crystantine's picture
Upload 190 files
1ba389d verified
import torch
import torch.nn as nn
import numpy as np
import itertools
class LosslessLatentDecoder(nn.Module):
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
super(LosslessLatentDecoder, self).__init__()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.latent_depth = latent_depth
self.in_channels = in_channels
self.out_channels = int(in_channels // (latent_depth * latent_depth))
numpy_kernel = self.build_kernel(in_channels, latent_depth)
numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
if trainable:
self.kernel = nn.Parameter(numpy_kernel)
else:
self.kernel = numpy_kernel
def build_kernel(self, in_channels, latent_depth):
# my old code from tensorflow.
# tensorflow kernel is (height, width, out_channels, in_channels)
# pytorch kernel is (in_channels, out_channels, height, width)
out_channels = self.out_channels
# kernel_shape = [kernel_filter_size, kernel_filter_size, out_channels, in_channels] # tensorflow
kernel_shape = [in_channels, out_channels, latent_depth, latent_depth] # pytorch
kernel = np.zeros(kernel_shape, np.float32)
# Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel.
for c in range(0, out_channels):
i = 0
for x, y in itertools.product(range(latent_depth), repeat=2):
# kernel[y, x, c, c * latent_depth * latent_depth + i] = 1 # tensorflow
kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 # pytorch
i += 1
return kernel
def forward(self, x):
dtype = x.dtype
if self.kernel.dtype != dtype:
self.kernel = self.kernel.to(dtype=dtype)
# Deconvolve input tensor with the kernel
return nn.functional.conv_transpose2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1)
class LosslessLatentEncoder(nn.Module):
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
super(LosslessLatentEncoder, self).__init__()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.latent_depth = latent_depth
self.in_channels = in_channels
self.out_channels = int(in_channels * (latent_depth * latent_depth))
numpy_kernel = self.build_kernel(in_channels, latent_depth)
numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
if trainable:
self.kernel = nn.Parameter(numpy_kernel)
else:
self.kernel = numpy_kernel
def build_kernel(self, in_channels, latent_depth):
# my old code from tensorflow.
# tensorflow kernel is (height, width, in_channels, out_channels)
# pytorch kernel is (out_channels, in_channels, height, width)
out_channels = self.out_channels
# kernel_shape = [latent_depth, latent_depth, in_channels, out_channels] # tensorflow
kernel_shape = [out_channels, in_channels, latent_depth, latent_depth] # pytorch
kernel = np.zeros(kernel_shape, np.float32)
# Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel.
for c in range(0, in_channels):
i = 0
for x, y in itertools.product(range(latent_depth), repeat=2):
# kernel[y, x, c, c * latent_depth * latent_depth + i] = 1 # tensorflow
kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 # pytorch
i += 1
return kernel
def forward(self, x):
dtype = x.dtype
if self.kernel.dtype != dtype:
self.kernel = self.kernel.to(dtype=dtype)
# Convolve input tensor with the kernel
return nn.functional.conv2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1)
class LosslessLatentVAE(nn.Module):
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
super(LosslessLatentVAE, self).__init__()
self.latent_depth = latent_depth
self.in_channels = in_channels
self.encoder = LosslessLatentEncoder(in_channels, latent_depth, dtype=dtype, trainable=trainable)
encoder_out_channels = self.encoder.out_channels
self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth, dtype=dtype, trainable=trainable)
def forward(self, x):
latent = self.latent_encoder(x)
out = self.latent_decoder(latent)
return out
def encode(self, x):
return self.encoder(x)
def decode(self, x):
return self.decoder(x)
# test it
if __name__ == '__main__':
import os
from PIL import Image
import torchvision.transforms as transforms
user_path = os.path.expanduser('~')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float32
input_path = os.path.join(user_path, "Pictures/sample_2_512.png")
output_path = os.path.join(user_path, "Pictures/sample_2_512_llvae.png")
img = Image.open(input_path)
img_tensor = transforms.ToTensor()(img)
img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype)
print("input_shape: ", list(img_tensor.shape))
vae = LosslessLatentVAE(in_channels=3, latent_depth=8, dtype=dtype).to(device=device, dtype=dtype)
latent = vae.encode(img_tensor)
print("latent_shape: ", list(latent.shape))
out_tensor = vae.decode(latent)
print("out_shape: ", list(out_tensor.shape))
mse_loss = nn.MSELoss()
mse = mse_loss(img_tensor, out_tensor)
print("roundtrip_loss: ", mse.item())
out_img = transforms.ToPILImage()(out_tensor.squeeze(0))
out_img.save(output_path)