alatlatihlora / jobs /process /TrainVAEProcess.py
crystantine's picture
Upload 190 files
1ba389d verified
import copy
import glob
import os
import shutil
import time
from collections import OrderedDict
from PIL import Image
from PIL.ImageOps import exif_transpose
from safetensors.torch import save_file, load_file
from torch.utils.data import DataLoader, ConcatDataset
import torch
from torch import nn
from torchvision.transforms import transforms
from jobs.process import BaseTrainProcess
from toolkit.image_utils import show_tensors
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm
from toolkit.data_loader import ImageDataset
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.style import get_style_model_and_losses
from toolkit.train_tools import get_torch_dtype
from diffusers import AutoencoderKL
from tqdm import tqdm
import time
import numpy as np
from .models.vgg19_critic import Critic
from torchvision.transforms import Resize
import lpips
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def unnormalize(tensor):
return (tensor / 2 + 0.5).clamp(0, 1)
class TrainVAEProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.data_loader = None
self.vae = None
self.device = self.get_conf('device', self.job.device)
self.vae_path = self.get_conf('vae_path', required=True)
self.datasets_objects = self.get_conf('datasets', required=True)
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
self.resolution = self.get_conf('resolution', 256, as_type=int)
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float)
self.sample_every = self.get_conf('sample_every', None)
self.optimizer_type = self.get_conf('optimizer', 'adam')
self.epochs = self.get_conf('epochs', None, as_type=int)
self.max_steps = self.get_conf('max_steps', None, as_type=int)
self.save_every = self.get_conf('save_every', None)
self.dtype = self.get_conf('dtype', 'float32')
self.sample_sources = self.get_conf('sample_sources', None)
self.log_every = self.get_conf('log_every', 100, as_type=int)
self.style_weight = self.get_conf('style_weight', 0, as_type=float)
self.content_weight = self.get_conf('content_weight', 0, as_type=float)
self.kld_weight = self.get_conf('kld_weight', 0, as_type=float)
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
self.lpips_weight = self.get_conf('lpips_weight', 1e0, as_type=float)
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float)
self.optimizer_params = self.get_conf('optimizer_params', {})
self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
self.torch_dtype = get_torch_dtype(self.dtype)
self.vgg_19 = None
self.style_weight_scalers = []
self.content_weight_scalers = []
self.lpips_loss:lpips.LPIPS = None
self.vae_scale_factor = 8
self.step_num = 0
self.epoch_num = 0
self.use_critic = self.get_conf('use_critic', False, as_type=bool)
self.critic = None
if self.use_critic:
self.critic = Critic(
device=self.device,
dtype=self.dtype,
process=self,
**self.get_conf('critic', {}) # pass any other params
)
if self.sample_every is not None and self.sample_sources is None:
raise ValueError('sample_every is specified but sample_sources is not')
if self.epochs is None and self.max_steps is None:
raise ValueError('epochs or max_steps must be specified')
self.data_loaders = []
# check datasets
assert isinstance(self.datasets_objects, list)
for dataset in self.datasets_objects:
if 'path' not in dataset:
raise ValueError('dataset must have a path')
# check if is dir
if not os.path.isdir(dataset['path']):
raise ValueError(f"dataset path does is not a directory: {dataset['path']}")
# make training folder
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
self._pattern_loss = None
def update_training_metadata(self):
self.add_meta(OrderedDict({"training_info": self.get_training_info()}))
def get_training_info(self):
info = OrderedDict({
'step': self.step_num,
'epoch': self.epoch_num,
})
return info
def load_datasets(self):
if self.data_loader is None:
print(f"Loading datasets")
datasets = []
for dataset in self.datasets_objects:
print(f" - Dataset: {dataset['path']}")
ds = copy.copy(dataset)
ds['resolution'] = self.resolution
image_dataset = ImageDataset(ds)
datasets.append(image_dataset)
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=6
)
def remove_oldest_checkpoint(self):
max_to_keep = 4
folders = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers"))
if len(folders) > max_to_keep:
folders.sort(key=os.path.getmtime)
for folder in folders[:-max_to_keep]:
print(f"Removing {folder}")
shutil.rmtree(folder)
def setup_vgg19(self):
if self.vgg_19 is None:
self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses(
single_target=True,
device=self.device,
output_layer_name='pool_4',
dtype=self.torch_dtype
)
self.vgg_19.to(self.device, dtype=self.torch_dtype)
self.vgg_19.requires_grad_(False)
# we run random noise through first to get layer scalers to normalize the loss per layer
# bs of 2 because we run pred and target through stacked
noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype)
self.vgg_19(noise)
for style_loss in self.style_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(style_loss.loss).item()
self.style_weight_scalers.append(scaler)
for content_loss in self.content_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(content_loss.loss).item()
self.content_weight_scalers.append(scaler)
self.print(f"Style weight scalers: {self.style_weight_scalers}")
self.print(f"Content weight scalers: {self.content_weight_scalers}")
def get_style_loss(self):
if self.style_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(
torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_content_loss(self):
if self.content_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(torch.stack(
[loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_mse_loss(self, pred, target):
if self.mse_weight > 0:
loss_fn = nn.MSELoss()
loss = loss_fn(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_kld_loss(self, mu, log_var):
if self.kld_weight > 0:
# Kullback-Leibler divergence
# added here for full training (not implemented). Not needed for only decoder
# as we are not changing the distribution of the latent space
# normally it would help keep a normal distribution for latents
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) # KL divergence
return KLD
else:
return torch.tensor(0.0, device=self.device)
def get_tv_loss(self, pred, target):
if self.tv_weight > 0:
get_tv_loss = ComparativeTotalVariation()
loss = get_tv_loss(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_pattern_loss(self, pred, target):
if self._pattern_loss is None:
self._pattern_loss = PatternLoss(pattern_size=16, dtype=self.torch_dtype).to(self.device,
dtype=self.torch_dtype)
loss = torch.mean(self._pattern_loss(pred, target))
return loss
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
filename = f'{self.job.name}{step_num}_diffusers'
self.vae = self.vae.to("cpu", dtype=torch.float16)
self.vae.save_pretrained(
save_directory=os.path.join(self.save_root, filename)
)
self.vae = self.vae.to(self.device, dtype=self.torch_dtype)
self.print(f"Saved to {os.path.join(self.save_root, filename)}")
if self.use_critic:
self.critic.save(step)
self.remove_oldest_checkpoint()
def sample(self, step=None):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
with torch.no_grad():
for i, img_url in enumerate(self.sample_sources):
img = exif_transpose(Image.open(img_url))
img = img.convert('RGB')
# crop if not square
if img.width != img.height:
min_dim = min(img.width, img.height)
img = img.crop((0, 0, min_dim, min_dim))
# resize
img = img.resize((self.resolution, self.resolution))
input_img = img
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype)
img = img
decoded = self.vae(img).sample
decoded = (decoded / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
decoded = decoded.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
# convert to pillow image
decoded = Image.fromarray((decoded * 255).astype(np.uint8))
# stack input image and decoded image
input_img = input_img.resize((self.resolution, self.resolution))
decoded = decoded.resize((self.resolution, self.resolution))
output_img = Image.new('RGB', (self.resolution * 2, self.resolution))
output_img.paste(input_img, (0, 0))
output_img.paste(decoded, (self.resolution, 0))
scale_up = 2
if output_img.height <= 300:
scale_up = 4
# scale up using nearest neighbor
output_img = output_img.resize((output_img.width * scale_up, output_img.height * scale_up), Image.NEAREST)
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zero-pad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
output_img.save(os.path.join(sample_folder, filename))
def load_vae(self):
path_to_load = self.vae_path
# see if we have a checkpoint in out output to resume from
self.print(f"Looking for latest checkpoint in {self.save_root}")
files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
# todo update step and epoch count
else:
self.print(f" - No checkpoint found, starting from scratch")
# load vae
self.print(f"Loading VAE")
self.print(f" - Loading VAE: {path_to_load}")
if self.vae is None:
self.vae = AutoencoderKL.from_pretrained(path_to_load)
# set decoder to train
self.vae.to(self.device, dtype=self.torch_dtype)
self.vae.requires_grad_(False)
self.vae.eval()
self.vae.decoder.train()
self.vae_scale_factor = 2 ** (len(self.vae.config['block_out_channels']) - 1)
def run(self):
super().run()
self.load_datasets()
max_step_epochs = self.max_steps // len(self.data_loader)
num_epochs = self.epochs
if num_epochs is None or num_epochs > max_step_epochs:
num_epochs = max_step_epochs
max_epoch_steps = len(self.data_loader) * num_epochs
num_steps = self.max_steps
if num_steps is None or num_steps > max_epoch_steps:
num_steps = max_epoch_steps
self.max_steps = num_steps
self.epochs = num_epochs
start_step = self.step_num
self.first_step = start_step
self.print(f"Training VAE")
self.print(f" - Training folder: {self.training_folder}")
self.print(f" - Batch size: {self.batch_size}")
self.print(f" - Learning rate: {self.learning_rate}")
self.print(f" - Epochs: {num_epochs}")
self.print(f" - Max steps: {self.max_steps}")
# load vae
self.load_vae()
params = []
# only set last 2 layers to trainable
for param in self.vae.decoder.parameters():
param.requires_grad = False
train_all = 'all' in self.blocks_to_train
if train_all:
params = list(self.vae.decoder.parameters())
self.vae.decoder.requires_grad_(True)
else:
# mid_block
if train_all or 'mid_block' in self.blocks_to_train:
params += list(self.vae.decoder.mid_block.parameters())
self.vae.decoder.mid_block.requires_grad_(True)
# up_blocks
if train_all or 'up_blocks' in self.blocks_to_train:
params += list(self.vae.decoder.up_blocks.parameters())
self.vae.decoder.up_blocks.requires_grad_(True)
# conv_out (single conv layer output)
if train_all or 'conv_out' in self.blocks_to_train:
params += list(self.vae.decoder.conv_out.parameters())
self.vae.decoder.conv_out.requires_grad_(True)
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
self.setup_vgg19()
self.vgg_19.requires_grad_(False)
self.vgg_19.eval()
if self.use_critic:
self.critic.setup()
if self.lpips_weight > 0 and self.lpips_loss is None:
# self.lpips_loss = lpips.LPIPS(net='vgg')
self.lpips_loss = lpips.LPIPS(net='vgg').to(self.device, dtype=self.torch_dtype)
optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
# setup scheduler
# todo allow other schedulers
scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer,
total_iters=num_steps,
factor=1,
verbose=False
)
# setup tqdm progress bar
self.progress_bar = tqdm(
total=num_steps,
desc='Training VAE',
leave=True
)
# sample first
self.sample()
blank_losses = OrderedDict({
"total": [],
"lpips": [],
"style": [],
"content": [],
"mse": [],
"kl": [],
"tv": [],
"ptn": [],
"crD": [],
"crG": [],
})
epoch_losses = copy.deepcopy(blank_losses)
log_losses = copy.deepcopy(blank_losses)
# range start at self.epoch_num go to self.epochs
for epoch in range(self.epoch_num, self.epochs, 1):
if self.step_num >= self.max_steps:
break
for batch in self.data_loader:
if self.step_num >= self.max_steps:
break
with torch.no_grad():
batch = batch.to(self.device, dtype=self.torch_dtype)
# resize so it matches size of vae evenly
if batch.shape[2] % self.vae_scale_factor != 0 or batch.shape[3] % self.vae_scale_factor != 0:
batch = Resize((batch.shape[2] // self.vae_scale_factor * self.vae_scale_factor,
batch.shape[3] // self.vae_scale_factor * self.vae_scale_factor))(batch)
# forward pass
dgd = self.vae.encode(batch).latent_dist
mu, logvar = dgd.mean, dgd.logvar
latents = dgd.sample()
latents.detach().requires_grad_(True)
pred = self.vae.decode(latents).sample
with torch.no_grad():
show_tensors(
pred.clamp(-1, 1).clone(),
"combined tensor"
)
# Run through VGG19
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
stacked = torch.cat([pred, batch], dim=0)
stacked = (stacked / 2 + 0.5).clamp(0, 1)
self.vgg_19(stacked)
if self.use_critic:
critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach())
else:
critic_d_loss = 0.0
style_loss = self.get_style_loss() * self.style_weight
content_loss = self.get_content_loss() * self.content_weight
kld_loss = self.get_kld_loss(mu, logvar) * self.kld_weight
mse_loss = self.get_mse_loss(pred, batch) * self.mse_weight
if self.lpips_weight > 0:
lpips_loss = self.lpips_loss(
pred.clamp(-1, 1),
batch.clamp(-1, 1)
).mean() * self.lpips_weight
else:
lpips_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
tv_loss = self.get_tv_loss(pred, batch) * self.tv_weight
pattern_loss = self.get_pattern_loss(pred, batch) * self.pattern_weight
if self.use_critic:
critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight
# do not let abs critic gen loss be higher than abs lpips * 0.1 if using it
if self.lpips_weight > 0:
max_target = lpips_loss.abs() * 0.1
with torch.no_grad():
crit_g_scaler = 1.0
if critic_gen_loss.abs() > max_target:
crit_g_scaler = max_target / critic_gen_loss.abs()
critic_gen_loss *= crit_g_scaler
else:
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
loss = style_loss + content_loss + kld_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss + lpips_loss
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# update progress bar
loss_value = loss.item()
# get exponent like 3.54e-4
loss_string = f"loss: {loss_value:.2e}"
if self.lpips_weight > 0:
loss_string += f" lpips: {lpips_loss.item():.2e}"
if self.content_weight > 0:
loss_string += f" cnt: {content_loss.item():.2e}"
if self.style_weight > 0:
loss_string += f" sty: {style_loss.item():.2e}"
if self.kld_weight > 0:
loss_string += f" kld: {kld_loss.item():.2e}"
if self.mse_weight > 0:
loss_string += f" mse: {mse_loss.item():.2e}"
if self.tv_weight > 0:
loss_string += f" tv: {tv_loss.item():.2e}"
if self.pattern_weight > 0:
loss_string += f" ptn: {pattern_loss.item():.2e}"
if self.use_critic and self.critic_weight > 0:
loss_string += f" crG: {critic_gen_loss.item():.2e}"
if self.use_critic:
loss_string += f" crD: {critic_d_loss:.2e}"
if self.optimizer_type.startswith('dadaptation') or \
self.optimizer_type.lower().startswith('prodigy'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
lr_critic_string = ''
if self.use_critic:
lr_critic = self.critic.get_lr()
lr_critic_string = f" lrC: {lr_critic:.1e}"
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}")
self.progress_bar.set_description(f"E: {epoch}")
self.progress_bar.update(1)
epoch_losses["total"].append(loss_value)
epoch_losses["lpips"].append(lpips_loss.item())
epoch_losses["style"].append(style_loss.item())
epoch_losses["content"].append(content_loss.item())
epoch_losses["mse"].append(mse_loss.item())
epoch_losses["kl"].append(kld_loss.item())
epoch_losses["tv"].append(tv_loss.item())
epoch_losses["ptn"].append(pattern_loss.item())
epoch_losses["crG"].append(critic_gen_loss.item())
epoch_losses["crD"].append(critic_d_loss)
log_losses["total"].append(loss_value)
log_losses["lpips"].append(lpips_loss.item())
log_losses["style"].append(style_loss.item())
log_losses["content"].append(content_loss.item())
log_losses["mse"].append(mse_loss.item())
log_losses["kl"].append(kld_loss.item())
log_losses["tv"].append(tv_loss.item())
log_losses["ptn"].append(pattern_loss.item())
log_losses["crG"].append(critic_gen_loss.item())
log_losses["crD"].append(critic_d_loss)
# don't do on first step
if self.step_num != start_step:
if self.sample_every and self.step_num % self.sample_every == 0:
# print above the progress bar
self.print(f"Sampling at step {self.step_num}")
self.sample(self.step_num)
if self.save_every and self.step_num % self.save_every == 0:
# print above the progress bar
self.print(f"Saving at step {self.step_num}")
self.save(self.step_num)
if self.log_every and self.step_num % self.log_every == 0:
# log to tensorboard
if self.writer is not None:
# get avg loss
for key in log_losses:
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6)
# if log_losses[key] > 0:
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num)
# reset log losses
log_losses = copy.deepcopy(blank_losses)
self.step_num += 1
# end epoch
if self.writer is not None:
eps = 1e-6
# get avg loss
for key in epoch_losses:
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps)
if epoch_losses[key] > 0:
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch)
# reset epoch losses
epoch_losses = copy.deepcopy(blank_losses)
self.save()