task_url
stringlengths 30
116
| task_name
stringlengths 2
86
| task_description
stringlengths 0
14.4k
| language_url
stringlengths 2
53
| language_name
stringlengths 1
52
| code
stringlengths 0
61.9k
|
---|---|---|---|---|---|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #FutureBasic | FutureBasic |
window 1, @"Integer Arithmetic", ( 0, 0, 400, 300 )
NSInteger a = 25
NSInteger b = 53
print "addition "a" + "b" = " (a + b)
print "subtraction "a" - "b" = " (a - b)
print "multiplication "a" * "b" = " (a * b)
print "division "a" / "b" = " (a / b)
printf @"float division %ld / %ld = %f", a, b, (float)a / (float)b
print "modulo "a" % "b" = " (a mod b)
print "power "a" ^ "b" = " (a ^ b)
HandleEvents
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Gambas | Gambas | Public Sub Main()
Dim a, b As String
Dim c, d As Integer
Print "Enter two integer numbers, separated by space:"
Input a, b
c = CInt(a)
d = CInt(b)
Print "Sum: " & (c + d)
Print "Difference:" & (c - d)
Print "Product: " & (c * d)
Print "Integer: " & (c Div d)
Print "Remainder: " & (c Mod d)
Print "Exponentiation: " & (c ^ d)
End
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #GAP | GAP | run := function()
local a, b, f;
f := InputTextUser();
Print("a =\n");
a := Int(Chomp(ReadLine(f)));
Print("b =\n");
b := Int(Chomp(ReadLine(f)));
Display(Concatenation(String(a), " + ", String(b), " = ", String(a + b)));
Display(Concatenation(String(a), " - ", String(b), " = ", String(a - b)));
Display(Concatenation(String(a), " * ", String(b), " = ", String(a * b)));
Display(Concatenation(String(a), " / ", String(b), " = ", String(QuoInt(a, b)))); # toward 0
Display(Concatenation(String(a), " mod ", String(b), " = ", String(RemInt(a, b)))); # nonnegative
Display(Concatenation(String(a), " ^ ", String(b), " = ", String(a ^ b)));
CloseStream(f);
end; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Genie | Genie | [indent=4]
/*
Arithmethic/Integer, in Genie
valac arithmethic-integer.gs
*/
init:int
a:int = 0
b:int = 0
if args.length > 2 do b = int.parse(args[2])
if args.length > 1 do a = int.parse(args[1])
print @"a+b: $a plus $b is $(a+b)"
print @"a-b: $a minus $b is $(a-b)"
print @"a*b: $a times $b is $(a*b)"
print @"a/b: $a by $b quotient is $(a/b) (rounded mode is TRUNCATION)"
print @"a%b: $a by $b remainder is $(a%b) (sign matches first operand)"
print "\nGenie does not include a raise to power operator"
return 0 |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #GEORGE | GEORGE | R (m) ;
R (n) ;
m n + P;
m n - P;
m n × P;
m n div P;
m n rem P; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Go | Go | package main
import "fmt"
func main() {
var a, b int
fmt.Print("enter two integers: ")
fmt.Scanln(&a, &b)
fmt.Printf("%d + %d = %d\n", a, b, a+b)
fmt.Printf("%d - %d = %d\n", a, b, a-b)
fmt.Printf("%d * %d = %d\n", a, b, a*b)
fmt.Printf("%d / %d = %d\n", a, b, a/b) // truncates towards 0
fmt.Printf("%d %% %d = %d\n", a, b, a%b) // same sign as first operand
// no exponentiation operator
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Groovy | Groovy | def arithmetic = { a, b ->
println """
a + b = ${a} + ${b} = ${a + b}
a - b = ${a} - ${b} = ${a - b}
a * b = ${a} * ${b} = ${a * b}
a / b = ${a} / ${b} = ${a / b} !!! Converts to floating point!
(int)(a / b) = (int)(${a} / ${b}) = ${(int)(a / b)} !!! Truncates downward after the fact
a.intdiv(b) = ${a}.intdiv(${b}) = ${a.intdiv(b)} !!! Behaves as if truncating downward, actual implementation varies
a % b = ${a} % ${b} = ${a % b}
Exponentiation is also a base arithmetic operation in Groovy, so:
a ** b = ${a} ** ${b} = ${a ** b}
"""
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Harbour | Harbour | procedure Test( a, b )
? "a+b", a + b
? "a-b", a - b
? "a*b", a * b
// The quotient isn't integer, so we use the Int() function, which truncates it downward.
? "a/b", Int( a / b )
// Remainder:
? "a%b", a % b
// Exponentiation is also a base arithmetic operation
? "a**b", a ** b
return |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Haskell | Haskell | main = do
a <- readLn :: IO Integer
b <- readLn :: IO Integer
putStrLn $ "a + b = " ++ show (a + b)
putStrLn $ "a - b = " ++ show (a - b)
putStrLn $ "a * b = " ++ show (a * b)
putStrLn $ "a to the power of b = " ++ show (a ** b)
putStrLn $ "a to the power of b = " ++ show (a ^ b)
putStrLn $ "a to the power of b = " ++ show (a ^^ b)
putStrLn $ "a `div` b = " ++ show (a `div` b) -- truncates towards negative infinity
putStrLn $ "a `mod` b = " ++ show (a `mod` b) -- same sign as second operand
putStrLn $ "a `divMod` b = " ++ show (a `divMod` b)
putStrLn $ "a `quot` b = " ++ show (a `quot` b) -- truncates towards 0
putStrLn $ "a `rem` b = " ++ show (a `rem` b) -- same sign as first operand
putStrLn $ "a `quotRem` b = " ++ show (a `quotRem` b) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Haxe | Haxe | class BasicIntegerArithmetic {
public static function main() {
var args =Sys.args();
if (args.length < 2) return;
var a = Std.parseFloat(args[0]);
var b = Std.parseFloat(args[1]);
trace("a+b = " + (a+b));
trace("a-b = " + (a-b));
trace("a*b = " + (a*b));
trace("a/b = " + (a/b));
trace("a%b = " + (a%b));
}
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #HicEst | HicEst | DLG(Edit=A, Edit=B, TItle='Enter numeric A and B')
WRITE(Name) A, B
WRITE() ' A + B = ', A + B
WRITE() ' A - B = ', A - B
WRITE() ' A * B = ', A * B
WRITE() ' A / B = ', A / B ! no truncation
WRITE() 'truncate A / B = ', INT(A / B) ! truncates towards 0
WRITE() 'round next A / B = ', NINT(A / B) ! truncates towards next integer
WRITE() 'round down A / B = ', FLOOR(A / B) ! truncates towards minus infinity
WRITE() 'round up A / B = ', CEILING(A / B) ! truncates towards plus infinity
WRITE() 'remainder of A / B = ', MOD(A, B) ! same sign as A
WRITE() 'A to the power of B = ', A ^ B
WRITE() 'A to the power of B = ', A ** B |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #HolyC | HolyC | I64 *a, *b;
a = Str2I64(GetStr("Enter your first number: "));
b = Str2I64(GetStr("Enter your second number: "));
if (b == 0)
Print("Error: The second number must not be zero.\n");
else {
Print("a + b = %d\n", a + b);
Print("a - b = %d\n", a - b);
Print("a * b = %d\n", a * b);
Print("a / b = %d\n", a / b); /* rounds down */
Print("a % b = %d\n", a % b); /* same sign as first operand */
Print("a ` b = %d\n", a ` b);
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #i | i | main
a $= integer(in(' ')); ignore
b $= integer(in('\n')); ignore
print("Sum:" , a + b)
print("Difference:", a - b)
print("Product:" , a * b)
print("Quotient:" , a / b) // rounds towards zero
print("Modulus:" , a % b) // same sign as first operand
print("Exponent:" , a ^ b)
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Icon_and_Unicon | Icon and Unicon | procedure main()
writes("Input 1st integer a := ")
a := integer(read())
writes("Input 2nd integer b := ")
b := integer(read())
write(" a + b = ",a+b)
write(" a - b = ",a-b)
write(" a * b = ",a*b)
write(" a / b = ",a/b, " rounds toward 0")
write(" a % b = ",a%b, " remainder sign matches a")
write(" a ^ b = ",a^b)
end |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Ada | Ada | with Ada.Text_IO; use Ada.Text_IO;
with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
procedure Main is
procedure divisor_count_and_sum
(n : Positive; divisor_count : out Natural; divisor_sum : out Natural)
is
I : Positive := 1;
J : Natural;
begin
divisor_count := 0;
divisor_sum := 0;
loop
J := n / I;
exit when J < I;
if I * J = n then
divisor_sum := divisor_sum + I;
divisor_count := divisor_count + 1;
if I /= J then
divisor_sum := divisor_sum + J;
divisor_count := divisor_count + 1;
end if;
end if;
I := I + 1;
end loop;
end divisor_count_and_sum;
arithmetic_count : Natural := 0;
composite_count : Natural := 0;
div_count : Natural;
div_sum : Natural;
mean : Natural;
n : Positive := 1;
begin
while arithmetic_count <= 1_000_000 loop
divisor_count_and_sum (n, div_count, div_sum);
mean := div_sum / div_count;
if mean * div_count = div_sum then
arithmetic_count := arithmetic_count + 1;
if div_count > 2 then
composite_count := composite_count + 1;
end if;
if arithmetic_count <= 100 then
Put (Item => n, Width => 4);
if arithmetic_count mod 10 = 0 then
New_Line;
end if;
end if;
if arithmetic_count = 1_000 or else arithmetic_count = 10_000
or else arithmetic_count = 100_000
or else arithmetic_count = 1_000_000
then
New_Line;
Put (Item => arithmetic_count, Width => 1);
Put_Line ("th arithmetic number is" & n'Image);
Put_Line
("Number of composite arithmetic numbers <=" & n'Image & ":" &
composite_count'Image);
end if;
end if;
n := n + 1;
end loop;
end Main; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Inform_7 | Inform 7 | Enter Two Numbers is a room.
Numerically entering is an action applying to one number. Understand "[number]" as numerically entering.
The first number is a number that varies.
After numerically entering for the first time:
now the first number is the number understood.
After numerically entering for the second time:
let A be the first number;
let B be the number understood;
say "[A] + [B] = [A + B]."; [operator syntax]
say "[A] - [B] = [A minus B]."; [English syntax]
let P be given by P = A * B where P is a number; [inline equation]
say "[A] * [B] = [P].";
let Q be given by the Division Formula; [named equation]
say "[A] / [B] = [Q].";
say "[A] mod [B] = [remainder after dividing A by B].";
end the story.
Equation - Division Formula
Q = A / B
where Q is a number, A is a number, and B is a number. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #J | J | calc =: + , - , * , <.@% , |~ , ^ |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #ALGOL_68 | ALGOL 68 | BEGIN # find arithmetic numbers - numbers whose average divisor is an integer #
# i.e. sum of divisors MOD count of divisors = 0 #
INT max number = 500 000; # maximum number we will consider #
[ 1 : max number ]INT d sum;
[ 1 : max number ]INT d count;
# all positive integers are divisible by 1 and so have at least 1 divisor #
FOR i TO max number DO d sum[ i ] := d count[ i ] := 1 OD;
# construct the divisor sums and counts #
FOR i FROM 2 TO max number OVER 2 DO
FOR j FROM i BY i TO max number DO
d count[ j ] +:= 1;
d sum[ j ] +:= i
OD
OD;
# count arithmetic numbers, and show the first 100, the 1 000th, 10 000th #
# and the 100 000th and show how many are composite #
INT max arithmetic = 100 000;
INT a count := 0;
INT c count := 0;
FOR i TO max number WHILE a count < max arithmetic DO
IF d sum[ i ] MOD d count[ i ] = 0 THEN
# have an arithmetic number #
IF d count[ i ] > 2 THEN
# the number is composite #
c count +:= 1
FI;
a count +:= 1;
IF a count <= 100 THEN
print( ( " ", whole( i, -3 ) ) );
IF a count MOD 10 = 0 THEN print( ( newline ) ) FI
ELIF a count = 1 000
OR a count = 10 000
OR a count = 100 000
THEN
print( ( newline ) );
print( ( "The ", whole( a count, 0 )
, "th arithmetic number is: ", whole( i, 0 )
, newline
)
);
print( ( " There are ", whole( c count, 0 )
, " composite arithmetic numbers up to ", whole( i, 0 )
, newline
)
)
FI
FI
OD
END |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Java | Java | import java.util.Scanner;
public class IntegerArithmetic {
public static void main(String[] args) {
// Get the 2 numbers from command line arguments
Scanner sc = new Scanner(System.in);
int a = sc.nextInt();
int b = sc.nextInt();
int sum = a + b; // The result of adding 'a' and 'b' (Note: integer addition is discouraged in print statements due to confusion with string concatenation)
int difference = a - b; // The result of subtracting 'b' from 'a'
int product = a * b; // The result of multiplying 'a' and 'b'
int division = a / b; // The result of dividing 'a' by 'b' (Note: 'division' does not contain the fractional result)
int remainder = a % b; // The remainder of dividing 'a' by 'b'
System.out.println("a + b = " + sum);
System.out.println("a - b = " + difference);
System.out.println("a * b = " + product);
System.out.println("quotient of a / b = " + division); // truncates towards 0
System.out.println("remainder of a / b = " + remainder); // same sign as first operand
}
} |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #BASIC | BASIC | LET n = 1
DO
LET div = 1
LET divcnt = 0
LET sum = 0
DO
LET quot = n/div
IF quot < div THEN EXIT DO
IF REMAINDER(n, div) = 0 THEN
IF quot = div THEN !n IS a square
LET sum = sum+quot
LET divcnt = divcnt+1
EXIT DO
ELSE
LET sum = sum+div+quot
LET divcnt = divcnt+2
END IF
END IF
LET div = div+1
LOOP
IF REMAINDER(sum, divcnt) = 0 THEN !n IS arithmetic
LET arithcnt = arithcnt+1
IF arithcnt <= 100 THEN
PRINT USING "####": n;
IF REMAINDER(arithcnt, 20) = 0 THEN PRINT
END IF
IF divcnt > 2 THEN LET compcnt = compcnt+1
SELECT CASE arithcnt
CASE 1000
PRINT
PRINT USING "The #######th arithmetic number is #####,### up to which ###,### are composite.": arithcnt, n, compcnt
CASE 10000, 100000, 1000000
PRINT USING "The #######th arithmetic number is #####,### up to which ###,### are composite.": arithcnt, n, compcnt
CASE ELSE
REM
END SELECT
END IF
LET n = n+1
LOOP UNTIL arithcnt >= 1000000
END |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #JavaScript | JavaScript | var a = parseInt(get_input("Enter an integer"), 10);
var b = parseInt(get_input("Enter an integer"), 10);
WScript.Echo("a = " + a);
WScript.Echo("b = " + b);
WScript.Echo("sum: a + b = " + (a + b));
WScript.Echo("difference: a - b = " + (a - b));
WScript.Echo("product: a * b = " + (a * b));
WScript.Echo("quotient: a / b = " + (a / b | 0)); // "| 0" casts it to an integer
WScript.Echo("remainder: a % b = " + (a % b));
function get_input(prompt) {
output(prompt);
try {
return WScript.StdIn.readLine();
} catch(e) {
return readline();
}
}
function output(prompt) {
try {
WScript.Echo(prompt);
} catch(e) {
print(prompt);
}
} |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #C | C | #include <stdio.h>
void divisor_count_and_sum(unsigned int n, unsigned int* pcount,
unsigned int* psum) {
unsigned int divisor_count = 1;
unsigned int divisor_sum = 1;
unsigned int power = 2;
for (; (n & 1) == 0; power <<= 1, n >>= 1) {
++divisor_count;
divisor_sum += power;
}
for (unsigned int p = 3; p * p <= n; p += 2) {
unsigned int count = 1, sum = 1;
for (power = p; n % p == 0; power *= p, n /= p) {
++count;
sum += power;
}
divisor_count *= count;
divisor_sum *= sum;
}
if (n > 1) {
divisor_count *= 2;
divisor_sum *= n + 1;
}
*pcount = divisor_count;
*psum = divisor_sum;
}
int main() {
unsigned int arithmetic_count = 0;
unsigned int composite_count = 0;
for (unsigned int n = 1; arithmetic_count <= 1000000; ++n) {
unsigned int divisor_count;
unsigned int divisor_sum;
divisor_count_and_sum(n, &divisor_count, &divisor_sum);
if (divisor_sum % divisor_count != 0)
continue;
++arithmetic_count;
if (divisor_count > 2)
++composite_count;
if (arithmetic_count <= 100) {
printf("%3u ", n);
if (arithmetic_count % 10 == 0)
printf("\n");
}
if (arithmetic_count == 1000 || arithmetic_count == 10000 ||
arithmetic_count == 100000 || arithmetic_count == 1000000) {
printf("\n%uth arithmetic number is %u\n", arithmetic_count, n);
printf("Number of composite arithmetic numbers <= %u: %u\n", n,
composite_count);
}
}
return 0;
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #jq | jq | # Lines which do not have two integers are skipped:
def arithmetic:
split(" ") | select(length > 0) | map(tonumber)
| if length > 1 then
.[0] as $a | .[1] as $b
| "For a = \($a) and b = \($b):\n" +
"a + b = \($a + $b)\n" +
"a - b = \($a - $b)\n" +
"a * b = \($a * $b)\n" +
"a/b|floor = \($a / $b | floor)\n" +
"a % b = \($a % $b)\n" +
"a | exp = \($a | exp)\n"
else empty
end ;
arithmetic
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Jsish | Jsish | "use strict";
/* Arthimetic/Integer, in Jsish */
var line = console.input();
var nums = line.match(/^\s*([+-]?[0-9]+)\s+([+-]?[0-9]+)\s*/);
var a = Number(nums[1]);
var b = Number(nums[2]);
puts("A is ", a, ", B is ", b);
puts("Sum A + B is ", a + b);
puts("Difference A - B is ", a - b);
puts("Product A * B is ", a * b);
puts("Integer quotient A / B is ", a / b | 0, " truncates toward 0");
puts("Remainder A % B is ", a % b, " sign follows first operand");
puts("Exponentiation A to the power B is ", Math.pow(a, b));
/*
=!INPUTSTART!=
7 4
=!INPUTEND!=
*/
/*
=!EXPECTSTART!=
A is 7 , B is 4
Sum A + B is 11
Difference A - B is 3
Product A * B is 28
Integer quotient A / B is 1 truncates toward 0
Remainder A % B is 3 sign follows first operand
Exponentiation A to the power B is 2401
=!EXPECTEND!=
*/ |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #C.2B.2B | C++ | #include <cstdio>
void divisor_count_and_sum(unsigned int n,
unsigned int& divisor_count,
unsigned int& divisor_sum)
{
divisor_count = 0;
divisor_sum = 0;
for (unsigned int i = 1;; i++)
{
unsigned int j = n / i;
if (j < i)
break;
if (i * j != n)
continue;
divisor_sum += i;
divisor_count += 1;
if (i != j)
{
divisor_sum += j;
divisor_count += 1;
}
}
}
int main()
{
unsigned int arithmetic_count = 0;
unsigned int composite_count = 0;
for (unsigned int n = 1; arithmetic_count <= 1000000; n++)
{
unsigned int divisor_count;
unsigned int divisor_sum;
divisor_count_and_sum(n, divisor_count, divisor_sum);
unsigned int mean = divisor_sum / divisor_count;
if (mean * divisor_count != divisor_sum)
continue;
arithmetic_count++;
if (divisor_count > 2)
composite_count++;
if (arithmetic_count <= 100)
{
// would prefer to use <stream> and <format> in C++20
std::printf("%3u ", n);
if (arithmetic_count % 10 == 0)
std::printf("\n");
}
if ((arithmetic_count == 1000) || (arithmetic_count == 10000) ||
(arithmetic_count == 100000) || (arithmetic_count == 1000000))
{
std::printf("\n%uth arithmetic number is %u\n", arithmetic_count, n);
std::printf("Number of composite arithmetic numbers <= %u: %u\n", n, composite_count);
}
}
return 0;
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Julia | Julia | function arithmetic (a = parse(Int, readline()), b = parse(Int, readline()))
for op in [+,-,*,div,rem]
println("a $op b = $(op(a,b))")
end
end |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Kotlin | Kotlin | // version 1.1
fun main(args: Array<String>) {
val r = Regex("""-?\d+[ ]+-?\d+""")
while(true) {
print("Enter two integers separated by space(s) or q to quit: ")
val input: String = readLine()!!.trim()
if (input == "q" || input == "Q") break
if (!input.matches(r)) {
println("Invalid input, try again")
continue
}
val index = input.lastIndexOf(' ')
val a = input.substring(0, index).trimEnd().toLong()
val b = input.substring(index + 1).toLong()
println("$a + $b = ${a + b}")
println("$a - $b = ${a - b}")
println("$a * $b = ${a * b}")
if (b != 0L) {
println("$a / $b = ${a / b}") // rounds towards zero
println("$a % $b = ${a % b}") // if non-zero, matches sign of first operand
}
else {
println("$a / $b = undefined")
println("$a % $b = undefined")
}
val d = Math.pow(a.toDouble(), b.toDouble())
print("$a ^ $b = ")
if (d % 1.0 == 0.0) {
if (d >= Long.MIN_VALUE.toDouble() && d <= Long.MAX_VALUE.toDouble())
println("${d.toLong()}")
else
println("out of range")
}
else if (!d.isFinite())
println("not finite")
else
println("not integral")
println()
}
} |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Factor | Factor | USING: combinators formatting grouping io kernel lists
lists.lazy math math.functions math.primes math.primes.factors
math.statistics math.text.english prettyprint sequences
tools.memory.private ;
: arith? ( n -- ? ) divisors mean integer? ;
: larith ( -- list ) 1 lfrom [ arith? ] lfilter ;
: arith ( m -- seq ) larith ltake list>array ;
: composite? ( n -- ? ) dup 1 > swap prime? not and ;
: ordinal ( n -- str ) [ commas ] keep ordinal-suffix append ;
: info. ( n -- )
{
[ ordinal "%s arithmetic number: " printf ]
[ arith dup last commas print ]
[ commas "Number of composite arithmetic numbers <= %s: " printf ]
[ drop [ composite? ] count commas print nl ]
} cleave ;
"First 100 arithmetic numbers:" print
100 arith 10 group simple-table. nl
{ 3 4 5 6 } [ 10^ info. ] each |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #FreeBASIC | FreeBASIC | ' Rosetta Code problem: https://rosettacode.org/wiki/Arithmetic_numbers
' by Jjuanhdez, 06/2022
Dim As Double t0 = Timer
Dim As Integer N = 1, ArithCnt = 0, CompCnt = 0
Dim As Integer Div, DivCnt, Sum, Quot
Print "The first 100 arithmetic numbers are:"
Do
Div = 1 : DivCnt = 0 : Sum = 0
Do
Quot = N / Div
If Quot < Div Then Exit Do
If Quot = Div AndAlso (N Mod Div) = 0 Then 'N is a square
Sum += Quot
DivCnt += 1
Exit Do
End If
If (N Mod Div) = 0 Then
Sum += Div + Quot
DivCnt += 2
End If
Div += 1
Loop
If (Sum Mod DivCnt) = 0 Then 'N is arithmetic
ArithCnt += 1
If ArithCnt <= 100 Then
Print Using "####"; N;
If (ArithCnt Mod 20) = 0 Then Print
End If
If DivCnt > 2 Then CompCnt += 1
Select Case ArithCnt
Case 1e3
Print Using !"\nThe #######th arithmetic number is #####,### up to which ###,### are composite."; ArithCnt; N; CompCnt
Case 1e4, 1e5, 1e6
Print Using "The #######th arithmetic number is #####,### up to which ###,### are composite."; ArithCnt; N; CompCnt
End Select
End If
N += 1
Loop Until ArithCnt >= 1e6
Print !"\nTook"; Timer - t0; " seconds on i5 @3.20 GHz"
Sleep |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #LabVIEW | LabVIEW |
{def arithmetic
{lambda {:x :y}
{S.map {{lambda {:x :y :op}
{br}applying :op on :x & :y returns {:op :x :y}} :x :y}
+ - * / % pow max min = > <}}}
-> arithmetic
{arithmetic 8 12}
->
applying + on 8 & 12 returns 20
applying - on 8 & 12 returns -4
applying * on 8 & 12 returns 96
applying / on 8 & 12 returns 0.6666666666666666
applying % on 8 & 12 returns 8
applying pow on 8 & 12 returns 68719476736
applying max on 8 & 12 returns 12
applying min on 8 & 12 returns 8
applying = on 8 & 12 returns false
applying > on 8 & 12 returns false
applying < on 8 & 12 returns true
|
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Delphi | Delphi |
{{works with| Delphi-6 or better}}
program ArithmeiticNumbers;
{$APPTYPE CONSOLE}
procedure ArithmeticNumbers;
var N, ArithCnt, CompCnt, DDiv: integer;
var DivCnt, Sum, Quot, Rem: integer;
begin
N:= 1; ArithCnt:= 0; CompCnt:= 0;
repeat
begin
DDiv:= 1; DivCnt:= 0; Sum:= 0;
while true do
begin
Quot:= N div DDiv;
Rem:=N mod DDiv;
if Quot < DDiv then break;
if (Quot = DDiv) and (Rem = 0) then //N is a square
begin
Sum:= Sum+Quot;
DivCnt:= DivCnt+1;
break;
end;
if Rem = 0 then
begin
Sum:= Sum + DDiv + Quot;
DivCnt:= DivCnt+2;
end;
DDiv:= DDiv+1;
end;
if (Sum mod DivCnt) = 0 then //N is arithmetic
begin
ArithCnt:= ArithCnt+1;
if ArithCnt <= 100 then
begin
Write(N:4);
if (ArithCnt mod 20) = 0 then WriteLn;
end;
if DivCnt > 2 then CompCnt:= CompCnt+1;
case ArithCnt of 1000, 10000, 100000, 1000000:
begin
Writeln;
Write(N, #9 {tab} );
Write(CompCnt);
end;
end;
end;
N:= N+1;
end
until ArithCnt >= 1000000;
WriteLn;
end;
begin
ArithmeticNumbers;
WriteLn('Hit Any Key');
ReadLn;
end.
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Lambdatalk | Lambdatalk |
{def arithmetic
{lambda {:x :y}
{S.map {{lambda {:x :y :op}
{br}applying :op on :x & :y returns {:op :x :y}} :x :y}
+ - * / % pow max min = > <}}}
-> arithmetic
{arithmetic 8 12}
->
applying + on 8 & 12 returns 20
applying - on 8 & 12 returns -4
applying * on 8 & 12 returns 96
applying / on 8 & 12 returns 0.6666666666666666
applying % on 8 & 12 returns 8
applying pow on 8 & 12 returns 68719476736
applying max on 8 & 12 returns 12
applying min on 8 & 12 returns 8
applying = on 8 & 12 returns false
applying > on 8 & 12 returns false
applying < on 8 & 12 returns true
|
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Go | Go | package main
import (
"fmt"
"math"
"rcu"
"sort"
)
func main() {
arithmetic := []int{1}
primes := []int{}
limit := int(1e6)
for n := 3; len(arithmetic) < limit; n++ {
divs := rcu.Divisors(n)
if len(divs) == 2 {
primes = append(primes, n)
arithmetic = append(arithmetic, n)
} else {
mean := float64(rcu.SumInts(divs)) / float64(len(divs))
if mean == math.Trunc(mean) {
arithmetic = append(arithmetic, n)
}
}
}
fmt.Println("The first 100 arithmetic numbers are:")
rcu.PrintTable(arithmetic[0:100], 10, 3, false)
for _, x := range []int{1e3, 1e4, 1e5, 1e6} {
last := arithmetic[x-1]
lastc := rcu.Commatize(last)
fmt.Printf("\nThe %sth arithmetic number is: %s\n", rcu.Commatize(x), lastc)
pcount := sort.SearchInts(primes, last) + 1
if !rcu.IsPrime(last) {
pcount--
}
comp := x - pcount - 1 // 1 is not composite
compc := rcu.Commatize(comp)
fmt.Printf("The count of such numbers <= %s which are composite is %s.\n", lastc, compc)
}
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Lasso | Lasso | local(a = 6, b = 4)
#a + #b // 10
#a - #b // 2
#a * #b // 24
#a / #b // 1
#a % #b // 2
math_pow(#a,#b) // 1296
math_pow(#b,#a) // 4096 |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #LFE | LFE |
(defmodule arith
(export all))
(defun demo-arith ()
(case (: io fread '"Please enter two integers: " '"~d~d")
((tuple 'ok (a b))
(: io format '"~p + ~p = ~p~n" (list a b (+ a b)))
(: io format '"~p - ~p = ~p~n" (list a b (- a b)))
(: io format '"~p * ~p = ~p~n" (list a b (* a b)))
(: io format '"~p^~p = ~p~n" (list a b (: math pow a b)))
; div truncates towards zero
(: io format '"~p div ~p = ~p~n" (list a b (div a b)))
; rem's result takes the same sign as the first operand
(: io format '"~p rem ~p = ~p~n" (list a b (rem a b))))))
|
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #J | J | factors=: {{ */@>,{(^ [:i.1+])&.>/__ q:y}}
isArith=: {{ (= <.) (+/%#) factors|y}}"0 |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Julia | Julia | using Primes
function isarithmetic(n)
f = [one(n)]
for (p,e) in factor(n)
f = reduce(vcat, [f*p^j for j in 1:e], init=f)
end
return rem(sum(f), length(f)) == 0
end
function arithmetic(n)
i, arr = 1, Int[]
while length(arr) < n
isarithmetic(i) && push!(arr, i)
i += 1
end
return arr
end
a1M = arithmetic(1_000_000)
composites = [!isprime(i) for i in a1M]
println("The first 100 arithmetic numbers are:")
foreach(p -> print(lpad(p[2], 5), p[1] % 20 == 0 ? "\n" : ""), enumerate(a1M[1:100]))
println("\n X Xth in Series Composite")
for n in [1000, 10_000, 100_000, 1_000_000]
println(lpad(n, 9), lpad(a1M[n], 12), lpad(sum(composites[2:n]), 14))
end
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Liberty_BASIC | Liberty BASIC |
input "Enter the first integer: "; first
input "Enter the second integer: "; second
print "The sum is " ; first + second
print "The difference is " ; first -second
print "The product is " ; first *second
if second <>0 then print "The integer quotient is " ; int( first /second); " (rounds towards 0)" else print "Division by zero not allowed."
print "The remainder is " ; first MOD second; " (sign matches first operand)"
print "The first raised to the power of the second is " ; first ^second
|
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Pascal | Pascal |
program ArithmeiticNumbers;
procedure ArithmeticNumbers;
var N, ArithCnt, CompCnt, DDiv: longint;
var DivCnt, Sum, Quot, Rem: longint;
begin
N:= 1; ArithCnt:= 0; CompCnt:= 0;
repeat
begin
DDiv:= 1; DivCnt:= 0; Sum:= 0;
while true do
begin
Quot:= N div DDiv;
Rem:=N mod DDiv;
if Quot < DDiv then break;
if (Quot = DDiv) and (Rem = 0) then //N is a square
begin
Sum:= Sum+Quot;
DivCnt:= DivCnt+1;
break;
end;
if Rem = 0 then
begin
Sum:= Sum + DDiv + Quot;
DivCnt:= DivCnt+2;
end;
DDiv:= DDiv+1;
end;
if (Sum mod DivCnt) = 0 then //N is arithmetic
begin
ArithCnt:= ArithCnt+1;
if ArithCnt <= 100 then
begin
Write(N:4);
if (ArithCnt mod 20) = 0 then WriteLn;
end;
if DivCnt > 2 then CompCnt:= CompCnt+1;
case ArithCnt of 1000, 10000, 100000, 1000000:
begin
Writeln;
Write(N, #9 {tab} );
Write(CompCnt);
end;
end;
end;
N:= N+1;
end
until ArithCnt >= 1000000;
WriteLn;
end;
begin
ArithmeticNumbers;
WriteLn('Hit Any Key');
{$IFDEF WINDOWS}ReadLn;{$ENDIF}
end.
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #LIL | LIL | # Arithmetic/Integer, in LIL
write "Enter two numbers separated by space: "
if {[canread]} {set line [readline]}
print
set a [index $line 0]
set b [index $line 1]
print "A is $a"", B is $b"
print "Sum A + B is [expr $a + $b]"
print "Difference A - B is [expr $a - $b]"
print "Product A * B is [expr $a * $b]"
print "Integer Quotient A \\ B is [expr $a \ $b], truncates toward zero"
print "Remainder A % B is [expr $a % $b], sign follows first operand"
print "LIL has no exponentiation expression operator" |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Perl | Perl | use strict;
use warnings;
use feature 'say';
use List::Util <max sum>;
use ntheory <is_prime divisors>;
use Lingua::EN::Numbers qw(num2en num2en_ordinal);
sub comma { reverse ((reverse shift) =~ s/(.{3})/$1,/gr) =~ s/^,//r }
sub table { my $t = 10 * (my $c = 1 + length max @_); ( sprintf( ('%'.$c.'d')x@_, @_) ) =~ s/.{1,$t}\K/\n/gr }
my @A = 0;
for my $n (1..2E6) {
my @div = divisors $n;
push @A, $n if 0 == sum(@div) % @div;
}
say "The first @{[num2en 100]} arithmetic numbers:";
say table @A[1..100];
for my $x (1E3, 1E4, 1E5, 1E6) {
say "\nThe @{[num2en_ordinal $x]}: " . comma($A[$x]) .
"\nComposite arithmetic numbers ≤ @{[comma $A[$x]]}: " . comma -1 + grep { not is_prime($_) } @A[1..$x];
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Lingo | Lingo | -- X, Y: 2 editable field members, shown as sprites in the current GUI
x = integer(member("X").text)
y = integer(member("Y").text)
put "Sum: " , x + y
put "Difference: ", x - y
put "Product: " , x * y
put "Quotient: " , x / y -- Truncated towards zero
put "Remainder: " , x mod y -- Result has sign of left operand
put "Exponent: " , power(x, y) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Little | Little | # Maybe you need to import the mathematical funcions
# from Tcl with:
# eval("namespace path ::tcl::mathfunc");
void main() {
int a, b;
puts("Enter two integers:");
a = (int)(gets(stdin));
b = (int)(gets(stdin));
puts("${a} + ${b} = ${a+b}");
puts("${a} - ${b} = ${a-b}");
puts("${a} * ${b} = ${a*b}");
puts("${a} / ${b} = ${a/b}, remainder ${a%b}");
puts("${a} to the power of ${b} = ${(int)pow(a,b)}");
} |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Phix | Phix | with javascript_semantics
sequence arithmetic = {1}
integer composite = 0
function get_arithmetic(integer nth)
integer n = arithmetic[$]+1
while length(arithmetic)<nth do
sequence divs = factors(n,1)
if remainder(sum(divs),length(divs))=0 then
composite += length(divs)>2
arithmetic &= n
end if
n += 1
end while
return arithmetic[nth]
end function
{} = get_arithmetic(100)
printf(1,"The first 100 arithmetic numbers are:\n%s\n",
{join_by(arithmetic,1,10," ",fmt:="%3d")})
constant fmt = "The %,dth arithmetic number is %,d up to which %,d are composite.\n"
for n in {1e3,1e4,1e5,1e6} do
integer nth = get_arithmetic(n)
printf(1,fmt,{n,nth,composite})
end for
|
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Python | Python | def factors(n: int):
f = set([1, n])
i = 2
while True:
j = n // i
if j < i:
break
if i * j == n:
f.add(i)
f.add(j)
i += 1
return f
arithmetic_count = 0
composite_count = 0
n = 1
while arithmetic_count <= 1000000:
f = factors(n)
if (sum(f)/len(f)).is_integer():
arithmetic_count += 1
if len(f) > 2:
composite_count += 1
if arithmetic_count <= 100:
print(f'{n:3d} ', end='')
if arithmetic_count % 10 == 0:
print()
if arithmetic_count in (1000, 10000, 100000, 1000000):
print(f'\n{arithmetic_count}th arithmetic number is {n}')
print(f'Number of composite arithmetic numbers <= {n}: {composite_count}')
n += 1 |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #LiveCode | LiveCode | ask "enter 2 numbers (comma separated)"
if it is not empty then
put item 1 of it into n1
put item 2 of it into n2
put sum(n1,n2) into ai["sum"]
put n1 * n2 into ai["product"]
put n1 div n2 into ai["quotient"] -- truncates
put n1 mod n2 into ai["remainder"]
put n1^n2 into ai["power"]
combine ai using comma and colon
put ai
end if |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Logo | Logo | to operate :a :b
(print [a =] :a)
(print [b =] :b)
(print [a + b =] :a + :b)
(print [a - b =] :a - :b)
(print [a * b =] :a * :b)
(print [a / b =] int :a / :b)
(print [a mod b =] modulo :a :b)
end |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Raku | Raku | use Prime::Factor;
use Lingua::EN::Numbers;
my @arithmetic = lazy (1..∞).hyper.grep: { my @div = .&divisors; (@div.sum / +@div).narrow ~~ Int }
say "The first { .Int.&cardinal } arithmetic numbers:\n", @arithmetic[^$_].batch(10)».fmt("%{.chars}d").join: "\n" given 1e2;
for 1e3, 1e4, 1e5, 1e6 {
say "\nThe { .Int.&ordinal }: { comma @arithmetic[$_-1] }";
say "Composite arithmetic numbers ≤ { comma @arithmetic[$_-1] }: { comma +@arithmetic[^$_].grep({!.is-prime}) - 1 }";
} |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Rust | Rust | fn divisor_count_and_sum(mut n: u32) -> (u32, u32) {
let mut divisor_count = 1;
let mut divisor_sum = 1;
let mut power = 2;
while (n & 1) == 0 {
divisor_count += 1;
divisor_sum += power;
power <<= 1;
n >>= 1;
}
let mut p = 3;
while p * p <= n {
let mut count = 1;
let mut sum = 1;
power = p;
while n % p == 0 {
count += 1;
sum += power;
power *= p;
n /= p;
}
divisor_count *= count;
divisor_sum *= sum;
p += 2;
}
if n > 1 {
divisor_count *= 2;
divisor_sum *= n + 1;
}
(divisor_count, divisor_sum)
}
fn main() {
let mut arithmetic_count = 0;
let mut composite_count = 0;
let mut n = 1;
while arithmetic_count <= 1000000 {
let (divisor_count, divisor_sum) = divisor_count_and_sum(n);
if divisor_sum % divisor_count != 0 {
n += 1;
continue;
}
arithmetic_count += 1;
if divisor_count > 2 {
composite_count += 1;
}
if arithmetic_count <= 100 {
print!("{:3} ", n);
if arithmetic_count % 10 == 0 {
println!();
}
}
if arithmetic_count == 1000
|| arithmetic_count == 10000
|| arithmetic_count == 100000
|| arithmetic_count == 1000000
{
println!("\n{}th arithmetic number is {}", arithmetic_count, n);
println!(
"Number of composite arithmetic numbers <= {}: {}",
n, composite_count
);
}
n += 1;
}
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #LSE64 | LSE64 | over : 2 pick
2dup : over over
arithmetic : \
" A=" ,t over , sp " B=" ,t dup , nl \
" A+B=" ,t 2dup + , nl \
" A-B=" ,t 2dup - , nl \
" A*B=" ,t 2dup * , nl \
" A/B=" ,t 2dup / , nl \
" A%B=" ,t % , nl |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Lua | Lua | local x = io.read()
local y = io.read()
print ("Sum: " , (x + y))
print ("Difference: ", (x - y))
print ("Product: " , (x * y))
print ("Quotient: " , (x / y)) -- Does not truncate
print ("Remainder: " , (x % y)) -- Result has sign of right operand
print ("Exponent: " , (x ^ y)) |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #Wren | Wren | import "./math" for Int, Nums
import "./fmt" for Fmt
import "./sort" for Find
var arithmetic = [1]
var primes = []
var limit = 1e6
var n = 3
while (arithmetic.count < limit) {
var divs = Int.divisors(n)
if (divs.count == 2) {
primes.add(n)
arithmetic.add(n)
} else {
var mean = Nums.mean(divs)
if (mean.isInteger) arithmetic.add(n)
}
n = n + 1
}
System.print("The first 100 arithmetic numbers are:")
Fmt.tprint("$3d", arithmetic[0..99], 10)
for (x in [1e3, 1e4, 1e5, 1e6]) {
var last = arithmetic[x-1]
Fmt.print("\nThe $,dth arithmetic number is: $,d", x, last)
var pcount = Find.nearest(primes, last) + 1
if (!Int.isPrime(last)) pcount = pcount - 1
var comp = x - pcount - 1 // 1 is not composite
Fmt.print("The count of such numbers <= $,d which are composite is $,d.", last, comp)
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #M2000_Interpreter | M2000 Interpreter |
MODULE LikeCommodoreBasic {
\\ ADDITION: EUCLIDEAN DIV# & MOD# AND ** FOR POWER INCLUDING ^
10 INPUT "ENTER A NUMBER:"; A%
20 INPUT "ENTER ANOTHER NUMBER:"; B%
30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B%
40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B%
50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B%
60 PRINT "INTEGER DIVISION:";A%;"DIV";B%;"=";A% DIV B%
65 PRINT "INTEGER EUCLIDEAN DIVISION:";A%;"DIV";B%;"=";A% DIV# B%
70 PRINT "REMAINDER OR MODULO:";A%;"MOD";B%;"=";A% MOD B%
75 PRINT "EUCLIDEAN REMAINDER OR MODULO:";A%;"MOD#";B%;"=";A% MOD# B%
80 PRINT "POWER:";A%;"^";B%;"=";A%^B%
90 PRINT "POWER:";A%;"**";B%;"=";A%**B%
}
LikeCommodoreBasic
Module IntegerTypes {
a=12% ' Integer 16 bit
b=12& ' Long 32 bit
c=12@' Decimal (29 digits)
Def ExpType$(x)=Type$(x)
Print ExpType$(a+1)="Double"
Print ExpType$(a+1%)="Integer"
Print ExpType$(a div 5)="Double"
Print ExpType$(a div 5%)="Double"
Print ExpType$(a mod 5)="Double"
Print ExpType$(a mod 5%)="Double"
Print ExpType$(a**2)="Double"
Print ExpType$(b+1)="Double"
Print ExpType$(b+1&)="Long"
Print ExpType$(b div 5)="Double"
Print ExpType$(b div 5&)="Double"
Print ExpType$(b mod 5)="Double"
Print ExpType$(b mod 5&)="Double"
Print ExpType$(b**2)="Double"
Print ExpType$(c+1)="Decimal"
Print ExpType$(c+1@)="Decimal"
Print ExpType$(c div 5)="Decimal"
Print ExpType$(c div 5@)="Decimal"
Print ExpType$(c mod 5)="Decimal"
Print ExpType$(c mod 5@)="Decimal"
Print ExpType$(c**2)="Double"
}
IntegerTypes
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #M4 | M4 | eval(A+B)
eval(A-B)
eval(A*B)
eval(A/B)
eval(A%B) |
http://rosettacode.org/wiki/Arithmetic_numbers | Arithmetic numbers | Definition
A positive integer n is an arithmetic number if the average of its positive divisors is also an integer.
Clearly all odd primes p must be arithmetic numbers because their only divisors are 1 and p whose sum is even and hence their average must be an integer. However, the prime number 2 is not an arithmetic number because the average of its divisors is 1.5.
Example
30 is an arithmetic number because its 7 divisors are: [1, 2, 3, 5, 6, 10, 15, 30], their sum is 72 and average 9 which is an integer.
Task
Calculate and show here:
1. The first 100 arithmetic numbers.
2. The xth arithmetic number where x = 1,000 and x = 10,000.
3. How many of the first x arithmetic numbers are composite.
Note that, technically, the arithmetic number 1 is neither prime nor composite.
Stretch
Carry out the same exercise in 2. and 3. above for x = 100,000 and x = 1,000,000.
References
Wikipedia: Arithmetic number
OEIS:A003601 - Numbers n such that the average of the divisors of n is an integer
| #XPL0 | XPL0 | int N, ArithCnt, CompCnt, Div, DivCnt, Sum, Quot;
[Format(4, 0);
N:= 1; ArithCnt:= 0; CompCnt:= 0;
repeat Div:= 1; DivCnt:= 0; Sum:= 0;
loop [Quot:= N/Div;
if Quot < Div then quit;
if Quot = Div and rem(0) = 0 then \N is a square
[Sum:= Sum+Quot; DivCnt:= DivCnt+1; quit];
if rem(0) = 0 then
[Sum:= Sum + Div + Quot;
DivCnt:= DivCnt+2;
];
Div:= Div+1;
];
if rem(Sum/DivCnt) = 0 then \N is arithmetic
[ArithCnt:= ArithCnt+1;
if ArithCnt <= 100 then
[RlOut(0, float(N));
if rem(ArithCnt/20) = 0 then CrLf(0);
];
if DivCnt > 2 then CompCnt:= CompCnt+1;
case ArithCnt of 1000, 10_000, 100_000, 1_000_000:
[CrLf(0);
IntOut(0, N); ChOut(0, 9\tab\);
IntOut(0, CompCnt);
]
other;
];
N:= N+1;
until ArithCnt >= 1_000_000;
] |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Maple | Maple |
DoIt := proc()
local a := readstat( "Input an integer: " ):
local b := readstat( "Input another integer: " ):
printf( "Sum = %d\n", a + b ):
printf( "Difference = %d\n", a - b ):
printf( "Product = %d\n", a * b ):
printf( "Quotient = %d\n", iquo( a, b, 'c' ) ):
printf( "Remainder = %d\n", c ); # or irem( a, b )
NULL # quiet return
end proc:
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Mathematica.2FWolfram_Language | Mathematica/Wolfram Language | a = Input["Give me an integer please!"];
b = Input["Give me another integer please!"];
Print["You gave me ", a, " and ", b];
Print["sum: ", a + b];
Print["difference: ", a - b];
Print["product: ", a b];
Print["integer quotient: ", Quotient[a, b]];
Print["remainder: ", Mod[a, b]];
Print["exponentiation: ", a^b]; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Mathcad | Mathcad | disp("integer a: "); a = scanf("%d", 1);
disp("integer b: "); b = scanf("%d", 1);
a+b
a-b
a*b
floor(a/b)
mod(a,b)
a^b |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #MATLAB_.2F_Octave | MATLAB / Octave | disp("integer a: "); a = scanf("%d", 1);
disp("integer b: "); b = scanf("%d", 1);
a+b
a-b
a*b
floor(a/b)
mod(a,b)
a^b |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Maxima | Maxima | block(
[a: read("a"), b: read("b")],
print(a + b),
print(a - b),
print(a * b),
print(a / b),
print(quotient(a, b)),
print(remainder(a, b)),
a^b
); |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #MAXScript | MAXScript | x = getKBValue prompt:"First number"
y = getKBValue prompt:"Second number:"
format "Sum: %\n" (x + y)
format "Difference: %\n" (x - y)
format "Product: %\n" (x * y)
format "Quotient: %\n" (x / y)
format "Remainder: %\n" (mod x y) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Mercury | Mercury |
:- module arith_int.
:- interface.
:- import_module io.
:- pred main(io::di, io::uo) is det.
:- implementation.
:- import_module int, list, string.
main(!IO) :-
io.command_line_arguments(Args, !IO),
( if
Args = [AStr, BStr],
string.to_int(AStr, A),
string.to_int(BStr, B)
then
io.format("A + B = %d\n", [i(A + B)], !IO),
io.format("A - B = %d\n", [i(A - B)], !IO),
io.format("A * B = %d\n", [i(A * B)], !IO),
% Division: round towards zero.
%
io.format("A / B = %d\n", [i(A / B)], !IO),
% Division: round towards minus infinity.
%
io.format("A div B = %d\n", [i(A div B)], !IO),
% Modulus: X mod Y = X - (X div Y) * Y.
%
io.format("A mod B = %d\n", [i(A mod B)], !IO),
% Remainder: X rem Y = X - (X / Y) * Y.
%
io.format("A rem B = %d\n", [i(A rem B)], !IO),
% Exponentiation is done using the function int.pow/2.
%
io.format("A `pow` B = %d\n", [i(A `pow` B)], !IO)
else
io.set_exit_status(1, !IO)
).
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Metafont | Metafont | string s[];
message "input number a: ";
s1 := readstring;
message "input number b: ";
s2 := readstring;
a := scantokens s1;
b := scantokens s2;
def outp(expr op) =
message "a " & op & " b = " & decimal(a scantokens(op) b) enddef;
outp("+");
outp("-");
outp("*");
outp("div");
outp("mod");
end |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #min | min | (concat dup -> ' prepend "$1 -> $2" swap % puts!) :show
("Enter an integer" ask int) 2 times ' prepend
('+ '- '* 'div 'mod) quote-map ('show concat) map cleave |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #.D0.9C.D0.9A-61.2F52 | МК-61/52 | П1 <-> П0
+ С/П
ИП0 ИП1 - С/П
ИП0 ИП1 * С/П
ИП0 ИП1 / [x] С/П
ИП0 ^ ИП1 / [x] ИП1 * - С/П
ИП1 ИП0 x^y С/П |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #ML.2FI | ML/I | MCSKIP "WITH" NL
"" Arithmetic/Integer
"" assumes macros on input stream 1, terminal on stream 2
MCSKIP MT,<>
MCINS %.
MCDEF SL SPACES NL AS <MCSET T1=%A1.
MCSET T2=%A2.
a + b = %%T1.+%T2..
a - b = %%T1.-%T2..
a * b = %%T1.*%T2..
a / b = %%T1./%T2..
a rem b = %%T1.-%%%T1./%T2..*%T2...
Division is truncated to the greatest integer
that does not exceed the exact result. Remainder matches
the sign of the second operand, if the signs differ. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Modula-2 | Modula-2 | MODULE ints;
IMPORT InOut;
VAR a, b : INTEGER;
BEGIN
InOut.WriteString ("Enter two integer numbers : "); InOut.WriteBf;
InOut.ReadInt (a);
InOut.ReadInt (b);
InOut.WriteString ("a + b = "); InOut.WriteInt (a + b, 9); InOut.WriteLn;
InOut.WriteString ("a - b = "); InOut.WriteInt (a - b, 9); InOut.WriteLn;
InOut.WriteString ("a * b = "); InOut.WriteInt (a * b, 9); InOut.WriteLn;
InOut.WriteString ("a / b = "); InOut.WriteInt (a DIV b, 9); InOut.WriteLn;
InOut.WriteString ("a MOD b = "); InOut.WriteInt (a MOD b, 9); InOut.WriteLn;
InOut.WriteLn;
END ints. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Modula-3 | Modula-3 | MODULE Arith EXPORTS Main;
IMPORT IO, Fmt;
VAR a, b: INTEGER;
BEGIN
a := IO.GetInt();
b := IO.GetInt();
IO.Put("a+b = " & Fmt.Int(a + b) & "\n");
IO.Put("a-b = " & Fmt.Int(a - b) & "\n");
IO.Put("a*b = " & Fmt.Int(a * b) & "\n");
IO.Put("a DIV b = " & Fmt.Int(a DIV b) & "\n");
IO.Put("a MOD b = " & Fmt.Int(a MOD b) & "\n");
END Arith. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #MUMPS | MUMPS | Arith(first,second) ; Mathematical operators
Write "Plus",?12,first,"+",second,?25," = ",first+second,!
Write "Minus",?12,first,"-",second,?25," = ",first-second,!
Write "Multiply",?12,first,"*",second,?25," = ",first*second,!
Write "Divide",?12,first,"/",second,?25," = ",first/second,!
Write "Int Divide",?12,first,"\",second,?25," = ",first\second,!
Write "Power",?12,first,"**",second,?25," = ",first**second,!
Write "Modulo",?12,first,"#",second,?25," = ",first#second,!
Write "And",?12,first,"&",second,?25," = ",first&second,!
Write "Or",?12,first,"!",second,?25," = ",first!second,!
Quit
Do Arith(2,3)
Plus 2+3 = 5
Minus 2-3 = -1
Multiply 2*3 = 6
Divide 2/3 = .6666666666666666667
Int Divide 2\3 = 0
Power 2**3 = 8
Modulo 2#3 = 2
And 2&3 = 1
Or 2!3 = 1
Do Arith(16,0.5)
Plus 16+.5 = 16.5
Minus 16-.5 = 15.5
Multiply 16*.5 = 8
Divide 16/.5 = 32
Int Divide 16\.5 = 32
Power 16**.5 = 4
Modulo 16#.5 = 0
And 16&.5 = 1
Or 16!.5 = 1
Do Arith(0,2)
Plus 0+2 = 2
Minus 0-2 = -2
Multiply 0*2 = 0
Divide 0/2 = 0
Int Divide 0\2 = 0
Power 0**2 = 0
Modulo 0#2 = 0
And 0&2 = 0
Or 0!2 = 1 |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Nanoquery | Nanoquery | print "Number 1: "
x = int(input())
print "Number 2: "
y = int(input())
println format("Sum: %d", x + y)
println format("Difference: %d", x - y)
println format("Product: %d", x * y)
println format("Quotient: %f", x / y)
println format("Remainder: %d", x % y)
println format("Power: %d", x ^ y) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Nemerle | Nemerle | using System;
class Program
{
static Main(args : array[string]) : void
{
def a = Convert.ToInt32(args[0]);
def b = Convert.ToInt32(args[1]);
Console.WriteLine("{0} + {1} = {2}", a, b, a + b);
Console.WriteLine("{0} - {1} = {2}", a, b, a - b);
Console.WriteLine("{0} * {1} = {2}", a, b, a * b);
Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0
Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand
Console.WriteLine("{0} ** {1} = {2}", a, b, a ** b);
}
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #NetRexx | NetRexx | /* NetRexx */
options replace format comments java crossref symbols binary
say "enter 2 integer values separated by blanks"
parse ask a b
say a "+" b "=" a + b
say a "-" b "=" a - b
say a "*" b "=" a * b
say a "/" b "=" a % b "remaining" a // b "(sign from first operand)"
say a "^" b "=" a ** b
return
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #NewLISP | NewLISP | ; integer.lsp
; oofoe 2012-01-17
(define (aski msg) (print msg) (int (read-line)))
(setq x (aski "Please type in an integer and press [enter]: "))
(setq y (aski "Please type in another integer : "))
; Note that +, -, *, / and % are all integer operations.
(println)
(println "Sum: " (+ x y))
(println "Difference: " (- x y))
(println "Product: " (* x y))
(println "Integer quotient (rounds to 0): " (/ x y))
(println "Remainder: " (setq r (% x y)))
(println "Remainder sign matches: "
(cond ((= (sgn r) (sgn x) (sgn y)) "both")
((= (sgn r) (sgn x)) "first")
((= (sgn r) (sgn y)) "second")))
(println)
(println "Exponentiation: " (pow x y))
(exit) ; NewLisp normally goes to listener after running script.
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Nial | Nial | arithmetic is OP A B{[first,last,+,-,*,quotient,mod,power] A B} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Nim | Nim | import parseopt, strutils
var
opt: OptParser = initOptParser()
str = opt.cmdLineRest.split
a: int = 0
b: int = 0
try:
a = parseInt(str[0])
b = parseInt(str[1])
except ValueError:
quit("Invalid params. Two integers are expected.")
echo("a : " & $a)
echo("b : " & $b)
echo("a + b : " & $(a+b))
echo("a - b : " & $(a-b))
echo("a * b : " & $(a*b))
echo("a div b: " & $(a div b)) # div rounds towards zero
echo("a mod b: " & $(a mod b)) # sign(a mod b)==sign(a) if sign(a)!=sign(b)
echo("a ^ b : " & $(a ^ b))
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #NSIS | NSIS | Function Arithmetic
Push $0
Push $1
Push $2
StrCpy $0 21
StrCpy $1 -2
IntOp $2 $0 + $1
DetailPrint "$0 + $1 = $2"
IntOp $2 $0 - $1
DetailPrint "$0 - $1 = $2"
IntOp $2 $0 * $1
DetailPrint "$0 * $1 = $2"
IntOp $2 $0 / $1
DetailPrint "$0 / $1 = $2"
DetailPrint "Rounding is toward negative infinity"
IntOp $2 $0 % $1
DetailPrint "$0 % $1 = $2"
DetailPrint "Sign of remainder matches the first number"
Pop $2
Pop $1
Pop $0
FunctionEnd |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Oberon-2 | Oberon-2 |
MODULE Arithmetic;
IMPORT In, Out;
VAR
x,y:INTEGER;
BEGIN
Out.String("Give two numbers: ");In.Int(x);In.Int(y);
Out.String("x + y >");Out.Int(x + y,6);Out.Ln;
Out.String("x - y >");Out.Int(x - y,6);Out.Ln;
Out.String("x * y >");Out.Int(x * y,6);Out.Ln;
Out.String("x / y >");Out.Int(x DIV y,6);Out.Ln;
Out.String("x MOD y >");Out.Int(x MOD y,6);Out.Ln;
END Arithmetic.
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Objeck | Objeck | bundle Default {
class Arithmetic {
function : Main(args : System.String[]) ~ Nil {
DoArithmetic();
}
function : native : DoArithmetic() ~ Nil {
a := IO.Console->GetInstance()->ReadString()->ToInt();
b := IO.Console->GetInstance()->ReadString()->ToInt();
IO.Console->GetInstance()->Print("a+b = ")->PrintLine(a+b);
IO.Console->GetInstance()->Print("a-b = ")->PrintLine(a-b);
IO.Console->GetInstance()->Print("a*b = ")->PrintLine(a*b);
IO.Console->GetInstance()->Print("a/b = ")->PrintLine(a/b);
}
}
} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #OCaml | OCaml | let _ =
let a = read_int ()
and b = read_int () in
Printf.printf "a + b = %d\n" (a + b);
Printf.printf "a - b = %d\n" (a - b);
Printf.printf "a * b = %d\n" (a * b);
Printf.printf "a / b = %d\n" (a / b); (* truncates towards 0 *)
Printf.printf "a mod b = %d\n" (a mod b) (* same sign as first operand *) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Oforth | Oforth | : integers (a b -- )
"a + b =" . a b + .cr
"a - b =" . a b - .cr
"a * b =" . a b * .cr
"a / b =" . a b / .cr
"a mod b =" . a b mod .cr
"a pow b =" . a b pow .cr
; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Ol | Ol |
(define a 8)
(define b 12)
(print "(+ " a " " b ") => " (+ a b))
(print "(- " a " " b ") => " (- a b))
(print "(* " a " " b ") => " (* a b))
(print "(/ " a " " b ") => " (/ a b))
(print "(quotient " a " " b ") => " (quot a b)) ; same as (quotient a b)
(print "(remainder " a " " b ") => " (rem a b)) ; same as (remainder a b)
(print "(modulo " a " " b ") => " (mod a b)) ; same as (modulo a b)
(print "(expt " a " " b ") => " (expt a b))
(print "(gcd " a " " b ") => " (gcd a b))
(print "(lcm " a " " b ") => " (lcm a b))
; you can use more than two arguments for +,-,*,/ functions
(print (+ 1 3 5 7 9))
(print (- 1 3 5 7 9))
(print (* 1 3 5 7 9)) ; same as (1*3*5*7*9)
(print (/ 1 3 5 7 9)) ; same as (((1/3)/5)/7)/9
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Onyx | Onyx | # Most of this long script is mere presentation.
# All you really need to do is push two integers onto the stack
# and then execute add, sub, mul, idiv, or pow.
$ClearScreen { # Using ANSI terminal control
`\e[2J\e[1;1H' print flush
} bind def
$Say { # string Say -
`\n' cat print flush
} bind def
$ShowPreamble {
`To show how integer arithmetic in done in Onyx,' Say
`we\'ll use two numbers of your choice, which' Say
`we\'ll call A and B.\n' Say
} bind def
$Prompt { # stack: string --
stdout exch write pop flush
} def
$GetInt { # stack: name -- integer
dup cvs `Enter integer ' exch cat `: ' cat
Prompt stdin readline pop cvx eval def
} bind def
$Template { # arithmetic_operator_name label_string Template result_string
A cvs ` ' B cvs ` ' 5 ncat over cvs ` gives ' 3 ncat exch
A B dn cvx eval cvs `.' 3 ncat Say
} bind def
$ShowResults {
$add `Addition: ' Template
$sub `Subtraction: ' Template
$mul `Multiplication: ' Template
$idiv `Division: ' Template
`Note that the result of integer division is rounded toward zero.' Say
$pow `Exponentiation: ' Template
`Note that the result of raising to a negative power always gives a real number.' Say
} bind def
ClearScreen ShowPreamble $A GetInt $B GetInt ShowResults |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Openscad | Openscad | echo (a+b); /* Sum */
echo (a-b); /* Difference */
echo (a*b); /* Product */
echo (a/b); /* Quotient */
echo (a%b); /* Modulus */ |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Oz | Oz | declare
StdIn = {New class $ from Open.file Open.text end init(name:stdin)}
fun {ReadInt}
{String.toInt {StdIn getS($)}}
end
A = {ReadInt}
B = {ReadInt}
in
{ForAll
["A+B = "#A+B
"A-B = "#A-B
"A*B = "#A*B
"A/B = "#A div B %% truncates towards 0
"remainder "#A mod B %% has the same sign as A
"A^B = "#{Pow A B}
]
System.showInfo} |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Panda | Panda | a=3 b=7 func:_bbf__number_number_number =>f.name.<b> '(' a b ')' ' => ' f(a b) nl |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PARI.2FGP | PARI/GP | arith(a,b)={
print(a+b);
print(a-b);
print(a*b);
print(a\b);
print(a%b);
print(a^b);
}; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Pascal | Pascal | program arithmetic(input, output)
var
a, b: integer;
begin
readln(a, b);
writeln('a+b = ', a+b);
writeln('a-b = ', a-b);
writeln('a*b = ', a*b);
writeln('a/b = ', a div b, ', remainder ', a mod b);
writeln('a^b = ',Power(a,b):4:2); {real power}
writeln('a^b = ',IntPower(a,b):4:2); {integer power}
end. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Perl | Perl | my $a = <>;
my $b = <>;
print
"sum: ", $a + $b, "\n",
"difference: ", $a - $b, "\n",
"product: ", $a * $b, "\n",
"integer quotient: ", int($a / $b), "\n",
"remainder: ", $a % $b, "\n",
"exponent: ", $a ** $b, "\n"
; |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Phix | Phix | with javascript_semantics
include pGUI.e
Ihandle lab, tab, res, dlg
constant fmt = """
a = %d
b = %d
a + b = %d
a - b = %d
a * b = %d
a / b = %g (does not truncate)
remainder(a,b) = %d (same sign as first operand)
power(a,b) = %g
"""
function valuechanged_cb(Ihandle tab)
string s = IupGetAttribute(tab,"VALUE")
sequence r = scanf(s,"%d %d")
if length(r)=1 then
integer {a,b} = r[1]
s = sprintf(fmt, {a, b, a+b, a-b, a*b, a/b, remainder(a,b), power(a,b)})
IupSetStrAttribute(res,"TITLE",s)
IupRefresh(res)
end if
return IUP_DEFAULT
end function
procedure main()
IupOpen()
lab = IupLabel("Enter two numbers")
tab = IupText("VALUECHANGED_CB", Icallback("valuechanged_cb"),"EXPAND=HORIZONTAL")
res = IupLabel("(separated by a space)\n\n\n\n\n\n\n","EXPAND=BOTH")
dlg = IupDialog(IupVbox({IupHbox({lab,tab},"GAP=10,NORMALIZESIZE=VERTICAL"),
IupHbox({res})},"MARGIN=5x5"),
`SIZE=188x112,TITLE="Arithmetic/Integer"`)
IupShow(dlg)
if platform()!=JS then
IupMainLoop()
IupClose()
end if
end procedure
main()
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Phixmonti | Phixmonti | def printOp
swap print print nl
enddef
8 var a 3 var b
"a = " a printOp
"b = " b printOp
"a + b = " a b + printOp
"a - b = " a b - printOp
"a * b = " a b * printOp
"int(a / b) = " a b / int printOp
"a mod b = " a b mod printOp
"a ^ b = " a b power printOp |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PHL | PHL | module arith;
extern printf;
extern scanf;
@Integer main [
@Pointer<@Integer> a = alloc(4);
@Pointer<@Integer> b = alloc(4);
scanf("%i %i", a, b);
printf("a + b = %i\n", a::get + b::get);
printf("a - b = %i\n", a::get - b::get);
printf("a * b = %i\n", a::get * b::get);
printf("a / b = %i\n", a::get / b::get);
printf("a % b = %i\n", a::get % b::get);
printf("a ** b = %i\n", a::get ** b::get);
return 0;
] |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PHP | PHP | <?php
$a = fgets(STDIN);
$b = fgets(STDIN);
echo
"sum: ", $a + $b, "\n",
"difference: ", $a - $b, "\n",
"product: ", $a * $b, "\n",
"truncating quotient: ", (int)($a / $b), "\n",
"flooring quotient: ", floor($a / $b), "\n",
"remainder: ", $a % $b, "\n",
"power: ", $a ** $b, "\n"; // PHP 5.6+ only
?> |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PicoLisp | PicoLisp | (de math (A B)
(prinl "Add " (+ A B))
(prinl "Subtract " (- A B))
(prinl "Multiply " (* A B))
(prinl "Divide " (/ A B)) # Trucates towards zero
(prinl "Div/rnd " (*/ A B)) # Rounds to next integer
(prinl "Modulus " (% A B)) # Sign of the first operand
(prinl "Power " (** A B)) ) |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Piet | Piet |
command stack
in(int) A
duplicate AA
duplicate AAA
duplicate AAAA
duplicate AAAAA
in(int) BAAAAA
duplicate BBAAAAA
duplicate BBBAAAAA
duplicate BBBBAAAAA
duplicate BBBBBAAAAA
push 9 9BBBBBAAAAA
push 1 19BBBBBAAAAA
roll BBBBAAAABA
push 7 7BBBBAAAABA
push 1 17BBBBAAAABA
roll BBBAAABABA
push 5 5BBBAAABABA
push 1 15BBBAAABABA
roll BBAABABABA
push 3 3BBAABABABA
push 1 13BBAABABABA
roll BABABABABA
add (A+B)BABABABA
out(int) BABABABA
sub (A-B)BABABA
out(int) BABABA
mult (A*B)BABA
out(int) BABA
divide (A/B)BA
out(int) BA
mod (A%B)
out(int) NULL
push 1 1
exit
|
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PL.2FI | PL/I |
get list (a, b);
put skip list (a+b);
put skip list (a-b);
put skip list (a*b);
put skip list (trunc(a/b)); /* truncates towards zero. */
put skip list (mod(a, b)); /* Remainder is always positive. */
put skip list (rem(a, b)); /* Sign can be negative. */ |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Plain_English | Plain English | To run:
Start up.
Demonstrate integer arithmetic.
Wait for the escape key.
Shut down.
To demonstrate integer arithmetic:
Write "Enter a number: " to the console without advancing.
Read a number from the console.
Write "Enter another number: " to the console without advancing.
Read another number from the console.
Show the arithmetic operations between the number and the other number.
To show the arithmetic operations between a number and another number:
Write the number plus the other number then " is the sum." to the console.
Write the number minus the other number then " is the difference." to the console.
Write the number times the other number then " is the product." to the console.
Show the division of the number by the other number.
Raise the number to the other number.
Write the number then " is the power." to the console.
To show the division of a number by another number:
Privatize the number.
Divide the number by the other number giving a quotient [rounding toward zero] and a remainder [with the same sign as the dividend].
Write the quotient then " is the quotient." to the console.
Write the remainder then " is the remainder." to the console. |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #Pop11 | Pop11 | ;;; Setup token reader
vars itemrep;
incharitem(charin) -> itemrep;
;;; read the numbers
lvars a = itemrep(), b = itemrep();
;;; Print results
printf(a + b, 'a + b = %p\n');
printf(a - b, 'a - b = %p\n');
printf(a * b, 'a * b = %p\n');
printf(a div b, 'a div b = %p\n');
printf(a mod b, 'a mod b = %p\n'); |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PostScript | PostScript | /arithInteger {
/x exch def
/y exch def
x y add =
x y sub =
x y mul =
x y idiv =
x y mod =
x y exp =
} def |
http://rosettacode.org/wiki/Arithmetic/Integer | Arithmetic/Integer |
Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.
You may see other such operations in the Basic Data Operations category, or:
Integer Operations
Arithmetic |
Comparison
Boolean Operations
Bitwise |
Logical
String Operations
Concatenation |
Interpolation |
Comparison |
Matching
Memory Operations
Pointers & references |
Addresses
Task
Get two integers from the user, and then (for those two integers), display their:
sum
difference
product
integer quotient
remainder
exponentiation (if the operator exists)
Don't include error handling.
For quotient, indicate how it rounds (e.g. towards zero, towards negative infinity, etc.).
For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.
| #PowerShell | PowerShell | $a = [int] (Read-Host First Number)
$b = [int] (Read-Host Second Number)
Write-Host "Sum: $($a + $b)"
Write-Host "Difference: $($a - $b)"
Write-Host "Product: $($a * $b)"
Write-Host "Quotient: $($a / $b)"
Write-Host "Quotient, round to even: $([Math]::Round($a / $b))"
Write-Host "Remainder, sign follows first: $($a % $b)" |
http://rosettacode.org/wiki/Arrays | Arrays | This task is about arrays.
For hashes or associative arrays, please see Creating an Associative Array.
For a definition and in-depth discussion of what an array is, see Array.
Task
Show basic array syntax in your language.
Basically, create an array, assign a value to it, and retrieve an element (if available, show both fixed-length arrays and
dynamic arrays, pushing a value into it).
Please discuss at Village Pump: Arrays.
Please merge code in from these obsolete tasks:
Creating an Array
Assigning Values to an Array
Retrieving an Element of an Array
Related tasks
Collections
Creating an Associative Array
Two-dimensional array (runtime)
| #11l | 11l | [Int] array
array.append(1)
array.append(3)
array[0] = 2
print(array[0]) // retrieve first element in an array
print(array.last) // retrieve last element in an array
print(array.pop()) // pop last item in an array
print(array.pop(0)) // pop first item in an array
V size = 10
V myArray = [0] * size // create single-dimensional array
V width = 3
V height = 4
V myArray2 = [[0] * width] * height // create array of arrays |