|
import copy |
|
import glob |
|
import os |
|
import shutil |
|
import time |
|
from collections import OrderedDict |
|
|
|
from PIL import Image |
|
from PIL.ImageOps import exif_transpose |
|
from safetensors.torch import save_file, load_file |
|
from torch.utils.data import DataLoader, ConcatDataset |
|
import torch |
|
from torch import nn |
|
from torchvision.transforms import transforms |
|
|
|
from jobs.process import BaseTrainProcess |
|
from toolkit.image_utils import show_tensors |
|
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm |
|
from toolkit.data_loader import ImageDataset |
|
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss |
|
from toolkit.metadata import get_meta_for_safetensors |
|
from toolkit.optimizer import get_optimizer |
|
from toolkit.style import get_style_model_and_losses |
|
from toolkit.train_tools import get_torch_dtype |
|
from diffusers import AutoencoderKL |
|
from tqdm import tqdm |
|
import time |
|
import numpy as np |
|
from .models.vgg19_critic import Critic |
|
from torchvision.transforms import Resize |
|
import lpips |
|
|
|
IMAGE_TRANSFORMS = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.5], [0.5]), |
|
] |
|
) |
|
|
|
|
|
def unnormalize(tensor): |
|
return (tensor / 2 + 0.5).clamp(0, 1) |
|
|
|
|
|
class TrainVAEProcess(BaseTrainProcess): |
|
def __init__(self, process_id: int, job, config: OrderedDict): |
|
super().__init__(process_id, job, config) |
|
self.data_loader = None |
|
self.vae = None |
|
self.device = self.get_conf('device', self.job.device) |
|
self.vae_path = self.get_conf('vae_path', required=True) |
|
self.datasets_objects = self.get_conf('datasets', required=True) |
|
self.batch_size = self.get_conf('batch_size', 1, as_type=int) |
|
self.resolution = self.get_conf('resolution', 256, as_type=int) |
|
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float) |
|
self.sample_every = self.get_conf('sample_every', None) |
|
self.optimizer_type = self.get_conf('optimizer', 'adam') |
|
self.epochs = self.get_conf('epochs', None, as_type=int) |
|
self.max_steps = self.get_conf('max_steps', None, as_type=int) |
|
self.save_every = self.get_conf('save_every', None) |
|
self.dtype = self.get_conf('dtype', 'float32') |
|
self.sample_sources = self.get_conf('sample_sources', None) |
|
self.log_every = self.get_conf('log_every', 100, as_type=int) |
|
self.style_weight = self.get_conf('style_weight', 0, as_type=float) |
|
self.content_weight = self.get_conf('content_weight', 0, as_type=float) |
|
self.kld_weight = self.get_conf('kld_weight', 0, as_type=float) |
|
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float) |
|
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float) |
|
self.lpips_weight = self.get_conf('lpips_weight', 1e0, as_type=float) |
|
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float) |
|
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float) |
|
self.optimizer_params = self.get_conf('optimizer_params', {}) |
|
|
|
self.blocks_to_train = self.get_conf('blocks_to_train', ['all']) |
|
self.torch_dtype = get_torch_dtype(self.dtype) |
|
self.vgg_19 = None |
|
self.style_weight_scalers = [] |
|
self.content_weight_scalers = [] |
|
self.lpips_loss:lpips.LPIPS = None |
|
|
|
self.vae_scale_factor = 8 |
|
|
|
self.step_num = 0 |
|
self.epoch_num = 0 |
|
|
|
self.use_critic = self.get_conf('use_critic', False, as_type=bool) |
|
self.critic = None |
|
|
|
if self.use_critic: |
|
self.critic = Critic( |
|
device=self.device, |
|
dtype=self.dtype, |
|
process=self, |
|
**self.get_conf('critic', {}) |
|
) |
|
|
|
if self.sample_every is not None and self.sample_sources is None: |
|
raise ValueError('sample_every is specified but sample_sources is not') |
|
|
|
if self.epochs is None and self.max_steps is None: |
|
raise ValueError('epochs or max_steps must be specified') |
|
|
|
self.data_loaders = [] |
|
|
|
assert isinstance(self.datasets_objects, list) |
|
for dataset in self.datasets_objects: |
|
if 'path' not in dataset: |
|
raise ValueError('dataset must have a path') |
|
|
|
if not os.path.isdir(dataset['path']): |
|
raise ValueError(f"dataset path does is not a directory: {dataset['path']}") |
|
|
|
|
|
if not os.path.exists(self.save_root): |
|
os.makedirs(self.save_root, exist_ok=True) |
|
|
|
self._pattern_loss = None |
|
|
|
def update_training_metadata(self): |
|
self.add_meta(OrderedDict({"training_info": self.get_training_info()})) |
|
|
|
def get_training_info(self): |
|
info = OrderedDict({ |
|
'step': self.step_num, |
|
'epoch': self.epoch_num, |
|
}) |
|
return info |
|
|
|
def load_datasets(self): |
|
if self.data_loader is None: |
|
print(f"Loading datasets") |
|
datasets = [] |
|
for dataset in self.datasets_objects: |
|
print(f" - Dataset: {dataset['path']}") |
|
ds = copy.copy(dataset) |
|
ds['resolution'] = self.resolution |
|
image_dataset = ImageDataset(ds) |
|
datasets.append(image_dataset) |
|
|
|
concatenated_dataset = ConcatDataset(datasets) |
|
self.data_loader = DataLoader( |
|
concatenated_dataset, |
|
batch_size=self.batch_size, |
|
shuffle=True, |
|
num_workers=6 |
|
) |
|
|
|
def remove_oldest_checkpoint(self): |
|
max_to_keep = 4 |
|
folders = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers")) |
|
if len(folders) > max_to_keep: |
|
folders.sort(key=os.path.getmtime) |
|
for folder in folders[:-max_to_keep]: |
|
print(f"Removing {folder}") |
|
shutil.rmtree(folder) |
|
|
|
def setup_vgg19(self): |
|
if self.vgg_19 is None: |
|
self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses( |
|
single_target=True, |
|
device=self.device, |
|
output_layer_name='pool_4', |
|
dtype=self.torch_dtype |
|
) |
|
self.vgg_19.to(self.device, dtype=self.torch_dtype) |
|
self.vgg_19.requires_grad_(False) |
|
|
|
|
|
|
|
noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype) |
|
self.vgg_19(noise) |
|
for style_loss in self.style_losses: |
|
|
|
scaler = 1 / torch.mean(style_loss.loss).item() |
|
self.style_weight_scalers.append(scaler) |
|
for content_loss in self.content_losses: |
|
|
|
scaler = 1 / torch.mean(content_loss.loss).item() |
|
self.content_weight_scalers.append(scaler) |
|
|
|
self.print(f"Style weight scalers: {self.style_weight_scalers}") |
|
self.print(f"Content weight scalers: {self.content_weight_scalers}") |
|
|
|
def get_style_loss(self): |
|
if self.style_weight > 0: |
|
|
|
loss = torch.sum( |
|
torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)])) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_content_loss(self): |
|
if self.content_weight > 0: |
|
|
|
loss = torch.sum(torch.stack( |
|
[loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)])) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_mse_loss(self, pred, target): |
|
if self.mse_weight > 0: |
|
loss_fn = nn.MSELoss() |
|
loss = loss_fn(pred, target) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_kld_loss(self, mu, log_var): |
|
if self.kld_weight > 0: |
|
|
|
|
|
|
|
|
|
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp()) |
|
return KLD |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_tv_loss(self, pred, target): |
|
if self.tv_weight > 0: |
|
get_tv_loss = ComparativeTotalVariation() |
|
loss = get_tv_loss(pred, target) |
|
return loss |
|
else: |
|
return torch.tensor(0.0, device=self.device) |
|
|
|
def get_pattern_loss(self, pred, target): |
|
if self._pattern_loss is None: |
|
self._pattern_loss = PatternLoss(pattern_size=16, dtype=self.torch_dtype).to(self.device, |
|
dtype=self.torch_dtype) |
|
loss = torch.mean(self._pattern_loss(pred, target)) |
|
return loss |
|
|
|
def save(self, step=None): |
|
if not os.path.exists(self.save_root): |
|
os.makedirs(self.save_root, exist_ok=True) |
|
|
|
step_num = '' |
|
if step is not None: |
|
|
|
step_num = f"_{str(step).zfill(9)}" |
|
|
|
self.update_training_metadata() |
|
filename = f'{self.job.name}{step_num}_diffusers' |
|
|
|
self.vae = self.vae.to("cpu", dtype=torch.float16) |
|
self.vae.save_pretrained( |
|
save_directory=os.path.join(self.save_root, filename) |
|
) |
|
self.vae = self.vae.to(self.device, dtype=self.torch_dtype) |
|
|
|
self.print(f"Saved to {os.path.join(self.save_root, filename)}") |
|
|
|
if self.use_critic: |
|
self.critic.save(step) |
|
|
|
self.remove_oldest_checkpoint() |
|
|
|
def sample(self, step=None): |
|
sample_folder = os.path.join(self.save_root, 'samples') |
|
if not os.path.exists(sample_folder): |
|
os.makedirs(sample_folder, exist_ok=True) |
|
|
|
with torch.no_grad(): |
|
for i, img_url in enumerate(self.sample_sources): |
|
img = exif_transpose(Image.open(img_url)) |
|
img = img.convert('RGB') |
|
|
|
if img.width != img.height: |
|
min_dim = min(img.width, img.height) |
|
img = img.crop((0, 0, min_dim, min_dim)) |
|
|
|
img = img.resize((self.resolution, self.resolution)) |
|
|
|
input_img = img |
|
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.torch_dtype) |
|
img = img |
|
decoded = self.vae(img).sample |
|
decoded = (decoded / 2 + 0.5).clamp(0, 1) |
|
|
|
decoded = decoded.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy() |
|
|
|
|
|
decoded = Image.fromarray((decoded * 255).astype(np.uint8)) |
|
|
|
|
|
input_img = input_img.resize((self.resolution, self.resolution)) |
|
decoded = decoded.resize((self.resolution, self.resolution)) |
|
|
|
output_img = Image.new('RGB', (self.resolution * 2, self.resolution)) |
|
output_img.paste(input_img, (0, 0)) |
|
output_img.paste(decoded, (self.resolution, 0)) |
|
|
|
scale_up = 2 |
|
if output_img.height <= 300: |
|
scale_up = 4 |
|
|
|
|
|
output_img = output_img.resize((output_img.width * scale_up, output_img.height * scale_up), Image.NEAREST) |
|
|
|
step_num = '' |
|
if step is not None: |
|
|
|
step_num = f"_{str(step).zfill(9)}" |
|
seconds_since_epoch = int(time.time()) |
|
|
|
i_str = str(i).zfill(2) |
|
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png" |
|
output_img.save(os.path.join(sample_folder, filename)) |
|
|
|
def load_vae(self): |
|
path_to_load = self.vae_path |
|
|
|
self.print(f"Looking for latest checkpoint in {self.save_root}") |
|
files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*_diffusers")) |
|
if files and len(files) > 0: |
|
latest_file = max(files, key=os.path.getmtime) |
|
print(f" - Latest checkpoint is: {latest_file}") |
|
path_to_load = latest_file |
|
|
|
else: |
|
self.print(f" - No checkpoint found, starting from scratch") |
|
|
|
self.print(f"Loading VAE") |
|
self.print(f" - Loading VAE: {path_to_load}") |
|
if self.vae is None: |
|
self.vae = AutoencoderKL.from_pretrained(path_to_load) |
|
|
|
|
|
self.vae.to(self.device, dtype=self.torch_dtype) |
|
self.vae.requires_grad_(False) |
|
self.vae.eval() |
|
self.vae.decoder.train() |
|
self.vae_scale_factor = 2 ** (len(self.vae.config['block_out_channels']) - 1) |
|
|
|
def run(self): |
|
super().run() |
|
self.load_datasets() |
|
|
|
max_step_epochs = self.max_steps // len(self.data_loader) |
|
num_epochs = self.epochs |
|
if num_epochs is None or num_epochs > max_step_epochs: |
|
num_epochs = max_step_epochs |
|
|
|
max_epoch_steps = len(self.data_loader) * num_epochs |
|
num_steps = self.max_steps |
|
if num_steps is None or num_steps > max_epoch_steps: |
|
num_steps = max_epoch_steps |
|
self.max_steps = num_steps |
|
self.epochs = num_epochs |
|
start_step = self.step_num |
|
self.first_step = start_step |
|
|
|
self.print(f"Training VAE") |
|
self.print(f" - Training folder: {self.training_folder}") |
|
self.print(f" - Batch size: {self.batch_size}") |
|
self.print(f" - Learning rate: {self.learning_rate}") |
|
self.print(f" - Epochs: {num_epochs}") |
|
self.print(f" - Max steps: {self.max_steps}") |
|
|
|
|
|
self.load_vae() |
|
|
|
params = [] |
|
|
|
|
|
for param in self.vae.decoder.parameters(): |
|
param.requires_grad = False |
|
|
|
train_all = 'all' in self.blocks_to_train |
|
|
|
if train_all: |
|
params = list(self.vae.decoder.parameters()) |
|
self.vae.decoder.requires_grad_(True) |
|
else: |
|
|
|
if train_all or 'mid_block' in self.blocks_to_train: |
|
params += list(self.vae.decoder.mid_block.parameters()) |
|
self.vae.decoder.mid_block.requires_grad_(True) |
|
|
|
if train_all or 'up_blocks' in self.blocks_to_train: |
|
params += list(self.vae.decoder.up_blocks.parameters()) |
|
self.vae.decoder.up_blocks.requires_grad_(True) |
|
|
|
if train_all or 'conv_out' in self.blocks_to_train: |
|
params += list(self.vae.decoder.conv_out.parameters()) |
|
self.vae.decoder.conv_out.requires_grad_(True) |
|
|
|
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic: |
|
self.setup_vgg19() |
|
self.vgg_19.requires_grad_(False) |
|
self.vgg_19.eval() |
|
if self.use_critic: |
|
self.critic.setup() |
|
|
|
if self.lpips_weight > 0 and self.lpips_loss is None: |
|
|
|
self.lpips_loss = lpips.LPIPS(net='vgg').to(self.device, dtype=self.torch_dtype) |
|
|
|
optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate, |
|
optimizer_params=self.optimizer_params) |
|
|
|
|
|
|
|
scheduler = torch.optim.lr_scheduler.ConstantLR( |
|
optimizer, |
|
total_iters=num_steps, |
|
factor=1, |
|
verbose=False |
|
) |
|
|
|
|
|
self.progress_bar = tqdm( |
|
total=num_steps, |
|
desc='Training VAE', |
|
leave=True |
|
) |
|
|
|
|
|
self.sample() |
|
blank_losses = OrderedDict({ |
|
"total": [], |
|
"lpips": [], |
|
"style": [], |
|
"content": [], |
|
"mse": [], |
|
"kl": [], |
|
"tv": [], |
|
"ptn": [], |
|
"crD": [], |
|
"crG": [], |
|
}) |
|
epoch_losses = copy.deepcopy(blank_losses) |
|
log_losses = copy.deepcopy(blank_losses) |
|
|
|
for epoch in range(self.epoch_num, self.epochs, 1): |
|
if self.step_num >= self.max_steps: |
|
break |
|
for batch in self.data_loader: |
|
if self.step_num >= self.max_steps: |
|
break |
|
with torch.no_grad(): |
|
|
|
batch = batch.to(self.device, dtype=self.torch_dtype) |
|
|
|
|
|
if batch.shape[2] % self.vae_scale_factor != 0 or batch.shape[3] % self.vae_scale_factor != 0: |
|
batch = Resize((batch.shape[2] // self.vae_scale_factor * self.vae_scale_factor, |
|
batch.shape[3] // self.vae_scale_factor * self.vae_scale_factor))(batch) |
|
|
|
|
|
dgd = self.vae.encode(batch).latent_dist |
|
mu, logvar = dgd.mean, dgd.logvar |
|
latents = dgd.sample() |
|
latents.detach().requires_grad_(True) |
|
|
|
pred = self.vae.decode(latents).sample |
|
|
|
with torch.no_grad(): |
|
show_tensors( |
|
pred.clamp(-1, 1).clone(), |
|
"combined tensor" |
|
) |
|
|
|
|
|
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic: |
|
stacked = torch.cat([pred, batch], dim=0) |
|
stacked = (stacked / 2 + 0.5).clamp(0, 1) |
|
self.vgg_19(stacked) |
|
|
|
if self.use_critic: |
|
critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach()) |
|
else: |
|
critic_d_loss = 0.0 |
|
|
|
style_loss = self.get_style_loss() * self.style_weight |
|
content_loss = self.get_content_loss() * self.content_weight |
|
kld_loss = self.get_kld_loss(mu, logvar) * self.kld_weight |
|
mse_loss = self.get_mse_loss(pred, batch) * self.mse_weight |
|
if self.lpips_weight > 0: |
|
lpips_loss = self.lpips_loss( |
|
pred.clamp(-1, 1), |
|
batch.clamp(-1, 1) |
|
).mean() * self.lpips_weight |
|
else: |
|
lpips_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype) |
|
tv_loss = self.get_tv_loss(pred, batch) * self.tv_weight |
|
pattern_loss = self.get_pattern_loss(pred, batch) * self.pattern_weight |
|
if self.use_critic: |
|
critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight |
|
|
|
|
|
if self.lpips_weight > 0: |
|
max_target = lpips_loss.abs() * 0.1 |
|
with torch.no_grad(): |
|
crit_g_scaler = 1.0 |
|
if critic_gen_loss.abs() > max_target: |
|
crit_g_scaler = max_target / critic_gen_loss.abs() |
|
|
|
critic_gen_loss *= crit_g_scaler |
|
else: |
|
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype) |
|
|
|
loss = style_loss + content_loss + kld_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss + lpips_loss |
|
|
|
|
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
|
|
loss_value = loss.item() |
|
|
|
loss_string = f"loss: {loss_value:.2e}" |
|
if self.lpips_weight > 0: |
|
loss_string += f" lpips: {lpips_loss.item():.2e}" |
|
if self.content_weight > 0: |
|
loss_string += f" cnt: {content_loss.item():.2e}" |
|
if self.style_weight > 0: |
|
loss_string += f" sty: {style_loss.item():.2e}" |
|
if self.kld_weight > 0: |
|
loss_string += f" kld: {kld_loss.item():.2e}" |
|
if self.mse_weight > 0: |
|
loss_string += f" mse: {mse_loss.item():.2e}" |
|
if self.tv_weight > 0: |
|
loss_string += f" tv: {tv_loss.item():.2e}" |
|
if self.pattern_weight > 0: |
|
loss_string += f" ptn: {pattern_loss.item():.2e}" |
|
if self.use_critic and self.critic_weight > 0: |
|
loss_string += f" crG: {critic_gen_loss.item():.2e}" |
|
if self.use_critic: |
|
loss_string += f" crD: {critic_d_loss:.2e}" |
|
|
|
if self.optimizer_type.startswith('dadaptation') or \ |
|
self.optimizer_type.lower().startswith('prodigy'): |
|
learning_rate = ( |
|
optimizer.param_groups[0]["d"] * |
|
optimizer.param_groups[0]["lr"] |
|
) |
|
else: |
|
learning_rate = optimizer.param_groups[0]['lr'] |
|
|
|
lr_critic_string = '' |
|
if self.use_critic: |
|
lr_critic = self.critic.get_lr() |
|
lr_critic_string = f" lrC: {lr_critic:.1e}" |
|
|
|
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}") |
|
self.progress_bar.set_description(f"E: {epoch}") |
|
self.progress_bar.update(1) |
|
|
|
epoch_losses["total"].append(loss_value) |
|
epoch_losses["lpips"].append(lpips_loss.item()) |
|
epoch_losses["style"].append(style_loss.item()) |
|
epoch_losses["content"].append(content_loss.item()) |
|
epoch_losses["mse"].append(mse_loss.item()) |
|
epoch_losses["kl"].append(kld_loss.item()) |
|
epoch_losses["tv"].append(tv_loss.item()) |
|
epoch_losses["ptn"].append(pattern_loss.item()) |
|
epoch_losses["crG"].append(critic_gen_loss.item()) |
|
epoch_losses["crD"].append(critic_d_loss) |
|
|
|
log_losses["total"].append(loss_value) |
|
log_losses["lpips"].append(lpips_loss.item()) |
|
log_losses["style"].append(style_loss.item()) |
|
log_losses["content"].append(content_loss.item()) |
|
log_losses["mse"].append(mse_loss.item()) |
|
log_losses["kl"].append(kld_loss.item()) |
|
log_losses["tv"].append(tv_loss.item()) |
|
log_losses["ptn"].append(pattern_loss.item()) |
|
log_losses["crG"].append(critic_gen_loss.item()) |
|
log_losses["crD"].append(critic_d_loss) |
|
|
|
|
|
if self.step_num != start_step: |
|
if self.sample_every and self.step_num % self.sample_every == 0: |
|
|
|
self.print(f"Sampling at step {self.step_num}") |
|
self.sample(self.step_num) |
|
|
|
if self.save_every and self.step_num % self.save_every == 0: |
|
|
|
self.print(f"Saving at step {self.step_num}") |
|
self.save(self.step_num) |
|
|
|
if self.log_every and self.step_num % self.log_every == 0: |
|
|
|
if self.writer is not None: |
|
|
|
for key in log_losses: |
|
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6) |
|
|
|
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num) |
|
|
|
log_losses = copy.deepcopy(blank_losses) |
|
|
|
self.step_num += 1 |
|
|
|
if self.writer is not None: |
|
eps = 1e-6 |
|
|
|
for key in epoch_losses: |
|
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps) |
|
if epoch_losses[key] > 0: |
|
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch) |
|
|
|
epoch_losses = copy.deepcopy(blank_losses) |
|
|
|
self.save() |
|
|