|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
import itertools |
|
|
|
|
|
class LosslessLatentDecoder(nn.Module): |
|
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): |
|
super(LosslessLatentDecoder, self).__init__() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.latent_depth = latent_depth |
|
self.in_channels = in_channels |
|
self.out_channels = int(in_channels // (latent_depth * latent_depth)) |
|
numpy_kernel = self.build_kernel(in_channels, latent_depth) |
|
numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype) |
|
if trainable: |
|
self.kernel = nn.Parameter(numpy_kernel) |
|
else: |
|
self.kernel = numpy_kernel |
|
|
|
def build_kernel(self, in_channels, latent_depth): |
|
|
|
|
|
|
|
out_channels = self.out_channels |
|
|
|
|
|
kernel_shape = [in_channels, out_channels, latent_depth, latent_depth] |
|
kernel = np.zeros(kernel_shape, np.float32) |
|
|
|
|
|
for c in range(0, out_channels): |
|
i = 0 |
|
for x, y in itertools.product(range(latent_depth), repeat=2): |
|
|
|
kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 |
|
i += 1 |
|
|
|
return kernel |
|
|
|
def forward(self, x): |
|
dtype = x.dtype |
|
if self.kernel.dtype != dtype: |
|
self.kernel = self.kernel.to(dtype=dtype) |
|
|
|
|
|
return nn.functional.conv_transpose2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1) |
|
|
|
|
|
class LosslessLatentEncoder(nn.Module): |
|
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): |
|
super(LosslessLatentEncoder, self).__init__() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.latent_depth = latent_depth |
|
self.in_channels = in_channels |
|
self.out_channels = int(in_channels * (latent_depth * latent_depth)) |
|
numpy_kernel = self.build_kernel(in_channels, latent_depth) |
|
numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype) |
|
if trainable: |
|
self.kernel = nn.Parameter(numpy_kernel) |
|
else: |
|
self.kernel = numpy_kernel |
|
|
|
|
|
def build_kernel(self, in_channels, latent_depth): |
|
|
|
|
|
|
|
out_channels = self.out_channels |
|
|
|
|
|
kernel_shape = [out_channels, in_channels, latent_depth, latent_depth] |
|
kernel = np.zeros(kernel_shape, np.float32) |
|
|
|
|
|
for c in range(0, in_channels): |
|
i = 0 |
|
for x, y in itertools.product(range(latent_depth), repeat=2): |
|
|
|
kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0 |
|
i += 1 |
|
return kernel |
|
|
|
def forward(self, x): |
|
dtype = x.dtype |
|
if self.kernel.dtype != dtype: |
|
self.kernel = self.kernel.to(dtype=dtype) |
|
|
|
return nn.functional.conv2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1) |
|
|
|
|
|
class LosslessLatentVAE(nn.Module): |
|
def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False): |
|
super(LosslessLatentVAE, self).__init__() |
|
self.latent_depth = latent_depth |
|
self.in_channels = in_channels |
|
self.encoder = LosslessLatentEncoder(in_channels, latent_depth, dtype=dtype, trainable=trainable) |
|
encoder_out_channels = self.encoder.out_channels |
|
self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth, dtype=dtype, trainable=trainable) |
|
|
|
def forward(self, x): |
|
latent = self.latent_encoder(x) |
|
out = self.latent_decoder(latent) |
|
return out |
|
|
|
def encode(self, x): |
|
return self.encoder(x) |
|
|
|
def decode(self, x): |
|
return self.decoder(x) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
from PIL import Image |
|
import torchvision.transforms as transforms |
|
user_path = os.path.expanduser('~') |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
dtype = torch.float32 |
|
|
|
input_path = os.path.join(user_path, "Pictures/sample_2_512.png") |
|
output_path = os.path.join(user_path, "Pictures/sample_2_512_llvae.png") |
|
img = Image.open(input_path) |
|
img_tensor = transforms.ToTensor()(img) |
|
img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype) |
|
print("input_shape: ", list(img_tensor.shape)) |
|
vae = LosslessLatentVAE(in_channels=3, latent_depth=8, dtype=dtype).to(device=device, dtype=dtype) |
|
latent = vae.encode(img_tensor) |
|
print("latent_shape: ", list(latent.shape)) |
|
out_tensor = vae.decode(latent) |
|
print("out_shape: ", list(out_tensor.shape)) |
|
|
|
mse_loss = nn.MSELoss() |
|
mse = mse_loss(img_tensor, out_tensor) |
|
print("roundtrip_loss: ", mse.item()) |
|
out_img = transforms.ToPILImage()(out_tensor.squeeze(0)) |
|
out_img.save(output_path) |
|
|