repository_name
stringlengths
5
67
func_path_in_repository
stringlengths
4
234
func_name
stringlengths
0
314
whole_func_string
stringlengths
52
3.87M
language
stringclasses
6 values
func_code_string
stringlengths
52
3.87M
func_documentation_string
stringlengths
1
47.2k
func_code_url
stringlengths
85
339
loads/molotov
molotov/util.py
request
def request(endpoint, verb='GET', session_options=None, **options): """Performs a synchronous request. Uses a dedicated event loop and aiohttp.ClientSession object. Options: - endpoint: the endpoint to call - verb: the HTTP verb to use (defaults: GET) - session_options: a dict containing options to initialize the session (defaults: None) - options: extra options for the request (defaults: None) Returns a dict object with the following keys: - content: the content of the response - status: the status - headers: a dict with all the response headers """ req = functools.partial(_request, endpoint, verb, session_options, **options) return _run_in_fresh_loop(req)
python
def request(endpoint, verb='GET', session_options=None, **options): """Performs a synchronous request. Uses a dedicated event loop and aiohttp.ClientSession object. Options: - endpoint: the endpoint to call - verb: the HTTP verb to use (defaults: GET) - session_options: a dict containing options to initialize the session (defaults: None) - options: extra options for the request (defaults: None) Returns a dict object with the following keys: - content: the content of the response - status: the status - headers: a dict with all the response headers """ req = functools.partial(_request, endpoint, verb, session_options, **options) return _run_in_fresh_loop(req)
Performs a synchronous request. Uses a dedicated event loop and aiohttp.ClientSession object. Options: - endpoint: the endpoint to call - verb: the HTTP verb to use (defaults: GET) - session_options: a dict containing options to initialize the session (defaults: None) - options: extra options for the request (defaults: None) Returns a dict object with the following keys: - content: the content of the response - status: the status - headers: a dict with all the response headers
https://github.com/loads/molotov/blob/bd2c94e7f250e1fbb21940f02c68b4437655bc11/molotov/util.py#L179-L200
loads/molotov
molotov/util.py
json_request
def json_request(endpoint, verb='GET', session_options=None, **options): """Like :func:`molotov.request` but extracts json from the response. """ req = functools.partial(_request, endpoint, verb, session_options, json=True, **options) return _run_in_fresh_loop(req)
python
def json_request(endpoint, verb='GET', session_options=None, **options): """Like :func:`molotov.request` but extracts json from the response. """ req = functools.partial(_request, endpoint, verb, session_options, json=True, **options) return _run_in_fresh_loop(req)
Like :func:`molotov.request` but extracts json from the response.
https://github.com/loads/molotov/blob/bd2c94e7f250e1fbb21940f02c68b4437655bc11/molotov/util.py#L203-L208
loads/molotov
molotov/util.py
get_var
def get_var(name, factory=None): """Gets a global variable given its name. If factory is not None and the variable is not set, factory is a callable that will set the variable. If not set, returns None. """ if name not in _VARS and factory is not None: _VARS[name] = factory() return _VARS.get(name)
python
def get_var(name, factory=None): """Gets a global variable given its name. If factory is not None and the variable is not set, factory is a callable that will set the variable. If not set, returns None. """ if name not in _VARS and factory is not None: _VARS[name] = factory() return _VARS.get(name)
Gets a global variable given its name. If factory is not None and the variable is not set, factory is a callable that will set the variable. If not set, returns None.
https://github.com/loads/molotov/blob/bd2c94e7f250e1fbb21940f02c68b4437655bc11/molotov/util.py#L225-L235
loads/molotov
molotov/worker.py
Worker.step
async def step(self, step_id, session, scenario=None): """ single scenario call. When it returns 1, it works. -1 the script failed, 0 the test is stopping or needs to stop. """ if scenario is None: scenario = pick_scenario(self.wid, step_id) try: await self.send_event('scenario_start', scenario=scenario) await scenario['func'](session, *scenario['args'], **scenario['kw']) await self.send_event('scenario_success', scenario=scenario) if scenario['delay'] > 0.: await cancellable_sleep(scenario['delay']) return 1 except Exception as exc: await self.send_event('scenario_failure', scenario=scenario, exception=exc) if self.args.verbose > 0: self.console.print_error(exc) await self.console.flush() return -1
python
async def step(self, step_id, session, scenario=None): """ single scenario call. When it returns 1, it works. -1 the script failed, 0 the test is stopping or needs to stop. """ if scenario is None: scenario = pick_scenario(self.wid, step_id) try: await self.send_event('scenario_start', scenario=scenario) await scenario['func'](session, *scenario['args'], **scenario['kw']) await self.send_event('scenario_success', scenario=scenario) if scenario['delay'] > 0.: await cancellable_sleep(scenario['delay']) return 1 except Exception as exc: await self.send_event('scenario_failure', scenario=scenario, exception=exc) if self.args.verbose > 0: self.console.print_error(exc) await self.console.flush() return -1
single scenario call. When it returns 1, it works. -1 the script failed, 0 the test is stopping or needs to stop.
https://github.com/loads/molotov/blob/bd2c94e7f250e1fbb21940f02c68b4437655bc11/molotov/worker.py#L194-L221
loads/molotov
molotov/slave.py
main
def main(): """Moloslave clones a git repo and runs a molotov test """ parser = argparse.ArgumentParser(description='Github-based load test') parser.add_argument('--version', action='store_true', default=False, help='Displays version and exits.') parser.add_argument('--virtualenv', type=str, default='virtualenv', help='Virtualenv executable.') parser.add_argument('--python', type=str, default=sys.executable, help='Python executable.') parser.add_argument('--config', type=str, default='molotov.json', help='Path of the configuration file.') parser.add_argument('repo', help='Github repo', type=str, nargs="?") parser.add_argument('run', help='Test to run', nargs="?") args = parser.parse_args() if args.version: print(__version__) sys.exit(0) tempdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tempdir) print('Working directory is %s' % tempdir) try: clone_repo(args.repo) config_file = os.path.join(tempdir, args.config) with open(config_file) as f: config = json.loads(f.read()) # creating the virtualenv create_virtualenv(args.virtualenv, args.python) # install deps if 'requirements' in config['molotov']: install_reqs(config['molotov']['requirements']) # load deps into sys.path pyver = '%d.%d' % (sys.version_info.major, sys.version_info.minor) site_pkg = os.path.join(tempdir, 'venv', 'lib', 'python' + pyver, 'site-packages') site.addsitedir(site_pkg) pkg_resources.working_set.add_entry(site_pkg) # environment if 'env' in config['molotov']: for key, value in config['molotov']['env'].items(): os.environ[key] = value run_test(**config['molotov']['tests'][args.run]) except Exception: os.chdir(curdir) shutil.rmtree(tempdir, ignore_errors=True) raise
python
def main(): """Moloslave clones a git repo and runs a molotov test """ parser = argparse.ArgumentParser(description='Github-based load test') parser.add_argument('--version', action='store_true', default=False, help='Displays version and exits.') parser.add_argument('--virtualenv', type=str, default='virtualenv', help='Virtualenv executable.') parser.add_argument('--python', type=str, default=sys.executable, help='Python executable.') parser.add_argument('--config', type=str, default='molotov.json', help='Path of the configuration file.') parser.add_argument('repo', help='Github repo', type=str, nargs="?") parser.add_argument('run', help='Test to run', nargs="?") args = parser.parse_args() if args.version: print(__version__) sys.exit(0) tempdir = tempfile.mkdtemp() curdir = os.getcwd() os.chdir(tempdir) print('Working directory is %s' % tempdir) try: clone_repo(args.repo) config_file = os.path.join(tempdir, args.config) with open(config_file) as f: config = json.loads(f.read()) # creating the virtualenv create_virtualenv(args.virtualenv, args.python) # install deps if 'requirements' in config['molotov']: install_reqs(config['molotov']['requirements']) # load deps into sys.path pyver = '%d.%d' % (sys.version_info.major, sys.version_info.minor) site_pkg = os.path.join(tempdir, 'venv', 'lib', 'python' + pyver, 'site-packages') site.addsitedir(site_pkg) pkg_resources.working_set.add_entry(site_pkg) # environment if 'env' in config['molotov']: for key, value in config['molotov']['env'].items(): os.environ[key] = value run_test(**config['molotov']['tests'][args.run]) except Exception: os.chdir(curdir) shutil.rmtree(tempdir, ignore_errors=True) raise
Moloslave clones a git repo and runs a molotov test
https://github.com/loads/molotov/blob/bd2c94e7f250e1fbb21940f02c68b4437655bc11/molotov/slave.py#L62-L122
joeyespo/gitpress
gitpress/helpers.py
remove_directory
def remove_directory(directory, show_warnings=True): """Deletes a directory and its contents. Returns a list of errors in form (function, path, excinfo).""" errors = [] def onerror(function, path, excinfo): if show_warnings: print 'Cannot delete %s: %s' % (os.path.relpath(directory), excinfo[1]) errors.append((function, path, excinfo)) if os.path.exists(directory): if not os.path.isdir(directory): raise NotADirectoryError(directory) shutil.rmtree(directory, onerror=onerror) return errors
python
def remove_directory(directory, show_warnings=True): """Deletes a directory and its contents. Returns a list of errors in form (function, path, excinfo).""" errors = [] def onerror(function, path, excinfo): if show_warnings: print 'Cannot delete %s: %s' % (os.path.relpath(directory), excinfo[1]) errors.append((function, path, excinfo)) if os.path.exists(directory): if not os.path.isdir(directory): raise NotADirectoryError(directory) shutil.rmtree(directory, onerror=onerror) return errors
Deletes a directory and its contents. Returns a list of errors in form (function, path, excinfo).
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/helpers.py#L13-L28
joeyespo/gitpress
gitpress/helpers.py
copy_files
def copy_files(source_files, target_directory, source_directory=None): """Copies a list of files to the specified directory. If source_directory is provided, it will be prepended to each source file.""" try: os.makedirs(target_directory) except: # TODO: specific exception? pass for f in source_files: source = os.path.join(source_directory, f) if source_directory else f target = os.path.join(target_directory, f) shutil.copy2(source, target)
python
def copy_files(source_files, target_directory, source_directory=None): """Copies a list of files to the specified directory. If source_directory is provided, it will be prepended to each source file.""" try: os.makedirs(target_directory) except: # TODO: specific exception? pass for f in source_files: source = os.path.join(source_directory, f) if source_directory else f target = os.path.join(target_directory, f) shutil.copy2(source, target)
Copies a list of files to the specified directory. If source_directory is provided, it will be prepended to each source file.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/helpers.py#L31-L41
joeyespo/gitpress
gitpress/helpers.py
yes_or_no
def yes_or_no(message): """Gets user input and returns True for yes and False for no.""" while True: print message, '(yes/no)', line = raw_input() if line is None: return None line = line.lower() if line == 'y' or line == 'ye' or line == 'yes': return True if line == 'n' or line == 'no': return False
python
def yes_or_no(message): """Gets user input and returns True for yes and False for no.""" while True: print message, '(yes/no)', line = raw_input() if line is None: return None line = line.lower() if line == 'y' or line == 'ye' or line == 'yes': return True if line == 'n' or line == 'no': return False
Gets user input and returns True for yes and False for no.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/helpers.py#L44-L55
joeyespo/gitpress
gitpress/plugins.py
list_plugins
def list_plugins(directory=None): """Gets a list of the installed themes.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins') if not plugins or not isinstance(plugins, dict): return None return plugins.keys()
python
def list_plugins(directory=None): """Gets a list of the installed themes.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins') if not plugins or not isinstance(plugins, dict): return None return plugins.keys()
Gets a list of the installed themes.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/plugins.py#L5-L11
joeyespo/gitpress
gitpress/plugins.py
add_plugin
def add_plugin(plugin, directory=None): """Adds the specified plugin. This returns False if it was already added.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins', expect_type=dict) if plugin in plugins: return False plugins[plugin] = {} set_value(repo, 'plugins', plugins) return True
python
def add_plugin(plugin, directory=None): """Adds the specified plugin. This returns False if it was already added.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins', expect_type=dict) if plugin in plugins: return False plugins[plugin] = {} set_value(repo, 'plugins', plugins) return True
Adds the specified plugin. This returns False if it was already added.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/plugins.py#L14-L23
joeyespo/gitpress
gitpress/plugins.py
get_plugin_settings
def get_plugin_settings(plugin, directory=None): """Gets the settings for the specified plugin.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins') return plugins.get(plugin) if isinstance(plugins, dict) else None
python
def get_plugin_settings(plugin, directory=None): """Gets the settings for the specified plugin.""" repo = require_repo(directory) plugins = get_value(repo, 'plugins') return plugins.get(plugin) if isinstance(plugins, dict) else None
Gets the settings for the specified plugin.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/plugins.py#L38-L42
joeyespo/gitpress
gitpress/previewing.py
preview
def preview(directory=None, host=None, port=None, watch=True): """Runs a local server to preview the working directory of a repository.""" directory = directory or '.' host = host or '127.0.0.1' port = port or 5000 # TODO: admin interface # TODO: use cache_only to keep from modifying output directly out_directory = build(directory) # Serve generated site os.chdir(out_directory) Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer((host, port), Handler) print ' * Serving on http://%s:%s/' % (host, port) httpd.serve_forever()
python
def preview(directory=None, host=None, port=None, watch=True): """Runs a local server to preview the working directory of a repository.""" directory = directory or '.' host = host or '127.0.0.1' port = port or 5000 # TODO: admin interface # TODO: use cache_only to keep from modifying output directly out_directory = build(directory) # Serve generated site os.chdir(out_directory) Handler = SimpleHTTPServer.SimpleHTTPRequestHandler httpd = SocketServer.TCPServer((host, port), Handler) print ' * Serving on http://%s:%s/' % (host, port) httpd.serve_forever()
Runs a local server to preview the working directory of a repository.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/previewing.py#L7-L23
joeyespo/gitpress
gitpress/repository.py
require_repo
def require_repo(directory=None): """Checks for a presentation repository and raises an exception if not found.""" if directory and not os.path.isdir(directory): raise ValueError('Directory not found: ' + repr(directory)) repo = repo_path(directory) if not os.path.isdir(repo): raise RepositoryNotFoundError(directory) return repo
python
def require_repo(directory=None): """Checks for a presentation repository and raises an exception if not found.""" if directory and not os.path.isdir(directory): raise ValueError('Directory not found: ' + repr(directory)) repo = repo_path(directory) if not os.path.isdir(repo): raise RepositoryNotFoundError(directory) return repo
Checks for a presentation repository and raises an exception if not found.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/repository.py#L30-L37
joeyespo/gitpress
gitpress/repository.py
init
def init(directory=None): """Initializes a Gitpress presentation repository at the specified directory.""" repo = repo_path(directory) if os.path.isdir(repo): raise RepositoryAlreadyExistsError(directory, repo) # Initialize repository with default template shutil.copytree(default_template_path, repo) message = '"Default presentation content."' subprocess.call(['git', 'init', '-q', repo]) subprocess.call(['git', 'add', '.'], cwd=repo) subprocess.call(['git', 'commit', '-q', '-m', message], cwd=repo) return repo
python
def init(directory=None): """Initializes a Gitpress presentation repository at the specified directory.""" repo = repo_path(directory) if os.path.isdir(repo): raise RepositoryAlreadyExistsError(directory, repo) # Initialize repository with default template shutil.copytree(default_template_path, repo) message = '"Default presentation content."' subprocess.call(['git', 'init', '-q', repo]) subprocess.call(['git', 'add', '.'], cwd=repo) subprocess.call(['git', 'commit', '-q', '-m', message], cwd=repo) return repo
Initializes a Gitpress presentation repository at the specified directory.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/repository.py#L45-L59
joeyespo/gitpress
gitpress/repository.py
iterate_presentation_files
def iterate_presentation_files(path=None, excludes=None, includes=None): """Iterates the repository presentation files relative to 'path', not including themes. Note that 'includes' take priority.""" # Defaults if includes is None: includes = [] if excludes is None: excludes = [] # Transform glob patterns to regular expressions includes_pattern = r'|'.join([fnmatch.translate(x) for x in includes]) or r'$.' excludes_pattern = r'|'.join([fnmatch.translate(x) for x in excludes]) or r'$.' includes_re = re.compile(includes_pattern) excludes_re = re.compile(excludes_pattern) def included(root, name): """Returns True if the specified file is a presentation file.""" full_path = os.path.join(root, name) # Explicitly included files takes priority if includes_re.match(full_path): return True # Ignore special and excluded files return (not specials_re.match(name) and not excludes_re.match(full_path)) # Get a filtered list of paths to be built for root, dirs, files in os.walk(path): dirs[:] = [d for d in dirs if included(root, d)] files = [f for f in files if included(root, f)] for f in files: yield os.path.relpath(os.path.join(root, f), path)
python
def iterate_presentation_files(path=None, excludes=None, includes=None): """Iterates the repository presentation files relative to 'path', not including themes. Note that 'includes' take priority.""" # Defaults if includes is None: includes = [] if excludes is None: excludes = [] # Transform glob patterns to regular expressions includes_pattern = r'|'.join([fnmatch.translate(x) for x in includes]) or r'$.' excludes_pattern = r'|'.join([fnmatch.translate(x) for x in excludes]) or r'$.' includes_re = re.compile(includes_pattern) excludes_re = re.compile(excludes_pattern) def included(root, name): """Returns True if the specified file is a presentation file.""" full_path = os.path.join(root, name) # Explicitly included files takes priority if includes_re.match(full_path): return True # Ignore special and excluded files return (not specials_re.match(name) and not excludes_re.match(full_path)) # Get a filtered list of paths to be built for root, dirs, files in os.walk(path): dirs[:] = [d for d in dirs if included(root, d)] files = [f for f in files if included(root, f)] for f in files: yield os.path.relpath(os.path.join(root, f), path)
Iterates the repository presentation files relative to 'path', not including themes. Note that 'includes' take priority.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/repository.py#L68-L99
joeyespo/gitpress
gitpress/config.py
read_config_file
def read_config_file(path): """Returns the configuration from the specified file.""" try: with open(path, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) except IOError as ex: if ex != errno.ENOENT: raise return {}
python
def read_config_file(path): """Returns the configuration from the specified file.""" try: with open(path, 'r') as f: return json.load(f, object_pairs_hook=OrderedDict) except IOError as ex: if ex != errno.ENOENT: raise return {}
Returns the configuration from the specified file.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/config.py#L23-L31
joeyespo/gitpress
gitpress/config.py
write_config
def write_config(repo_directory, config): """Writes the specified configuration to the presentation repository.""" return write_config_file(os.path.join(repo_directory, config_file), config)
python
def write_config(repo_directory, config): """Writes the specified configuration to the presentation repository.""" return write_config_file(os.path.join(repo_directory, config_file), config)
Writes the specified configuration to the presentation repository.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/config.py#L34-L36
joeyespo/gitpress
gitpress/config.py
write_config_file
def write_config_file(path, config): """Writes the specified configuration to the specified file.""" contents = json.dumps(config, indent=4, separators=(',', ': ')) + '\n' try: with open(path, 'w') as f: f.write(contents) return True except IOError as ex: if ex != errno.ENOENT: raise return False
python
def write_config_file(path, config): """Writes the specified configuration to the specified file.""" contents = json.dumps(config, indent=4, separators=(',', ': ')) + '\n' try: with open(path, 'w') as f: f.write(contents) return True except IOError as ex: if ex != errno.ENOENT: raise return False
Writes the specified configuration to the specified file.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/config.py#L39-L49
joeyespo/gitpress
gitpress/config.py
get_value
def get_value(repo_directory, key, expect_type=None): """Gets the value of the specified key in the config file.""" config = read_config(repo_directory) value = config.get(key) if expect_type and value is not None and not isinstance(value, expect_type): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(expect_type), repr(type(value)))) return value
python
def get_value(repo_directory, key, expect_type=None): """Gets the value of the specified key in the config file.""" config = read_config(repo_directory) value = config.get(key) if expect_type and value is not None and not isinstance(value, expect_type): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(expect_type), repr(type(value)))) return value
Gets the value of the specified key in the config file.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/config.py#L52-L59
joeyespo/gitpress
gitpress/config.py
set_value
def set_value(repo_directory, key, value, strict=True): """Sets the value of a particular key in the config file. This has no effect when setting to the same value.""" if value is None: raise ValueError('Argument "value" must not be None.') # Read values and do nothing if not making any changes config = read_config(repo_directory) old = config.get(key) if old == value: return old # Check schema if strict and old is not None and not isinstance(old, type(value)): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(type(value)), repr(type(old)))) # Set new value and save results config[key] = value write_config(repo_directory, config) return old
python
def set_value(repo_directory, key, value, strict=True): """Sets the value of a particular key in the config file. This has no effect when setting to the same value.""" if value is None: raise ValueError('Argument "value" must not be None.') # Read values and do nothing if not making any changes config = read_config(repo_directory) old = config.get(key) if old == value: return old # Check schema if strict and old is not None and not isinstance(old, type(value)): raise ConfigSchemaError('Expected config variable %s to be type %s, got %s' % (repr(key), repr(type(value)), repr(type(old)))) # Set new value and save results config[key] = value write_config(repo_directory, config) return old
Sets the value of a particular key in the config file. This has no effect when setting to the same value.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/config.py#L62-L81
joeyespo/gitpress
gitpress/building.py
build
def build(content_directory=None, out_directory=None): """Builds the site from its content and presentation repository.""" content_directory = content_directory or '.' out_directory = os.path.abspath(out_directory or default_out_directory) repo = require_repo(content_directory) # Prevent user mistakes if out_directory == '.': raise ValueError('Output directory must be different than the source directory: ' + repr(out_directory)) if os.path.basename(os.path.relpath(out_directory, content_directory)) == '..': raise ValueError('Output directory must not contain the source directory: ' + repr(out_directory)) # TODO: read config # TODO: use virtualenv # TODO: init and run plugins # TODO: process with active theme # Collect and copy static files files = presentation_files(repo) remove_directory(out_directory) copy_files(files, out_directory, repo) return out_directory
python
def build(content_directory=None, out_directory=None): """Builds the site from its content and presentation repository.""" content_directory = content_directory or '.' out_directory = os.path.abspath(out_directory or default_out_directory) repo = require_repo(content_directory) # Prevent user mistakes if out_directory == '.': raise ValueError('Output directory must be different than the source directory: ' + repr(out_directory)) if os.path.basename(os.path.relpath(out_directory, content_directory)) == '..': raise ValueError('Output directory must not contain the source directory: ' + repr(out_directory)) # TODO: read config # TODO: use virtualenv # TODO: init and run plugins # TODO: process with active theme # Collect and copy static files files = presentation_files(repo) remove_directory(out_directory) copy_files(files, out_directory, repo) return out_directory
Builds the site from its content and presentation repository.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/building.py#L9-L31
joeyespo/gitpress
gitpress/command.py
main
def main(argv=None): """The entry point of the application.""" if argv is None: argv = sys.argv[1:] usage = '\n\n\n'.join(__doc__.split('\n\n\n')[1:]) version = 'Gitpress ' + __version__ # Parse options args = docopt(usage, argv=argv, version=version) # Execute command try: return execute(args) except RepositoryNotFoundError as ex: error('No Gitpress repository found at', ex.directory)
python
def main(argv=None): """The entry point of the application.""" if argv is None: argv = sys.argv[1:] usage = '\n\n\n'.join(__doc__.split('\n\n\n')[1:]) version = 'Gitpress ' + __version__ # Parse options args = docopt(usage, argv=argv, version=version) # Execute command try: return execute(args) except RepositoryNotFoundError as ex: error('No Gitpress repository found at', ex.directory)
The entry point of the application.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/command.py#L40-L54
joeyespo/gitpress
gitpress/command.py
execute
def execute(args): """Executes the command indicated by the specified parsed arguments.""" def info(*message): """Displays a message unless -q was specified.""" if not args['-q']: print ' '.join(map(str, message)) if args['init']: try: repo = init(args['<directory>']) info('Initialized Gitpress repository in', repo) except RepositoryAlreadyExistsError as ex: info('Gitpress repository already exists in', ex.repo) return 0 if args['preview']: directory, address = resolve(args['<directory>'], args['<address>']) host, port = split_address(address) if address and not host and not port: error('Invalid address', repr(address)) return preview(directory, host=host, port=port) if args['build']: require_repo(args['<directory>']) info('Building site', os.path.abspath(args['<directory>'] or '.')) try: out_directory = build(args['<directory>'], args['--out']) except NotADirectoryError as ex: error(ex) info('Site built in', os.path.abspath(out_directory)) return 0 if args['themes']: theme = args['<theme>'] if args['use']: try: switched = use_theme(theme) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 except ThemeNotFoundError as ex: error('Theme %s is not currently installed.' % repr(theme)) return 1 info('Switched to theme %s' if switched else 'Already using %s' % repr(theme)) elif args['install']: # TODO: implement raise NotImplementedError() elif args['uninstall']: # TODO: implement raise NotImplementedError() else: themes = list_themes() if themes: info('Installed themes:') info(' ' + '\n '.join(themes)) else: info('No themes installed.') return 0 if args['plugins']: plugin = args['<plugin>'] if args['add']: try: added = add_plugin(plugin) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 info(('Added plugin %s' if added else 'Plugin %s has already been added.') % repr(plugin)) elif args['remove']: settings = get_plugin_settings(plugin) if not args['-f'] and settings and isinstance(settings, dict): warning = 'Plugin %s contains settings. Remove?' % repr(plugin) if not yes_or_no(warning): return 0 try: removed = remove_plugin(plugin) except ConfigSchemaError as ex: error('Error: Could not modify config:', ex) info(('Removed plugin %s' if removed else 'Plugin %s has already been removed.') % repr(plugin)) else: plugins = list_plugins() info('Installed plugins:\n ' + '\n '.join(plugins) if plugins else 'No plugins installed.') return 0 return 1
python
def execute(args): """Executes the command indicated by the specified parsed arguments.""" def info(*message): """Displays a message unless -q was specified.""" if not args['-q']: print ' '.join(map(str, message)) if args['init']: try: repo = init(args['<directory>']) info('Initialized Gitpress repository in', repo) except RepositoryAlreadyExistsError as ex: info('Gitpress repository already exists in', ex.repo) return 0 if args['preview']: directory, address = resolve(args['<directory>'], args['<address>']) host, port = split_address(address) if address and not host and not port: error('Invalid address', repr(address)) return preview(directory, host=host, port=port) if args['build']: require_repo(args['<directory>']) info('Building site', os.path.abspath(args['<directory>'] or '.')) try: out_directory = build(args['<directory>'], args['--out']) except NotADirectoryError as ex: error(ex) info('Site built in', os.path.abspath(out_directory)) return 0 if args['themes']: theme = args['<theme>'] if args['use']: try: switched = use_theme(theme) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 except ThemeNotFoundError as ex: error('Theme %s is not currently installed.' % repr(theme)) return 1 info('Switched to theme %s' if switched else 'Already using %s' % repr(theme)) elif args['install']: # TODO: implement raise NotImplementedError() elif args['uninstall']: # TODO: implement raise NotImplementedError() else: themes = list_themes() if themes: info('Installed themes:') info(' ' + '\n '.join(themes)) else: info('No themes installed.') return 0 if args['plugins']: plugin = args['<plugin>'] if args['add']: try: added = add_plugin(plugin) except ConfigSchemaError as ex: error('Could not modify config:', ex) return 1 info(('Added plugin %s' if added else 'Plugin %s has already been added.') % repr(plugin)) elif args['remove']: settings = get_plugin_settings(plugin) if not args['-f'] and settings and isinstance(settings, dict): warning = 'Plugin %s contains settings. Remove?' % repr(plugin) if not yes_or_no(warning): return 0 try: removed = remove_plugin(plugin) except ConfigSchemaError as ex: error('Error: Could not modify config:', ex) info(('Removed plugin %s' if removed else 'Plugin %s has already been removed.') % repr(plugin)) else: plugins = list_plugins() info('Installed plugins:\n ' + '\n '.join(plugins) if plugins else 'No plugins installed.') return 0 return 1
Executes the command indicated by the specified parsed arguments.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/command.py#L57-L145
joeyespo/gitpress
gitpress/command.py
gpp
def gpp(argv=None): """Shortcut function for running the previewing command.""" if argv is None: argv = sys.argv[1:] argv.insert(0, 'preview') return main(argv)
python
def gpp(argv=None): """Shortcut function for running the previewing command.""" if argv is None: argv = sys.argv[1:] argv.insert(0, 'preview') return main(argv)
Shortcut function for running the previewing command.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/command.py#L152-L157
joeyespo/gitpress
gitpress/themes.py
list_themes
def list_themes(directory=None): """Gets a list of the installed themes.""" repo = require_repo(directory) path = os.path.join(repo, themes_dir) return os.listdir(path) if os.path.isdir(path) else None
python
def list_themes(directory=None): """Gets a list of the installed themes.""" repo = require_repo(directory) path = os.path.join(repo, themes_dir) return os.listdir(path) if os.path.isdir(path) else None
Gets a list of the installed themes.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/themes.py#L17-L21
joeyespo/gitpress
gitpress/themes.py
use_theme
def use_theme(theme, directory=None): """Switches to the specified theme. This returns False if switching to the already active theme.""" repo = require_repo(directory) if theme not in list_themes(directory): raise ThemeNotFoundError(theme) old_theme = set_value(repo, 'theme', theme) return old_theme != theme
python
def use_theme(theme, directory=None): """Switches to the specified theme. This returns False if switching to the already active theme.""" repo = require_repo(directory) if theme not in list_themes(directory): raise ThemeNotFoundError(theme) old_theme = set_value(repo, 'theme', theme) return old_theme != theme
Switches to the specified theme. This returns False if switching to the already active theme.
https://github.com/joeyespo/gitpress/blob/a23edb80b6e4a113d167217475344a01c92b5c6d/gitpress/themes.py#L24-L31
wrobstory/vincent
vincent/properties.py
PropertySet.fill_opacity
def fill_opacity(value): """ValueRef : int or float, opacity of the fill (0 to 1) """ if value.value: _assert_is_type('fill_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'fill_opacity must be between 0 and 1')
python
def fill_opacity(value): """ValueRef : int or float, opacity of the fill (0 to 1) """ if value.value: _assert_is_type('fill_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'fill_opacity must be between 0 and 1')
ValueRef : int or float, opacity of the fill (0 to 1)
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L89-L97
wrobstory/vincent
vincent/properties.py
PropertySet.stroke_width
def stroke_width(value): """ValueRef : int, width of the stroke in pixels """ if value.value: _assert_is_type('stroke_width.value', value.value, int) if value.value < 0: raise ValueError('stroke width cannot be negative')
python
def stroke_width(value): """ValueRef : int, width of the stroke in pixels """ if value.value: _assert_is_type('stroke_width.value', value.value, int) if value.value < 0: raise ValueError('stroke width cannot be negative')
ValueRef : int, width of the stroke in pixels
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L111-L117
wrobstory/vincent
vincent/properties.py
PropertySet.stroke_opacity
def stroke_opacity(value): """ValueRef : number, opacity of the stroke (0 to 1) """ if value.value: _assert_is_type('stroke_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'stroke_opacity must be between 0 and 1')
python
def stroke_opacity(value): """ValueRef : number, opacity of the stroke (0 to 1) """ if value.value: _assert_is_type('stroke_opacity.value', value.value, (float, int)) if value.value < 0 or value.value > 1: raise ValueError( 'stroke_opacity must be between 0 and 1')
ValueRef : number, opacity of the stroke (0 to 1)
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L120-L128
wrobstory/vincent
vincent/properties.py
PropertySet.size
def size(value): """ValueRef : number, area of the mark in pixels This is the total area of a symbol. For example, a value of 500 and a ``shape`` of ``'circle'`` would result in circles with an area of 500 square pixels. Only used if ``type`` is ``'symbol'``. """ if value.value: _assert_is_type('size.value', value.value, int) if value.value < 0: raise ValueError('size cannot be negative')
python
def size(value): """ValueRef : number, area of the mark in pixels This is the total area of a symbol. For example, a value of 500 and a ``shape`` of ``'circle'`` would result in circles with an area of 500 square pixels. Only used if ``type`` is ``'symbol'``. """ if value.value: _assert_is_type('size.value', value.value, int) if value.value < 0: raise ValueError('size cannot be negative')
ValueRef : number, area of the mark in pixels This is the total area of a symbol. For example, a value of 500 and a ``shape`` of ``'circle'`` would result in circles with an area of 500 square pixels. Only used if ``type`` is ``'symbol'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L131-L141
wrobstory/vincent
vincent/properties.py
PropertySet.shape
def shape(value): """ValueRef : string, type of symbol to use Possible values are ``'circle'`` (default), ``'square'``, ``'cross'``, ``'diamond'``, ``'triangle-up'``, and ``'triangle-down'``. Only used if ``type`` is ``'symbol'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_shapes: raise ValueError(value.value + ' is not a valid shape')
python
def shape(value): """ValueRef : string, type of symbol to use Possible values are ``'circle'`` (default), ``'square'``, ``'cross'``, ``'diamond'``, ``'triangle-up'``, and ``'triangle-down'``. Only used if ``type`` is ``'symbol'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_shapes: raise ValueError(value.value + ' is not a valid shape')
ValueRef : string, type of symbol to use Possible values are ``'circle'`` (default), ``'square'``, ``'cross'``, ``'diamond'``, ``'triangle-up'``, and ``'triangle-down'``. Only used if ``type`` is ``'symbol'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L148-L158
wrobstory/vincent
vincent/properties.py
PropertySet.interpolate
def interpolate(value): """ValueRef : string, line interpolation method to use Possible values for ``area`` types are `'linear'`, ``'step-before'``, ``'step-after'``, ``'basis'``, ``'basis-open'``, ``'cardinal'``, ``'cardinal-open'``, ``'monotone'``. ``line`` types have all values for ``area`` as well as ``'basis-closed'``, ``'bundle'``, and ``'cardinal-closed'``. Only used if ``type`` is ``'area'`` or ``'line'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_methods: raise ValueError(value.value + ' is not a valid method')
python
def interpolate(value): """ValueRef : string, line interpolation method to use Possible values for ``area`` types are `'linear'`, ``'step-before'``, ``'step-after'``, ``'basis'``, ``'basis-open'``, ``'cardinal'``, ``'cardinal-open'``, ``'monotone'``. ``line`` types have all values for ``area`` as well as ``'basis-closed'``, ``'bundle'``, and ``'cardinal-closed'``. Only used if ``type`` is ``'area'`` or ``'line'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_methods: raise ValueError(value.value + ' is not a valid method')
ValueRef : string, line interpolation method to use Possible values for ``area`` types are `'linear'`, ``'step-before'``, ``'step-after'``, ``'basis'``, ``'basis-open'``, ``'cardinal'``, ``'cardinal-open'``, ``'monotone'``. ``line`` types have all values for ``area`` as well as ``'basis-closed'``, ``'bundle'``, and ``'cardinal-closed'``. Only used if ``type`` is ``'area'`` or ``'line'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L206-L220
wrobstory/vincent
vincent/properties.py
PropertySet.align
def align(value): """ValueRef : string, horizontal alignment of mark Possible values are ``'left'``, ``'right'``, and ``'center'``. Only used if ``type`` is ``'image'`` or ``'text'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_align: raise ValueError(value.value + ' is not a valid alignment')
python
def align(value): """ValueRef : string, horizontal alignment of mark Possible values are ``'left'``, ``'right'``, and ``'center'``. Only used if ``type`` is ``'image'`` or ``'text'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_align: raise ValueError(value.value + ' is not a valid alignment')
ValueRef : string, horizontal alignment of mark Possible values are ``'left'``, ``'right'``, and ``'center'``. Only used if ``type`` is ``'image'`` or ``'text'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L239-L248
wrobstory/vincent
vincent/properties.py
PropertySet.baseline
def baseline(value): """ValueRef : string, vertical alignment of mark Possible values are ``'top'``, ``'middle'``, and ``'bottom'``. Only used if ``type`` is ``'image'`` or ``'text'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_baseline: raise ValueError(value.value + ' is not a valid baseline')
python
def baseline(value): """ValueRef : string, vertical alignment of mark Possible values are ``'top'``, ``'middle'``, and ``'bottom'``. Only used if ``type`` is ``'image'`` or ``'text'``. """ if value.value: _assert_is_type('shape.value', value.value, str_types) if value.value not in PropertySet._valid_baseline: raise ValueError(value.value + ' is not a valid baseline')
ValueRef : string, vertical alignment of mark Possible values are ``'top'``, ``'middle'``, and ``'bottom'``. Only used if ``type`` is ``'image'`` or ``'text'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/properties.py#L253-L262
wrobstory/vincent
vincent/transforms.py
Transform.type
def type(value): """string: property name in which to store the computed transform value. The valid transform types are as follows: 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud' """ valid_transforms = frozenset([ 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud' ]) if value not in valid_transforms: raise ValueError('Transform type must be' ' one of {0}'.format(str(valid_transforms)))
python
def type(value): """string: property name in which to store the computed transform value. The valid transform types are as follows: 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud' """ valid_transforms = frozenset([ 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud' ]) if value not in valid_transforms: raise ValueError('Transform type must be' ' one of {0}'.format(str(valid_transforms)))
string: property name in which to store the computed transform value. The valid transform types are as follows: 'array', 'copy', 'cross', 'facet', 'filter', 'flatten', 'fold', 'formula', 'slice', 'sort', 'stats', 'truncate', 'unique', 'window', 'zip', 'force', 'geo', 'geopath', 'link', 'pie', 'stack', 'treemap', 'wordcloud'
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/transforms.py#L28-L49
wrobstory/vincent
vincent/charts.py
data_type
def data_type(data, grouped=False, columns=None, key_on='idx', iter_idx=None): '''Data type check for automatic import''' if iter_idx: return Data.from_mult_iters(idx=iter_idx, **data) if pd: if isinstance(data, (pd.Series, pd.DataFrame)): return Data.from_pandas(data, grouped=grouped, columns=columns, key_on=key_on) if isinstance(data, (list, tuple, dict)): return Data.from_iter(data) else: raise ValueError('This data type is not supported by Vincent.')
python
def data_type(data, grouped=False, columns=None, key_on='idx', iter_idx=None): '''Data type check for automatic import''' if iter_idx: return Data.from_mult_iters(idx=iter_idx, **data) if pd: if isinstance(data, (pd.Series, pd.DataFrame)): return Data.from_pandas(data, grouped=grouped, columns=columns, key_on=key_on) if isinstance(data, (list, tuple, dict)): return Data.from_iter(data) else: raise ValueError('This data type is not supported by Vincent.')
Data type check for automatic import
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/charts.py#L28-L39
wrobstory/vincent
vincent/charts.py
Map.rebind
def rebind(self, column=None, brew='GnBu'): """Bind a new column to the data map Parameters ---------- column: str, default None Pandas DataFrame column name brew: str, default None Color brewer abbreviation. See colors.py """ self.data['table'] = Data.keypairs( self.raw_data, columns=[self.data_key, column]) domain = [Data.serialize(self.raw_data[column].min()), Data.serialize(self.raw_data[column].quantile(0.95))] scale = Scale(name='color', type='quantize', domain=domain, range=brews[brew]) self.scales['color'] = scale
python
def rebind(self, column=None, brew='GnBu'): """Bind a new column to the data map Parameters ---------- column: str, default None Pandas DataFrame column name brew: str, default None Color brewer abbreviation. See colors.py """ self.data['table'] = Data.keypairs( self.raw_data, columns=[self.data_key, column]) domain = [Data.serialize(self.raw_data[column].min()), Data.serialize(self.raw_data[column].quantile(0.95))] scale = Scale(name='color', type='quantize', domain=domain, range=brews[brew]) self.scales['color'] = scale
Bind a new column to the data map Parameters ---------- column: str, default None Pandas DataFrame column name brew: str, default None Color brewer abbreviation. See colors.py
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/charts.py#L510-L527
wrobstory/vincent
vincent/visualization.py
Visualization.viewport
def viewport(value): """2-element list of ints : Dimensions of the viewport The viewport is a bounding box containing the visualization. If the dimensions of the visualization are larger than the viewport, then the visualization will be scrollable. If undefined, then the full visualization is shown. """ if len(value) != 2: raise ValueError('viewport must have 2 dimensions') for v in value: _assert_is_type('viewport dimension', v, int) if v < 0: raise ValueError('viewport dimensions cannot be negative')
python
def viewport(value): """2-element list of ints : Dimensions of the viewport The viewport is a bounding box containing the visualization. If the dimensions of the visualization are larger than the viewport, then the visualization will be scrollable. If undefined, then the full visualization is shown. """ if len(value) != 2: raise ValueError('viewport must have 2 dimensions') for v in value: _assert_is_type('viewport dimension', v, int) if v < 0: raise ValueError('viewport dimensions cannot be negative')
2-element list of ints : Dimensions of the viewport The viewport is a bounding box containing the visualization. If the dimensions of the visualization are larger than the viewport, then the visualization will be scrollable. If undefined, then the full visualization is shown.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L77-L91
wrobstory/vincent
vincent/visualization.py
Visualization.padding
def padding(value): """int or dict : Padding around visualization The padding defines the distance between the edge of the visualization canvas to the visualization box. It does not count as part of the visualization width/height. Values cannot be negative. If a dict, padding must have all keys ``''top'``, ``'left'``, ``'right'``, and ``'bottom'`` with int values. """ if isinstance(value, dict): required_keys = ['top', 'left', 'right', 'bottom'] for key in required_keys: if key not in value: error = ('Padding must have keys "{0}".' .format('", "'.join(required_keys))) raise ValueError(error) _assert_is_type('padding: {0}'.format(key), value[key], int) if value[key] < 0: raise ValueError('Padding cannot be negative.') elif isinstance(value, int): if value < 0: raise ValueError('Padding cannot be negative.') else: if value not in ("auto", "strict"): raise ValueError('Padding can only be auto or strict.')
python
def padding(value): """int or dict : Padding around visualization The padding defines the distance between the edge of the visualization canvas to the visualization box. It does not count as part of the visualization width/height. Values cannot be negative. If a dict, padding must have all keys ``''top'``, ``'left'``, ``'right'``, and ``'bottom'`` with int values. """ if isinstance(value, dict): required_keys = ['top', 'left', 'right', 'bottom'] for key in required_keys: if key not in value: error = ('Padding must have keys "{0}".' .format('", "'.join(required_keys))) raise ValueError(error) _assert_is_type('padding: {0}'.format(key), value[key], int) if value[key] < 0: raise ValueError('Padding cannot be negative.') elif isinstance(value, int): if value < 0: raise ValueError('Padding cannot be negative.') else: if value not in ("auto", "strict"): raise ValueError('Padding can only be auto or strict.')
int or dict : Padding around visualization The padding defines the distance between the edge of the visualization canvas to the visualization box. It does not count as part of the visualization width/height. Values cannot be negative. If a dict, padding must have all keys ``''top'``, ``'left'``, ``'right'``, and ``'bottom'`` with int values.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L94-L119
wrobstory/vincent
vincent/visualization.py
Visualization.data
def data(value): """list or KeyedList of ``Data`` : Data definitions This defines the data being visualized. See the :class:`Data` class for details. """ for i, entry in enumerate(value): _assert_is_type('data[{0}]'.format(i), entry, Data)
python
def data(value): """list or KeyedList of ``Data`` : Data definitions This defines the data being visualized. See the :class:`Data` class for details. """ for i, entry in enumerate(value): _assert_is_type('data[{0}]'.format(i), entry, Data)
list or KeyedList of ``Data`` : Data definitions This defines the data being visualized. See the :class:`Data` class for details.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L122-L129
wrobstory/vincent
vincent/visualization.py
Visualization.scales
def scales(value): """list or KeyedList of ``Scale`` : Scale definitions Scales map the data from the domain of the data to some visualization space (such as an x-axis). See the :class:`Scale` class for details. """ for i, entry in enumerate(value): _assert_is_type('scales[{0}]'.format(i), entry, Scale)
python
def scales(value): """list or KeyedList of ``Scale`` : Scale definitions Scales map the data from the domain of the data to some visualization space (such as an x-axis). See the :class:`Scale` class for details. """ for i, entry in enumerate(value): _assert_is_type('scales[{0}]'.format(i), entry, Scale)
list or KeyedList of ``Scale`` : Scale definitions Scales map the data from the domain of the data to some visualization space (such as an x-axis). See the :class:`Scale` class for details.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L132-L140
wrobstory/vincent
vincent/visualization.py
Visualization.axes
def axes(value): """list or KeyedList of ``Axis`` : Axis definitions Axes define the locations of the data being mapped by the scales. See the :class:`Axis` class for details. """ for i, entry in enumerate(value): _assert_is_type('axes[{0}]'.format(i), entry, Axis)
python
def axes(value): """list or KeyedList of ``Axis`` : Axis definitions Axes define the locations of the data being mapped by the scales. See the :class:`Axis` class for details. """ for i, entry in enumerate(value): _assert_is_type('axes[{0}]'.format(i), entry, Axis)
list or KeyedList of ``Axis`` : Axis definitions Axes define the locations of the data being mapped by the scales. See the :class:`Axis` class for details.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L143-L150
wrobstory/vincent
vincent/visualization.py
Visualization.marks
def marks(value): """list or KeyedList of ``Mark`` : Mark definitions Marks are the visual objects (such as lines, bars, etc.) that represent the data in the visualization space. See the :class:`Mark` class for details. """ for i, entry in enumerate(value): _assert_is_type('marks[{0}]'.format(i), entry, Mark)
python
def marks(value): """list or KeyedList of ``Mark`` : Mark definitions Marks are the visual objects (such as lines, bars, etc.) that represent the data in the visualization space. See the :class:`Mark` class for details. """ for i, entry in enumerate(value): _assert_is_type('marks[{0}]'.format(i), entry, Mark)
list or KeyedList of ``Mark`` : Mark definitions Marks are the visual objects (such as lines, bars, etc.) that represent the data in the visualization space. See the :class:`Mark` class for details.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L153-L161
wrobstory/vincent
vincent/visualization.py
Visualization.legends
def legends(value): """list or KeyedList of ``Legends`` : Legend definitions Legends visualize scales, and take one or more scales as their input. They can be customized via a LegendProperty object. """ for i, entry in enumerate(value): _assert_is_type('legends[{0}]'.format(i), entry, Legend)
python
def legends(value): """list or KeyedList of ``Legends`` : Legend definitions Legends visualize scales, and take one or more scales as their input. They can be customized via a LegendProperty object. """ for i, entry in enumerate(value): _assert_is_type('legends[{0}]'.format(i), entry, Legend)
list or KeyedList of ``Legends`` : Legend definitions Legends visualize scales, and take one or more scales as their input. They can be customized via a LegendProperty object.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L164-L171
wrobstory/vincent
vincent/visualization.py
Visualization.axis_titles
def axis_titles(self, x=None, y=None): """Apply axis titles to the figure. This is a convenience method for manually modifying the "Axes" mark. Parameters ---------- x: string, default 'null' X-axis title y: string, default 'null' Y-axis title Example ------- >>>vis.axis_titles(y="Data 1", x="Data 2") """ keys = self.axes.get_keys() if keys: for key in keys: if key == 'x': self.axes[key].title = x elif key == 'y': self.axes[key].title = y else: self.axes.extend([Axis(type='x', title=x), Axis(type='y', title=y)]) return self
python
def axis_titles(self, x=None, y=None): """Apply axis titles to the figure. This is a convenience method for manually modifying the "Axes" mark. Parameters ---------- x: string, default 'null' X-axis title y: string, default 'null' Y-axis title Example ------- >>>vis.axis_titles(y="Data 1", x="Data 2") """ keys = self.axes.get_keys() if keys: for key in keys: if key == 'x': self.axes[key].title = x elif key == 'y': self.axes[key].title = y else: self.axes.extend([Axis(type='x', title=x), Axis(type='y', title=y)]) return self
Apply axis titles to the figure. This is a convenience method for manually modifying the "Axes" mark. Parameters ---------- x: string, default 'null' X-axis title y: string, default 'null' Y-axis title Example ------- >>>vis.axis_titles(y="Data 1", x="Data 2")
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L173-L201
wrobstory/vincent
vincent/visualization.py
Visualization._set_axis_properties
def _set_axis_properties(self, axis): """Set AxisProperties and PropertySets""" if not getattr(axis, 'properties'): axis.properties = AxisProperties() for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: setattr(axis.properties, prop, PropertySet())
python
def _set_axis_properties(self, axis): """Set AxisProperties and PropertySets""" if not getattr(axis, 'properties'): axis.properties = AxisProperties() for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: setattr(axis.properties, prop, PropertySet())
Set AxisProperties and PropertySets
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L203-L209
wrobstory/vincent
vincent/visualization.py
Visualization._set_all_axis_color
def _set_all_axis_color(self, axis, color): """Set axis ticks, title, labels to given color""" for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: prop_set = getattr(axis.properties, prop) if color and prop in ['title', 'labels']: prop_set.fill = ValueRef(value=color) elif color and prop in ['axis', 'major_ticks', 'minor_ticks', 'ticks']: prop_set.stroke = ValueRef(value=color)
python
def _set_all_axis_color(self, axis, color): """Set axis ticks, title, labels to given color""" for prop in ['ticks', 'axis', 'major_ticks', 'minor_ticks', 'title', 'labels']: prop_set = getattr(axis.properties, prop) if color and prop in ['title', 'labels']: prop_set.fill = ValueRef(value=color) elif color and prop in ['axis', 'major_ticks', 'minor_ticks', 'ticks']: prop_set.stroke = ValueRef(value=color)
Set axis ticks, title, labels to given color
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L211-L220
wrobstory/vincent
vincent/visualization.py
Visualization._axis_properties
def _axis_properties(self, axis, title_size, title_offset, label_angle, label_align, color): """Assign axis properties""" if self.axes: axis = [a for a in self.axes if a.scale == axis][0] self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: axis.properties.title.font_size = ValueRef(value=title_size) if label_angle: axis.properties.labels.angle = ValueRef(value=label_angle) if label_align: axis.properties.labels.align = ValueRef(value=label_align) if title_offset: axis.properties.title.dy = ValueRef(value=title_offset) else: raise ValueError('This Visualization has no axes!')
python
def _axis_properties(self, axis, title_size, title_offset, label_angle, label_align, color): """Assign axis properties""" if self.axes: axis = [a for a in self.axes if a.scale == axis][0] self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: axis.properties.title.font_size = ValueRef(value=title_size) if label_angle: axis.properties.labels.angle = ValueRef(value=label_angle) if label_align: axis.properties.labels.align = ValueRef(value=label_align) if title_offset: axis.properties.title.dy = ValueRef(value=title_offset) else: raise ValueError('This Visualization has no axes!')
Assign axis properties
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L222-L239
wrobstory/vincent
vincent/visualization.py
Visualization.common_axis_properties
def common_axis_properties(self, color=None, title_size=None): """Set common axis properties such as color Parameters ---------- color: str, default None Hex color str, etc """ if self.axes: for axis in self.axes: self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: ref = ValueRef(value=title_size) axis.properties.title.font_size = ref else: raise ValueError('This Visualization has no axes!') return self
python
def common_axis_properties(self, color=None, title_size=None): """Set common axis properties such as color Parameters ---------- color: str, default None Hex color str, etc """ if self.axes: for axis in self.axes: self._set_axis_properties(axis) self._set_all_axis_color(axis, color) if title_size: ref = ValueRef(value=title_size) axis.properties.title.font_size = ref else: raise ValueError('This Visualization has no axes!') return self
Set common axis properties such as color Parameters ---------- color: str, default None Hex color str, etc
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L241-L258
wrobstory/vincent
vincent/visualization.py
Visualization.x_axis_properties
def x_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None): """Change x-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color """ self._axis_properties('x', title_size, title_offset, label_angle, label_align, color) return self
python
def x_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None): """Change x-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color """ self._axis_properties('x', title_size, title_offset, label_angle, label_align, color) return self
Change x-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L260-L279
wrobstory/vincent
vincent/visualization.py
Visualization.y_axis_properties
def y_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None): """Change y-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color """ self._axis_properties('y', title_size, title_offset, label_angle, label_align, color) return self
python
def y_axis_properties(self, title_size=None, title_offset=None, label_angle=None, label_align=None, color=None): """Change y-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color """ self._axis_properties('y', title_size, title_offset, label_angle, label_align, color) return self
Change y-axis title font size and label angle Parameters ---------- title_size: int, default None Title size, in px title_offset: int, default None Pixel offset from given axis label_angle: int, default None label angle in degrees label_align: str, default None Label alignment color: str, default None Hex color
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L281-L300
wrobstory/vincent
vincent/visualization.py
Visualization.legend
def legend(self, title=None, scale='color', text_color=None): """Convience method for adding a legend to the figure. Important: This defaults to the color scale that is generated with Line, Area, Stacked Line, etc charts. For bar charts, the scale ref is usually 'y'. Parameters ---------- title: string, default None Legend Title scale: string, default 'color' Scale reference for legend text_color: str, default None Title and label color """ self.legends.append(Legend(title=title, fill=scale, offset=0, properties=LegendProperties())) if text_color: color_props = PropertySet(fill=ValueRef(value=text_color)) self.legends[0].properties.labels = color_props self.legends[0].properties.title = color_props return self
python
def legend(self, title=None, scale='color', text_color=None): """Convience method for adding a legend to the figure. Important: This defaults to the color scale that is generated with Line, Area, Stacked Line, etc charts. For bar charts, the scale ref is usually 'y'. Parameters ---------- title: string, default None Legend Title scale: string, default 'color' Scale reference for legend text_color: str, default None Title and label color """ self.legends.append(Legend(title=title, fill=scale, offset=0, properties=LegendProperties())) if text_color: color_props = PropertySet(fill=ValueRef(value=text_color)) self.legends[0].properties.labels = color_props self.legends[0].properties.title = color_props return self
Convience method for adding a legend to the figure. Important: This defaults to the color scale that is generated with Line, Area, Stacked Line, etc charts. For bar charts, the scale ref is usually 'y'. Parameters ---------- title: string, default None Legend Title scale: string, default 'color' Scale reference for legend text_color: str, default None Title and label color
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L302-L325
wrobstory/vincent
vincent/visualization.py
Visualization.colors
def colors(self, brew=None, range_=None): """Convenience method for adding color brewer scales to charts with a color scale, such as stacked or grouped bars. See the colors here: http://colorbrewer2.org/ Or here: http://bl.ocks.org/mbostock/5577023 This assumes that a 'color' scale exists on your chart. Parameters ---------- brew: string, default None Color brewer scheme (BuGn, YlOrRd, etc) range: list, default None List of colors. Ex: ['#ac4142', '#d28445', '#f4bf75'] """ if brew: self.scales['color'].range = brews[brew] elif range_: self.scales['color'].range = range_ return self
python
def colors(self, brew=None, range_=None): """Convenience method for adding color brewer scales to charts with a color scale, such as stacked or grouped bars. See the colors here: http://colorbrewer2.org/ Or here: http://bl.ocks.org/mbostock/5577023 This assumes that a 'color' scale exists on your chart. Parameters ---------- brew: string, default None Color brewer scheme (BuGn, YlOrRd, etc) range: list, default None List of colors. Ex: ['#ac4142', '#d28445', '#f4bf75'] """ if brew: self.scales['color'].range = brews[brew] elif range_: self.scales['color'].range = range_ return self
Convenience method for adding color brewer scales to charts with a color scale, such as stacked or grouped bars. See the colors here: http://colorbrewer2.org/ Or here: http://bl.ocks.org/mbostock/5577023 This assumes that a 'color' scale exists on your chart. Parameters ---------- brew: string, default None Color brewer scheme (BuGn, YlOrRd, etc) range: list, default None List of colors. Ex: ['#ac4142', '#d28445', '#f4bf75']
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L327-L348
wrobstory/vincent
vincent/visualization.py
Visualization.validate
def validate(self, require_all=True, scale='colors'): """Validate the visualization contents. Parameters ---------- require_all : boolean, default True If True (default), then all fields ``data``, ``scales``, ``axes``, and ``marks`` must be defined. The user is allowed to disable this if the intent is to define the elements client-side. If the contents of the visualization are not valid Vega, then a :class:`ValidationError` is raised. """ super(self.__class__, self).validate() required_attribs = ('data', 'scales', 'axes', 'marks') for elem in required_attribs: attr = getattr(self, elem) if attr: # Validate each element of the sets of data, etc for entry in attr: entry.validate() names = [a.name for a in attr] if len(names) != len(set(names)): raise ValidationError(elem + ' has duplicate names') elif require_all: raise ValidationError( elem + ' must be defined for valid visualization')
python
def validate(self, require_all=True, scale='colors'): """Validate the visualization contents. Parameters ---------- require_all : boolean, default True If True (default), then all fields ``data``, ``scales``, ``axes``, and ``marks`` must be defined. The user is allowed to disable this if the intent is to define the elements client-side. If the contents of the visualization are not valid Vega, then a :class:`ValidationError` is raised. """ super(self.__class__, self).validate() required_attribs = ('data', 'scales', 'axes', 'marks') for elem in required_attribs: attr = getattr(self, elem) if attr: # Validate each element of the sets of data, etc for entry in attr: entry.validate() names = [a.name for a in attr] if len(names) != len(set(names)): raise ValidationError(elem + ' has duplicate names') elif require_all: raise ValidationError( elem + ' must be defined for valid visualization')
Validate the visualization contents. Parameters ---------- require_all : boolean, default True If True (default), then all fields ``data``, ``scales``, ``axes``, and ``marks`` must be defined. The user is allowed to disable this if the intent is to define the elements client-side. If the contents of the visualization are not valid Vega, then a :class:`ValidationError` is raised.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L350-L377
wrobstory/vincent
vincent/visualization.py
Visualization._repr_html_
def _repr_html_(self): """Build the HTML representation for IPython.""" vis_id = str(uuid4()).replace("-", "") html = """<div id="vis%s"></div> <script> ( function() { var _do_plot = function() { if (typeof vg === 'undefined') { window.addEventListener('vincent_libs_loaded', _do_plot) return; } vg.parse.spec(%s, function(chart) { chart({el: "#vis%s"}).update(); }); }; _do_plot(); })(); </script> <style>.vega canvas {width: 100%%;}</style> """ % (vis_id, self.to_json(pretty_print=False), vis_id) return html
python
def _repr_html_(self): """Build the HTML representation for IPython.""" vis_id = str(uuid4()).replace("-", "") html = """<div id="vis%s"></div> <script> ( function() { var _do_plot = function() { if (typeof vg === 'undefined') { window.addEventListener('vincent_libs_loaded', _do_plot) return; } vg.parse.spec(%s, function(chart) { chart({el: "#vis%s"}).update(); }); }; _do_plot(); })(); </script> <style>.vega canvas {width: 100%%;}</style> """ % (vis_id, self.to_json(pretty_print=False), vis_id) return html
Build the HTML representation for IPython.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L379-L399
wrobstory/vincent
vincent/visualization.py
Visualization.display
def display(self): """Display the visualization inline in the IPython notebook. This is deprecated, use the following instead:: from IPython.display import display display(viz) """ from IPython.core.display import display, HTML display(HTML(self._repr_html_()))
python
def display(self): """Display the visualization inline in the IPython notebook. This is deprecated, use the following instead:: from IPython.display import display display(viz) """ from IPython.core.display import display, HTML display(HTML(self._repr_html_()))
Display the visualization inline in the IPython notebook. This is deprecated, use the following instead:: from IPython.display import display display(viz)
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/visualization.py#L401-L410
wrobstory/vincent
vincent/data.py
Data.validate
def validate(self, *args): """Validate contents of class """ super(self.__class__, self).validate(*args) if not self.name: raise ValidationError('name is required for Data')
python
def validate(self, *args): """Validate contents of class """ super(self.__class__, self).validate(*args) if not self.name: raise ValidationError('name is required for Data')
Validate contents of class
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L122-L127
wrobstory/vincent
vincent/data.py
Data.serialize
def serialize(obj): """Convert an object into a JSON-serializable value This is used by the ``from_pandas`` and ``from_numpy`` functions to convert data to JSON-serializable types when loading. """ if isinstance(obj, str_types): return obj elif hasattr(obj, 'timetuple'): return int(time.mktime(obj.timetuple())) * 1000 elif hasattr(obj, 'item'): return obj.item() elif hasattr(obj, '__float__'): if isinstance(obj, int): return int(obj) else: return float(obj) elif hasattr(obj, '__int__'): return int(obj) else: raise LoadError('cannot serialize index of type ' + type(obj).__name__)
python
def serialize(obj): """Convert an object into a JSON-serializable value This is used by the ``from_pandas`` and ``from_numpy`` functions to convert data to JSON-serializable types when loading. """ if isinstance(obj, str_types): return obj elif hasattr(obj, 'timetuple'): return int(time.mktime(obj.timetuple())) * 1000 elif hasattr(obj, 'item'): return obj.item() elif hasattr(obj, '__float__'): if isinstance(obj, int): return int(obj) else: return float(obj) elif hasattr(obj, '__int__'): return int(obj) else: raise LoadError('cannot serialize index of type ' + type(obj).__name__)
Convert an object into a JSON-serializable value This is used by the ``from_pandas`` and ``from_numpy`` functions to convert data to JSON-serializable types when loading.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L130-L151
wrobstory/vincent
vincent/data.py
Data.from_pandas
def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs): """Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor. """ # Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: # The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iteritems(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iteritems()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data
python
def from_pandas(cls, data, columns=None, key_on='idx', name=None, series_key='data', grouped=False, records=False, **kwargs): """Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor. """ # Note: There's an experimental JSON encoder floating around in # pandas land that hasn't made it into the main branch. This # function should be revisited if it ever does. if not pd: raise LoadError('pandas could not be imported') if not hasattr(data, 'index'): raise ValueError('Please load a Pandas object.') if name: vega_data = cls(name=name, **kwargs) else: vega_data = cls(name='table', **kwargs) pd_obj = data.copy() if columns: pd_obj = data[columns] if key_on != 'idx': pd_obj.index = data[key_on] if records: # The worst vega_data.values = json.loads(pd_obj.to_json(orient='records')) return vega_data vega_data.values = [] if isinstance(pd_obj, pd.Series): data_key = data.name or series_key for i, v in pd_obj.iteritems(): value = {} value['idx'] = cls.serialize(i) value['col'] = data_key value['val'] = cls.serialize(v) vega_data.values.append(value) elif isinstance(pd_obj, pd.DataFrame): # We have to explicitly convert the column names to strings # because the json serializer doesn't allow for integer keys. for i, row in pd_obj.iterrows(): for num, (k, v) in enumerate(row.iteritems()): value = {} value['idx'] = cls.serialize(i) value['col'] = cls.serialize(k) value['val'] = cls.serialize(v) if grouped: value['group'] = num vega_data.values.append(value) else: raise ValueError('cannot load from data type ' + type(pd_obj).__name__) return vega_data
Load values from a pandas ``Series`` or ``DataFrame`` object Parameters ---------- data : pandas ``Series`` or ``DataFrame`` Pandas object to import data from. columns: list, default None DataFrame columns to convert to Data. Keys default to col names. If columns are given and on_index is False, x-axis data will default to the first column. key_on: string, default 'index' Value to key on for x-axis data. Defaults to index. name : string, default None Applies to the ``name`` attribute of the generated class. If ``None`` (default), then the ``name`` attribute of ``pd_obj`` is used if it exists, or ``'table'`` if it doesn't. series_key : string, default 'data' Applies only to ``Series``. If ``None`` (default), then defaults to data.name. For example, if ``series_key`` is ``'x'``, then the entries of the ``values`` list will be ``{'idx': ..., 'col': 'x', 'val': ...}``. grouped: boolean, default False Pass true for an extra grouping parameter records: boolean, defaule False Requires Pandas 0.12 or greater. Writes the Pandas DataFrame using the df.to_json(orient='records') formatting. **kwargs : dict Additional arguments passed to the :class:`Data` constructor.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L154-L234
wrobstory/vincent
vincent/data.py
Data.from_numpy
def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs): """Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`. """ if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data
python
def from_numpy(cls, np_obj, name, columns, index=None, index_key=None, **kwargs): """Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`. """ if not np: raise LoadError('numpy could not be imported') _assert_is_type('numpy object', np_obj, np.ndarray) # Integer index if none is provided index = index or range(np_obj.shape[0]) # Explicitly map dict-keys to strings for JSON serializer. columns = list(map(str, columns)) index_key = index_key or cls._default_index_key if len(index) != np_obj.shape[0]: raise LoadError( 'length of index must be equal to number of rows of array') elif len(columns) != np_obj.shape[1]: raise LoadError( 'length of columns must be equal to number of columns of ' 'array') data = cls(name=name, **kwargs) data.values = [ dict([(index_key, cls.serialize(idx))] + [(col, x) for col, x in zip(columns, row)]) for idx, row in zip(index, np_obj.tolist())] return data
Load values from a numpy array Parameters ---------- np_obj : numpy.ndarray numpy array to load data from name : string ``name`` field for the data columns : iterable Sequence of column names, from left to right. Must have same length as the number of columns of ``np_obj``. index : iterable, default None Sequence of indices from top to bottom. If ``None`` (default), then the indices are integers starting at 0. Must have same length as the number of rows of ``np_obj``. index_key : string, default None Key to use for the index. If ``None`` (default), ``idx`` is used. **kwargs : dict Additional arguments passed to the :class:`Data` constructor Notes ----- The individual elements of ``np_obj``, ``columns``, and ``index`` must return valid values from :func:`Data.serialize`.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L237-L291
wrobstory/vincent
vincent/data.py
Data.from_mult_iters
def from_mult_iters(cls, name=None, idx=None, **kwargs): """Load values from multiple iters Parameters ---------- name : string, default None Name of the data set. If None (default), the name will be set to ``'table'``. idx: string, default None Iterable to use for the data index **kwargs : dict of iterables The ``values`` field will contain dictionaries with keys for each of the iterables provided. For example, d = Data.from_iters(idx='x', x=[0, 1, 5], y=(10, 20, 30)) would result in ``d`` having a ``values`` field with [{'idx': 0, 'col': 'y', 'val': 10}, {'idx': 1, 'col': 'y', 'val': 20} If the iterables are not the same length, then ValueError is raised. """ if not name: name = 'table' lengths = [len(v) for v in kwargs.values()] if len(set(lengths)) != 1: raise ValueError('Iterables must all be same length') if not idx: raise ValueError('Must provide iter name index reference') index = kwargs.pop(idx) vega_vals = [] for k, v in sorted(kwargs.items()): for idx, val in zip(index, v): value = {} value['idx'] = idx value['col'] = k value['val'] = val vega_vals.append(value) return cls(name, values=vega_vals)
python
def from_mult_iters(cls, name=None, idx=None, **kwargs): """Load values from multiple iters Parameters ---------- name : string, default None Name of the data set. If None (default), the name will be set to ``'table'``. idx: string, default None Iterable to use for the data index **kwargs : dict of iterables The ``values`` field will contain dictionaries with keys for each of the iterables provided. For example, d = Data.from_iters(idx='x', x=[0, 1, 5], y=(10, 20, 30)) would result in ``d`` having a ``values`` field with [{'idx': 0, 'col': 'y', 'val': 10}, {'idx': 1, 'col': 'y', 'val': 20} If the iterables are not the same length, then ValueError is raised. """ if not name: name = 'table' lengths = [len(v) for v in kwargs.values()] if len(set(lengths)) != 1: raise ValueError('Iterables must all be same length') if not idx: raise ValueError('Must provide iter name index reference') index = kwargs.pop(idx) vega_vals = [] for k, v in sorted(kwargs.items()): for idx, val in zip(index, v): value = {} value['idx'] = idx value['col'] = k value['val'] = val vega_vals.append(value) return cls(name, values=vega_vals)
Load values from multiple iters Parameters ---------- name : string, default None Name of the data set. If None (default), the name will be set to ``'table'``. idx: string, default None Iterable to use for the data index **kwargs : dict of iterables The ``values`` field will contain dictionaries with keys for each of the iterables provided. For example, d = Data.from_iters(idx='x', x=[0, 1, 5], y=(10, 20, 30)) would result in ``d`` having a ``values`` field with [{'idx': 0, 'col': 'y', 'val': 10}, {'idx': 1, 'col': 'y', 'val': 20} If the iterables are not the same length, then ValueError is raised.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L294-L339
wrobstory/vincent
vincent/data.py
Data.from_iter
def from_iter(cls, data, name=None): """Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``. """ if not name: name = 'table' if isinstance(data, (list, tuple)): data = {x: y for x, y in enumerate(data)} values = [{'idx': k, 'col': 'data', 'val': v} for k, v in sorted(data.items())] return cls(name, values=values)
python
def from_iter(cls, data, name=None): """Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``. """ if not name: name = 'table' if isinstance(data, (list, tuple)): data = {x: y for x, y in enumerate(data)} values = [{'idx': k, 'col': 'data', 'val': v} for k, v in sorted(data.items())] return cls(name, values=values)
Convenience method for loading data from an iterable. Defaults to numerical indexing for x-axis. Parameters ---------- data: iterable An iterable of data (list, tuple, dict of key/val pairs) name: string, default None Name of the data set. If None (default), the name will be set to ``'table'``.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L342-L364
wrobstory/vincent
vincent/data.py
Data.keypairs
def keypairs(cls, data, columns=None, use_index=False, name=None): """This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values """ if not name: name = 'table' cls.raw_data = data # Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] # Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] # Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] # Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] # NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values)
python
def keypairs(cls, data, columns=None, use_index=False, name=None): """This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values """ if not name: name = 'table' cls.raw_data = data # Tuples if isinstance(data, tuple): values = [{"x": x[0], "y": x[1]} for x in data] # Lists elif isinstance(data, list): values = [{"x": x, "y": y} for x, y in zip(range(len(data) + 1), data)] # Dicts elif isinstance(data, dict) or isinstance(data, pd.Series): values = [{"x": x, "y": y} for x, y in sorted(data.items())] # Dataframes elif isinstance(data, pd.DataFrame): if len(columns) > 1 and use_index: raise ValueError('If using index as x-axis, len(columns)' 'cannot be > 1') if use_index or len(columns) == 1: values = [{"x": cls.serialize(x[0]), "y": cls.serialize(x[1][columns[0]])} for x in data.iterrows()] else: values = [{"x": cls.serialize(x[1][columns[0]]), "y": cls.serialize(x[1][columns[1]])} for x in data.iterrows()] # NumPy arrays elif isinstance(data, np.ndarray): values = cls._numpy_to_values(data) else: raise TypeError('unknown data type %s' % type(data)) return cls(name, values=values)
This will format the data as Key: Value pairs, rather than the idx/col/val style. This is useful for some transforms, and to key choropleth map data Standard Data Types: List: [0, 10, 20, 30, 40] Paired Tuples: ((0, 1), (0, 2), (0, 3)) Dict: {'A': 10, 'B': 20, 'C': 30, 'D': 40, 'E': 50} Plus Pandas DataFrame and Series, and Numpy ndarray Parameters ---------- data: List, Tuple, Dict, Pandas Series/DataFrame, Numpy ndarray columns: list, default None If passing Pandas DataFrame, you must pass at least one column name.If one column is passed, x-values will default to the index values.If two column names are passed, x-values are columns[0], y-values columns[1]. use_index: boolean, default False Use the DataFrame index for your x-values
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L367-L430
wrobstory/vincent
vincent/data.py
Data._numpy_to_values
def _numpy_to_values(data): '''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values
python
def _numpy_to_values(data): '''Convert a NumPy array to values attribute''' def to_list_no_index(xvals, yvals): return [{"x": x, "y": np.asscalar(y)} for x, y in zip(xvals, yvals)] if len(data.shape) == 1 or data.shape[1] == 1: xvals = range(data.shape[0] + 1) values = to_list_no_index(xvals, data) elif len(data.shape) == 2: if data.shape[1] == 2: # NumPy arrays and matrices have different iteration rules. if isinstance(data, np.matrix): xidx = (0, 0) yidx = (0, 1) else: xidx = 0 yidx = 1 xvals = [np.asscalar(row[xidx]) for row in data] yvals = [np.asscalar(row[yidx]) for row in data] values = [{"x": x, "y": y} for x, y in zip(xvals, yvals)] else: raise ValueError('arrays with > 2 columns not supported') else: raise ValueError('invalid dimensions for ndarray') return values
Convert a NumPy array to values attribute
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L433-L460
wrobstory/vincent
vincent/data.py
Data.to_json
def to_json(self, validate=False, pretty_print=True, data_path=None): """Convert data to JSON Parameters ---------- data_path : string If not None, then data is written to a separate file at the specified path. Note that the ``url`` attribute if the data must be set independently for the data to load correctly. Returns ------- string Valid Vega JSON. """ # TODO: support writing to separate file return super(self.__class__, self).to_json(validate=validate, pretty_print=pretty_print)
python
def to_json(self, validate=False, pretty_print=True, data_path=None): """Convert data to JSON Parameters ---------- data_path : string If not None, then data is written to a separate file at the specified path. Note that the ``url`` attribute if the data must be set independently for the data to load correctly. Returns ------- string Valid Vega JSON. """ # TODO: support writing to separate file return super(self.__class__, self).to_json(validate=validate, pretty_print=pretty_print)
Convert data to JSON Parameters ---------- data_path : string If not None, then data is written to a separate file at the specified path. Note that the ``url`` attribute if the data must be set independently for the data to load correctly. Returns ------- string Valid Vega JSON.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/data.py#L462-L479
wrobstory/vincent
vincent/core.py
initialize_notebook
def initialize_notebook(): """Initialize the IPython notebook display elements""" try: from IPython.core.display import display, HTML except ImportError: print("IPython Notebook could not be loaded.") # Thanks to @jakevdp: # https://github.com/jakevdp/mpld3/blob/master/mpld3/_display.py#L85 load_lib = """ function vct_load_lib(url, callback){ if( typeof d3 !== 'undefined' && url === '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min.js'){ callback() } var s = document.createElement('script'); s.src = url; s.async = true; s.onreadystatechange = s.onload = callback; s.onerror = function(){ console.warn("failed to load library " + url); }; document.getElementsByTagName("head")[0].appendChild(s); }; var vincent_event = new CustomEvent( "vincent_libs_loaded", {bubbles: true, cancelable: true} ); """ lib_urls = [ "'//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min.js'", ("'//cdnjs.cloudflare.com/ajax/libs/d3-geo-projection/0.2.9/" "d3.geo.projection.min.js'"), "'//wrobstory.github.io/d3-cloud/d3.layout.cloud.js'", "'//wrobstory.github.io/vega/vega.v1.3.3.js'" ] get_lib = """vct_load_lib(%s, function(){ %s });""" load_js = get_lib ipy_trigger = "window.dispatchEvent(vincent_event);" for elem in lib_urls[:-1]: load_js = load_js % (elem, get_lib) load_js = load_js % (lib_urls[-1], ipy_trigger) html = """ <script> %s function load_all_libs(){ console.log('Loading Vincent libs...') %s }; if(typeof define === "function" && define.amd){ if (window['d3'] === undefined || window['topojson'] === undefined){ require.config( {paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min', topojson: '//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.9/topojson.min' } } ); require(["d3"], function(d3){ console.log('Loading Vincent from require.js...') window.d3 = d3; require(["topojson"], function(topojson){ window.topojson = topojson; load_all_libs(); }); }); } else { load_all_libs(); }; }else{ console.log('Require.js not found, loading manually...') load_all_libs(); }; </script>""" % (load_lib, load_js,) return display(HTML(html))
python
def initialize_notebook(): """Initialize the IPython notebook display elements""" try: from IPython.core.display import display, HTML except ImportError: print("IPython Notebook could not be loaded.") # Thanks to @jakevdp: # https://github.com/jakevdp/mpld3/blob/master/mpld3/_display.py#L85 load_lib = """ function vct_load_lib(url, callback){ if( typeof d3 !== 'undefined' && url === '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min.js'){ callback() } var s = document.createElement('script'); s.src = url; s.async = true; s.onreadystatechange = s.onload = callback; s.onerror = function(){ console.warn("failed to load library " + url); }; document.getElementsByTagName("head")[0].appendChild(s); }; var vincent_event = new CustomEvent( "vincent_libs_loaded", {bubbles: true, cancelable: true} ); """ lib_urls = [ "'//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min.js'", ("'//cdnjs.cloudflare.com/ajax/libs/d3-geo-projection/0.2.9/" "d3.geo.projection.min.js'"), "'//wrobstory.github.io/d3-cloud/d3.layout.cloud.js'", "'//wrobstory.github.io/vega/vega.v1.3.3.js'" ] get_lib = """vct_load_lib(%s, function(){ %s });""" load_js = get_lib ipy_trigger = "window.dispatchEvent(vincent_event);" for elem in lib_urls[:-1]: load_js = load_js % (elem, get_lib) load_js = load_js % (lib_urls[-1], ipy_trigger) html = """ <script> %s function load_all_libs(){ console.log('Loading Vincent libs...') %s }; if(typeof define === "function" && define.amd){ if (window['d3'] === undefined || window['topojson'] === undefined){ require.config( {paths: { d3: '//cdnjs.cloudflare.com/ajax/libs/d3/3.5.3/d3.min', topojson: '//cdnjs.cloudflare.com/ajax/libs/topojson/1.6.9/topojson.min' } } ); require(["d3"], function(d3){ console.log('Loading Vincent from require.js...') window.d3 = d3; require(["topojson"], function(topojson){ window.topojson = topojson; load_all_libs(); }); }); } else { load_all_libs(); }; }else{ console.log('Require.js not found, loading manually...') load_all_libs(); }; </script>""" % (load_lib, load_js,) return display(HTML(html))
Initialize the IPython notebook display elements
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/core.py#L25-L104
wrobstory/vincent
vincent/core.py
_assert_is_type
def _assert_is_type(name, value, value_type): """Assert that a value must be a given type.""" if not isinstance(value, value_type): if type(value_type) is tuple: types = ', '.join(t.__name__ for t in value_type) raise ValueError('{0} must be one of ({1})'.format(name, types)) else: raise ValueError('{0} must be {1}' .format(name, value_type.__name__))
python
def _assert_is_type(name, value, value_type): """Assert that a value must be a given type.""" if not isinstance(value, value_type): if type(value_type) is tuple: types = ', '.join(t.__name__ for t in value_type) raise ValueError('{0} must be one of ({1})'.format(name, types)) else: raise ValueError('{0} must be {1}' .format(name, value_type.__name__))
Assert that a value must be a given type.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/core.py#L107-L115
wrobstory/vincent
vincent/core.py
grammar
def grammar(grammar_type=None, grammar_name=None): """Decorator to define properties that map to the ``grammar`` dict. This dict is the canonical representation of the Vega grammar within Vincent. This decorator is intended for classes that map to some pre-defined JSON structure, such as axes, data, marks, scales, etc. It is assumed that this decorates functions with an instance of ``self.grammar``. Parameters ---------- grammar_type : type or tuple of types, default None If the argument to the decorated function is not of the given types, then a ValueError is raised. No type checking is done if the type is None (default). grammar_name : string, default None An optional name to map to the internal ``grammar`` dict. If None (default), then the key for the dict is the name of the function being decorated. If not None, then it will be the name specified here. This is useful if the expected JSON field name is a Python keyword or has an un-Pythonic name. This should decorate a "validator" function that should return no value but raise an exception if the provided value is not valid Vega grammar. If the validator throws no exception, then the value is assigned to the ``grammar`` dict. The validator function should take only one argument - the value to be validated - so that no ``self`` argument is included; the validator should not modify the class. If no arguments are given, then no type-checking is done the property will be mapped to a field with the name of the decorated function. The doc string for the property is taken from the validator functions's doc string. """ def grammar_creator(validator, name): def setter(self, value): if isinstance(grammar_type, (type, tuple)): _assert_is_type(validator.__name__, value, grammar_type) validator(value) self.grammar[name] = value def getter(self): return self.grammar.get(name, None) def deleter(self): if name in self.grammar: del self.grammar[name] return property(getter, setter, deleter, validator.__doc__) if isinstance(grammar_type, (type, tuple)): # If grammar_type is a type, return another decorator. def grammar_dec(validator): # Make sure to use the grammar name if it's there. if grammar_name: return grammar_creator(validator, grammar_name) else: return grammar_creator(validator, validator.__name__) return grammar_dec elif isinstance(grammar_name, str_types): # If grammar_name is a string, use that name and return another # decorator. def grammar_dec(validator): return grammar_creator(validator, grammar_name) return grammar_dec else: # Otherwise we assume that grammar_type is actually the function being # decorated. return grammar_creator(grammar_type, grammar_type.__name__)
python
def grammar(grammar_type=None, grammar_name=None): """Decorator to define properties that map to the ``grammar`` dict. This dict is the canonical representation of the Vega grammar within Vincent. This decorator is intended for classes that map to some pre-defined JSON structure, such as axes, data, marks, scales, etc. It is assumed that this decorates functions with an instance of ``self.grammar``. Parameters ---------- grammar_type : type or tuple of types, default None If the argument to the decorated function is not of the given types, then a ValueError is raised. No type checking is done if the type is None (default). grammar_name : string, default None An optional name to map to the internal ``grammar`` dict. If None (default), then the key for the dict is the name of the function being decorated. If not None, then it will be the name specified here. This is useful if the expected JSON field name is a Python keyword or has an un-Pythonic name. This should decorate a "validator" function that should return no value but raise an exception if the provided value is not valid Vega grammar. If the validator throws no exception, then the value is assigned to the ``grammar`` dict. The validator function should take only one argument - the value to be validated - so that no ``self`` argument is included; the validator should not modify the class. If no arguments are given, then no type-checking is done the property will be mapped to a field with the name of the decorated function. The doc string for the property is taken from the validator functions's doc string. """ def grammar_creator(validator, name): def setter(self, value): if isinstance(grammar_type, (type, tuple)): _assert_is_type(validator.__name__, value, grammar_type) validator(value) self.grammar[name] = value def getter(self): return self.grammar.get(name, None) def deleter(self): if name in self.grammar: del self.grammar[name] return property(getter, setter, deleter, validator.__doc__) if isinstance(grammar_type, (type, tuple)): # If grammar_type is a type, return another decorator. def grammar_dec(validator): # Make sure to use the grammar name if it's there. if grammar_name: return grammar_creator(validator, grammar_name) else: return grammar_creator(validator, validator.__name__) return grammar_dec elif isinstance(grammar_name, str_types): # If grammar_name is a string, use that name and return another # decorator. def grammar_dec(validator): return grammar_creator(validator, grammar_name) return grammar_dec else: # Otherwise we assume that grammar_type is actually the function being # decorated. return grammar_creator(grammar_type, grammar_type.__name__)
Decorator to define properties that map to the ``grammar`` dict. This dict is the canonical representation of the Vega grammar within Vincent. This decorator is intended for classes that map to some pre-defined JSON structure, such as axes, data, marks, scales, etc. It is assumed that this decorates functions with an instance of ``self.grammar``. Parameters ---------- grammar_type : type or tuple of types, default None If the argument to the decorated function is not of the given types, then a ValueError is raised. No type checking is done if the type is None (default). grammar_name : string, default None An optional name to map to the internal ``grammar`` dict. If None (default), then the key for the dict is the name of the function being decorated. If not None, then it will be the name specified here. This is useful if the expected JSON field name is a Python keyword or has an un-Pythonic name. This should decorate a "validator" function that should return no value but raise an exception if the provided value is not valid Vega grammar. If the validator throws no exception, then the value is assigned to the ``grammar`` dict. The validator function should take only one argument - the value to be validated - so that no ``self`` argument is included; the validator should not modify the class. If no arguments are given, then no type-checking is done the property will be mapped to a field with the name of the decorated function. The doc string for the property is taken from the validator functions's doc string.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/core.py#L179-L250
wrobstory/vincent
vincent/core.py
GrammarClass.validate
def validate(self): """Validate the contents of the object. This calls ``setattr`` for each of the class's grammar properties. It will catch ``ValueError``s raised by the grammar property's setters and re-raise them as :class:`ValidationError`. """ for key, val in self.grammar.items(): try: setattr(self, key, val) except ValueError as e: raise ValidationError('invalid contents: ' + e.args[0])
python
def validate(self): """Validate the contents of the object. This calls ``setattr`` for each of the class's grammar properties. It will catch ``ValueError``s raised by the grammar property's setters and re-raise them as :class:`ValidationError`. """ for key, val in self.grammar.items(): try: setattr(self, key, val) except ValueError as e: raise ValidationError('invalid contents: ' + e.args[0])
Validate the contents of the object. This calls ``setattr`` for each of the class's grammar properties. It will catch ``ValueError``s raised by the grammar property's setters and re-raise them as :class:`ValidationError`.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/core.py#L302-L313
wrobstory/vincent
vincent/core.py
GrammarClass.to_json
def to_json(self, path=None, html_out=False, html_path='vega_template.html', validate=False, pretty_print=True): """Convert object to JSON Parameters ---------- path: string, default None Path to write JSON out. If there is no path provided, JSON will be returned as a string to the console. html_out: boolean, default False If True, vincent will output an simple HTML scaffold to visualize the vega json output. html_path: string, default 'vega_template.html' Path for the html file (if html_out=True) validate : boolean If True, call the object's `validate` method before serializing. Default is False. pretty_print : boolean If True (default), JSON is printed in more-readable form with indentation and spaces. Returns ------- string JSON serialization of the class's grammar properties. """ if validate: self.validate() if pretty_print: dumps_args = {'indent': 2, 'separators': (',', ': ')} else: dumps_args = {} def encoder(obj): if hasattr(obj, 'grammar'): return obj.grammar if html_out: template = Template( str(resource_string('vincent', 'vega_template.html'))) with open(html_path, 'w') as f: f.write(template.substitute(path=path)) if path: with open(path, 'w') as f: json.dump(self.grammar, f, default=encoder, sort_keys=True, **dumps_args) else: return json.dumps(self.grammar, default=encoder, sort_keys=True, **dumps_args)
python
def to_json(self, path=None, html_out=False, html_path='vega_template.html', validate=False, pretty_print=True): """Convert object to JSON Parameters ---------- path: string, default None Path to write JSON out. If there is no path provided, JSON will be returned as a string to the console. html_out: boolean, default False If True, vincent will output an simple HTML scaffold to visualize the vega json output. html_path: string, default 'vega_template.html' Path for the html file (if html_out=True) validate : boolean If True, call the object's `validate` method before serializing. Default is False. pretty_print : boolean If True (default), JSON is printed in more-readable form with indentation and spaces. Returns ------- string JSON serialization of the class's grammar properties. """ if validate: self.validate() if pretty_print: dumps_args = {'indent': 2, 'separators': (',', ': ')} else: dumps_args = {} def encoder(obj): if hasattr(obj, 'grammar'): return obj.grammar if html_out: template = Template( str(resource_string('vincent', 'vega_template.html'))) with open(html_path, 'w') as f: f.write(template.substitute(path=path)) if path: with open(path, 'w') as f: json.dump(self.grammar, f, default=encoder, sort_keys=True, **dumps_args) else: return json.dumps(self.grammar, default=encoder, sort_keys=True, **dumps_args)
Convert object to JSON Parameters ---------- path: string, default None Path to write JSON out. If there is no path provided, JSON will be returned as a string to the console. html_out: boolean, default False If True, vincent will output an simple HTML scaffold to visualize the vega json output. html_path: string, default 'vega_template.html' Path for the html file (if html_out=True) validate : boolean If True, call the object's `validate` method before serializing. Default is False. pretty_print : boolean If True (default), JSON is printed in more-readable form with indentation and spaces. Returns ------- string JSON serialization of the class's grammar properties.
https://github.com/wrobstory/vincent/blob/c5a06e50179015fbb788a7a42e4570ff4467a9e9/vincent/core.py#L315-L366
alephdata/pantomime
pantomime/__init__.py
useful_mimetype
def useful_mimetype(text): """Check to see if the given mime type is a MIME type which is useful in terms of how to treat this file. """ if text is None: return False mimetype = normalize_mimetype(text) return mimetype not in [DEFAULT, PLAIN, None]
python
def useful_mimetype(text): """Check to see if the given mime type is a MIME type which is useful in terms of how to treat this file. """ if text is None: return False mimetype = normalize_mimetype(text) return mimetype not in [DEFAULT, PLAIN, None]
Check to see if the given mime type is a MIME type which is useful in terms of how to treat this file.
https://github.com/alephdata/pantomime/blob/818fe5d799ba045c1d908935f24c94a8438c3a60/pantomime/__init__.py#L19-L26
alephdata/pantomime
pantomime/__init__.py
normalize_extension
def normalize_extension(extension): """Normalise a file name extension.""" extension = decode_path(extension) if extension is None: return if extension.startswith('.'): extension = extension[1:] if '.' in extension: _, extension = os.path.splitext(extension) extension = slugify(extension, sep='') if extension is None: return if len(extension): return extension
python
def normalize_extension(extension): """Normalise a file name extension.""" extension = decode_path(extension) if extension is None: return if extension.startswith('.'): extension = extension[1:] if '.' in extension: _, extension = os.path.splitext(extension) extension = slugify(extension, sep='') if extension is None: return if len(extension): return extension
Normalise a file name extension.
https://github.com/alephdata/pantomime/blob/818fe5d799ba045c1d908935f24c94a8438c3a60/pantomime/__init__.py#L29-L42
alphardex/looter
looter/__init__.py
fetch
def fetch(url: str, **kwargs) -> Selector: """ Send HTTP request and parse it as a DOM tree. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) try: res = requests.get(url, **kwargs) res.raise_for_status() except requests.RequestException as e: print(e) else: html = res.text tree = Selector(text=html) return tree
python
def fetch(url: str, **kwargs) -> Selector: """ Send HTTP request and parse it as a DOM tree. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) try: res = requests.get(url, **kwargs) res.raise_for_status() except requests.RequestException as e: print(e) else: html = res.text tree = Selector(text=html) return tree
Send HTTP request and parse it as a DOM tree. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions.
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L60-L79
alphardex/looter
looter/__init__.py
async_fetch
async def async_fetch(url: str, **kwargs) -> Selector: """ Do the fetch in an async style. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) async with aiohttp.ClientSession(**kwargs) as ses: async with ses.get(url, **kwargs) as res: html = await res.text() tree = Selector(text=html) return tree
python
async def async_fetch(url: str, **kwargs) -> Selector: """ Do the fetch in an async style. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) async with aiohttp.ClientSession(**kwargs) as ses: async with ses.get(url, **kwargs) as res: html = await res.text() tree = Selector(text=html) return tree
Do the fetch in an async style. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions.
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L82-L97
alphardex/looter
looter/__init__.py
view
def view(url: str, **kwargs) -> bool: """ View the page whether rendered properly. (ensure the <base> tag to make external links work) Args: url (str): The url of the site. """ kwargs.setdefault('headers', DEFAULT_HEADERS) html = requests.get(url, **kwargs).content if b'<base' not in html: repl = f'<head><base href="{url}">' html = html.replace(b'<head>', repl.encode('utf-8')) fd, fname = tempfile.mkstemp('.html') os.write(fd, html) os.close(fd) return webbrowser.open(f'file://{fname}')
python
def view(url: str, **kwargs) -> bool: """ View the page whether rendered properly. (ensure the <base> tag to make external links work) Args: url (str): The url of the site. """ kwargs.setdefault('headers', DEFAULT_HEADERS) html = requests.get(url, **kwargs).content if b'<base' not in html: repl = f'<head><base href="{url}">' html = html.replace(b'<head>', repl.encode('utf-8')) fd, fname = tempfile.mkstemp('.html') os.write(fd, html) os.close(fd) return webbrowser.open(f'file://{fname}')
View the page whether rendered properly. (ensure the <base> tag to make external links work) Args: url (str): The url of the site.
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L100-L115
alphardex/looter
looter/__init__.py
links
def links(res: requests.models.Response, search: str = None, pattern: str = None) -> list: """Get the links of the page. Args: res (requests.models.Response): The response of the page. search (str, optional): Defaults to None. Search the links you want. pattern (str, optional): Defaults to None. Search the links use a regex pattern. Returns: list: All the links of the page. """ hrefs = [link.to_text() for link in find_all_links(res.text)] if search: hrefs = [href for href in hrefs if search in href] if pattern: hrefs = [href for href in hrefs if re.findall(pattern, href)] return list(set(hrefs))
python
def links(res: requests.models.Response, search: str = None, pattern: str = None) -> list: """Get the links of the page. Args: res (requests.models.Response): The response of the page. search (str, optional): Defaults to None. Search the links you want. pattern (str, optional): Defaults to None. Search the links use a regex pattern. Returns: list: All the links of the page. """ hrefs = [link.to_text() for link in find_all_links(res.text)] if search: hrefs = [href for href in hrefs if search in href] if pattern: hrefs = [href for href in hrefs if re.findall(pattern, href)] return list(set(hrefs))
Get the links of the page. Args: res (requests.models.Response): The response of the page. search (str, optional): Defaults to None. Search the links you want. pattern (str, optional): Defaults to None. Search the links use a regex pattern. Returns: list: All the links of the page.
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L118-L136
alphardex/looter
looter/__init__.py
save_as_json
def save_as_json(total: list, name='data.json', sort_by: str = None, no_duplicate=False, order='asc'): """Save what you crawled as a json file. Args: total (list): Total of data you crawled. name (str, optional): Defaults to 'data.json'. The name of the file. sort_by (str, optional): Defaults to None. Sort items by a specific key. no_duplicate (bool, optional): Defaults to False. If True, it will remove duplicated data. order (str, optional): Defaults to 'asc'. The opposite option is 'desc'. """ if sort_by: reverse = order == 'desc' total = sorted(total, key=itemgetter(sort_by), reverse=reverse) if no_duplicate: total = [key for key, _ in groupby(total)] data = json.dumps(total, ensure_ascii=False) Path(name).write_text(data, encoding='utf-8')
python
def save_as_json(total: list, name='data.json', sort_by: str = None, no_duplicate=False, order='asc'): """Save what you crawled as a json file. Args: total (list): Total of data you crawled. name (str, optional): Defaults to 'data.json'. The name of the file. sort_by (str, optional): Defaults to None. Sort items by a specific key. no_duplicate (bool, optional): Defaults to False. If True, it will remove duplicated data. order (str, optional): Defaults to 'asc'. The opposite option is 'desc'. """ if sort_by: reverse = order == 'desc' total = sorted(total, key=itemgetter(sort_by), reverse=reverse) if no_duplicate: total = [key for key, _ in groupby(total)] data = json.dumps(total, ensure_ascii=False) Path(name).write_text(data, encoding='utf-8')
Save what you crawled as a json file. Args: total (list): Total of data you crawled. name (str, optional): Defaults to 'data.json'. The name of the file. sort_by (str, optional): Defaults to None. Sort items by a specific key. no_duplicate (bool, optional): Defaults to False. If True, it will remove duplicated data. order (str, optional): Defaults to 'asc'. The opposite option is 'desc'.
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L139-L159
alphardex/looter
looter/__init__.py
cli
def cli(): """ Commandline for looter :d """ argv = docopt(__doc__, version=VERSION) if argv['genspider']: name = f"{argv['<name>']}.py" use_async = argv['--async'] template = 'data_async.tmpl' if use_async else 'data.tmpl' package_dir = Path(__file__).parent template_text = package_dir.joinpath('templates', template).read_text() Path(name).write_text(template_text) if argv['shell']: url = argv['<url>'] if argv['<url>'] else input( 'Plz specific a site to crawl\nurl: ') res = requests.get(url, headers=DEFAULT_HEADERS) if not res: exit('Failed to fetch the page.') tree = Selector(text=res.text) allvars = {**locals(), **globals()} try: from ptpython.repl import embed print(BANNER) embed(allvars) except ImportError: code.interact(local=allvars, banner=BANNER)
python
def cli(): """ Commandline for looter :d """ argv = docopt(__doc__, version=VERSION) if argv['genspider']: name = f"{argv['<name>']}.py" use_async = argv['--async'] template = 'data_async.tmpl' if use_async else 'data.tmpl' package_dir = Path(__file__).parent template_text = package_dir.joinpath('templates', template).read_text() Path(name).write_text(template_text) if argv['shell']: url = argv['<url>'] if argv['<url>'] else input( 'Plz specific a site to crawl\nurl: ') res = requests.get(url, headers=DEFAULT_HEADERS) if not res: exit('Failed to fetch the page.') tree = Selector(text=res.text) allvars = {**locals(), **globals()} try: from ptpython.repl import embed print(BANNER) embed(allvars) except ImportError: code.interact(local=allvars, banner=BANNER)
Commandline for looter :d
https://github.com/alphardex/looter/blob/47fb7e44fe39c8528c1d6be94791798660d8804e/looter/__init__.py#L162-L187
gtaylor/python-colormath
colormath/color_objects.py
ColorBase.get_value_tuple
def get_value_tuple(self): """ Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable. """ retval = tuple() for val in self.VALUES: retval += (getattr(self, val),) return retval
python
def get_value_tuple(self): """ Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable. """ retval = tuple() for val in self.VALUES: retval += (getattr(self, val),) return retval
Returns a tuple of the color's values (in order). For example, an LabColor object will return (lab_l, lab_a, lab_b), where each member of the tuple is the float value for said variable.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L32-L41
gtaylor/python-colormath
colormath/color_objects.py
IlluminantMixin.set_observer
def set_observer(self, observer): """ Validates and sets the color's observer angle. .. note:: This only changes the observer angle value. It does no conversion of the color's coordinates. :param str observer: One of '2' or '10'. """ observer = str(observer) if observer not in color_constants.OBSERVERS: raise InvalidObserverError(self) self.observer = observer
python
def set_observer(self, observer): """ Validates and sets the color's observer angle. .. note:: This only changes the observer angle value. It does no conversion of the color's coordinates. :param str observer: One of '2' or '10'. """ observer = str(observer) if observer not in color_constants.OBSERVERS: raise InvalidObserverError(self) self.observer = observer
Validates and sets the color's observer angle. .. note:: This only changes the observer angle value. It does no conversion of the color's coordinates. :param str observer: One of '2' or '10'.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L71-L83
gtaylor/python-colormath
colormath/color_objects.py
IlluminantMixin.set_illuminant
def set_illuminant(self, illuminant): """ Validates and sets the color's illuminant. .. note:: This only changes the illuminant. It does no conversion of the color's coordinates. For this, you'll want to refer to :py:meth:`XYZColor.apply_adaptation <colormath.color_objects.XYZColor.apply_adaptation>`. .. tip:: Call this after setting your observer. :param str illuminant: One of the various illuminants. """ illuminant = illuminant.lower() if illuminant not in color_constants.ILLUMINANTS[self.observer]: raise InvalidIlluminantError(illuminant) self.illuminant = illuminant
python
def set_illuminant(self, illuminant): """ Validates and sets the color's illuminant. .. note:: This only changes the illuminant. It does no conversion of the color's coordinates. For this, you'll want to refer to :py:meth:`XYZColor.apply_adaptation <colormath.color_objects.XYZColor.apply_adaptation>`. .. tip:: Call this after setting your observer. :param str illuminant: One of the various illuminants. """ illuminant = illuminant.lower() if illuminant not in color_constants.ILLUMINANTS[self.observer]: raise InvalidIlluminantError(illuminant) self.illuminant = illuminant
Validates and sets the color's illuminant. .. note:: This only changes the illuminant. It does no conversion of the color's coordinates. For this, you'll want to refer to :py:meth:`XYZColor.apply_adaptation <colormath.color_objects.XYZColor.apply_adaptation>`. .. tip:: Call this after setting your observer. :param str illuminant: One of the various illuminants.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L86-L101
gtaylor/python-colormath
colormath/color_objects.py
IlluminantMixin.get_illuminant_xyz
def get_illuminant_xyz(self, observer=None, illuminant=None): """ :param str observer: Get the XYZ values for another observer angle. Must be either '2' or '10'. :param str illuminant: Get the XYZ values for another illuminant. :returns: the color's illuminant's XYZ values. """ try: if observer is None: observer = self.observer illums_observer = color_constants.ILLUMINANTS[observer] except KeyError: raise InvalidObserverError(self) try: if illuminant is None: illuminant = self.illuminant illum_xyz = illums_observer[illuminant] except (KeyError, AttributeError): raise InvalidIlluminantError(illuminant) return {'X': illum_xyz[0], 'Y': illum_xyz[1], 'Z': illum_xyz[2]}
python
def get_illuminant_xyz(self, observer=None, illuminant=None): """ :param str observer: Get the XYZ values for another observer angle. Must be either '2' or '10'. :param str illuminant: Get the XYZ values for another illuminant. :returns: the color's illuminant's XYZ values. """ try: if observer is None: observer = self.observer illums_observer = color_constants.ILLUMINANTS[observer] except KeyError: raise InvalidObserverError(self) try: if illuminant is None: illuminant = self.illuminant illum_xyz = illums_observer[illuminant] except (KeyError, AttributeError): raise InvalidIlluminantError(illuminant) return {'X': illum_xyz[0], 'Y': illum_xyz[1], 'Z': illum_xyz[2]}
:param str observer: Get the XYZ values for another observer angle. Must be either '2' or '10'. :param str illuminant: Get the XYZ values for another illuminant. :returns: the color's illuminant's XYZ values.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L103-L126
gtaylor/python-colormath
colormath/color_objects.py
SpectralColor.get_numpy_array
def get_numpy_array(self): """ Dump this color into NumPy array. """ # This holds the obect's spectral data, and will be passed to # numpy.array() to create a numpy array (matrix) for the matrix math # that will be done during the conversion to XYZ. values = [] # Use the required value list to build this dynamically. Default to # 0.0, since that ultimately won't affect the outcome due to the math # involved. for val in self.VALUES: values.append(getattr(self, val, 0.0)) # Create and the actual numpy array/matrix from the spectral list. color_array = numpy.array([values]) return color_array
python
def get_numpy_array(self): """ Dump this color into NumPy array. """ # This holds the obect's spectral data, and will be passed to # numpy.array() to create a numpy array (matrix) for the matrix math # that will be done during the conversion to XYZ. values = [] # Use the required value list to build this dynamically. Default to # 0.0, since that ultimately won't affect the outcome due to the math # involved. for val in self.VALUES: values.append(getattr(self, val, 0.0)) # Create and the actual numpy array/matrix from the spectral list. color_array = numpy.array([values]) return color_array
Dump this color into NumPy array.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L245-L262
gtaylor/python-colormath
colormath/color_objects.py
SpectralColor.calc_density
def calc_density(self, density_standard=None): """ Calculates the density of the SpectralColor. By default, Status T density is used, and the correct density distribution (Red, Green, or Blue) is chosen by comparing the Red, Green, and Blue components of the spectral sample (the values being red in via "filters"). """ if density_standard is not None: return density.ansi_density(self, density_standard) else: return density.auto_density(self)
python
def calc_density(self, density_standard=None): """ Calculates the density of the SpectralColor. By default, Status T density is used, and the correct density distribution (Red, Green, or Blue) is chosen by comparing the Red, Green, and Blue components of the spectral sample (the values being red in via "filters"). """ if density_standard is not None: return density.ansi_density(self, density_standard) else: return density.auto_density(self)
Calculates the density of the SpectralColor. By default, Status T density is used, and the correct density distribution (Red, Green, or Blue) is chosen by comparing the Red, Green, and Blue components of the spectral sample (the values being red in via "filters").
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L264-L274
gtaylor/python-colormath
colormath/color_objects.py
XYZColor.apply_adaptation
def apply_adaptation(self, target_illuminant, adaptation='bradford'): """ This applies an adaptation matrix to change the XYZ color's illuminant. You'll most likely only need this during RGB conversions. """ logger.debug(" \- Original illuminant: %s", self.illuminant) logger.debug(" \- Target illuminant: %s", target_illuminant) # If the XYZ values were taken with a different reference white than the # native reference white of the target RGB space, a transformation matrix # must be applied. if self.illuminant != target_illuminant: logger.debug(" \* Applying transformation from %s to %s ", self.illuminant, target_illuminant) # Sets the adjusted XYZ values, and the new illuminant. apply_chromatic_adaptation_on_color( color=self, targ_illum=target_illuminant, adaptation=adaptation)
python
def apply_adaptation(self, target_illuminant, adaptation='bradford'): """ This applies an adaptation matrix to change the XYZ color's illuminant. You'll most likely only need this during RGB conversions. """ logger.debug(" \- Original illuminant: %s", self.illuminant) logger.debug(" \- Target illuminant: %s", target_illuminant) # If the XYZ values were taken with a different reference white than the # native reference white of the target RGB space, a transformation matrix # must be applied. if self.illuminant != target_illuminant: logger.debug(" \* Applying transformation from %s to %s ", self.illuminant, target_illuminant) # Sets the adjusted XYZ values, and the new illuminant. apply_chromatic_adaptation_on_color( color=self, targ_illum=target_illuminant, adaptation=adaptation)
This applies an adaptation matrix to change the XYZ color's illuminant. You'll most likely only need this during RGB conversions.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L448-L466
gtaylor/python-colormath
colormath/color_objects.py
BaseRGBColor._clamp_rgb_coordinate
def _clamp_rgb_coordinate(self, coord): """ Clamps an RGB coordinate, taking into account whether or not the color is upscaled or not. :param float coord: The coordinate value. :rtype: float :returns: The clamped value. """ if not self.is_upscaled: return min(max(coord, 0.0), 1.0) else: return min(max(coord, 1), 255)
python
def _clamp_rgb_coordinate(self, coord): """ Clamps an RGB coordinate, taking into account whether or not the color is upscaled or not. :param float coord: The coordinate value. :rtype: float :returns: The clamped value. """ if not self.is_upscaled: return min(max(coord, 0.0), 1.0) else: return min(max(coord, 1), 255)
Clamps an RGB coordinate, taking into account whether or not the color is upscaled or not. :param float coord: The coordinate value. :rtype: float :returns: The clamped value.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L530-L542
gtaylor/python-colormath
colormath/color_objects.py
BaseRGBColor.get_upscaled_value_tuple
def get_upscaled_value_tuple(self): """ Scales an RGB color object from decimal 0.0-1.0 to int 0-255. """ # Scale up to 0-255 values. rgb_r = int(math.floor(0.5 + self.rgb_r * 255)) rgb_g = int(math.floor(0.5 + self.rgb_g * 255)) rgb_b = int(math.floor(0.5 + self.rgb_b * 255)) return rgb_r, rgb_g, rgb_b
python
def get_upscaled_value_tuple(self): """ Scales an RGB color object from decimal 0.0-1.0 to int 0-255. """ # Scale up to 0-255 values. rgb_r = int(math.floor(0.5 + self.rgb_r * 255)) rgb_g = int(math.floor(0.5 + self.rgb_g * 255)) rgb_b = int(math.floor(0.5 + self.rgb_b * 255)) return rgb_r, rgb_g, rgb_b
Scales an RGB color object from decimal 0.0-1.0 to int 0-255.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L565-L574
gtaylor/python-colormath
colormath/color_objects.py
BaseRGBColor.get_rgb_hex
def get_rgb_hex(self): """ Converts the RGB value to a hex value in the form of: #RRGGBB :rtype: str """ rgb_r, rgb_g, rgb_b = self.get_upscaled_value_tuple() return '#%02x%02x%02x' % (rgb_r, rgb_g, rgb_b)
python
def get_rgb_hex(self): """ Converts the RGB value to a hex value in the form of: #RRGGBB :rtype: str """ rgb_r, rgb_g, rgb_b = self.get_upscaled_value_tuple() return '#%02x%02x%02x' % (rgb_r, rgb_g, rgb_b)
Converts the RGB value to a hex value in the form of: #RRGGBB :rtype: str
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L576-L583
gtaylor/python-colormath
colormath/color_objects.py
BaseRGBColor.new_from_rgb_hex
def new_from_rgb_hex(cls, hex_str): """ Converts an RGB hex string like #RRGGBB and assigns the values to this sRGBColor object. :rtype: sRGBColor """ colorstring = hex_str.strip() if colorstring[0] == '#': colorstring = colorstring[1:] if len(colorstring) != 6: raise ValueError("input #%s is not in #RRGGBB format" % colorstring) r, g, b = colorstring[:2], colorstring[2:4], colorstring[4:] r, g, b = [int(n, 16) / 255.0 for n in (r, g, b)] return cls(r, g, b)
python
def new_from_rgb_hex(cls, hex_str): """ Converts an RGB hex string like #RRGGBB and assigns the values to this sRGBColor object. :rtype: sRGBColor """ colorstring = hex_str.strip() if colorstring[0] == '#': colorstring = colorstring[1:] if len(colorstring) != 6: raise ValueError("input #%s is not in #RRGGBB format" % colorstring) r, g, b = colorstring[:2], colorstring[2:4], colorstring[4:] r, g, b = [int(n, 16) / 255.0 for n in (r, g, b)] return cls(r, g, b)
Converts an RGB hex string like #RRGGBB and assigns the values to this sRGBColor object. :rtype: sRGBColor
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_objects.py#L586-L600
gtaylor/python-colormath
colormath/color_diff_matrix.py
delta_e_cie1976
def delta_e_cie1976(lab_color_vector, lab_color_matrix): """ Calculates the Delta E (CIE1976) between `lab_color_vector` and all colors in `lab_color_matrix`. """ return numpy.sqrt( numpy.sum(numpy.power(lab_color_vector - lab_color_matrix, 2), axis=1))
python
def delta_e_cie1976(lab_color_vector, lab_color_matrix): """ Calculates the Delta E (CIE1976) between `lab_color_vector` and all colors in `lab_color_matrix`. """ return numpy.sqrt( numpy.sum(numpy.power(lab_color_vector - lab_color_matrix, 2), axis=1))
Calculates the Delta E (CIE1976) between `lab_color_vector` and all colors in `lab_color_matrix`.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff_matrix.py#L11-L17
gtaylor/python-colormath
colormath/color_diff_matrix.py
delta_e_cie1994
def delta_e_cie1994(lab_color_vector, lab_color_matrix, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015): """ Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles """ C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) S_L = 1 S_C = 1 + K_1 * C_1 S_H = 1 + K_2 * C_1 LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[K_L * S_L], [K_C * S_C], [K_H * S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
python
def delta_e_cie1994(lab_color_vector, lab_color_matrix, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015): """ Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles """ C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) S_L = 1 S_C = 1 + K_1 * C_1 S_H = 1 + K_2 * C_1 LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[K_L * S_L], [K_C * S_C], [K_H * S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff_matrix.py#L21-L56
gtaylor/python-colormath
colormath/color_diff_matrix.py
delta_e_cmc
def delta_e_cmc(lab_color_vector, lab_color_matrix, pl=2, pc=1): """ Calculates the Delta E (CIE1994) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1 """ L, a, b = lab_color_vector C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C H_1 = numpy.degrees(numpy.arctan2(b, a)) if H_1 < 0: H_1 += 360 F = numpy.sqrt(numpy.power(C_1, 4) / (numpy.power(C_1, 4) + 1900.0)) # noinspection PyChainedComparisons if 164 <= H_1 and H_1 <= 345: T = 0.56 + abs(0.2 * numpy.cos(numpy.radians(H_1 + 168))) else: T = 0.36 + abs(0.4 * numpy.cos(numpy.radians(H_1 + 35))) if L < 16: S_L = 0.511 else: S_L = (0.040975 * L) / (1 + 0.01765 * L) S_C = ((0.0638 * C_1) / (1 + 0.0131 * C_1)) + 0.638 S_H = S_C * (F * T + 1 - F) delta_C = C_1 - C_2 delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[pl * S_L], [pc * S_C], [S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
python
def delta_e_cmc(lab_color_vector, lab_color_matrix, pl=2, pc=1): """ Calculates the Delta E (CIE1994) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1 """ L, a, b = lab_color_vector C_1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C_2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) delta_lab = lab_color_vector - lab_color_matrix delta_L = delta_lab[:, 0].copy() delta_C = C_1 - C_2 delta_lab[:, 0] = delta_C H_1 = numpy.degrees(numpy.arctan2(b, a)) if H_1 < 0: H_1 += 360 F = numpy.sqrt(numpy.power(C_1, 4) / (numpy.power(C_1, 4) + 1900.0)) # noinspection PyChainedComparisons if 164 <= H_1 and H_1 <= 345: T = 0.56 + abs(0.2 * numpy.cos(numpy.radians(H_1 + 168))) else: T = 0.36 + abs(0.4 * numpy.cos(numpy.radians(H_1 + 35))) if L < 16: S_L = 0.511 else: S_L = (0.040975 * L) / (1 + 0.01765 * L) S_C = ((0.0638 * C_1) / (1 + 0.0131 * C_1)) + 0.638 S_H = S_C * (F * T + 1 - F) delta_C = C_1 - C_2 delta_H_sq = numpy.sum(numpy.power(delta_lab, 2) * numpy.array([-1, 1, 1]), axis=1) # noinspection PyArgumentList delta_H = numpy.sqrt(delta_H_sq.clip(min=0)) LCH = numpy.vstack([delta_L, delta_C, delta_H]) params = numpy.array([[pl * S_L], [pc * S_C], [S_H]]) return numpy.sqrt(numpy.sum(numpy.power(LCH / params, 2), axis=0))
Calculates the Delta E (CIE1994) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff_matrix.py#L60-L109
gtaylor/python-colormath
colormath/color_diff_matrix.py
delta_e_cie2000
def delta_e_cie2000(lab_color_vector, lab_color_matrix, Kl=1, Kc=1, Kh=1): """ Calculates the Delta E (CIE2000) of two colors. """ L, a, b = lab_color_vector avg_Lp = (L + lab_color_matrix[:, 0]) / 2.0 C1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) avg_C1_C2 = (C1 + C2) / 2.0 G = 0.5 * (1 - numpy.sqrt(numpy.power(avg_C1_C2, 7.0) / (numpy.power(avg_C1_C2, 7.0) + numpy.power(25.0, 7.0)))) a1p = (1.0 + G) * a a2p = (1.0 + G) * lab_color_matrix[:, 1] C1p = numpy.sqrt(numpy.power(a1p, 2) + numpy.power(b, 2)) C2p = numpy.sqrt(numpy.power(a2p, 2) + numpy.power(lab_color_matrix[:, 2], 2)) avg_C1p_C2p = (C1p + C2p) / 2.0 h1p = numpy.degrees(numpy.arctan2(b, a1p)) h1p += (h1p < 0) * 360 h2p = numpy.degrees(numpy.arctan2(lab_color_matrix[:, 2], a2p)) h2p += (h2p < 0) * 360 avg_Hp = (((numpy.fabs(h1p - h2p) > 180) * 360) + h1p + h2p) / 2.0 T = 1 - 0.17 * numpy.cos(numpy.radians(avg_Hp - 30)) + \ 0.24 * numpy.cos(numpy.radians(2 * avg_Hp)) + \ 0.32 * numpy.cos(numpy.radians(3 * avg_Hp + 6)) - \ 0.2 * numpy.cos(numpy.radians(4 * avg_Hp - 63)) diff_h2p_h1p = h2p - h1p delta_hp = diff_h2p_h1p + (numpy.fabs(diff_h2p_h1p) > 180) * 360 delta_hp -= (h2p > h1p) * 720 delta_Lp = lab_color_matrix[:, 0] - L delta_Cp = C2p - C1p delta_Hp = 2 * numpy.sqrt(C2p * C1p) * numpy.sin(numpy.radians(delta_hp) / 2.0) S_L = 1 + ((0.015 * numpy.power(avg_Lp - 50, 2)) / numpy.sqrt(20 + numpy.power(avg_Lp - 50, 2.0))) S_C = 1 + 0.045 * avg_C1p_C2p S_H = 1 + 0.015 * avg_C1p_C2p * T delta_ro = 30 * numpy.exp(-(numpy.power(((avg_Hp - 275) / 25), 2.0))) R_C = numpy.sqrt((numpy.power(avg_C1p_C2p, 7.0)) / (numpy.power(avg_C1p_C2p, 7.0) + numpy.power(25.0, 7.0))) R_T = -2 * R_C * numpy.sin(2 * numpy.radians(delta_ro)) return numpy.sqrt( numpy.power(delta_Lp / (S_L * Kl), 2) + numpy.power(delta_Cp / (S_C * Kc), 2) + numpy.power(delta_Hp / (S_H * Kh), 2) + R_T * (delta_Cp / (S_C * Kc)) * (delta_Hp / (S_H * Kh)))
python
def delta_e_cie2000(lab_color_vector, lab_color_matrix, Kl=1, Kc=1, Kh=1): """ Calculates the Delta E (CIE2000) of two colors. """ L, a, b = lab_color_vector avg_Lp = (L + lab_color_matrix[:, 0]) / 2.0 C1 = numpy.sqrt(numpy.sum(numpy.power(lab_color_vector[1:], 2))) C2 = numpy.sqrt(numpy.sum(numpy.power(lab_color_matrix[:, 1:], 2), axis=1)) avg_C1_C2 = (C1 + C2) / 2.0 G = 0.5 * (1 - numpy.sqrt(numpy.power(avg_C1_C2, 7.0) / (numpy.power(avg_C1_C2, 7.0) + numpy.power(25.0, 7.0)))) a1p = (1.0 + G) * a a2p = (1.0 + G) * lab_color_matrix[:, 1] C1p = numpy.sqrt(numpy.power(a1p, 2) + numpy.power(b, 2)) C2p = numpy.sqrt(numpy.power(a2p, 2) + numpy.power(lab_color_matrix[:, 2], 2)) avg_C1p_C2p = (C1p + C2p) / 2.0 h1p = numpy.degrees(numpy.arctan2(b, a1p)) h1p += (h1p < 0) * 360 h2p = numpy.degrees(numpy.arctan2(lab_color_matrix[:, 2], a2p)) h2p += (h2p < 0) * 360 avg_Hp = (((numpy.fabs(h1p - h2p) > 180) * 360) + h1p + h2p) / 2.0 T = 1 - 0.17 * numpy.cos(numpy.radians(avg_Hp - 30)) + \ 0.24 * numpy.cos(numpy.radians(2 * avg_Hp)) + \ 0.32 * numpy.cos(numpy.radians(3 * avg_Hp + 6)) - \ 0.2 * numpy.cos(numpy.radians(4 * avg_Hp - 63)) diff_h2p_h1p = h2p - h1p delta_hp = diff_h2p_h1p + (numpy.fabs(diff_h2p_h1p) > 180) * 360 delta_hp -= (h2p > h1p) * 720 delta_Lp = lab_color_matrix[:, 0] - L delta_Cp = C2p - C1p delta_Hp = 2 * numpy.sqrt(C2p * C1p) * numpy.sin(numpy.radians(delta_hp) / 2.0) S_L = 1 + ((0.015 * numpy.power(avg_Lp - 50, 2)) / numpy.sqrt(20 + numpy.power(avg_Lp - 50, 2.0))) S_C = 1 + 0.045 * avg_C1p_C2p S_H = 1 + 0.015 * avg_C1p_C2p * T delta_ro = 30 * numpy.exp(-(numpy.power(((avg_Hp - 275) / 25), 2.0))) R_C = numpy.sqrt((numpy.power(avg_C1p_C2p, 7.0)) / (numpy.power(avg_C1p_C2p, 7.0) + numpy.power(25.0, 7.0))) R_T = -2 * R_C * numpy.sin(2 * numpy.radians(delta_ro)) return numpy.sqrt( numpy.power(delta_Lp / (S_L * Kl), 2) + numpy.power(delta_Cp / (S_C * Kc), 2) + numpy.power(delta_Hp / (S_H * Kh), 2) + R_T * (delta_Cp / (S_C * Kc)) * (delta_Hp / (S_H * Kh)))
Calculates the Delta E (CIE2000) of two colors.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff_matrix.py#L113-L169
gtaylor/python-colormath
colormath/density.py
ansi_density
def ansi_density(color, density_standard): """ Calculates density for the given SpectralColor using the spectral weighting function provided. For example, ANSI_STATUS_T_RED. These may be found in :py:mod:`colormath.density_standards`. :param SpectralColor color: The SpectralColor object to calculate density for. :param numpy.ndarray density_standard: NumPy array of filter of choice from :py:mod:`colormath.density_standards`. :rtype: float :returns: The density value for the given color and density standard. """ # Load the spec_XXXnm attributes into a Numpy array. sample = color.get_numpy_array() # Matrix multiplication intermediate = sample * density_standard # Sum the products. numerator = intermediate.sum() # This is the denominator in the density equation. sum_of_standard_wavelengths = density_standard.sum() # This is the top level of the density formula. return -1.0 * log10(numerator / sum_of_standard_wavelengths)
python
def ansi_density(color, density_standard): """ Calculates density for the given SpectralColor using the spectral weighting function provided. For example, ANSI_STATUS_T_RED. These may be found in :py:mod:`colormath.density_standards`. :param SpectralColor color: The SpectralColor object to calculate density for. :param numpy.ndarray density_standard: NumPy array of filter of choice from :py:mod:`colormath.density_standards`. :rtype: float :returns: The density value for the given color and density standard. """ # Load the spec_XXXnm attributes into a Numpy array. sample = color.get_numpy_array() # Matrix multiplication intermediate = sample * density_standard # Sum the products. numerator = intermediate.sum() # This is the denominator in the density equation. sum_of_standard_wavelengths = density_standard.sum() # This is the top level of the density formula. return -1.0 * log10(numerator / sum_of_standard_wavelengths)
Calculates density for the given SpectralColor using the spectral weighting function provided. For example, ANSI_STATUS_T_RED. These may be found in :py:mod:`colormath.density_standards`. :param SpectralColor color: The SpectralColor object to calculate density for. :param numpy.ndarray density_standard: NumPy array of filter of choice from :py:mod:`colormath.density_standards`. :rtype: float :returns: The density value for the given color and density standard.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/density.py#L11-L35
gtaylor/python-colormath
colormath/density.py
auto_density
def auto_density(color): """ Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically. """ blue_density = ansi_density(color, ANSI_STATUS_T_BLUE) green_density = ansi_density(color, ANSI_STATUS_T_GREEN) red_density = ansi_density(color, ANSI_STATUS_T_RED) densities = [blue_density, green_density, red_density] min_density = min(densities) max_density = max(densities) density_range = max_density - min_density # See comments in density_standards.py for VISUAL_DENSITY_THRESH to # understand what this is doing. if density_range <= VISUAL_DENSITY_THRESH: return ansi_density(color, ISO_VISUAL) elif blue_density > green_density and blue_density > red_density: return blue_density elif green_density > blue_density and green_density > red_density: return green_density else: return red_density
python
def auto_density(color): """ Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically. """ blue_density = ansi_density(color, ANSI_STATUS_T_BLUE) green_density = ansi_density(color, ANSI_STATUS_T_GREEN) red_density = ansi_density(color, ANSI_STATUS_T_RED) densities = [blue_density, green_density, red_density] min_density = min(densities) max_density = max(densities) density_range = max_density - min_density # See comments in density_standards.py for VISUAL_DENSITY_THRESH to # understand what this is doing. if density_range <= VISUAL_DENSITY_THRESH: return ansi_density(color, ISO_VISUAL) elif blue_density > green_density and blue_density > red_density: return blue_density elif green_density > blue_density and green_density > red_density: return green_density else: return red_density
Given a SpectralColor, automatically choose the correct ANSI T filter. Returns a tuple with a string representation of the filter the calculated density. :param SpectralColor color: The SpectralColor object to calculate density for. :rtype: float :returns: The density value, with the filter selected automatically.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/density.py#L38-L67
gtaylor/python-colormath
colormath/color_diff.py
_get_lab_color1_vector
def _get_lab_color1_vector(color): """ Converts an LabColor into a NumPy vector. :param LabColor color: :rtype: numpy.ndarray """ if not color.__class__.__name__ == 'LabColor': raise ValueError( "Delta E functions can only be used with two LabColor objects.") return numpy.array([color.lab_l, color.lab_a, color.lab_b])
python
def _get_lab_color1_vector(color): """ Converts an LabColor into a NumPy vector. :param LabColor color: :rtype: numpy.ndarray """ if not color.__class__.__name__ == 'LabColor': raise ValueError( "Delta E functions can only be used with two LabColor objects.") return numpy.array([color.lab_l, color.lab_a, color.lab_b])
Converts an LabColor into a NumPy vector. :param LabColor color: :rtype: numpy.ndarray
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff.py#L12-L22
gtaylor/python-colormath
colormath/color_diff.py
delta_e_cie1976
def delta_e_cie1976(color1, color2): """ Calculates the Delta E (CIE1976) of two colors. """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1976(color1_vector, color2_matrix)[0] return numpy.asscalar(delta_e)
python
def delta_e_cie1976(color1, color2): """ Calculates the Delta E (CIE1976) of two colors. """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1976(color1_vector, color2_matrix)[0] return numpy.asscalar(delta_e)
Calculates the Delta E (CIE1976) of two colors.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff.py#L39-L46
gtaylor/python-colormath
colormath/color_diff.py
delta_e_cie1994
def delta_e_cie1994(color1, color2, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015): """ Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1994( color1_vector, color2_matrix, K_L=K_L, K_C=K_C, K_H=K_H, K_1=K_1, K_2=K_2)[0] return numpy.asscalar(delta_e)
python
def delta_e_cie1994(color1, color2, K_L=1, K_C=1, K_H=1, K_1=0.045, K_2=0.015): """ Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie1994( color1_vector, color2_matrix, K_L=K_L, K_C=K_C, K_H=K_H, K_1=K_1, K_2=K_2)[0] return numpy.asscalar(delta_e)
Calculates the Delta E (CIE1994) of two colors. K_l: 0.045 graphic arts 0.048 textiles K_2: 0.015 graphic arts 0.014 textiles K_L: 1 default 2 textiles
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff.py#L50-L68
gtaylor/python-colormath
colormath/color_diff.py
delta_e_cie2000
def delta_e_cie2000(color1, color2, Kl=1, Kc=1, Kh=1): """ Calculates the Delta E (CIE2000) of two colors. """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie2000( color1_vector, color2_matrix, Kl=Kl, Kc=Kc, Kh=Kh)[0] return numpy.asscalar(delta_e)
python
def delta_e_cie2000(color1, color2, Kl=1, Kc=1, Kh=1): """ Calculates the Delta E (CIE2000) of two colors. """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cie2000( color1_vector, color2_matrix, Kl=Kl, Kc=Kc, Kh=Kh)[0] return numpy.asscalar(delta_e)
Calculates the Delta E (CIE2000) of two colors.
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff.py#L72-L80
gtaylor/python-colormath
colormath/color_diff.py
delta_e_cmc
def delta_e_cmc(color1, color2, pl=2, pc=1): """ Calculates the Delta E (CMC) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1 """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cmc( color1_vector, color2_matrix, pl=pl, pc=pc)[0] return numpy.asscalar(delta_e)
python
def delta_e_cmc(color1, color2, pl=2, pc=1): """ Calculates the Delta E (CMC) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1 """ color1_vector = _get_lab_color1_vector(color1) color2_matrix = _get_lab_color2_matrix(color2) delta_e = color_diff_matrix.delta_e_cmc( color1_vector, color2_matrix, pl=pl, pc=pc)[0] return numpy.asscalar(delta_e)
Calculates the Delta E (CMC) of two colors. CMC values Acceptability: pl=2, pc=1 Perceptability: pl=1, pc=1
https://github.com/gtaylor/python-colormath/blob/1d168613718d2d7d31ec4230524e987ef66823c7/colormath/color_diff.py#L84-L96