alatlatihlora
/
extensions_built_in
/image_reference_slider_trainer
/ImageReferenceSliderTrainerProcess.py
import copy | |
import random | |
from collections import OrderedDict | |
import os | |
from contextlib import nullcontext | |
from typing import Optional, Union, List | |
from torch.utils.data import ConcatDataset, DataLoader | |
from toolkit.config_modules import ReferenceDatasetConfig | |
from toolkit.data_loader import PairedImageDataset | |
from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds | |
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds | |
from toolkit.train_tools import get_torch_dtype, apply_snr_weight | |
import gc | |
from toolkit import train_tools | |
import torch | |
from jobs.process import BaseSDTrainProcess | |
import random | |
from toolkit.basic import value_map | |
def flush(): | |
torch.cuda.empty_cache() | |
gc.collect() | |
class ReferenceSliderConfig: | |
def __init__(self, **kwargs): | |
self.additional_losses: List[str] = kwargs.get('additional_losses', []) | |
self.weight_jitter: float = kwargs.get('weight_jitter', 0.0) | |
self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])] | |
class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess): | |
sd: StableDiffusion | |
data_loader: DataLoader = None | |
def __init__(self, process_id: int, job, config: OrderedDict, **kwargs): | |
super().__init__(process_id, job, config, **kwargs) | |
self.prompt_txt_list = None | |
self.step_num = 0 | |
self.start_step = 0 | |
self.device = self.get_conf('device', self.job.device) | |
self.device_torch = torch.device(self.device) | |
self.slider_config = ReferenceSliderConfig(**self.get_conf('slider', {})) | |
def load_datasets(self): | |
if self.data_loader is None: | |
print(f"Loading datasets") | |
datasets = [] | |
for dataset in self.slider_config.datasets: | |
print(f" - Dataset: {dataset.pair_folder}") | |
config = { | |
'path': dataset.pair_folder, | |
'size': dataset.size, | |
'default_prompt': dataset.target_class, | |
'network_weight': dataset.network_weight, | |
'pos_weight': dataset.pos_weight, | |
'neg_weight': dataset.neg_weight, | |
'pos_folder': dataset.pos_folder, | |
'neg_folder': dataset.neg_folder, | |
} | |
image_dataset = PairedImageDataset(config) | |
datasets.append(image_dataset) | |
concatenated_dataset = ConcatDataset(datasets) | |
self.data_loader = DataLoader( | |
concatenated_dataset, | |
batch_size=self.train_config.batch_size, | |
shuffle=True, | |
num_workers=2 | |
) | |
def before_model_load(self): | |
pass | |
def hook_before_train_loop(self): | |
self.sd.vae.eval() | |
self.sd.vae.to(self.device_torch) | |
self.load_datasets() | |
pass | |
def hook_train_loop(self, batch): | |
with torch.no_grad(): | |
imgs, prompts, network_weights = batch | |
network_pos_weight, network_neg_weight = network_weights | |
if isinstance(network_pos_weight, torch.Tensor): | |
network_pos_weight = network_pos_weight.item() | |
if isinstance(network_neg_weight, torch.Tensor): | |
network_neg_weight = network_neg_weight.item() | |
# get an array of random floats between -weight_jitter and weight_jitter | |
loss_jitter_multiplier = 1.0 | |
weight_jitter = self.slider_config.weight_jitter | |
if weight_jitter > 0.0: | |
jitter_list = random.uniform(-weight_jitter, weight_jitter) | |
orig_network_pos_weight = network_pos_weight | |
network_pos_weight += jitter_list | |
network_neg_weight += (jitter_list * -1.0) | |
# penalize the loss for its distance from network_pos_weight | |
# a jitter_list of abs(3.0) on a weight of 5.0 is a 60% jitter | |
# so the loss_jitter_multiplier needs to be 0.4 | |
loss_jitter_multiplier = value_map(abs(jitter_list), 0.0, weight_jitter, 1.0, 0.0) | |
# if items in network_weight list are tensors, convert them to floats | |
dtype = get_torch_dtype(self.train_config.dtype) | |
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype) | |
# split batched images in half so left is negative and right is positive | |
negative_images, positive_images = torch.chunk(imgs, 2, dim=3) | |
positive_latents = self.sd.encode_images(positive_images) | |
negative_latents = self.sd.encode_images(negative_images) | |
height = positive_images.shape[2] | |
width = positive_images.shape[3] | |
batch_size = positive_images.shape[0] | |
if self.train_config.gradient_checkpointing: | |
# may get disabled elsewhere | |
self.sd.unet.enable_gradient_checkpointing() | |
noise_scheduler = self.sd.noise_scheduler | |
optimizer = self.optimizer | |
lr_scheduler = self.lr_scheduler | |
self.sd.noise_scheduler.set_timesteps( | |
self.train_config.max_denoising_steps, device=self.device_torch | |
) | |
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch) | |
timesteps = timesteps.long() | |
# get noise | |
noise_positive = self.sd.get_latent_noise( | |
pixel_height=height, | |
pixel_width=width, | |
batch_size=batch_size, | |
noise_offset=self.train_config.noise_offset, | |
).to(self.device_torch, dtype=dtype) | |
noise_negative = noise_positive.clone() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps) | |
noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps) | |
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0) | |
noise = torch.cat([noise_positive, noise_negative], dim=0) | |
timesteps = torch.cat([timesteps, timesteps], dim=0) | |
network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0] | |
self.optimizer.zero_grad() | |
noisy_latents.requires_grad = False | |
# if training text encoder enable grads, else do context of no grad | |
with torch.set_grad_enabled(self.train_config.train_text_encoder): | |
# fix issue with them being tuples sometimes | |
prompt_list = [] | |
for prompt in prompts: | |
if isinstance(prompt, tuple): | |
prompt = prompt[0] | |
prompt_list.append(prompt) | |
conditional_embeds = self.sd.encode_prompt(prompt_list).to(self.device_torch, dtype=dtype) | |
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds]) | |
# if self.model_config.is_xl: | |
# # todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop | |
# network_multiplier_list = network_multiplier | |
# noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0) | |
# noise_list = torch.chunk(noise, 2, dim=0) | |
# timesteps_list = torch.chunk(timesteps, 2, dim=0) | |
# conditional_embeds_list = split_prompt_embeds(conditional_embeds) | |
# else: | |
network_multiplier_list = [network_multiplier] | |
noisy_latent_list = [noisy_latents] | |
noise_list = [noise] | |
timesteps_list = [timesteps] | |
conditional_embeds_list = [conditional_embeds] | |
losses = [] | |
# allow to chunk it out to save vram | |
for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip( | |
network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list | |
): | |
with self.network: | |
assert self.network.is_active | |
self.network.multiplier = network_multiplier | |
noise_pred = self.sd.predict_noise( | |
latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype), | |
timestep=timesteps, | |
) | |
noise = noise.to(self.device_torch, dtype=dtype) | |
if self.sd.prediction_type == 'v_prediction': | |
# v-parameterization training | |
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps) | |
else: | |
target = noise | |
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") | |
loss = loss.mean([1, 2, 3]) | |
if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001: | |
# add min_snr_gamma | |
loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma) | |
loss = loss.mean() * loss_jitter_multiplier | |
loss_float = loss.item() | |
losses.append(loss_float) | |
# back propagate loss to free ram | |
loss.backward() | |
# apply gradients | |
optimizer.step() | |
lr_scheduler.step() | |
# reset network | |
self.network.multiplier = 1.0 | |
loss_dict = OrderedDict( | |
{'loss': sum(losses) / len(losses) if len(losses) > 0 else 0.0} | |
) | |
return loss_dict | |
# end hook_train_loop | |