Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Update files from the datasets library (from 1.16.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.16.0
- README.md +1 -0
- rotten_tomatoes.py +16 -21
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
languages:
|
3 |
- en
|
4 |
paperswithcode_id: null
|
|
|
1 |
---
|
2 |
+
pretty_name: RottenTomatoes - Movie Review Data
|
3 |
languages:
|
4 |
- en
|
5 |
paperswithcode_id: null
|
rotten_tomatoes.py
CHANGED
@@ -16,9 +16,6 @@
|
|
16 |
# Lint as: python3
|
17 |
"""Rotten tomatoes movie reviews dataset."""
|
18 |
|
19 |
-
|
20 |
-
import os
|
21 |
-
|
22 |
import datasets
|
23 |
from datasets.tasks import TextClassification
|
24 |
|
@@ -62,41 +59,39 @@ class RottenTomatoesMovieReview(datasets.GeneratorBasedBuilder):
|
|
62 |
task_templates=[TextClassification(text_column="text", label_column="label")],
|
63 |
)
|
64 |
|
65 |
-
def _vocab_text_gen(self, train_file):
|
66 |
-
for _, ex in self._generate_examples(train_file):
|
67 |
-
yield ex["text"]
|
68 |
-
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""Downloads Rotten Tomatoes sentences."""
|
71 |
-
|
72 |
return [
|
73 |
datasets.SplitGenerator(
|
74 |
name=datasets.Split.TRAIN,
|
75 |
-
gen_kwargs={"split_key": "train", "
|
76 |
),
|
77 |
datasets.SplitGenerator(
|
78 |
name=datasets.Split.VALIDATION,
|
79 |
-
gen_kwargs={"split_key": "validation", "
|
80 |
),
|
81 |
datasets.SplitGenerator(
|
82 |
name=datasets.Split.TEST,
|
83 |
-
gen_kwargs={"split_key": "test", "
|
84 |
),
|
85 |
]
|
86 |
|
87 |
-
def _get_examples_from_split(self, split_key,
|
88 |
"""Reads Rotten Tomatoes sentences and splits into 80% train,
|
89 |
10% validation, and 10% test, as is the practice set out in Jinfeng
|
90 |
Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world
|
91 |
Applications.''
|
92 |
"""
|
93 |
-
data_dir =
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
100 |
|
101 |
# 80/10/10 split
|
102 |
i1 = int(len(pos_samples) * 0.8 + 0.5)
|
@@ -117,9 +112,9 @@ class RottenTomatoesMovieReview(datasets.GeneratorBasedBuilder):
|
|
117 |
else:
|
118 |
raise ValueError(f"Invalid split key {split_key}")
|
119 |
|
120 |
-
def _generate_examples(self, split_key,
|
121 |
"""Yields examples for a given split of MR."""
|
122 |
-
split_text, split_labels = self._get_examples_from_split(split_key,
|
123 |
for text, label in zip(split_text, split_labels):
|
124 |
data_key = split_key + "_" + text
|
125 |
feature_dict = {"text": text, "label": label}
|
|
|
16 |
# Lint as: python3
|
17 |
"""Rotten tomatoes movie reviews dataset."""
|
18 |
|
|
|
|
|
|
|
19 |
import datasets
|
20 |
from datasets.tasks import TextClassification
|
21 |
|
|
|
59 |
task_templates=[TextClassification(text_column="text", label_column="label")],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
62 |
def _split_generators(self, dl_manager):
|
63 |
"""Downloads Rotten Tomatoes sentences."""
|
64 |
+
archive = dl_manager.download(_DOWNLOAD_URL)
|
65 |
return [
|
66 |
datasets.SplitGenerator(
|
67 |
name=datasets.Split.TRAIN,
|
68 |
+
gen_kwargs={"split_key": "train", "files": dl_manager.iter_archive(archive)},
|
69 |
),
|
70 |
datasets.SplitGenerator(
|
71 |
name=datasets.Split.VALIDATION,
|
72 |
+
gen_kwargs={"split_key": "validation", "files": dl_manager.iter_archive(archive)},
|
73 |
),
|
74 |
datasets.SplitGenerator(
|
75 |
name=datasets.Split.TEST,
|
76 |
+
gen_kwargs={"split_key": "test", "files": dl_manager.iter_archive(archive)},
|
77 |
),
|
78 |
]
|
79 |
|
80 |
+
def _get_examples_from_split(self, split_key, files):
|
81 |
"""Reads Rotten Tomatoes sentences and splits into 80% train,
|
82 |
10% validation, and 10% test, as is the practice set out in Jinfeng
|
83 |
Li, ``TEXTBUGGER: Generating Adversarial Text Against Real-world
|
84 |
Applications.''
|
85 |
"""
|
86 |
+
data_dir = "rt-polaritydata/"
|
87 |
+
pos_samples, neg_samples = None, None
|
88 |
+
for path, f in files:
|
89 |
+
if path == data_dir + "rt-polarity.pos":
|
90 |
+
pos_samples = [line.decode("latin-1").strip() for line in f]
|
91 |
+
elif path == data_dir + "rt-polarity.neg":
|
92 |
+
neg_samples = [line.decode("latin-1").strip() for line in f]
|
93 |
+
if pos_samples is not None and neg_samples is not None:
|
94 |
+
break
|
95 |
|
96 |
# 80/10/10 split
|
97 |
i1 = int(len(pos_samples) * 0.8 + 0.5)
|
|
|
112 |
else:
|
113 |
raise ValueError(f"Invalid split key {split_key}")
|
114 |
|
115 |
+
def _generate_examples(self, split_key, files):
|
116 |
"""Yields examples for a given split of MR."""
|
117 |
+
split_text, split_labels = self._get_examples_from_split(split_key, files)
|
118 |
for text, label in zip(split_text, split_labels):
|
119 |
data_key = split_key + "_" + text
|
120 |
feature_dict = {"text": text, "label": label}
|