alatlatihlora / toolkit /reference_adapter.py
crystantine's picture
Upload 190 files
1ba389d verified
import math
import torch
import sys
from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from toolkit.basic import adain
from toolkit.paths import REPOS_ROOT
from toolkit.saving import load_ip_adapter_model
from toolkit.train_tools import get_torch_dtype
sys.path.append(REPOS_ROOT)
from typing import TYPE_CHECKING, Union, Iterator, Mapping, Any, Tuple, List, Optional, Dict
from collections import OrderedDict
from ipadapter.ip_adapter.attention_processor import AttnProcessor, IPAttnProcessor, IPAttnProcessor2_0, \
AttnProcessor2_0
from ipadapter.ip_adapter.ip_adapter import ImageProjModel
from ipadapter.ip_adapter.resampler import Resampler
from toolkit.config_modules import AdapterConfig
from toolkit.prompt_utils import PromptEmbeds
import weakref
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from diffusers import (
EulerDiscreteScheduler,
DDPMScheduler,
)
from transformers import (
CLIPImageProcessor,
CLIPVisionModelWithProjection
)
from toolkit.models.size_agnostic_feature_encoder import SAFEImageProcessor, SAFEVisionModel
from transformers import ViTHybridImageProcessor, ViTHybridForImageClassification
from transformers import ViTFeatureExtractor, ViTForImageClassification
import torch.nn.functional as F
import torch.nn as nn
class ReferenceAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapater for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.ref_net = nn.Linear(hidden_size, hidden_size)
self.blend = nn.Parameter(torch.zeros(hidden_size))
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self._memory = None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
if self.adapter_ref().is_active:
if self.adapter_ref().reference_mode == "write":
# write_mode
memory_ref = self.ref_net(hidden_states)
self._memory = memory_ref
elif self.adapter_ref().reference_mode == "read":
# read_mode
if self._memory is None:
print("Warning: no memory to read from")
else:
saved_hidden_states = self._memory
try:
new_hidden_states = saved_hidden_states
blend = self.blend
# expand the blend buyt keep dim 0 the same (batch)
while blend.ndim < new_hidden_states.ndim:
blend = blend.unsqueeze(0)
# expand batch
blend = torch.cat([blend] * new_hidden_states.shape[0], dim=0)
hidden_states = blend * new_hidden_states + (1 - blend) * hidden_states
except Exception as e:
raise Exception(f"Error blending: {e}")
return hidden_states
class ReferenceAdapter(torch.nn.Module):
def __init__(self, sd: 'StableDiffusion', adapter_config: 'AdapterConfig'):
super().__init__()
self.config = adapter_config
self.sd_ref: weakref.ref = weakref.ref(sd)
self.device = self.sd_ref().unet.device
self.reference_mode = "read"
self.current_scale = 1.0
self.is_active = True
self._reference_images = None
self._reference_latents = None
self.has_memory = False
self.noise_scheduler: Union[DDPMScheduler, EulerDiscreteScheduler] = None
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
for name in sd.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
# layer_name = name.split(".processor")[0]
# weights = {
# "to_k_ip.weight": unet_sd[layer_name + ".to_k.weight"],
# "to_v_ip.weight": unet_sd[layer_name + ".to_v.weight"],
# }
attn_procs[name] = ReferenceAttnProcessor2_0(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.config.num_tokens,
adapter=self
)
# attn_procs[name].load_state_dict(weights)
sd.unet.set_attn_processor(attn_procs)
adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
sd.adapter = self
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
self.adapter_modules = adapter_modules
# load the weights if we have some
if self.config.name_or_path:
loaded_state_dict = load_ip_adapter_model(
self.config.name_or_path,
device='cpu',
dtype=sd.torch_dtype
)
self.load_state_dict(loaded_state_dict)
self.set_scale(1.0)
self.attach()
self.to(self.device, self.sd_ref().torch_dtype)
# if self.config.train_image_encoder:
# self.image_encoder.train()
# self.image_encoder.requires_grad_(True)
def to(self, *args, **kwargs):
super().to(*args, **kwargs)
# self.image_encoder.to(*args, **kwargs)
# self.image_proj_model.to(*args, **kwargs)
self.adapter_modules.to(*args, **kwargs)
return self
def load_reference_adapter(self, state_dict: Union[OrderedDict, dict]):
reference_layers = torch.nn.ModuleList(self.pipe.unet.attn_processors.values())
reference_layers.load_state_dict(state_dict["reference_adapter"])
# def load_state_dict(self, state_dict: Union[OrderedDict, dict]):
# self.load_ip_adapter(state_dict)
def state_dict(self) -> OrderedDict:
state_dict = OrderedDict()
state_dict["reference_adapter"] = self.adapter_modules.state_dict()
return state_dict
def get_scale(self):
return self.current_scale
def set_reference_images(self, reference_images: Optional[torch.Tensor]):
self._reference_images = reference_images.clone().detach()
self._reference_latents = None
self.clear_memory()
def set_blank_reference_images(self, batch_size):
self._reference_images = torch.zeros((batch_size, 3, 512, 512), device=self.device, dtype=self.sd_ref().torch_dtype)
self._reference_latents = torch.zeros((batch_size, 4, 64, 64), device=self.device, dtype=self.sd_ref().torch_dtype)
self.clear_memory()
def set_scale(self, scale):
self.current_scale = scale
for attn_processor in self.sd_ref().unet.attn_processors.values():
if isinstance(attn_processor, ReferenceAttnProcessor2_0):
attn_processor.scale = scale
def attach(self):
unet = self.sd_ref().unet
self._original_unet_forward = unet.forward
unet.forward = lambda *args, **kwargs: self.unet_forward(*args, **kwargs)
if self.sd_ref().network is not None:
# set network to not merge in
self.sd_ref().network.can_merge_in = False
def unet_forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
skip = False
if self._reference_images is None and self._reference_latents is None:
skip = True
if not self.is_active:
skip = True
if self.has_memory:
skip = True
if not skip:
if self.sd_ref().network is not None:
self.sd_ref().network.is_active = True
if self.sd_ref().network.is_merged_in:
raise ValueError("network is merged in, but we are not supposed to be merged in")
# send it through our forward first
self.forward(sample, timestep, encoder_hidden_states, *args, **kwargs)
if self.sd_ref().network is not None:
self.sd_ref().network.is_active = False
# Send it through the original unet forward
return self._original_unet_forward(sample, timestep, encoder_hidden_states, args, **kwargs)
# use drop for prompt dropout, or negatives
def forward(self, sample, timestep, encoder_hidden_states, *args, **kwargs):
if not self.noise_scheduler:
raise ValueError("noise scheduler not set")
if not self.is_active or (self._reference_images is None and self._reference_latents is None):
raise ValueError("reference adapter not active or no reference images set")
# todo may need to handle cfg?
self.reference_mode = "write"
if self._reference_latents is None:
self._reference_latents = self.sd_ref().encode_images(self._reference_images.to(
self.device, self.sd_ref().torch_dtype
)).detach()
# create a sample from our reference images
reference_latents = self._reference_latents.clone().detach().to(self.device, self.sd_ref().torch_dtype)
# if our num of samples are half of incoming, we are doing cfg. Zero out the first half (unconditional)
if reference_latents.shape[0] * 2 == sample.shape[0]:
# we are doing cfg
# Unconditional goes first
reference_latents = torch.cat([torch.zeros_like(reference_latents), reference_latents], dim=0).detach()
# resize it so reference_latents will fit inside sample in the center
width_scale = sample.shape[2] / reference_latents.shape[2]
height_scale = sample.shape[3] / reference_latents.shape[3]
scale = min(width_scale, height_scale)
# resize the reference latents
mode = "bilinear" if scale > 1.0 else "bicubic"
reference_latents = F.interpolate(
reference_latents,
size=(int(reference_latents.shape[2] * scale), int(reference_latents.shape[3] * scale)),
mode=mode,
align_corners=False
)
# add 0 padding if needed
width_pad = (sample.shape[2] - reference_latents.shape[2]) / 2
height_pad = (sample.shape[3] - reference_latents.shape[3]) / 2
reference_latents = F.pad(
reference_latents,
(math.floor(width_pad), math.floor(width_pad), math.ceil(height_pad), math.ceil(height_pad)),
mode="constant",
value=0
)
# resize again just to make sure it is exact same size
reference_latents = F.interpolate(
reference_latents,
size=(sample.shape[2], sample.shape[3]),
mode="bicubic",
align_corners=False
)
# todo maybe add same noise to the sample? For now we will send it through with no noise
# sample_imgs = self.noise_scheduler.add_noise(sample_imgs, timestep)
self._original_unet_forward(reference_latents, timestep, encoder_hidden_states, *args, **kwargs)
self.reference_mode = "read"
self.has_memory = True
return None
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
for attn_processor in self.adapter_modules:
yield from attn_processor.parameters(recurse)
# yield from self.image_proj_model.parameters(recurse)
# if self.config.train_image_encoder:
# yield from self.image_encoder.parameters(recurse)
# if self.config.train_image_encoder:
# yield from self.image_encoder.parameters(recurse)
# self.image_encoder.train()
# else:
# for attn_processor in self.adapter_modules:
# yield from attn_processor.parameters(recurse)
# yield from self.image_proj_model.parameters(recurse)
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
strict = False
# self.image_proj_model.load_state_dict(state_dict["image_proj"], strict=strict)
self.adapter_modules.load_state_dict(state_dict["reference_adapter"], strict=strict)
def enable_gradient_checkpointing(self):
self.image_encoder.gradient_checkpointing = True
def clear_memory(self):
for attn_processor in self.adapter_modules:
if isinstance(attn_processor, ReferenceAttnProcessor2_0):
attn_processor._memory = None
self.has_memory = False