dists.append(embed_dist) cong_grid_angles.append(grid_angle) if cong==-1: incong_hidd_dists.append(hidd_dist) incong_grid_dists.append(grid_dist) incong_embed_dists.append(embed_dist) incong_grid_angles.append(grid_angle) grid_dists = np.array(grid_dists) # [(n_states*(nstates-1))/2]: [120] embed_dists = np.array(embed_dists) hidd_dists = np.array(hidd_dists) cong_grid_dists = np.array(cong_grid_dists) # [36] incong_grid_dists = np.array(incong_grid_dists) # [36] cong_hidd_dists = np.array(cong_hidd_dists) incong_hidd_dists = np.array(incong_hidd_dists) cong_embed_dists = np.array(cong_embed_dists) incong_embed_dists = np.array(incong_embed_dists) grid_angles = np.array(grid_angles) # [120] cong_grid_angles = np.array(cong_grid_angles) # [36] incong_grid_angles = np.array(incong_grid_angles) # [36] samples = np.array(samples) phi = np.sin(2*grid_angles) binary_phi = np.sign(phi) for i, p in enumerate(phi): if np.abs(p)<1e-5: binary_phi[i] = 0 cong_dist_results = {'cong_grid_dists': cong_grid_dists, 'cong_hidd_dists': cong_hidd_dists, 'cong_embed_dists': cong_embed_dists} incong_dist_results = {'incong_grid_dists': incong_grid_dists, 'incong_hidd_dists': incong_hidd_dists, 'incong_embed_dists': incong_embed_dists} angle_results = {'grid_angles': grid_angles, 'cong_grid_angles': cong_grid_angles, 'incong_grid_angles': incong_grid_angles, 'phi': phi, 'binary_phi': binary_phi} dist_results = {'samples': samples, 'grid_dists': grid_dists, 'embed_dists': embed_dists, 'hidd_dists':hidd_dists, 'cong_dist_results': cong_dist_results, 'incong_dist_results': incong_dist_results, 'angle_results': angle_results} return dist_results def analyze_dim_red(args, test_data, cortical_result, dist_results, n_components=2): method = args.dimred_method n_states = test_data.n_states loc2idx = test_data.loc2idx idx2loc = {idx:loc for loc, idx in loc2idx.items()} idxs = [idx for idx in range(n_states)] locs = [idx2loc[idx] for idx in idxs] embeddings = cortical_result['embeddings'] # [16, 32] hiddens_ctx = cortical_result['hiddens_ctx'] # [384, 128] or in stepwisemlp: [2,384,128] avg_hidden = cortical_result['avg_hidden'] # [16, 128] or in stepwisemlp: [2,16,128] avg_hidden_ctx = cortical_result['avg_hidden_ctx'] # [32, 128] or in stepwisemlp: [2,32,128] hiddens_inc_c = cortical_result['hiddens_inc_c'] # [288, 128] or in stepwisemlp: [2,288,128] # hiddens_ctx = np.asarray(hiddens_ctxs) # hiddens_ctxs = np.concatenate(hiddens_ctxs, axis=0).squeeze() # [384, 128] or [384, 3, 128] # if ((args.cortical_model == 'rnn') or (args.cortical_model == 'rnncell')): # hiddens_ctx = hiddens_ctx[:,-1, :] # avg_hidden_ctxs = np.concatenate(avg_hidden_ctxs, axis=0) # [32, 128] results = {} # PCA if method == 'pca': pca = PCA(n_components=n_components) pca_2d_embed = pca.fit_transform(embeddings) if args.cortical_model=='stepwisemlp': pca_2d_hidd = np.zeros([hiddens_ctx.shape[0], hiddens_ctx.shape[1], n_components]) pca_2d_avg_hidd = np.zeros([avg_hidden.shape[0], avg_hidden.shape[1], n_components]) pca_2d_ctx_hidd = np.zeros([avg_hidden_ctx.shape[0], avg_hidden_ctx.shape[1], n_components]) pca_2d_incong_cong = np.zeros([hiddens_inc_c.shape[0], hiddens_inc_c.shape[1], n_components]) for h in range(hiddens_ctx.shape[0]): pca_2d_hidd[h,:,:] = pca.fit_transform(hiddens_ctx[h,:,:]) # this is all the hiddens, no averaging for each face pca_2d_avg_hidd[h,:,:] = pca.fit_transform(avg_hidden[h,:,:]) pca_2d_ctx_hidd[h,:,:] = pca.fit_transform(avg_hidden_ctx[h,:,:]) pca_2d_incong_cong[h,:,:] = pca.fit_transform(hiddens_inc_c[h,:,:]) else: pca_2d_hidd = pca.fit_transform(hiddens_ctx) # this is all the hiddens, no averaging for each face pca_2d_avg_hidd = pca.fit_transform(avg_hidden) # I might need to save this at all pca_2d_ctx_hidd = pca.fit_transform(avg_hidden_ctx) pca_2d_incong_cong = pca.fit_transform(hiddens_inc_c) results = {'embed_2d': pca_2d_embed, 'hidd_2d': pca_2d_hidd, 'avg_hidd_2d': pca_2d_avg_hidd, 'ctx_hidd_2d': pca_2d_ctx_hidd, 'incong_cong_2d': pca_2d_incong_cong, 'grid_locations': locs, 'samples_res': cortical_result['samples_res']} elif method == 'mds': # MDS mds = MDS(n_components=n_components) mds_2d_embed = mds.fit_transform(embeddings) mds_2d_hidd = mds.fit_transform(hiddens_ctx) # this is all the hiddens, no averaging for each face mds_2d_avg_hidd = mds.fit_transform(avg_hidden) # I might need to save this at all mds_2d_ctx_hidd = mds.fit_transform(avg_hidden_ctx) mds_2d_incong_cong = mds.fit_transform(hiddens_inc_c) results = {'embed_2d': mds_2d_embed, 'hidd_2d': mds_2d_hidd, 'avg_hidd_2d': mds_2d_avg_hidd, 'ctx_hidd_2d': mds_2d_ctx_hidd, 'incong_cong_2d': mds_2d_incong_cong} elif method == 'tsne': # tSNE tsne = TSNE(n_components=n_components) tsne_2d_embed = tsne.fit_transform(embeddings) tsne_2d_hidd = tsne.fit_transform(hiddens_ctx) # this is all the hiddens, no averaging for each face tsne_2d_avg_hidd = tsne.fit_transform(avg_hidden) # I might need to save this at all tsne_2d_ctx_hidd = tsne.fit_transform(avg_hidden_ctx) tsne_2d_incong_cong = tsne.fit_transform(hiddens_inc_c) results = {'embed_2d': tsne_2d_embed, 'hidd_2d': tsne_2d_hidd, 'avg_hidd_2d': tsne_2d_avg_hidd, 'ctx_hidd_2d': tsne_2d_ctx_hidd, 'incong_cong_2d': tsne_2d_incong_cong} return results def hist_data(args, test_data, cortical_result, dist_results): # embeddings cong_embed_dists = dist_results['cong_dist_results']['cong_embed_dists'] incong_embed_dists = dist_results['incong_dist_results']['incong_embed_dists'] # hiddens cong_hidd_dists = dist_results['cong_dist_results']['cong_hidd_dists'] incong_hidd_dists = dist_results['incong_dist_results']['incong_hidd_dists'] dist_c_inc_results = {'cong_embed_dist': cong_embed_dists, 'incong_embed_dist': incong_embed_dists, 'cong_hidd_dist': cong_hidd_dists, 'incong_hidd_dist': incong_hidd_dists} return dist_c_inc_results def calc_ratio(args, test_data, cortical_result, dist_results): # embeddings cong_embed_dists = dist_results['cong_dist_results']['cong_embed_dists'] incong_embed_dists = dist_results['incong_dist_results']['incong_embed_dists'] avg_cong_embed = np.mean(cong_embed_dists) avg_incong_embed = np.mean(incong_embed_dists) ratio_embed = (avg_cong_embed/avg_incong_embed) # hiddens cong_hidd_dists = dist_results['cong_dist_results']['cong_hidd_dists'] incong_hidd_dists = dist_results['incong_dist_results']['incong_hidd_dists'] avg_cong_hidd = np.mean(cong_hidd_dists, axis=0) avg_incong_hidd = np.mean(incong_hidd_dists, axis=0) # ratio_hidd = (avg_cong_hidd/avg_incong_hidd) ratio_hidd = (avg_incong_hidd/avg_cong_hidd) ratio_results = {'ratio_embed': ratio_embed, 'ratio_hidd': ratio_hidd,\ 'avg_cong_hidd': avg_cong_hidd, 'avg_incong_hidd': avg_incong_hidd} return ratio_results def extract_hidd_dist(dist_results): # hiddens cong_hidd_dists = dist_results['cong_dist_results']['cong_hidd_dists'] incong_hidd_dists = dist_results['incong_dist_results']['incong_hidd_dists'] dist_result_hidd = {'cong_hidd_dists': cong_hidd_dists, 'incong_hidd_dists': incong_hidd_dists} return dist_result_hidd def analyze_ttest(args, test_data, cortical_result, dist_results): cong_res = dist_results['cong_dist_results'] incong_res = dist_results['incong_dist_results'] incong_hidd_dists = incong_res['incong_hidd_dists'] cong_hidd_dists = cong_res['cong_hidd_dists'] if args.cortical_model == 'stepwisemlp': t_hidd, t_p_val_hidd = np.zeros([2]), np.zeros([2]) for h in range(2): t_hidd[h], t_p_val_hidd[h] = ttest_ind(cong_hidd_dists[:,h], incong_hidd_dists[:,h]) else: t_hidd, t_p_val_hidd = ttest_ind(cong_res['cong_hidd_dists'], incong_res['incong_hidd_dists']) t_embed, t_p_val_embed = ttest_ind(cong_res['cong_embed_dists'], incong_res['incong_embed_dists']) t_grid, t_p_val_grid = ttest_ind(cong_res['cong_grid_dists'], incong_res['incong_grid_dists']) ttest_results = {'t_stat_hidd':t_hidd, 't_p_val_hidd': t_p_val_hidd, 't_stat_embed':t_embed, 't_p_val_embed': t_p_val_embed, 't_grid':t_grid, 't_p_val_grid': t_p_val_grid} return ttest_results def analyze_corr(args, test_data, cortical_result, dist_results): grid_dists = dist_results['grid_dists'] embed_dists = dist_results['embed_dists'] hidd_dists = dist_results['hidd_dists'] cong_res = dist_results['cong_dist_results'] incong_res = dist_results['incong_dist_results'] r_embed, p_val_embed = pearsonr(grid_dists, embed_dists) if args.cortical_model == 'stepwisemlp': r_hidd, p_val_hidd = np.zeros([2]), np.zeros([2]) r_cong_hidd, p_val_cong_hidd, r_incong_hidd, p_val_incong_hidd = \ np.zeros([2]), np.zeros([2]), np.zeros([2]), np.zeros([2]) cong_hidd_dists, incong_hidd_dists = cong_res['cong_hidd_dists'], \ incong_res['incong_hidd_dists'] for h in range(2): r_hidd[h], p_val_hidd[h] = pearsonr(grid_dists, hidd_dists[:,h]) r_cong_hidd[h], p_val_cong_hidd[h] = pearsonr(cong_res['cong_grid_dists'], cong_hidd_dists[:,h]) r_incong_hidd[h], p_val_incong_hidd[h] = pearsonr(incong_res['incong_grid_dists'], incong_hidd_dists[:,h]) else: r_hidd, p_val_hidd = pearsonr(grid_dists, hidd_dists) r_cong_hidd, p_val_cong_hidd = pearsonr(cong_res['cong_grid_dists'], cong_res['cong_hidd_dists']) r_incong_hidd, p_val_incong_hidd = pearsonr(incong_res['incong_grid_dists'], incong_res['incong_hidd_dists']) r_cong_embed, p_val_cong_embed = pearsonr(cong_res['cong_grid_dists'], cong_res['cong_embed_dists']) r_incong_embed, p_val_incong_embed = pearsonr(incong_res['incong_grid_dists'], incong_res['incong_embed_dists']) corr_results = {'r_embed': r_embed, 'p_val_embed': p_val_embed, 'r_cong_embed': r_cong_embed, 'p_val_cong_embed': p_val_cong_embed, 'r_incong_embed': r_incong_embed, 'p_val_incong_embed': p_val_incong_embed, 'r_hidd': r_hidd, 'p_val_hidd': p_val_hidd, 'r_cong_hidd': r_cong_hidd, 'p_val_cong_hidd': p_val_cong_hidd, 'r_incong_hidd': r_incong_hidd, 'p_val_incong_hidd': p_val_incong_hidd} return corr_results def analyze_regression(args, test_data, cortical_result, dist_results): hidd_dists = dist_results['hidd_dists'] grid_dists = dist_results['grid_dists'] phi = dist_results['angle_results']['phi'] binary_phi = dist_results['angle_results']['binary_phi'] # prepare data for the regression analysis x_cat = np.concatenate((grid_dists.reshape((-1,1)), binary_phi.reshape((-1,1))),axis=1) x_con = np.concatenate((grid_dists.reshape((-1,1)), phi.reshape((-1,1))),axis=1) # categorical regression analysis x_cat = sm.add_constant(x_cat) if args.cortical_model == 'stepwisemlp': p_val, t_val, param, bse = ([[] for i in range(2)] for i in range(4)) y_hat_E = np.zeros(hidd_dists.shape) y = np.zeros(hidd_dists.shape) for h in range(2): y[:,h] = hidd_dists[:,h] y_hat_E[:,h], p_val[h], t_val[h], param[h], bse[h] = run_regression(x_cat,y[:,h],grid_dists) else: y = hidd_dists y_hat_E, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) cat_reg = {'p_val': p_val, 't_val': t_val, 'param': param, 'y_hat_E': y_hat_E, 'y': y, 'bse': bse} # continuous regression analysis x_con = sm.add_constant(x_con) if args.cortical_model == 'stepwisemlp': p_val, t_val, param, bse = ([[] for i in range(2)] for i in range(4)) y_hat_E = np.zeros(hidd_dists.shape) y = np.zeros(hidd_dists.shape) for h in range(2): y[:,h] = hidd_dists[:,h] y_hat_E[:,h], p_val[h], t_val[h], param[h], bse[h] = run_regression(x_con,y[:,h],grid_dists) else: y = hidd_dists y_hat_E, p_val, t_val, param, bse = run_regression(x_con,y,grid_dists) con_reg = {'p_val': p_val, 't_val': t_val, 'param': param, 'y_hat_E': y_hat_E, 'y': y, 'bse': bse} reg_results = {'cat_reg': cat_reg, 'con_reg': con_reg} return reg_results def run_regression(x,y,grid_dist): stats_model = sm.OLS(y,x).fit() y_hat_E = stats_model.params[0] + (stats_model.params[1]*grid_dist) p_val, t_val, param, bse = stats_model.pvalues, stats_model.tvalues, \ stats_model.params, stats_model.bse return y_hat_E, p_val, t_val, param, bse def analyze_regression_1D(args, test_data, cortical_result, dist_results): # make sure dist_results is dist_ctx_results hidd_dists_ctxs = dist_results['hidd_dists_ctxs'] hidd_dists_ctx0 = hidd_dists_ctxs[0] hidd_dists_ctx1 = hidd_dists_ctxs[1] grid_1ds_ctxs = dist_results['grid_1ds_ctxs'] grid_1ds_ctx0 = grid_1ds_ctxs[0] grid_1ds_ctx1 = grid_1ds_ctxs[1] grid_dists = dist_results['grid_dists'] phi = dist_results['angle_results']['phi'] binary_phi = dist_results['angle_results']['binary_phi'] hidd_dists_ctx = np.concatenate((hidd_dists_ctx0, hidd_dists_ctx1), axis=0) grid_1ds_ctx = np.concatenate((grid_1ds_ctx0, grid_1ds_ctx1), axis=0) grid_dists_ctx = np.concatenate((grid_dists, grid_dists), axis=0) binary_phi_ctx = np.concatenate((binary_phi, binary_phi), axis=0) phi_ctx = np.concatenate((phi, phi), axis=0) # prepare data for the regression analysis x_cat = np.concatenate((grid_dists_ctx.reshape((-1,1)), grid_1ds_ctx.reshape((-1,1)), binary_phi_ctx.reshape((-1,1))),axis=1) # [240, 3] x_con = np.concatenate((grid_dists_ctx.reshape((-1,1)), grid_1ds_ctx.reshape((-1,1)), phi_ctx.reshape((-1,1))),axis=1) # categorical regression analysis x_cat = sm.add_constant(x_cat) if args.cortical_model == 'stepwisemlp': p_val, t_val, param, y_hat_E, y, bse = ([[] for i in range(2)] for i in range(6)) y_hat_E = np.zeros(hidd_dists_ctx.shape) y = np.zeros(hidd_dists_ctx.shape) for h in range(2): y[:,h] = hidd_dists_ctx[:,h] y_hat_E[:,h], p_val[h], t_val[h], param[h], bse[h] = run_regression(x_cat,y[:,h],grid_dists_ctx) else: y = hidd_dists_ctx y_hat_E, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists_ctx) cat_reg = {'p_val': p_val, 't_val': t_val, 'param': param, 'y_hat_E': y_hat_E, 'y': y, 'bse': bse} # continuous regression analysis x_con = sm.add_constant(x_con) if args.cortical_model == 'stepwisemlp': p_val, t_val, param, bse = ([[] for i in range(2)] for i in range(4)) y_hat_E = np.zeros(hidd_dists_ctx.shape) y = np.zeros(hidd_dists_ctx.shape) for h in range(2): y[:,h] = hidd_dists_ctx[:,h] y_hat_E[:,h], p_val[h], t_val[h], param[h], bse[h] = run_regression(x_con,y[:,h],grid_dists_ctx) else: y = hidd_dists_ctx y_hat_E, p_val, t_val, param, bse = run_regression(x_con,y,grid_dists_ctx) con_reg = {'p_val': p_val, 't_val': t_val, 'param': param, 'y_hat_E': y_hat_E, 'y': y, 'bse': bse} reg_results = {'cat_reg': cat_reg, 'con_reg': con_reg} return reg_results def analyze_regression_exc(args, test_data, cortical_result, dist_results): # Useful dictionaries from test dataset n_states = test_data.n_states hidd_dists = dist_results['hidd_dists'] #[n_combinations]: [120] grid_dists = dist_results['grid_dists'] binary_phi = dist_results['angle_results']['binary_phi'] # [120] samples = dist_results['samples'] # [120, 2] states=[] if args.cortical_model=='stepwisemlp': p_vals, t_vals, params, bses = ([[] for i in range(2)] for i in range(4)) else: p_vals, t_vals, params, bses = ([] for i in range(4)) for state in range(n_states): s_idxs = [i for i, sample in enumerate(samples) if state not in sample] # [105] # prepare data for the regression analysis x_cat = np.concatenate((grid_dists[s_idxs].reshape((-1,1)), binary_phi[s_idxs].reshape((-1,1))),axis=1) # regression analysis x_cat = sm.add_constant(x_cat) if args.cortical_model == 'stepwisemlp': for h in range(2): y = hidd_dists[s_idxs,h] _ , p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals[h].append(p_val) t_vals[h].append(t_val) params[h].append(param) bses[h].append(bse) else: y = hidd_dists[s_idxs] _, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals.append(p_val) t_vals.append(t_val) params.append(param) bses.append(bse) states.append(state) # regression analysis - after removing (0,0) and (3,3) s_idxs = [i for i, sample in enumerate(samples) if ((0 not in sample) & (15 not in sample))] # [91] x_cat = np.concatenate((grid_dists[s_idxs].reshape((-1,1)), binary_phi[s_idxs].reshape((-1,1))),axis=1) x_cat = sm.add_constant(x_cat) if args.cortical_model == 'stepwisemlp': for h in range(2): y = hidd_dists[s_idxs,h] _, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals[h].append(p_val) t_vals[h].append(t_val) params[h].append(param) bses[h].append(bse) else: y = hidd_dists[s_idxs] _, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals.append(p_val) t_vals.append(t_val) params.append(param) bses.append(bse) states.append(16) # regression analysis - after removing (0,0) and (3,3), (3,0) and (0.3) s_idxs = [i for i, sample in enumerate(samples) if ((0 not in sample) & (15 not in sample) & (3 not in sample) & (12 not in sample))] #[66] x_cat = np.concatenate((grid_dists[s_idxs].reshape((-1,1)), binary_phi[s_idxs].reshape((-1,1))),axis=1) x_cat = sm.add_constant(x_cat) if args.cortical_model == 'stepwisemlp': for h in range(2): y = hidd_dists[s_idxs,h] _, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals[h].append(p_val) t_vals[h].append(t_val) params[h].append(param) bses[h].append(bse) else: y = hidd_dists[s_idxs] _, p_val, t_val, param, bse = run_regression(x_cat,y,grid_dists) p_vals.append(p_val) t_vals.append(t_val) params.append(param) bses.append(bse) states.append(17) states = np.array(states) p_vals = np.array(p_vals) t_vals = np.array(t_vals) params = np.array(params) bses = np.array(bses) exc_reg_results = {'excluded_states': states, 'p_vals': p_vals, 't_vals': t_vals, 'params': params, 'bses': bses} return exc_reg_results def analyze_test_seq(args, test_data, cortical_result, dist_results): import sys sys.path.append("..") data = get_loaders(batch_size=32, meta=False, use_images=True, image_dir='./images/', n_episodes=None, N_responses=args.N_responses, N_contexts=args.N_contexts, cortical_task = args.cortical_task, #ToDo:check why it was set to cortical_task='face_task', balanced = args.balanced) train_data, train_loader, test_data, test_loader, analyze_data, analyze_loader = data idx2loc = {idx:loc for loc, idx in test_data.loc2idx.items()} # ctx_order = 'first' # ctx_order_str = 'ctxF' analyze_correct = cortical_result['analyze_correct'] # [n_trials, time_steps]: [384, 3] analyze_correct = np.asarray(analyze_correct).squeeze() hidd_t_idx = 1 # at what time step, t = 1 means at the time of face1 # and t = 2 means at the time of face2 # in axis First (axis is at t=0), it should be t = 1 # create groups based on the row or columns # e.g, for context0 (xaxis), first column is group 1, sec col is group 2, and so on. # 4 groups for each axis/context; total 8 groups # ToDo: why it is always loc1??? ctx0_g0=[] ctx0_g1=[] ctx0_g2=[] ctx0_g3=[] ctx1_g0=[] ctx1_g1=[] ctx1_g2=[] ctx1_g3=[] for i, batch in enumerate(analyze_loader): if args.cortical_task == 'face_task': f1, f2, ctx, y, idx1, idx2 = batch # face1, face2, context, y, index1, index2 elif args.cortical_task == 'wine_task': f1, f2, ctx, y1, y2, idx1, idx2 = batch # face1, face2, context, y1, y2, index1, index2 msg = 'analyze_test_seq is only implemented for one response, two contexts' assert args.N_responses == 'one' and args.N_contexts == 2, msg if args.N_responses == 'one': y = y1 # f1, f2, ax, y, idx1, idx2 = batch acc = analyze_correct[i][hidd_t_idx] ctx = ctx.cpu().numpy().squeeze() idx1 = idx1[0] idx2 = idx2[0] loc1 = idx2loc[idx1] loc2 = idx2loc[idx2] if ctx==0: if loc1[ctx]==0: ctx0_g0.append(acc) # (len(all_perms)/2) / 4 = [48] elif loc1[ctx]==1: ctx0_g1.append(acc) elif loc1[ctx]==2: ctx0_g2.append(acc) elif loc1[ctx]==3: ctx0_g3.append(acc) elif ctx==1: if loc1[ctx]==0: ctx1_g0.append(acc) elif loc1[ctx]==1: ctx1_g1.append(acc) elif loc1[ctx]==2: ctx1_g2.append(acc) elif loc1[ctx]==3: ctx1_g3.append(acc) ctx0_accs = [np.mean(ctx0_g0), np.mean(ctx0_g1), np.mean(ctx0_g2), np.mean(ctx0_g3) ] ctx1_accs = [np.mean(ctx1_g0), np.mean(ctx1_g1), np.mean(ctx1_g2), np.mean(ctx1_g3) ] # print('Accuracy at t=%s (face%s) contex 0:' %(hidd_t_idx,hidd_t_idx), ctx0_accs) # print('Accuracy at t=%s (face%s) contex 1:' %(hidd_t_idx,hidd_t_idx), ctx1_accs) return ctx0_accs, ctx1_accs
[ [ [ 35, 42 ] ], [ [ 50, 55 ], [ 655, 660 ], [ 729, 734 ], [ 5129, 5134 ] ], [ [ 64, 75 ], [ 867, 869 ], [ 1291, 1293 ], [ 1369, 1371 ], [ 1410, 1412 ], [ 1462, 1464 ], [ 2037, 2039 ], [ 3623, 3625 ], [ 5433, 5435 ], [ 6086, 6088 ], [ 6132, 6134 ], [ 6168, 6170 ], [ 6409, 6411 ], [ 8270, 8272 ], [ 8770, 8772 ], [ 8827, 8829 ], [ 9153, 9155 ], [ 9168, 9170 ], [ 9338, 9340 ], [ 9491, 9493 ], [ 9754, 9756 ], [ 10152, 10154 ], [ 10276, 10278 ], [ 10345, 10347 ], [ 10436, 10438 ], [ 10502, 10504 ], [ 10662, 10664 ], [ 10860, 10862 ], [ 10994, 10996 ], [ 11175, 11177 ], [ 11642, 11644 ], [ 11706, 11708 ], [ 11714, 11716 ], [ 11773, 11775 ], [ 11781, 11783 ], [ 11862, 11864 ], [ 12102, 12104 ], [ 12453, 12455 ], [ 12816, 12818 ], [ 12957, 12959 ], [ 13219, 13221 ], [ 13563, 13565 ], [ 13651, 13653 ], [ 14154, 14156 ], [ 14269, 14271 ], [ 14418, 14420 ], [ 16913, 16915 ], [ 17440, 17442 ], [ 17520, 17522 ], [ 17566, 17568 ], [ 17694, 17696 ], [ 19253, 19255 ], [ 19509, 19511 ], [ 19646, 19648 ], [ 19799, 19801 ], [ 19961, 19963 ], [ 20293, 20295 ], [ 20386, 20388 ], [ 20479, 20481 ], [ 20554, 20556 ], [ 20598, 20600 ], [ 20638, 20640 ], [ 20747, 20749 ], [ 20786, 20788 ], [ 20842, 20844 ], [ 22169, 22171 ], [ 22364, 22366 ], [ 22552, 22554 ], [ 22659, 22661 ], [ 22782, 22784 ], [ 22912, 22914 ], [ 23044, 23046 ], [ 23125, 23127 ], [ 23157, 23159 ], [ 23373, 23375 ], [ 23873, 23875 ], [ 23948, 23950 ], [ 23987, 23989 ], [ 24030, 24032 ], [ 24087, 24089 ], [ 24144, 24146 ], [ 24194, 24196 ], [ 24245, 24247 ], [ 24297, 24299 ], [ 24344, 24346 ], [ 24397, 24399 ], [ 24456, 24458 ], [ 24506, 24508 ], [ 24535, 24537 ], [ 24574, 24576 ], [ 24630, 24632 ], [ 27007, 27009 ], [ 27106, 27108 ], [ 27203, 27205 ], [ 27311, 27313 ], [ 30959, 30961 ], [ 31008, 31010 ], [ 31283, 31285 ], [ 31338, 31340 ], [ 32361, 32363 ], [ 32376, 32378 ], [ 33639, 33641 ], [ 33654, 33656 ], [ 33757, 33759 ], [ 33772, 33774 ], [ 33787, 33789 ], [ 33802, 33804 ], [ 36164, 36166 ], [ 36256, 36258 ], [ 36544, 36546 ], [ 36583, 36585 ], [ 37290, 37292 ], [ 37329, 37331 ], [ 38833, 38835 ], [ 38911, 38913 ], [ 38987, 38989 ], [ 39057, 39059 ], [ 39120, 39122 ], [ 39214, 39216 ], [ 39383, 39385 ], [ 39753, 39755 ], [ 39796, 39798 ], [ 40515, 40517 ], [ 40558, 40560 ], [ 41955, 41957 ], [ 42946, 42948 ], [ 43944, 43946 ], [ 44665, 44667 ], [ 44695, 44697 ], [ 44725, 44727 ], [ 44755, 44757 ], [ 44783, 44785 ], [ 45898, 45900 ], [ 47814, 47816 ], [ 47832, 47834 ], [ 47867, 47869 ], [ 47885, 47887 ], [ 47921, 47923 ], [ 47939, 47941 ], [ 47974, 47976 ], [ 47992, 47994 ] ], [ [ 83, 89 ] ], [ [ 112, 124 ], [ 19115, 19127 ], [ 22031, 22043 ] ], [ [ 126, 138 ] ], [ [ 173, 176 ], [ 26850, 26853 ] ], [ [ 206, 209 ], [ 28582, 28585 ] ], [ [ 211, 215 ], [ 29295, 29299 ] ], [ [ 240, 248 ], [ 33531, 33539 ], [ 34035, 34043 ], [ 34122, 34130 ], [ 34299, 34307 ], [ 34498, 34506 ], [ 34570, 34578 ], [ 34729, 34737 ], [ 34893, 34901 ], [ 35047, 35055 ] ], [ [ 250, 259 ], [ 32460, 32469 ], [ 32559, 32568 ], [ 32700, 32709 ], [ 32843, 32852 ] ], [ [ 267, 288 ], [ 36380, 36382 ], [ 37126, 37128 ], [ 37979, 37981 ], [ 39577, 39579 ], [ 40351, 40353 ], [ 42097, 42099 ], [ 43054, 43056 ], [ 44052, 44054 ] ], [ [ 309, 320 ], [ 45183, 45194 ] ], [ [ 322, 330 ], [ 20164, 20172 ] ], [ [ 336, 352 ] ], [ [ 3809, 3825 ] ], [ [ 15485, 15497 ] ], [ [ 16089, 16114 ] ], [ [ 16759, 16770 ] ], [ [ 18411, 18424 ] ], [ [ 21293, 21302 ] ], [ [ 25678, 25693 ] ], [ [ 29991, 30000 ] ], [ [ 30701, 30711 ] ], [ [ 31666, 31683 ] ], [ [ 32007, 32020 ] ], [ [ 33201, 33213 ] ], [ [ 35841, 35859 ] ], [ [ 37930, 37944 ], [ 36739, 36753 ], [ 36856, 36870 ], [ 37485, 37499 ], [ 37602, 37616 ], [ 39960, 39974 ], [ 40085, 40099 ], [ 40722, 40736 ], [ 40847, 40861 ], [ 42288, 42302 ], [ 42570, 42584 ], [ 43228, 43242 ], [ 43482, 43496 ], [ 44228, 44242 ], [ 44482, 44496 ] ], [ [ 38270, 38291 ] ], [ [ 41172, 41194 ] ], [ [ 45065, 45081 ] ] ]
from hummingbot.client.config.config_var import ConfigVar from hummingbot.client.config.config_validators import ( validate_exchange, validate_market_trading_pair, ) from hummingbot.client.settings import ( required_exchanges, EXAMPLE_PAIRS, ) from typing import Optional def symbol_prompt(): exchange = dev_5_vwap_config_map.get("exchange").value example = EXAMPLE_PAIRS.get(exchange) return "Enter the trading pair you would like to trade on %s%s >>> " \ % (exchange, f" (e.g. {example})" if example else "") def str2bool(value: str): return str(value).lower() in ("yes", "true", "t", "1") # checks if the symbol pair is valid def validate_market_trading_pair_tuple(value: str) -> Optional[str]: market = dev_5_vwap_config_map.get("exchange").value return validate_market_trading_pair(market, value) def order_percent_of_volume_prompt(): percent_slippage = dev_5_vwap_config_map.get("percent_slippage").value return ("What percent of open order volume up to %s percent slippage do you want" % percent_slippage + "each order to be? (default is 100 percent)? >>> ") dev_5_vwap_config_map = { "strategy": ConfigVar(key="strategy", prompt="", default="dev_5_vwap"), "exchange": ConfigVar(key="exchange", prompt="Enter the name of the exchange >>> ", validator=validate_exchange, on_validated=lambda value: required_exchanges.append(value), prompt_on_new=True), "market": ConfigVar(key="market", prompt=symbol_prompt, validator=validate_market_trading_pair_tuple, prompt_on_new=True), "order_type": ConfigVar(key="order_type", prompt="Enter type of order (limit/market) default is market >>> ", type_str="str", validator=lambda v: None if v in {"limit", "market", ""} else "Invalid order type.", default="market"), "order_amount": ConfigVar(key="order_amount", prompt="What is your preferred quantity (denominated in the base asset, default is 1)? " ">>> ", default=1.0, type_str="float"), "is_buy": ConfigVar(key="is_buy", prompt="Enter True for Buy order and False for Sell order (default is Buy Order) >>> ", type_str="bool", default=True), "is_vwap": ConfigVar(key="is_vwap", prompt="Would you like to use VWAP or TWAP? (default is VWAP) >>> ", type_str="bool", default=True), "num_individual_orders": ConfigVar(key="num_individual_orders", prompt="Into how many individual orders do you want to split this order? (Enter 10 to indicate 10 individual orders. " "Default is 1)? >>> ", required_if=lambda: dev_5_vwap_config_map.get("is_vwap").value is False, type_str="float", default=1), "percent_slippage": ConfigVar(key="percent_slippage", prompt="What percent of price do you want to calculate open order volume? (default is 0 percent slippage) >>> ", required_if=lambda: dev_5_vwap_config_map.get("is_vwap").value is True, type_str="float", default=0.1), "order_percent_of_volume": ConfigVar(key="order_percent_of_volume", prompt=order_percent_of_volume_prompt, required_if=lambda: dev_5_vwap_config_map.get("is_vwap").value is True, type_str="float", default=0.01), "time_delay": ConfigVar(key="time_delay", prompt="How many seconds do you want to wait between each individual order? (Enter 10 to indicate 10 seconds. " "Default is 10)? >>> ", type_str="float", default=10), "order_price": ConfigVar(key="order_price", prompt="What is the price of the limit order ? >>> ", required_if=lambda: dev_5_vwap_config_map.get("order_type").value == "limit", type_str="float"), "cancel_order_wait_time": ConfigVar(key="cancel_order_wait_time", prompt="How long do you want to wait before cancelling your limit order (in seconds). " "(Default is 60 seconds) ? >>> ", required_if=lambda: dev_5_vwap_config_map.get("order_type").value == "limit", type_str="float", default=60), }
[ [ [ 48, 57 ], [ 1197, 1206 ], [ 1317, 1326 ], [ 1594, 1603 ], [ 1787, 1796 ], [ 2103, 2112 ], [ 2363, 2372 ], [ 2584, 2593 ], [ 2801, 2810 ], [ 3214, 3223 ], [ 3576, 3585 ], [ 3859, 3868 ], [ 4160, 4169 ], [ 4432, 4441 ] ], [ [ 119, 136 ], [ 1435, 1452 ] ], [ [ 142, 170 ], [ 815, 843 ] ], [ [ 219, 237 ], [ 1499, 1517 ] ], [ [ 243, 256 ], [ 384, 397 ] ], [ [ 279, 287 ], [ 732, 740 ] ], [ [ 294, 307 ], [ 1643, 1656 ] ], [ [ 558, 566 ] ], [ [ 682, 716 ], [ 1686, 1720 ] ], [ [ 865, 895 ], [ 3642, 3672 ] ], [ [ 1147, 1168 ], [ 326, 347 ], [ 760, 781 ], [ 922, 943 ], [ 3063, 3084 ], [ 3417, 3438 ], [ 3712, 3733 ], [ 4299, 4320 ], [ 4675, 4696 ] ] ]
from django.views.generic import View from django.http import HttpResponse from django.conf import settings import os class ReactAppView(View): def get(self, request): try: with open(os.path.join(str(settings.ROOT_DIR), 'frontend', 'build', 'index.html')) as file: return HttpResponse(file.read()) except: return HttpResponse( """ index.html not found ! build your React App! """, status=501, )
[ [ [ 33, 37 ], [ 139, 143 ] ], [ [ 62, 74 ], [ 315, 327 ], [ 377, 389 ] ], [ [ 99, 107 ], [ 227, 235 ] ], [ [ 115, 117 ], [ 210, 212 ] ], [ [ 126, 138 ] ] ]
# Auto generated by generator.py. Delete this line if you make modification. from scrapy.spiders import Rule from scrapy.linkextractors import LinkExtractor XPATH = { 'name' : "//div[@class='ProductMain']/div[@class='product-title']/h1", 'price' : "//div[@class='Row Price']/div[@class='ProductPrice VariationProductPrice']", 'category' : "//div[@id='Breadcrumb']/ul/li/a", 'description' : "//div[@id='ProductDescription']/div[@class='ProductDescriptionContainer']", 'images' : "//div[@class='ProductThumbImage']/a/@href", 'canonical' : "//link[@rel='canonical']/@href", 'base_url' : "", 'brand' : "" } name = 'dcmobile.vn' allowed_domains = ['dcmobile.vn'] start_urls = ['http://dcmobile.vn/'] tracking_url = '' sitemap_urls = [''] sitemap_rules = [('', 'parse_item')] sitemap_follow = [] rules = [ Rule(LinkExtractor(allow = ['/[a-zA-Z0-9-]+-\d+\.html$']), 'parse_item'), Rule(LinkExtractor(deny = ['/ban-tin'], allow = ['/[a-zA-Z0-9-]+-b+\d+\.html']), 'parse'), #Rule(LinkExtractor(), 'parse_item_and_links'), ]
[ [ [ 104, 108 ], [ 837, 841 ], [ 915, 919 ] ], [ [ 143, 156 ], [ 842, 855 ], [ 920, 933 ] ], [ [ 158, 163 ] ], [ [ 636, 640 ] ], [ [ 657, 672 ] ], [ [ 691, 701 ] ], [ [ 728, 740 ] ], [ [ 746, 758 ] ], [ [ 766, 779 ] ], [ [ 803, 817 ] ], [ [ 823, 828 ] ] ]
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Copyright (c) 2017 The Ravencoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test using named arguments for RPCs.""" from test_framework.test_framework import BayemcoinTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) class NamedArgumentTest(BayemcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def run_test(self): node = self.nodes[0] h = node.help(command='getinfo') assert(h.startswith('getinfo\n')) assert_raises_jsonrpc(-8, 'Unknown named parameter', node.help, random='getinfo') h = node.getblockhash(height=0) node.getblock(blockhash=h) assert_equal(node.echo(), []) assert_equal(node.echo(arg0=0,arg9=9), [0] + [None]*8 + [9]) assert_equal(node.echo(arg1=1), [None, 1]) assert_equal(node.echo(arg9=None), [None]*10) assert_equal(node.echo(arg0=0,arg3=3,arg9=9), [0] + [None]*2 + [3] + [None]*5 + [9]) if __name__ == '__main__': NamedArgumentTest().main()
[ [ [ 346, 368 ], [ 477, 499 ] ], [ [ 407, 419 ], [ 873, 885 ], [ 911, 923 ], [ 980, 992 ], [ 1031, 1043 ], [ 1085, 1097 ] ], [ [ 425, 448 ] ], [ [ 459, 476 ], [ 1202, 1219 ] ] ]
# coding: utf-8 """ """ import pandas as pd import numpy as np import cv2 # Used to manipulated the images from scipy.signal import wiener np.random.seed(1207) # The seed I used - pick your own or comment out for a random seed. A constant seed allows for better comparisons though # Import Keras from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers import Conv2D, MaxPooling2D from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau from keras.layers.normalization import BatchNormalization from keras.optimizers import Adam from sklearn.model_selection import train_test_split # ## Load Training Data # In[2]: df_train = pd.read_json('./input/train.json') # this is a dataframe # Need to reshape and feature scale the images: # In[3]: def get_scaled_imgs(df): imgs = [] for i, row in df.iterrows(): band_1 = np.array(row['band_1']) band_2 = np.array(row['band_2']) #make 75x75 image band_1 = band_1.reshape(75, 75) band_2 = band_2.reshape(75, 75) #band_3 = band_1 + band_2 # plus since log(x*y) = log(x) + log(y) # Rescale a = (band_1 - band_1.mean()) / (band_1.max() - band_1.min()) b = (band_2 - band_2.mean()) / (band_2.max() - band_2.min()) #c = (band_3 - band_3.mean()) / (band_3.max() - band_3.min()) imgs.append(np.dstack((a, b))) return np.array(imgs) def get_more_images(imgs): more_images = [] vert_flip_imgs = [] hori_flip_imgs = [] for i in range(0,imgs.shape[0]): a=imgs[i,:,:,0] b=imgs[i,:,:,1] #c=imgs[i,:,:,2] av=cv2.flip(a,1) ah=cv2.flip(a,0) bv=cv2.flip(b,1) bh=cv2.flip(b,0) #cv=cv2.flip(c,1) #ch=cv2.flip(c,0) #vert_flip_imgs.append(np.dstack((av, bv, cv))) #hori_flip_imgs.append(np.dstack((ah, bh, ch))) vert_flip_imgs.append(np.dstack((av, bv))) hori_flip_imgs.append(np.dstack((ah, bh))) v = np.array(vert_flip_imgs) h = np.array(hori_flip_imgs) more_images = np.concatenate((imgs,v,h)) return more_images def getModel(): #Build keras model model=Sequential() # CNN 1 model.add(Conv2D(64, kernel_size=(3, 3),activation='relu', input_shape=(75, 75, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu' )) model.add(Conv2D(64, kernel_size=(3, 3), activation='relu' )) model.add(MaxPooling2D(pool_size=(3, 3), strides=(2, 2))) # CNN 2 model.add(Conv2D(128, kernel_size=(3, 3), activation='relu' )) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu' )) model.add(Conv2D(128, kernel_size=(3, 3), activation='relu' )) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) #model.add(Dropout(0.2)) # CNN 3 model.add(Conv2D(128, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) #model.add(Dropout(0.2)) #CNN 4 model.add(Conv2D(256, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) # You must flatten the data for the dense layers model.add(Flatten()) #Dense 1 model.add(Dense(1024, activation='relu')) model.add(Dropout(0.5)) #Dense 2 model.add(Dense(256, activation='relu')) model.add(Dropout(0.2)) # Output model.add(Dense(1, activation="sigmoid")) optimizer = Adam(lr=0.0001, decay=0.0) model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model Xtrain = get_scaled_imgs(df_train) Ytrain = np.array(df_train['is_iceberg']) df_train.inc_angle = df_train.inc_angle.replace('na',0) idx_tr = np.where(df_train.inc_angle>0) Ytrain = Ytrain[idx_tr[0]] Xtrain = Xtrain[idx_tr[0],...] #Xtr_more = get_more_images(Xtrain) #Ytr_more = np.concatenate((Ytrain,Ytrain,Ytrain)) X_train, X_valid, y_train, y_valid = train_test_split(Xtrain, Ytrain, test_size=0.1) X_train_more = get_more_images(X_train) y_train_more = np.concatenate([y_train, y_train, y_train]) X_valid_more = get_more_images(X_valid) y_valid_more = np.concatenate([y_valid, y_valid, y_valid]) model = getModel() model.summary() batch_size = 32 model_file = '.mdl_2l2_wts.hdf5' early_stopping = EarlyStopping(monitor='val_loss', patience=10, verbose=0, mode='min') mcp_save = ModelCheckpoint(model_file, save_best_only=True, monitor='val_loss', mode='min') reduce_lr_loss = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=5, verbose=1, epsilon=1e-6, mode='min') #model.fit(Xtr_more, Ytr_more, batch_size=batch_size, epochs=50, verbose=1, callbacks=[earlyStopping, mcp_save, reduce_lr_loss], validation_split=0.25) #model.fit(Xtr_more, Ytr_more, batch_size=batch_size, epochs=60, verbose=1, callbacks=[mcp_save, reduce_lr_loss], validation_split=0.2) model.fit(X_train_more, y_train_more, batch_size=32, epochs=60, verbose=1, callbacks=[mcp_save, reduce_lr_loss], validation_data=(X_valid, y_valid)) model.load_weights(filepath = model_file) score = model.evaluate(Xtrain, Ytrain, verbose=1) print('Train score:', score[0]) print('Train accuracy:', score[1]) df_test = pd.read_json('./input/test.json') df_test.inc_angle = df_test.inc_angle.replace('na',0) Xtest = (get_scaled_imgs(df_test)) pred_test = model.predict(Xtest) submission = pd.DataFrame({'id': df_test["id"], 'is_iceberg': pred_test.reshape((pred_test.shape[0]))}) print(submission.head(10)) submission.to_csv('sub-2bands-nodrop-aug.csv', index=False)
[ [ [ 36, 48 ], [ 722, 724 ], [ 5353, 5355 ], [ 5523, 5525 ] ], [ [ 57, 68 ], [ 148, 150 ], [ 3752, 3754 ], [ 3850, 3852 ], [ 4171, 4173 ], [ 4270, 4272 ], [ 935, 937 ], [ 976, 978 ], [ 1437, 1439 ], [ 1468, 1470 ], [ 2017, 2019 ], [ 2068, 2070 ], [ 2104, 2106 ], [ 2137, 2139 ], [ 2188, 2190 ] ], [ [ 77, 80 ], [ 1725, 1728 ], [ 1750, 1753 ], [ 1775, 1778 ], [ 1800, 1803 ] ], [ [ 140, 146 ] ], [ [ 332, 342 ], [ 2299, 2309 ] ], [ [ 368, 373 ], [ 3342, 3347 ], [ 3430, 3435 ], [ 3518, 3523 ] ], [ [ 375, 382 ], [ 3388, 3395 ], [ 3475, 3482 ] ], [ [ 384, 391 ], [ 3303, 3310 ] ], [ [ 393, 403 ] ], [ [ 429, 435 ], [ 2343, 2349 ], [ 2432, 2438 ], [ 2498, 2504 ], [ 2643, 2649 ], [ 2710, 2716 ], [ 2777, 2783 ], [ 2948, 2954 ], [ 3117, 3123 ] ], [ [ 437, 449 ], [ 2564, 2576 ], [ 2844, 2856 ], [ 3014, 3026 ], [ 3183, 3195 ] ], [ [ 478, 491 ], [ 4419, 4432 ] ], [ [ 493, 508 ], [ 4500, 4515 ] ], [ [ 510, 527 ], [ 4598, 4615 ] ], [ [ 567, 585 ] ], [ [ 615, 619 ], [ 3567, 3571 ] ], [ [ 656, 672 ], [ 4067, 4083 ] ], [ [ 711, 719 ], [ 3733, 3741 ], [ 3761, 3769 ], [ 3806, 3814 ], [ 3785, 3793 ], [ 3859, 3867 ] ], [ [ 845, 860 ], [ 3717, 3732 ], [ 5450, 5465 ] ], [ [ 1491, 1506 ], [ 4131, 4146 ], [ 4230, 4245 ] ], [ [ 2249, 2257 ], [ 4324, 4332 ] ], [ [ 3708, 3714 ], [ 3918, 3924 ] ], [ [ 3743, 3749 ], [ 3891, 3897 ] ], [ [ 3841, 3847 ], [ 3898, 3904 ], [ 3925, 3931 ] ], [ [ 3882, 3888 ], [ 4092, 4098 ], [ 5255, 5261 ] ], [ [ 3909, 3915 ], [ 4084, 4090 ], [ 5247, 5253 ] ], [ [ 4030, 4037 ], [ 4147, 4154 ] ], [ [ 4039, 4046 ], [ 4246, 4253 ], [ 5160, 5167 ] ], [ [ 4048, 4055 ], [ 4187, 4194 ], [ 4196, 4203 ], [ 4205, 4212 ] ], [ [ 4057, 4064 ], [ 4286, 4293 ], [ 4295, 4302 ], [ 4304, 4311 ], [ 5169, 5176 ] ], [ [ 4116, 4128 ], [ 4998, 5010 ] ], [ [ 4156, 4168 ], [ 5012, 5024 ] ], [ [ 4215, 4227 ] ], [ [ 4255, 4267 ] ], [ [ 4316, 4321 ], [ 4335, 4340 ], [ 4988, 4993 ], [ 5181, 5186 ], [ 5232, 5237 ], [ 5488, 5493 ] ], [ [ 4352, 4362 ] ], [ [ 4368, 4378 ], [ 4516, 4526 ], [ 5211, 5221 ] ], [ [ 4402, 4416 ] ], [ [ 4489, 4497 ], [ 5095, 5103 ] ], [ [ 4581, 4595 ], [ 5105, 5119 ] ], [ [ 5224, 5229 ], [ 5296, 5301 ], [ 5331, 5336 ] ], [ [ 5343, 5350 ], [ 5407, 5414 ], [ 5387, 5394 ], [ 5466, 5473 ], [ 5543, 5550 ] ], [ [ 5441, 5446 ], [ 5502, 5507 ] ], [ [ 5476, 5485 ], [ 5572, 5581 ], [ 5591, 5600 ] ], [ [ 5510, 5520 ], [ 5620, 5630 ], [ 5642, 5652 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- from concurrent import futures def naehere_pi_an(n): pi_halbe = 1 zaehler, nenner = 2.0, 1.0 for i in range(n): pi_halbe *= zaehler / nenner if i % 2: zaehler += 2 else: nenner += 2 return 2*pi_halbe N = ( 12345678, 1234567, 123456, 12345, 1234 ) with futures.ThreadPoolExecutor(max_workers=4) as ex: print(list(ex.map(naehere_pi_an, N)))
[ [ [ 70, 77 ], [ 405, 412 ] ], [ [ 83, 96 ], [ 483, 496 ] ], [ [ 332, 333 ], [ 498, 499 ] ], [ [ 450, 452 ], [ 476, 478 ] ] ]
#!/usr/bin/env python __all__ = ['nicovideo_download'] from ..common import * def nicovideo_login(user, password): data = "current_form=login&mail=" + user +"&password=" + password + "&login_submit=Log+In" response = request.urlopen(request.Request("https://secure.nicovideo.jp/secure/login?site=niconico", headers=fake_headers, data=data.encode('utf-8'))) return response.headers def nicovideo_download(url, output_dir='.', merge=True, info_only=False): import ssl ssl_context = request.HTTPSHandler( context=ssl.SSLContext(ssl.PROTOCOL_TLSv1)) cookie_handler = request.HTTPCookieProcessor() opener = request.build_opener(ssl_context, cookie_handler) request.install_opener(opener) import netrc, getpass try: info = netrc.netrc().authenticators('nicovideo') except FileNotFoundError: info = None if info is None: user = input("User: ") password = getpass.getpass("Password: ") else: user, password = info[0], info[2] print("Logging in...") nicovideo_login(user, password) html = get_html(url) # necessary! title = unicodize(r1(r'<span class="videoHeaderTitle"[^>]*>([^<]+)</span>', html)) vid = url.split('/')[-1].split('?')[0] api_html = get_html('http://www.nicovideo.jp/api/getflv?v=%s' % vid) real_url = parse.unquote(r1(r'url=([^&]+)&', api_html)) type, ext, size = url_info(real_url) print_info(site_info, title, type, size) if not info_only: download_urls([real_url], title, ext, size, output_dir, merge = merge) site_info = "Nicovideo.jp" download = nicovideo_download download_playlist = playlist_not_supported('nicovideo')
[ [ [ 23, 30 ] ], [ [ 78, 79 ], [ 1652, 1674 ], [ 228, 235 ], [ 244, 251 ], [ 326, 338 ], [ 504, 511 ], [ 591, 598 ], [ 634, 641 ], [ 688, 695 ], [ 1094, 1102 ], [ 1133, 1142 ], [ 1143, 1145 ], [ 1267, 1275 ], [ 1340, 1345 ], [ 1354, 1356 ], [ 1408, 1416 ], [ 1432, 1442 ], [ 1503, 1516 ] ], [ [ 85, 100 ], [ 1050, 1065 ] ], [ [ 401, 419 ], [ 1613, 1631 ] ], [ [ 1575, 1584 ], [ 1443, 1452 ] ], [ [ 1602, 1610 ] ], [ [ 1632, 1649 ] ] ]
import pytest from .base import TestBaseClass # flake8: noqa W291 - we want to explicitly test trailing whitespace here class TestClassOelintVarsValueQuoted(TestBaseClass): @pytest.mark.parametrize('id', ['oelint.vars.valuequoted']) @pytest.mark.parametrize('occurrence', [2]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': ''' A = "a D = a" ''', }, ], ) def test_bad(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence) @pytest.mark.parametrize('id', ['oelint.vars.valuequoted']) @pytest.mark.parametrize('occurrence', [0]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': 'A = "a"', }, { 'oelint_adv_test.bb': 'A += "b"', }, { 'oelint_adv_test.bb': 'PACKAGECONFIG[foo] = "-DFOO=ON,-DFOO=OFF,"', }, { 'oelint_adv_test.bb': 'EXTRA_OEMAKE = \'CROSS_COMPILE=${TARGET_PREFIX} CC="${TARGET_PREFIX}gcc ${TOOLCHAIN_OPTIONS}" V=1\'', }, { 'oelint_adv_test.bb': ''' EXTRA_OECMAKE += "\\ -DBUILD_TESTS=OFF \\ " ''', }, { 'oelint_adv_test.bb': ''' DEPENDS += "\\ a \\ b \\ c \\ " ''', }, ], ) def test_good(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence)
[ [ [ 7, 13 ], [ 181, 187 ], [ 245, 251 ], [ 293, 299 ], [ 842, 848 ], [ 906, 912 ], [ 954, 960 ] ], [ [ 33, 46 ], [ 159, 172 ] ], [ [ 128, 158 ] ] ]
# See: https://packaging.python.org/en/latest/distributing/#standards-compliance-for-interoperability __version__ = '0.9.0'
[ [ [ 102, 113 ] ] ]
#!/usr/bin/python3 # --- 001 > U5W1P1_Task1_w1 def solution(s): # print( ''.join(reversed(s)) ) if( s==''.join(reversed(s))): return bool(True) return bool(False) if __name__ == "__main__": print('----------start------------') s = "zork" print(solution( s )) print('------------end------------')
[ [ [ 52, 60 ], [ 280, 288 ] ], [ [ 259, 260 ], [ 290, 291 ] ] ]
# -*- coding: utf-8 -*- """ Created on Sat Mar 9 10:51:35 2019 @author: levy.he """ import ctypes from . import vxlapy def stringify(cobj, indent=2): s = "%s\n" % type(cobj) if issubclass(type(cobj), ctypes.Union): cobj = getattr(cobj, cobj._fields_[0][0]) if issubclass(type(cobj), ctypes.Structure): for field in cobj._fields_: s += "%s%s=%s\n" % (indent * ' ', field[0], stringify(getattr(cobj, field[0]), indent + 2)) return s try: return bytearray(cobj[:]) except TypeError: return "%d (0x%x)" % (cobj, cobj) def debugwrap(func): def caller(*args, **kwargs): if hasattr(args[0], 'debug') and args[0].debug: print(args[0].__class__.__name__, repr(func), repr(args), repr(kwargs)) return func(*args, **kwargs) return caller class VxlBaseException(Exception): pass class VxlBaseEvent(object): def __str__(self): return stringify(getattr(self.event.tagData, self.tagDataAttr)) class VxlBase(object): def __init__(self, debug=False, debugapi=False): self.api = vxlapy.vxlapy(trace=debugapi) # self._app_name = None self.debug = debug self.initAccess = False self.portIsOpen = False self.portHandle = vxlapy.XLportHandle(vxlapy.XL_INVALID_PORTHANDLE) self.accessMask = vxlapy.XLaccess(0) self.permissionMask = vxlapy.XLaccess(0) self.api.xlOpenDriver() @debugwrap def __del__(self): self.api.xlCloseDriver() @debugwrap def getchannelIdx(self, channel=0, app_name=None, busType=vxlapy.XL_INTERFACE_VERSION): if app_name is not None: hw_type = ctypes.c_uint(0) hw_index = ctypes.c_uint(0) hw_channel = ctypes.c_uint(0) self.api.xlGetApplConfig( self._app_name, channel, hw_type, hw_index, hw_channel,busType) channelIdx = self.api.xlGetChannelIndex(hw_type.value, hw_index.value, hw_channel.value) if self.debug: print('Channel %d idex %d found'%(channel,channelIdx)) if channelIdx < 0: raise VxlBaseException("No HW port available") else: channelIdx = channel return channelIdx @debugwrap def getChannelMask(self, busType, channelIdx=1, xlInterfaceVersion=vxlapy.XL_INTERFACE_VERSION): driverConfig = vxlapy.XLdriverConfig() self.api.xlGetDriverConfig(ctypes.byref(driverConfig)) for i in range(driverConfig.channelCount): if self.debug: print("Channel %d cap 0x%x ifver %d" % (i, driverConfig.channel[i].channelBusCapabilities, driverConfig.channel[i].interfaceVersion)) if (driverConfig.channel[i].channelBusCapabilities & busType and # eg. XL_BUS_COMPATIBLE_* driverConfig.channel[i].interfaceVersion >= xlInterfaceVersion): # eg. XL_INTERFACE_VERSION* if self.accessMask.value == 0 and channelIdx == i: if self.debug: print("Using %s, (sn=%06d, mask=0x%04x)" % (stringify(driverConfig.channel[i].name), driverConfig.channel[i].serialNumber, driverConfig.channel[i].channelMask)) self.accessMask.value |= driverConfig.channel[i].channelMask return True #channelIdx -= 1 return False @debugwrap def openPort(self, busType, userName='vxlapy', accessMask=None, permissionMask=None, rxQueueSize=32768, xlInterfaceVersion=vxlapy.XL_INTERFACE_VERSION_V4): if accessMask is not None: self.accessMask.value = accessMask if permissionMask is not None: self.permissionMask.value = permissionMask if permissionMask is None and self.accessMask.value != 0: self.permissionMask.value = self.accessMask.value self.api.xlOpenPort(ctypes.byref(self.portHandle), userName, self.accessMask.value, ctypes.byref(self.permissionMask), rxQueueSize, xlInterfaceVersion, busType) self.portIsOpen = True self.initAccess = self.permissionMask.value == self.accessMask.value and self.accessMask.value != 0 else: raise VxlBaseException("No HW port available") @debugwrap def activateChannel(self, bustype): return self.api.xlActivateChannel(self.portHandle, self.accessMask, bustype, 0) @debugwrap def deactivateChannel(self): return self.api.xlDeactivateChannel(self.portHandle, self.accessMask) @debugwrap def flush_rx_buffer(self): self.api.xlFlushReceiveQueue(self.portHandle) @debugwrap def flush_tx_buffer(self): self.api.xlCanFlushTransmitQueue(self.portHandle, self.accessMask) @debugwrap def closePort(self): if self.portIsOpen: self.api.xlDeactivateChannel(self.portHandle, self.accessMask) self.api.xlClosePort(self.portHandle) self.api.xlCloseDriver() self.portIsOpen = False @debugwrap def receive(self): raise NotImplemented if __name__ == "__main__": b = VxlBase()
[ [ [ 94, 100 ], [ 212, 218 ], [ 307, 313 ], [ 1701, 1707 ], [ 1741, 1747 ], [ 1783, 1789 ], [ 2538, 2544 ], [ 4063, 4069 ], [ 4127, 4133 ] ], [ [ 115, 121 ], [ 1616, 1622 ], [ 2426, 2432 ], [ 3694, 3700 ], [ 1110, 1116 ], [ 1289, 1295 ], [ 1309, 1315 ], [ 1365, 1371 ], [ 1414, 1420 ], [ 2479, 2485 ] ], [ [ 127, 136 ], [ 418, 427 ], [ 955, 964 ], [ 3199, 3208 ] ], [ [ 596, 605 ], [ 1472, 1481 ], [ 1544, 1553 ], [ 2345, 2354 ], [ 3557, 3566 ], [ 4431, 4440 ], [ 4575, 4584 ], [ 4702, 4711 ], [ 4803, 4812 ], [ 4925, 4934 ], [ 5192, 5201 ] ], [ [ 848, 864 ], [ 2225, 2241 ], [ 4384, 4400 ] ], [ [ 894, 906 ] ], [ [ 1020, 1027 ], [ 5291, 5298 ] ], [ [ 5287, 5288 ] ] ]
import pandas as pd import numpy as np from time import time import sys class StateBasedBucketer(object): def __init__(self, encoder): self.encoder = encoder self.dt_states = None self.n_states = 0 def fit(self, X, y=None): dt_encoded = self.encoder.fit_transform(X) self.dt_states = dt_encoded.drop_duplicates() self.dt_states = self.dt_states.assign(state = range(len(self.dt_states))) self.n_states = len(self.dt_states) return self def predict(self, X, y=None): dt_encoded = self.encoder.transform(X) dt_transformed = pd.merge(dt_encoded, self.dt_states, how='left') dt_transformed.fillna(-1, inplace=True) return dt_transformed["state"].astype(int).as_matrix() def fit_predict(self, X, y=None): self.fit(X) return self.predict(X)
[ [ [ 7, 19 ], [ 707, 709 ] ], [ [ 27, 38 ] ], [ [ 56, 60 ] ], [ [ 68, 71 ] ], [ [ 79, 97 ] ] ]
""" Test cases for .hist method """ import numpy as np import pytest import pandas.util._test_decorators as td from pandas import DataFrame, Index, Series, to_datetime import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase, _check_plot_works pytestmark = pytest.mark.slow @td.skip_if_no_mpl class TestSeriesPlots(TestPlotBase): def setup_method(self, method): TestPlotBase.setup_method(self, method) import matplotlib as mpl mpl.rcdefaults() self.ts = tm.makeTimeSeries() self.ts.name = "ts" def test_hist_legacy(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) # _check_plot_works adds an ax so catch warning. see GH #13188 with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month) with tm.assert_produces_warning(UserWarning): _check_plot_works(self.ts.hist, by=self.ts.index.month, bins=5) fig, ax = self.plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = self.plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with pytest.raises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) def test_hist_bins_legacy(self): df = DataFrame(np.random.randn(10, 2)) ax = df.hist(bins=2)[0][0] assert len(ax.patches) == 2 def test_hist_layout(self): df = self.hist_df with pytest.raises(ValueError): df.height.hist(layout=(1, 1)) with pytest.raises(ValueError): df.height.hist(layout=[1, 1]) def test_hist_layout_with_by(self): df = self.hist_df # _check_plot_works adds an `ax` kwarg to the method call # so we get a warning about an axis being cleared, even # though we don't explicing pass one, see GH #13188 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.gender, layout=(3, -1)) self._check_axes_shape(axes, axes_num=2, layout=(3, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(2, -1)) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(3, -1)) self._check_axes_shape(axes, axes_num=4, layout=(3, 2)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.category, layout=(-1, 4)) self._check_axes_shape(axes, axes_num=4, layout=(1, 4)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.height.hist, by=df.classroom, layout=(2, 2)) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.height.hist(by=df.category, layout=(4, 2), figsize=(12, 7)) self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 7)) def test_hist_no_overlap(self): from matplotlib.pyplot import gcf, subplot x = Series(np.random.randn(2)) y = Series(np.random.randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.axes assert len(axes) == 2 def test_hist_by_no_extra_plots(self): df = self.hist_df axes = df.height.hist(by=df.gender) # noqa assert len(self.plt.get_fignums()) == 1 def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with pytest.raises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @pytest.mark.parametrize( "histtype, expected", [ ("bar", True), ("barstacked", True), ("step", False), ("stepfilled", True), ], ) def test_histtype_argument(self, histtype, expected): # GH23992 Verify functioning of histtype argument ser = Series(np.random.randint(1, 10)) ax = ser.hist(histtype=histtype) self._check_patches_all_filled(ax, filled=expected) @pytest.mark.parametrize( "by, expected_axes_num, expected_layout", [(None, 1, (1, 1)), ("b", 2, (1, 2))] ) def test_hist_with_legend(self, by, expected_axes_num, expected_layout): # GH 6279 - Series histogram can have a legend index = 15 * ["1"] + 15 * ["2"] s = Series(np.random.randn(30), index=index, name="a") s.index.name = "b" # Use default_axes=True when plotting method generate subplots itself axes = _check_plot_works(s.hist, default_axes=True, legend=True, by=by) self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) self._check_legend_labels(axes, "a") @pytest.mark.parametrize("by", [None, "b"]) def test_hist_with_legend_raises(self, by): # GH 6279 - Series histogram with legend and label raises index = 15 * ["1"] + 15 * ["2"] s = Series(np.random.randn(30), index=index, name="a") s.index.name = "b" with pytest.raises(ValueError, match="Cannot use both legend and label"): s.hist(legend=True, by=by, label="c") @td.skip_if_no_mpl class TestDataFramePlots(TestPlotBase): def test_hist_df_legacy(self): from matplotlib.patches import Rectangle with tm.assert_produces_warning(UserWarning): _check_plot_works(self.hist_df.hist) # make sure layout is handled df = DataFrame(np.random.randn(100, 2)) df[2] = to_datetime( np.random.randint( self.start_date_to_int64, self.end_date_to_int64, size=100, dtype=np.int64, ) ) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, grid=False) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) assert not axes[1, 1].get_visible() _check_plot_works(df[[2]].hist) df = DataFrame(np.random.randn(100, 1)) _check_plot_works(df.hist) # make sure layout is handled df = DataFrame(np.random.randn(100, 5)) df[5] = to_datetime( np.random.randint( self.start_date_to_int64, self.end_date_to_int64, size=100, dtype=np.int64, ) ) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, layout=(4, 2)) self._check_axes_shape(axes, axes_num=6, layout=(4, 2)) # make sure sharex, sharey is handled with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, sharex=True, sharey=True) # handle figsize arg with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, figsize=(8, 10)) # check bins argument with tm.assert_produces_warning(UserWarning): _check_plot_works(df.hist, bins=5) # make sure xlabelsize and xrot are handled ser = df[0] xf, yf = 20, 18 xrot, yrot = 30, 40 axes = ser.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) self._check_ticks_props( axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot ) xf, yf = 20, 18 xrot, yrot = 30, 40 axes = df.hist(xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot) self._check_ticks_props( axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot ) tm.close() ax = ser.hist(cumulative=True, bins=4, density=True) # height of last bin (index 5) must be 1.0 rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] tm.assert_almost_equal(rects[-1].get_height(), 1.0) tm.close() ax = ser.hist(log=True) # scale of y must be 'log' self._check_ax_scales(ax, yaxis="log") tm.close() # propagate attr exception from matplotlib.Axes.hist with pytest.raises(AttributeError): ser.hist(foo="bar") def test_hist_non_numerical_or_datetime_raises(self): # gh-10444, GH32590 df = DataFrame( { "a": np.random.rand(10), "b": np.random.randint(0, 10, 10), "c": to_datetime( np.random.randint( 1582800000000000000, 1583500000000000000, 10, dtype=np.int64 ) ), "d": to_datetime( np.random.randint( 1582800000000000000, 1583500000000000000, 10, dtype=np.int64 ), utc=True, ), } ) df_o = df.astype(object) msg = "hist method requires numerical or datetime columns, nothing to plot." with pytest.raises(ValueError, match=msg): df_o.hist() def test_hist_layout(self): df = DataFrame(np.random.randn(100, 2)) df[2] = to_datetime( np.random.randint( self.start_date_to_int64, self.end_date_to_int64, size=100, dtype=np.int64, ) ) layout_to_expected_size = ( {"layout": None, "expected_size": (2, 2)}, # default is 2x2 {"layout": (2, 2), "expected_size": (2, 2)}, {"layout": (4, 1), "expected_size": (4, 1)}, {"layout": (1, 4), "expected_size": (1, 4)}, {"layout": (3, 3), "expected_size": (3, 3)}, {"layout": (-1, 4), "expected_size": (1, 4)}, {"layout": (4, -1), "expected_size": (4, 1)}, {"layout": (-1, 2), "expected_size": (2, 2)}, {"layout": (2, -1), "expected_size": (2, 2)}, ) for layout_test in layout_to_expected_size: axes = df.hist(layout=layout_test["layout"]) expected = layout_test["expected_size"] self._check_axes_shape(axes, axes_num=3, layout=expected) # layout too small for all 4 plots with pytest.raises(ValueError): df.hist(layout=(1, 1)) # invalid format for layout with pytest.raises(ValueError): df.hist(layout=(1,)) with pytest.raises(ValueError): df.hist(layout=(-1, -1)) # GH 9351 def test_tight_layout(self): df = DataFrame(np.random.randn(100, 2)) df[2] = to_datetime( np.random.randint( self.start_date_to_int64, self.end_date_to_int64, size=100, dtype=np.int64, ) ) # Use default_axes=True when plotting method generate subplots itself _check_plot_works(df.hist, default_axes=True) self.plt.tight_layout() tm.close() def test_hist_subplot_xrot(self): # GH 30288 df = DataFrame( { "length": [1.5, 0.5, 1.2, 0.9, 3], "animal": ["pig", "rabbit", "pig", "pig", "rabbit"], } ) # Use default_axes=True when plotting method generate subplots itself axes = _check_plot_works( df.hist, default_axes=True, filterwarnings="always", column="length", by="animal", bins=5, xrot=0, ) self._check_ticks_props(axes, xrot=0) @pytest.mark.parametrize( "column, expected", [ (None, ["width", "length", "height"]), (["length", "width", "height"], ["length", "width", "height"]), ], ) def test_hist_column_order_unchanged(self, column, expected): # GH29235 df = DataFrame( { "width": [0.7, 0.2, 0.15, 0.2, 1.1], "length": [1.5, 0.5, 1.2, 0.9, 3], "height": [3, 0.5, 3.4, 2, 1], }, index=["pig", "rabbit", "duck", "chicken", "horse"], ) # Use default_axes=True when plotting method generate subplots itself axes = _check_plot_works( df.hist, default_axes=True, column=column, layout=(1, 3), ) result = [axes[0, i].get_title() for i in range(3)] assert result == expected @pytest.mark.parametrize( "histtype, expected", [ ("bar", True), ("barstacked", True), ("step", False), ("stepfilled", True), ], ) def test_histtype_argument(self, histtype, expected): # GH23992 Verify functioning of histtype argument df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"]) ax = df.hist(histtype=histtype) self._check_patches_all_filled(ax, filled=expected) @pytest.mark.parametrize("by", [None, "c"]) @pytest.mark.parametrize("column", [None, "b"]) def test_hist_with_legend(self, by, column): # GH 6279 - DataFrame histogram can have a legend expected_axes_num = 1 if by is None and column is not None else 2 expected_layout = (1, expected_axes_num) expected_labels = column or ["a", "b"] if by is not None: expected_labels = [expected_labels] * 2 index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) # Use default_axes=True when plotting method generate subplots itself axes = _check_plot_works( df.hist, default_axes=True, legend=True, by=by, column=column, ) self._check_axes_shape(axes, axes_num=expected_axes_num, layout=expected_layout) if by is None and column is None: axes = axes[0] for expected_label, ax in zip(expected_labels, axes): self._check_legend_labels(ax, expected_label) @pytest.mark.parametrize("by", [None, "c"]) @pytest.mark.parametrize("column", [None, "b"]) def test_hist_with_legend_raises(self, by, column): # GH 6279 - DataFrame histogram with legend and label raises index = Index(15 * ["1"] + 15 * ["2"], name="c") df = DataFrame(np.random.randn(30, 2), index=index, columns=["a", "b"]) with pytest.raises(ValueError, match="Cannot use both legend and label"): df.hist(legend=True, by=by, column=column, label="d") @td.skip_if_no_mpl class TestDataFrameGroupByPlots(TestPlotBase): def test_grouped_hist_legacy(self): from matplotlib.patches import Rectangle from pandas.plotting._matplotlib.hist import _grouped_hist df = DataFrame(np.random.randn(500, 1), columns=["A"]) df["B"] = to_datetime( np.random.randint( self.start_date_to_int64, self.end_date_to_int64, size=500, dtype=np.int64, ) ) df["C"] = np.random.randint(0, 4, 500) df["D"] = ["X"] * 500 axes = _grouped_hist(df.A, by=df.C) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) tm.close() axes = df.hist(by=df.C) self._check_axes_shape(axes, axes_num=4, layout=(2, 2)) tm.close() # group by a key with single value axes = df.hist(by="D", rot=30) self._check_axes_shape(axes, axes_num=1, layout=(1, 1)) self._check_ticks_props(axes, xrot=30) tm.close() # make sure kwargs to hist are handled xf, yf = 20, 18 xrot, yrot = 30, 40 axes = _grouped_hist( df.A, by=df.C, cumulative=True, bins=4, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot, density=True, ) # height of last bin (index 5) must be 1.0 for ax in axes.ravel(): rects = [x for x in ax.get_children() if isinstance(x, Rectangle)] height = rects[-1].get_height() tm.assert_almost_equal(height, 1.0) self._check_ticks_props( axes, xlabelsize=xf, xrot=xrot, ylabelsize=yf, yrot=yrot ) tm.close() axes = _grouped_hist(df.A, by=df.C, log=True) # scale of y must be 'log' self._check_ax_scales(axes, yaxis="log") tm.close() # propagate attr exception from matplotlib.Axes.hist with pytest.raises(AttributeError): _grouped_hist(df.A, by=df.C, foo="bar") msg = "Specify figure size by tuple instead" with pytest.raises(ValueError, match=msg): df.hist(by="C", figsize="default") def test_grouped_hist_legacy2(self): n = 10 weight = Series(np.random.normal(166, 20, size=n)) height = Series(np.random.normal(60, 10, size=n)) with tm.RNGContext(42): gender_int = np.random.choice([0, 1], size=n) df_int = DataFrame({"height": height, "weight": weight, "gender": gender_int}) gb = df_int.groupby("gender") axes = gb.hist() assert len(axes) == 2 assert len(self.plt.get_fignums()) == 2 tm.close() def test_grouped_hist_layout(self): df = self.hist_df msg = "Layout of 1x1 must be larger than required size 2" with pytest.raises(ValueError, match=msg): df.hist(column="weight", by=df.gender, layout=(1, 1)) msg = "Layout of 1x3 must be larger than required size 4" with pytest.raises(ValueError, match=msg): df.hist(column="height", by=df.category, layout=(1, 3)) msg = "At least one dimension of layout must be positive" with pytest.raises(ValueError, match=msg): df.hist(column="height", by=df.category, layout=(-1, -1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.hist, column="height", by=df.gender, layout=(2, 1) ) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.hist, column="height", by=df.gender, layout=(2, -1) ) self._check_axes_shape(axes, axes_num=2, layout=(2, 1)) axes = df.hist(column="height", by=df.category, layout=(4, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.hist(column="height", by=df.category, layout=(-1, 1)) self._check_axes_shape(axes, axes_num=4, layout=(4, 1)) axes = df.hist(column="height", by=df.category, layout=(4, 2), figsize=(12, 8)) self._check_axes_shape(axes, axes_num=4, layout=(4, 2), figsize=(12, 8)) tm.close() # GH 6769 with tm.assert_produces_warning(UserWarning): axes = _check_plot_works( df.hist, column="height", by="classroom", layout=(2, 2) ) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) # without column with tm.assert_produces_warning(UserWarning): axes = _check_plot_works(df.hist, by="classroom") self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) axes = df.hist(by="gender", layout=(3, 5)) self._check_axes_shape(axes, axes_num=2, layout=(3, 5)) axes = df.hist(column=["height", "weight", "category"]) self._check_axes_shape(axes, axes_num=3, layout=(2, 2)) def test_grouped_hist_multiple_axes(self): # GH 6970, GH 7069 df = self.hist_df fig, axes = self.plt.subplots(2, 3) returned = df.hist(column=["height", "weight", "category"], ax=axes[0]) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) tm.assert_numpy_array_equal(returned, axes[0]) assert returned[0].figure is fig returned = df.hist(by="classroom", ax=axes[1]) self._check_axes_shape(returned, axes_num=3, layout=(1, 3)) tm.assert_numpy_array_equal(returned, axes[1]) assert returned[0].figure is fig with pytest.raises(ValueError): fig, axes = self.plt.subplots(2, 3) # pass different number of axes from required axes = df.hist(column="height", ax=axes) def test_axis_share_x(self): df = self.hist_df # GH4089 ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True) # share x assert ax1._shared_x_axes.joined(ax1, ax2) assert ax2._shared_x_axes.joined(ax1, ax2) # don't share y assert not ax1._shared_y_axes.joined(ax1, ax2) assert not ax2._shared_y_axes.joined(ax1, ax2) def test_axis_share_y(self): df = self.hist_df ax1, ax2 = df.hist(column="height", by=df.gender, sharey=True) # share y assert ax1._shared_y_axes.joined(ax1, ax2) assert ax2._shared_y_axes.joined(ax1, ax2) # don't share x assert not ax1._shared_x_axes.joined(ax1, ax2) assert not ax2._shared_x_axes.joined(ax1, ax2) def test_axis_share_xy(self): df = self.hist_df ax1, ax2 = df.hist(column="height", by=df.gender, sharex=True, sharey=True) # share both x and y assert ax1._shared_x_axes.joined(ax1, ax2) assert ax2._shared_x_axes.joined(ax1, ax2) assert ax1._shared_y_axes.joined(ax1, ax2) assert ax2._shared_y_axes.joined(ax1, ax2) @pytest.mark.parametrize( "histtype, expected", [ ("bar", True), ("barstacked", True), ("step", False), ("stepfilled", True), ], ) def test_histtype_argument(self, histtype, expected): # GH23992 Verify functioning of histtype argument df = DataFrame(np.random.randint(1, 10, size=(100, 2)), columns=["a", "b"]) ax = df.hist(by="a", histtype=histtype) self._check_patches_all_filled(ax, filled=expected)
[ [ [ 44, 55 ], [ 1625, 1627 ], [ 3891, 3893 ], [ 3930, 3932 ], [ 4887, 4889 ], [ 5330, 5332 ], [ 5916, 5918 ], [ 6431, 6433 ], [ 6497, 6499 ], [ 6646, 6648 ], [ 6964, 6966 ], [ 7086, 7088 ], [ 7152, 7154 ], [ 7301, 7303 ], [ 9211, 9213 ], [ 9252, 9254 ], [ 9336, 9338 ], [ 9431, 9433 ], [ 9535, 9537 ], [ 9630, 9632 ], [ 9985, 9987 ], [ 10051, 10053 ], [ 10200, 10202 ], [ 11423, 11425 ], [ 11489, 11491 ], [ 11638, 11640 ], [ 13698, 13700 ], [ 14397, 14399 ], [ 15285, 15287 ], [ 15740, 15742 ], [ 15823, 15825 ], [ 15972, 15974 ], [ 16024, 16026 ], [ 17829, 17831 ], [ 17888, 17890 ], [ 17979, 17981 ], [ 22871, 22873 ] ], [ [ 63, 69 ], [ 287, 293 ], [ 4544, 4550 ], [ 5020, 5026 ], [ 5700, 5706 ], [ 12453, 12459 ], [ 13353, 13359 ], [ 13865, 13871 ], [ 13913, 13919 ], [ 14985, 14991 ], [ 15033, 15039 ], [ 22526, 22532 ], [ 1482, 1488 ], [ 1792, 1798 ], [ 1875, 1881 ], [ 4461, 4467 ], [ 6001, 6007 ], [ 9002, 9008 ], [ 9867, 9873 ], [ 11103, 11109 ], [ 11215, 11221 ], [ 11288, 11294 ], [ 15356, 15362 ], [ 17513, 17519 ], [ 17663, 17669 ], [ 18405, 18411 ], [ 18589, 18595 ], [ 18775, 18781 ], [ 21163, 21169 ] ], [ [ 78, 112 ], [ 307, 309 ], [ 6123, 6125 ], [ 15494, 15496 ] ], [ [ 133, 142 ], [ 1615, 1624 ], [ 6421, 6430 ], [ 6954, 6963 ], [ 7076, 7085 ], [ 9165, 9174 ], [ 9975, 9984 ], [ 11413, 11422 ], [ 11927, 11936 ], [ 12758, 12767 ], [ 13688, 13697 ], [ 14387, 14396 ], [ 15275, 15284 ], [ 15730, 15739 ], [ 18029, 18038 ], [ 22861, 22870 ] ], [ [ 144, 149 ], [ 14333, 14338 ], [ 15221, 15226 ] ], [ [ 151, 157 ], [ 3884, 3890 ], [ 3923, 3929 ], [ 4880, 4886 ], [ 5323, 5329 ], [ 5909, 5915 ], [ 17822, 17828 ], [ 17881, 17887 ] ], [ [ 159, 170 ], [ 6472, 6483 ], [ 7127, 7138 ], [ 9303, 9314 ], [ 9502, 9513 ], [ 10026, 10037 ], [ 11464, 11475 ], [ 15798, 15809 ] ], [ [ 178, 199 ], [ 524, 526 ], [ 838, 840 ], [ 960, 962 ], [ 1286, 1288 ], [ 2215, 2217 ], [ 2416, 2418 ], [ 2618, 2620 ], [ 2821, 2823 ], [ 3025, 3027 ], [ 3229, 3231 ], [ 3433, 3435 ], [ 6279, 6281 ], [ 6693, 6695 ], [ 7348, 7350 ], [ 7574, 7576 ], [ 7723, 7725 ], [ 7864, 7866 ], [ 8514, 8516 ], [ 8721, 8723 ], [ 8782, 8784 ], [ 8916, 8918 ], [ 11845, 11847 ], [ 16201, 16203 ], [ 16317, 16319 ], [ 16530, 16532 ], [ 17113, 17115 ], [ 17270, 17272 ], [ 17428, 17430 ], [ 17935, 17937 ], [ 18248, 18250 ], [ 18897, 18899 ], [ 19138, 19140 ], [ 19817, 19819 ], [ 19860, 19862 ], [ 20128, 20130 ], [ 20842, 20844 ], [ 21061, 21063 ] ], [ [ 241, 253 ], [ 347, 359 ], [ 6166, 6178 ], [ 15544, 15556 ], [ 406, 418 ] ], [ [ 255, 272 ], [ 613, 630 ], [ 653, 670 ], [ 705, 722 ], [ 891, 908 ], [ 1013, 1030 ], [ 1128, 1145 ], [ 1175, 1192 ], [ 1234, 1251 ], [ 1356, 1373 ], [ 1416, 1433 ], [ 2275, 2292 ], [ 2476, 2493 ], [ 2678, 2695 ], [ 2881, 2898 ], [ 3085, 3102 ], [ 3289, 3306 ], [ 3493, 3510 ], [ 5495, 5512 ], [ 6332, 6349 ], [ 6753, 6770 ], [ 6909, 6926 ], [ 6997, 7014 ], [ 7408, 7425 ], [ 7627, 7644 ], [ 7776, 7793 ], [ 7917, 7934 ], [ 11758, 11775 ], [ 12189, 12206 ], [ 13118, 13135 ], [ 14548, 14565 ], [ 18957, 18974 ], [ 19198, 19215 ], [ 19920, 19937 ], [ 20188, 20205 ] ], [ [ 274, 284 ] ], [ [ 331, 346 ] ], [ [ 6147, 6165 ] ], [ [ 15518, 15543 ] ] ]
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class BillDingBizOrderSum(object): def __init__(self): self._biz_date = None self._expenses = None self._income = None @property def biz_date(self): return self._biz_date @biz_date.setter def biz_date(self, value): self._biz_date = value @property def expenses(self): return self._expenses @expenses.setter def expenses(self, value): self._expenses = value @property def income(self): return self._income @income.setter def income(self, value): self._income = value def to_alipay_dict(self): params = dict() if self.biz_date: if hasattr(self.biz_date, 'to_alipay_dict'): params['biz_date'] = self.biz_date.to_alipay_dict() else: params['biz_date'] = self.biz_date if self.expenses: if hasattr(self.expenses, 'to_alipay_dict'): params['expenses'] = self.expenses.to_alipay_dict() else: params['expenses'] = self.expenses if self.income: if hasattr(self.income, 'to_alipay_dict'): params['income'] = self.income.to_alipay_dict() else: params['income'] = self.income return params @staticmethod def from_alipay_dict(d): if not d: return None o = BillDingBizOrderSum() if 'biz_date' in d: o.biz_date = d['biz_date'] if 'expenses' in d: o.expenses = d['expenses'] if 'income' in d: o.income = d['income'] return o
[ [ [ 53, 57 ] ], [ [ 110, 111 ] ], [ [ 120, 139 ], [ 1537, 1556 ] ] ]
class Calculator: def __init__(self): pass def add(self, a, b): return a + b def divide(self, a, b): return b / a # Todo: Add subtract option # def root(a): # return math.sqrt() def greetings(name): print('Hello ' + name + '!') def goodbye(): print('Goodbye!') myCalculator = Calculator myCalculator.subtract() # execfile('console.py') # exec('console.py')
[ [ [ 6, 16 ], [ 344, 354 ] ], [ [ 238, 247 ] ], [ [ 294, 301 ] ], [ [ 329, 341 ], [ 355, 367 ] ] ]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import atexit import collections import collections.abc import enum import fcntl import logging import os import os.path import pathlib import queue import re import select import shlex import shutil import subprocess import sys import tarfile import tempfile import threading import time import json import serial import serial.tools.list_ports import yaml from tvm.micro.project_api import server _LOG = logging.getLogger(__name__) API_SERVER_DIR = pathlib.Path(os.path.dirname(__file__) or os.path.getcwd()) BUILD_DIR = API_SERVER_DIR / "build" MODEL_LIBRARY_FORMAT_RELPATH = "model.tar" IS_TEMPLATE = not (API_SERVER_DIR / MODEL_LIBRARY_FORMAT_RELPATH).exists() BOARDS = API_SERVER_DIR / "boards.json" # Data structure to hold the information microtvm_api_server.py needs # to communicate with each of these boards. try: with open(BOARDS) as boards: BOARD_PROPERTIES = json.load(boards) except FileNotFoundError: raise FileNotFoundError(f"Board file {{{BOARDS}}} does not exist.") def check_call(cmd_args, *args, **kwargs): cwd_str = "" if "cwd" not in kwargs else f" (in cwd: {kwargs['cwd']})" _LOG.info("run%s: %s", cwd_str, " ".join(shlex.quote(a) for a in cmd_args)) return subprocess.check_call(cmd_args, *args, **kwargs) CACHE_ENTRY_RE = re.compile(r"(?P<name>[^:]+):(?P<type>[^=]+)=(?P<value>.*)") CMAKE_BOOL_MAP = dict( [(k, True) for k in ("1", "ON", "YES", "TRUE", "Y")] + [(k, False) for k in ("0", "OFF", "NO", "FALSE", "N", "IGNORE", "NOTFOUND", "")] ) class CMakeCache(collections.abc.Mapping): def __init__(self, path): self._path = path self._dict = None def __iter__(self): return iter(self._dict) def __getitem__(self, key): if self._dict is None: self._dict = self._read_cmake_cache() return self._dict[key] def __len__(self): return len(self._dict) def _read_cmake_cache(self): """Read a CMakeCache.txt-like file and return a dictionary of values.""" entries = collections.OrderedDict() with open(self._path, encoding="utf-8") as f: for line in f: m = CACHE_ENTRY_RE.match(line.rstrip("\n")) if not m: continue if m.group("type") == "BOOL": value = CMAKE_BOOL_MAP[m.group("value").upper()] else: value = m.group("value") entries[m.group("name")] = value return entries CMAKE_CACHE = CMakeCache(BUILD_DIR / "CMakeCache.txt") class BoardError(Exception): """Raised when an attached board cannot be opened (i.e. missing /dev nodes, etc).""" class BoardAutodetectFailed(Exception): """Raised when no attached hardware is found matching the board= given to ZephyrCompiler.""" def _get_flash_runner(): flash_runner = CMAKE_CACHE.get("ZEPHYR_BOARD_FLASH_RUNNER") if flash_runner is not None: return flash_runner with open(CMAKE_CACHE["ZEPHYR_RUNNERS_YAML"]) as f: doc = yaml.load(f, Loader=yaml.FullLoader) return doc["flash-runner"] def _get_device_args(options): flash_runner = _get_flash_runner() if flash_runner == "nrfjprog": return _get_nrf_device_args(options) if flash_runner == "openocd": return _get_openocd_device_args(options) raise BoardError( f"Don't know how to find serial terminal for board {CMAKE_CACHE['BOARD']} with flash " f"runner {flash_runner}" ) # kwargs passed to usb.core.find to find attached boards for the openocd flash runner. BOARD_USB_FIND_KW = { "nucleo_l4r5zi": {"idVendor": 0x0483, "idProduct": 0x374B}, "nucleo_f746zg": {"idVendor": 0x0483, "idProduct": 0x374B}, "stm32f746g_disco": {"idVendor": 0x0483, "idProduct": 0x374B}, "mimxrt1050_evk": {"idVendor": 0x1366, "idProduct": 0x0105}, } def openocd_serial(options): """Find the serial port to use for a board with OpenOCD flash strategy.""" if "openocd_serial" in options: return options["openocd_serial"] import usb # pylint: disable=import-outside-toplevel find_kw = BOARD_USB_FIND_KW[CMAKE_CACHE["BOARD"]] boards = usb.core.find(find_all=True, **find_kw) serials = [] for b in boards: serials.append(b.serial_number) if len(serials) == 0: raise BoardAutodetectFailed(f"No attached USB devices matching: {find_kw!r}") serials.sort() autodetected_openocd_serial = serials[0] _LOG.debug("zephyr openocd driver: autodetected serial %s", serials[0]) return autodetected_openocd_serial def _get_openocd_device_args(options): return ["--serial", openocd_serial(options)] def _get_nrf_device_args(options): nrfjprog_args = ["nrfjprog", "--ids"] nrfjprog_ids = subprocess.check_output(nrfjprog_args, encoding="utf-8") if not nrfjprog_ids.strip("\n"): raise BoardAutodetectFailed(f'No attached boards recognized by {" ".join(nrfjprog_args)}') boards = nrfjprog_ids.split("\n")[:-1] if len(boards) > 1: if options["nrfjprog_snr"] is None: raise BoardError( "Multiple boards connected; specify one with nrfjprog_snr=: " f'{", ".join(boards)}' ) if str(options["nrfjprog_snr"]) not in boards: raise BoardError( f"nrfjprog_snr ({options['nrfjprog_snr']}) not found in {nrfjprog_args}: {boards}" ) return ["--snr", options["nrfjprog_snr"]] if not boards: return [] return ["--snr", boards[0]] PROJECT_TYPES = [] if IS_TEMPLATE: for d in (API_SERVER_DIR / "src").iterdir(): if d.is_dir(): PROJECT_TYPES.append(d.name) PROJECT_OPTIONS = [ server.ProjectOption( "extra_files_tar", help="If given, during generate_project, uncompress the tarball at this path into the project dir.", ), server.ProjectOption( "gdbserver_port", help=("If given, port number to use when running the local gdbserver.") ), server.ProjectOption( "nrfjprog_snr", help=("When used with nRF targets, serial # of the attached board to use, from nrfjprog."), ), server.ProjectOption( "openocd_serial", help=("When used with OpenOCD targets, serial # of the attached board to use."), ), server.ProjectOption( "project_type", help="Type of project to generate.", choices=tuple(PROJECT_TYPES), ), server.ProjectOption("verbose", help="Run build with verbose output.", choices=(True, False)), server.ProjectOption( "west_cmd", help=( "Path to the west tool. If given, supersedes both the zephyr_base " "option and ZEPHYR_BASE environment variable." ), ), server.ProjectOption("zephyr_base", help="Path to the zephyr base directory."), server.ProjectOption( "zephyr_board", choices=list(BOARD_PROPERTIES), help="Name of the Zephyr board to build for.", ), server.ProjectOption( "config_main_stack_size", help="Sets CONFIG_MAIN_STACK_SIZE for Zephyr board.", ), ] class Handler(server.ProjectAPIHandler): def __init__(self): super(Handler, self).__init__() self._proc = None def server_info_query(self, tvm_version): return server.ServerInfo( platform_name="zephyr", is_template=IS_TEMPLATE, model_library_format_path="" if IS_TEMPLATE else (API_SERVER_DIR / MODEL_LIBRARY_FORMAT_RELPATH), project_options=PROJECT_OPTIONS, ) # These files and directories will be recursively copied into generated projects from the CRT. CRT_COPY_ITEMS = ("include", "Makefile", "src") # Maps extra line added to prj.conf to a tuple or list of zephyr_board for which it is needed. EXTRA_PRJ_CONF_DIRECTIVES = { "CONFIG_TIMER_RANDOM_GENERATOR=y": ( "qemu_x86", "qemu_riscv32", "qemu_cortex_r5", "qemu_riscv64", ), "CONFIG_ENTROPY_GENERATOR=y": ( "mps2_an521", "nrf5340dk_nrf5340_cpuapp", "nucleo_f746zg", "nucleo_l4r5zi", "stm32f746g_disco", ), } def _create_prj_conf(self, project_dir, options): with open(project_dir / "prj.conf", "w") as f: f.write( "# For UART used from main().\n" "CONFIG_RING_BUFFER=y\n" "CONFIG_UART_CONSOLE=n\n" "CONFIG_UART_INTERRUPT_DRIVEN=y\n" "\n" ) f.write("# For TVMPlatformAbort().\n" "CONFIG_REBOOT=y\n" "\n") if options["project_type"] == "host_driven": f.write("# For RPC server C++ bindings.\n" "CONFIG_CPLUSPLUS=y\n" "\n") f.write("# For math routines\n" "CONFIG_NEWLIB_LIBC=y\n" "\n") if self._has_fpu(options["zephyr_board"]): f.write("# For models with floating point.\n" "CONFIG_FPU=y\n" "\n") # Set main stack size, if needed. if options.get("config_main_stack_size") is not None: f.write(f"CONFIG_MAIN_STACK_SIZE={options['config_main_stack_size']}\n") f.write("# For random number generation.\n" "CONFIG_TEST_RANDOM_GENERATOR=y\n") f.write("\n# Extra prj.conf directives\n") for line, board_list in self.EXTRA_PRJ_CONF_DIRECTIVES.items(): if options["zephyr_board"] in board_list: f.write(f"{line}\n") f.write("\n") API_SERVER_CRT_LIBS_TOKEN = "<API_SERVER_CRT_LIBS>" CRT_LIBS_BY_PROJECT_TYPE = { "host_driven": "microtvm_rpc_server microtvm_rpc_common common", "aot_demo": "memory microtvm_rpc_common common", } def generate_project(self, model_library_format_path, standalone_crt_dir, project_dir, options): project_dir = pathlib.Path(project_dir) # Make project directory. project_dir.mkdir() # Copy ourselves to the generated project. TVM may perform further build steps on the generated project # by launching the copy. shutil.copy2(__file__, project_dir / os.path.basename(__file__)) # Copy boards.json file to generated project. shutil.copy2(BOARDS, project_dir / BOARDS.name) # Place Model Library Format tarball in the special location, which this script uses to decide # whether it's being invoked in a template or generated project. project_model_library_format_tar_path = project_dir / MODEL_LIBRARY_FORMAT_RELPATH shutil.copy2(model_library_format_path, project_model_library_format_tar_path) # Extract Model Library Format tarball.into <project_dir>/model. extract_path = os.path.splitext(project_model_library_format_tar_path)[0] with tarfile.TarFile(project_model_library_format_tar_path) as tf: os.makedirs(extract_path) tf.extractall(path=extract_path) if self._is_qemu(options): shutil.copytree(API_SERVER_DIR / "qemu-hack", project_dir / "qemu-hack") # Populate CRT. crt_path = project_dir / "crt" crt_path.mkdir() for item in self.CRT_COPY_ITEMS: src_path = os.path.join(standalone_crt_dir, item) dst_path = crt_path / item if os.path.isdir(src_path): shutil.copytree(src_path, dst_path) else: shutil.copy2(src_path, dst_path) # Populate Makefile. with open(API_SERVER_DIR / "CMakeLists.txt.template", "r") as cmake_template_f: with open(project_dir / "CMakeLists.txt", "w") as cmake_f: for line in cmake_template_f: if self.API_SERVER_CRT_LIBS_TOKEN in line: crt_libs = self.CRT_LIBS_BY_PROJECT_TYPE[options["project_type"]] line = line.replace("<API_SERVER_CRT_LIBS>", crt_libs) cmake_f.write(line) self._create_prj_conf(project_dir, options) # Populate crt-config.h crt_config_dir = project_dir / "crt_config" crt_config_dir.mkdir() shutil.copy2( API_SERVER_DIR / "crt_config" / "crt_config.h", crt_config_dir / "crt_config.h" ) # Populate src/ src_dir = project_dir / "src" shutil.copytree(API_SERVER_DIR / "src" / options["project_type"], src_dir) # Populate extra_files if options.get("extra_files_tar"): with tarfile.open(options["extra_files_tar"], mode="r:*") as tf: tf.extractall(project_dir) def build(self, options): BUILD_DIR.mkdir() cmake_args = ["cmake", ".."] if options.get("verbose"): cmake_args.append("-DCMAKE_VERBOSE_MAKEFILE:BOOL=TRUE") if options.get("zephyr_base"): cmake_args.append(f"-DZEPHYR_BASE:STRING={options['zephyr_base']}") if options.get("west_cmd"): cmake_args.append(f"-DWEST={options['west_cmd']}") cmake_args.append(f"-DBOARD:STRING={options['zephyr_board']}") check_call(cmake_args, cwd=BUILD_DIR) args = ["make", "-j2"] if options.get("verbose"): args.append("VERBOSE=1") check_call(args, cwd=BUILD_DIR) # A list of all zephyr_board values which are known to launch using QEMU. Many platforms which # launch through QEMU by default include "qemu" in their name. However, not all do. This list # includes those tested platforms which do not include qemu. _KNOWN_QEMU_ZEPHYR_BOARDS = ("mps2_an521",) @classmethod def _is_qemu(cls, options): return ( "qemu" in options["zephyr_board"] or options["zephyr_board"] in cls._KNOWN_QEMU_ZEPHYR_BOARDS ) @classmethod def _has_fpu(cls, zephyr_board): fpu_boards = [name for name, board in BOARD_PROPERTIES.items() if board["fpu"]] return zephyr_board in fpu_boards def flash(self, options): if self._is_qemu(options): return # NOTE: qemu requires no flash step--it is launched from open_transport. zephyr_board = options["zephyr_board"] # The nRF5340DK requires an additional `nrfjprog --recover` before each flash cycle. # This is because readback protection is enabled by default when this device is flashed. # Otherwise, flashing may fail with an error such as the following: # ERROR: The operation attempted is unavailable due to readback protection in # ERROR: your device. Please use --recover to unlock the device. if zephyr_board.startswith("nrf5340dk") and _get_flash_runner() == "nrfjprog": recover_args = ["nrfjprog", "--recover"] recover_args.extend(_get_nrf_device_args(options)) check_call(recover_args, cwd=API_SERVER_DIR / "build") check_call(["make", "flash"], cwd=API_SERVER_DIR / "build") def open_transport(self, options): if self._is_qemu(options): transport = ZephyrQemuTransport(options) else: transport = ZephyrSerialTransport(options) to_return = transport.open() self._transport = transport atexit.register(lambda: self.close_transport()) return to_return def close_transport(self): if self._transport is not None: self._transport.close() self._transport = None def read_transport(self, n, timeout_sec): if self._transport is None: raise server.TransportClosedError() return self._transport.read(n, timeout_sec) def write_transport(self, data, timeout_sec): if self._transport is None: raise server.TransportClosedError() return self._transport.write(data, timeout_sec) def _set_nonblock(fd): flag = fcntl.fcntl(fd, fcntl.F_GETFL) fcntl.fcntl(fd, fcntl.F_SETFL, flag | os.O_NONBLOCK) new_flag = fcntl.fcntl(fd, fcntl.F_GETFL) assert (new_flag & os.O_NONBLOCK) != 0, "Cannot set file descriptor {fd} to non-blocking" class ZephyrSerialTransport: @classmethod def _lookup_baud_rate(cls, options): zephyr_base = options.get("zephyr_base", os.environ["ZEPHYR_BASE"]) sys.path.insert(0, os.path.join(zephyr_base, "scripts", "dts")) try: import dtlib # pylint: disable=import-outside-toplevel finally: sys.path.pop(0) dt_inst = dtlib.DT(BUILD_DIR / "zephyr" / "zephyr.dts") uart_baud = ( dt_inst.get_node("/chosen") .props["zephyr,console"] .to_path() .props["current-speed"] .to_num() ) _LOG.debug("zephyr transport: found UART baudrate from devicetree: %d", uart_baud) return uart_baud @classmethod def _find_nrf_serial_port(cls, options): com_ports = subprocess.check_output( ["nrfjprog", "--com"] + _get_device_args(options), encoding="utf-8" ) ports_by_vcom = {} for line in com_ports.split("\n")[:-1]: parts = line.split() ports_by_vcom[parts[2]] = parts[1] return ports_by_vcom["VCOM2"] @classmethod def _find_openocd_serial_port(cls, options): serial_number = openocd_serial(options) ports = [p for p in serial.tools.list_ports.grep(serial_number)] if len(ports) != 1: raise Exception( f"_find_openocd_serial_port: expected 1 port to match {serial_number}, " f"found: {ports!r}" ) return ports[0].device @classmethod def _find_jlink_serial_port(cls, options): return cls._find_openocd_serial_port(options) @classmethod def _find_serial_port(cls, options): flash_runner = _get_flash_runner() if flash_runner == "nrfjprog": return cls._find_nrf_serial_port(options) if flash_runner == "openocd": return cls._find_openocd_serial_port(options) if flash_runner == "jlink": return cls._find_jlink_serial_port(options) raise RuntimeError(f"Don't know how to deduce serial port for flash runner {flash_runner}") def __init__(self, options): self._options = options self._port = None def open(self): port_path = self._find_serial_port(self._options) self._port = serial.Serial(port_path, baudrate=self._lookup_baud_rate(self._options)) return server.TransportTimeouts( session_start_retry_timeout_sec=2.0, session_start_timeout_sec=5.0, session_established_timeout_sec=5.0, ) def close(self): self._port.close() self._port = None def read(self, n, timeout_sec): self._port.timeout = timeout_sec to_return = self._port.read(n) if not to_return: raise server.IoTimeoutError() return to_return def write(self, data, timeout_sec): self._port.write_timeout = timeout_sec bytes_written = 0 while bytes_written < len(data): n = self._port.write(data) data = data[n:] bytes_written += n class ZephyrQemuMakeResult(enum.Enum): QEMU_STARTED = "qemu_started" MAKE_FAILED = "make_failed" EOF = "eof" class ZephyrQemuTransport: """The user-facing Zephyr QEMU transport class.""" def __init__(self, options): self.options = options self.proc = None self.pipe_dir = None self.read_fd = None self.write_fd = None self._queue = queue.Queue() def open(self): self.pipe_dir = pathlib.Path(tempfile.mkdtemp()) self.pipe = self.pipe_dir / "fifo" self.write_pipe = self.pipe_dir / "fifo.in" self.read_pipe = self.pipe_dir / "fifo.out" os.mkfifo(self.write_pipe) os.mkfifo(self.read_pipe) if "gdbserver_port" in self.options: if "env" in self.kwargs: self.kwargs["env"] = copy.copy(self.kwargs["env"]) else: self.kwargs["env"] = os.environ.copy() self.kwargs["env"]["TVM_QEMU_GDBSERVER_PORT"] = str(self.options["gdbserver_port"]) self.proc = subprocess.Popen( ["make", "run", f"QEMU_PIPE={self.pipe}"], cwd=BUILD_DIR, stdout=subprocess.PIPE, ) self._wait_for_qemu() # NOTE: although each pipe is unidirectional, open both as RDWR to work around a select # limitation on linux. Without this, non-blocking I/O can't use timeouts because named # FIFO are always considered ready to read when no one has opened them for writing. self.read_fd = os.open(self.read_pipe, os.O_RDWR | os.O_NONBLOCK) self.write_fd = os.open(self.write_pipe, os.O_RDWR | os.O_NONBLOCK) _set_nonblock(self.read_fd) _set_nonblock(self.write_fd) return server.TransportTimeouts( session_start_retry_timeout_sec=2.0, session_start_timeout_sec=10.0, session_established_timeout_sec=10.0, ) def close(self): did_write = False if self.write_fd is not None: try: server.write_with_timeout( self.write_fd, b"\x01x", 1.0 ) # Use a short timeout since we will kill the process did_write = True except server.IoTimeoutError: pass os.close(self.write_fd) self.write_fd = None if self.proc: if not did_write: self.proc.terminate() try: self.proc.wait(5.0) except subprocess.TimeoutExpired: self.proc.kill() if self.read_fd: os.close(self.read_fd) self.read_fd = None if self.pipe_dir is not None: shutil.rmtree(self.pipe_dir) self.pipe_dir = None def read(self, n, timeout_sec): return server.read_with_timeout(self.read_fd, n, timeout_sec) def write(self, data, timeout_sec): to_write = bytearray() escape_pos = [] for i, b in enumerate(data): if b == 0x01: to_write.append(b) escape_pos.append(i) to_write.append(b) while to_write: num_written = server.write_with_timeout(self.write_fd, to_write, timeout_sec) to_write = to_write[num_written:] def _qemu_check_stdout(self): for line in self.proc.stdout: line = str(line) _LOG.info("%s", line) if "[QEMU] CPU" in line: self._queue.put(ZephyrQemuMakeResult.QEMU_STARTED) else: line = re.sub("[^a-zA-Z0-9 \n]", "", line) pattern = r"recipe for target (\w*) failed" if re.search(pattern, line, re.IGNORECASE): self._queue.put(ZephyrQemuMakeResult.MAKE_FAILED) self._queue.put(ZephyrQemuMakeResult.EOF) def _wait_for_qemu(self): threading.Thread(target=self._qemu_check_stdout, daemon=True).start() while True: try: item = self._queue.get(timeout=120) except Exception: raise TimeoutError("QEMU setup timeout.") if item == ZephyrQemuMakeResult.QEMU_STARTED: break if item in [ZephyrQemuMakeResult.MAKE_FAILED, ZephyrQemuMakeResult.EOF]: raise RuntimeError("QEMU setup failed.") raise ValueError(f"{item} not expected.") if __name__ == "__main__": server.main(Handler())
[ [ [ 793, 799 ], [ 16168, 16174 ] ], [ [ 807, 818 ] ], [ [ 826, 841 ], [ 2332, 2343 ], [ 2831, 2842 ] ], [ [ 849, 853 ], [ 20198, 20202 ] ], [ [ 861, 866 ], [ 16796, 16801 ], [ 16812, 16817 ], [ 16831, 16836 ], [ 16847, 16852 ], [ 16899, 16904 ], [ 16915, 16920 ] ], [ [ 874, 881 ], [ 1196, 1203 ] ], [ [ 889, 891 ] ], [ [ 899, 906 ], [ 1256, 1258 ], [ 1285, 1287 ], [ 11082, 11084 ], [ 11673, 11675 ], [ 11819, 11821 ], [ 12164, 12166 ], [ 12257, 12259 ], [ 16869, 16871 ], [ 16953, 16955 ], [ 17162, 17164 ], [ 17216, 17218 ], [ 20821, 20823 ], [ 20856, 20858 ], [ 21087, 21089 ], [ 21706, 21708 ], [ 21730, 21732 ], [ 21742, 21744 ], [ 21781, 21783 ], [ 21806, 21808 ], [ 21818, 21820 ], [ 22476, 22478 ], [ 22794, 22796 ] ], [ [ 914, 921 ], [ 1243, 1250 ], [ 10803, 10810 ], [ 20633, 20640 ] ], [ [ 929, 934 ], [ 20574, 20579 ] ], [ [ 942, 944 ], [ 2081, 2083 ], [ 23773, 23775 ], [ 23888, 23890 ], [ 23913, 23915 ] ], [ [ 952, 958 ] ], [ [ 966, 971 ], [ 1967, 1972 ] ], [ [ 979, 985 ], [ 11045, 11051 ], [ 11173, 11179 ], [ 11497, 11503 ], [ 11938, 11944 ], [ 12298, 12304 ], [ 12368, 12374 ], [ 13086, 13092 ], [ 13273, 13279 ], [ 22900, 22906 ] ], [ [ 993, 1003 ], [ 2013, 2023 ], [ 5598, 5608 ], [ 17842, 17852 ], [ 21223, 21233 ], [ 21342, 21352 ], [ 22696, 22706 ] ], [ [ 1011, 1014 ], [ 17197, 17200 ], [ 17371, 17374 ] ], [ [ 1022, 1029 ], [ 11745, 11752 ], [ 13440, 13447 ] ], [ [ 1037, 1045 ], [ 20646, 20654 ] ], [ [ 1053, 1062 ], [ 24088, 24097 ] ], [ [ 1070, 1074 ] ], [ [ 1082, 1086 ], [ 1686, 1690 ] ], [ [ 1095, 1101 ] ], [ [ 1109, 1132 ], [ 18294, 18300 ], [ 19365, 19371 ] ], [ [ 1140, 1144 ], [ 3849, 3853 ], [ 3869, 3873 ] ], [ [ 1180, 1186 ], [ 6545, 6551 ], [ 6714, 6720 ], [ 6845, 6851 ], [ 7002, 7008 ], [ 7150, 7156 ], [ 7290, 7296 ], [ 7389, 7395 ], [ 7607, 7613 ], [ 7691, 7697 ], [ 7843, 7849 ], [ 7986, 7992 ], [ 24647, 24653 ], [ 8165, 8171 ], [ 16485, 16491 ], [ 16673, 16679 ], [ 19453, 19459 ], [ 19866, 19872 ], [ 21922, 21928 ], [ 22220, 22226 ], [ 22420, 22426 ], [ 23014, 23020 ], [ 23382, 23388 ] ], [ [ 1189, 1193 ], [ 1926, 1930 ], [ 5298, 5302 ], [ 17650, 17654 ], [ 23606, 23610 ] ], [ [ 1226, 1240 ], [ 1317, 1331 ], [ 1408, 1422 ], [ 1475, 1489 ], [ 6420, 6434 ], [ 8343, 8357 ], [ 11954, 11968 ], [ 12449, 12463 ], [ 13112, 13126 ], [ 13289, 13303 ], [ 15794, 15808 ], [ 15863, 15877 ] ], [ [ 1305, 1314 ], [ 3337, 3346 ], [ 13582, 13591 ], [ 14069, 14078 ], [ 14213, 14222 ], [ 17415, 17424 ], [ 21312, 21321 ] ], [ [ 1344, 1372 ], [ 1425, 1453 ], [ 8360, 8388 ], [ 11460, 11488 ] ], [ [ 1389, 1400 ], [ 6393, 6404 ], [ 8244, 8255 ], [ 8313, 8324 ] ], [ [ 1466, 1472 ], [ 1640, 1646 ], [ 1774, 1780 ], [ 11186, 11192 ], [ 11208, 11214 ] ], [ [ 1651, 1657 ], [ 1696, 1702 ] ], [ [ 1667, 1683 ], [ 7758, 7774 ], [ 14831, 14847 ] ], [ [ 1808, 1818 ], [ 14042, 14052 ], [ 14192, 14202 ], [ 15765, 15775 ], [ 15829, 15839 ] ], [ [ 2064, 2078 ], [ 2958, 2972 ] ], [ [ 2144, 2158 ], [ 3128, 3142 ] ], [ [ 2321, 2331 ], [ 3326, 3336 ] ], [ [ 3312, 3323 ], [ 3672, 3683 ], [ 3793, 3804 ], [ 4237, 4248 ], [ 4963, 4974 ] ], [ [ 3375, 3385 ], [ 4165, 4175 ], [ 5921, 5931 ], [ 6122, 6132 ] ], [ [ 3495, 3516 ], [ 5157, 5178 ], [ 5706, 5727 ] ], [ [ 3632, 3649 ], [ 3969, 3986 ], [ 15602, 15619 ], [ 18768, 18785 ] ], [ [ 3923, 3939 ], [ 17903, 17919 ] ], [ [ 4400, 4417 ], [ 4945, 4962 ] ], [ [ 4690, 4704 ], [ 5475, 5489 ], [ 18242, 18256 ] ], [ [ 5416, 5440 ], [ 4120, 4144 ] ], [ [ 5506, 5526 ], [ 4040, 4060 ], [ 15722, 15742 ] ], [ [ 6371, 6384 ], [ 6490, 6503 ], [ 7263, 7276 ] ], [ [ 6414, 6415 ], [ 6466, 6467 ], [ 6511, 6512 ] ], [ [ 6521, 6536 ], [ 8419, 8434 ] ], [ [ 7978, 7985 ], [ 24659, 24666 ], [ 8051, 8058 ] ], [ [ 16766, 16779 ], [ 21841, 21854 ], [ 21877, 21890 ] ], [ [ 17032, 17053 ], [ 16055, 16076 ] ], [ [ 20177, 20197 ], [ 23697, 23717 ], [ 23965, 23985 ], [ 24023, 24043 ], [ 24359, 24379 ], [ 24441, 24461 ], [ 24475, 24495 ] ], [ [ 20300, 20319 ], [ 15988, 16007 ] ] ]
""" MIT License Copyright (c) 2019 Yoga Suhas Kuruba Manjunath Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # raw images shoud be saved in "images" folder image_folder = './images' # final preprocessed images will be stored extracted_folder = './extracted_images' # to store model files models = './models' # to stroe graphs graphs = './graphs' # vertical and horizontal size to be used image_size_vertical = 100 image_size_horizontal = 100 # number of epochs to train a model epoch = 100 # batch size used to train a model batch_size = 64 # data set split ratio train_ratio = 0.6 test_ratio = 0.2 validation_ratio = 0.2 # input data shape, this will be updated # accordingly in the code for GREY_SCALE # or RGB images if used. x_shape = () # type of channels GREY = 1 RGB = 3 # this config represents the image fusion # in vertical or horizontal way vertical = "VERTICAL" horizontal = "HORIZONTAL" # number of classes, this will be updated # in code num_classes = 0 # labeling of classes, this will be updated # in code person_label = {}
[ [ [ 1140, 1152 ] ], [ [ 1210, 1226 ] ], [ [ 1274, 1280 ] ], [ [ 1313, 1319 ] ], [ [ 1377, 1396 ] ], [ [ 1403, 1424 ] ], [ [ 1468, 1473 ] ], [ [ 1516, 1526 ] ], [ [ 1556, 1567 ] ], [ [ 1574, 1584 ] ], [ [ 1591, 1607 ] ], [ [ 1722, 1729 ] ], [ [ 1755, 1759 ] ], [ [ 1764, 1767 ] ], [ [ 1847, 1855 ] ], [ [ 1869, 1879 ] ], [ [ 1948, 1959 ] ], [ [ 2019, 2031 ] ] ]
import numpy as np import theano import theano.tensor as TT from rllab.core.serializable import Serializable from rllab.misc import ext from rllab.misc import krylov from rllab.misc import logger from rllab.misc.ext import sliced_fun class PerlmutterHvp(Serializable): def __init__(self, num_slices=1): Serializable.quick_init(self, locals()) self.target = None self.reg_coeff = None self.opt_fun = None self._num_slices = num_slices def update_opt(self, f, target, inputs, reg_coeff): self.target = target self.reg_coeff = reg_coeff params = target.get_params(trainable=True) constraint_grads = theano.grad( f, wrt=params, disconnected_inputs='warn') xs = tuple([ext.new_tensor_like("%s x" % p.name, p) for p in params]) def Hx_plain(): Hx_plain_splits = TT.grad( TT.sum([TT.sum(g * x) for g, x in zip(constraint_grads, xs)]), wrt=params, disconnected_inputs='warn' ) return TT.concatenate([TT.flatten(s) for s in Hx_plain_splits]) self.opt_fun = ext.lazydict( f_Hx_plain=lambda: ext.compile_function( inputs=inputs + xs, outputs=Hx_plain(), log_name="f_Hx_plain", ), ) def build_eval(self, inputs): def eval(x): xs = tuple(self.target.flat_to_params(x, trainable=True)) ret = sliced_fun(self.opt_fun["f_Hx_plain"], self._num_slices)( inputs, xs) + self.reg_coeff * x return ret return eval class FiniteDifferenceHvp(Serializable): def __init__(self, base_eps=1e-8, symmetric=True, grad_clip=None, num_slices=1): Serializable.quick_init(self, locals()) self.base_eps = base_eps self.symmetric = symmetric self.grad_clip = grad_clip self._num_slices = num_slices def update_opt(self, f, target, inputs, reg_coeff): self.target = target self.reg_coeff = reg_coeff params = target.get_params(trainable=True) constraint_grads = theano.grad( f, wrt=params, disconnected_inputs='warn') flat_grad = ext.flatten_tensor_variables(constraint_grads) def f_Hx_plain(*args): inputs_ = args[:len(inputs)] xs = args[len(inputs):] flat_xs = np.concatenate([np.reshape(x, (-1,)) for x in xs]) param_val = self.target.get_param_values(trainable=True) eps = np.cast['float32']( self.base_eps / (np.linalg.norm(param_val) + 1e-8)) self.target.set_param_values( param_val + eps * flat_xs, trainable=True) flat_grad_dvplus = self.opt_fun["f_grad"](*inputs_) if self.symmetric: self.target.set_param_values( param_val - eps * flat_xs, trainable=True) flat_grad_dvminus = self.opt_fun["f_grad"](*inputs_) hx = (flat_grad_dvplus - flat_grad_dvminus) / (2 * eps) self.target.set_param_values(param_val, trainable=True) else: self.target.set_param_values(param_val, trainable=True) flat_grad = self.opt_fun["f_grad"](*inputs_) hx = (flat_grad_dvplus - flat_grad) / eps return hx self.opt_fun = ext.lazydict( f_grad=lambda: ext.compile_function( inputs=inputs, outputs=flat_grad, log_name="f_grad", ), f_Hx_plain=lambda: f_Hx_plain, ) def build_eval(self, inputs): def eval(x): xs = tuple(self.target.flat_to_params(x, trainable=True)) ret = sliced_fun(self.opt_fun["f_Hx_plain"], self._num_slices)( inputs, xs) + self.reg_coeff * x return ret return eval class ConjugateGradientOptimizer(Serializable): """ Performs constrained optimization via line search. The search direction is computed using a conjugate gradient algorithm, which gives x = A^{-1}g, where A is a second order approximation of the constraint and g is the gradient of the loss function. """ def __init__( self, cg_iters=10, reg_coeff=1e-5, subsample_factor=1., backtrack_ratio=0.8, max_backtracks=15, accept_violation=False, hvp_approach=None, num_slices=1): """ :param cg_iters: The number of CG iterations used to calculate A^-1 g :param reg_coeff: A small value so that A -> A + reg*I :param subsample_factor: Subsampling factor to reduce samples when using "conjugate gradient. Since the computation time for the descent direction dominates, this can greatly reduce the overall computation time. :param accept_violation: whether to accept the descent step if it violates the line search condition after exhausting all backtracking budgets :return: """ Serializable.quick_init(self, locals()) self._cg_iters = cg_iters self._reg_coeff = reg_coeff self._subsample_factor = subsample_factor self._backtrack_ratio = backtrack_ratio self._max_backtracks = max_backtracks self._num_slices = num_slices self._opt_fun = None self._target = None self._max_constraint_val = None self._constraint_name = None self._accept_violation = accept_violation if hvp_approach is None: hvp_approach = PerlmutterHvp(num_slices) self._hvp_approach = hvp_approach def update_opt(self, loss, target, leq_constraint, inputs, extra_inputs=None, constraint_name="constraint", *args, **kwargs): """ :param loss: Symbolic expression for the loss function. :param target: A parameterized object to optimize over. It should implement methods of the :class:`rllab.core.paramerized.Parameterized` class. :param leq_constraint: A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon. :param inputs: A list of symbolic variables as inputs, which could be subsampled if needed. It is assumed that the first dimension of these inputs should correspond to the number of data points :param extra_inputs: A list of symbolic variables as extra inputs which should not be subsampled :return: No return value. """ inputs = tuple(inputs) if extra_inputs is None: extra_inputs = tuple() else: extra_inputs = tuple(extra_inputs) constraint_term, constraint_value = leq_constraint params = target.get_params(trainable=True) grads = theano.grad(loss, wrt=params, disconnected_inputs='warn') flat_grad = ext.flatten_tensor_variables(grads) self._hvp_approach.update_opt(f=constraint_term, target=target, inputs=inputs + extra_inputs, reg_coeff=self._reg_coeff) self._target = target self._max_constraint_val = constraint_value self._constraint_name = constraint_name self._opt_fun = ext.lazydict( f_loss=lambda: ext.compile_function( inputs=inputs + extra_inputs, outputs=loss, log_name="f_loss", ), f_grad=lambda: ext.compile_function( inputs=inputs + extra_inputs, outputs=flat_grad, log_name="f_grad", ), f_constraint=lambda: ext.compile_function( inputs=inputs + extra_inputs, outputs=constraint_term, log_name="constraint", ), f_loss_constraint=lambda: ext.compile_function( inputs=inputs + extra_inputs, outputs=[loss, constraint_term], log_name="f_loss_constraint", ), ) def loss(self, inputs, extra_inputs=None): inputs = tuple(inputs) if extra_inputs is None: extra_inputs = tuple() return sliced_fun(self._opt_fun["f_loss"], self._num_slices)(inputs, extra_inputs) def constraint_val(self, inputs, extra_inputs=None): inputs = tuple(inputs) if extra_inputs is None: extra_inputs = tuple() return sliced_fun(self._opt_fun["f_constraint"], self._num_slices)(inputs, extra_inputs) def optimize(self, inputs, extra_inputs=None, subsample_grouped_inputs=None): inputs = tuple(inputs) if extra_inputs is None: extra_inputs = tuple() if self._subsample_factor < 1: if subsample_grouped_inputs is None: subsample_grouped_inputs = [inputs] subsample_inputs = tuple() for inputs_grouped in subsample_grouped_inputs: n_samples = len(inputs_grouped[0]) inds = np.random.choice( n_samples, int(n_samples * self._subsample_factor), replace=False) subsample_inputs += tuple([x[inds] for x in inputs_grouped]) else: subsample_inputs = inputs logger.log("computing loss before") loss_before = sliced_fun(self._opt_fun["f_loss"], self._num_slices)( inputs, extra_inputs) logger.log("performing update") logger.log("computing descent direction") flat_g = sliced_fun(self._opt_fun["f_grad"], self._num_slices)( inputs, extra_inputs) Hx = self._hvp_approach.build_eval(subsample_inputs + extra_inputs) descent_direction = krylov.cg(Hx, flat_g, cg_iters=self._cg_iters) initial_step_size = np.sqrt( 2.0 * self._max_constraint_val * (1. / (descent_direction.dot(Hx(descent_direction)) + 1e-8)) ) if np.isnan(initial_step_size): initial_step_size = 1. flat_descent_step = initial_step_size * descent_direction logger.log("descent direction computed") prev_param = np.copy(self._target.get_param_values(trainable=True)) n_iter = 0 for n_iter, ratio in enumerate(self._backtrack_ratio ** np.arange(self._max_backtracks)): cur_step = ratio * flat_descent_step cur_param = prev_param - cur_step self._target.set_param_values(cur_param, trainable=True) loss, constraint_val = sliced_fun( self._opt_fun["f_loss_constraint"], self._num_slices)(inputs, extra_inputs) if loss < loss_before and constraint_val <= self._max_constraint_val: break if (np.isnan(loss) or np.isnan(constraint_val) or loss >= loss_before or constraint_val >= self._max_constraint_val) and not self._accept_violation: logger.log("Line search condition violated. Rejecting the step!") if np.isnan(loss): logger.log("Violated because loss is NaN") if np.isnan(constraint_val): logger.log("Violated because constraint %s is NaN" % self._constraint_name) if loss >= loss_before: logger.log("Violated because loss not improving") if constraint_val >= self._max_constraint_val: logger.log( "Violated because constraint %s is violated" % self._constraint_name) self._target.set_param_values(prev_param, trainable=True) logger.log("backtrack iters: %d" % n_iter) logger.log("computing loss after") logger.log("optimization finished")
[ [ [ 7, 18 ], [ 9147, 9149 ], [ 9916, 9918 ], [ 10064, 10066 ], [ 10266, 10268 ], [ 10404, 10406 ], [ 10857, 10859 ], [ 10875, 10877 ], [ 11111, 11113 ], [ 11201, 11203 ], [ 2463, 2465 ], [ 2479, 2481 ], [ 2601, 2603 ], [ 2654, 2656 ] ], [ [ 26, 32 ], [ 682, 688 ], [ 2197, 2203 ], [ 6929, 6935 ] ], [ [ 40, 59 ], [ 883, 885 ], [ 908, 910 ], [ 916, 918 ], [ 1099, 1101 ], [ 1115, 1117 ] ], [ [ 97, 109 ], [ 257, 269 ], [ 1706, 1718 ], [ 4024, 4036 ], [ 319, 331 ], [ 1815, 1827 ], [ 5175, 5187 ] ], [ [ 133, 136 ], [ 770, 773 ], [ 1180, 1183 ], [ 2285, 2288 ], [ 3462, 3465 ], [ 7007, 7010 ], [ 7367, 7370 ], [ 1225, 1228 ], [ 3503, 3506 ], [ 7408, 7411 ], [ 7583, 7586 ], [ 7769, 7772 ], [ 7970, 7973 ] ], [ [ 160, 166 ], [ 9840, 9846 ] ], [ [ 190, 196 ], [ 9390, 9396 ], [ 9545, 9551 ], [ 9585, 9591 ], [ 10203, 10209 ], [ 11030, 11036 ], [ 11143, 11149 ], [ 11243, 11249 ], [ 11398, 11404 ], [ 11523, 11529 ], [ 11703, 11709 ], [ 11754, 11760 ], [ 11797, 11803 ] ], [ [ 224, 234 ], [ 8320, 8330 ], [ 8568, 8578 ], [ 9448, 9458 ], [ 9645, 9655 ], [ 10637, 10647 ], [ 1527, 1537 ], [ 3838, 3848 ] ], [ [ 243, 256 ], [ 5712, 5725 ] ], [ [ 1686, 1705 ] ], [ [ 3997, 4023 ] ] ]
# coding: utf-8 import pprint import re import six class TemplateCddl: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'flow': 'FlowItem', 'states': 'dict(str, TemplateState)', 'workflow': 'Workflow' } attribute_map = { 'flow': 'flow', 'states': 'states', 'workflow': 'workflow' } def __init__(self, flow=None, states=None, workflow=None): """TemplateCddl - a model defined in huaweicloud sdk""" self._flow = None self._states = None self._workflow = None self.discriminator = None self.flow = flow self.states = states self.workflow = workflow @property def flow(self): """Gets the flow of this TemplateCddl. :return: The flow of this TemplateCddl. :rtype: FlowItem """ return self._flow @flow.setter def flow(self, flow): """Sets the flow of this TemplateCddl. :param flow: The flow of this TemplateCddl. :type: FlowItem """ self._flow = flow @property def states(self): """Gets the states of this TemplateCddl. 子任务states,map类型数据 :return: The states of this TemplateCddl. :rtype: dict(str, TemplateState) """ return self._states @states.setter def states(self, states): """Sets the states of this TemplateCddl. 子任务states,map类型数据 :param states: The states of this TemplateCddl. :type: dict(str, TemplateState) """ self._states = states @property def workflow(self): """Gets the workflow of this TemplateCddl. :return: The workflow of this TemplateCddl. :rtype: Workflow """ return self._workflow @workflow.setter def workflow(self, workflow): """Sets the workflow of this TemplateCddl. :param workflow: The workflow of this TemplateCddl. :type: Workflow """ self._workflow = workflow def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, TemplateCddl): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ [ [ 24, 30 ], [ 3377, 3383 ] ], [ [ 38, 40 ] ], [ [ 49, 52 ], [ 2457, 2460 ] ], [ [ 64, 76 ], [ 3617, 3629 ] ] ]
from flask import Flask, render_template, redirect, url_for, flash, request, abort from functions import UserLogin, UserRegistration, NewExpense from flask_sqlalchemy import SQLAlchemy from sqlalchemy import func from datetime import datetime, timedelta, date from flask_bcrypt import Bcrypt from flask_login import LoginManager, UserMixin, login_user, current_user, logout_user, login_required from matplotlib import pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure from itertools import zip_longest import os import io import base64 import numpy as np app = Flask(__name__) SECRET_KEY = os.urandom(16) app.config['SECRET_KEY'] = SECRET_KEY app.config['SQLALCHEMY_DATABASE_URI'] = ' ' db = SQLAlchemy(app) bcrypt = Bcrypt(app) login_manager = LoginManager(app) login_manager.login_view = 'login' login_manager.login_message_category = 'info' @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class User(db.Model, UserMixin): __tablename__ = 'user' id = db.Column(db.Integer, primary_key=True) email = db.Column(db.String(30), unique=True, nullable=False) username = db.Column(db.String(10), unique=True, nullable=False) password = db.Column(db.String(128), nullable=False) expense_id = db.relationship('UserExpense', backref='expensedate', lazy='dynamic') def __repr__(self): return f"User('{self.username}', '{self.email}')" class UserExpense(db.Model): __tablename__ = 'user_expenses' id = db.Column(db.Integer, primary_key=True) userid = db.Column(db.Integer, db.ForeignKey('user.id'), nullable=False) category = db.Column(db.String(30)) description = db.Column(db.String(50)) expense = db.Column(db.Numeric(scale=2, asdecimal=True)) expense_date = db.Column(db.Date, default=date.today()) def __repr__(self): return f"UserExpense('{self.category}', '{self.description}', '{self.expense}', '{self.expense_date}')" @app.route('/', methods=['GET', 'POST']) def login(): form = UserLogin() if current_user.is_authenticated: return redirect(url_for('overview')) if form.validate_on_submit(): user = User.query.filter_by(username=form.username.data).first() if user and bcrypt.check_password_hash(user.password, form.password.data): login_user(user, remember=form.remember.data) return redirect(url_for('overview')) else: flash('Invalid login', 'danger') return render_template('login.html', form=form) @app.route('/register', methods=['GET', 'POST']) def register(): if current_user.is_authenticated: return redirect(url_for('overview')) form = UserRegistration() if form.validate_on_submit(): password_hashed = bcrypt.generate_password_hash(form.password.data).decode('utf-8') user = User(username=form.username.data, email=form.email.data, password=password_hashed) db.session.add(user) db.session.commit() flash('Account created!', 'success') return redirect(url_for('login')) return render_template('register.html', title='Register', form=form) @app.route('/logout') def logout(): logout_user() flash('Logged out!', 'success') return redirect(url_for('login')) @app.route('/overview', methods=['GET','POST']) @login_required def overview(): form = NewExpense() userids = current_user.id name = current_user.username # Forms if form.validate_on_submit(): expenses = UserExpense(category=form.category.data, description=form.description.data, expense=form.expense.data, expensedate=current_user) db.session.add(expenses) db.session.commit() # Queries filters = db.session.query(UserExpense.expense_date).filter(UserExpense.userid==userids).distinct() date_list=[] #List of distinct dates for u in filters: date_list.append(f'{u.expense_date}') date_expense_list=[] #List of expenses for that specific date for item in date_list: date_expense = db.session.query(func.sum(UserExpense.expense)).filter(UserExpense.userid==userids, UserExpense.expense_date==item).scalar() date_expense_list.append(f'{date_expense}') item = list(zip_longest(date_list,date_expense_list,date_list, fillvalue="")) # Matplotlib fig, ax = plt.subplots(figsize=(11, 5)) ax.plot(date_list, [float(g) for g in date_expense_list], label="Expenses") ax.legend() fig.suptitle('Expense pattern') patternpngImage = io.BytesIO() FigureCanvas(fig).print_png(patternpngImage) patternpngImageString = "data:image/png;base64," patternpngImageString += base64.b64encode(patternpngImage.getvalue()).decode('utf8') return render_template('overview.html', normal='normal', title='Expenses',image=patternpngImageString, form=form, name=name, item=item) @app.route('/expense/<string:wkex_id>', methods=['GET','POST']) @login_required def userexpenses(wkex_id): form = NewExpense() userids = current_user.id name = current_user.username # Queries items = db.session.query(UserExpense).filter(UserExpense.userid==userids, UserExpense.expense_date==wkex_id) todays = str(date.today()) state="not" if (wkex_id == todays) is True: state="today" if (wkex_id > todays) is True: abort(404) # Forms if form.validate_on_submit(): expenses = UserExpense(category=form.category.data, description=form.description.data, expense=form.expense.data, expensedate=current_user) db.session.add(expenses) db.session.commit() flash('Expense added!', 'success') return redirect(url_for('userexpenses', wkex_id=wkex_id)) return render_template('expenses.html', normal='normal', title='Expenses', form=form, items=items, name=name, ids=wkex_id, state=state) @app.route('/expense/<string:wkex_id>/<int:ex_id>/delete', methods=['GET','POST']) @login_required def delete_expense(wkex_id, ex_id): expenses = db.session.query(UserExpense).get_or_404(ex_id) # Query for valid access if expenses.expensedate != current_user: abort(403) db.session.delete(expenses) db.session.commit() flash('Expense deleted', 'success') return redirect(url_for('overview')) @app.route("/expense/<string:wkex_id>/<int:ex_id>/update", methods=['GET', 'POST']) @login_required def update_expense(wkex_id, ex_id): name = current_user.username expenses = db.session.query(UserExpense).get_or_404(ex_id) # Query for valid access if expenses.expensedate != current_user: abort(403) form = NewExpense() if form.validate_on_submit(): expenses.category = form.category.data expenses.description = form.description.data expenses.expense = form.expense.data db.session.commit() flash('Expense updated', 'success') return redirect(url_for('overview')) elif request.method=='GET': form.category.data = expenses.category form.description.data =expenses.description form.expense.data = expenses.expense return render_template('expenses.html', title='Expenses',form=form, name=name, wkex_id=wkex_id, state='today') @app.route("/expense/<string:day_id>/charts", methods=['GET', 'POST']) @login_required def charts(day_id): userids = current_user.id name = current_user.username # Queries categories = db.session.query(UserExpense.category).filter(UserExpense.userid==userids, UserExpense.expense_date==day_id).distinct() cat_list=[] for u in categories: cat_list.append(f'{u.category}') counts_list=[] for item in cat_list: counts = db.session.query(UserExpense.category).filter(UserExpense.userid==userids, UserExpense.expense_date==day_id, UserExpense.category==item).count() counts_list.append(counts) sum_list=[] for item in cat_list: Sums = db.session.query(func.sum(UserExpense.expense)).filter(UserExpense.userid==userids, UserExpense.expense_date==day_id, UserExpense.category==item).scalar() sum_list.append(f'{Sums}') # Highest expenditure graph fig, axs = plt.subplots(figsize=(10, 5)) axs.bar(cat_list, [float(g) for g in sum_list]) fig.suptitle('Expenditure breakdown') # Frequency graph fig1, ax1 = plt.subplots(figsize=(10, 5), subplot_kw=dict(aspect="equal")) wedges, texts = ax1.pie(counts_list, wedgeprops=dict(width=0.5), startangle=-40) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) kw = dict(arrowprops=dict(arrowstyle="-"), bbox=bbox_props, zorder=0, va="top") for i, p in enumerate(wedges): ang = (p.theta2 - p.theta1)/2. + p.theta1 y = np.sin(np.deg2rad(ang)) x = np.cos(np.deg2rad(ang)) horizontalalignment = {-1: "right", 1: "left"}[int(np.sign(x))] connectionstyle = "angle,angleA=0,angleB={}".format(ang) kw["arrowprops"].update({"connectionstyle": connectionstyle}) ax1.annotate(cat_list[i], xy=(x, y), xytext=(1.35*np.sign(x), 1.4*y), horizontalalignment=horizontalalignment, **kw) ax1.set_title("Expenses category frequency") # Convert plot to PNG image highpngImage = io.BytesIO() freqpngImage = io.BytesIO() FigureCanvas(fig).print_png(highpngImage) FigureCanvas(fig1).print_png(freqpngImage) # Encode PNG image to base64 string highpngImageString = "data:image/png;base64," highpngImageString += base64.b64encode(highpngImage.getvalue()).decode('utf8') freqpngImageString = "data:image/png;base64," freqpngImageString += base64.b64encode(freqpngImage.getvalue()).decode('utf8') return render_template('charts.html',title ='History', name=name, image1=highpngImageString, image2=freqpngImageString, day_id=day_id) if __name__ == '__main__': app.run()
[ [ [ 18, 23 ], [ 639, 644 ] ], [ [ 25, 40 ], [ 2547, 2562 ], [ 3146, 3161 ], [ 4834, 4849 ], [ 5883, 5898 ], [ 7295, 7310 ], [ 10224, 10239 ] ], [ [ 42, 50 ], [ 2150, 2158 ], [ 2447, 2455 ], [ 2707, 2715 ], [ 3108, 3116 ], [ 3310, 3318 ], [ 5820, 5828 ], [ 6434, 6442 ], [ 7077, 7085 ] ], [ [ 52, 59 ], [ 2159, 2166 ], [ 2456, 2463 ], [ 2716, 2723 ], [ 3117, 3124 ], [ 3319, 3326 ], [ 5829, 5836 ], [ 6443, 6450 ], [ 7086, 7093 ] ], [ [ 61, 66 ], [ 2503, 2508 ], [ 3056, 3061 ], [ 3267, 3272 ], [ 5770, 5775 ], [ 6387, 6392 ], [ 7026, 7031 ] ], [ [ 68, 75 ], [ 7117, 7124 ] ], [ [ 77, 82 ], [ 5463, 5468 ], [ 6316, 6321 ], [ 6775, 6780 ] ], [ [ 105, 114 ], [ 2085, 2094 ] ], [ [ 116, 132 ], [ 2748, 2764 ] ], [ [ 134, 144 ], [ 3429, 3439 ], [ 5110, 5120 ], [ 6797, 6807 ] ], [ [ 174, 184 ], [ 770, 780 ] ], [ [ 208, 212 ], [ 4156, 4160 ], [ 8310, 8314 ] ], [ [ 234, 242 ] ], [ [ 244, 253 ] ], [ [ 255, 259 ], [ 1868, 1872 ], [ 5332, 5336 ] ], [ [ 285, 291 ], [ 795, 801 ] ], [ [ 316, 328 ], [ 823, 835 ] ], [ [ 330, 339 ], [ 1036, 1045 ] ], [ [ 341, 351 ], [ 2382, 2392 ] ], [ [ 353, 365 ], [ 2104, 2116 ], [ 2661, 2673 ], [ 3456, 3468 ], [ 3483, 3495 ], [ 3718, 3730 ], [ 5137, 5149 ], [ 5164, 5176 ], [ 5687, 5699 ], [ 6294, 6306 ], [ 6612, 6624 ], [ 6753, 6765 ], [ 7521, 7533 ], [ 7548, 7560 ] ], [ [ 367, 378 ], [ 3249, 3260 ] ], [ [ 380, 394 ], [ 3387, 3401 ], [ 5057, 5071 ], [ 6124, 6138 ], [ 6550, 6564 ], [ 7472, 7486 ] ], [ [ 418, 431 ], [ 4431, 4434 ], [ 8671, 8674 ], [ 8834, 8837 ] ], [ [ 476, 507 ], [ 4633, 4645 ], [ 9815, 9827 ], [ 9861, 9873 ] ], [ [ 538, 544 ] ], [ [ 567, 578 ], [ 4333, 4344 ] ], [ [ 586, 588 ], [ 668, 670 ] ], [ [ 596, 598 ], [ 4616, 4618 ], [ 9766, 9768 ], [ 9798, 9800 ] ], [ [ 606, 612 ], [ 4761, 4767 ], [ 10021, 10027 ], [ 10155, 10161 ] ], [ [ 620, 631 ], [ 9252, 9254 ], [ 9259, 9261 ], [ 9288, 9290 ], [ 9295, 9297 ], [ 9371, 9373 ], [ 9577, 9579 ] ], [ [ 633, 636 ], [ 683, 686 ], [ 721, 724 ], [ 781, 784 ], [ 802, 805 ], [ 836, 839 ], [ 2021, 2024 ], [ 2590, 2593 ], [ 3210, 3213 ], [ 3339, 3342 ], [ 4993, 4996 ], [ 6041, 6044 ], [ 6466, 6469 ], [ 7401, 7404 ], [ 10419, 10422 ] ], [ [ 655, 665 ], [ 710, 720 ] ], [ [ 765, 767 ], [ 1026, 1028 ], [ 1084, 1086 ], [ 1094, 1096 ], [ 1136, 1138 ], [ 1146, 1148 ], [ 1205, 1207 ], [ 1215, 1217 ], [ 1274, 1276 ], [ 1284, 1286 ], [ 1333, 1335 ], [ 1505, 1507 ], [ 1561, 1563 ], [ 1571, 1573 ], [ 1614, 1616 ], [ 1624, 1626 ], [ 1636, 1638 ], [ 1693, 1695 ], [ 1703, 1705 ], [ 1736, 1738 ], [ 1746, 1748 ], [ 1775, 1777 ], [ 1785, 1787 ], [ 1841, 1843 ], [ 1851, 1853 ], [ 2999, 3001 ], [ 3028, 3030 ], [ 3740, 3742 ], [ 3773, 3775 ], [ 3822, 3824 ], [ 4139, 4141 ], [ 5213, 5215 ], [ 5709, 5711 ], [ 5742, 5744 ], [ 6190, 6192 ], [ 6331, 6333 ], [ 6363, 6365 ], [ 6649, 6651 ], [ 6998, 7000 ], [ 7601, 7603 ], [ 7929, 7931 ], [ 8293, 8295 ] ], [ [ 786, 792 ], [ 2307, 2313 ], [ 2827, 2833 ] ], [ [ 807, 820 ], [ 841, 854 ], [ 876, 889 ], [ 924, 937 ] ], [ [ 954, 963 ] ], [ [ 1021, 1025 ], [ 985, 989 ], [ 2229, 2233 ], [ 2908, 2912 ] ], [ [ 1493, 1504 ], [ 3571, 3582 ], [ 3839, 3850 ], [ 3872, 3883 ], [ 4165, 4176 ], [ 4194, 4205 ], [ 4223, 4234 ], [ 5230, 5241 ], [ 5250, 5261 ], [ 5279, 5290 ], [ 5540, 5551 ], [ 6207, 6218 ], [ 6666, 6677 ], [ 7618, 7629 ], [ 7647, 7658 ], [ 7739, 7750 ], [ 7946, 7957 ], [ 7975, 7986 ], [ 8067, 8078 ], [ 8164, 8175 ], [ 8319, 8330 ], [ 8348, 8359 ], [ 8447, 8458 ], [ 8551, 8562 ] ], [ [ 2065, 2070 ] ], [ [ 2642, 2650 ] ], [ [ 3235, 3241 ] ], [ [ 3406, 3414 ] ], [ [ 5076, 5088 ] ], [ [ 6143, 6157 ] ], [ [ 6569, 6583 ] ], [ [ 7491, 7497 ] ] ]
import unittest import mock import numpy import pytest import cupy from cupy import testing from cupyx.scipy import sparse @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128], 'format': ['csr', 'csc', 'coo'], 'm': [3], 'n': [None, 3, 2], 'k': [0, 1], })) @testing.with_requires('scipy') class TestEye(unittest.TestCase): @testing.numpy_cupy_allclose(sp_name='sp') def test_eye(self, xp, sp): x = sp.eye( self.m, n=self.n, k=self.k, dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128], 'format': ['csr', 'csc', 'coo'], })) @testing.with_requires('scipy') class TestIdentity(unittest.TestCase): @testing.numpy_cupy_allclose(sp_name='sp') def test_eye(self, xp, sp): x = sp.identity(3, dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128], })) @testing.with_requires('scipy') class TestSpdiags(unittest.TestCase): @testing.numpy_cupy_allclose(sp_name='sp') def test_spdiags(self, xp, sp): data = xp.arange(12, dtype=self.dtype).reshape(3, 4) diags = xp.array([0, -1, 2], dtype='i') x = sp.spdiags(data, diags, 3, 4) return x @testing.parameterize(*testing.product({ 'random_method': ['random', 'rand'], 'dtype': [numpy.float32, numpy.float64], 'format': ['csr', 'csc', 'coo'], })) class TestRandom(unittest.TestCase): def test_random(self): x = getattr(sparse, self.random_method)( 3, 4, density=0.1, format=self.format, dtype=self.dtype) self.assertEqual(x.shape, (3, 4)) self.assertEqual(x.dtype, self.dtype) self.assertEqual(x.format, self.format) def test_random_with_seed(self): x = getattr(sparse, self.random_method)( 3, 4, density=0.1, format=self.format, dtype=self.dtype, random_state=1) self.assertEqual(x.shape, (3, 4)) self.assertEqual(x.dtype, self.dtype) self.assertEqual(x.format, self.format) y = getattr(sparse, self.random_method)( 3, 4, density=0.1, format=self.format, dtype=self.dtype, random_state=1) self.assertTrue((x.toarray() == y.toarray()).all()) def test_random_with_state(self): state1 = cupy.random.RandomState(1) x = getattr(sparse, self.random_method)( 3, 4, density=0.1, format=self.format, dtype=self.dtype, random_state=state1) self.assertEqual(x.shape, (3, 4)) self.assertEqual(x.dtype, self.dtype) self.assertEqual(x.format, self.format) state2 = cupy.random.RandomState(1) y = getattr(sparse, self.random_method)( 3, 4, density=0.1, format=self.format, dtype=self.dtype, random_state=state2) self.assertTrue((x.toarray() == y.toarray()).all()) def test_random_with_data_rvs(self): if self.random_method == 'rand': pytest.skip('cupyx.scipy.sparse.rand does not support data_rvs') data_rvs = mock.MagicMock(side_effect=cupy.zeros) x = getattr(sparse, self.random_method)( 3, 4, density=0.1, data_rvs=data_rvs, format=self.format, dtype=self.dtype) self.assertEqual(x.shape, (3, 4)) self.assertEqual(x.dtype, self.dtype) self.assertEqual(x.format, self.format) self.assertEqual(data_rvs.call_count, 1) # Note that its value is generated randomly self.assertIsInstance(data_rvs.call_args[0][0], int) @testing.with_requires('scipy') class TestRandomInvalidArgument(unittest.TestCase): @testing.numpy_cupy_raises(sp_name='sp', accept_error=ValueError) def test_too_small_density(self, xp, sp): sp.random(3, 4, density=-0.1) @testing.numpy_cupy_raises(sp_name='sp', accept_error=ValueError) def test_too_large_density(self, xp, sp): sp.random(3, 4, density=1.1) @testing.numpy_cupy_raises(sp_name='sp', accept_error=NotImplementedError) def test_invalid_dtype(self, xp, sp): sp.random(3, 4, dtype='i') @testing.parameterize(*testing.product({ 'dtype': [numpy.float32, numpy.float64, numpy.complex64, numpy.complex128], 'format': ['dia', 'csr', 'csc', 'coo'], })) @testing.with_requires('scipy') class TestDiags(unittest.TestCase): @testing.numpy_cupy_allclose(sp_name='sp') def test_diags_scalar_offset(self, xp, sp): x = sp.diags( xp.arange(16), offsets=0, dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.numpy_cupy_allclose(sp_name='sp') def test_diags_single_element_lists(self, xp, sp): x = sp.diags( [xp.arange(16)], offsets=[0], dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.numpy_cupy_allclose(sp_name='sp') def test_diags_multiple(self, xp, sp): x = sp.diags( [xp.arange(15), xp.arange(16), xp.arange(15), xp.arange(13)], offsets=[-1, 0, 1, 3], dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.numpy_cupy_allclose(sp_name='sp') def test_diags_offsets_as_array(self, xp, sp): x = sp.diags( [xp.arange(15), xp.arange(16), xp.arange(15), xp.arange(13)], offsets=xp.array([-1, 0, 1, 3]), dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x @testing.numpy_cupy_allclose(sp_name='sp') def test_diags_non_square(self, xp, sp): x = sp.diags( [xp.arange(5), xp.arange(3)], offsets=[0, -2], shape=(5, 10), dtype=self.dtype, format=self.format) self.assertIsInstance(x, sp.spmatrix) self.assertEqual(x.format, self.format) return x
[ [ [ 7, 15 ], [ 389, 397 ], [ 913, 921 ], [ 1366, 1374 ], [ 1825, 1833 ], [ 4074, 4082 ], [ 4779, 4787 ] ], [ [ 24, 28 ], [ 3521, 3525 ] ], [ [ 36, 41 ], [ 182, 187 ], [ 197, 202 ], [ 212, 217 ], [ 229, 234 ], [ 755, 760 ], [ 770, 775 ], [ 785, 790 ], [ 802, 807 ], [ 1246, 1251 ], [ 1261, 1266 ], [ 1276, 1281 ], [ 1293, 1298 ], [ 1736, 1741 ], [ 1751, 1756 ], [ 4617, 4622 ], [ 4632, 4637 ], [ 4647, 4652 ], [ 4664, 4669 ] ], [ [ 49, 55 ], [ 3437, 3443 ] ], [ [ 64, 68 ], [ 2747, 2751 ], [ 3091, 3095 ], [ 3548, 3552 ] ], [ [ 86, 93 ], [ 128, 135 ], [ 150, 157 ], [ 344, 351 ], [ 415, 422 ], [ 701, 708 ], [ 723, 730 ], [ 863, 870 ], [ 939, 946 ], [ 1192, 1199 ], [ 1214, 1221 ], [ 1317, 1324 ], [ 1392, 1399 ], [ 1641, 1648 ], [ 1663, 1670 ], [ 4011, 4018 ], [ 4100, 4107 ], [ 4255, 4262 ], [ 4409, 4416 ], [ 4563, 4570 ], [ 4585, 4592 ], [ 4732, 4739 ], [ 4805, 4812 ], [ 5110, 5117 ], [ 5426, 5433 ], [ 5809, 5816 ], [ 6210, 6217 ] ], [ [ 118, 124 ], [ 1893, 1899 ], [ 2197, 2203 ], [ 2492, 2498 ], [ 2794, 2800 ], [ 3138, 3144 ], [ 3580, 3586 ] ], [ [ 381, 388 ] ], [ [ 900, 912 ] ], [ [ 1354, 1365 ] ], [ [ 1814, 1824 ] ], [ [ 4048, 4073 ] ], [ [ 4769, 4778 ] ] ]
import torch import numpy as np; from torch.autograd import Variable def normal_std(x): return x.std() * np.sqrt((len(x) - 1.)/(len(x))) class Data_utility(object): # train and valid is the ratio of training set and validation set. test = 1 - train - valid def __init__(self, dSet, train, valid, cuda, horizon, window, normalize = 2): self.cuda = cuda; self.P = window; self.h = horizon self.rawdat = dSet self.dat = np.zeros(self.rawdat.shape); self.n, self.m = self.dat.shape; self.normalize = 2 self.scale = np.ones(self.m); self._normalized(normalize); self._split(int(train * self.n), int((train+valid) * self.n), self.n); self.scale = torch.from_numpy(self.scale).float(); tmp = self.test[1] * self.scale.expand(self.test[1].size(0), self.m); if self.cuda: self.scale = self.scale.cuda(); self.scale = Variable(self.scale); self.rse = normal_std(tmp); self.rae = torch.mean(torch.abs(tmp - torch.mean(tmp))); def _normalized(self, normalize): #normalized by the maximum value of entire matrix. if (normalize == 0): self.dat = self.rawdat if (normalize == 1): self.dat = self.rawdat / np.max(self.rawdat); #normlized by the maximum value of each row(sensor). if (normalize == 2): for i in range(self.m): self.scale[i] = np.max(np.abs(self.rawdat[:,i])); self.dat[:,i] = self.rawdat[:,i] / np.max(np.abs(self.rawdat[:,i])); def _split(self, train, valid, test): train_set = range(self.P+self.h-1, train); valid_set = range(train, valid); test_set = range(valid, self.n); self.train = self._batchify(train_set, self.h); self.valid = self._batchify(valid_set, self.h); self.test = self._batchify(test_set, self.h); def _batchify(self, idx_set, horizon): n = len(idx_set); X = torch.zeros((n,self.P,self.m)); Y = torch.zeros((n,self.m)); for i in range(n): end = idx_set[i] - self.h + 1; start = end - self.P; X[i,:,:] = torch.from_numpy(self.dat[start:end, :]); Y[i,:] = torch.from_numpy(self.dat[idx_set[i], :]); return [X, Y]; def get_batches(self, inputs, targets, batch_size, shuffle=True): length = len(inputs) if shuffle: index = torch.randperm(length) else: index = torch.LongTensor(range(length)) start_idx = 0 while (start_idx < length): end_idx = min(length, start_idx + batch_size) excerpt = index[start_idx:end_idx] X = inputs[excerpt]; Y = targets[excerpt]; # if (self.cuda): # X = X.cuda(); # Y = Y.cuda(); yield Variable(X), Variable(Y); start_idx += batch_size
[ [ [ 7, 12 ], [ 753, 758 ], [ 1055, 1060 ], [ 1066, 1071 ], [ 1082, 1087 ], [ 2145, 2150 ], [ 2189, 2194 ], [ 2350, 2355 ], [ 2413, 2418 ], [ 2620, 2625 ], [ 2677, 2682 ] ], [ [ 20, 31 ], [ 111, 113 ], [ 472, 474 ], [ 590, 592 ], [ 1354, 1356 ], [ 1546, 1548 ], [ 1553, 1555 ], [ 1631, 1633 ], [ 1638, 1640 ] ], [ [ 60, 68 ], [ 969, 977 ], [ 3039, 3047 ], [ 3052, 3060 ] ], [ [ 75, 85 ], [ 1019, 1029 ] ], [ [ 150, 162 ] ] ]
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright (c) 2021, Cisco Systems # GNU General Public License v3.0+ (see LICENSE or https://www.gnu.org/licenses/gpl-3.0.txt) DOCUMENTATION = r""" --- module: device_administration_dictionary_attributes_policy_set_info short_description: Information module for Device Administration Dictionary Attributes Policy Set description: - Get all Device Administration Dictionary Attributes Policy Set. version_added: '1.0.0' author: Rafael Campos (@racampos) options: {} requirements: - ciscoisesdk seealso: # Reference by Internet resource - name: Device Administration Dictionary Attributes Policy Set reference description: Complete reference of the Device Administration Dictionary Attributes Policy Set object model. link: https://ciscoisesdk.readthedocs.io/en/latest/api/api.html#v3-0-0-summary """ EXAMPLES = r""" - name: Get all Device Administration Dictionary Attributes Policy Set cisco.ise.device_administration_dictionary_attributes_policy_set_info: ise_hostname: "{{ise_hostname}}" ise_username: "{{ise_username}}" ise_password: "{{ise_password}}" ise_verify: "{{ise_verify}}" register: result """ RETURN = r""" ise_response: description: A dictionary or list with the response returned by the Cisco ISE Python SDK returned: always type: dict sample: > { "response": [ { "allowedValues": [ { "isDefault": true, "key": "string", "value": "string" } ], "dataType": "string", "description": "string", "dictionaryName": "string", "directionType": "string", "id": "string", "internalName": "string", "name": "string" } ], "version": "string" } """
[ [ [ 173, 186 ] ], [ [ 850, 858 ] ], [ [ 1179, 1185 ] ] ]
########################################################################## # # Copyright (c) 2011, John Haddon. All rights reserved. # Copyright (c) 2013, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import IECore import Gaffer ## This class is used by the CompoundNumericPlugTest. class CompoundNumericNode( Gaffer.Node ) : def __init__( self, name="CompoundNumericNode" ) : Gaffer.Node.__init__( self, name ) self.addChild( Gaffer.V3fPlug( "p", Gaffer.Plug.Direction.In ) ) IECore.registerRunTimeTyped( CompoundNumericNode, typeName = "GafferTest::CompoundNumericNode" )
[ [ [ 1867, 1873 ], [ 2147, 2153 ] ], [ [ 1882, 1888 ], [ 1971, 1977 ], [ 2043, 2049 ], [ 2096, 2102 ], [ 2117, 2123 ] ], [ [ 1950, 1969 ], [ 2176, 2195 ] ] ]
# buildifier: disable=module-docstring load("@rules_foreign_cc//tools/build_defs/shell_toolchain/toolchains:function_and_call.bzl", "FunctionAndCall") _REPLACE_VALUE = "BAZEL_GEN_ROOT" def os_name(): return "Fancy" def pwd(): return "$(pwd)" def echo(text): return "printf \"{text}\"".format(text = text) def export_var(name, value): return "export {name}={value}".format(name = name, value = value) def local_var(name, value): return "local {name}={value}".format(name = name, value = value) def use_var(name): return "$" + name def env(): return "env" def path(expression): return "export PATH=\"{expression}:$PATH\"".format(expression = expression) def touch(path): return "touch " + path def mkdirs(path): return "mkdir -p " + path def if_else(condition, if_text, else_text): return """ if [ {condition} ]; then {if_text} else {else_text} fi """.format(condition = condition, if_text = if_text, else_text = else_text) # buildifier: disable=function-docstring def define_function(name, text): lines = [] lines.append("function " + name + "() {") for line_ in text.splitlines(): lines.append(" " + line_) lines.append("}") return "\n".join(lines) def replace_in_files(dir, from_, to_): return FunctionAndCall( text = """if [ -d "$1" ]; then find -L $1 -print -type f \\( -name "*.pc" -or -name "*.la" -or -name "*-config" -or -name "*.cmake" \\) -exec sed -i 's@'"$2"'@'"$3"'@g' {} ';' fi """, ) def copy_dir_contents_to_dir(source, target): return """cp -L -r --no-target-directory "{}" "{}" """.format(source, target) def symlink_contents_to_dir(source, target): text = """local target="$2" mkdir -p $target if [[ -f $1 ]]; then ##symlink_to_dir## $1 $target return 0 fi local children=$(find $1 -maxdepth 1 -mindepth 1) for child in $children; do ##symlink_to_dir## $child $target done """ return FunctionAndCall(text = text) def symlink_to_dir(source, target): text = """local target="$2" mkdir -p ${target} if [[ -d $1 ]]; then ln -s -t ${target} $1 elif [[ -f $1 ]]; then ln -s -t ${target} $1 elif [[ -L $1 ]]; then cp --no-target-directory $1 ${target} else echo "Can not copy $1" fi """ return FunctionAndCall(text = text) def script_prelude(): return "set -euo pipefail" def increment_pkg_config_path(source): text = """local children=$(find $1 -mindepth 1 -name '*.pc') # assume there is only one directory with pkg config for child in $children; do export PKG_CONFIG_PATH="$${PKG_CONFIG_PATH:-}$$:$(dirname $child)" return done """ return FunctionAndCall(text = text) def cat(filepath): return "cat \"{}\"".format(filepath) def redirect_out_err(from_process, to_file): return from_process + " &> " + to_file def assert_script_errors(): return "set -e" def cleanup_function(on_success, on_failure): text = "\n".join([ "local ecode=$?", "if [ $ecode -eq 0 ]; then", on_success, "else", on_failure, "fi", ]) return FunctionAndCall(text = text, call = "trap \"cleanup_function\" EXIT") def children_to_path(dir_): text = """if [ -d {dir_} ]; then local tools=$(find $EXT_BUILD_DEPS/bin -maxdepth 1 -mindepth 1) for tool in $tools; do if [[ -d \"$tool\" ]] || [[ -L \"$tool\" ]]; then export PATH=$PATH:$tool fi done fi""".format(dir_ = dir_) return FunctionAndCall(text = text) def define_absolute_paths(dir_, abs_path): return "##replace_in_files## {dir_} {REPLACE_VALUE} {abs_path}".format( dir_ = dir_, REPLACE_VALUE = _REPLACE_VALUE, abs_path = abs_path, ) def replace_absolute_paths(dir_, abs_path): return "##replace_in_files## {dir_} {abs_path} {REPLACE_VALUE}".format( dir_ = dir_, REPLACE_VALUE = _REPLACE_VALUE, abs_path = abs_path, )
[ [ [ 152, 166 ], [ 3631, 3645 ], [ 3848, 3862 ] ], [ [ 191, 198 ] ], [ [ 226, 229 ] ], [ [ 258, 262 ] ], [ [ 326, 336 ] ], [ [ 426, 435 ] ], [ [ 524, 531 ] ], [ [ 566, 569 ] ], [ [ 595, 599 ] ], [ [ 698, 703 ] ], [ [ 743, 749 ] ], [ [ 792, 799 ] ], [ [ 1028, 1043 ] ], [ [ 1244, 1260 ] ], [ [ 1516, 1540 ] ], [ [ 1645, 1668 ] ], [ [ 1970, 1984 ] ], [ [ 2291, 2305 ] ], [ [ 2345, 2370 ] ], [ [ 2657, 2660 ] ], [ [ 2718, 2734 ] ], [ [ 2807, 2827 ] ], [ [ 2856, 2872 ] ], [ [ 3147, 3163 ] ], [ [ 3471, 3492 ] ], [ [ 3687, 3709 ] ] ]
import re import uuid from django.db import transaction from django.utils import timezone from django.urls import reverse from django.contrib.auth import get_user_model from django.contrib.sites.models import Site from django.core.files import File from django.utils.translation import gettext_lazy as _ from django.conf import settings from froide.account.services import AccountService from froide.helper.text_utils import redact_subject from froide.helper.storage import add_number_to_filename from froide.helper.db_utils import save_obj_with_slug from froide.problem.models import ProblemReport from .models import FoiRequest, FoiMessage, RequestDraft, FoiProject, FoiAttachment from .models.message import ( BOUNCE_TAG, HAS_BOUNCED_TAG, AUTO_REPLY_TAG, BOUNCE_RESENT_TAG, ) from .utils import ( generate_secret_address, construct_initial_message_body, get_publicbody_for_email, redact_plaintext_with_request, ) from .hooks import registry from .tasks import create_project_requests, convert_attachment_task User = get_user_model() class BaseService(object): def __init__(self, data, **kwargs): self.data = data self.kwargs = kwargs def execute(self, request=None): return self.process(request=request) def generate_unique_secret_address(user): while True: address = generate_secret_address(user) try: FoiRequest.objects.get(secret_address=address) except FoiRequest.DoesNotExist: break return address class CreateRequestService(BaseService): def process(self, request=None): data = self.data user = data["user"] user_created = False user_auth = user.is_authenticated if not user_auth: user, user_created = AccountService.create_user(**self.data) self.data["user"] = user if not user_created and not user_auth: return self.create_token_draft(user) if request is not None: extra = registry.run_hook( "pre_request_creation", request, user=user, data=data ) if extra is not None: data.update(extra) if len(self.data["publicbodies"]) > 1: foi_object = self.create_project() else: foi_object = self.create_request(self.data["publicbodies"][0]) if user_created: AccountService(user).send_confirmation_mail( request_id=foi_object.pk, reference=foi_object.reference, redirect_url=self.data.get("redirect_url"), ) self.post_creation(foi_object) return foi_object def create_token_draft(self, user): """ User is not authenticated, but has given valid email. Create a draft object with a token, send token to email. """ from .views import MakeRequestView data = self.data additional_kwargs = dict( subject=data.get("subject", ""), body=data.get("body", ""), full_text=data.get("full_text", False), public=data["public"], reference=data.get("reference", ""), law_type=data.get("law_type", ""), ) flag_keys = set(MakeRequestView.FORM_CONFIG_PARAMS) | {"redirect_url"} flags = {k: v for k, v in data.items() if k in flag_keys} additional_kwargs["flags"] = flags draft = RequestDraft.objects.create( user=None, token=uuid.uuid4(), **additional_kwargs ) draft.publicbodies.set(data["publicbodies"]) claim_url = reverse("foirequest-claim_draft", kwargs={"token": draft.token}) AccountService(user).send_confirm_action_mail( claim_url, draft.subject, reference=draft.reference, redirect_url=self.data.get("redirect_url"), ) return draft def create_project(self): data = self.data user = data["user"] project = FoiProject( title=data["subject"], description=data["body"], status=FoiProject.STATUS_PENDING, public=data["public"], user=user, site=Site.objects.get_current(), reference=data.get("reference", ""), language=data.get("language", ""), request_count=len(self.data["publicbodies"]), ) save_obj_with_slug(project) project.publicbodies.add(*data["publicbodies"]) if "tags" in data and data["tags"]: project.tags.add(*data["tags"]) FoiProject.project_created.send(sender=project) publicbody_ids = [pb.pk for pb in data["publicbodies"]] extra = {"full_text": data.get("full_text", False)} create_project_requests.delay(project.id, publicbody_ids, **extra) return project def create_request(self, publicbody, sequence=0): data = self.data user = data["user"] now = timezone.now() request = FoiRequest( title=data["subject"], public_body=publicbody, user=data["user"], description=data["body"], public=data["public"], language=data.get("language", ""), site=Site.objects.get_current(), reference=data.get("reference", ""), first_message=now, last_message=now, project=data.get("project"), project_order=data.get("project_order"), ) send_now = False if not user.is_active: request.status = FoiRequest.STATUS.AWAITING_USER_CONFIRMATION request.visibility = FoiRequest.VISIBILITY.INVISIBLE else: request.status = FoiRequest.STATUS.AWAITING_RESPONSE request.determine_visibility() send_now = True request.secret_address = generate_unique_secret_address(user) foilaw = None if data.get("law_type"): law_type = data["law_type"] foilaw = publicbody.get_applicable_law(law_type=law_type) if foilaw is None: foilaw = publicbody.default_law request.law = foilaw request.jurisdiction = foilaw.jurisdiction if send_now: request.due_date = request.law.calculate_due_date() if data.get("blocked"): send_now = False request.is_blocked = True self.pre_save_request(request) save_obj_with_slug(request, count=sequence) if "tags" in data and data["tags"]: request.tags.add(*data["tags"]) subject = "%s [#%s]" % (request.title, request.pk) user_replacements = user.get_redactions() message = FoiMessage( request=request, sent=False, is_response=False, sender_user=user, sender_email=request.secret_address, sender_name=user.display_name(), timestamp=now, status="awaiting_response", subject=subject, subject_redacted=redact_subject(subject, user_replacements), ) send_address = bool(self.data.get("address")) message.plaintext = construct_initial_message_body( request, text=data["body"], foilaw=foilaw, full_text=data.get("full_text", False), send_address=send_address, ) message.plaintext_redacted = redact_plaintext_with_request( message.plaintext, request, ) message.recipient_public_body = publicbody message.recipient = publicbody.name message.recipient_email = publicbody.get_email(data.get("law_type")) FoiRequest.request_to_public_body.send(sender=request) message.save() FoiRequest.request_created.send( sender=request, reference=data.get("reference", "") ) if send_now: message.send() message.save() FoiRequest.message_sent.send( sender=request, message=message, ) FoiRequest.request_sent.send( sender=request, reference=data.get("reference", "") ) return request def pre_save_request(self, request): pass def post_creation(self, foi_object): data = self.data draft = data.get("draft") if draft: if isinstance(foi_object, FoiRequest): draft.request = foi_object draft.project = None else: draft.project = foi_object draft.request = None draft.save() class CreateRequestFromProjectService(CreateRequestService): def process(self, request=None): data = self.data pb = data["publicbody"] return self.create_request(pb, sequence=data["project_order"]) class CreateSameAsRequestService(CreateRequestService): def create_request(self, publicbody, sequence=0): original_request = self.data["original_foirequest"] sequence = original_request.same_as_count + 1 return super().create_request(publicbody, sequence=sequence) def pre_save_request(self, request): original_request = self.data["original_foirequest"] request.same_as = original_request request.campaign = original_request.campaign request.not_publishable = original_request.not_publishable class SaveDraftService(BaseService): def process(self, request=None): data = self.data request_form = data["request_form"] draft = request_form.cleaned_data.get("draft", None) additional_kwargs = dict( subject=request_form.cleaned_data.get("subject", ""), body=request_form.cleaned_data.get("body", ""), full_text=request_form.cleaned_data.get("full_text", False), public=request_form.cleaned_data["public"], reference=request_form.cleaned_data.get("reference", ""), law_type=request_form.cleaned_data.get("law_type", ""), ) if draft is None: draft = RequestDraft.objects.create(user=request.user, **additional_kwargs) else: RequestDraft.objects.filter(id=draft.id).update(**additional_kwargs) draft.publicbodies.set(data["publicbodies"]) return draft class ReceiveEmailService(BaseService): def process(self, request=None): foirequest = self.kwargs["foirequest"] publicbody = self.kwargs.get("publicbody", None) email = self.data subject = email.subject or "" subject = subject[:250] message_id = email.message_id or "" if message_id: message_id = message_id[:512] recipient_name, recipient_email = self.get_recipient_name_email() message = FoiMessage( request=foirequest, subject=subject, email_message_id=message_id, is_response=True, sender_name=email.from_[0], sender_email=email.from_[1], recipient=recipient_name, recipient_email=recipient_email, plaintext=email.body, html=email.html, ) message.update_email_headers(email) is_bounce = email.bounce_info.is_bounce if not is_bounce: if publicbody is None: publicbody = get_publicbody_for_email(message.sender_email, foirequest) if publicbody is None: publicbody = foirequest.public_body else: publicbody = None message.sender_public_body = publicbody message.content_hidden = self.should_hide_content(email, foirequest, publicbody) if email.date is None: message.timestamp = timezone.now() else: message.timestamp = email.date user_replacements = foirequest.user.get_redactions() message.subject_redacted = redact_subject(message.subject, user_replacements) message.plaintext_redacted = redact_plaintext_with_request( message.plaintext, foirequest, redact_closing=True, ) if is_bounce: self.process_bounce_message(message) return message.save() if email.is_auto_reply: message.tags.add(AUTO_REPLY_TAG) foirequest._messages = None foirequest.status = FoiRequest.STATUS.AWAITING_CLASSIFICATION foirequest.save() self.add_attachments(foirequest, message, email.attachments) foirequest.message_received.send(sender=foirequest, message=message) def get_recipient_name_email(self): foirequest = self.kwargs["foirequest"] email = self.data recipient_name, recipient_email = "", "" if email.is_direct_recipient(foirequest.secret_address): recipient_name = foirequest.user.display_name() recipient_email = foirequest.secret_address else: try: recipient_name = email.to[0][0] recipient_email = email.to[0][1] except IndexError: pass return recipient_name, recipient_email def should_hide_content(self, email, foirequest, publicbody): # Hide auto replies and bounces as they may expose sensitive info if email.is_auto_reply or email.bounce_info.is_bounce: return True # Hide mediatior replies so it stays confidential by default if ( foirequest.law and foirequest.law.mediator and publicbody == foirequest.law.mediator ): return True funcs = settings.FROIDE_CONFIG["hide_content_funcs"] for func in funcs: if func(email): return True return False def process_bounce_message(self, message): email = self.data foirequest = self.kwargs["foirequest"] # Find message for mes in reversed(foirequest.messages): if mes.recipient_email and mes.recipient_email in message.plaintext: break else: mes = None message.original = mes message.save() message.tags.add(BOUNCE_TAG) if mes: mes.tags.add(HAS_BOUNCED_TAG) ProblemReport.objects.report( message=mes or message, kind="bounce_publicbody", description=email.bounce_info.diagnostic_code or "", auto_submitted=True, ) foirequest._messages = None foirequest.save() self.add_attachments(foirequest, message, email.attachments) def add_attachments(self, foirequest, message, attachments): account_service = AccountService(foirequest.user) names = set() for i, attachment in enumerate(attachments): att = FoiAttachment( belongs_to=message, name=attachment.name, size=attachment.size, filetype=attachment.content_type, ) if not att.name: att.name = _("attached_file_%d") % i # Translators: replacement for person name in filename repl = str(_("NAME")) att.name = account_service.apply_name_redaction(att.name, repl) att.name = re.sub(r"[^A-Za-z0-9_\.\-]", "", att.name) att.name = att.name[:250] # Assure name is unique if att.name in names: att.name = add_number_to_filename(att.name, i) names.add(att.name) if foirequest.not_publishable: att.can_approve = False attachment._committed = False att.file = File(attachment) att.save() if att.can_convert_to_pdf(): self.trigger_convert_pdf(att.id) def trigger_convert_pdf(self, att_id): transaction.on_commit(lambda: convert_attachment_task.delay(att_id)) class ActivatePendingRequestService(BaseService): def process(self, request=None): if "request_id" in self.data: try: foirequest = FoiRequest.objects.get(id=self.data["request_id"]) except FoiRequest.DoesNotExist: return None else: foirequest = self.data["foirequest"] if request is not None and request.user != foirequest.user: return send_now = foirequest.set_status_after_change() if send_now and foirequest.law: foirequest.due_date = foirequest.law.calculate_due_date() foirequest.save() if send_now: foirequest.safe_send_first_message() FoiRequest.request_sent.send(sender=foirequest) return foirequest class ResendBouncedMessageService(BaseService): def process(self, request=None): message = self.data if message.original: message.tags.add(BOUNCE_RESENT_TAG) return self.resend_message(message.original) return self.resend_message(message) def resend_message(self, sent_message): sent_message.tags.remove(HAS_BOUNCED_TAG) foirequest = sent_message.request sent_message.recipient_email = foirequest.public_body.email sent_message.sent = False sent_message.save() sent_message.force_resend() return sent_message
[ [ [ 7, 9 ], [ 15535, 15537 ] ], [ [ 17, 21 ], [ 3555, 3559 ] ], [ [ 45, 56 ], [ 16115, 16126 ] ], [ [ 82, 90 ], [ 5055, 5063 ], [ 11939, 11947 ] ], [ [ 115, 122 ], [ 3673, 3680 ] ], [ [ 155, 169 ], [ 1055, 1069 ] ], [ [ 210, 214 ], [ 4279, 4283 ], [ 5339, 5343 ] ], [ [ 245, 249 ], [ 15932, 15936 ] ], [ [ 287, 304 ], [ 15308, 15309 ], [ 15425, 15426 ] ], [ [ 329, 337 ], [ 13854, 13862 ] ], [ [ 375, 389 ], [ 1799, 1813 ], [ 2428, 2442 ], [ 3746, 3760 ], [ 14935, 14949 ] ], [ [ 427, 441 ], [ 7157, 7171 ], [ 12107, 12121 ] ], [ [ 476, 498 ], [ 15714, 15736 ] ], [ [ 534, 552 ], [ 4479, 4497 ], [ 6551, 6569 ] ], [ [ 587, 600 ], [ 14498, 14511 ] ], [ [ 622, 632 ], [ 1411, 1421 ], [ 1473, 1483 ], [ 5088, 5098 ], [ 5668, 5678 ], [ 5746, 5756 ], [ 5821, 5831 ], [ 7818, 7828 ], [ 7905, 7915 ], [ 8099, 8109 ], [ 8220, 8230 ], [ 8567, 8577 ], [ 12582, 12592 ], [ 16357, 16367 ], [ 16427, 16437 ], [ 16906, 16916 ] ], [ [ 634, 644 ], [ 6812, 6822 ], [ 10981, 10991 ] ], [ [ 646, 658 ], [ 3497, 3509 ], [ 10260, 10272 ], [ 10354, 10366 ] ], [ [ 660, 670 ], [ 4073, 4083 ], [ 4177, 4187 ], [ 4661, 4671 ] ], [ [ 672, 685 ], [ 15061, 15074 ] ], [ [ 720, 730 ], [ 14419, 14429 ] ], [ [ 736, 751 ], [ 14472, 14487 ], [ 17353, 17368 ] ], [ [ 757, 771 ], [ 12501, 12515 ] ], [ [ 777, 794 ], [ 17154, 17171 ] ], [ [ 823, 846 ], [ 1356, 1379 ] ], [ [ 852, 882 ], [ 7294, 7324 ] ], [ [ 888, 912 ], [ 11546, 11570 ] ], [ [ 918, 947 ], [ 7543, 7572 ], [ 12195, 12224 ] ], [ [ 970, 978 ], [ 2026, 2034 ] ], [ [ 998, 1021 ], [ 4842, 4865 ] ], [ [ 1023, 1046 ], [ 16145, 16168 ] ], [ [ 1048, 1052 ] ], [ [ 1080, 1091 ], [ 1564, 1575 ], [ 9596, 9607 ], [ 10525, 10536 ], [ 16222, 16233 ], [ 17016, 17027 ] ], [ [ 1284, 1314 ], [ 5962, 5992 ] ], [ [ 1543, 1563 ], [ 8823, 8843 ], [ 9046, 9066 ] ], [ [ 8791, 8822 ] ], [ [ 9019, 9045 ] ], [ [ 9579, 9595 ] ], [ [ 10505, 10524 ] ], [ [ 16192, 16221 ] ], [ [ 16988, 17015 ] ] ]
""" Django settings for Gallery project. Generated by 'django-admin startproject' using Django 1.11. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import dj_database_url from decouple import config,Csv MODE=config("MODE", default="dev") SECRET_KEY = config('SECRET_KEY') DEBUG = config('DEBUG', default=False, cast=bool) # development if config('MODE')=="dev": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': config('DB_NAME'), 'USER': config('DB_USER'), 'PASSWORD': config('DB_PASSWORD'), 'HOST': config('DB_HOST'), 'PORT': '', } } # production else: DATABASES = { 'default': dj_database_url.config( default=config('DATABASE_URL') ) } db_from_env = dj_database_url.config(conn_max_age=500) DATABASES['default'].update(db_from_env) ALLOWED_HOSTS = config('ALLOWED_HOSTS', cast=Csv()) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Application definition INSTALLED_APPS = [ 'bootstrap4', 'images.apps.ImagesConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', ] ROOT_URLCONF = 'Gallery.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'django.template.context_processors.media', ], }, }, ] WSGI_APPLICATION = 'Gallery.wsgi.application' # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Nairobi' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_ROOT = os.path.join(BASE_DIR,'staticfiles') STATIC_URL = '/static/' STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static") ] STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR,'media')
[ [ [ 316, 318 ], [ 1200, 1202 ], [ 1216, 1218 ], [ 1232, 1234 ], [ 3469, 3471 ], [ 3555, 3557 ], [ 3707, 3709 ] ], [ [ 327, 342 ], [ 885, 900 ], [ 980, 995 ] ], [ [ 364, 370 ], [ 381, 387 ], [ 424, 430 ], [ 453, 459 ], [ 512, 518 ], [ 645, 651 ], [ 683, 689 ], [ 725, 731 ], [ 767, 773 ], [ 928, 934 ], [ 1079, 1085 ] ], [ [ 371, 374 ], [ 1108, 1111 ] ], [ [ 376, 380 ] ], [ [ 411, 421 ] ], [ [ 445, 450 ] ], [ [ 538, 547 ], [ 1021, 1030 ] ], [ [ 853, 862 ], [ 1021, 1030 ] ], [ [ 966, 977 ], [ 1049, 1060 ] ], [ [ 1063, 1076 ] ], [ [ 1189, 1197 ], [ 3482, 3490 ], [ 3568, 3576 ], [ 3720, 3728 ] ], [ [ 1291, 1305 ] ], [ [ 1549, 1559 ] ], [ [ 2013, 2025 ] ], [ [ 2044, 2053 ] ], [ [ 2589, 2605 ] ], [ [ 2744, 2768 ] ], [ [ 3248, 3261 ] ], [ [ 3273, 3282 ] ], [ [ 3303, 3311 ] ], [ [ 3320, 3328 ] ], [ [ 3337, 3343 ] ], [ [ 3455, 3466 ] ], [ [ 3506, 3516 ] ], [ [ 3530, 3546 ] ], [ [ 3591, 3610 ] ], [ [ 3672, 3681 ] ], [ [ 3694, 3704 ] ] ]
"""SwaggerToSdk core tools. """ from enum import Enum, unique import json import logging import os import re import tempfile from pathlib import Path import requests from github import Github, UnknownObjectException from .autorest_tools import ( autorest_latest_version_finder, autorest_bootstrap_version_finder, autorest_swagger_to_sdk_conf, ) from azure_devtools.ci_tools.github_tools import get_files, GithubLink _LOGGER = logging.getLogger(__name__) CONFIG_FILE = "swagger_to_sdk_config_autorest.json" CONFIG_FILE_DPG = "swagger_to_sdk_config_dpg.json" DEFAULT_COMMIT_MESSAGE = "Generated from {hexsha}" def build_file_content(): autorest_version = autorest_latest_version_finder() autorest_bootstrap_version = autorest_bootstrap_version_finder() return { "autorest": autorest_version, "autorest_bootstrap": autorest_bootstrap_version, } def get_repo_tag_meta(meta_conf): repotag = meta_conf.get("repotag") if repotag: return repotag # Guess for now, "repotag" should be added everywhere if "go" in meta_conf["autorest_options"]: return "azure-sdk-for-go" if "ruby" in meta_conf["autorest_options"]: return "azure-sdk-for-ruby" if "java" in meta_conf["autorest_options"]: return "azure-sdk-for-java" if "nodejs" in meta_conf["autorest_options"]: return "azure-sdk-for-node" if "typescript" in meta_conf["autorest_options"]: return "azure-sdk-for-js" raise ValueError("No repotag found or infered") @unique class Language(str, Enum): GOLANG = "go" RUBY = "ruby" JAVA = "java" NODEJS = "nodejs" CSHARP = "csharp" PYTHON = "python" TYPESCRIPT = "typescript" def get_language_from_conf(meta_conf): """Detect the language based on the default Autorest options. Assuming all language use --mylanguage in the config file. If I don't find anything, well just say I don't know... This is based on autorest language flags. :rtype: Language """ autorest_options_lang = set(meta_conf["autorest_options"].keys()) languages = set() for value in Language: if value in autorest_options_lang: languages.add(value) if not languages: _LOGGER.warning("No detected language from this conf") return None # I don't what this conf is about? language = languages.pop() if languages: _LOGGER.warning("This SwaggerToSdk conf seems to generate too much language in one call, assume we don't know") return None return language def get_context_tag_from_git_object(git_object): files_list = [file.filename for file in get_files(git_object)] return get_context_tag_from_file_list(files_list) def get_context_tag_from_file_list(files_list): context_tags = set() for filename in files_list: filepath = Path(filename) filename = filepath.as_posix() if "/examples/" in filename: # Do not compute context for example that are not used in SDK continue # Match if RP name match = re.match(r"specification/(.*)/Microsoft.\w*/(stable|preview)/", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # Match if stable/preview but not RP like ARM (i.e. Cognitive Services) match = re.match(r"specification/(.*)/(stable|preview)/", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # Match Readme # Do it last step, because if some weird Readme for ServiceFabric... match = re.match(r"specification/(.*)/readme.\w*.?md", filename, re.I) if match: context_tags.add(match.groups()[0]) continue # No context-tags return context_tags def this_conf_will_generate_for_this_pr(git_object, config): """Try to guess if this PR has a chance to generate something for this conf. Right now, just match the language in the conf with the presence of ONLY "readme.language.md" files. """ lang = get_language_from_conf(config) filenames = [file.filename.lower() for file in get_files(git_object)] readme_lang = [name for name in filenames if re.match(r"(.*)readme.\w+.md", name)] if len(readme_lang) != len(filenames): return True # This means there is files that are not language specific readme return bool([name for name in readme_lang if name.endswith("readme.{}.md".format(lang))]) def get_readme_files_from_git_object(git_object, base_dir=Path(".")): files_list = [file.filename for file in get_files(git_object)] return get_readme_files_from_file_list(files_list, base_dir) def get_readme_files_from_file_list(files_list, base_dir=Path(".")): """Get readme files from this PR. Algo is to look for context, and then search for Readme inside this context. """ readme_files = set() context_tags = get_context_tag_from_file_list(files_list) for context_tag in context_tags: expected_folder = Path(base_dir) / Path("specification/{}".format(context_tag)) if not expected_folder.is_dir(): _LOGGER.warning("From context {} I didn't find folder {}".format(context_tag, expected_folder)) continue for expected_readme in [l for l in expected_folder.iterdir() if l.is_file()]: # Need to do a case-insensitive test. match = re.match(r"readme.\w*.?md", expected_readme.name, re.I) if match: readme_files.add(expected_readme.relative_to(Path(base_dir))) return readme_files def read_config(sdk_git_folder, config_file): """Read the configuration file and return JSON""" config_path = os.path.join(sdk_git_folder, config_file) with open(config_path, "r") as config_fd: return json.loads(config_fd.read()) def read_config_from_github(sdk_id, branch="main", gh_token=None): raw_link = str(get_configuration_github_path(sdk_id, branch)) _LOGGER.debug("Will try to download: %s", raw_link) _LOGGER.debug("Token is defined: %s", gh_token is not None) headers = {"Authorization": "token {}".format(gh_token)} if gh_token else {} response = requests.get(raw_link, headers=headers) if response.status_code != 200: raise ValueError( "Unable to download conf file for SDK {} branch {}: status code {}".format( sdk_id, branch, response.status_code ) ) return json.loads(response.text) def extract_conf_from_readmes(swagger_files_in_pr, restapi_git_folder, sdk_git_id, config, force_generation=False): readme_files_in_pr = { readme for readme in swagger_files_in_pr if getattr(readme, "name", readme).lower().endswith("readme.md") } for readme_file in readme_files_in_pr: build_swaggertosdk_conf_from_json_readme( readme_file, sdk_git_id, config, base_folder=restapi_git_folder, force_generation=force_generation ) def get_readme_path(readme_file, base_folder="."): """Get a readable Readme path. If start with http, assume online, ignore base_folder and convert to raw link if necessary. If base_folder is not None, assume relative to base_folder. """ if not isinstance(readme_file, Path) and readme_file.startswith("http"): return GithubLink.from_string(readme_file).as_raw_link() else: if base_folder is None: base_folder = "." return str(Path(base_folder) / Path(readme_file)) def build_swaggertosdk_conf_from_json_readme(readme_file, sdk_git_id, config, base_folder=".", force_generation=False): """Get the JSON conf of this README, and create SwaggerToSdk conf. Readme path can be any readme syntax accepted by autorest. readme_file will be project key as-is. :param str readme_file: A path that Autorest accepts. Raw GH link or absolute path. :param str sdk_dit_id: Repo ID. IF org/login is provided, will be stripped. :param dict config: Config where to update the "projects" key. :param bool force_generation: If no Swagger to SDK section is found, force once with the Readme as input """ readme_full_path = get_readme_path(readme_file, base_folder) with tempfile.TemporaryDirectory() as temp_dir: readme_as_conf = autorest_swagger_to_sdk_conf(readme_full_path, temp_dir, config) generated_config = { "markdown": readme_full_path, } sdk_git_short_id = sdk_git_id.split("/")[-1].lower() _LOGGER.info("Looking for tag {} in readme {}".format(sdk_git_short_id, readme_file)) for swagger_to_sdk_conf in readme_as_conf: if not isinstance(swagger_to_sdk_conf, dict): continue repo = swagger_to_sdk_conf.get("repo", "") repo = repo.split("/")[-1].lower() # Be sure there is no org/login part if repo == sdk_git_short_id: _LOGGER.info("This Readme contains a swagger-to-sdk section for repo {}".format(repo)) generated_config.update( { "autorest_options": swagger_to_sdk_conf.get("autorest_options", {}), "after_scripts": swagger_to_sdk_conf.get("after_scripts", []), } ) config.setdefault("projects", {})[str(readme_file)] = generated_config return generated_config else: _LOGGER.info("Skip mismatch {} from {}".format(repo, sdk_git_short_id)) if not force_generation: _LOGGER.info( "Didn't find tag {} in readme {}. Did you forget to update the SwaggerToSdk section?".format( sdk_git_short_id, readme_file ) ) else: _LOGGER.info("Didn't find tag {} in readme {}. Forcing it.".format(sdk_git_short_id, readme_file)) config.setdefault("projects", {})[str(readme_file)] = generated_config def get_input_paths(global_conf, local_conf): """Returns a 2-tuple: - Markdown Path or None - Input-file Paths or empty list """ del global_conf # Unused relative_markdown_path = None # Markdown is optional input_files = [] # Input file could be empty if "markdown" in local_conf: relative_markdown_path = Path(local_conf["markdown"]) input_files = local_conf.get("autorest_options", {}).get("input-file", []) if input_files and not isinstance(input_files, list): input_files = [input_files] input_files = [Path(input_file) for input_file in input_files] if not relative_markdown_path and not input_files: raise ValueError("No input file found") return (relative_markdown_path, input_files) def solve_relative_path(autorest_options, sdk_root): """Solve relative path in conf. If a key is prefixed by "sdkrel:", it's solved against SDK root. """ SDKRELKEY = "sdkrel:" solved_autorest_options = {} for key, value in autorest_options.items(): if key.startswith(SDKRELKEY): _LOGGER.debug("Found a sdkrel pair: %s/%s", key, value) subkey = key[len(SDKRELKEY) :] solved_value = Path(sdk_root, value).resolve() solved_autorest_options[subkey] = str(solved_value) else: solved_autorest_options[key] = value return solved_autorest_options def get_configuration_github_path(sdk_id, branch="master"): return GithubLink(sdk_id, "raw", branch, CONFIG_FILE)
[ [ [ 49, 53 ], [ 1570, 1574 ] ], [ [ 55, 61 ], [ 1543, 1549 ] ], [ [ 69, 73 ], [ 5874, 5878 ], [ 6532, 6536 ] ], [ [ 81, 88 ], [ 442, 449 ] ], [ [ 96, 98 ], [ 5771, 5773 ] ], [ [ 106, 108 ], [ 3108, 3110 ], [ 3182, 3184 ], [ 3371, 3373 ], [ 3431, 3433 ], [ 3640, 3642 ], [ 3697, 3699 ], [ 4267, 4269 ], [ 5471, 5473 ], [ 5521, 5523 ] ], [ [ 116, 124 ], [ 8293, 8301 ] ], [ [ 145, 149 ], [ 4591, 4595 ], [ 4794, 4798 ], [ 2879, 2883 ], [ 5083, 5087 ], [ 5100, 5104 ], [ 5610, 5614 ], [ 7329, 7333 ], [ 7527, 7531 ], [ 7547, 7551 ], [ 10283, 10287 ], [ 10504, 10508 ], [ 11156, 11160 ] ], [ [ 158, 166 ], [ 6254, 6262 ] ], [ [ 187, 193 ] ], [ [ 195, 217 ] ], [ [ 253, 283 ], [ 677, 707 ] ], [ [ 289, 322 ], [ 743, 776 ] ], [ [ 328, 356 ], [ 8361, 8389 ] ], [ [ 409, 418 ], [ 2676, 2685 ], [ 4195, 4204 ], [ 4647, 4656 ] ], [ [ 420, 430 ], [ 7386, 7396 ], [ 11423, 11433 ] ], [ [ 432, 439 ], [ 2259, 2266 ], [ 2428, 2435 ], [ 5198, 5205 ], [ 6042, 6049 ], [ 6098, 6105 ], [ 8556, 8563 ], [ 8945, 8952 ], [ 9436, 9443 ], [ 9545, 9552 ], [ 9753, 9760 ], [ 11030, 11037 ] ], [ [ 471, 482 ], [ 11457, 11468 ] ], [ [ 523, 538 ] ], [ [ 575, 597 ] ], [ [ 632, 650 ] ], [ [ 900, 917 ] ], [ [ 1556, 1564 ], [ 2142, 2150 ] ], [ [ 1733, 1755 ], [ 4113, 4135 ] ], [ [ 2587, 2618 ] ], [ [ 2759, 2789 ], [ 2710, 2740 ], [ 4977, 5007 ] ], [ [ 3846, 3881 ] ], [ [ 4537, 4569 ] ], [ [ 4741, 4772 ], [ 4681, 4712 ] ], [ [ 5657, 5668 ] ], [ [ 5909, 5932 ] ], [ [ 6564, 6589 ] ], [ [ 7043, 7058 ], [ 8242, 8257 ] ], [ [ 7572, 7612 ], [ 6874, 6914 ] ], [ [ 9937, 9952 ] ], [ [ 10710, 10729 ] ], [ [ 11356, 11385 ], [ 5991, 6020 ] ] ]
import torch from ptstat.core import RandomVariable, _to_v class Categorical(RandomVariable): """ Categorical over 0,...,N-1 with arbitrary probabilities, 1-dimensional rv, long type. """ def __init__(self, p=None, p_min=1E-6, size=None, cuda=False): super(Categorical, self).__init__() if size: assert len(size) == 2, str(size) p = _to_v(1 / size[1], size, cuda) else: assert len(p.size()) == 2, str(p.size()) assert torch.min(p.data) >= 0, str(torch.min(p.data)) assert torch.max(torch.abs(torch.sum(p.data, 1) - 1)) <= 1E-5 self._p = torch.clamp(p, p_min) def _size(self): return self._p.size()[0], 1 # Type is Long. def _log_pdf(self, x): return torch.log(self._p.gather(1, x)).squeeze() def _sample(self): return self._p.multinomial(1, True) def _entropy(self): return - torch.sum(self._p * torch.log(self._p), 1).squeeze()
[ [ [ 7, 12 ], [ 504, 509 ], [ 532, 537 ], [ 566, 571 ], [ 576, 581 ], [ 586, 591 ], [ 639, 644 ], [ 779, 784 ], [ 931, 936 ], [ 951, 956 ] ], [ [ 37, 51 ], [ 79, 93 ] ], [ [ 53, 58 ], [ 391, 396 ] ], [ [ 67, 78 ], [ 283, 294 ] ] ]
# (C) Datadog, Inc. 2018-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) from .__about__ import __version__ from .http_check import HTTPCheck __all__ = ['__version__', 'HTTPCheck']
[ [ [ 139, 150 ] ], [ [ 175, 184 ] ], [ [ 186, 193 ] ] ]
import unittest from localstack.utils.aws import aws_stack class SSMTest(unittest.TestCase): def test_describe_parameters(self): ssm_client = aws_stack.connect_to_service("ssm") response = ssm_client.describe_parameters() self.assertIn("Parameters", response) self.assertIsInstance(response["Parameters"], list) def test_put_parameters(self): ssm_client = aws_stack.connect_to_service("ssm") ssm_client.put_parameter( Name="test_put", Description="test", Value="123", Type="String", ) self._assert("test_put", "test_put") self._assert("/test_put", "test_put") def test_hierarchical_parameter(self): ssm_client = aws_stack.connect_to_service("ssm") ssm_client.put_parameter( Name="/a/b/c", Value="123", Type="String", ) self._assert("/a/b/c", "/a/b/c") self._assert("/a//b//c", "/a/b/c") self._assert("a/b//c", "/a/b/c") def test_get_secret_parameter(self): ssm_client = aws_stack.connect_to_service("ssm") sec_client = aws_stack.connect_to_service("secretsmanager") secret_name = "test_secret" sec_client.create_secret( Name=secret_name, SecretString="my_secret", Description="testing creation of secrets", ) result = ssm_client.get_parameter( Name="/aws/reference/secretsmanager/{0}".format(secret_name) ) self.assertEqual( "/aws/reference/secretsmanager/{0}".format(secret_name), result.get("Parameter").get("Name"), ) self.assertEqual("my_secret", result.get("Parameter").get("Value")) source_result = result.get("Parameter").get("SourceResult") self.assertTrue(source_result is not None, "SourceResult should be present") self.assertTrue(type(source_result) is str, "SourceResult should be a string") def test_get_inexistent_secret(self): ssm_client = aws_stack.connect_to_service("ssm") self.assertRaises( ssm_client.exceptions.ParameterNotFound, ssm_client.get_parameter, Name="/aws/reference/secretsmanager/inexistent", ) def test_get_parameters_and_secrets(self): ssm_client = aws_stack.connect_to_service("ssm") sec_client = aws_stack.connect_to_service("secretsmanager") secret_path = "/aws/reference/secretsmanager/" param_name = "test_param" ssm_client.put_parameter( Name=param_name, Description="test", Value="123", Type="String", ) secret_name = "test_secret_params" sec_client.create_secret( Name=secret_name, SecretString="my_secret", Description="testing creation of secrets", ) complete_secret = secret_path + secret_name response = ssm_client.get_parameters( Names=[ param_name, complete_secret, "inexistent_param", secret_path + "inexistent_secret", ] ) found = response.get("Parameters") not_found = response.get("InvalidParameters") for param in found: self.assertIn(param["Name"], [param_name, complete_secret]) for param in not_found: self.assertIn(param, ["inexistent_param", secret_path + "inexistent_secret"]) def _assert(self, search_name, param_name): ssm_client = aws_stack.connect_to_service("ssm") def do_assert(result): self.assertGreater(len(result), 0) self.assertEqual(param_name, result[0]["Name"]) self.assertEqual("123", result[0]["Value"]) response = ssm_client.get_parameter(Name=search_name) do_assert([response["Parameter"]]) response = ssm_client.get_parameters(Names=[search_name]) do_assert(response["Parameters"]) def test_get_parameters_by_path_and_filter_by_labels(self): ssm_client = aws_stack.connect_to_service("ssm") path = "/my/path" value = "value" param = ssm_client.put_parameter(Name=path, Value=value, Type="String") ssm_client.label_parameter_version( Name=path, ParameterVersion=param["Version"], Labels=["latest"] ) list_of_params = ssm_client.get_parameters_by_path( Path="/my", ParameterFilters=[{"Key": "Label", "Values": ["latest"]}] ) self.assertEqual("/my/path", list_of_params["Parameters"][0]["Name"])
[ [ [ 7, 15 ], [ 76, 84 ] ], [ [ 50, 59 ], [ 157, 166 ], [ 409, 418 ], [ 760, 769 ], [ 1109, 1118 ], [ 1166, 1175 ], [ 2080, 2089 ], [ 2374, 2383 ], [ 2431, 2440 ], [ 3617, 3626 ], [ 4149, 4158 ] ], [ [ 68, 75 ] ] ]
import json import os import sys from . import uploader from . import processing from . import exif_read def verify_mapillary_tag(filepath): filepath_keep_original = processing.processed_images_rootpath(filepath) if os.path.isfile(filepath_keep_original): filepath = filepath_keep_original """ Check that image file has the required Mapillary tag """ return exif_read.ExifRead(filepath).mapillary_tag_exists() def upload( import_path, skip_subfolders=False, number_threads=None, max_attempts=None, video_import_path=None, dry_run=False, ): """ Upload local images to Mapillary Args: import_path: Directory path to where the images are stored. verbose: Print extra warnings and errors. skip_subfolders: Skip images stored in subdirectories. Returns: Images are uploaded to Mapillary and flagged locally as uploaded. """ # in case of video processing, adjust the import path if video_import_path: # sanity check if video file is passed if not os.path.isdir(video_import_path) and not os.path.isfile( video_import_path ): print( "Error, video path " + video_import_path + " does not exist, exiting..." ) sys.exit(1) # set sampling path video_sampling_path = "mapillary_sampled_video_frames" video_dirname = ( video_import_path if os.path.isdir(video_import_path) else os.path.dirname(video_import_path) ) import_path = ( os.path.join(os.path.abspath(import_path), video_sampling_path) if import_path else os.path.join(os.path.abspath(video_dirname), video_sampling_path) ) # basic check for all if not import_path or not os.path.isdir(import_path): print(f"Error, import directory {import_path} does not exist, exiting...") sys.exit(1) # get list of file to process total_file_list = uploader.get_total_file_list(import_path, skip_subfolders) upload_file_list = uploader.get_upload_file_list(import_path, skip_subfolders) success_file_list = uploader.get_success_upload_file_list( import_path, skip_subfolders ) to_finalize_file_list = uploader.get_finalize_file_list( import_path, skip_subfolders ) if len(success_file_list) == len(total_file_list): print("All images have already been uploaded") else: # verify the images in the upload list, they need to have the image # description and certain MAP properties upload_file_list = [f for f in upload_file_list if verify_mapillary_tag(f)] if not len(upload_file_list) and not len(to_finalize_file_list): print("No images to upload.") print( 'Please check if all images contain the required Mapillary metadata. If not, you can use "mapillary_tools process" to add them' ) sys.exit(1) if upload_file_list: # get upload params for the manual upload images, group them per sequence # and separate direct upload images params = {} list_per_sequence_mapping = {} direct_upload_file_list = [] for image in upload_file_list: log_root = uploader.log_rootpath(image) # read upload params upload_params_path = os.path.join( log_root, "upload_params_process.json" ) if os.path.isfile(upload_params_path): with open(upload_params_path, "r") as fp: params[image] = json.load(fp) sequence = params[image]["key"] list_per_sequence_mapping.setdefault(sequence, []).append(image) else: direct_upload_file_list.append(image) # read image descriptions description_path = os.path.join( log_root, "mapillary_image_description.json" ) if not os.path.isfile(description_path): raise RuntimeError( f"Please run process first because {description_path} is not generated" ) with open(description_path, "r") as fp: description = json.load(fp) assert not set(description).intersection( params.get(image, {}) ), f"Parameter conflicting {description} and {params.get(image, {})}" params.setdefault(image, {}).update(description) # inform how many images are to be uploaded and how many are being skipped # from upload print( f"Uploading {len(upload_file_list)} images with valid mapillary tags (Skipping {len(total_file_list) - len(upload_file_list)})" ) if direct_upload_file_list: raise RuntimeError( f"Found {len(direct_upload_file_list)} files for direct upload which is not supported in v4" ) total_sequences = len(list_per_sequence_mapping) for idx, sequence_uuid in enumerate(list_per_sequence_mapping): metadata = { "total_sequences": total_sequences, "sequence_idx": idx, } uploader.upload_sequence_v4( list_per_sequence_mapping[sequence_uuid], sequence_uuid, params, metadata=metadata, dry_run=dry_run, ) if to_finalize_file_list: params = {} sequences = [] for image in to_finalize_file_list: log_root = uploader.log_rootpath(image) upload_params_path = os.path.join( log_root, "upload_params_process.json" ) if os.path.isfile(upload_params_path): with open(upload_params_path, "rb") as jf: image_params = json.load(jf) sequence = image_params["key"] if sequence not in sequences: params[image] = image_params sequences.append(sequence) uploader.flag_finalization(to_finalize_file_list) uploader.print_summary(upload_file_list)
[ [ [ 7, 11 ], [ 3740, 3744 ], [ 4451, 4455 ], [ 6237, 6241 ] ], [ [ 19, 21 ], [ 227, 229 ], [ 1080, 1082 ], [ 1121, 1123 ], [ 1487, 1489 ], [ 1537, 1539 ], [ 1618, 1620 ], [ 1631, 1633 ], [ 1726, 1728 ], [ 1739, 1741 ], [ 1859, 1861 ], [ 3492, 3494 ], [ 3602, 3604 ], [ 4049, 4051 ], [ 4169, 4171 ], [ 5989, 5991 ], [ 6099, 6101 ] ], [ [ 29, 32 ], [ 1312, 1315 ], [ 1978, 1981 ], [ 3034, 3037 ] ], [ [ 48, 56 ], [ 2047, 2055 ], [ 2129, 2137 ], [ 2213, 2221 ], [ 2323, 2331 ], [ 3388, 3396 ], [ 5514, 5522 ], [ 5923, 5931 ], [ 6485, 6493 ], [ 6540, 6548 ] ], [ [ 71, 81 ], [ 173, 183 ] ], [ [ 96, 105 ], [ 393, 402 ] ], [ [ 112, 132 ], [ 2704, 2724 ] ], [ [ 451, 457 ] ] ]
import re import click from cloup import option, option_group from ... import logger def validate_scene_range(ctx, param, value): try: start = int(value) return (start,) except Exception: pass if value: try: start, end = map(int, re.split(r"[;,\-]", value)) return start, end except Exception: logger.error("Couldn't determine a range for -n option.") exit() def validate_resolution(ctx, param, value): if value: try: start, end = map(int, re.split(r"[;,\-]", value)) return (start, end) except Exception: logger.error("Resolution option is invalid.") exit() render_options = option_group( "Render Options", option( "-n", "--from_animation_number", callback=validate_scene_range, help="Start rendering from n_0 until n_1. If n_1 is left unspecified, " "renders all scenes after n_0.", default=None, ), option( "-a", "--write_all", is_flag=True, help="Render all scenes in the input file.", default=None, ), option( "--format", type=click.Choice(["png", "gif", "mp4", "webm", "mov"], case_sensitive=False), default=None, ), option("-s", "--save_last_frame", is_flag=True, default=None), option( "-q", "--quality", default=None, type=click.Choice(["l", "m", "h", "p", "k"], case_sensitive=False), help=""" Render quality at the follow resolution framerates, respectively: 854x480 30FPS, 1280x720 30FPS, 1920x1080 60FPS, 2560x1440 60FPS, 3840x2160 60FPS """, ), option( "-r", "--resolution", callback=validate_resolution, default=None, help="Resolution in (W,H) for when 16:9 aspect ratio isn't possible.", ), option( "--fps", "--frame_rate", "frame_rate", type=float, default=None, help="Render at this frame rate.", ), option( "--renderer", type=click.Choice(["cairo", "opengl", "webgl"], case_sensitive=False), help="Select a renderer for your Scene.", default=None, ), option( "--use_opengl_renderer", is_flag=True, help="Render scenes using OpenGL (Deprecated).", default=None, ), option( "--use_webgl_renderer", is_flag=True, help="Render scenes using the WebGL frontend (Deprecated).", default=None, ), option( "--webgl_renderer_path", default=None, type=click.Path(), help="The path to the WebGL frontend.", ), option( "-g", "--save_pngs", is_flag=True, default=None, help="Save each frame as png (Deprecated).", ), option( "-i", "--save_as_gif", default=None, is_flag=True, help="Save as a gif (Deprecated).", ), option( "-s", "--save_last_frame", default=None, is_flag=True, help="Save last frame as png (Deprecated).", ), option( "-t", "--transparent", is_flag=True, help="Render scenes with alpha channel.", ), option( "--use_projection_fill_shaders", is_flag=True, help="Use shaders for OpenGLVMobject fill which are compatible with transformation matrices.", default=None, ), option( "--use_projection_stroke_shaders", is_flag=True, help="Use shaders for OpenGLVMobject stroke which are compatible with transformation matrices.", default=None, ), )
[ [ [ 7, 9 ], [ 291, 293 ], [ 571, 573 ] ], [ [ 18, 23 ], [ 1237, 1242 ], [ 1489, 1494 ], [ 2222, 2227 ], [ 2764, 2769 ] ], [ [ 42, 48 ], [ 793, 799 ], [ 1043, 1049 ], [ 1196, 1202 ], [ 1344, 1350 ], [ 1411, 1417 ], [ 1816, 1822 ], [ 2012, 2018 ], [ 2179, 2185 ], [ 2371, 2377 ], [ 2524, 2530 ], [ 2688, 2694 ], [ 2837, 2843 ], [ 2990, 2996 ], [ 3136, 3142 ], [ 3295, 3301 ], [ 3425, 3431 ], [ 3632, 3638 ] ], [ [ 50, 62 ], [ 753, 765 ] ], [ [ 80, 86 ], [ 387, 393 ], [ 669, 675 ] ], [ [ 93, 113 ], [ 867, 887 ] ], [ [ 470, 489 ], [ 1879, 1898 ] ], [ [ 736, 750 ] ] ]
from setuptools import setup, find_packages setup( name="intent_classifier", version="0.2.0", packages=find_packages(), include_package_data=True, install_requires=["numpy", "scipy", "PyMySQL", "scikit-learn==0.20.3"] )
[ [ [ 23, 28 ], [ 45, 50 ] ], [ [ 30, 43 ], [ 116, 129 ] ] ]
from django.contrib import admin from application.models import Profile # Register your models here. admin.site.register(Profile)
[ [ [ 27, 32 ], [ 102, 107 ] ], [ [ 64, 71 ], [ 122, 129 ] ] ]
#!/usr/local/bin/python ''' pyAero_geometry Holds the Python Aerodynamic Analysis Classes (base and inherited). Copyright (c) 2008 by Dr. Ruben E. Perez All rights reserved. Not to be used for commercial purposes. Revision: 1.1 $Date: 21/05/2008 21:00$ Developers: ----------- - Dr. Ruben E. Perez (RP) History ------- v. 1.0 - Initial Class Creation (RP, 2008) ''' __version__ = '$Revision: $' ''' To Do: - ''' # ============================================================================= # Standard Python modules # ============================================================================= import os, sys import pdb # ============================================================================= # External Python modules # ============================================================================= import numpy # ============================================================================= # Extension modules # ============================================================================= # ============================================================================= # Misc Definitions # ============================================================================= # ============================================================================= # Geometry Class # ============================================================================= class Geometry(object): ''' Abstract Class for Geometry Object ''' def __init__(self, name={},CGPercent = 0.25,ForeSparPercent = 0.25, RearSparPercent = 0.75,StaticMarginPercent=0.05, ForeThickCon = 0.01, RearThickCon = 0.99, rootOffset = 0.01, tipOffset=0.01, xRootec=0.0, yRootec=0.0, zRootec=0.0, *args, **kwargs): ''' Flow Class Initialization Keyword Arguments: ------------------ name -> STRING: Geometry Instance Name Attributes: ----------- Documentation last updated: May. 21, 2008 - Ruben E. Perez ''' # self.name = name self.CGPercent = CGPercent self.ForeSparPercent = ForeSparPercent self.RearSparPercent = RearSparPercent self.StaticMarginPercent = StaticMarginPercent self.ForeThickCon = ForeThickCon self.RearThickCon = RearThickCon self.tipOffset = tipOffset self.rootOffset = rootOffset self.xRootec = xRootec self.yRootec = yRootec self.zRootec = zRootec def ListAttributes(self): ''' Print Structured Attributes List Documentation last updated: May. 21, 2008 - Ruben E. Perez ''' ListAttributes(self) def __str__(self): ''' Print Structured List of Variable Documentation last updated: May. 21, 2008 - Ruben E. Perez ''' return ('name \n'+' '+str(self.name).center(9) ) #============================================================================== # #============================================================================== def ListAttributes(self): ''' Print Structured Attributes List Documentation last updated: March. 24, 2008 - Ruben E. Perez ''' print('\n') print('Attributes List of: ' + repr(self.__dict__['name']) + ' - ' + self.__class__.__name__ + ' Instance\n') self_keys = self.__dict__.keys() self_keys.sort() for key in self_keys: if key != 'name': print(str(key) + ' : ' + repr(self.__dict__[key])) #end #end print('\n') #============================================================================== # Flow Test #============================================================================== if __name__ == '__main__': print('Testing ...') # Test Variable geo = Geometry(name = 'test') geo.ListAttributes() print(geo)
[ [ [ 381, 392 ] ], [ [ 627, 629 ] ], [ [ 631, 634 ] ], [ [ 642, 645 ] ], [ [ 840, 845 ] ], [ [ 1394, 1402 ], [ 4090, 4098 ] ], [ [ 3254, 3268 ], [ 2793, 2807 ] ], [ [ 4084, 4087 ], [ 4118, 4121 ], [ 4149, 4152 ] ] ]
from orchespy import device from orchespy.devicetype import CUDAGPU, Host, VE import sys import pytest import numpy as np if "cupy" in sys.modules: import cupy as cp if "nlcpy" in sys.modules: import nlcpy as vp no_nlcpy = pytest.mark.skipif( "nlcpy" not in sys.modules, reason=' test require nlcpy. ') no_cupy = pytest.mark.skipif( "cupy" not in sys.modules, reason=' test require cupy. ') # for tests with an argument @device(Host, numpy_module_arg='xp') def create_array_init_5_at_host(shape, dtype, order, xp): return xp.full(shape, 5, dtype=dtype, order=order) @device(CUDAGPU, numpy_module_arg='xp') def create_array_init_5_at_gpu(shape, dtype, order, xp): return xp.full(shape, 5, dtype=dtype, order=order) @device(VE, numpy_module_arg='xp') def create_array_init_5_at_ve(shape, dtype, order, xp): return xp.full(shape, 5, dtype=dtype, order=order) @pytest.mark.parametrize('shape', [(2), (2, 2), (2, 2, 2), (2, 3), (2, 3, 4)]) @pytest.mark.parametrize('dtype', [ 'i4', 'i8', 'u4', 'u8', 'f4', 'f8', 'c8', 'c16' ]) @pytest.mark.parametrize('order', ['C', 'F']) class TestDeviceArgs: def test_device_args_host(self, shape, dtype, order): y = create_array_init_5_at_host(shape, dtype, order) assert(isinstance(y, np.ndarray)) expected = np.full(shape, 5, dtype=dtype, order=order) assert((y == expected).all()) @no_cupy def test_device_args_gpu(self, shape, dtype, order): y = create_array_init_5_at_gpu(shape, dtype, order) assert(isinstance(y, cp.ndarray)) expected = cp.full(shape, 5, dtype=dtype, order=order) assert((y == expected).all()) @no_nlcpy def test_device_args_ve(self, shape, dtype, order): y = create_array_init_5_at_ve(shape, dtype, order) assert(isinstance(y, vp.ndarray)) expected = vp.full(shape, 5, dtype=dtype, order=order) assert((y == expected).all())
[ [ [ 21, 27 ], [ 450, 456 ], [ 602, 608 ], [ 756, 762 ] ], [ [ 60, 67 ], [ 609, 616 ] ], [ [ 69, 73 ], [ 457, 461 ] ], [ [ 75, 77 ], [ 763, 765 ] ], [ [ 85, 88 ], [ 137, 140 ], [ 186, 189 ], [ 277, 280 ], [ 374, 377 ] ], [ [ 96, 102 ], [ 234, 240 ], [ 332, 338 ], [ 904, 910 ], [ 983, 989 ], [ 1078, 1084 ] ], [ [ 111, 122 ], [ 1293, 1295 ], [ 1325, 1327 ] ], [ [ 161, 171 ], [ 1567, 1569 ], [ 1599, 1601 ] ], [ [ 210, 221 ], [ 1840, 1842 ], [ 1872, 1874 ] ], [ [ 223, 231 ], [ 1687, 1695 ] ], [ [ 322, 329 ], [ 1413, 1420 ] ], [ [ 490, 517 ], [ 1215, 1242 ] ], [ [ 645, 671 ], [ 1490, 1516 ] ], [ [ 794, 819 ], [ 1764, 1789 ] ], [ [ 1129, 1143 ] ] ]
# !/usr/local/python/bin/python # -*- coding: utf-8 -*- # (C) Wu Dong, 2021 # All rights reserved # @Author: 'Wu Dong <[email protected]>' # @Time: '6/29/21 10:49 AM' # sys import typing as t from threading import Lock from threading import get_ident # 3p import sqlalchemy from sqlalchemy import ( orm, schema, ) from sqlalchemy.engine import make_url from sqlalchemy.orm import ( declarative_base, DeclarativeMeta, Session as SessionBase ) # project from mask.globals import current_app from .model import ( DefaultMeta, Model ) if t.TYPE_CHECKING: from mask import Mask __version__ = "1.0.0a1" class BindSession(SessionBase): def __init__(self, db, autocommit=False, autoflush=True, **options): """ 此Session可以根据binds映射关系,自动找到响应的engine """ self.db = db self.app = db.get_app() bind = options.pop("bind", None) or db.engine binds = options.pop("binds", db.get_binds(self.app)) SessionBase.__init__( self, autocommit=autocommit, autoflush=autoflush, bind=bind, binds=binds, **options ) def get_bind(self, mapper=None, **kwargs): """ 根据mapper映射信息找出合适的engine :param mapper: Model -> table 映射 """ if mapper is not None: # SQLAlchemy >= 1.3 版本才有 persist_selectable = mapper.persist_selectable # 读取 bind_key info = getattr(persist_selectable, "info", {}) bind_key = info.get("bind_key") if bind_key is not None: # 读取预先格式化好的engine,创建 _EngineConnector 实例 return self.db.get_engine(self.app, bind=bind_key) # 默认调用父类 get_bind 方法 return super().get_bind(mapper, **kwargs) class _EngineConnector: def __init__(self, sa, app, bind=None): """ 初始化engine连接器,一个数据库对应一个Connector """ self._sa = sa self._app = app self._engine = None self._bind = bind self._connect_for = None self._lock = Lock() def get_uri(self): """ 获取当前bind的uri """ # 默认去除对单数据库的连接方式 if self._bind is None: return None # 多个数据库绑定时的处理 binds = self._app.config.get("SQLALCHEMY_BINDS") or () if self._bind not in binds: raise RuntimeError(f"Bind {self._bind!r} is not configure in 'SQLALCHEMY_BINDS'.") return binds[self._bind] def get_engine(self): with self._lock: # 读取数据库连接uri uri = self.get_uri() if uri == self._connect_for: return self._engine # 读取,格式化url连接中的配置项并创建真正的engine sa_url, options = self.get_options(make_url(uri)) self._engine = self._sa.create_engine(sa_url, options) self._connect_for = uri return self._engine def dispose(self): """ 销毁Engine """ if not self._engine: return self._engine.dispose() # 重置资源 self._engine = None self._connect_for = None def get_options(self, sa_url): """ 获取所有可选项目 """ options = {} options.update(self._app.config["SQLALCHEMY_ENGINE_OPTIONS"]) options.update(self._sa._engine_options) return sa_url, options class _QueryProperty: def __init__(self, sa): self.sa = sa def __get__(self, obj, cls): # pylint: disable=inconsistent-return-statements try: mapper = orm.class_mapper(cls) if mapper: return cls.query_class(mapper, session=self.sa.session()) except orm.exc.UnmappedClassError: return None def _include_sqlalchemy(obj, _): """ 将原生SQLAlchemy的模块注册到Glib SQLAlchemy 中 """ for module in sqlalchemy, sqlalchemy.orm: for key in module.__all__: if not hasattr(obj, key): setattr(obj, key, getattr(module, key)) class SQLAlchemy: Query = None def __init__( self, app: t.Optional["Mask"] = None, session_options: t.Optional[dict] = None, metadata: t.Optional["schema.MetaData"] = None, query_class: t.Optional["orm.Query"] = orm.Query, model_class: t.Optional["Model"] = Model, engine_options: t.Optional[dict] = None, ) -> None: """ 创建一个SQLAlchemy用于替代原始的类型 """ self.app = app self.Query = query_class self.session = self.create_scoped_session(session_options) self.Model = self.make_declarative_base(model_class, metadata) self._engine_lock = Lock() self._engine_options = engine_options or {} self.connectors = {} _include_sqlalchemy(self, query_class) if app is not None: self.init_app(app) @property def engine(self): """ 构造属性,创建engine """ return self.get_engine() def get_engine(self, app: t.Optional["Mask"] = None, bind: str = None): """ 依据bind创建一个engine """ app = self.get_app(app) with self._engine_lock: connector = self.connectors.get(bind) if connector is None: connector = _EngineConnector(self, self.get_app(app), bind) self.connectors[bind] = connector return connector.get_engine() def _dispose_all_engine(self): """ 运行时更新配置时,账号密码有可能会发生变化,所以需要销毁所有数据库连接 TIPS: 此操作会导致正在运行的请求失败 """ with self._engine_lock: for _, connector in self.connectors.items(): connector.dispose() self.connectors.clear() def create_engine(self, sa_url, engine_opts): """ 创建engine :param sa_url: 格式化后的url :param engine_opts: 连接参数 """ return sqlalchemy.create_engine(sa_url, **engine_opts) def create_scoped_session(self, options=None): """ 创建session """ options = options or {} scope_func = options.pop("scopefunc", get_ident) options.setdefault("query_cls", self.Query) return orm.scoped_session(self.create_session(options), scopefunc=scope_func) def create_session(self, options): """ 创建session """ return orm.sessionmaker(class_=BindSession, db=self, **options) def make_declarative_base(self, model, matadata=None): """ 利用 SQAlchemy 工厂函数,创建模型基类 :param model: 用户定义模型基类,或者实例 :param matadata: 元数据,状态所有表结构 """ if not isinstance(model, DeclarativeMeta): model = declarative_base(cls=model, name="Model", metadata=matadata, metaclass=DefaultMeta) if not getattr(model, "query_class", None): model.query_class = self.Query model.query = _QueryProperty(self) return model def get_binds(self, app=None): """ 获取当前的所有binds """ app = self.get_app(app) binds = [None] + list(app.config.get("SQLALCHEMY_BINDS") or ()) ret_val = {} for bind in binds: engine = self.get_engine(app, bind) tables = self.get_tables_for_bind(bind) ret_val.update({table: engine for table in tables}) return ret_val def init_app(self, app): """ glib扩展形式,初始化SQLAlchemy扩展 """ # TODO: 从线程池有拉取app self.app = app app.config.setdefault("SQLALCHEMY_BINDS", None) app.config.setdefault("SQLALCHEMY_ENGINE_OPTIONS", {}) # 如果配置更新,需要重新释放所有旧的链接 # 适用于配置运行时动态更新的情况 self._dispose_all_engine() app.extensions["SQLAlchemy"] = self @app.teardown_appcontext def shutdown_session(exc): # pylint: disable=unused-variable """ Shutdown session when error """ self.session.remove() return exc def get_app(self, reference_app=None): """ 获取当前的Application """ if reference_app is not None: return reference_app # 查找当前的APP if current_app: return current_app._get_current_object() if self.app is not None: return self.app raise RuntimeError( "No application fund." ) def get_tables_for_bind(self, bind=None): """ 查询绑定的数据库下面的所有表 """ result = [] for table in self.Model.metadata.tables.values(): if table.info.get("bind_key") == bind: result.append(table) return result
[ [ [ 179, 190 ], [ 561, 562 ], [ 4089, 4090 ], [ 4145, 4146 ], [ 4192, 4193 ], [ 4255, 4256 ], [ 4317, 4318 ], [ 4374, 4375 ], [ 5020, 5021 ] ], [ [ 213, 217 ], [ 2080, 2084 ], [ 4685, 4689 ] ], [ [ 240, 249 ], [ 6091, 6100 ] ], [ [ 262, 272 ], [ 3840, 3850 ], [ 3852, 3862 ], [ 5878, 5888 ] ], [ [ 302, 305 ], [ 4281, 4284 ], [ 3548, 3551 ], [ 3682, 3685 ], [ 6169, 6172 ], [ 6329, 6332 ] ], [ [ 311, 317 ] ], [ [ 351, 359 ], [ 2756, 2764 ] ], [ [ 393, 409 ], [ 6640, 6656 ] ], [ [ 415, 430 ], [ 6602, 6617 ] ], [ [ 436, 458 ], [ 650, 661 ], [ 976, 987 ] ], [ [ 496, 507 ], [ 8091, 8102 ], [ 8123, 8134 ] ], [ [ 533, 544 ], [ 6711, 6722 ] ], [ [ 550, 555 ], [ 4339, 4344 ] ], [ [ 599, 603 ] ], [ [ 606, 617 ] ], [ [ 638, 649 ], [ 6353, 6364 ] ], [ [ 1807, 1823 ], [ 5284, 5300 ] ], [ [ 3364, 3378 ], [ 6843, 6857 ] ], [ [ 3740, 3759 ], [ 4782, 4801 ] ], [ [ 4005, 4015 ] ] ]
# Copyright (c) 2019 Platform9 Systems Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from sqlalchemy import Boolean from sqlalchemy import Column from sqlalchemy import DateTime from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import String from sqlalchemy import Table meta = MetaData() cluster = Table( 'clusters', meta, Column('id', Integer, primary_key=True), Column('deleted', Integer, default=None), Column('name', String(255), default=None), Column('enabled', Boolean, default=False), Column('status', String(36), default=1), Column('updated_at', DateTime, default=None), Column('created_at', DateTime, default=None), Column('deleted_at', DateTime, default=None) ) def upgrade(migrate_engine): meta.bind = migrate_engine cluster.create() def downgrade(migrate_engine): meta.bind = migrate_engine cluster.drop()
[ [ [ 615, 622 ], [ 1026, 1033 ] ], [ [ 646, 652 ], [ 870, 876 ], [ 915, 921 ], [ 961, 967 ], [ 1008, 1014 ], [ 1055, 1061 ], [ 1100, 1106 ], [ 1150, 1156 ], [ 1200, 1206 ] ], [ [ 676, 684 ], [ 1121, 1129 ], [ 1171, 1179 ], [ 1221, 1229 ] ], [ [ 708, 715 ], [ 883, 890 ], [ 933, 940 ] ], [ [ 739, 747 ], [ 815, 823 ] ], [ [ 771, 777 ], [ 976, 982 ], [ 1072, 1078 ] ], [ [ 801, 806 ], [ 837, 842 ] ], [ [ 808, 812 ], [ 860, 864 ], [ 1282, 1286 ], [ 1367, 1371 ] ], [ [ 827, 834 ], [ 1313, 1320 ], [ 1398, 1405 ] ], [ [ 1253, 1260 ] ], [ [ 1336, 1345 ] ] ]
"""SCons.Tool.sunf77 Tool-specific initialization for sunf77, the Sun Studio F77 compiler. There normally shouldn't be any need to import this module directly. It will usually be imported through the generic SCons.Tool.Tool() selection method. """ # # Copyright (c) 2001 - 2014 The SCons Foundation # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "src/engine/SCons/Tool/sunf77.py 2014/08/24 12:12:31 garyo" import SCons.Util from FortranCommon import add_all_to_env compilers = ['sunf77', 'f77'] def generate(env): """Add Builders and construction variables for sunf77 to an Environment.""" add_all_to_env(env) fcomp = env.Detect(compilers) or 'f77' env['FORTRAN'] = fcomp env['F77'] = fcomp env['SHFORTRAN'] = '$FORTRAN' env['SHF77'] = '$F77' env['SHFORTRANFLAGS'] = SCons.Util.CLVar('$FORTRANFLAGS -KPIC') env['SHF77FLAGS'] = SCons.Util.CLVar('$F77FLAGS -KPIC') def exists(env): return env.Detect(compilers) # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
[ [ [ 1365, 1377 ] ], [ [ 1449, 1459 ], [ 1853, 1858 ], [ 1917, 1922 ] ], [ [ 1487, 1501 ], [ 1637, 1651 ] ], [ [ 1503, 1512 ], [ 1681, 1690 ], [ 1993, 2002 ] ], [ [ 1538, 1546 ] ], [ [ 1958, 1964 ] ] ]
# Package: values # Date: 11th April 2010 # Author: James Mills, prologic at shortcircuit dot net dot au """Values This defines the Value object used by components and events. """ from types import ListType from itertools import imap from events import Event class ValueChanged(Event): """Value Changed Event This Event is triggered when the return Value of an Event Handler has changed it's value. """ def __init__(self, value): "x.__init__(...) initializes x; see x.__class__.__doc__ for signature" super(ValueChanged, self).__init__(value) class Value(object): """Create a new future Value Object Creates a new future Value Object which is used by Event Objects and the Manager to store the result(s) of an Event Handler's exeuction of some Event in the system. :param event: The Event this Value is associated with. :type event: Event instance :param manager: The Manager/Component used to trigger notifications. :type manager: A Manager/Component instance. :param onSet: The channel used when triggering ValueChagned events. :type onSet: A (channel, target) tuple. :ivar result: True if this value has been changed. :ivar errors: True if while setting this value an exception occured. This is a Future/Promise implementation. """ def __init__(self, event=None, manager=None, onSet=None): "x.__init__(...) initializes x; see x.__class__.__doc__ for signature" self.event = event self.manager = manager self.onSet = onSet self.result = False self.errors = False self._parent = self self._value = None def __getstate__(self): keys = ("event", "onSet", "result", "errors", "_value") return dict([(k, getattr(self, k, None)) for k in keys]) def __contains__(self, y): value = self.value return y in value if type(value) is ListType else y == value def __getitem__(self, y): v = self.value[y] if isinstance(v, Value): return v.value else: return v def __iter__(self): return imap(lambda v: v.value if isinstance(v, Value) else v, self.value) def __repr__(self): "x.__repr__() <==> repr(x)" value = "" if self.result: value = repr(self.value) format = "<Value (%s) result: %r errors: %r for %r" return format % (value, self.result, self.errors, self.event) def __str__(self): "x.__str__() <==> str(x)" return str(self.value) def getValue(self): value = self._value while isinstance(value, Value): value = value._value return value def setValue(self, value): if isinstance(value, Value): value._parent = self if self.result and type(self._value) is ListType: self._value.append(value) elif self.result: self._value = [self._value] self._value.append(value) else: self._value = value def notify(o, v): if not isinstance(v, Value) and v is not None: o.result = True if o.manager is not None and o.onSet is not None: o.manager.fireEvent(ValueChanged(o), *o.onSet) elif isinstance(v, Value): o.errors = v.errors o.result = v.result if not o._parent == o: notify(o._parent, v) notify(self, value) value = property(getValue, setValue, None, "Value of this Value")
[ [ [ 208, 216 ], [ 1955, 1963 ], [ 2916, 2924 ] ], [ [ 239, 243 ], [ 2172, 2176 ] ], [ [ 264, 269 ], [ 290, 295 ] ], [ [ 277, 289 ], [ 558, 570 ], [ 3338, 3350 ] ], [ [ 602, 607 ], [ 2062, 2067 ], [ 2703, 2708 ], [ 2826, 2831 ], [ 2212, 2217 ], [ 3174, 3179 ], [ 3396, 3401 ] ] ]
""" Deploy semi-supervised PU machine learning models. This module provides classes for training, testing, and deploying a PU learning model for predicting material synthesizability. Utility functions for plotting aid in visualizing and analyzing results. References: [1] DOI: 10.1021/acsnano.8b08014 [2] DOI: 10.1145/1401890.1401920 [3] DOI: 10.1016/j.patrec.2013.06.010 """ from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import precision_recall_fscore_support from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture, BayesianGaussianMixture from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import precision_recall_curve from sklearn.model_selection import RepeatedKFold from sklearn.utils import resample from mpl_toolkits.mplot3d import Axes3D from monty.serialization import dumpfn import pandas as pd import seaborn as sns import os import pickle import numpy as np import matplotlib.pyplot as plt from pylab import rcParams __author__ = "Nathan C. Frey, Jin Wang" __copyright__ = "MIT License" __version__ = "0.0.1" __maintainer__ = "Nathan C. Frey" __email__ = "[email protected]" __status__ = "Development" __date__ = "Aug 2017" class PULearner: def __init__(self): """A machine learning model that predicts material synthesizability. Positive samples are experimentally synthesized materials. Unlabeled samples are not-yet synthesized materials. Features for training data might be generated by first-principles (density functional theory) calculations, or structural or chemical data looked up from a table. Hyperparameters are initialized with sensible defaults, but any newly trained model should have hyperparams carefully converged. Attributes: pu_stats (dict): Outputs of cv_baggingDT df_U (DataFrame): Unlabeled data. df_P (DataFrame): Positive data. synth_scores (list): Synthesizability scores (between 0 and 1) of unlabeled samples. labels (list): Likely synthesizable (1) or not (0) feat_importances (DataFrame): Feature importances from trained decision tree classifiers. Index corresponds to feature index in original data. """ self.pu_stats = None self.df_U = None self.df_P = None self.synth_scores = None self.labels = None self.feat_importances = None def cv_baggingDT(self, pu_data, splits=10, repeats=10, bags=100, filename=""): """ Train bagged decision tree base classifiers and do repeated k-fold CV. Synthesizability scores (0 = not synthesizable, 1 = already synthesized) are generated for an unlabeled sample by averaging the scores from the ensemble of decision tree classifiers that have not been trained on that sample. Args: pu_data (json): A file where each row describes a material. There MUST be a column called "PU_label" where a 1 value indicates a synthesized (positive) compound and a 0 value indicates an unlabeled compound. splits (int): Number of splits in k-fold CV. repeats (int): Number of repeated k-fold CV. bags (int): Number of bags in bootstrap aggregation. filename (string): Save model training results to file with filename ending in .json or .pkl. Returns: pu_stats (dict): Metrics and outputs of PU learning model training. """ print("Start PU Learning.") # Preprocess data and set attributes df = pd.read_json(pu_data) df_P, df_U, X_P, X_U = self._process_pu_data(df) self.df_P = df_P self.df_U = df_U # Split data into training and test splits for k-fold CV kfold = RepeatedKFold(n_splits=splits, n_repeats=repeats, random_state=42) # Scores for PU learning (tpr = True Positive Rate) scores = [] tprs = [] # Predicted synthesis probability of CVed P and U sets prob_P = np.ones(shape=(X_P.shape[0], splits * repeats)) prob_U = -np.ones(shape=(X_U.shape[0], splits * repeats)) # Feature importance feat_rank = np.zeros(shape=(X_P.shape[1], splits * repeats)) idsp = 0 # index of repeated k splits # Loop over P and U training/test samples for (ptrain, ptest), (utrain, utest) in zip(kfold.split(X_P), kfold.split(X_U)): # Number of P and U training samples N_ptrain = X_P[ptrain].shape[0] N_utrain = X_U[utrain].shape[0] d = X_P.shape[1] K = N_ptrain train_label = np.zeros(shape=(N_ptrain + K,)) train_label[:N_ptrain] = 1.0 # Synthesized (positive) # Out of bag samples n_oob = np.zeros(shape=(N_utrain,)) f_oob = np.zeros(shape=(N_utrain, 2)) # Sums of probabilities of test sets f_ptest = np.zeros(shape=(X_P[ptest].shape[0], 2)) f_utest = np.zeros(shape=(X_U[utest].shape[0], 2)) # Bootstrap resampling for each bag for i in range(bags): bootstrap_sample = np.random.choice( np.arange(N_utrain), replace=True, size=K ) # Positive samples and bootstrapped unlabeled samples data_bootstrap = np.concatenate( (X_P[ptrain], X_U[bootstrap_sample, :]), axis=0 ) # Train decision tree classifier model = DecisionTreeClassifier( max_depth=None, max_features=None, criterion="gini", class_weight="balanced", ) model.fit(data_bootstrap, train_label) # Index for the oob samples idx_oob = sorted( set(range(N_utrain)) - set(np.unique(bootstrap_sample)) ) # Transductive learning on oob samples f_oob[idx_oob] += model.predict_proba(X_U[utrain][idx_oob]) n_oob[idx_oob] += 1 f_ptest += model.predict_proba(X_P[ptest]) f_utest += model.predict_proba(X_U[utest]) feat_rank[:, idsp] = model.feature_importances_ # Predicted synthesis probabilities of unlabeled samples predict_utrain = f_oob[:, 1] / n_oob # Predicted probabilities for P and U test sets predict_ptest = f_ptest[:, 1] / bags predict_utest = f_utest[:, 1] / bags # Find predicted positives true_pos = predict_ptest[np.where(predict_ptest > 0.5)].shape[0] u_pos = predict_utest[np.where(predict_utest > 0.5)].shape[0] N_ptest = X_P[ptest].shape[0] N_utest = X_U[utest].shape[0] # Predicted positive ratio in test set p_pred_pos = (true_pos + u_pos) / (N_ptest + N_utest) + 0.0001 # Compute PU recall (TPR) and score metrics recall = true_pos / N_ptest score = recall ** 2 / p_pred_pos scores.append(score) tprs.append(recall) # Predicted probabilities prob_P[ptest, idsp] = predict_ptest prob_U[utrain, idsp] = predict_utrain prob_U[utest, idsp] = predict_utest idsp += 1 # Progress update if (idsp + 1) % splits == 0: tpr_tmp = np.asarray(tprs[-splits - 1 : -1]) print( "Performed Repeated " + str(splits) + "-fold: " + str(idsp // splits + 1) + " out of " + str(repeats) ) print( "True Positive Rate: %0.2f (+/- %0.2f)" % (tpr_tmp.mean(), tpr_tmp.std() * 2) ) # Predicted labels from k-fold CV label_U = np.zeros(shape=(X_U.shape[0], splits * repeats + 1), dtype=int) label_U[:, : splits * repeats][np.where(prob_U > 0.5)] = 1 label_U[:, splits * repeats] = np.sum( label_U[:, : splits * repeats + 1], axis=1 ) tprs = np.asarray(tprs) scores = np.asarray(scores) # Metrics for each model in the k-folds label_U_rp = np.zeros(shape=(X_U.shape[0], repeats), dtype=int) prob_U_rp = np.zeros(shape=(X_U.shape[0], repeats)) feat_rank_rp = np.zeros(shape=(X_U.shape[1], repeats)) tpr_rp = np.zeros(shape=(repeats,)) scores_rp = np.zeros(shape=(repeats,)) labels = np.zeros(shape=(X_U.shape[0],)) for i in range(repeats): prob_U_rp[:, i] = prob_U[:, i * splits : (i + 1) * splits].mean(axis=1) feat_rank_rp[:, i] = feat_rank[:, i * splits : (i + 1) * splits].mean( axis=1 ) tpr_rp[i] = tprs[i * splits : (i + 1) * splits].mean() scores_rp[i] = scores[i * splits : (i + 1) * splits].mean() label_U_rp[np.where(prob_U_rp > 0.5)] = 1 prob = prob_U_rp.mean(axis=1) labels[np.where(prob > 0.5)] = 1 # Get confidence interval of TPR for each kfold tpr_low, tpr_up = self.bootstrapCI(tpr_rp) scores_low, scores_up = self.bootstrapCI(scores_rp) # PU learning metrics metrics = np.asarray( [tpr_rp.mean(), tpr_low, tpr_up, scores_rp.mean(), scores_low, scores_up] ) print("Accuracy: %0.2f" % (tpr_rp.mean())) print("95%% confidence interval: [%0.2f, %0.2f]" % (tpr_low, tpr_up)) # Metrics and results from training / testing pu_stats = { "prob": prob, "labels": labels, "metrics": metrics, "prob_rp": prob_U_rp, "label_rp": label_U_rp, "tpr_rp": tpr_rp, "scores_rp": scores_rp, "feat_rank_rp": feat_rank_rp, } # Save results if filename: if filename.endswith(".json"): dumpfn(pu_stats, filename) if filename.endswith(".pkl"): with open(filename, "wb") as file: pickle.dump(pu_stats, file, protocol=pickle.HIGHEST_PROTOCOL) self.pu_stats = pu_stats return pu_stats def bootstrapCI(self, data, ci=95, ns=10000): """Compute confidence interval of the TPR. Args: data (array): Array of TPRs for each kfold. ci (int): Confidence interval. ns (int): Number of bootstrap resamplings. Returns: lower (float): Lower endpoint of CI. upper (float): Upper endpoint of CI. """ bs_rsample = [] for _ in range(ns): rsample = resample(data, n_samples=len(data)) bs_rsample.append(np.mean(rsample)) bs_rsample = np.asarray(bs_rsample) lower = np.percentile(bs_rsample, (100 - ci) / 2) upper = np.percentile(bs_rsample, ci + (100 - ci) / 2) return lower, upper def corr_heatmap(self, num_feats=10, fname=""): """Plot correlation matrix between synthesizability and features. cv_baggingDT must be run first. Args: num_feats (int): How many features to consider. fname (str): Filename if correlation plot should be saved. Returns: None (generates plots) """ pu_stats = self.pu_stats df_U = self.df_U df_U_copy = df_U.drop(columns=["PU_label"]) # Get normalized, sorted & ranked list of most important features synth_scores = pu_stats["prob"] df_U_copy["synth_score"] = synth_scores # Make correlation matrix of top "num_feats" features corrmat = df_U_copy.corr() cols = corrmat.nlargest(num_feats, "synth_score")["synth_score"].index cm = np.corrcoef(df_U_copy[cols].values.T) sns.set(style='ticks') rcParams['figure.dpi'] = 300 fig, ax = plt.subplots(1, 1) hm = sns.heatmap( cm, ax=ax, cbar=True, annot=True, square=True, fmt=".2f", annot_kws={"size": 7}, yticklabels=cols.values, xticklabels=cols.values, ) if fname: self.save_plot(fname + ".png", fig, ax) def get_feat_importances(self, plot_format=""): """Process output from PU learning k-fold cross validation. cv_baggingDT must be run first. If plot_format is specified, a feature importance plot will be saved. Args: plot_format (str): svg, png, or pdf file format for saving simple visualizations of feature importance and correlation. """ pu_stats = self.pu_stats # Feature importances for individual repetitions of kfold CV feat_rank_rp = pu_stats["feat_rank_rp"] feat_importances = np.sum(feat_rank_rp, axis=1) df_U = self.df_U df_U = df_U._get_numeric_data() df_U_copy = df_U.drop(columns=["PU_label"]) feat_names = df_U_copy.columns # Index corresponds to feature in original data df_feat = pd.DataFrame(columns=["feature", "importance"]) df_feat["feature"] = feat_names df_feat["importance"] = feat_importances # Sort by importance df_feat_sort = df_feat.sort_values(by="importance", ascending=False) max_value = df_feat["importance"].max() # Normalize to 1 df_feat_sort["importance"] = df_feat_sort["importance"] / max_value # Set feature importance attribute self.feat_importances = df_feat if plot_format in ["svg", "pdf", "png"]: # Feature importance plot fig, ax = plt.subplots(figsize=(10, 4)) with sns.axes_style(style="ticks"): sns.barplot(x="feature", y="importance", data=df_feat_sort) ax.set_xticklabels( ax.get_xticklabels(), rotation=45, ha="right", fontsize=7 ) filename = "feat_importance." + plot_format self.save_plot(filename, fig, ax) @staticmethod def _process_pu_data(data): """Utility method for processing input data. Args: data (DataFrame): Data with positive and unlabeled samples. Returns: X_P (array): Positive sample set. X_U (array): Unlabeled sample set. """ df_P = data.query("PU_label == 1") # Positive value is 1 df_U = data.query("PU_label == 0") # Unlabeled value is 0 # Chop off PU label and drop non-numeric columns for sklearn X_P = np.asarray(df_P.drop(columns=["PU_label"])._get_numeric_data()) X_U = np.asarray(df_U.drop(columns=["PU_label"])._get_numeric_data()) return df_P, df_U, X_P, X_U @staticmethod def save_plot(filename, fig, ax): """Utility method for saving simple visualizations. Args: filename (str): Name ending in .svg, .png, or .pdf fig, ax (objects): Matplotlib objects. Returns: None """ sns.set_style("ticks") fig.tight_layout() fig.savefig(filename) class PUInteract: def __init__(self, df_parent, pu_parent, df_child, pu_child, merge_on=(), feats=()): """Consider parent and child phase PU learning scores. This class looks at PU learning scores for parent bulk compounds (e.g. layered h-BN) and scores of the child phases along with descriptors like exfoliation energy and changes in structural/electronic properties to predict (parent, child) pairs that can be synthesized. Parent and child must be linked by a column that allows the dataframes to be merged. There should also be additional features that characterize the structural and chemical differences between parents and children, e.g. changes in bond lengths, etc. Unsupervised clustering models are used to identify synthesizable (parent/child) pairs. Args: df_parent (str): Parent data filename. pu_parent (dict): Output from PULearner.cv_baggingDT. df_child (str): Child data filename. pu_child (dict): Output from PULearner.cv_baggingDT. merge_on (tuple): Column name(s) on which to merge. feats (tuple): Column names to use as features. If empty, use all possible columns. Attributes: merged_df (DataFrame): (Parent, child) pair data. X (array): Array representation of merged_df. Returns: None """ df_parent = pd.read_json(df_parent) df_child = pd.read_json(df_child) # Set scores from PULearner df_parent["synth_score"] = 1 df_child["synth_score"] = 1 df_parent.loc[df_parent.eval("PU_label == 0"), "synth_score"] = pu_parent[ "prob" ] df_child.loc[df_child.eval("PU_label == 0"), "synth_score"] = pu_child["prob"] # Merge parent and child dfs merge_on = list(merge_on) df = pd.merge( df_parent, df_child, on=merge_on, how="outer", suffixes=["_p", "_c"] ) df.drop(columns=["PU_label_p", "PU_label_c"], inplace=True, axis=1) if feats: feat_names = [f + "_p" for f in feats] + [f + "_c" for f in feats] df = df[feat_names] self.merged_df = df self.X = np.array(df) def do_kmeans(self, n_clusters=2, seed=42): """Do k-means clustering on (parent, child) pairs. Args: n_clusters (int): Number of clusters. seed (int): Fix random seed for kmeans reproducibility. Returns: kmeans_output (dict): kmeans cluster centers, cluster labels for each (parent, child) """ np.random.seed(seed) km = KMeans(n_clusters=n_clusters, random_state=seed) km.fit(self.X) kmeans_output = { "cluster_centers": km.cluster_centers_, "cluster_labels": km.labels_, } return kmeans_output def do_gmixture(self, n_components=2, seed=42): """ Estimate parameters of a Gaussian mixture distribution of (parent, child) data. Args: n_components (int): Number of components in GMM. seed (int): Random seed. Returns: gmm_output (dict): Predicted labels of (parent, child) pairs and predicted posterior probabilities of each component. """ np.random.seed(seed) gmm = GaussianMixture( n_components=n_components, random_state=seed, covariance_type="full" ) gmm.fit(self.X) gmm_labels = gmm.predict(self.X) gmm_prob = gmm.predict_proba(self.X)[:, 0] gmm_output = {"gmm_labels": gmm_labels, "gmm_prob": gmm_prob} return gmm_output def do_bgm(self, n_components=6, seed=42): """Bayesian Gaussian Mixture. Infer the effective number of components in a Gaussian Mixture Model via variational Bayesian estimation. n_effective_componenents < n_components if the model sets some weights close to 0. Args: n_components (int): Number of components in GMM. seed (int): Random seed. Returns: bgm_output (dict): Labels and probabilities. """ np.random.seed(seed) bgm = BayesianGaussianMixture( n_components=n_components, covariance_type="full", weight_concentration_prior=1e-2, weight_concentration_prior_type="dirichlet_process", mean_precision_prior=1e-2, init_params="random", max_iter=100, random_state=seed, ) bgm.fit(self.X) bgm_labels = bgm.predict(self.X) bgm_prob = bgm.predict_proba(self.X)[:, 0] bgm_output = {"bgm_labels": bgm_labels, "bgm_prob": bgm_prob} return bgm_output
[ [ [ 420, 442 ] ], [ [ 471, 502 ] ], [ [ 531, 537 ], [ 18424, 18430 ] ], [ [ 566, 581 ], [ 19156, 19171 ] ], [ [ 583, 606 ], [ 20040, 20063 ] ], [ [ 632, 654 ], [ 5774, 5796 ] ], [ [ 683, 705 ] ], [ [ 742, 755 ], [ 4004, 4017 ] ], [ [ 782, 790 ], [ 11125, 11133 ] ], [ [ 825, 831 ] ], [ [ 865, 871 ], [ 10378, 10384 ] ], [ [ 880, 892 ], [ 3793, 3795 ], [ 13605, 13607 ], [ 17168, 17170 ], [ 17211, 17213 ], [ 17629, 17631 ] ], [ [ 900, 914 ], [ 12295, 12298 ], [ 12406, 12409 ], [ 14241, 14244 ], [ 14288, 14291 ], [ 15585, 15588 ] ], [ [ 922, 924 ] ], [ [ 932, 938 ], [ 10518, 10524 ], [ 10555, 10561 ] ], [ [ 947, 958 ], [ 4251, 4253 ], [ 4317, 4319 ], [ 4415, 4417 ], [ 4871, 4873 ], [ 5024, 5026 ], [ 5072, 5074 ], [ 5174, 5176 ], [ 5237, 5239 ], [ 5396, 5398 ], [ 5434, 5436 ], [ 5598, 5600 ], [ 6156, 6158 ], [ 6908, 6910 ], [ 6982, 6984 ], [ 7746, 7748 ], [ 8264, 8266 ], [ 8367, 8369 ], [ 8434, 8436 ], [ 8523, 8525 ], [ 8557, 8559 ], [ 8646, 8648 ], [ 8717, 8719 ], [ 8780, 8782 ], [ 8837, 8839 ], [ 8884, 8886 ], [ 8928, 8930 ], [ 9357, 9359 ], [ 9441, 9443 ], [ 9684, 9686 ], [ 11191, 11193 ], [ 11231, 11233 ], [ 11270, 11272 ], [ 11328, 11330 ], [ 12248, 12250 ], [ 13344, 13346 ], [ 15103, 15105 ], [ 15181, 15183 ], [ 17982, 17984 ], [ 18390, 18392 ], [ 19121, 19123 ], [ 20005, 20007 ] ], [ [ 966, 990 ], [ 12374, 12377 ], [ 14194, 14197 ] ], [ [ 1009, 1017 ], [ 12326, 12334 ] ], [ [ 1019, 1029 ] ], [ [ 1059, 1072 ] ], [ [ 1089, 1100 ] ], [ [ 1111, 1125 ] ], [ [ 1145, 1154 ] ], [ [ 1181, 1191 ] ], [ [ 1208, 1216 ] ], [ [ 1238, 1247 ] ], [ [ 15673, 15683 ] ] ]
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the License); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for generate_universe.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from os import path from absl.testing import absltest from tests import test_constants from validate import generate_universe _DEFAULT_ONTOLOGY_LOCATION = test_constants.ONTOLOGY_ROOT _BAD_MODIFIED_ONTOLOGY = path.join(test_constants.TEST_RESOURCES, 'BAD', 'BAD_FORMAT') _NONEXISTENT_LOCATION = path.join(test_constants.TEST_ROOT, 'nonexistent') _EMPTY_FOLDER = path.join(test_constants.TEST_RESOURCES, 'BAD', 'BAD_EMPTY') class GenerateUniverseTest(absltest.TestCase): def testCanGenerateUniverse(self): universe = generate_universe.BuildUniverse(_DEFAULT_ONTOLOGY_LOCATION) self.assertTrue(universe) def testCatchInvalidModifiedOntology(self): with self.assertRaises(Exception) as context: generate_universe.BuildUniverse(_BAD_MODIFIED_ONTOLOGY) self.assertIn('no longer valid', str(context.exception)) def testModifiedTypesCatchesNonexistent(self): self.assertRaises(Exception, generate_universe.BuildUniverse(_NONEXISTENT_LOCATION)) def testModifiedTypesCatchesEmpty(self): self.assertRaises(Exception, generate_universe.BuildUniverse(_EMPTY_FOLDER)) if __name__ == '__main__': absltest.main()
[ [ [ 632, 647 ] ], [ [ 671, 679 ] ], [ [ 703, 717 ] ], [ [ 734, 738 ], [ 931, 935 ], [ 1052, 1056 ], [ 1119, 1123 ] ], [ [ 765, 773 ], [ 1209, 1217 ], [ 1909, 1917 ] ], [ [ 793, 807 ], [ 877, 891 ], [ 941, 955 ], [ 1062, 1076 ], [ 1129, 1143 ] ], [ [ 829, 846 ], [ 1282, 1299 ], [ 1475, 1492 ], [ 1697, 1714 ], [ 1830, 1847 ] ], [ [ 848, 874 ], [ 1314, 1340 ] ], [ [ 906, 928 ], [ 1507, 1529 ] ], [ [ 1028, 1049 ], [ 1729, 1750 ] ], [ [ 1103, 1116 ], [ 1862, 1875 ] ], [ [ 1188, 1208 ] ] ]
"""GaussianProcessRegressionSklearn tests. Scientific Machine Learning Benchmark: A benchmark of regression models in chem- and materials informatics. """ import pytest import numpy as np skl = pytest.importorskip("sklearn") import smlb from smlb.learners.scikit_learn.gaussian_process_regression_sklearn import GaussianProcessRegressionSklearn def test_GaussianProcessRegressionSklearn_1(): """Simple examples.""" # linear function with linear kernel kernel = skl.gaussian_process.kernels.DotProduct(sigma_0=0, sigma_0_bounds="fixed") gpr = GaussianProcessRegressionSklearn(kernel=kernel, optimizer=None, rng=1) train_data = smlb.TabularData(data=np.array([[-1], [1]]), labels=np.array([-1, 1])) valid_data = smlb.TabularData(data=np.array([[-2], [-1], [0], [1], [2]])) preds = gpr.fit(train_data).apply(valid_data) mean, stddev = preds.mean, preds.stddev assert np.allclose(mean, [-2, -1, 0, 1, 2]) assert stddev[0] > stddev[1] > stddev[2] < stddev[3] < stddev[4] def test_GaussianProcessRegressionSklearn_2(): """All predictive distributions. Linear noise-free function, linear kernel + white noise kernel. The optimized noise level is expected to go to its lower bound. """ kernel = skl.gaussian_process.kernels.DotProduct( sigma_0=0, sigma_0_bounds="fixed" ) + skl.gaussian_process.kernels.WhiteKernel(noise_level=0.1, noise_level_bounds=(1e-5, 1e-5)) gpr = GaussianProcessRegressionSklearn(kernel=kernel, rng=1) n = 100 train_data = smlb.TabularData( data=np.ones(shape=(n, 1)) * 2, labels=np.ones(shape=n) * 3 ) valid_data = smlb.TabularData(data=train_data.samples()) preds = gpr.fit(train_data).apply(valid_data) assert preds.has_signal_part and preds.has_noise_part conf, noise = preds.signal_part, preds.noise_part assert np.allclose(conf.mean, train_data.labels()) assert np.allclose(conf.stddev, np.ones(n) * np.sqrt(1e-5), atol=1e-3) assert (preds.mean == conf.mean).all() assert np.allclose(preds.stddev, np.ones(n) * np.sqrt(np.square(conf.stddev) + 1e-5)) assert np.allclose(noise.mean, np.zeros(shape=n)) assert np.allclose(noise.stddev, np.sqrt(1e-5)) def test_GaussianProcessRegressionSklearn_3(): """All predictive distributions. Linear noisy function, linear kernel + white noise kernel. The optimized noise level is expected to go to its true value. """ kernel = skl.gaussian_process.kernels.DotProduct( sigma_0=0, sigma_0_bounds="fixed" ) + skl.gaussian_process.kernels.WhiteKernel(noise_level=1, noise_level_bounds=(1e-5, 1e5)) gpr = GaussianProcessRegressionSklearn(kernel=kernel, rng=1) n, nlsd = 100, 0.5 data = smlb.TabularData(data=np.ones(shape=(n, 1)) * 2, labels=np.ones(shape=n) * 3) data = smlb.LabelNoise(noise=smlb.NormalNoise(stddev=nlsd, rng=1)).fit(data).apply(data) preds = gpr.fit(data).apply(data) assert preds.has_signal_part and preds.has_noise_part conf, noise = preds.signal_part, preds.noise_part assert np.allclose(conf.mean, np.ones(n) * 3, atol=1e-1) assert np.allclose(conf.stddev, np.ones(n) * nlsd, atol=1e-1) assert (preds.mean == conf.mean).all() assert np.allclose(preds.stddev, np.sqrt(np.square(conf.stddev) + np.square(nlsd)), atol=1e-1) assert np.allclose(noise.mean, np.zeros(shape=n)) assert np.allclose(noise.stddev, nlsd, atol=1e-1)
[ [ [ 164, 170 ], [ 198, 204 ] ], [ [ 179, 190 ], [ 676, 678 ], [ 706, 708 ], [ 764, 766 ], [ 909, 911 ], [ 1567, 1569 ], [ 1601, 1603 ], [ 1864, 1866 ], [ 1919, 1921 ], [ 1944, 1946 ], [ 1957, 1959 ], [ 2038, 2040 ], [ 2064, 2066 ], [ 2077, 2079 ], [ 2085, 2087 ], [ 2129, 2131 ], [ 2153, 2155 ], [ 2183, 2185 ], [ 2209, 2211 ], [ 2763, 2765 ], [ 2797, 2799 ], [ 3075, 3077 ], [ 3098, 3100 ], [ 3136, 3138 ], [ 3161, 3163 ], [ 3246, 3248 ], [ 3272, 3274 ], [ 3280, 3282 ], [ 3305, 3307 ], [ 3346, 3348 ], [ 3370, 3372 ], [ 3400, 3402 ] ], [ [ 192, 195 ], [ 481, 484 ], [ 1260, 1263 ], [ 1351, 1354 ], [ 2463, 2466 ], [ 2554, 2557 ] ], [ [ 237, 241 ], [ 654, 658 ], [ 742, 746 ], [ 1536, 1540 ], [ 1645, 1649 ], [ 2741, 2745 ], [ 2830, 2834 ], [ 2852, 2856 ] ], [ [ 317, 349 ], [ 566, 598 ], [ 1452, 1484 ], [ 2652, 2684 ] ], [ [ 356, 395 ] ], [ [ 1021, 1060 ] ], [ [ 2230, 2269 ] ] ]
# Picking Numbers # Developer: Murillo Grubler # Link: https://www.hackerrank.com/challenges/picking-numbers/problem def picking_number(n, arr): max_combinations = 0 for i in range(n): combination = arr.count(arr[i]) + arr.count(arr[i] + 1) if combination > max_combinations: max_combinations = combination return max_combinations n = int(input().strip()) a = [int(a_temp) for a_temp in input().strip().split(' ')] print (picking_number(n, a))
[ [ [ 122, 136 ], [ 465, 479 ] ], [ [ 374, 375 ], [ 480, 481 ] ], [ [ 399, 400 ], [ 483, 484 ] ] ]
#!/usr/bin/env python3 import os import sys from vmaf.core.quality_runner import QualityRunner from vmaf.core.result_store import FileSystemResultStore from vmaf.routine import run_remove_results_for_dataset from vmaf.tools.misc import import_python_file __copyright__ = "Copyright 2016-2020, Netflix, Inc." __license__ = "BSD+Patent" def print_usage(): quality_runner_types = ['VMAF', 'PSNR', 'SSIM', 'MS_SSIM'] print("usage: " + os.path.basename(sys.argv[0]) + \ " quality_type dataset_filepath\n") print("quality_type:\n\t" + "\n\t".join(quality_runner_types) +"\n") def main(): if len(sys.argv) < 3: print_usage() return 2 try: quality_type = sys.argv[1] dataset_filepath = sys.argv[2] except ValueError: print_usage() return 2 try: dataset = import_python_file(dataset_filepath) except Exception as e: print("Error: " + str(e)) return 1 try: runner_class = QualityRunner.find_subclass(quality_type) except: print_usage() return 2 result_store = FileSystemResultStore() run_remove_results_for_dataset(result_store, dataset, runner_class) return 0 if __name__ == '__main__': ret = main() exit(ret)
[ [ [ 30, 32 ], [ 442, 444 ] ], [ [ 40, 43 ], [ 459, 462 ], [ 620, 623 ], [ 707, 710 ], [ 746, 749 ] ], [ [ 81, 94 ], [ 996, 1009 ] ], [ [ 130, 151 ], [ 1109, 1130 ] ], [ [ 177, 207 ], [ 1138, 1168 ] ], [ [ 236, 254 ], [ 848, 866 ] ], [ [ 256, 269 ] ], [ [ 309, 320 ] ], [ [ 342, 353 ], [ 643, 654 ], [ 789, 800 ], [ 1058, 1069 ] ], [ [ 601, 605 ], [ 1259, 1263 ] ], [ [ 1253, 1256 ], [ 1275, 1278 ] ] ]
""" Dataframe functions """ import logging import os from tempfile import mkstemp import pandas as pd from box import Box # pylint: disable=too-many-arguments logger = logging.getLogger(__name__) # pylint: disable=C0103 def pd_export( dataframe: pd.DataFrame, export_type: str, df_name: str, temp_name: bool = False, df_name_prefix: str = "", df_name_suffix: str = "", dir_name: str = ".", config_box: Box = None, index=True, header=True, ) -> str: """ Exports dataframe to file formats using various options Return a filepaths for the exported Dataframe """ if temp_name and dir_name != "": filepath = mkstemp(suffix=df_name_suffix, prefix=df_name_prefix, dir=dir_name)[ 1 ] elif config_box and dir_name == "": filepath = os.path.join( config_box.extracttempdir, f"{df_name_prefix}{df_name}{df_name_suffix}.{export_type}", ) else: filename = f"{df_name_prefix}{df_name}{df_name_suffix}.{export_type}" filepath = os.path.join(dir_name, filename) logger.info("Creating %s file %s from dataframe.", export_type, filepath) if export_type == "parquet": dataframe.to_parquet(path=filepath, index=index) elif export_type == "csv": dataframe.to_csv(filepath, index=index, header=header) return filepath def pd_colupdate(dataframe: pd.DataFrame, coldict: dict) -> pd.DataFrame: """ Rename and filter Pandas Dataframe columns using python dictionary. Column names provided in coldict follow the same format as expected by pd.DataFrame.rename(columns=dict). For example: {"current":"new", "current2":"new2"} Columns in returned dataframe are filtered by those provided to be renamed. Returns a modified pd.Dataframe copy """ logger.info("Renaming and filtering dataframe columns using coldict key:values.") # Remap column names dataframe = dataframe.rename(columns=coldict) # Filter columns based on the new names dataframe = dataframe[[val for key, val in coldict.items()]].copy() return dataframe
[ [ [ 35, 42 ], [ 171, 178 ] ], [ [ 50, 52 ], [ 832, 834 ], [ 1074, 1076 ] ], [ [ 74, 81 ], [ 679, 686 ] ], [ [ 90, 102 ], [ 256, 258 ], [ 1454, 1456 ], [ 1422, 1424 ] ], [ [ 119, 122 ], [ 440, 443 ] ], [ [ 162, 168 ], [ 1112, 1118 ], [ 1849, 1855 ] ], [ [ 230, 239 ] ], [ [ 1398, 1410 ] ] ]
from .MidiInfo import *
[ [ [ 22, 23 ] ] ]
#!/usr/bin/env python3 import argparse import json import urllib.request if __name__ == '__main__': parser = argparse.ArgumentParser () parser.add_argument ('-v', '--verbose', help = 'Enable Verbose Mode', action = 'store_true') parser.add_argument ('-ip', help = 'IP Address to Test') args = parser.parse_args () if args.ip: location_url = 'http://ipinfo.io/{:}/json'.format(args.ip) else: location_url = 'http://ipinfo.io/json' if args.verbose: print ('Retrieving location information ...') location_facts = json.loads ((urllib.request.urlopen (location_url).read ()) .decode ("utf-8")) print ('This IP is in {:}, {:}, {:}.'.format (location_facts ['city'], location_facts ['region'], location_facts ['country'])) if args.verbose: print ('All done.')
[ [ [ 31, 39 ], [ 114, 122 ] ], [ [ 47, 51 ], [ 544, 548 ] ], [ [ 59, 73 ], [ 557, 563 ] ], [ [ 105, 111 ], [ 143, 149 ], [ 238, 244 ], [ 304, 310 ] ], [ [ 297, 301 ], [ 331, 335 ], [ 394, 398 ], [ 460, 464 ], [ 910, 914 ] ], [ [ 344, 356 ], [ 581, 593 ] ], [ [ 415, 427 ], [ 581, 593 ] ], [ [ 527, 541 ], [ 727, 741 ], [ 800, 814 ], [ 875, 889 ] ] ]
import os import json from pathlib import Path import jimi # Initialize dbCollectionName = "model" class _model(jimi.db._document): name = str() className = str() classType = str() location = str() hidden = bool() manifest = dict() _dbCollection = jimi.db.db[dbCollectionName] def new(self,name,className,classType,location,hidden): self.name = name self.className = className self.classType = classType self.location = location self.hidden = hidden self.acl = { "ids":[ { "accessID":"0","delete": True,"read": True,"write": True } ] } return super(_model, self).new() def classObject(self): # ClassID wont exist if the className is model try: mod = __import__("{0}".format(self.location), fromlist=["{0}".format(self.className)]) except ModuleNotFoundError: jimi.logging.debug("Error unable to find class='{0}', className='{1}', classType='{2}', location='{3}'".format(self.classID,self.className,self.classType,self.location),-1) if self.classType == "_action": return jimi.action._action elif self.classType == "_trigger": return jimi.trigger._trigger else: return jimi.db._document class_ = getattr(mod, "{0}".format(self.className)) # Injecting manifest from model into the loaded class - this is only held in memory and never committed to the database class_.manifest__ = self.manifest return class_ def registerModel(name,className,classType,location,hidden=False): # Checking that a model with the same name does not already exist ( this is due to identification within GUI, future changes could be made to allow this?? ) results = _model(False).query(query={ "name" : name })["results"] if len(results) == 0: return _model().new(name,className,classType,location,hidden) else: if jimi.logging.debugEnabled: jimi.logging.debug("Register model failed as it already exists modelName='{0}', className='{1}', classType='{2}', location='{3}'".format(name,className,classType,location),4) def deregisterModel(name,className,classType,location): loadModels = _model(False).query(query={ "name" : name})["results"] if loadModels: loadModels = loadModels[0] # This really does need to clean up the models objects that are left #from core.models import trigger, action #trigger._action().api_delete(query={"classID" : ObjectId(loadModels["_id"]) }) #action._action().api_delete(query={"classID" : ObjectId(loadModels["_id"]) }) results = _model().api_delete(query={ "name" : name, "classType" : classType }) if results["result"]: return True if jimi.logging.debugEnabled: jimi.logging.debug("deregister model failed modelName='{0}', className='{1}', classType='{2}', location='{3}'".format(name,className,classType,location),4) def getClassID(name): loadModels = _model(False).query(query={ "name" : name})["results"] if loadModels: loadModels = loadModels[0] return loadModels["_id"] return None def loadModel(modelName): results = _model(False).query(query={ "name" : modelName })["results"] if len(results) == 1: results = results[0] _class = _model().get(results["_id"]) return _class return None def getClassObject(classID,sessionData): return _model().getAsClass(id=classID) ######### --------- API --------- ######### if jimi.api.webServer: if not jimi.api.webServer.got_first_request: if jimi.api.webServer.name == "jimi_web": @jimi.api.webServer.route(jimi.api.base+"models/", methods=["GET"]) def getModels(): result = [] jimi.api.g.sessionData models = _model(False).query(jimi.api.g.sessionData,query={ "_id" : { "$exists": True } })["results"] for model in models: result.append(model["name"]) return { "models" : result }, 200 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/", methods=["GET"]) def getModel(modelName): class_ = loadModel(modelName).classObject() if class_: results = _model(False).query(jimi.api.g.sessionData,query={ "className" : class_.__name__ })["results"] if len(results) == 1: results = results[0] return class_().query(jimi.api.g.sessionData,query={ "classID" : results["_id"] },fields=["_id","name","classType"]), 200 return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/extra/", methods=["GET"]) def getModelExtra(modelName): class_ = loadModel(modelName).classObject() if class_: results = _model(False).query(jimi.api.g.sessionData,query={ "className" : class_.__name__ })["results"] if len(results) == 1: results = results[0] results = class_(False).query(jimi.api.g.sessionData,query={ "classID" : results["_id"] },fields=["_id","name","classType","lastUpdateTime"])["results"] ids = [ x["_id"] for x in results ] # Possible for ID trigger and action to be the same ( although unlikey but keep in mind this could be an issue in future ) ConductsCache = jimi.conduct._conduct().query(query={ "$or" : [ { "flow.triggerID" : { "$in" : ids } }, { "flow.actionID" : { "$in" : ids } } ] },fields=["_id","name","flow"])["results"] for result in results: usedIn = [] for ConductCache in ConductsCache: for flow in ConductCache["flow"]: if "triggerID" in flow: if flow["triggerID"] == result["_id"]: usedIn.append({ "conductID" : ConductCache["_id"], "conductName" : ConductCache["name"] }) if "actionID" in flow: if flow["actionID"] == result["_id"]: usedIn.append({ "conductID" : ConductCache["_id"], "conductName" : ConductCache["name"] }) result["whereUsed"] = usedIn return { "results" : results }, 200 return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/all/", methods=["GET"]) def getModelAndChildren(modelName): class_ = loadModel(modelName).classObject() classIDs = [] if class_: results = _model(False).query(jimi.api.g.sessionData,query={ "className" : class_.__name__ })["results"] if len(results) == 1: results = results[0] classIDs.append(results["_id"]) results = _model(False).query(jimi.api.g.sessionData,query={ "classType" : results["className"] })["results"] for result in results: classIDs.append(result["_id"]) result = [] for classID in classIDs: for foundObject in class_(False).query(jimi.api.g.sessionData,query={ "classID" : classID })["results"]: result.append(foundObject) return { "results" : result}, 200 else: return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/schema/", methods=["GET"]) def getModelSchema(modelName): class_ = loadModel(modelName) if class_: access = jimi.db.ACLAccess(jimi.api.g.sessionData,class_.acl,"read") if access: return class_.classObject()(False).api_getSchema(), 200 else: return {}, 403 else: return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/<objectID>/", methods=["GET"]) def getModelObject(modelName,objectID): class_ = loadModel(modelName).classObject() if class_: classObject = class_(False).getAsClass(jimi.api.g.sessionData,id=objectID) if classObject: classObject = classObject[0] members = jimi.helpers.classToJson(classObject) return members, 200 else: return {}, 404 else: return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/<objectID>/", methods=["DELETE"]) def deleteModelObject(modelName,objectID): class_ = loadModel(modelName) if class_: _class = class_.classObject()(False).getAsClass(jimi.api.g.sessionData,id=objectID) if len(_class) == 1: _class = _class[0] access = jimi.db.ACLAccess(jimi.api.g.sessionData,_class.acl,"delete") if access: if "_id" in jimi.api.g.sessionData: jimi.audit._audit().add("model","delete",{ "_id" : jimi.api.g.sessionData["_id"], "user" : jimi.api.g.sessionData["user"], "modelName" : modelName, "objectID" : objectID }) else: jimi.audit._audit().add("model","delete",{ "user" : "system", "objectID" : objectID }) result = class_.classObject()(False).api_delete(id=objectID) if result["result"]: return result, 200 else: return {}, 403 return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/", methods=["PUT"]) def newModelObject(modelName): class_ = loadModel(modelName) if class_: access = jimi.db.ACLAccess(jimi.api.g.sessionData,class_.acl,"read") if access: class_ = class_.classObject()(False) if jimi.api.g.sessionData: class_.acl = { "ids" : [ { "accessID" : jimi.api.g.sessionData["primaryGroup"], "read" : True, "write" : True, "delete" : True } ] } newObjectID = super(type(class_), class_).new().inserted_id if "_id" in jimi.api.g.sessionData: jimi.audit._audit().add("model","create",{ "_id" : jimi.api.g.sessionData["_id"], "user" : jimi.api.g.sessionData["user"], "modelName" : modelName, "objectID" : str(newObjectID) }) else: jimi.audit._audit().add("model","create",{ "user" : "system", "objectID" : str(newObjectID) }) return { "_id" : str(newObjectID) }, 200 return {}, 404 @jimi.api.webServer.route(jimi.api.base+"models/<modelName>/<objectID>/", methods=["POST"]) def updateModelObject(modelName,objectID): class_ = loadModel(modelName) if class_: data = json.loads(jimi.api.request.data) updateItemsList = [] changeLog = {} _class = class_.classObject()(False).getAsClass(jimi.api.g.sessionData,id=objectID) if len(_class) == 1: _class = _class[0] # Builds list of permitted ACL access = jimi.db.ACLAccess(jimi.api.g.sessionData,_class.acl,"write") adminBypass = False if "admin" in jimi.api.g.sessionData: if jimi.api.g.sessionData["admin"]: adminBypass = True if access: for dataKey, dataValue in data.items(): fieldAccessPermitted = True # Checking if sessionData is permitted field level access if _class.acl != {} and not adminBypass: fieldAccessPermitted = jimi.db.fieldACLAccess(jimi.api.g.sessionData,_class.acl,dataKey,"write") if fieldAccessPermitted: # _id is a protected mongodb object and cant be updated if dataKey != "_id": if hasattr(_class, dataKey): changeLog[dataKey] = {} changeLog[dataKey]["currentValue"] = getattr(_class, dataKey) if type(getattr(_class, dataKey)) is str: if _class.setAttribute(dataKey, str(dataValue),sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) elif type(getattr(_class, dataKey)) is int: try: if _class.setAttribute(dataKey, int(dataValue),sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) except ValueError: if _class.setAttribute(dataKey, 0,sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) elif type(getattr(_class, dataKey)) is float: try: if _class.setAttribute(dataKey, float(dataValue),sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) except ValueError: if _class.setAttribute(dataKey, 0,sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) elif type(getattr(_class, dataKey)) is bool: # Convert string object to bool if type(dataValue) is str: if dataValue.lower() == "true": dataValue = True else: dataValue = False if _class.setAttribute(dataKey, dataValue,sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) elif type(getattr(_class, dataKey)) is dict or type(getattr(_class, dataKey)) is list: if dataValue: if _class.setAttribute(dataKey, json.loads(dataValue),sessionData=jimi.api.g.sessionData): updateItemsList.append(dataKey) changeLog[dataKey]["newValue"] = getattr(_class, dataKey) # Commit back to database if updateItemsList: # Adding audit record if "_id" in jimi.api.g.sessionData: jimi.audit._audit().add("model","update",{ "_id" : jimi.api.g.sessionData["_id"], "user" : jimi.api.g.sessionData["user"], "objects" : changeLog, "modelName" : modelName, "objectID" : objectID }) else: jimi.audit._audit().add("model","update",{ "user" : "system", "objects" : changeLog, "modelName" : modelName, "objectID" : objectID }) _class.update(updateItemsList,sessionData=jimi.api.g.sessionData,revisioning=True) return {}, 200 else: return {}, 403 return {}, 404
[ [ [ 7, 9 ] ], [ [ 17, 21 ], [ 11808, 11812 ], [ 16707, 16711 ] ], [ [ 42, 46 ] ], [ [ 55, 59 ], [ 115, 119 ], [ 280, 284 ], [ 3607, 3611 ], [ 3638, 3642 ], [ 3687, 3691 ], [ 3739, 3743 ], [ 3764, 3768 ], [ 4170, 4174 ], [ 4195, 4199 ], [ 4776, 4780 ], [ 4801, 4805 ], [ 6723, 6727 ], [ 6748, 6752 ], [ 7887, 7891 ], [ 7912, 7916 ], [ 8425, 8429 ], [ 8450, 8454 ], [ 9090, 9094 ], [ 9115, 9119 ], [ 10358, 10362 ], [ 10383, 10387 ], [ 11562, 11566 ], [ 11587, 11591 ], [ 905, 909 ], [ 1145, 1149 ], [ 1235, 1239 ], [ 1298, 1302 ], [ 1997, 2001 ], [ 2036, 2040 ], [ 2844, 2848 ], [ 2879, 2883 ], [ 3879, 3883 ], [ 3947, 3951 ], [ 4423, 4427 ], [ 4631, 4635 ], [ 5040, 5044 ], [ 5256, 5260 ], [ 5626, 5630 ], [ 7021, 7025 ], [ 7293, 7297 ], [ 7632, 7636 ], [ 8118, 8122 ], [ 8136, 8140 ], [ 8713, 8717 ], [ 8872, 8876 ], [ 9379, 9383 ], [ 9532, 9536 ], [ 9550, 9554 ], [ 9669, 9673 ], [ 9725, 9729 ], [ 9776, 9780 ], [ 9816, 9820 ], [ 9964, 9968 ], [ 10582, 10586 ], [ 10600, 10604 ], [ 10761, 10765 ], [ 10853, 10857 ], [ 11066, 11070 ], [ 11118, 11122 ], [ 11169, 11173 ], [ 11209, 11213 ], [ 11357, 11361 ], [ 11819, 11823 ], [ 11986, 11990 ], [ 12194, 12198 ], [ 12212, 12216 ], [ 12337, 12341 ], [ 12392, 12396 ], [ 12894, 12898 ], [ 12917, 12921 ], [ 13611, 13615 ], [ 14082, 14086 ], [ 14474, 14478 ], [ 14957, 14961 ], [ 15349, 15353 ], [ 16211, 16215 ], [ 16741, 16745 ], [ 17168, 17172 ], [ 17228, 17232 ], [ 17279, 17283 ], [ 17319, 17323 ], [ 17498, 17502 ], [ 17707, 17711 ] ], [ [ 74, 90 ], [ 291, 307 ] ], [ [ 108, 114 ], [ 642, 648 ], [ 1824, 1830 ], [ 1921, 1927 ], [ 2285, 2291 ], [ 2713, 2719 ], [ 3075, 3081 ], [ 3274, 3280 ], [ 3407, 3413 ], [ 3527, 3533 ], [ 3927, 3933 ], [ 4403, 4409 ], [ 5020, 5026 ], [ 7001, 7007 ], [ 7273, 7279 ] ], [ [ 1586, 1599 ] ], [ [ 2216, 2231 ] ], [ [ 3040, 3050 ] ], [ [ 3238, 3247 ], [ 4311, 4320 ], [ 4928, 4937 ], [ 6879, 6888 ], [ 8041, 8050 ], [ 8592, 8601 ], [ 9263, 9272 ], [ 10505, 10514 ], [ 11733, 11742 ] ], [ [ 3479, 3493 ] ], [ [ 3822, 3831 ] ], [ [ 4265, 4273 ] ], [ [ 4877, 4890 ] ], [ [ 6822, 6841 ] ], [ [ 7989, 8003 ] ], [ [ 8531, 8545 ] ], [ [ 9199, 9216 ] ], [ [ 10453, 10467 ] ], [ [ 11669, 11686 ] ] ]