annotations_creators:
- machine-generated
language_creators:
- found
language:
- en
license:
- cdla-permissive-1.0
multilinguality:
- monolingual
size_categories: []
source_datasets:
- original
task_categories:
- image-classification
- image-segmentation
- image-to-text
- question-answering
- other
- multiple-choice
- token-classification
- tabular-to-text
- object-detection
- table-question-answering
- text-classification
- table-to-text
task_ids:
- multi-label-image-classification
- multi-class-image-classification
- semantic-segmentation
- image-captioning
- extractive-qa
- closed-domain-qa
- multiple-choice-qa
- named-entity-recognition
pretty_name: PubLayNet
tags:
- graphic design
- layout-generation
dataset_info:
features:
- name: image_id
dtype: int32
- name: file_name
dtype: string
- name: width
dtype: int32
- name: height
dtype: int32
- name: image
dtype: image
- name: annotations
sequence:
- name: annotation_id
dtype: int32
- name: area
dtype: float32
- name: bbox
sequence: float32
length: 4
- name: category
struct:
- name: category_id
dtype: int32
- name: name
dtype:
class_label:
names:
'0': text
'1': title
'2': list
'3': table
'4': figure
- name: supercategory
dtype: string
- name: category_id
dtype: int32
- name: image_id
dtype: int32
- name: iscrowd
dtype: bool
- name: segmentation
dtype: image
splits:
- name: train
num_bytes: 99127922734.771
num_examples: 335703
- name: validation
num_bytes: 3513203604.885
num_examples: 11245
- name: test
num_bytes: 3406081626.495
num_examples: 11405
download_size: 107597638930
dataset_size: 106047207966.15099
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
Dataset Card for PubLayNet
Table of Contents
- Dataset Card Creation Guide
Dataset Description
- Homepage: https://developer.ibm.com/exchanges/data/all/publaynet/
- Repository: https://github.com/shunk031/huggingface-datasets_PubLayNet
- Paper (Preprint): https://arxiv.org/abs/1908.07836
- Paper (ICDAR2019): https://ieeexplore.ieee.org/document/8977963
Dataset Summary
PubLayNet is a dataset for document layout analysis. It contains images of research papers and articles and annotations for various elements in a page such as "text", "list", "figure" etc in these research paper images. The dataset was obtained by automatically matching the XML representations and the content of over 1 million PDF articles that are publicly available on PubMed Central.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
[More Information Needed]
Dataset Structure
Data Instances
import datasets as ds
dataset = ds.load_dataset(
path="shunk031/PubLayNet",
decode_rle=True, # True if Run-length Encoding (RLE) is to be decoded and converted to binary mask.
)
Data Fields
[More Information Needed]
Data Splits
[More Information Needed]
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
[More Information Needed]
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
[More Information Needed]
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
Citation Information
@inproceedings{zhong2019publaynet,
title={Publaynet: largest dataset ever for document layout analysis},
author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
pages={1015--1022},
year={2019},
organization={IEEE}
}
Contributions
Thanks to ibm-aur-nlp/PubLayNet for creating this dataset.